iris: so, sba then.
[mesa.git] / src / gallium / drivers / iris / iris_state.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * on the rights to use, copy, modify, merge, publish, distribute, sub
8 * license, and/or sell copies of the Software, and to permit persons to whom
9 * the Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 */
23 #include <stdio.h>
24 #include <errno.h>
25
26 #ifdef HAVE_VALGRIND
27 #include <valgrind.h>
28 #include <memcheck.h>
29 #define VG(x) x
30 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
31 #else
32 #define VG(x)
33 #endif
34
35 #include "pipe/p_defines.h"
36 #include "pipe/p_state.h"
37 #include "pipe/p_context.h"
38 #include "pipe/p_screen.h"
39 #include "util/u_inlines.h"
40 #include "util/u_transfer.h"
41 #include "intel/compiler/brw_compiler.h"
42 #include "intel/common/gen_sample_positions.h"
43 #include "iris_batch.h"
44 #include "iris_context.h"
45 #include "iris_pipe.h"
46 #include "iris_resource.h"
47
48 #define __gen_address_type struct iris_address
49 #define __gen_user_data struct iris_batch
50
51 static uint64_t
52 __gen_combine_address(struct iris_batch *batch, void *location,
53 struct iris_address addr, uint32_t delta)
54 {
55 if (addr.bo == NULL)
56 return addr.offset + delta;
57
58 return iris_batch_reloc(batch, location - batch->cmdbuf.map, addr.bo,
59 addr.offset + delta, addr.reloc_flags);
60 }
61
62 #define __genxml_cmd_length(cmd) cmd ## _length
63 #define __genxml_cmd_length_bias(cmd) cmd ## _length_bias
64 #define __genxml_cmd_header(cmd) cmd ## _header
65 #define __genxml_cmd_pack(cmd) cmd ## _pack
66
67 #define iris_pack_command(cmd, dst, name) \
68 for (struct cmd name = { __genxml_cmd_header(cmd) }, \
69 *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
70 ({ __genxml_cmd_pack(cmd)(NULL, (void *)_dst, &name); \
71 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __genxml_cmd_length(cmd) * 4)); \
72 _dst = NULL; \
73 }))
74
75 #define iris_pack_state(cmd, dst, name) \
76 for (struct cmd name = {}, \
77 *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
78 __genxml_cmd_pack(cmd)(NULL, (void *)_dst, &name), \
79 _dst = NULL)
80
81 #define iris_emit_cmd(batch, cmd, name) \
82 iris_require_command_space(batch, 4 * __genxml_cmd_length(cmd)); \
83 iris_pack_command(cmd, batch->cmdbuf.map_next, name)
84
85 #define iris_emit_merge(batch, dwords0, dwords1) \
86 do { \
87 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
88 \
89 iris_require_command_space(batch, ARRAY_SIZE(dwords0)); \
90 uint32_t *dw = batch->cmdbuf.map_next; \
91 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
92 dw[i] = (dwords0)[i] | (dwords1)[i]; \
93 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4)); \
94 } while (0)
95
96 #include "genxml/genX_pack.h"
97 #include "genxml/gen_macros.h"
98
99 #define MOCS_WB (2 << 1)
100
101 UNUSED static void pipe_asserts()
102 {
103 #define PIPE_ASSERT(x) STATIC_ASSERT((int)x)
104
105 /* pipe_logicop happens to match the hardware. */
106 PIPE_ASSERT(PIPE_LOGICOP_CLEAR == LOGICOP_CLEAR);
107 PIPE_ASSERT(PIPE_LOGICOP_NOR == LOGICOP_NOR);
108 PIPE_ASSERT(PIPE_LOGICOP_AND_INVERTED == LOGICOP_AND_INVERTED);
109 PIPE_ASSERT(PIPE_LOGICOP_COPY_INVERTED == LOGICOP_COPY_INVERTED);
110 PIPE_ASSERT(PIPE_LOGICOP_AND_REVERSE == LOGICOP_AND_REVERSE);
111 PIPE_ASSERT(PIPE_LOGICOP_INVERT == LOGICOP_INVERT);
112 PIPE_ASSERT(PIPE_LOGICOP_XOR == LOGICOP_XOR);
113 PIPE_ASSERT(PIPE_LOGICOP_NAND == LOGICOP_NAND);
114 PIPE_ASSERT(PIPE_LOGICOP_AND == LOGICOP_AND);
115 PIPE_ASSERT(PIPE_LOGICOP_EQUIV == LOGICOP_EQUIV);
116 PIPE_ASSERT(PIPE_LOGICOP_NOOP == LOGICOP_NOOP);
117 PIPE_ASSERT(PIPE_LOGICOP_OR_INVERTED == LOGICOP_OR_INVERTED);
118 PIPE_ASSERT(PIPE_LOGICOP_COPY == LOGICOP_COPY);
119 PIPE_ASSERT(PIPE_LOGICOP_OR_REVERSE == LOGICOP_OR_REVERSE);
120 PIPE_ASSERT(PIPE_LOGICOP_OR == LOGICOP_OR);
121 PIPE_ASSERT(PIPE_LOGICOP_SET == LOGICOP_SET);
122
123 /* pipe_blend_func happens to match the hardware. */
124 PIPE_ASSERT(PIPE_BLENDFACTOR_ONE == BLENDFACTOR_ONE);
125 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_COLOR == BLENDFACTOR_SRC_COLOR);
126 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA == BLENDFACTOR_SRC_ALPHA);
127 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_ALPHA == BLENDFACTOR_DST_ALPHA);
128 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_COLOR == BLENDFACTOR_DST_COLOR);
129 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE == BLENDFACTOR_SRC_ALPHA_SATURATE);
130 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_COLOR == BLENDFACTOR_CONST_COLOR);
131 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_ALPHA == BLENDFACTOR_CONST_ALPHA);
132 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_COLOR == BLENDFACTOR_SRC1_COLOR);
133 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_ALPHA == BLENDFACTOR_SRC1_ALPHA);
134 PIPE_ASSERT(PIPE_BLENDFACTOR_ZERO == BLENDFACTOR_ZERO);
135 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_COLOR == BLENDFACTOR_INV_SRC_COLOR);
136 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_ALPHA == BLENDFACTOR_INV_SRC_ALPHA);
137 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_ALPHA == BLENDFACTOR_INV_DST_ALPHA);
138 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_COLOR == BLENDFACTOR_INV_DST_COLOR);
139 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_COLOR == BLENDFACTOR_INV_CONST_COLOR);
140 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_ALPHA == BLENDFACTOR_INV_CONST_ALPHA);
141 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_COLOR == BLENDFACTOR_INV_SRC1_COLOR);
142 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_ALPHA == BLENDFACTOR_INV_SRC1_ALPHA);
143
144 /* pipe_blend_func happens to match the hardware. */
145 PIPE_ASSERT(PIPE_BLEND_ADD == BLENDFUNCTION_ADD);
146 PIPE_ASSERT(PIPE_BLEND_SUBTRACT == BLENDFUNCTION_SUBTRACT);
147 PIPE_ASSERT(PIPE_BLEND_REVERSE_SUBTRACT == BLENDFUNCTION_REVERSE_SUBTRACT);
148 PIPE_ASSERT(PIPE_BLEND_MIN == BLENDFUNCTION_MIN);
149 PIPE_ASSERT(PIPE_BLEND_MAX == BLENDFUNCTION_MAX);
150
151 /* pipe_stencil_op happens to match the hardware. */
152 PIPE_ASSERT(PIPE_STENCIL_OP_KEEP == STENCILOP_KEEP);
153 PIPE_ASSERT(PIPE_STENCIL_OP_ZERO == STENCILOP_ZERO);
154 PIPE_ASSERT(PIPE_STENCIL_OP_REPLACE == STENCILOP_REPLACE);
155 PIPE_ASSERT(PIPE_STENCIL_OP_INCR == STENCILOP_INCRSAT);
156 PIPE_ASSERT(PIPE_STENCIL_OP_DECR == STENCILOP_DECRSAT);
157 PIPE_ASSERT(PIPE_STENCIL_OP_INCR_WRAP == STENCILOP_INCR);
158 PIPE_ASSERT(PIPE_STENCIL_OP_DECR_WRAP == STENCILOP_DECR);
159 PIPE_ASSERT(PIPE_STENCIL_OP_INVERT == STENCILOP_INVERT);
160 #undef PIPE_ASSERT
161 }
162
163 static unsigned
164 translate_prim_type(enum pipe_prim_type prim, uint8_t verts_per_patch)
165 {
166 static const unsigned map[] = {
167 [PIPE_PRIM_POINTS] = _3DPRIM_POINTLIST,
168 [PIPE_PRIM_LINES] = _3DPRIM_LINELIST,
169 [PIPE_PRIM_LINE_LOOP] = _3DPRIM_LINELOOP,
170 [PIPE_PRIM_LINE_STRIP] = _3DPRIM_LINESTRIP,
171 [PIPE_PRIM_TRIANGLES] = _3DPRIM_TRILIST,
172 [PIPE_PRIM_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
173 [PIPE_PRIM_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
174 [PIPE_PRIM_QUADS] = _3DPRIM_QUADLIST,
175 [PIPE_PRIM_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
176 [PIPE_PRIM_POLYGON] = _3DPRIM_POLYGON,
177 [PIPE_PRIM_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
178 [PIPE_PRIM_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
179 [PIPE_PRIM_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
180 [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
181 [PIPE_PRIM_PATCHES] = _3DPRIM_PATCHLIST_1 - 1,
182 };
183
184 return map[prim] + (prim == PIPE_PRIM_PATCHES ? verts_per_patch : 0);
185 }
186
187 static unsigned
188 translate_compare_func(enum pipe_compare_func pipe_func)
189 {
190 static const unsigned map[] = {
191 [PIPE_FUNC_NEVER] = COMPAREFUNCTION_NEVER,
192 [PIPE_FUNC_LESS] = COMPAREFUNCTION_LESS,
193 [PIPE_FUNC_EQUAL] = COMPAREFUNCTION_EQUAL,
194 [PIPE_FUNC_LEQUAL] = COMPAREFUNCTION_LEQUAL,
195 [PIPE_FUNC_GREATER] = COMPAREFUNCTION_GREATER,
196 [PIPE_FUNC_NOTEQUAL] = COMPAREFUNCTION_NOTEQUAL,
197 [PIPE_FUNC_GEQUAL] = COMPAREFUNCTION_GEQUAL,
198 [PIPE_FUNC_ALWAYS] = COMPAREFUNCTION_ALWAYS,
199 };
200 return map[pipe_func];
201 }
202
203 static unsigned
204 translate_shadow_func(enum pipe_compare_func pipe_func)
205 {
206 /* Gallium specifies the result of shadow comparisons as:
207 *
208 * 1 if ref <op> texel,
209 * 0 otherwise.
210 *
211 * The hardware does:
212 *
213 * 0 if texel <op> ref,
214 * 1 otherwise.
215 *
216 * So we need to flip the operator and also negate.
217 */
218 static const unsigned map[] = {
219 [PIPE_FUNC_NEVER] = PREFILTEROPALWAYS,
220 [PIPE_FUNC_LESS] = PREFILTEROPLEQUAL,
221 [PIPE_FUNC_EQUAL] = PREFILTEROPNOTEQUAL,
222 [PIPE_FUNC_LEQUAL] = PREFILTEROPLESS,
223 [PIPE_FUNC_GREATER] = PREFILTEROPGEQUAL,
224 [PIPE_FUNC_NOTEQUAL] = PREFILTEROPEQUAL,
225 [PIPE_FUNC_GEQUAL] = PREFILTEROPGREATER,
226 [PIPE_FUNC_ALWAYS] = PREFILTEROPNEVER,
227 };
228 return map[pipe_func];
229 }
230
231 static unsigned
232 translate_cull_mode(unsigned pipe_face)
233 {
234 static const unsigned map[4] = {
235 [PIPE_FACE_NONE] = CULLMODE_NONE,
236 [PIPE_FACE_FRONT] = CULLMODE_FRONT,
237 [PIPE_FACE_BACK] = CULLMODE_BACK,
238 [PIPE_FACE_FRONT_AND_BACK] = CULLMODE_BOTH,
239 };
240 return map[pipe_face];
241 }
242
243 static unsigned
244 translate_fill_mode(unsigned pipe_polymode)
245 {
246 static const unsigned map[4] = {
247 [PIPE_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
248 [PIPE_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
249 [PIPE_POLYGON_MODE_POINT] = FILL_MODE_POINT,
250 [PIPE_POLYGON_MODE_FILL_RECTANGLE] = FILL_MODE_SOLID,
251 };
252 return map[pipe_polymode];
253 }
254
255 static struct iris_address
256 ro_bo(struct iris_bo *bo, uint32_t offset)
257 {
258 return (struct iris_address) { .bo = bo, .offset = offset };
259 }
260
261 static void
262 iris_upload_initial_gpu_state(struct iris_context *ice,
263 struct iris_batch *batch)
264 {
265 iris_emit_cmd(batch, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
266 rect.ClippedDrawingRectangleXMax = UINT16_MAX;
267 rect.ClippedDrawingRectangleYMax = UINT16_MAX;
268 }
269 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_PATTERN), pat) {
270 GEN_SAMPLE_POS_1X(pat._1xSample);
271 GEN_SAMPLE_POS_2X(pat._2xSample);
272 GEN_SAMPLE_POS_4X(pat._4xSample);
273 GEN_SAMPLE_POS_8X(pat._8xSample);
274 GEN_SAMPLE_POS_16X(pat._16xSample);
275 }
276 iris_emit_cmd(batch, GENX(3DSTATE_AA_LINE_PARAMETERS), foo);
277 iris_emit_cmd(batch, GENX(3DSTATE_WM_CHROMAKEY), foo);
278 iris_emit_cmd(batch, GENX(3DSTATE_WM_HZ_OP), foo);
279 /* XXX: may need to set an offset for origin-UL framebuffers */
280 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_OFFSET), foo);
281
282 /* Just assign a static partitioning. */
283 for (int i = 0; i <= MESA_SHADER_FRAGMENT; i++) {
284 iris_emit_cmd(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
285 alloc._3DCommandSubOpcode = 18 + i;
286 alloc.ConstantBufferOffset = 6 * i;
287 alloc.ConstantBufferSize = i == MESA_SHADER_FRAGMENT ? 8 : 6;
288 }
289 }
290 }
291
292 static void
293 iris_launch_grid(struct pipe_context *ctx, const struct pipe_grid_info *info)
294 {
295 }
296
297 static void
298 iris_set_blend_color(struct pipe_context *ctx,
299 const struct pipe_blend_color *state)
300 {
301 struct iris_context *ice = (struct iris_context *) ctx;
302
303 memcpy(&ice->state.blend_color, state, sizeof(struct pipe_blend_color));
304 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
305 }
306
307 struct iris_blend_state {
308 uint32_t ps_blend[GENX(3DSTATE_PS_BLEND_length)];
309 uint32_t blend_state[GENX(BLEND_STATE_length)];
310 uint32_t blend_entries[BRW_MAX_DRAW_BUFFERS *
311 GENX(BLEND_STATE_ENTRY_length)];
312 };
313
314 static void *
315 iris_create_blend_state(struct pipe_context *ctx,
316 const struct pipe_blend_state *state)
317 {
318 struct iris_blend_state *cso = malloc(sizeof(struct iris_blend_state));
319
320 iris_pack_state(GENX(BLEND_STATE), cso->blend_state, bs) {
321 bs.AlphaToCoverageEnable = state->alpha_to_coverage;
322 bs.IndependentAlphaBlendEnable = state->independent_blend_enable;
323 bs.AlphaToOneEnable = state->alpha_to_one;
324 bs.AlphaToCoverageDitherEnable = state->alpha_to_coverage;
325 bs.ColorDitherEnable = state->dither;
326 //bs.AlphaTestEnable = <comes from alpha state> :(
327 //bs.AlphaTestFunction = <comes from alpha state> :(
328 }
329
330 iris_pack_command(GENX(3DSTATE_PS_BLEND), cso->ps_blend, pb) {
331 //pb.HasWriteableRT = <comes from somewhere> :(
332 //pb.AlphaTestEnable = <comes from alpha state> :(
333 pb.AlphaToCoverageEnable = state->alpha_to_coverage;
334 pb.IndependentAlphaBlendEnable = state->independent_blend_enable;
335
336 pb.ColorBufferBlendEnable = state->rt[0].blend_enable;
337
338 pb.SourceBlendFactor = state->rt[0].rgb_src_factor;
339 pb.SourceAlphaBlendFactor = state->rt[0].alpha_func;
340 pb.DestinationBlendFactor = state->rt[0].rgb_dst_factor;
341 pb.DestinationAlphaBlendFactor = state->rt[0].alpha_dst_factor;
342 }
343
344 for (int i = 0; i < BRW_MAX_DRAW_BUFFERS; i++) {
345 iris_pack_state(GENX(BLEND_STATE_ENTRY), &cso->blend_entries[i], be) {
346 be.LogicOpEnable = state->logicop_enable;
347 be.LogicOpFunction = state->logicop_func;
348
349 be.PreBlendSourceOnlyClampEnable = false;
350 be.ColorClampRange = COLORCLAMP_RTFORMAT;
351 be.PreBlendColorClampEnable = true;
352 be.PostBlendColorClampEnable = true;
353
354 be.ColorBufferBlendEnable = state->rt[i].blend_enable;
355
356 be.ColorBlendFunction = state->rt[i].rgb_func;
357 be.AlphaBlendFunction = state->rt[i].alpha_func;
358 be.SourceBlendFactor = state->rt[i].rgb_src_factor;
359 be.SourceAlphaBlendFactor = state->rt[i].alpha_func;
360 be.DestinationBlendFactor = state->rt[i].rgb_dst_factor;
361 be.DestinationAlphaBlendFactor = state->rt[i].alpha_dst_factor;
362
363 be.WriteDisableRed = state->rt[i].colormask & PIPE_MASK_R;
364 be.WriteDisableGreen = state->rt[i].colormask & PIPE_MASK_G;
365 be.WriteDisableBlue = state->rt[i].colormask & PIPE_MASK_B;
366 be.WriteDisableAlpha = state->rt[i].colormask & PIPE_MASK_A;
367 }
368 }
369
370 return cso;
371 }
372
373 static void
374 iris_bind_blend_state(struct pipe_context *ctx, void *state)
375 {
376 struct iris_context *ice = (struct iris_context *) ctx;
377 ice->state.cso_blend = state;
378 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
379 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
380 }
381
382 struct iris_depth_stencil_alpha_state {
383 uint32_t wmds[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
384 uint32_t cc_vp[GENX(CC_VIEWPORT_length)];
385
386 struct pipe_alpha_state alpha; /* to BLEND_STATE, 3DSTATE_PS_BLEND */
387 };
388
389 static void *
390 iris_create_zsa_state(struct pipe_context *ctx,
391 const struct pipe_depth_stencil_alpha_state *state)
392 {
393 struct iris_depth_stencil_alpha_state *cso =
394 malloc(sizeof(struct iris_depth_stencil_alpha_state));
395
396 cso->alpha = state->alpha;
397
398 bool two_sided_stencil = state->stencil[1].enabled;
399
400 /* The state tracker needs to optimize away EQUAL writes for us. */
401 assert(!(state->depth.func == PIPE_FUNC_EQUAL && state->depth.writemask));
402
403 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), cso->wmds, wmds) {
404 wmds.StencilFailOp = state->stencil[0].fail_op;
405 wmds.StencilPassDepthFailOp = state->stencil[0].zfail_op;
406 wmds.StencilPassDepthPassOp = state->stencil[0].zpass_op;
407 wmds.StencilTestFunction =
408 translate_compare_func(state->stencil[0].func);
409 wmds.BackfaceStencilFailOp = state->stencil[1].fail_op;
410 wmds.BackfaceStencilPassDepthFailOp = state->stencil[1].zfail_op;
411 wmds.BackfaceStencilPassDepthPassOp = state->stencil[1].zpass_op;
412 wmds.BackfaceStencilTestFunction =
413 translate_compare_func(state->stencil[1].func);
414 wmds.DepthTestFunction = translate_compare_func(state->depth.func);
415 wmds.DoubleSidedStencilEnable = two_sided_stencil;
416 wmds.StencilTestEnable = state->stencil[0].enabled;
417 wmds.StencilBufferWriteEnable =
418 state->stencil[0].writemask != 0 ||
419 (two_sided_stencil && state->stencil[1].writemask != 0);
420 wmds.DepthTestEnable = state->depth.enabled;
421 wmds.DepthBufferWriteEnable = state->depth.writemask;
422 wmds.StencilTestMask = state->stencil[0].valuemask;
423 wmds.StencilWriteMask = state->stencil[0].writemask;
424 wmds.BackfaceStencilTestMask = state->stencil[1].valuemask;
425 wmds.BackfaceStencilWriteMask = state->stencil[1].writemask;
426 /* wmds.[Backface]StencilReferenceValue are merged later */
427 }
428
429 iris_pack_state(GENX(CC_VIEWPORT), cso->cc_vp, ccvp) {
430 ccvp.MinimumDepth = state->depth.bounds_min;
431 ccvp.MaximumDepth = state->depth.bounds_max;
432 }
433
434 return cso;
435 }
436
437 static void
438 iris_bind_zsa_state(struct pipe_context *ctx, void *state)
439 {
440 struct iris_context *ice = (struct iris_context *) ctx;
441 struct iris_depth_stencil_alpha_state *old_cso = ice->state.cso_zsa;
442 struct iris_depth_stencil_alpha_state *new_cso = state;
443
444 if (new_cso) {
445 if (!old_cso || old_cso->alpha.ref_value != new_cso->alpha.ref_value) {
446 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
447 }
448 }
449
450 ice->state.cso_zsa = new_cso;
451 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
452 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
453 }
454
455 struct iris_rasterizer_state {
456 uint32_t sf[GENX(3DSTATE_SF_length)];
457 uint32_t clip[GENX(3DSTATE_CLIP_length)];
458 uint32_t raster[GENX(3DSTATE_RASTER_length)];
459 uint32_t wm[GENX(3DSTATE_WM_length)];
460 uint32_t line_stipple[GENX(3DSTATE_LINE_STIPPLE_length)];
461
462 bool flatshade; /* for shader state */
463 bool light_twoside; /* for shader state */
464 bool rasterizer_discard; /* for 3DSTATE_STREAMOUT */
465 bool half_pixel_center; /* for 3DSTATE_MULTISAMPLE */
466 enum pipe_sprite_coord_mode sprite_coord_mode; /* PIPE_SPRITE_* */
467 };
468
469 static void *
470 iris_create_rasterizer_state(struct pipe_context *ctx,
471 const struct pipe_rasterizer_state *state)
472 {
473 struct iris_rasterizer_state *cso =
474 malloc(sizeof(struct iris_rasterizer_state));
475
476 #if 0
477 sprite_coord_mode -> SBE PointSpriteTextureCoordinateOrigin
478 sprite_coord_enable -> SBE PointSpriteTextureCoordinateEnable
479 point_quad_rasterization -> SBE?
480
481 not necessary?
482 {
483 poly_smooth
484 force_persample_interp - ?
485 bottom_edge_rule
486
487 offset_units_unscaled - cap not exposed
488 }
489 #endif
490
491 cso->flatshade = state->flatshade;
492 cso->light_twoside = state->light_twoside;
493 cso->rasterizer_discard = state->rasterizer_discard;
494 cso->half_pixel_center = state->half_pixel_center;
495
496 iris_pack_command(GENX(3DSTATE_SF), cso->sf, sf) {
497 sf.StatisticsEnable = true;
498 sf.ViewportTransformEnable = true;
499 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
500 sf.LineEndCapAntialiasingRegionWidth =
501 state->line_smooth ? _10pixels : _05pixels;
502 sf.LastPixelEnable = state->line_last_pixel;
503 sf.LineWidth = state->line_width;
504 sf.SmoothPointEnable = state->point_smooth;
505 sf.PointWidthSource = state->point_size_per_vertex ? Vertex : State;
506 sf.PointWidth = state->point_size;
507
508 if (state->flatshade_first) {
509 sf.TriangleStripListProvokingVertexSelect = 2;
510 sf.TriangleFanProvokingVertexSelect = 2;
511 sf.LineStripListProvokingVertexSelect = 1;
512 } else {
513 sf.TriangleFanProvokingVertexSelect = 1;
514 }
515 }
516
517 /* COMPLETE! */
518 iris_pack_command(GENX(3DSTATE_RASTER), cso->raster, rr) {
519 rr.FrontWinding = state->front_ccw ? CounterClockwise : Clockwise;
520 rr.CullMode = translate_cull_mode(state->cull_face);
521 rr.FrontFaceFillMode = translate_fill_mode(state->fill_front);
522 rr.BackFaceFillMode = translate_fill_mode(state->fill_back);
523 rr.DXMultisampleRasterizationEnable = state->multisample;
524 rr.GlobalDepthOffsetEnableSolid = state->offset_tri;
525 rr.GlobalDepthOffsetEnableWireframe = state->offset_line;
526 rr.GlobalDepthOffsetEnablePoint = state->offset_point;
527 rr.GlobalDepthOffsetConstant = state->offset_units;
528 rr.GlobalDepthOffsetScale = state->offset_scale;
529 rr.GlobalDepthOffsetClamp = state->offset_clamp;
530 rr.SmoothPointEnable = state->point_smooth;
531 rr.AntialiasingEnable = state->line_smooth;
532 rr.ScissorRectangleEnable = state->scissor;
533 rr.ViewportZNearClipTestEnable = state->depth_clip_near;
534 rr.ViewportZFarClipTestEnable = state->depth_clip_far;
535 //rr.ConservativeRasterizationEnable = not yet supported by Gallium...
536 }
537
538 iris_pack_command(GENX(3DSTATE_CLIP), cso->clip, cl) {
539 cl.StatisticsEnable = true;
540 cl.EarlyCullEnable = true;
541 cl.UserClipDistanceClipTestEnableBitmask = state->clip_plane_enable;
542 cl.ForceUserClipDistanceClipTestEnableBitmask = true;
543 cl.APIMode = state->clip_halfz ? APIMODE_D3D : APIMODE_OGL;
544 cl.GuardbandClipTestEnable = true;
545 cl.ClipMode = CLIPMODE_NORMAL;
546 cl.ClipEnable = true;
547 cl.ViewportXYClipTestEnable = state->point_tri_clip;
548 cl.MinimumPointWidth = 0.125;
549 cl.MaximumPointWidth = 255.875;
550 //.NonPerspectiveBarycentricEnable = <comes from FS prog> :(
551 //.ForceZeroRTAIndexEnable = <comes from FB layers being 0>
552
553 if (state->flatshade_first) {
554 cl.TriangleStripListProvokingVertexSelect = 2;
555 cl.TriangleFanProvokingVertexSelect = 2;
556 cl.LineStripListProvokingVertexSelect = 1;
557 } else {
558 cl.TriangleFanProvokingVertexSelect = 1;
559 }
560 }
561
562 iris_pack_command(GENX(3DSTATE_WM), cso->wm, wm) {
563 wm.LineAntialiasingRegionWidth = _10pixels;
564 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
565 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
566 wm.StatisticsEnable = true;
567 wm.LineStippleEnable = state->line_stipple_enable;
568 wm.PolygonStippleEnable = state->poly_stipple_enable;
569 // wm.BarycentricInterpolationMode = <comes from FS program> :(
570 // wm.EarlyDepthStencilControl = <comes from FS program> :(
571 }
572
573 /* Remap from 0..255 back to 1..256 */
574 const unsigned line_stipple_factor = state->line_stipple_factor + 1;
575
576 iris_pack_command(GENX(3DSTATE_LINE_STIPPLE), cso->line_stipple, line) {
577 line.LineStipplePattern = state->line_stipple_pattern;
578 line.LineStippleInverseRepeatCount = 1.0f / line_stipple_factor;
579 line.LineStippleRepeatCount = line_stipple_factor;
580 }
581
582 return cso;
583 }
584
585 static void
586 iris_bind_rasterizer_state(struct pipe_context *ctx, void *state)
587 {
588 struct iris_context *ice = (struct iris_context *) ctx;
589 struct iris_rasterizer_state *old_cso = ice->state.cso_rast;
590 struct iris_rasterizer_state *new_cso = state;
591
592 if (new_cso) {
593 /* Try to avoid re-emitting 3DSTATE_LINE_STIPPLE, it's non-pipelined */
594 if (!old_cso || memcmp(old_cso->line_stipple, new_cso->line_stipple,
595 sizeof(old_cso->line_stipple)) != 0) {
596 ice->state.dirty |= IRIS_DIRTY_LINE_STIPPLE;
597 }
598
599 if (!old_cso ||
600 old_cso->half_pixel_center != new_cso->half_pixel_center) {
601 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
602 }
603 }
604
605 ice->state.cso_rast = new_cso;
606 ice->state.dirty |= IRIS_DIRTY_RASTER;
607 }
608
609 static uint32_t
610 translate_wrap(unsigned pipe_wrap)
611 {
612 static const unsigned map[] = {
613 [PIPE_TEX_WRAP_REPEAT] = TCM_WRAP,
614 [PIPE_TEX_WRAP_CLAMP] = TCM_HALF_BORDER,
615 [PIPE_TEX_WRAP_CLAMP_TO_EDGE] = TCM_CLAMP,
616 [PIPE_TEX_WRAP_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER,
617 [PIPE_TEX_WRAP_MIRROR_REPEAT] = TCM_MIRROR,
618 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE,
619 [PIPE_TEX_WRAP_MIRROR_CLAMP] = -1, // XXX: ???
620 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER] = -1, // XXX: ???
621 };
622 return map[pipe_wrap];
623 }
624
625 /**
626 * Return true if the given wrap mode requires the border color to exist.
627 */
628 static bool
629 wrap_mode_needs_border_color(unsigned wrap_mode)
630 {
631 return wrap_mode == TCM_CLAMP_BORDER || wrap_mode == TCM_HALF_BORDER;
632 }
633
634 static unsigned
635 translate_mip_filter(enum pipe_tex_mipfilter pipe_mip)
636 {
637 static const unsigned map[] = {
638 [PIPE_TEX_MIPFILTER_NEAREST] = MIPFILTER_NEAREST,
639 [PIPE_TEX_MIPFILTER_LINEAR] = MIPFILTER_LINEAR,
640 [PIPE_TEX_MIPFILTER_NONE] = MIPFILTER_NONE,
641 };
642 return map[pipe_mip];
643 }
644
645 struct iris_sampler_state {
646 struct pipe_sampler_state base;
647
648 bool needs_border_color;
649
650 uint32_t sampler_state[GENX(SAMPLER_STATE_length)];
651 };
652
653 static void *
654 iris_create_sampler_state(struct pipe_context *pctx,
655 const struct pipe_sampler_state *state)
656 {
657 struct iris_sampler_state *cso = CALLOC_STRUCT(iris_sampler_state);
658
659 if (!cso)
660 return NULL;
661
662 STATIC_ASSERT(PIPE_TEX_FILTER_NEAREST == MAPFILTER_NEAREST);
663 STATIC_ASSERT(PIPE_TEX_FILTER_LINEAR == MAPFILTER_LINEAR);
664
665 unsigned wrap_s = translate_wrap(state->wrap_s);
666 unsigned wrap_t = translate_wrap(state->wrap_t);
667 unsigned wrap_r = translate_wrap(state->wrap_r);
668
669 cso->needs_border_color = wrap_mode_needs_border_color(wrap_s) ||
670 wrap_mode_needs_border_color(wrap_t) ||
671 wrap_mode_needs_border_color(wrap_r);
672
673 iris_pack_state(GENX(SAMPLER_STATE), cso->sampler_state, samp) {
674 samp.TCXAddressControlMode = wrap_s;
675 samp.TCYAddressControlMode = wrap_t;
676 samp.TCZAddressControlMode = wrap_r;
677 samp.CubeSurfaceControlMode = state->seamless_cube_map;
678 samp.NonnormalizedCoordinateEnable = !state->normalized_coords;
679 samp.MinModeFilter = state->min_img_filter;
680 samp.MagModeFilter = state->mag_img_filter;
681 samp.MipModeFilter = translate_mip_filter(state->min_mip_filter);
682 samp.MaximumAnisotropy = RATIO21;
683
684 if (state->max_anisotropy >= 2) {
685 if (state->min_img_filter == PIPE_TEX_FILTER_LINEAR) {
686 samp.MinModeFilter = MAPFILTER_ANISOTROPIC;
687 samp.AnisotropicAlgorithm = EWAApproximation;
688 }
689
690 if (state->mag_img_filter == PIPE_TEX_FILTER_LINEAR)
691 samp.MagModeFilter = MAPFILTER_ANISOTROPIC;
692
693 samp.MaximumAnisotropy =
694 MIN2((state->max_anisotropy - 2) / 2, RATIO161);
695 }
696
697 /* Set address rounding bits if not using nearest filtering. */
698 if (state->min_img_filter != PIPE_TEX_FILTER_NEAREST) {
699 samp.UAddressMinFilterRoundingEnable = true;
700 samp.VAddressMinFilterRoundingEnable = true;
701 samp.RAddressMinFilterRoundingEnable = true;
702 }
703
704 if (state->mag_img_filter != PIPE_TEX_FILTER_NEAREST) {
705 samp.UAddressMagFilterRoundingEnable = true;
706 samp.VAddressMagFilterRoundingEnable = true;
707 samp.RAddressMagFilterRoundingEnable = true;
708 }
709
710 if (state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE)
711 samp.ShadowFunction = translate_shadow_func(state->compare_func);
712
713 const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
714
715 samp.LODPreClampMode = CLAMP_MODE_OGL;
716 samp.MinLOD = CLAMP(state->min_lod, 0, hw_max_lod);
717 samp.MaxLOD = CLAMP(state->max_lod, 0, hw_max_lod);
718 samp.TextureLODBias = CLAMP(state->lod_bias, -16, 15);
719
720 //samp.BorderColorPointer = <<comes from elsewhere>>
721 }
722
723 return cso;
724 }
725
726 static void
727 iris_bind_sampler_states(struct pipe_context *ctx,
728 enum pipe_shader_type p_stage,
729 unsigned start, unsigned count,
730 void **states)
731 {
732 struct iris_context *ice = (struct iris_context *) ctx;
733 gl_shader_stage stage = stage_from_pipe(p_stage);
734
735 assert(start + count <= IRIS_MAX_TEXTURE_SAMPLERS);
736
737 for (int i = 0; i < count; i++) {
738 ice->state.samplers[stage][start + i] = states[i];
739 }
740
741 ice->state.dirty |= IRIS_DIRTY_SAMPLER_STATES_VS << stage;
742 }
743
744 struct iris_sampler_view {
745 struct pipe_sampler_view pipe;
746 struct isl_view view;
747 uint32_t surface_state[GENX(RENDER_SURFACE_STATE_length)];
748 };
749
750 /**
751 * Convert an swizzle enumeration (i.e. SWIZZLE_X) to one of the Gen7.5+
752 * "Shader Channel Select" enumerations (i.e. HSW_SCS_RED). The mappings are
753 *
754 * SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W, SWIZZLE_ZERO, SWIZZLE_ONE
755 * 0 1 2 3 4 5
756 * 4 5 6 7 0 1
757 * SCS_RED, SCS_GREEN, SCS_BLUE, SCS_ALPHA, SCS_ZERO, SCS_ONE
758 *
759 * which is simply adding 4 then modding by 8 (or anding with 7).
760 *
761 * We then may need to apply workarounds for textureGather hardware bugs.
762 */
763 static enum isl_channel_select
764 pipe_swizzle_to_isl_channel(enum pipe_swizzle swizzle)
765 {
766 return (swizzle + 4) & 7;
767 }
768
769 static struct pipe_sampler_view *
770 iris_create_sampler_view(struct pipe_context *ctx,
771 struct pipe_resource *tex,
772 const struct pipe_sampler_view *tmpl)
773 {
774 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
775 struct iris_resource *itex = (struct iris_resource *) tex;
776 struct iris_sampler_view *isv = calloc(1, sizeof(struct iris_sampler_view));
777
778 if (!isv)
779 return NULL;
780
781 /* initialize base object */
782 isv->pipe = *tmpl;
783 isv->pipe.context = ctx;
784 isv->pipe.texture = NULL;
785 pipe_reference_init(&isv->pipe.reference, 1);
786 pipe_resource_reference(&isv->pipe.texture, tex);
787
788 /* XXX: do we need brw_get_texture_swizzle hacks here? */
789
790 isv->view = (struct isl_view) {
791 .format = iris_isl_format_for_pipe_format(tmpl->format),
792 .base_level = tmpl->u.tex.first_level,
793 .levels = tmpl->u.tex.last_level - tmpl->u.tex.first_level + 1,
794 .base_array_layer = tmpl->u.tex.first_layer,
795 .array_len = tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1,
796 .swizzle = (struct isl_swizzle) {
797 .r = pipe_swizzle_to_isl_channel(tmpl->swizzle_r),
798 .g = pipe_swizzle_to_isl_channel(tmpl->swizzle_g),
799 .b = pipe_swizzle_to_isl_channel(tmpl->swizzle_b),
800 .a = pipe_swizzle_to_isl_channel(tmpl->swizzle_a),
801 },
802 .usage = ISL_SURF_USAGE_TEXTURE_BIT,
803 };
804
805 isl_surf_fill_state(&screen->isl_dev, isv->surface_state,
806 .surf = &itex->surf, .view = &isv->view,
807 .mocs = MOCS_WB);
808 // .address = ...
809 // .aux_surf =
810 // .clear_color = clear_color,
811
812 return &isv->pipe;
813 }
814
815 struct iris_surface {
816 struct pipe_surface pipe;
817 struct isl_view view;
818 uint32_t surface_state[GENX(RENDER_SURFACE_STATE_length)];
819 };
820
821 static struct pipe_surface *
822 iris_create_surface(struct pipe_context *ctx,
823 struct pipe_resource *tex,
824 const struct pipe_surface *tmpl)
825 {
826 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
827 struct iris_surface *surf = calloc(1, sizeof(struct iris_surface));
828 struct pipe_surface *psurf = &surf->pipe;
829 struct iris_resource *itex = (struct iris_resource *) tex;
830
831 if (!surf)
832 return NULL;
833
834 pipe_reference_init(&psurf->reference, 1);
835 pipe_resource_reference(&psurf->texture, tex);
836 psurf->context = ctx;
837 psurf->format = tmpl->format;
838 psurf->width = tex->width0;
839 psurf->height = tex->height0;
840 psurf->texture = tex;
841 psurf->u.tex.first_layer = tmpl->u.tex.first_layer;
842 psurf->u.tex.last_layer = tmpl->u.tex.last_layer;
843 psurf->u.tex.level = tmpl->u.tex.level;
844
845 surf->view = (struct isl_view) {
846 .format = iris_isl_format_for_pipe_format(tmpl->format),
847 .base_level = tmpl->u.tex.level,
848 .levels = 1,
849 .base_array_layer = tmpl->u.tex.first_layer,
850 .array_len = tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1,
851 .swizzle = ISL_SWIZZLE_IDENTITY,
852 // XXX: DEPTH_BIt, STENCIL_BIT...CUBE_BIT? Other bits?!
853 .usage = ISL_SURF_USAGE_RENDER_TARGET_BIT,
854 };
855
856 isl_surf_fill_state(&screen->isl_dev, surf->surface_state,
857 .surf = &itex->surf, .view = &surf->view,
858 .mocs = MOCS_WB);
859 // .address = ...
860 // .aux_surf =
861 // .clear_color = clear_color,
862
863 return psurf;
864 }
865
866 static void
867 iris_set_sampler_views(struct pipe_context *ctx,
868 enum pipe_shader_type shader,
869 unsigned start, unsigned count,
870 struct pipe_sampler_view **views)
871 {
872 }
873
874 static void
875 iris_set_clip_state(struct pipe_context *ctx,
876 const struct pipe_clip_state *state)
877 {
878 }
879
880 static void
881 iris_set_polygon_stipple(struct pipe_context *ctx,
882 const struct pipe_poly_stipple *state)
883 {
884 struct iris_context *ice = (struct iris_context *) ctx;
885 memcpy(&ice->state.poly_stipple, state, sizeof(*state));
886 ice->state.dirty |= IRIS_DIRTY_POLYGON_STIPPLE;
887 }
888
889 static void
890 iris_set_sample_mask(struct pipe_context *ctx, unsigned sample_mask)
891 {
892 struct iris_context *ice = (struct iris_context *) ctx;
893
894 ice->state.sample_mask = sample_mask;
895 ice->state.dirty |= IRIS_DIRTY_SAMPLE_MASK;
896 }
897
898 static void
899 iris_set_scissor_states(struct pipe_context *ctx,
900 unsigned start_slot,
901 unsigned num_scissors,
902 const struct pipe_scissor_state *state)
903 {
904 struct iris_context *ice = (struct iris_context *) ctx;
905
906 // XXX: start_slot
907 ice->state.num_scissors = num_scissors;
908
909 for (unsigned i = start_slot; i < start_slot + num_scissors; i++) {
910 ice->state.scissors[i] = *state;
911 }
912
913 ice->state.dirty |= IRIS_DIRTY_SCISSOR_RECT;
914 }
915
916 static void
917 iris_set_stencil_ref(struct pipe_context *ctx,
918 const struct pipe_stencil_ref *state)
919 {
920 struct iris_context *ice = (struct iris_context *) ctx;
921 memcpy(&ice->state.stencil_ref, state, sizeof(*state));
922 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
923 }
924
925
926 struct iris_viewport_state {
927 uint32_t sf_cl_vp[GENX(SF_CLIP_VIEWPORT_length)];
928 };
929
930 static float
931 extent_from_matrix(const struct pipe_viewport_state *state, int axis)
932 {
933 return fabsf(state->scale[axis]) * state->translate[axis];
934 }
935
936 #if 0
937 static void
938 calculate_guardband_size(uint32_t fb_width, uint32_t fb_height,
939 float m00, float m11, float m30, float m31,
940 float *xmin, float *xmax,
941 float *ymin, float *ymax)
942 {
943 /* According to the "Vertex X,Y Clamping and Quantization" section of the
944 * Strips and Fans documentation:
945 *
946 * "The vertex X and Y screen-space coordinates are also /clamped/ to the
947 * fixed-point "guardband" range supported by the rasterization hardware"
948 *
949 * and
950 *
951 * "In almost all circumstances, if an object’s vertices are actually
952 * modified by this clamping (i.e., had X or Y coordinates outside of
953 * the guardband extent the rendered object will not match the intended
954 * result. Therefore software should take steps to ensure that this does
955 * not happen - e.g., by clipping objects such that they do not exceed
956 * these limits after the Drawing Rectangle is applied."
957 *
958 * I believe the fundamental restriction is that the rasterizer (in
959 * the SF/WM stages) have a limit on the number of pixels that can be
960 * rasterized. We need to ensure any coordinates beyond the rasterizer
961 * limit are handled by the clipper. So effectively that limit becomes
962 * the clipper's guardband size.
963 *
964 * It goes on to say:
965 *
966 * "In addition, in order to be correctly rendered, objects must have a
967 * screenspace bounding box not exceeding 8K in the X or Y direction.
968 * This additional restriction must also be comprehended by software,
969 * i.e., enforced by use of clipping."
970 *
971 * This makes no sense. Gen7+ hardware supports 16K render targets,
972 * and you definitely need to be able to draw polygons that fill the
973 * surface. Our assumption is that the rasterizer was limited to 8K
974 * on Sandybridge, which only supports 8K surfaces, and it was actually
975 * increased to 16K on Ivybridge and later.
976 *
977 * So, limit the guardband to 16K on Gen7+ and 8K on Sandybridge.
978 */
979 const float gb_size = GEN_GEN >= 7 ? 16384.0f : 8192.0f;
980
981 if (m00 != 0 && m11 != 0) {
982 /* First, we compute the screen-space render area */
983 const float ss_ra_xmin = MIN3( 0, m30 + m00, m30 - m00);
984 const float ss_ra_xmax = MAX3( fb_width, m30 + m00, m30 - m00);
985 const float ss_ra_ymin = MIN3( 0, m31 + m11, m31 - m11);
986 const float ss_ra_ymax = MAX3(fb_height, m31 + m11, m31 - m11);
987
988 /* We want the guardband to be centered on that */
989 const float ss_gb_xmin = (ss_ra_xmin + ss_ra_xmax) / 2 - gb_size;
990 const float ss_gb_xmax = (ss_ra_xmin + ss_ra_xmax) / 2 + gb_size;
991 const float ss_gb_ymin = (ss_ra_ymin + ss_ra_ymax) / 2 - gb_size;
992 const float ss_gb_ymax = (ss_ra_ymin + ss_ra_ymax) / 2 + gb_size;
993
994 /* Now we need it in native device coordinates */
995 const float ndc_gb_xmin = (ss_gb_xmin - m30) / m00;
996 const float ndc_gb_xmax = (ss_gb_xmax - m30) / m00;
997 const float ndc_gb_ymin = (ss_gb_ymin - m31) / m11;
998 const float ndc_gb_ymax = (ss_gb_ymax - m31) / m11;
999
1000 /* Thanks to Y-flipping and ORIGIN_UPPER_LEFT, the Y coordinates may be
1001 * flipped upside-down. X should be fine though.
1002 */
1003 assert(ndc_gb_xmin <= ndc_gb_xmax);
1004 *xmin = ndc_gb_xmin;
1005 *xmax = ndc_gb_xmax;
1006 *ymin = MIN2(ndc_gb_ymin, ndc_gb_ymax);
1007 *ymax = MAX2(ndc_gb_ymin, ndc_gb_ymax);
1008 } else {
1009 /* The viewport scales to 0, so nothing will be rendered. */
1010 *xmin = 0.0f;
1011 *xmax = 0.0f;
1012 *ymin = 0.0f;
1013 *ymax = 0.0f;
1014 }
1015 }
1016 #endif
1017
1018 static void
1019 iris_set_viewport_states(struct pipe_context *ctx,
1020 unsigned start_slot,
1021 unsigned num_viewports,
1022 const struct pipe_viewport_state *state)
1023 {
1024 struct iris_context *ice = (struct iris_context *) ctx;
1025 struct iris_viewport_state *cso =
1026 malloc(sizeof(struct iris_viewport_state));
1027
1028 for (unsigned i = start_slot; i < start_slot + num_viewports; i++) {
1029 float x_extent = extent_from_matrix(&state[i], 0);
1030 float y_extent = extent_from_matrix(&state[i], 1);
1031
1032 iris_pack_state(GENX(SF_CLIP_VIEWPORT), cso->sf_cl_vp, vp) {
1033 vp.ViewportMatrixElementm00 = state[i].scale[0];
1034 vp.ViewportMatrixElementm11 = state[i].scale[1];
1035 vp.ViewportMatrixElementm22 = state[i].scale[2];
1036 vp.ViewportMatrixElementm30 = state[i].translate[0];
1037 vp.ViewportMatrixElementm31 = state[i].translate[1];
1038 vp.ViewportMatrixElementm32 = state[i].translate[2];
1039 /* XXX: in i965 this is computed based on the drawbuffer size,
1040 * but we don't have that here...
1041 */
1042 vp.XMinClipGuardband = -1.0;
1043 vp.XMaxClipGuardband = 1.0;
1044 vp.YMinClipGuardband = -1.0;
1045 vp.YMaxClipGuardband = 1.0;
1046 vp.XMinViewPort = -x_extent;
1047 vp.XMaxViewPort = x_extent;
1048 vp.YMinViewPort = -y_extent;
1049 vp.YMaxViewPort = y_extent;
1050 }
1051 }
1052
1053 ice->state.cso_vp = cso;
1054 // XXX: start_slot
1055 ice->state.num_viewports = num_viewports;
1056 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
1057 }
1058
1059 struct iris_depth_state
1060 {
1061 uint32_t depth_buffer[GENX(3DSTATE_DEPTH_BUFFER_length)];
1062 uint32_t hier_depth_buffer[GENX(3DSTATE_HIER_DEPTH_BUFFER_length)];
1063 uint32_t stencil_buffer[GENX(3DSTATE_STENCIL_BUFFER_length)];
1064 };
1065
1066 static void
1067 iris_set_framebuffer_state(struct pipe_context *ctx,
1068 const struct pipe_framebuffer_state *state)
1069 {
1070 struct iris_context *ice = (struct iris_context *) ctx;
1071 struct pipe_framebuffer_state *cso = &ice->state.framebuffer;
1072
1073 if (cso->samples != state->samples) {
1074 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
1075 }
1076
1077 cso->width = state->width;
1078 cso->height = state->height;
1079 cso->layers = state->layers;
1080 cso->samples = state->samples;
1081
1082 unsigned i;
1083 for (i = 0; i < state->nr_cbufs; i++)
1084 pipe_surface_reference(&cso->cbufs[i], state->cbufs[i]);
1085 for (; i < cso->nr_cbufs; i++)
1086 pipe_surface_reference(&cso->cbufs[i], NULL);
1087
1088 cso->nr_cbufs = state->nr_cbufs;
1089
1090 pipe_surface_reference(&cso->zsbuf, state->zsbuf);
1091
1092 struct isl_depth_stencil_hiz_emit_info info = {
1093 .mocs = MOCS_WB,
1094 };
1095
1096 // XXX: depth buffers
1097 }
1098
1099 static void
1100 iris_set_constant_buffer(struct pipe_context *ctx,
1101 enum pipe_shader_type shader, uint index,
1102 const struct pipe_constant_buffer *cb)
1103 {
1104 }
1105
1106
1107 static void
1108 iris_sampler_view_destroy(struct pipe_context *ctx,
1109 struct pipe_sampler_view *state)
1110 {
1111 pipe_resource_reference(&state->texture, NULL);
1112 free(state);
1113 }
1114
1115
1116 static void
1117 iris_surface_destroy(struct pipe_context *ctx, struct pipe_surface *surface)
1118 {
1119 pipe_resource_reference(&surface->texture, NULL);
1120 free(surface);
1121 }
1122
1123 static void
1124 iris_delete_state(struct pipe_context *ctx, void *state)
1125 {
1126 free(state);
1127 }
1128
1129 struct iris_vertex_buffer_state {
1130 uint32_t vertex_buffers[1 + 33 * GENX(VERTEX_BUFFER_STATE_length)];
1131 unsigned length; /* length of 3DSTATE_VERTEX_BUFFERS in DWords */
1132 };
1133
1134 static void
1135 iris_set_vertex_buffers(struct pipe_context *ctx,
1136 unsigned start_slot, unsigned count,
1137 const struct pipe_vertex_buffer *buffers)
1138 {
1139 struct iris_context *ice = (struct iris_context *) ctx;
1140 struct iris_vertex_buffer_state *cso =
1141 malloc(sizeof(struct iris_vertex_buffer_state));
1142
1143 cso->length = 4 * count - 1;
1144
1145 iris_pack_state(GENX(3DSTATE_VERTEX_BUFFERS), cso->vertex_buffers, vb) {
1146 vb.DWordLength = cso->length;
1147 }
1148
1149 /* If there are no buffers, do nothing. We can leave the stale
1150 * 3DSTATE_VERTEX_BUFFERS in place - as long as there are no vertex
1151 * elements that point to them, it should be fine.
1152 */
1153 if (!buffers)
1154 return;
1155
1156 uint32_t *vb_pack_dest = &cso->vertex_buffers[1];
1157
1158 for (unsigned i = 0; i < count; i++) {
1159 assert(!buffers[i].is_user_buffer);
1160
1161 iris_pack_state(GENX(VERTEX_BUFFER_STATE), vb_pack_dest, vb) {
1162 vb.VertexBufferIndex = start_slot + i;
1163 vb.MOCS = MOCS_WB;
1164 vb.AddressModifyEnable = true;
1165 vb.BufferPitch = buffers[i].stride;
1166 //vb.BufferStartingAddress = ro_bo(bo, buffers[i].buffer_offset);
1167 //vb.BufferSize = bo->size;
1168 }
1169
1170 vb_pack_dest += GENX(VERTEX_BUFFER_STATE_length);
1171 }
1172
1173 ice->state.cso_vertex_buffers = cso;
1174 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
1175 }
1176
1177 struct iris_vertex_element_state {
1178 uint32_t vertex_elements[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
1179 uint32_t vf_instancing[GENX(3DSTATE_VF_INSTANCING_length)][33];
1180 unsigned count;
1181 };
1182
1183 static void *
1184 iris_create_vertex_elements(struct pipe_context *ctx,
1185 unsigned count,
1186 const struct pipe_vertex_element *state)
1187 {
1188 struct iris_vertex_element_state *cso =
1189 malloc(sizeof(struct iris_vertex_element_state));
1190
1191 cso->count = count;
1192
1193 /* TODO:
1194 * - create edge flag one
1195 * - create SGV ones
1196 * - if those are necessary, use count + 1/2/3... OR in the length
1197 */
1198 iris_pack_state(GENX(3DSTATE_VERTEX_ELEMENTS), cso->vertex_elements, ve);
1199
1200 uint32_t *ve_pack_dest = &cso->vertex_elements[1];
1201
1202 for (int i = 0; i < count; i++) {
1203 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
1204 ve.VertexBufferIndex = state[i].vertex_buffer_index;
1205 ve.Valid = true;
1206 ve.SourceElementOffset = state[i].src_offset;
1207 ve.SourceElementFormat =
1208 iris_isl_format_for_pipe_format(state[i].src_format);
1209 }
1210
1211 iris_pack_state(GENX(3DSTATE_VF_INSTANCING), cso->vf_instancing[i], vi) {
1212 vi.VertexElementIndex = i;
1213 vi.InstancingEnable = state[i].instance_divisor > 0;
1214 vi.InstanceDataStepRate = state[i].instance_divisor;
1215 }
1216
1217 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
1218 }
1219
1220 return cso;
1221 }
1222
1223 static void
1224 iris_bind_vertex_elements_state(struct pipe_context *ctx, void *state)
1225 {
1226 struct iris_context *ice = (struct iris_context *) ctx;
1227
1228 ice->state.cso_vertex_elements = state;
1229 ice->state.dirty |= IRIS_DIRTY_VERTEX_ELEMENTS;
1230 }
1231
1232 static void *
1233 iris_create_compute_state(struct pipe_context *ctx,
1234 const struct pipe_compute_state *state)
1235 {
1236 return malloc(1);
1237 }
1238
1239 static struct pipe_stream_output_target *
1240 iris_create_stream_output_target(struct pipe_context *ctx,
1241 struct pipe_resource *res,
1242 unsigned buffer_offset,
1243 unsigned buffer_size)
1244 {
1245 struct pipe_stream_output_target *t =
1246 CALLOC_STRUCT(pipe_stream_output_target);
1247 if (!t)
1248 return NULL;
1249
1250 pipe_reference_init(&t->reference, 1);
1251 pipe_resource_reference(&t->buffer, res);
1252 t->buffer_offset = buffer_offset;
1253 t->buffer_size = buffer_size;
1254 return t;
1255 }
1256
1257 static void
1258 iris_stream_output_target_destroy(struct pipe_context *ctx,
1259 struct pipe_stream_output_target *t)
1260 {
1261 pipe_resource_reference(&t->buffer, NULL);
1262 free(t);
1263 }
1264
1265 static void
1266 iris_set_stream_output_targets(struct pipe_context *ctx,
1267 unsigned num_targets,
1268 struct pipe_stream_output_target **targets,
1269 const unsigned *offsets)
1270 {
1271 }
1272
1273 void
1274 iris_setup_state_base_address(struct iris_context *ice,
1275 struct iris_batch *batch,
1276 struct iris_bo *instruction_bo)
1277 {
1278 if (!(ice->state.dirty & IRIS_DIRTY_STATE_BASE_ADDRESS))
1279 return;
1280
1281 //iris_batchbuffer_flush(...)
1282
1283 ice->state.dirty &= ~IRIS_DIRTY_STATE_BASE_ADDRESS;
1284
1285 /* XXX: PIPE_CONTROLs */
1286
1287 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
1288 #if 0
1289 // XXX: MOCS is stupid for this.
1290 sba.GeneralStateMemoryObjectControlState = MOCS_WB;
1291 sba.StatelessDataPortAccessMemoryObjectControlState = MOCS_WB;
1292 sba.SurfaceStateMemoryObjectControlState = MOCS_WB;
1293 sba.DynamicStateMemoryObjectControlState = MOCS_WB;
1294 sba.IndirectObjectMemoryObjectControlState = MOCS_WB;
1295 sba.InstructionMemoryObjectControlState = MOCS_WB;
1296 sba.BindlessSurfaceStateMemoryObjectControlState = MOCS_WB;
1297 #endif
1298
1299 sba.GeneralStateBaseAddressModifyEnable = true;
1300 sba.SurfaceStateBaseAddressModifyEnable = true;
1301 sba.DynamicStateBaseAddressModifyEnable = true;
1302 sba.IndirectObjectBaseAddressModifyEnable = true;
1303 sba.InstructionBaseAddressModifyEnable = true;
1304 sba.GeneralStateBufferSizeModifyEnable = true;
1305 sba.DynamicStateBufferSizeModifyEnable = true;
1306 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
1307 sba.IndirectObjectBufferSizeModifyEnable = true;
1308 sba.InstructionBuffersizeModifyEnable = true;
1309
1310 sba.SurfaceStateBaseAddress = ro_bo(batch->statebuf.bo, 0);
1311 sba.DynamicStateBaseAddress = ro_bo(batch->statebuf.bo, 0);
1312 sba.InstructionBaseAddress = ro_bo(instruction_bo, 0);
1313
1314 sba.GeneralStateBufferSize = 0xfffff000;
1315 sba.DynamicStateBufferSize = ALIGN(MAX_STATE_SIZE, 4096);
1316 sba.IndirectObjectBufferSize = 0xfffff000;
1317 sba.InstructionBufferSize = ALIGN(ice->shaders.cache.bo->size, 4096);
1318 sba.BindlessSurfaceStateSize = 0;
1319 }
1320 }
1321
1322 void
1323 iris_upload_render_state(struct iris_context *ice,
1324 struct iris_batch *batch,
1325 const struct pipe_draw_info *draw)
1326 {
1327 const uint64_t dirty = ice->state.dirty;
1328
1329 if (dirty & IRIS_DIRTY_WM_DEPTH_STENCIL) {
1330 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
1331 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
1332
1333 uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
1334 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
1335 wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
1336 wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
1337 }
1338 iris_emit_merge(batch, cso->wmds, stencil_refs);
1339 }
1340
1341 if (dirty & IRIS_DIRTY_CC_VIEWPORT) {
1342 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
1343 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
1344 ptr.CCViewportPointer =
1345 iris_emit_state(batch, cso->cc_vp, sizeof(cso->cc_vp), 32);
1346 }
1347 }
1348
1349 if (dirty & IRIS_DIRTY_PS_BLEND) {
1350 struct iris_blend_state *cso = ice->state.cso_blend;
1351 iris_batch_emit(batch, cso->ps_blend, sizeof(cso->ps_blend));
1352 }
1353
1354 if (dirty & IRIS_DIRTY_BLEND_STATE) {
1355 //struct iris_blend_state *cso = ice->state.cso_blend;
1356 // XXX: 3DSTATE_BLEND_STATE_POINTERS - BLEND_STATE
1357 // -> from iris_blend_state (most) + iris_depth_stencil_alpha_state
1358 // (alpha test function/enable) + has writeable RT from ???????
1359 }
1360
1361 if (dirty & IRIS_DIRTY_SF_CL_VIEWPORT) {
1362 struct iris_viewport_state *cso = ice->state.cso_vp;
1363 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
1364 ptr.SFClipViewportPointer =
1365 iris_emit_state(batch, cso->sf_cl_vp, sizeof(cso->sf_cl_vp), 64);
1366 }
1367 }
1368
1369 if (dirty & IRIS_DIRTY_CLIP) {
1370 struct iris_rasterizer_state *cso = ice->state.cso_rast;
1371
1372 uint32_t dynamic_clip[GENX(3DSTATE_CLIP_length)];
1373 iris_pack_command(GENX(3DSTATE_CLIP), &dynamic_clip, cl) {
1374 //.NonPerspectiveBarycentricEnable = <comes from FS prog> :(
1375 //.ForceZeroRTAIndexEnable = <comes from FB layers being 0>
1376 // also userclip stuffs...
1377 }
1378 iris_emit_merge(batch, cso->clip, dynamic_clip);
1379 }
1380
1381 if (dirty & IRIS_DIRTY_RASTER) {
1382 struct iris_rasterizer_state *cso = ice->state.cso_rast;
1383 iris_batch_emit(batch, cso->raster, sizeof(cso->raster));
1384 iris_batch_emit(batch, cso->sf, sizeof(cso->sf));
1385 }
1386
1387 if (dirty & IRIS_DIRTY_LINE_STIPPLE) {
1388 struct iris_rasterizer_state *cso = ice->state.cso_rast;
1389 iris_batch_emit(batch, cso->line_stipple, sizeof(cso->line_stipple));
1390 }
1391
1392 if (dirty & IRIS_DIRTY_SCISSOR) {
1393 uint32_t scissor_offset =
1394 iris_emit_state(batch, ice->state.scissors,
1395 sizeof(struct pipe_scissor_state) *
1396 ice->state.num_scissors, 32);
1397
1398 iris_emit_cmd(batch, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
1399 ptr.ScissorRectPointer = scissor_offset;
1400 }
1401 }
1402
1403 if (dirty & IRIS_DIRTY_POLYGON_STIPPLE) {
1404 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
1405 for (int i = 0; i < 32; i++) {
1406 poly.PatternRow[i] = ice->state.poly_stipple.stipple[i];
1407 }
1408 }
1409 }
1410
1411 if (dirty & IRIS_DIRTY_COLOR_CALC_STATE) {
1412 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
1413 uint32_t cc_offset;
1414 void *cc_map =
1415 iris_alloc_state(batch,
1416 sizeof(uint32_t) * GENX(COLOR_CALC_STATE_length),
1417 64, &cc_offset);
1418 iris_pack_state(GENX(COLOR_CALC_STATE), cc_map, cc) {
1419 cc.AlphaTestFormat = ALPHATEST_FLOAT32;
1420 cc.AlphaReferenceValueAsFLOAT32 = cso->alpha.ref_value;
1421 cc.BlendConstantColorRed = ice->state.blend_color.color[0];
1422 cc.BlendConstantColorGreen = ice->state.blend_color.color[1];
1423 cc.BlendConstantColorBlue = ice->state.blend_color.color[2];
1424 cc.BlendConstantColorAlpha = ice->state.blend_color.color[3];
1425 }
1426 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
1427 ptr.ColorCalcStatePointer = cc_offset;
1428 ptr.ColorCalcStatePointerValid = true;
1429 }
1430 }
1431
1432 if (dirty & IRIS_DIRTY_VERTEX_BUFFERS) {
1433 struct iris_vertex_buffer_state *cso = ice->state.cso_vertex_buffers;
1434 // XXX: address!!!
1435 iris_batch_emit(batch, cso->vertex_buffers,
1436 sizeof(uint32_t) * cso->length);
1437 }
1438
1439 if (dirty & IRIS_DIRTY_VERTEX_ELEMENTS) {
1440 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
1441 iris_batch_emit(batch, cso->vertex_elements, sizeof(uint32_t) *
1442 (1 + cso->count * GENX(VERTEX_ELEMENT_STATE_length)));
1443 for (int i = 0; i < cso->count; i++) {
1444 iris_batch_emit(batch, cso->vf_instancing[i],
1445 sizeof(cso->vf_instancing[0]));
1446 }
1447 for (int i = 0; i < cso->count; i++) {
1448 /* TODO: vertexid, instanceid support */
1449 iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS), sgvs);
1450 }
1451 }
1452
1453 if (dirty & IRIS_DIRTY_MULTISAMPLE) {
1454 iris_emit_cmd(batch, GENX(3DSTATE_MULTISAMPLE), ms) {
1455 ms.PixelLocation =
1456 ice->state.cso_rast->half_pixel_center ? CENTER : UL_CORNER;
1457 if (ice->state.framebuffer.samples > 0)
1458 ms.NumberofMultisamples = ffs(ice->state.framebuffer.samples) - 1;
1459 }
1460 }
1461
1462 if (dirty & IRIS_DIRTY_SAMPLE_MASK) {
1463 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_MASK), ms) {
1464 ms.SampleMask = ice->state.sample_mask;
1465 }
1466 }
1467
1468 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
1469 if (!(dirty & (IRIS_DIRTY_SAMPLER_STATES_VS << stage)))
1470 continue;
1471
1472 // XXX: get sampler count from shader; don't emit them all...
1473 const int count = IRIS_MAX_TEXTURE_SAMPLERS;
1474
1475 uint32_t offset;
1476 uint32_t *map = iris_alloc_state(batch,
1477 count * 4 * GENX(SAMPLER_STATE_length),
1478 32, &offset);
1479
1480 for (int i = 0; i < count; i++) {
1481 memcpy(map, ice->state.samplers[stage][i]->sampler_state,
1482 4 * GENX(SAMPLER_STATE_length));
1483 map += GENX(SAMPLER_STATE_length);
1484 }
1485
1486 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
1487 ptr._3DCommandSubOpcode = 43 + stage;
1488 ptr.PointertoVSSamplerState = offset;
1489 }
1490 }
1491
1492 if (1) {
1493 iris_emit_cmd(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
1494 topo.PrimitiveTopologyType =
1495 translate_prim_type(draw->mode, draw->vertices_per_patch);
1496 }
1497 }
1498
1499 if (1) {
1500 iris_emit_cmd(batch, GENX(3DSTATE_VF), vf) {
1501 if (draw->primitive_restart) {
1502 vf.IndexedDrawCutIndexEnable = true;
1503 vf.CutIndex = draw->restart_index;
1504 }
1505 }
1506 }
1507
1508 // draw->index_size > 0
1509 if (draw->index_size > 0) {
1510 struct iris_resource *res = (struct iris_resource *)draw->index.resource;
1511
1512 assert(!draw->has_user_indices);
1513
1514 iris_emit_cmd(batch, GENX(3DSTATE_INDEX_BUFFER), ib) {
1515 ib.IndexFormat = draw->index_size;
1516 ib.MOCS = MOCS_WB;
1517 ib.BufferSize = res->bo->size;
1518 // XXX: gah, addresses :( need two different combine address funcs
1519 // ib.BufferStartingAddress = res->bo;
1520 }
1521 }
1522
1523 assert(!draw->indirect); // XXX: indirect support
1524
1525 iris_emit_cmd(batch, GENX(3DPRIMITIVE), prim) {
1526 prim.StartInstanceLocation = draw->start_instance;
1527 prim.InstanceCount = draw->instance_count;
1528
1529 // XXX: this is probably bonkers.
1530 prim.StartVertexLocation = draw->start;
1531
1532 if (draw->index_size) {
1533 prim.BaseVertexLocation += draw->index_bias;
1534 } else {
1535 prim.StartVertexLocation += draw->index_bias;
1536 }
1537
1538 //prim.BaseVertexLocation = ...;
1539 }
1540 #if 0
1541 l3 configuration
1542
1543 3DSTATE_URB_*
1544 -> TODO
1545
1546 3DSTATE_CONSTANT_* - push constants
1547 -> TODO
1548
1549 Surfaces:
1550 - pull constants
1551 - ubos/ssbos/abos
1552 - images
1553 - textures
1554 - render targets - write and read
1555 3DSTATE_BINDING_TABLE_POINTERS_*
1556 -> TODO
1557
1558 3DSTATE_VS
1559 3DSTATE_HS
1560 3DSTATE_TE
1561 3DSTATE_DS
1562 3DSTATE_GS
1563 3DSTATE_PS_EXTRA
1564 3DSTATE_PS
1565 3DSTATE_STREAMOUT
1566 3DSTATE_SO_BUFFER
1567 3DSTATE_SO_DECL_LIST
1568
1569 3DSTATE_WM
1570 -> iris_raster_state + FS state (barycentric, EDSC)
1571 3DSTATE_SBE
1572 -> iris_raster_state (point sprite texture coordinate origin)
1573 -> bunch of shader state...
1574 3DSTATE_SBE_SWIZ
1575 -> FS state
1576
1577 3DSTATE_DEPTH_BUFFER
1578 3DSTATE_HIER_DEPTH_BUFFER
1579 3DSTATE_STENCIL_BUFFER
1580 3DSTATE_CLEAR_PARAMS
1581 -> iris_framebuffer_state?
1582 #endif
1583 }
1584
1585 static void
1586 iris_bind_state(struct pipe_context *ctx, void *state)
1587 {
1588 }
1589
1590 void
1591 iris_destroy_state(struct iris_context *ice)
1592 {
1593 // XXX: unreference resources/surfaces.
1594 for (unsigned i = 0; i < ice->state.framebuffer.nr_cbufs; i++) {
1595 pipe_surface_reference(&ice->state.framebuffer.cbufs[i], NULL);
1596 }
1597 pipe_surface_reference(&ice->state.framebuffer.zsbuf, NULL);
1598 }
1599
1600 void
1601 iris_init_state_functions(struct pipe_context *ctx)
1602 {
1603 ctx->create_blend_state = iris_create_blend_state;
1604 ctx->create_depth_stencil_alpha_state = iris_create_zsa_state;
1605 ctx->create_rasterizer_state = iris_create_rasterizer_state;
1606 ctx->create_sampler_state = iris_create_sampler_state;
1607 ctx->create_sampler_view = iris_create_sampler_view;
1608 ctx->create_surface = iris_create_surface;
1609 ctx->create_vertex_elements_state = iris_create_vertex_elements;
1610 ctx->create_compute_state = iris_create_compute_state;
1611 ctx->bind_blend_state = iris_bind_blend_state;
1612 ctx->bind_depth_stencil_alpha_state = iris_bind_zsa_state;
1613 ctx->bind_sampler_states = iris_bind_sampler_states;
1614 ctx->bind_rasterizer_state = iris_bind_rasterizer_state;
1615 ctx->bind_vertex_elements_state = iris_bind_vertex_elements_state;
1616 ctx->bind_compute_state = iris_bind_state;
1617 ctx->delete_blend_state = iris_delete_state;
1618 ctx->delete_depth_stencil_alpha_state = iris_delete_state;
1619 ctx->delete_fs_state = iris_delete_state;
1620 ctx->delete_rasterizer_state = iris_delete_state;
1621 ctx->delete_sampler_state = iris_delete_state;
1622 ctx->delete_vertex_elements_state = iris_delete_state;
1623 ctx->delete_compute_state = iris_delete_state;
1624 ctx->delete_tcs_state = iris_delete_state;
1625 ctx->delete_tes_state = iris_delete_state;
1626 ctx->delete_gs_state = iris_delete_state;
1627 ctx->delete_vs_state = iris_delete_state;
1628 ctx->set_blend_color = iris_set_blend_color;
1629 ctx->set_clip_state = iris_set_clip_state;
1630 ctx->set_constant_buffer = iris_set_constant_buffer;
1631 ctx->set_sampler_views = iris_set_sampler_views;
1632 ctx->set_framebuffer_state = iris_set_framebuffer_state;
1633 ctx->set_polygon_stipple = iris_set_polygon_stipple;
1634 ctx->set_sample_mask = iris_set_sample_mask;
1635 ctx->set_scissor_states = iris_set_scissor_states;
1636 ctx->set_stencil_ref = iris_set_stencil_ref;
1637 ctx->set_vertex_buffers = iris_set_vertex_buffers;
1638 ctx->set_viewport_states = iris_set_viewport_states;
1639 ctx->sampler_view_destroy = iris_sampler_view_destroy;
1640 ctx->surface_destroy = iris_surface_destroy;
1641 ctx->draw_vbo = iris_draw_vbo;
1642 ctx->launch_grid = iris_launch_grid;
1643 ctx->create_stream_output_target = iris_create_stream_output_target;
1644 ctx->stream_output_target_destroy = iris_stream_output_target_destroy;
1645 ctx->set_stream_output_targets = iris_set_stream_output_targets;
1646 }