iris: Stop mutating the resource in get_rt_read_isl_surf().
[mesa.git] / src / gallium / drivers / iris / iris_state.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included
12 * in all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
21 */
22
23 /**
24 * @file iris_state.c
25 *
26 * ============================= GENXML CODE =============================
27 * [This file is compiled once per generation.]
28 * =======================================================================
29 *
30 * This is the main state upload code.
31 *
32 * Gallium uses Constant State Objects, or CSOs, for most state. Large,
33 * complex, or highly reusable state can be created once, and bound and
34 * rebound multiple times. This is modeled with the pipe->create_*_state()
35 * and pipe->bind_*_state() hooks. Highly dynamic or inexpensive state is
36 * streamed out on the fly, via pipe->set_*_state() hooks.
37 *
38 * OpenGL involves frequently mutating context state, which is mirrored in
39 * core Mesa by highly mutable data structures. However, most applications
40 * typically draw the same things over and over - from frame to frame, most
41 * of the same objects are still visible and need to be redrawn. So, rather
42 * than inventing new state all the time, applications usually mutate to swap
43 * between known states that we've seen before.
44 *
45 * Gallium isolates us from this mutation by tracking API state, and
46 * distilling it into a set of Constant State Objects, or CSOs. Large,
47 * complex, or typically reusable state can be created once, then reused
48 * multiple times. Drivers can create and store their own associated data.
49 * This create/bind model corresponds to the pipe->create_*_state() and
50 * pipe->bind_*_state() driver hooks.
51 *
52 * Some state is cheap to create, or expected to be highly dynamic. Rather
53 * than creating and caching piles of CSOs for these, Gallium simply streams
54 * them out, via the pipe->set_*_state() driver hooks.
55 *
56 * To reduce draw time overhead, we try to compute as much state at create
57 * time as possible. Wherever possible, we translate the Gallium pipe state
58 * to 3DSTATE commands, and store those commands in the CSO. At draw time,
59 * we can simply memcpy them into a batch buffer.
60 *
61 * No hardware matches the abstraction perfectly, so some commands require
62 * information from multiple CSOs. In this case, we can store two copies
63 * of the packet (one in each CSO), and simply | together their DWords at
64 * draw time. Sometimes the second set is trivial (one or two fields), so
65 * we simply pack it at draw time.
66 *
67 * There are two main components in the file below. First, the CSO hooks
68 * create/bind/track state. The second are the draw-time upload functions,
69 * iris_upload_render_state() and iris_upload_compute_state(), which read
70 * the context state and emit the commands into the actual batch.
71 */
72
73 #include <stdio.h>
74 #include <errno.h>
75
76 #if HAVE_VALGRIND
77 #include <valgrind.h>
78 #include <memcheck.h>
79 #define VG(x) x
80 #ifdef DEBUG
81 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
82 #endif
83 #else
84 #define VG(x)
85 #endif
86
87 #include "pipe/p_defines.h"
88 #include "pipe/p_state.h"
89 #include "pipe/p_context.h"
90 #include "pipe/p_screen.h"
91 #include "util/u_dual_blend.h"
92 #include "util/u_inlines.h"
93 #include "util/format/u_format.h"
94 #include "util/u_framebuffer.h"
95 #include "util/u_transfer.h"
96 #include "util/u_upload_mgr.h"
97 #include "util/u_viewport.h"
98 #include "drm-uapi/i915_drm.h"
99 #include "nir.h"
100 #include "intel/compiler/brw_compiler.h"
101 #include "intel/common/gen_aux_map.h"
102 #include "intel/common/gen_l3_config.h"
103 #include "intel/common/gen_sample_positions.h"
104 #include "iris_batch.h"
105 #include "iris_context.h"
106 #include "iris_defines.h"
107 #include "iris_pipe.h"
108 #include "iris_resource.h"
109
110 #include "iris_genx_macros.h"
111 #include "intel/common/gen_guardband.h"
112
113 static uint32_t
114 mocs(const struct iris_bo *bo, const struct isl_device *dev)
115 {
116 return bo && bo->external ? dev->mocs.external : dev->mocs.internal;
117 }
118
119 /**
120 * Statically assert that PIPE_* enums match the hardware packets.
121 * (As long as they match, we don't need to translate them.)
122 */
123 UNUSED static void pipe_asserts()
124 {
125 #define PIPE_ASSERT(x) STATIC_ASSERT((int)x)
126
127 /* pipe_logicop happens to match the hardware. */
128 PIPE_ASSERT(PIPE_LOGICOP_CLEAR == LOGICOP_CLEAR);
129 PIPE_ASSERT(PIPE_LOGICOP_NOR == LOGICOP_NOR);
130 PIPE_ASSERT(PIPE_LOGICOP_AND_INVERTED == LOGICOP_AND_INVERTED);
131 PIPE_ASSERT(PIPE_LOGICOP_COPY_INVERTED == LOGICOP_COPY_INVERTED);
132 PIPE_ASSERT(PIPE_LOGICOP_AND_REVERSE == LOGICOP_AND_REVERSE);
133 PIPE_ASSERT(PIPE_LOGICOP_INVERT == LOGICOP_INVERT);
134 PIPE_ASSERT(PIPE_LOGICOP_XOR == LOGICOP_XOR);
135 PIPE_ASSERT(PIPE_LOGICOP_NAND == LOGICOP_NAND);
136 PIPE_ASSERT(PIPE_LOGICOP_AND == LOGICOP_AND);
137 PIPE_ASSERT(PIPE_LOGICOP_EQUIV == LOGICOP_EQUIV);
138 PIPE_ASSERT(PIPE_LOGICOP_NOOP == LOGICOP_NOOP);
139 PIPE_ASSERT(PIPE_LOGICOP_OR_INVERTED == LOGICOP_OR_INVERTED);
140 PIPE_ASSERT(PIPE_LOGICOP_COPY == LOGICOP_COPY);
141 PIPE_ASSERT(PIPE_LOGICOP_OR_REVERSE == LOGICOP_OR_REVERSE);
142 PIPE_ASSERT(PIPE_LOGICOP_OR == LOGICOP_OR);
143 PIPE_ASSERT(PIPE_LOGICOP_SET == LOGICOP_SET);
144
145 /* pipe_blend_func happens to match the hardware. */
146 PIPE_ASSERT(PIPE_BLENDFACTOR_ONE == BLENDFACTOR_ONE);
147 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_COLOR == BLENDFACTOR_SRC_COLOR);
148 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA == BLENDFACTOR_SRC_ALPHA);
149 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_ALPHA == BLENDFACTOR_DST_ALPHA);
150 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_COLOR == BLENDFACTOR_DST_COLOR);
151 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE == BLENDFACTOR_SRC_ALPHA_SATURATE);
152 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_COLOR == BLENDFACTOR_CONST_COLOR);
153 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_ALPHA == BLENDFACTOR_CONST_ALPHA);
154 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_COLOR == BLENDFACTOR_SRC1_COLOR);
155 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_ALPHA == BLENDFACTOR_SRC1_ALPHA);
156 PIPE_ASSERT(PIPE_BLENDFACTOR_ZERO == BLENDFACTOR_ZERO);
157 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_COLOR == BLENDFACTOR_INV_SRC_COLOR);
158 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_ALPHA == BLENDFACTOR_INV_SRC_ALPHA);
159 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_ALPHA == BLENDFACTOR_INV_DST_ALPHA);
160 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_COLOR == BLENDFACTOR_INV_DST_COLOR);
161 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_COLOR == BLENDFACTOR_INV_CONST_COLOR);
162 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_ALPHA == BLENDFACTOR_INV_CONST_ALPHA);
163 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_COLOR == BLENDFACTOR_INV_SRC1_COLOR);
164 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_ALPHA == BLENDFACTOR_INV_SRC1_ALPHA);
165
166 /* pipe_blend_func happens to match the hardware. */
167 PIPE_ASSERT(PIPE_BLEND_ADD == BLENDFUNCTION_ADD);
168 PIPE_ASSERT(PIPE_BLEND_SUBTRACT == BLENDFUNCTION_SUBTRACT);
169 PIPE_ASSERT(PIPE_BLEND_REVERSE_SUBTRACT == BLENDFUNCTION_REVERSE_SUBTRACT);
170 PIPE_ASSERT(PIPE_BLEND_MIN == BLENDFUNCTION_MIN);
171 PIPE_ASSERT(PIPE_BLEND_MAX == BLENDFUNCTION_MAX);
172
173 /* pipe_stencil_op happens to match the hardware. */
174 PIPE_ASSERT(PIPE_STENCIL_OP_KEEP == STENCILOP_KEEP);
175 PIPE_ASSERT(PIPE_STENCIL_OP_ZERO == STENCILOP_ZERO);
176 PIPE_ASSERT(PIPE_STENCIL_OP_REPLACE == STENCILOP_REPLACE);
177 PIPE_ASSERT(PIPE_STENCIL_OP_INCR == STENCILOP_INCRSAT);
178 PIPE_ASSERT(PIPE_STENCIL_OP_DECR == STENCILOP_DECRSAT);
179 PIPE_ASSERT(PIPE_STENCIL_OP_INCR_WRAP == STENCILOP_INCR);
180 PIPE_ASSERT(PIPE_STENCIL_OP_DECR_WRAP == STENCILOP_DECR);
181 PIPE_ASSERT(PIPE_STENCIL_OP_INVERT == STENCILOP_INVERT);
182
183 /* pipe_sprite_coord_mode happens to match 3DSTATE_SBE */
184 PIPE_ASSERT(PIPE_SPRITE_COORD_UPPER_LEFT == UPPERLEFT);
185 PIPE_ASSERT(PIPE_SPRITE_COORD_LOWER_LEFT == LOWERLEFT);
186 #undef PIPE_ASSERT
187 }
188
189 static unsigned
190 translate_prim_type(enum pipe_prim_type prim, uint8_t verts_per_patch)
191 {
192 static const unsigned map[] = {
193 [PIPE_PRIM_POINTS] = _3DPRIM_POINTLIST,
194 [PIPE_PRIM_LINES] = _3DPRIM_LINELIST,
195 [PIPE_PRIM_LINE_LOOP] = _3DPRIM_LINELOOP,
196 [PIPE_PRIM_LINE_STRIP] = _3DPRIM_LINESTRIP,
197 [PIPE_PRIM_TRIANGLES] = _3DPRIM_TRILIST,
198 [PIPE_PRIM_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
199 [PIPE_PRIM_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
200 [PIPE_PRIM_QUADS] = _3DPRIM_QUADLIST,
201 [PIPE_PRIM_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
202 [PIPE_PRIM_POLYGON] = _3DPRIM_POLYGON,
203 [PIPE_PRIM_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
204 [PIPE_PRIM_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
205 [PIPE_PRIM_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
206 [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
207 [PIPE_PRIM_PATCHES] = _3DPRIM_PATCHLIST_1 - 1,
208 };
209
210 return map[prim] + (prim == PIPE_PRIM_PATCHES ? verts_per_patch : 0);
211 }
212
213 static unsigned
214 translate_compare_func(enum pipe_compare_func pipe_func)
215 {
216 static const unsigned map[] = {
217 [PIPE_FUNC_NEVER] = COMPAREFUNCTION_NEVER,
218 [PIPE_FUNC_LESS] = COMPAREFUNCTION_LESS,
219 [PIPE_FUNC_EQUAL] = COMPAREFUNCTION_EQUAL,
220 [PIPE_FUNC_LEQUAL] = COMPAREFUNCTION_LEQUAL,
221 [PIPE_FUNC_GREATER] = COMPAREFUNCTION_GREATER,
222 [PIPE_FUNC_NOTEQUAL] = COMPAREFUNCTION_NOTEQUAL,
223 [PIPE_FUNC_GEQUAL] = COMPAREFUNCTION_GEQUAL,
224 [PIPE_FUNC_ALWAYS] = COMPAREFUNCTION_ALWAYS,
225 };
226 return map[pipe_func];
227 }
228
229 static unsigned
230 translate_shadow_func(enum pipe_compare_func pipe_func)
231 {
232 /* Gallium specifies the result of shadow comparisons as:
233 *
234 * 1 if ref <op> texel,
235 * 0 otherwise.
236 *
237 * The hardware does:
238 *
239 * 0 if texel <op> ref,
240 * 1 otherwise.
241 *
242 * So we need to flip the operator and also negate.
243 */
244 static const unsigned map[] = {
245 [PIPE_FUNC_NEVER] = PREFILTEROPALWAYS,
246 [PIPE_FUNC_LESS] = PREFILTEROPLEQUAL,
247 [PIPE_FUNC_EQUAL] = PREFILTEROPNOTEQUAL,
248 [PIPE_FUNC_LEQUAL] = PREFILTEROPLESS,
249 [PIPE_FUNC_GREATER] = PREFILTEROPGEQUAL,
250 [PIPE_FUNC_NOTEQUAL] = PREFILTEROPEQUAL,
251 [PIPE_FUNC_GEQUAL] = PREFILTEROPGREATER,
252 [PIPE_FUNC_ALWAYS] = PREFILTEROPNEVER,
253 };
254 return map[pipe_func];
255 }
256
257 static unsigned
258 translate_cull_mode(unsigned pipe_face)
259 {
260 static const unsigned map[4] = {
261 [PIPE_FACE_NONE] = CULLMODE_NONE,
262 [PIPE_FACE_FRONT] = CULLMODE_FRONT,
263 [PIPE_FACE_BACK] = CULLMODE_BACK,
264 [PIPE_FACE_FRONT_AND_BACK] = CULLMODE_BOTH,
265 };
266 return map[pipe_face];
267 }
268
269 static unsigned
270 translate_fill_mode(unsigned pipe_polymode)
271 {
272 static const unsigned map[4] = {
273 [PIPE_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
274 [PIPE_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
275 [PIPE_POLYGON_MODE_POINT] = FILL_MODE_POINT,
276 [PIPE_POLYGON_MODE_FILL_RECTANGLE] = FILL_MODE_SOLID,
277 };
278 return map[pipe_polymode];
279 }
280
281 static unsigned
282 translate_mip_filter(enum pipe_tex_mipfilter pipe_mip)
283 {
284 static const unsigned map[] = {
285 [PIPE_TEX_MIPFILTER_NEAREST] = MIPFILTER_NEAREST,
286 [PIPE_TEX_MIPFILTER_LINEAR] = MIPFILTER_LINEAR,
287 [PIPE_TEX_MIPFILTER_NONE] = MIPFILTER_NONE,
288 };
289 return map[pipe_mip];
290 }
291
292 static uint32_t
293 translate_wrap(unsigned pipe_wrap)
294 {
295 static const unsigned map[] = {
296 [PIPE_TEX_WRAP_REPEAT] = TCM_WRAP,
297 [PIPE_TEX_WRAP_CLAMP] = TCM_HALF_BORDER,
298 [PIPE_TEX_WRAP_CLAMP_TO_EDGE] = TCM_CLAMP,
299 [PIPE_TEX_WRAP_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER,
300 [PIPE_TEX_WRAP_MIRROR_REPEAT] = TCM_MIRROR,
301 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE,
302
303 /* These are unsupported. */
304 [PIPE_TEX_WRAP_MIRROR_CLAMP] = -1,
305 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER] = -1,
306 };
307 return map[pipe_wrap];
308 }
309
310 /**
311 * Allocate space for some indirect state.
312 *
313 * Return a pointer to the map (to fill it out) and a state ref (for
314 * referring to the state in GPU commands).
315 */
316 static void *
317 upload_state(struct u_upload_mgr *uploader,
318 struct iris_state_ref *ref,
319 unsigned size,
320 unsigned alignment)
321 {
322 void *p = NULL;
323 u_upload_alloc(uploader, 0, size, alignment, &ref->offset, &ref->res, &p);
324 return p;
325 }
326
327 /**
328 * Stream out temporary/short-lived state.
329 *
330 * This allocates space, pins the BO, and includes the BO address in the
331 * returned offset (which works because all state lives in 32-bit memory
332 * zones).
333 */
334 static uint32_t *
335 stream_state(struct iris_batch *batch,
336 struct u_upload_mgr *uploader,
337 struct pipe_resource **out_res,
338 unsigned size,
339 unsigned alignment,
340 uint32_t *out_offset)
341 {
342 void *ptr = NULL;
343
344 u_upload_alloc(uploader, 0, size, alignment, out_offset, out_res, &ptr);
345
346 struct iris_bo *bo = iris_resource_bo(*out_res);
347 iris_use_pinned_bo(batch, bo, false);
348
349 *out_offset += iris_bo_offset_from_base_address(bo);
350
351 iris_record_state_size(batch->state_sizes, *out_offset, size);
352
353 return ptr;
354 }
355
356 /**
357 * stream_state() + memcpy.
358 */
359 static uint32_t
360 emit_state(struct iris_batch *batch,
361 struct u_upload_mgr *uploader,
362 struct pipe_resource **out_res,
363 const void *data,
364 unsigned size,
365 unsigned alignment)
366 {
367 unsigned offset = 0;
368 uint32_t *map =
369 stream_state(batch, uploader, out_res, size, alignment, &offset);
370
371 if (map)
372 memcpy(map, data, size);
373
374 return offset;
375 }
376
377 /**
378 * Did field 'x' change between 'old_cso' and 'new_cso'?
379 *
380 * (If so, we may want to set some dirty flags.)
381 */
382 #define cso_changed(x) (!old_cso || (old_cso->x != new_cso->x))
383 #define cso_changed_memcmp(x) \
384 (!old_cso || memcmp(old_cso->x, new_cso->x, sizeof(old_cso->x)) != 0)
385
386 static void
387 flush_before_state_base_change(struct iris_batch *batch)
388 {
389 /* Flush before emitting STATE_BASE_ADDRESS.
390 *
391 * This isn't documented anywhere in the PRM. However, it seems to be
392 * necessary prior to changing the surface state base adress. We've
393 * seen issues in Vulkan where we get GPU hangs when using multi-level
394 * command buffers which clear depth, reset state base address, and then
395 * go render stuff.
396 *
397 * Normally, in GL, we would trust the kernel to do sufficient stalls
398 * and flushes prior to executing our batch. However, it doesn't seem
399 * as if the kernel's flushing is always sufficient and we don't want to
400 * rely on it.
401 *
402 * We make this an end-of-pipe sync instead of a normal flush because we
403 * do not know the current status of the GPU. On Haswell at least,
404 * having a fast-clear operation in flight at the same time as a normal
405 * rendering operation can cause hangs. Since the kernel's flushing is
406 * insufficient, we need to ensure that any rendering operations from
407 * other processes are definitely complete before we try to do our own
408 * rendering. It's a bit of a big hammer but it appears to work.
409 */
410 iris_emit_end_of_pipe_sync(batch,
411 "change STATE_BASE_ADDRESS (flushes)",
412 PIPE_CONTROL_RENDER_TARGET_FLUSH |
413 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
414 PIPE_CONTROL_DATA_CACHE_FLUSH);
415 }
416
417 static void
418 flush_after_state_base_change(struct iris_batch *batch)
419 {
420 /* After re-setting the surface state base address, we have to do some
421 * cache flusing so that the sampler engine will pick up the new
422 * SURFACE_STATE objects and binding tables. From the Broadwell PRM,
423 * Shared Function > 3D Sampler > State > State Caching (page 96):
424 *
425 * Coherency with system memory in the state cache, like the texture
426 * cache is handled partially by software. It is expected that the
427 * command stream or shader will issue Cache Flush operation or
428 * Cache_Flush sampler message to ensure that the L1 cache remains
429 * coherent with system memory.
430 *
431 * [...]
432 *
433 * Whenever the value of the Dynamic_State_Base_Addr,
434 * Surface_State_Base_Addr are altered, the L1 state cache must be
435 * invalidated to ensure the new surface or sampler state is fetched
436 * from system memory.
437 *
438 * The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
439 * which, according the PIPE_CONTROL instruction documentation in the
440 * Broadwell PRM:
441 *
442 * Setting this bit is independent of any other bit in this packet.
443 * This bit controls the invalidation of the L1 and L2 state caches
444 * at the top of the pipe i.e. at the parsing time.
445 *
446 * Unfortunately, experimentation seems to indicate that state cache
447 * invalidation through a PIPE_CONTROL does nothing whatsoever in
448 * regards to surface state and binding tables. In stead, it seems that
449 * invalidating the texture cache is what is actually needed.
450 *
451 * XXX: As far as we have been able to determine through
452 * experimentation, shows that flush the texture cache appears to be
453 * sufficient. The theory here is that all of the sampling/rendering
454 * units cache the binding table in the texture cache. However, we have
455 * yet to be able to actually confirm this.
456 */
457 iris_emit_end_of_pipe_sync(batch,
458 "change STATE_BASE_ADDRESS (invalidates)",
459 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
460 PIPE_CONTROL_CONST_CACHE_INVALIDATE |
461 PIPE_CONTROL_STATE_CACHE_INVALIDATE);
462 }
463
464 static void
465 _iris_emit_lri(struct iris_batch *batch, uint32_t reg, uint32_t val)
466 {
467 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
468 lri.RegisterOffset = reg;
469 lri.DataDWord = val;
470 }
471 }
472 #define iris_emit_lri(b, r, v) _iris_emit_lri(b, GENX(r##_num), v)
473
474 static void
475 _iris_emit_lrr(struct iris_batch *batch, uint32_t dst, uint32_t src)
476 {
477 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
478 lrr.SourceRegisterAddress = src;
479 lrr.DestinationRegisterAddress = dst;
480 }
481 }
482
483 static void
484 iris_load_register_reg32(struct iris_batch *batch, uint32_t dst,
485 uint32_t src)
486 {
487 _iris_emit_lrr(batch, dst, src);
488 }
489
490 static void
491 iris_load_register_reg64(struct iris_batch *batch, uint32_t dst,
492 uint32_t src)
493 {
494 _iris_emit_lrr(batch, dst, src);
495 _iris_emit_lrr(batch, dst + 4, src + 4);
496 }
497
498 static void
499 iris_load_register_imm32(struct iris_batch *batch, uint32_t reg,
500 uint32_t val)
501 {
502 _iris_emit_lri(batch, reg, val);
503 }
504
505 static void
506 iris_load_register_imm64(struct iris_batch *batch, uint32_t reg,
507 uint64_t val)
508 {
509 _iris_emit_lri(batch, reg + 0, val & 0xffffffff);
510 _iris_emit_lri(batch, reg + 4, val >> 32);
511 }
512
513 /**
514 * Emit MI_LOAD_REGISTER_MEM to load a 32-bit MMIO register from a buffer.
515 */
516 static void
517 iris_load_register_mem32(struct iris_batch *batch, uint32_t reg,
518 struct iris_bo *bo, uint32_t offset)
519 {
520 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
521 lrm.RegisterAddress = reg;
522 lrm.MemoryAddress = ro_bo(bo, offset);
523 }
524 }
525
526 /**
527 * Load a 64-bit value from a buffer into a MMIO register via
528 * two MI_LOAD_REGISTER_MEM commands.
529 */
530 static void
531 iris_load_register_mem64(struct iris_batch *batch, uint32_t reg,
532 struct iris_bo *bo, uint32_t offset)
533 {
534 iris_load_register_mem32(batch, reg + 0, bo, offset + 0);
535 iris_load_register_mem32(batch, reg + 4, bo, offset + 4);
536 }
537
538 static void
539 iris_store_register_mem32(struct iris_batch *batch, uint32_t reg,
540 struct iris_bo *bo, uint32_t offset,
541 bool predicated)
542 {
543 iris_emit_cmd(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
544 srm.RegisterAddress = reg;
545 srm.MemoryAddress = rw_bo(bo, offset);
546 srm.PredicateEnable = predicated;
547 }
548 }
549
550 static void
551 iris_store_register_mem64(struct iris_batch *batch, uint32_t reg,
552 struct iris_bo *bo, uint32_t offset,
553 bool predicated)
554 {
555 iris_store_register_mem32(batch, reg + 0, bo, offset + 0, predicated);
556 iris_store_register_mem32(batch, reg + 4, bo, offset + 4, predicated);
557 }
558
559 static void
560 iris_store_data_imm32(struct iris_batch *batch,
561 struct iris_bo *bo, uint32_t offset,
562 uint32_t imm)
563 {
564 iris_emit_cmd(batch, GENX(MI_STORE_DATA_IMM), sdi) {
565 sdi.Address = rw_bo(bo, offset);
566 sdi.ImmediateData = imm;
567 }
568 }
569
570 static void
571 iris_store_data_imm64(struct iris_batch *batch,
572 struct iris_bo *bo, uint32_t offset,
573 uint64_t imm)
574 {
575 /* Can't use iris_emit_cmd because MI_STORE_DATA_IMM has a length of
576 * 2 in genxml but it's actually variable length and we need 5 DWords.
577 */
578 void *map = iris_get_command_space(batch, 4 * 5);
579 _iris_pack_command(batch, GENX(MI_STORE_DATA_IMM), map, sdi) {
580 sdi.DWordLength = 5 - 2;
581 sdi.Address = rw_bo(bo, offset);
582 sdi.ImmediateData = imm;
583 }
584 }
585
586 static void
587 iris_copy_mem_mem(struct iris_batch *batch,
588 struct iris_bo *dst_bo, uint32_t dst_offset,
589 struct iris_bo *src_bo, uint32_t src_offset,
590 unsigned bytes)
591 {
592 /* MI_COPY_MEM_MEM operates on DWords. */
593 assert(bytes % 4 == 0);
594 assert(dst_offset % 4 == 0);
595 assert(src_offset % 4 == 0);
596
597 for (unsigned i = 0; i < bytes; i += 4) {
598 iris_emit_cmd(batch, GENX(MI_COPY_MEM_MEM), cp) {
599 cp.DestinationMemoryAddress = rw_bo(dst_bo, dst_offset + i);
600 cp.SourceMemoryAddress = ro_bo(src_bo, src_offset + i);
601 }
602 }
603 }
604
605 static void
606 emit_pipeline_select(struct iris_batch *batch, uint32_t pipeline)
607 {
608 #if GEN_GEN >= 8 && GEN_GEN < 10
609 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
610 *
611 * Software must clear the COLOR_CALC_STATE Valid field in
612 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
613 * with Pipeline Select set to GPGPU.
614 *
615 * The internal hardware docs recommend the same workaround for Gen9
616 * hardware too.
617 */
618 if (pipeline == GPGPU)
619 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
620 #endif
621
622
623 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
624 * PIPELINE_SELECT [DevBWR+]":
625 *
626 * "Project: DEVSNB+
627 *
628 * Software must ensure all the write caches are flushed through a
629 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
630 * command to invalidate read only caches prior to programming
631 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode."
632 */
633 iris_emit_pipe_control_flush(batch,
634 "workaround: PIPELINE_SELECT flushes (1/2)",
635 PIPE_CONTROL_RENDER_TARGET_FLUSH |
636 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
637 PIPE_CONTROL_DATA_CACHE_FLUSH |
638 PIPE_CONTROL_CS_STALL);
639
640 iris_emit_pipe_control_flush(batch,
641 "workaround: PIPELINE_SELECT flushes (2/2)",
642 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
643 PIPE_CONTROL_CONST_CACHE_INVALIDATE |
644 PIPE_CONTROL_STATE_CACHE_INVALIDATE |
645 PIPE_CONTROL_INSTRUCTION_INVALIDATE);
646
647 iris_emit_cmd(batch, GENX(PIPELINE_SELECT), sel) {
648 #if GEN_GEN >= 9
649 sel.MaskBits = 3;
650 #endif
651 sel.PipelineSelection = pipeline;
652 }
653 }
654
655 UNUSED static void
656 init_glk_barrier_mode(struct iris_batch *batch, uint32_t value)
657 {
658 #if GEN_GEN == 9
659 /* Project: DevGLK
660 *
661 * "This chicken bit works around a hardware issue with barrier
662 * logic encountered when switching between GPGPU and 3D pipelines.
663 * To workaround the issue, this mode bit should be set after a
664 * pipeline is selected."
665 */
666 uint32_t reg_val;
667 iris_pack_state(GENX(SLICE_COMMON_ECO_CHICKEN1), &reg_val, reg) {
668 reg.GLKBarrierMode = value;
669 reg.GLKBarrierModeMask = 1;
670 }
671 iris_emit_lri(batch, SLICE_COMMON_ECO_CHICKEN1, reg_val);
672 #endif
673 }
674
675 static void
676 init_state_base_address(struct iris_batch *batch)
677 {
678 uint32_t mocs = batch->screen->isl_dev.mocs.internal;
679 flush_before_state_base_change(batch);
680
681 /* We program most base addresses once at context initialization time.
682 * Each base address points at a 4GB memory zone, and never needs to
683 * change. See iris_bufmgr.h for a description of the memory zones.
684 *
685 * The one exception is Surface State Base Address, which needs to be
686 * updated occasionally. See iris_binder.c for the details there.
687 */
688 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
689 sba.GeneralStateMOCS = mocs;
690 sba.StatelessDataPortAccessMOCS = mocs;
691 sba.DynamicStateMOCS = mocs;
692 sba.IndirectObjectMOCS = mocs;
693 sba.InstructionMOCS = mocs;
694 sba.SurfaceStateMOCS = mocs;
695
696 sba.GeneralStateBaseAddressModifyEnable = true;
697 sba.DynamicStateBaseAddressModifyEnable = true;
698 sba.IndirectObjectBaseAddressModifyEnable = true;
699 sba.InstructionBaseAddressModifyEnable = true;
700 sba.GeneralStateBufferSizeModifyEnable = true;
701 sba.DynamicStateBufferSizeModifyEnable = true;
702 #if (GEN_GEN >= 9)
703 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
704 sba.BindlessSurfaceStateMOCS = mocs;
705 #endif
706 sba.IndirectObjectBufferSizeModifyEnable = true;
707 sba.InstructionBuffersizeModifyEnable = true;
708
709 sba.InstructionBaseAddress = ro_bo(NULL, IRIS_MEMZONE_SHADER_START);
710 sba.DynamicStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_DYNAMIC_START);
711
712 sba.GeneralStateBufferSize = 0xfffff;
713 sba.IndirectObjectBufferSize = 0xfffff;
714 sba.InstructionBufferSize = 0xfffff;
715 sba.DynamicStateBufferSize = 0xfffff;
716 }
717
718 flush_after_state_base_change(batch);
719 }
720
721 static void
722 iris_emit_l3_config(struct iris_batch *batch, const struct gen_l3_config *cfg,
723 bool has_slm, bool wants_dc_cache)
724 {
725 uint32_t reg_val;
726
727 #if GEN_GEN >= 12
728 #define L3_ALLOCATION_REG GENX(L3ALLOC)
729 #define L3_ALLOCATION_REG_num GENX(L3ALLOC_num)
730 #else
731 #define L3_ALLOCATION_REG GENX(L3CNTLREG)
732 #define L3_ALLOCATION_REG_num GENX(L3CNTLREG_num)
733 #endif
734
735 iris_pack_state(L3_ALLOCATION_REG, &reg_val, reg) {
736 #if GEN_GEN < 12
737 reg.SLMEnable = has_slm;
738 #endif
739 #if GEN_GEN == 11
740 /* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set
741 * in L3CNTLREG register. The default setting of the bit is not the
742 * desirable behavior.
743 */
744 reg.ErrorDetectionBehaviorControl = true;
745 reg.UseFullWays = true;
746 #endif
747 reg.URBAllocation = cfg->n[GEN_L3P_URB];
748 reg.ROAllocation = cfg->n[GEN_L3P_RO];
749 reg.DCAllocation = cfg->n[GEN_L3P_DC];
750 reg.AllAllocation = cfg->n[GEN_L3P_ALL];
751 }
752 _iris_emit_lri(batch, L3_ALLOCATION_REG_num, reg_val);
753 }
754
755 static void
756 iris_emit_default_l3_config(struct iris_batch *batch,
757 const struct gen_device_info *devinfo,
758 bool compute)
759 {
760 bool wants_dc_cache = true;
761 bool has_slm = compute;
762 const struct gen_l3_weights w =
763 gen_get_default_l3_weights(devinfo, wants_dc_cache, has_slm);
764 const struct gen_l3_config *cfg = gen_get_l3_config(devinfo, w);
765 iris_emit_l3_config(batch, cfg, has_slm, wants_dc_cache);
766 }
767
768 #if GEN_GEN == 9 || GEN_GEN == 10
769 static void
770 iris_enable_obj_preemption(struct iris_batch *batch, bool enable)
771 {
772 uint32_t reg_val;
773
774 /* A fixed function pipe flush is required before modifying this field */
775 iris_emit_end_of_pipe_sync(batch, enable ? "enable preemption"
776 : "disable preemption",
777 PIPE_CONTROL_RENDER_TARGET_FLUSH);
778
779 /* enable object level preemption */
780 iris_pack_state(GENX(CS_CHICKEN1), &reg_val, reg) {
781 reg.ReplayMode = enable;
782 reg.ReplayModeMask = true;
783 }
784 iris_emit_lri(batch, CS_CHICKEN1, reg_val);
785 }
786 #endif
787
788 #if GEN_GEN == 11
789 static void
790 iris_upload_slice_hashing_state(struct iris_batch *batch)
791 {
792 const struct gen_device_info *devinfo = &batch->screen->devinfo;
793 int subslices_delta =
794 devinfo->ppipe_subslices[0] - devinfo->ppipe_subslices[1];
795 if (subslices_delta == 0)
796 return;
797
798 struct iris_context *ice = NULL;
799 ice = container_of(batch, ice, batches[IRIS_BATCH_RENDER]);
800 assert(&ice->batches[IRIS_BATCH_RENDER] == batch);
801
802 unsigned size = GENX(SLICE_HASH_TABLE_length) * 4;
803 uint32_t hash_address;
804 struct pipe_resource *tmp = NULL;
805 uint32_t *map =
806 stream_state(batch, ice->state.dynamic_uploader, &tmp,
807 size, 64, &hash_address);
808 pipe_resource_reference(&tmp, NULL);
809
810 struct GENX(SLICE_HASH_TABLE) table0 = {
811 .Entry = {
812 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
813 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
814 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
815 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
816 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
817 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
818 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
819 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
820 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
821 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
822 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
823 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
824 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
825 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
826 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
827 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 }
828 }
829 };
830
831 struct GENX(SLICE_HASH_TABLE) table1 = {
832 .Entry = {
833 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
834 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
835 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
836 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
837 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
838 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
839 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
840 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
841 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
842 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
843 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
844 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
845 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
846 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
847 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
848 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 }
849 }
850 };
851
852 const struct GENX(SLICE_HASH_TABLE) *table =
853 subslices_delta < 0 ? &table0 : &table1;
854 GENX(SLICE_HASH_TABLE_pack)(NULL, map, table);
855
856 iris_emit_cmd(batch, GENX(3DSTATE_SLICE_TABLE_STATE_POINTERS), ptr) {
857 ptr.SliceHashStatePointerValid = true;
858 ptr.SliceHashTableStatePointer = hash_address;
859 }
860
861 iris_emit_cmd(batch, GENX(3DSTATE_3D_MODE), mode) {
862 mode.SliceHashingTableEnable = true;
863 }
864 }
865 #endif
866
867 static void
868 iris_alloc_push_constants(struct iris_batch *batch)
869 {
870 /* For now, we set a static partitioning of the push constant area,
871 * assuming that all stages could be in use.
872 *
873 * TODO: Try lazily allocating the HS/DS/GS sections as needed, and
874 * see if that improves performance by offering more space to
875 * the VS/FS when those aren't in use. Also, try dynamically
876 * enabling/disabling it like i965 does. This would be more
877 * stalls and may not actually help; we don't know yet.
878 */
879 for (int i = 0; i <= MESA_SHADER_FRAGMENT; i++) {
880 iris_emit_cmd(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
881 alloc._3DCommandSubOpcode = 18 + i;
882 alloc.ConstantBufferOffset = 6 * i;
883 alloc.ConstantBufferSize = i == MESA_SHADER_FRAGMENT ? 8 : 6;
884 }
885 }
886 }
887
888 /**
889 * Upload the initial GPU state for a render context.
890 *
891 * This sets some invariant state that needs to be programmed a particular
892 * way, but we never actually change.
893 */
894 static void
895 iris_init_render_context(struct iris_batch *batch)
896 {
897 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
898 uint32_t reg_val;
899
900 emit_pipeline_select(batch, _3D);
901
902 iris_emit_default_l3_config(batch, devinfo, false);
903
904 init_state_base_address(batch);
905
906 #if GEN_GEN >= 9
907 iris_pack_state(GENX(CS_DEBUG_MODE2), &reg_val, reg) {
908 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
909 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
910 }
911 iris_emit_lri(batch, CS_DEBUG_MODE2, reg_val);
912 #else
913 iris_pack_state(GENX(INSTPM), &reg_val, reg) {
914 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
915 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
916 }
917 iris_emit_lri(batch, INSTPM, reg_val);
918 #endif
919
920 #if GEN_GEN == 9
921 iris_pack_state(GENX(CACHE_MODE_1), &reg_val, reg) {
922 reg.FloatBlendOptimizationEnable = true;
923 reg.FloatBlendOptimizationEnableMask = true;
924 reg.PartialResolveDisableInVC = true;
925 reg.PartialResolveDisableInVCMask = true;
926 }
927 iris_emit_lri(batch, CACHE_MODE_1, reg_val);
928
929 if (devinfo->is_geminilake)
930 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_3D_HULL);
931 #endif
932
933 #if GEN_GEN == 11
934 iris_pack_state(GENX(SAMPLER_MODE), &reg_val, reg) {
935 reg.HeaderlessMessageforPreemptableContexts = 1;
936 reg.HeaderlessMessageforPreemptableContextsMask = 1;
937 }
938 iris_emit_lri(batch, SAMPLER_MODE, reg_val);
939
940 /* Bit 1 must be set in HALF_SLICE_CHICKEN7. */
941 iris_pack_state(GENX(HALF_SLICE_CHICKEN7), &reg_val, reg) {
942 reg.EnabledTexelOffsetPrecisionFix = 1;
943 reg.EnabledTexelOffsetPrecisionFixMask = 1;
944 }
945 iris_emit_lri(batch, HALF_SLICE_CHICKEN7, reg_val);
946
947 /* Hardware specification recommends disabling repacking for the
948 * compatibility with decompression mechanism in display controller.
949 */
950 if (devinfo->disable_ccs_repack) {
951 iris_pack_state(GENX(CACHE_MODE_0), &reg_val, reg) {
952 reg.DisableRepackingforCompression = true;
953 reg.DisableRepackingforCompressionMask = true;
954 }
955 iris_emit_lri(batch, CACHE_MODE_0, reg_val);
956 }
957
958 iris_upload_slice_hashing_state(batch);
959 #endif
960
961 /* 3DSTATE_DRAWING_RECTANGLE is non-pipelined, so we want to avoid
962 * changing it dynamically. We set it to the maximum size here, and
963 * instead include the render target dimensions in the viewport, so
964 * viewport extents clipping takes care of pruning stray geometry.
965 */
966 iris_emit_cmd(batch, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
967 rect.ClippedDrawingRectangleXMax = UINT16_MAX;
968 rect.ClippedDrawingRectangleYMax = UINT16_MAX;
969 }
970
971 /* Set the initial MSAA sample positions. */
972 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_PATTERN), pat) {
973 GEN_SAMPLE_POS_1X(pat._1xSample);
974 GEN_SAMPLE_POS_2X(pat._2xSample);
975 GEN_SAMPLE_POS_4X(pat._4xSample);
976 GEN_SAMPLE_POS_8X(pat._8xSample);
977 #if GEN_GEN >= 9
978 GEN_SAMPLE_POS_16X(pat._16xSample);
979 #endif
980 }
981
982 /* Use the legacy AA line coverage computation. */
983 iris_emit_cmd(batch, GENX(3DSTATE_AA_LINE_PARAMETERS), foo);
984
985 /* Disable chromakeying (it's for media) */
986 iris_emit_cmd(batch, GENX(3DSTATE_WM_CHROMAKEY), foo);
987
988 /* We want regular rendering, not special HiZ operations. */
989 iris_emit_cmd(batch, GENX(3DSTATE_WM_HZ_OP), foo);
990
991 /* No polygon stippling offsets are necessary. */
992 /* TODO: may need to set an offset for origin-UL framebuffers */
993 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_OFFSET), foo);
994
995 iris_alloc_push_constants(batch);
996
997 #if GEN_GEN == 10
998 /* Gen11+ is enabled for us by the kernel. */
999 iris_enable_obj_preemption(batch, true);
1000 #endif
1001 }
1002
1003 static void
1004 iris_init_compute_context(struct iris_batch *batch)
1005 {
1006 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
1007
1008 emit_pipeline_select(batch, GPGPU);
1009
1010 iris_emit_default_l3_config(batch, devinfo, true);
1011
1012 init_state_base_address(batch);
1013
1014 #if GEN_GEN == 9
1015 if (devinfo->is_geminilake)
1016 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_GPGPU);
1017 #endif
1018 }
1019
1020 struct iris_vertex_buffer_state {
1021 /** The VERTEX_BUFFER_STATE hardware structure. */
1022 uint32_t state[GENX(VERTEX_BUFFER_STATE_length)];
1023
1024 /** The resource to source vertex data from. */
1025 struct pipe_resource *resource;
1026
1027 int offset;
1028 };
1029
1030 struct iris_depth_buffer_state {
1031 /* Depth/HiZ/Stencil related hardware packets. */
1032 uint32_t packets[GENX(3DSTATE_DEPTH_BUFFER_length) +
1033 GENX(3DSTATE_STENCIL_BUFFER_length) +
1034 GENX(3DSTATE_HIER_DEPTH_BUFFER_length) +
1035 GENX(3DSTATE_CLEAR_PARAMS_length)];
1036 };
1037
1038 /**
1039 * Generation-specific context state (ice->state.genx->...).
1040 *
1041 * Most state can go in iris_context directly, but these encode hardware
1042 * packets which vary by generation.
1043 */
1044 struct iris_genx_state {
1045 struct iris_vertex_buffer_state vertex_buffers[33];
1046 uint32_t last_index_buffer[GENX(3DSTATE_INDEX_BUFFER_length)];
1047
1048 struct iris_depth_buffer_state depth_buffer;
1049
1050 uint32_t so_buffers[4 * GENX(3DSTATE_SO_BUFFER_length)];
1051
1052 #if GEN_GEN == 8
1053 bool pma_fix_enabled;
1054 #endif
1055
1056 #if GEN_GEN == 9
1057 /* Is object level preemption enabled? */
1058 bool object_preemption;
1059 #endif
1060
1061 struct {
1062 #if GEN_GEN == 8
1063 struct brw_image_param image_param[PIPE_MAX_SHADER_IMAGES];
1064 #endif
1065 } shaders[MESA_SHADER_STAGES];
1066 };
1067
1068 /**
1069 * The pipe->set_blend_color() driver hook.
1070 *
1071 * This corresponds to our COLOR_CALC_STATE.
1072 */
1073 static void
1074 iris_set_blend_color(struct pipe_context *ctx,
1075 const struct pipe_blend_color *state)
1076 {
1077 struct iris_context *ice = (struct iris_context *) ctx;
1078
1079 /* Our COLOR_CALC_STATE is exactly pipe_blend_color, so just memcpy */
1080 memcpy(&ice->state.blend_color, state, sizeof(struct pipe_blend_color));
1081 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
1082 }
1083
1084 /**
1085 * Gallium CSO for blend state (see pipe_blend_state).
1086 */
1087 struct iris_blend_state {
1088 /** Partial 3DSTATE_PS_BLEND */
1089 uint32_t ps_blend[GENX(3DSTATE_PS_BLEND_length)];
1090
1091 /** Partial BLEND_STATE */
1092 uint32_t blend_state[GENX(BLEND_STATE_length) +
1093 BRW_MAX_DRAW_BUFFERS * GENX(BLEND_STATE_ENTRY_length)];
1094
1095 bool alpha_to_coverage; /* for shader key */
1096
1097 /** Bitfield of whether blending is enabled for RT[i] - for aux resolves */
1098 uint8_t blend_enables;
1099
1100 /** Bitfield of whether color writes are enabled for RT[i] */
1101 uint8_t color_write_enables;
1102
1103 /** Does RT[0] use dual color blending? */
1104 bool dual_color_blending;
1105 };
1106
1107 static enum pipe_blendfactor
1108 fix_blendfactor(enum pipe_blendfactor f, bool alpha_to_one)
1109 {
1110 if (alpha_to_one) {
1111 if (f == PIPE_BLENDFACTOR_SRC1_ALPHA)
1112 return PIPE_BLENDFACTOR_ONE;
1113
1114 if (f == PIPE_BLENDFACTOR_INV_SRC1_ALPHA)
1115 return PIPE_BLENDFACTOR_ZERO;
1116 }
1117
1118 return f;
1119 }
1120
1121 /**
1122 * The pipe->create_blend_state() driver hook.
1123 *
1124 * Translates a pipe_blend_state into iris_blend_state.
1125 */
1126 static void *
1127 iris_create_blend_state(struct pipe_context *ctx,
1128 const struct pipe_blend_state *state)
1129 {
1130 struct iris_blend_state *cso = malloc(sizeof(struct iris_blend_state));
1131 uint32_t *blend_entry = cso->blend_state + GENX(BLEND_STATE_length);
1132
1133 cso->blend_enables = 0;
1134 cso->color_write_enables = 0;
1135 STATIC_ASSERT(BRW_MAX_DRAW_BUFFERS <= 8);
1136
1137 cso->alpha_to_coverage = state->alpha_to_coverage;
1138
1139 bool indep_alpha_blend = false;
1140
1141 for (int i = 0; i < BRW_MAX_DRAW_BUFFERS; i++) {
1142 const struct pipe_rt_blend_state *rt =
1143 &state->rt[state->independent_blend_enable ? i : 0];
1144
1145 enum pipe_blendfactor src_rgb =
1146 fix_blendfactor(rt->rgb_src_factor, state->alpha_to_one);
1147 enum pipe_blendfactor src_alpha =
1148 fix_blendfactor(rt->alpha_src_factor, state->alpha_to_one);
1149 enum pipe_blendfactor dst_rgb =
1150 fix_blendfactor(rt->rgb_dst_factor, state->alpha_to_one);
1151 enum pipe_blendfactor dst_alpha =
1152 fix_blendfactor(rt->alpha_dst_factor, state->alpha_to_one);
1153
1154 if (rt->rgb_func != rt->alpha_func ||
1155 src_rgb != src_alpha || dst_rgb != dst_alpha)
1156 indep_alpha_blend = true;
1157
1158 if (rt->blend_enable)
1159 cso->blend_enables |= 1u << i;
1160
1161 if (rt->colormask)
1162 cso->color_write_enables |= 1u << i;
1163
1164 iris_pack_state(GENX(BLEND_STATE_ENTRY), blend_entry, be) {
1165 be.LogicOpEnable = state->logicop_enable;
1166 be.LogicOpFunction = state->logicop_func;
1167
1168 be.PreBlendSourceOnlyClampEnable = false;
1169 be.ColorClampRange = COLORCLAMP_RTFORMAT;
1170 be.PreBlendColorClampEnable = true;
1171 be.PostBlendColorClampEnable = true;
1172
1173 be.ColorBufferBlendEnable = rt->blend_enable;
1174
1175 be.ColorBlendFunction = rt->rgb_func;
1176 be.AlphaBlendFunction = rt->alpha_func;
1177 be.SourceBlendFactor = src_rgb;
1178 be.SourceAlphaBlendFactor = src_alpha;
1179 be.DestinationBlendFactor = dst_rgb;
1180 be.DestinationAlphaBlendFactor = dst_alpha;
1181
1182 be.WriteDisableRed = !(rt->colormask & PIPE_MASK_R);
1183 be.WriteDisableGreen = !(rt->colormask & PIPE_MASK_G);
1184 be.WriteDisableBlue = !(rt->colormask & PIPE_MASK_B);
1185 be.WriteDisableAlpha = !(rt->colormask & PIPE_MASK_A);
1186 }
1187 blend_entry += GENX(BLEND_STATE_ENTRY_length);
1188 }
1189
1190 iris_pack_command(GENX(3DSTATE_PS_BLEND), cso->ps_blend, pb) {
1191 /* pb.HasWriteableRT is filled in at draw time.
1192 * pb.AlphaTestEnable is filled in at draw time.
1193 *
1194 * pb.ColorBufferBlendEnable is filled in at draw time so we can avoid
1195 * setting it when dual color blending without an appropriate shader.
1196 */
1197
1198 pb.AlphaToCoverageEnable = state->alpha_to_coverage;
1199 pb.IndependentAlphaBlendEnable = indep_alpha_blend;
1200
1201 pb.SourceBlendFactor =
1202 fix_blendfactor(state->rt[0].rgb_src_factor, state->alpha_to_one);
1203 pb.SourceAlphaBlendFactor =
1204 fix_blendfactor(state->rt[0].alpha_src_factor, state->alpha_to_one);
1205 pb.DestinationBlendFactor =
1206 fix_blendfactor(state->rt[0].rgb_dst_factor, state->alpha_to_one);
1207 pb.DestinationAlphaBlendFactor =
1208 fix_blendfactor(state->rt[0].alpha_dst_factor, state->alpha_to_one);
1209 }
1210
1211 iris_pack_state(GENX(BLEND_STATE), cso->blend_state, bs) {
1212 bs.AlphaToCoverageEnable = state->alpha_to_coverage;
1213 bs.IndependentAlphaBlendEnable = indep_alpha_blend;
1214 bs.AlphaToOneEnable = state->alpha_to_one;
1215 bs.AlphaToCoverageDitherEnable = state->alpha_to_coverage;
1216 bs.ColorDitherEnable = state->dither;
1217 /* bl.AlphaTestEnable and bs.AlphaTestFunction are filled in later. */
1218 }
1219
1220 cso->dual_color_blending = util_blend_state_is_dual(state, 0);
1221
1222 return cso;
1223 }
1224
1225 /**
1226 * The pipe->bind_blend_state() driver hook.
1227 *
1228 * Bind a blending CSO and flag related dirty bits.
1229 */
1230 static void
1231 iris_bind_blend_state(struct pipe_context *ctx, void *state)
1232 {
1233 struct iris_context *ice = (struct iris_context *) ctx;
1234 struct iris_blend_state *cso = state;
1235
1236 ice->state.cso_blend = cso;
1237 ice->state.blend_enables = cso ? cso->blend_enables : 0;
1238
1239 ice->state.dirty |= IRIS_DIRTY_PS_BLEND;
1240 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1241 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
1242 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_BLEND];
1243
1244 if (GEN_GEN == 8)
1245 ice->state.dirty |= IRIS_DIRTY_PMA_FIX;
1246 }
1247
1248 /**
1249 * Return true if the FS writes to any color outputs which are not disabled
1250 * via color masking.
1251 */
1252 static bool
1253 has_writeable_rt(const struct iris_blend_state *cso_blend,
1254 const struct shader_info *fs_info)
1255 {
1256 if (!fs_info)
1257 return false;
1258
1259 unsigned rt_outputs = fs_info->outputs_written >> FRAG_RESULT_DATA0;
1260
1261 if (fs_info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_COLOR))
1262 rt_outputs = (1 << BRW_MAX_DRAW_BUFFERS) - 1;
1263
1264 return cso_blend->color_write_enables & rt_outputs;
1265 }
1266
1267 /**
1268 * Gallium CSO for depth, stencil, and alpha testing state.
1269 */
1270 struct iris_depth_stencil_alpha_state {
1271 /** Partial 3DSTATE_WM_DEPTH_STENCIL. */
1272 uint32_t wmds[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
1273
1274 #if GEN_GEN >= 12
1275 uint32_t depth_bounds[GENX(3DSTATE_DEPTH_BOUNDS_length)];
1276 #endif
1277
1278 /** Outbound to BLEND_STATE, 3DSTATE_PS_BLEND, COLOR_CALC_STATE. */
1279 struct pipe_alpha_state alpha;
1280
1281 /** Outbound to resolve and cache set tracking. */
1282 bool depth_writes_enabled;
1283 bool stencil_writes_enabled;
1284
1285 /** Outbound to Gen8-9 PMA stall equations */
1286 bool depth_test_enabled;
1287 };
1288
1289 /**
1290 * The pipe->create_depth_stencil_alpha_state() driver hook.
1291 *
1292 * We encode most of 3DSTATE_WM_DEPTH_STENCIL, and just save off the alpha
1293 * testing state since we need pieces of it in a variety of places.
1294 */
1295 static void *
1296 iris_create_zsa_state(struct pipe_context *ctx,
1297 const struct pipe_depth_stencil_alpha_state *state)
1298 {
1299 struct iris_depth_stencil_alpha_state *cso =
1300 malloc(sizeof(struct iris_depth_stencil_alpha_state));
1301
1302 bool two_sided_stencil = state->stencil[1].enabled;
1303
1304 cso->alpha = state->alpha;
1305 cso->depth_writes_enabled = state->depth.writemask;
1306 cso->depth_test_enabled = state->depth.enabled;
1307 cso->stencil_writes_enabled =
1308 state->stencil[0].writemask != 0 ||
1309 (two_sided_stencil && state->stencil[1].writemask != 0);
1310
1311 /* The state tracker needs to optimize away EQUAL writes for us. */
1312 assert(!(state->depth.func == PIPE_FUNC_EQUAL && state->depth.writemask));
1313
1314 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), cso->wmds, wmds) {
1315 wmds.StencilFailOp = state->stencil[0].fail_op;
1316 wmds.StencilPassDepthFailOp = state->stencil[0].zfail_op;
1317 wmds.StencilPassDepthPassOp = state->stencil[0].zpass_op;
1318 wmds.StencilTestFunction =
1319 translate_compare_func(state->stencil[0].func);
1320 wmds.BackfaceStencilFailOp = state->stencil[1].fail_op;
1321 wmds.BackfaceStencilPassDepthFailOp = state->stencil[1].zfail_op;
1322 wmds.BackfaceStencilPassDepthPassOp = state->stencil[1].zpass_op;
1323 wmds.BackfaceStencilTestFunction =
1324 translate_compare_func(state->stencil[1].func);
1325 wmds.DepthTestFunction = translate_compare_func(state->depth.func);
1326 wmds.DoubleSidedStencilEnable = two_sided_stencil;
1327 wmds.StencilTestEnable = state->stencil[0].enabled;
1328 wmds.StencilBufferWriteEnable =
1329 state->stencil[0].writemask != 0 ||
1330 (two_sided_stencil && state->stencil[1].writemask != 0);
1331 wmds.DepthTestEnable = state->depth.enabled;
1332 wmds.DepthBufferWriteEnable = state->depth.writemask;
1333 wmds.StencilTestMask = state->stencil[0].valuemask;
1334 wmds.StencilWriteMask = state->stencil[0].writemask;
1335 wmds.BackfaceStencilTestMask = state->stencil[1].valuemask;
1336 wmds.BackfaceStencilWriteMask = state->stencil[1].writemask;
1337 /* wmds.[Backface]StencilReferenceValue are merged later */
1338 }
1339
1340 #if GEN_GEN >= 12
1341 iris_pack_command(GENX(3DSTATE_DEPTH_BOUNDS), cso->depth_bounds, depth_bounds) {
1342 depth_bounds.DepthBoundsTestValueModifyDisable = false;
1343 depth_bounds.DepthBoundsTestEnableModifyDisable = false;
1344 depth_bounds.DepthBoundsTestEnable = state->depth.bounds_test;
1345 depth_bounds.DepthBoundsTestMinValue = state->depth.bounds_min;
1346 depth_bounds.DepthBoundsTestMaxValue = state->depth.bounds_max;
1347 }
1348 #endif
1349
1350 return cso;
1351 }
1352
1353 /**
1354 * The pipe->bind_depth_stencil_alpha_state() driver hook.
1355 *
1356 * Bind a depth/stencil/alpha CSO and flag related dirty bits.
1357 */
1358 static void
1359 iris_bind_zsa_state(struct pipe_context *ctx, void *state)
1360 {
1361 struct iris_context *ice = (struct iris_context *) ctx;
1362 struct iris_depth_stencil_alpha_state *old_cso = ice->state.cso_zsa;
1363 struct iris_depth_stencil_alpha_state *new_cso = state;
1364
1365 if (new_cso) {
1366 if (cso_changed(alpha.ref_value))
1367 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
1368
1369 if (cso_changed(alpha.enabled))
1370 ice->state.dirty |= IRIS_DIRTY_PS_BLEND | IRIS_DIRTY_BLEND_STATE;
1371
1372 if (cso_changed(alpha.func))
1373 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1374
1375 if (cso_changed(depth_writes_enabled))
1376 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
1377
1378 ice->state.depth_writes_enabled = new_cso->depth_writes_enabled;
1379 ice->state.stencil_writes_enabled = new_cso->stencil_writes_enabled;
1380
1381 #if GEN_GEN >= 12
1382 if (cso_changed(depth_bounds))
1383 ice->state.dirty |= IRIS_DIRTY_DEPTH_BOUNDS;
1384 #endif
1385 }
1386
1387 ice->state.cso_zsa = new_cso;
1388 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1389 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
1390 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_DEPTH_STENCIL_ALPHA];
1391
1392 if (GEN_GEN == 8)
1393 ice->state.dirty |= IRIS_DIRTY_PMA_FIX;
1394 }
1395
1396 #if GEN_GEN == 8
1397 static bool
1398 want_pma_fix(struct iris_context *ice)
1399 {
1400 UNUSED struct iris_screen *screen = (void *) ice->ctx.screen;
1401 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
1402 const struct brw_wm_prog_data *wm_prog_data = (void *)
1403 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
1404 const struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
1405 const struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
1406 const struct iris_blend_state *cso_blend = ice->state.cso_blend;
1407
1408 /* In very specific combinations of state, we can instruct Gen8-9 hardware
1409 * to avoid stalling at the pixel mask array. The state equations are
1410 * documented in these places:
1411 *
1412 * - Gen8 Depth PMA Fix: CACHE_MODE_1::NP_PMA_FIX_ENABLE
1413 * - Gen9 Stencil PMA Fix: CACHE_MODE_0::STC PMA Optimization Enable
1414 *
1415 * Both equations share some common elements:
1416 *
1417 * no_hiz_op =
1418 * !(3DSTATE_WM_HZ_OP::DepthBufferClear ||
1419 * 3DSTATE_WM_HZ_OP::DepthBufferResolve ||
1420 * 3DSTATE_WM_HZ_OP::Hierarchical Depth Buffer Resolve Enable ||
1421 * 3DSTATE_WM_HZ_OP::StencilBufferClear) &&
1422 *
1423 * killpixels =
1424 * 3DSTATE_WM::ForceKillPix != ForceOff &&
1425 * (3DSTATE_PS_EXTRA::PixelShaderKillsPixels ||
1426 * 3DSTATE_PS_EXTRA::oMask Present to RenderTarget ||
1427 * 3DSTATE_PS_BLEND::AlphaToCoverageEnable ||
1428 * 3DSTATE_PS_BLEND::AlphaTestEnable ||
1429 * 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable)
1430 *
1431 * (Technically the stencil PMA treats ForceKillPix differently,
1432 * but I think this is a documentation oversight, and we don't
1433 * ever use it in this way, so it doesn't matter).
1434 *
1435 * common_pma_fix =
1436 * 3DSTATE_WM::ForceThreadDispatch != 1 &&
1437 * 3DSTATE_RASTER::ForceSampleCount == NUMRASTSAMPLES_0 &&
1438 * 3DSTATE_DEPTH_BUFFER::SURFACE_TYPE != NULL &&
1439 * 3DSTATE_DEPTH_BUFFER::HIZ Enable &&
1440 * 3DSTATE_WM::EDSC_Mode != EDSC_PREPS &&
1441 * 3DSTATE_PS_EXTRA::PixelShaderValid &&
1442 * no_hiz_op
1443 *
1444 * These are always true:
1445 *
1446 * 3DSTATE_RASTER::ForceSampleCount == NUMRASTSAMPLES_0
1447 * 3DSTATE_PS_EXTRA::PixelShaderValid
1448 *
1449 * Also, we never use the normal drawing path for HiZ ops; these are true:
1450 *
1451 * !(3DSTATE_WM_HZ_OP::DepthBufferClear ||
1452 * 3DSTATE_WM_HZ_OP::DepthBufferResolve ||
1453 * 3DSTATE_WM_HZ_OP::Hierarchical Depth Buffer Resolve Enable ||
1454 * 3DSTATE_WM_HZ_OP::StencilBufferClear)
1455 *
1456 * This happens sometimes:
1457 *
1458 * 3DSTATE_WM::ForceThreadDispatch != 1
1459 *
1460 * However, we choose to ignore it as it either agrees with the signal
1461 * (dispatch was already enabled, so nothing out of the ordinary), or
1462 * there are no framebuffer attachments (so no depth or HiZ anyway,
1463 * meaning the PMA signal will already be disabled).
1464 */
1465
1466 if (!cso_fb->zsbuf)
1467 return false;
1468
1469 struct iris_resource *zres, *sres;
1470 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture, &zres, &sres);
1471
1472 /* 3DSTATE_DEPTH_BUFFER::SURFACE_TYPE != NULL &&
1473 * 3DSTATE_DEPTH_BUFFER::HIZ Enable &&
1474 */
1475 if (!zres || !iris_resource_level_has_hiz(zres, cso_fb->zsbuf->u.tex.level))
1476 return false;
1477
1478 /* 3DSTATE_WM::EDSC_Mode != EDSC_PREPS */
1479 if (wm_prog_data->early_fragment_tests)
1480 return false;
1481
1482 /* 3DSTATE_WM::ForceKillPix != ForceOff &&
1483 * (3DSTATE_PS_EXTRA::PixelShaderKillsPixels ||
1484 * 3DSTATE_PS_EXTRA::oMask Present to RenderTarget ||
1485 * 3DSTATE_PS_BLEND::AlphaToCoverageEnable ||
1486 * 3DSTATE_PS_BLEND::AlphaTestEnable ||
1487 * 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable)
1488 */
1489 bool killpixels = wm_prog_data->uses_kill || wm_prog_data->uses_omask ||
1490 cso_blend->alpha_to_coverage || cso_zsa->alpha.enabled;
1491
1492 /* The Gen8 depth PMA equation becomes:
1493 *
1494 * depth_writes =
1495 * 3DSTATE_WM_DEPTH_STENCIL::DepthWriteEnable &&
1496 * 3DSTATE_DEPTH_BUFFER::DEPTH_WRITE_ENABLE
1497 *
1498 * stencil_writes =
1499 * 3DSTATE_WM_DEPTH_STENCIL::Stencil Buffer Write Enable &&
1500 * 3DSTATE_DEPTH_BUFFER::STENCIL_WRITE_ENABLE &&
1501 * 3DSTATE_STENCIL_BUFFER::STENCIL_BUFFER_ENABLE
1502 *
1503 * Z_PMA_OPT =
1504 * common_pma_fix &&
1505 * 3DSTATE_WM_DEPTH_STENCIL::DepthTestEnable &&
1506 * ((killpixels && (depth_writes || stencil_writes)) ||
1507 * 3DSTATE_PS_EXTRA::PixelShaderComputedDepthMode != PSCDEPTH_OFF)
1508 *
1509 */
1510 if (!cso_zsa->depth_test_enabled)
1511 return false;
1512
1513 return wm_prog_data->computed_depth_mode != PSCDEPTH_OFF ||
1514 (killpixels && (cso_zsa->depth_writes_enabled ||
1515 (sres && cso_zsa->stencil_writes_enabled)));
1516 }
1517 #endif
1518
1519 void
1520 genX(update_pma_fix)(struct iris_context *ice,
1521 struct iris_batch *batch,
1522 bool enable)
1523 {
1524 #if GEN_GEN == 8
1525 struct iris_genx_state *genx = ice->state.genx;
1526
1527 if (genx->pma_fix_enabled == enable)
1528 return;
1529
1530 genx->pma_fix_enabled = enable;
1531
1532 /* According to the Broadwell PIPE_CONTROL documentation, software should
1533 * emit a PIPE_CONTROL with the CS Stall and Depth Cache Flush bits set
1534 * prior to the LRI. If stencil buffer writes are enabled, then a Render * Cache Flush is also necessary.
1535 *
1536 * The Gen9 docs say to use a depth stall rather than a command streamer
1537 * stall. However, the hardware seems to violently disagree. A full
1538 * command streamer stall seems to be needed in both cases.
1539 */
1540 iris_emit_pipe_control_flush(batch, "PMA fix change (1/2)",
1541 PIPE_CONTROL_CS_STALL |
1542 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
1543 PIPE_CONTROL_RENDER_TARGET_FLUSH);
1544
1545 uint32_t reg_val;
1546 iris_pack_state(GENX(CACHE_MODE_1), &reg_val, reg) {
1547 reg.NPPMAFixEnable = enable;
1548 reg.NPEarlyZFailsDisable = enable;
1549 reg.NPPMAFixEnableMask = true;
1550 reg.NPEarlyZFailsDisableMask = true;
1551 }
1552 iris_emit_lri(batch, CACHE_MODE_1, reg_val);
1553
1554 /* After the LRI, a PIPE_CONTROL with both the Depth Stall and Depth Cache
1555 * Flush bits is often necessary. We do it regardless because it's easier.
1556 * The render cache flush is also necessary if stencil writes are enabled.
1557 *
1558 * Again, the Gen9 docs give a different set of flushes but the Broadwell
1559 * flushes seem to work just as well.
1560 */
1561 iris_emit_pipe_control_flush(batch, "PMA fix change (1/2)",
1562 PIPE_CONTROL_DEPTH_STALL |
1563 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
1564 PIPE_CONTROL_RENDER_TARGET_FLUSH);
1565 #endif
1566 }
1567
1568 /**
1569 * Gallium CSO for rasterizer state.
1570 */
1571 struct iris_rasterizer_state {
1572 uint32_t sf[GENX(3DSTATE_SF_length)];
1573 uint32_t clip[GENX(3DSTATE_CLIP_length)];
1574 uint32_t raster[GENX(3DSTATE_RASTER_length)];
1575 uint32_t wm[GENX(3DSTATE_WM_length)];
1576 uint32_t line_stipple[GENX(3DSTATE_LINE_STIPPLE_length)];
1577
1578 uint8_t num_clip_plane_consts;
1579 bool clip_halfz; /* for CC_VIEWPORT */
1580 bool depth_clip_near; /* for CC_VIEWPORT */
1581 bool depth_clip_far; /* for CC_VIEWPORT */
1582 bool flatshade; /* for shader state */
1583 bool flatshade_first; /* for stream output */
1584 bool clamp_fragment_color; /* for shader state */
1585 bool light_twoside; /* for shader state */
1586 bool rasterizer_discard; /* for 3DSTATE_STREAMOUT and 3DSTATE_CLIP */
1587 bool half_pixel_center; /* for 3DSTATE_MULTISAMPLE */
1588 bool line_stipple_enable;
1589 bool poly_stipple_enable;
1590 bool multisample;
1591 bool force_persample_interp;
1592 bool conservative_rasterization;
1593 bool fill_mode_point_or_line;
1594 enum pipe_sprite_coord_mode sprite_coord_mode; /* PIPE_SPRITE_* */
1595 uint16_t sprite_coord_enable;
1596 };
1597
1598 static float
1599 get_line_width(const struct pipe_rasterizer_state *state)
1600 {
1601 float line_width = state->line_width;
1602
1603 /* From the OpenGL 4.4 spec:
1604 *
1605 * "The actual width of non-antialiased lines is determined by rounding
1606 * the supplied width to the nearest integer, then clamping it to the
1607 * implementation-dependent maximum non-antialiased line width."
1608 */
1609 if (!state->multisample && !state->line_smooth)
1610 line_width = roundf(state->line_width);
1611
1612 if (!state->multisample && state->line_smooth && line_width < 1.5f) {
1613 /* For 1 pixel line thickness or less, the general anti-aliasing
1614 * algorithm gives up, and a garbage line is generated. Setting a
1615 * Line Width of 0.0 specifies the rasterization of the "thinnest"
1616 * (one-pixel-wide), non-antialiased lines.
1617 *
1618 * Lines rendered with zero Line Width are rasterized using the
1619 * "Grid Intersection Quantization" rules as specified by the
1620 * "Zero-Width (Cosmetic) Line Rasterization" section of the docs.
1621 */
1622 line_width = 0.0f;
1623 }
1624
1625 return line_width;
1626 }
1627
1628 /**
1629 * The pipe->create_rasterizer_state() driver hook.
1630 */
1631 static void *
1632 iris_create_rasterizer_state(struct pipe_context *ctx,
1633 const struct pipe_rasterizer_state *state)
1634 {
1635 struct iris_rasterizer_state *cso =
1636 malloc(sizeof(struct iris_rasterizer_state));
1637
1638 cso->multisample = state->multisample;
1639 cso->force_persample_interp = state->force_persample_interp;
1640 cso->clip_halfz = state->clip_halfz;
1641 cso->depth_clip_near = state->depth_clip_near;
1642 cso->depth_clip_far = state->depth_clip_far;
1643 cso->flatshade = state->flatshade;
1644 cso->flatshade_first = state->flatshade_first;
1645 cso->clamp_fragment_color = state->clamp_fragment_color;
1646 cso->light_twoside = state->light_twoside;
1647 cso->rasterizer_discard = state->rasterizer_discard;
1648 cso->half_pixel_center = state->half_pixel_center;
1649 cso->sprite_coord_mode = state->sprite_coord_mode;
1650 cso->sprite_coord_enable = state->sprite_coord_enable;
1651 cso->line_stipple_enable = state->line_stipple_enable;
1652 cso->poly_stipple_enable = state->poly_stipple_enable;
1653 cso->conservative_rasterization =
1654 state->conservative_raster_mode == PIPE_CONSERVATIVE_RASTER_POST_SNAP;
1655
1656 cso->fill_mode_point_or_line =
1657 state->fill_front == PIPE_POLYGON_MODE_LINE ||
1658 state->fill_front == PIPE_POLYGON_MODE_POINT ||
1659 state->fill_back == PIPE_POLYGON_MODE_LINE ||
1660 state->fill_back == PIPE_POLYGON_MODE_POINT;
1661
1662 if (state->clip_plane_enable != 0)
1663 cso->num_clip_plane_consts = util_logbase2(state->clip_plane_enable) + 1;
1664 else
1665 cso->num_clip_plane_consts = 0;
1666
1667 float line_width = get_line_width(state);
1668
1669 iris_pack_command(GENX(3DSTATE_SF), cso->sf, sf) {
1670 sf.StatisticsEnable = true;
1671 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
1672 sf.LineEndCapAntialiasingRegionWidth =
1673 state->line_smooth ? _10pixels : _05pixels;
1674 sf.LastPixelEnable = state->line_last_pixel;
1675 sf.LineWidth = line_width;
1676 sf.SmoothPointEnable = (state->point_smooth || state->multisample) &&
1677 !state->point_quad_rasterization;
1678 sf.PointWidthSource = state->point_size_per_vertex ? Vertex : State;
1679 sf.PointWidth = state->point_size;
1680
1681 if (state->flatshade_first) {
1682 sf.TriangleFanProvokingVertexSelect = 1;
1683 } else {
1684 sf.TriangleStripListProvokingVertexSelect = 2;
1685 sf.TriangleFanProvokingVertexSelect = 2;
1686 sf.LineStripListProvokingVertexSelect = 1;
1687 }
1688 }
1689
1690 iris_pack_command(GENX(3DSTATE_RASTER), cso->raster, rr) {
1691 rr.FrontWinding = state->front_ccw ? CounterClockwise : Clockwise;
1692 rr.CullMode = translate_cull_mode(state->cull_face);
1693 rr.FrontFaceFillMode = translate_fill_mode(state->fill_front);
1694 rr.BackFaceFillMode = translate_fill_mode(state->fill_back);
1695 rr.DXMultisampleRasterizationEnable = state->multisample;
1696 rr.GlobalDepthOffsetEnableSolid = state->offset_tri;
1697 rr.GlobalDepthOffsetEnableWireframe = state->offset_line;
1698 rr.GlobalDepthOffsetEnablePoint = state->offset_point;
1699 rr.GlobalDepthOffsetConstant = state->offset_units * 2;
1700 rr.GlobalDepthOffsetScale = state->offset_scale;
1701 rr.GlobalDepthOffsetClamp = state->offset_clamp;
1702 rr.SmoothPointEnable = state->point_smooth;
1703 rr.AntialiasingEnable = state->line_smooth;
1704 rr.ScissorRectangleEnable = state->scissor;
1705 #if GEN_GEN >= 9
1706 rr.ViewportZNearClipTestEnable = state->depth_clip_near;
1707 rr.ViewportZFarClipTestEnable = state->depth_clip_far;
1708 rr.ConservativeRasterizationEnable =
1709 cso->conservative_rasterization;
1710 #else
1711 rr.ViewportZClipTestEnable = (state->depth_clip_near || state->depth_clip_far);
1712 #endif
1713 }
1714
1715 iris_pack_command(GENX(3DSTATE_CLIP), cso->clip, cl) {
1716 /* cl.NonPerspectiveBarycentricEnable is filled in at draw time from
1717 * the FS program; cl.ForceZeroRTAIndexEnable is filled in from the FB.
1718 */
1719 cl.EarlyCullEnable = true;
1720 cl.UserClipDistanceClipTestEnableBitmask = state->clip_plane_enable;
1721 cl.ForceUserClipDistanceClipTestEnableBitmask = true;
1722 cl.APIMode = state->clip_halfz ? APIMODE_D3D : APIMODE_OGL;
1723 cl.GuardbandClipTestEnable = true;
1724 cl.ClipEnable = true;
1725 cl.MinimumPointWidth = 0.125;
1726 cl.MaximumPointWidth = 255.875;
1727
1728 if (state->flatshade_first) {
1729 cl.TriangleFanProvokingVertexSelect = 1;
1730 } else {
1731 cl.TriangleStripListProvokingVertexSelect = 2;
1732 cl.TriangleFanProvokingVertexSelect = 2;
1733 cl.LineStripListProvokingVertexSelect = 1;
1734 }
1735 }
1736
1737 iris_pack_command(GENX(3DSTATE_WM), cso->wm, wm) {
1738 /* wm.BarycentricInterpolationMode and wm.EarlyDepthStencilControl are
1739 * filled in at draw time from the FS program.
1740 */
1741 wm.LineAntialiasingRegionWidth = _10pixels;
1742 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1743 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1744 wm.LineStippleEnable = state->line_stipple_enable;
1745 wm.PolygonStippleEnable = state->poly_stipple_enable;
1746 }
1747
1748 /* Remap from 0..255 back to 1..256 */
1749 const unsigned line_stipple_factor = state->line_stipple_factor + 1;
1750
1751 iris_pack_command(GENX(3DSTATE_LINE_STIPPLE), cso->line_stipple, line) {
1752 if (state->line_stipple_enable) {
1753 line.LineStipplePattern = state->line_stipple_pattern;
1754 line.LineStippleInverseRepeatCount = 1.0f / line_stipple_factor;
1755 line.LineStippleRepeatCount = line_stipple_factor;
1756 }
1757 }
1758
1759 return cso;
1760 }
1761
1762 /**
1763 * The pipe->bind_rasterizer_state() driver hook.
1764 *
1765 * Bind a rasterizer CSO and flag related dirty bits.
1766 */
1767 static void
1768 iris_bind_rasterizer_state(struct pipe_context *ctx, void *state)
1769 {
1770 struct iris_context *ice = (struct iris_context *) ctx;
1771 struct iris_rasterizer_state *old_cso = ice->state.cso_rast;
1772 struct iris_rasterizer_state *new_cso = state;
1773
1774 if (new_cso) {
1775 /* Try to avoid re-emitting 3DSTATE_LINE_STIPPLE, it's non-pipelined */
1776 if (cso_changed_memcmp(line_stipple))
1777 ice->state.dirty |= IRIS_DIRTY_LINE_STIPPLE;
1778
1779 if (cso_changed(half_pixel_center))
1780 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
1781
1782 if (cso_changed(line_stipple_enable) || cso_changed(poly_stipple_enable))
1783 ice->state.dirty |= IRIS_DIRTY_WM;
1784
1785 if (cso_changed(rasterizer_discard))
1786 ice->state.dirty |= IRIS_DIRTY_STREAMOUT | IRIS_DIRTY_CLIP;
1787
1788 if (cso_changed(flatshade_first))
1789 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
1790
1791 if (cso_changed(depth_clip_near) || cso_changed(depth_clip_far) ||
1792 cso_changed(clip_halfz))
1793 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1794
1795 if (cso_changed(sprite_coord_enable) ||
1796 cso_changed(sprite_coord_mode) ||
1797 cso_changed(light_twoside))
1798 ice->state.dirty |= IRIS_DIRTY_SBE;
1799
1800 if (cso_changed(conservative_rasterization))
1801 ice->state.dirty |= IRIS_DIRTY_FS;
1802 }
1803
1804 ice->state.cso_rast = new_cso;
1805 ice->state.dirty |= IRIS_DIRTY_RASTER;
1806 ice->state.dirty |= IRIS_DIRTY_CLIP;
1807 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_RASTERIZER];
1808 }
1809
1810 /**
1811 * Return true if the given wrap mode requires the border color to exist.
1812 *
1813 * (We can skip uploading it if the sampler isn't going to use it.)
1814 */
1815 static bool
1816 wrap_mode_needs_border_color(unsigned wrap_mode)
1817 {
1818 return wrap_mode == TCM_CLAMP_BORDER || wrap_mode == TCM_HALF_BORDER;
1819 }
1820
1821 /**
1822 * Gallium CSO for sampler state.
1823 */
1824 struct iris_sampler_state {
1825 union pipe_color_union border_color;
1826 bool needs_border_color;
1827
1828 uint32_t sampler_state[GENX(SAMPLER_STATE_length)];
1829 };
1830
1831 /**
1832 * The pipe->create_sampler_state() driver hook.
1833 *
1834 * We fill out SAMPLER_STATE (except for the border color pointer), and
1835 * store that on the CPU. It doesn't make sense to upload it to a GPU
1836 * buffer object yet, because 3DSTATE_SAMPLER_STATE_POINTERS requires
1837 * all bound sampler states to be in contiguous memor.
1838 */
1839 static void *
1840 iris_create_sampler_state(struct pipe_context *ctx,
1841 const struct pipe_sampler_state *state)
1842 {
1843 struct iris_sampler_state *cso = CALLOC_STRUCT(iris_sampler_state);
1844
1845 if (!cso)
1846 return NULL;
1847
1848 STATIC_ASSERT(PIPE_TEX_FILTER_NEAREST == MAPFILTER_NEAREST);
1849 STATIC_ASSERT(PIPE_TEX_FILTER_LINEAR == MAPFILTER_LINEAR);
1850
1851 unsigned wrap_s = translate_wrap(state->wrap_s);
1852 unsigned wrap_t = translate_wrap(state->wrap_t);
1853 unsigned wrap_r = translate_wrap(state->wrap_r);
1854
1855 memcpy(&cso->border_color, &state->border_color, sizeof(cso->border_color));
1856
1857 cso->needs_border_color = wrap_mode_needs_border_color(wrap_s) ||
1858 wrap_mode_needs_border_color(wrap_t) ||
1859 wrap_mode_needs_border_color(wrap_r);
1860
1861 float min_lod = state->min_lod;
1862 unsigned mag_img_filter = state->mag_img_filter;
1863
1864 // XXX: explain this code ported from ilo...I don't get it at all...
1865 if (state->min_mip_filter == PIPE_TEX_MIPFILTER_NONE &&
1866 state->min_lod > 0.0f) {
1867 min_lod = 0.0f;
1868 mag_img_filter = state->min_img_filter;
1869 }
1870
1871 iris_pack_state(GENX(SAMPLER_STATE), cso->sampler_state, samp) {
1872 samp.TCXAddressControlMode = wrap_s;
1873 samp.TCYAddressControlMode = wrap_t;
1874 samp.TCZAddressControlMode = wrap_r;
1875 samp.CubeSurfaceControlMode = state->seamless_cube_map;
1876 samp.NonnormalizedCoordinateEnable = !state->normalized_coords;
1877 samp.MinModeFilter = state->min_img_filter;
1878 samp.MagModeFilter = mag_img_filter;
1879 samp.MipModeFilter = translate_mip_filter(state->min_mip_filter);
1880 samp.MaximumAnisotropy = RATIO21;
1881
1882 if (state->max_anisotropy >= 2) {
1883 if (state->min_img_filter == PIPE_TEX_FILTER_LINEAR) {
1884 samp.MinModeFilter = MAPFILTER_ANISOTROPIC;
1885 samp.AnisotropicAlgorithm = EWAApproximation;
1886 }
1887
1888 if (state->mag_img_filter == PIPE_TEX_FILTER_LINEAR)
1889 samp.MagModeFilter = MAPFILTER_ANISOTROPIC;
1890
1891 samp.MaximumAnisotropy =
1892 MIN2((state->max_anisotropy - 2) / 2, RATIO161);
1893 }
1894
1895 /* Set address rounding bits if not using nearest filtering. */
1896 if (state->min_img_filter != PIPE_TEX_FILTER_NEAREST) {
1897 samp.UAddressMinFilterRoundingEnable = true;
1898 samp.VAddressMinFilterRoundingEnable = true;
1899 samp.RAddressMinFilterRoundingEnable = true;
1900 }
1901
1902 if (state->mag_img_filter != PIPE_TEX_FILTER_NEAREST) {
1903 samp.UAddressMagFilterRoundingEnable = true;
1904 samp.VAddressMagFilterRoundingEnable = true;
1905 samp.RAddressMagFilterRoundingEnable = true;
1906 }
1907
1908 if (state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE)
1909 samp.ShadowFunction = translate_shadow_func(state->compare_func);
1910
1911 const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
1912
1913 samp.LODPreClampMode = CLAMP_MODE_OGL;
1914 samp.MinLOD = CLAMP(min_lod, 0, hw_max_lod);
1915 samp.MaxLOD = CLAMP(state->max_lod, 0, hw_max_lod);
1916 samp.TextureLODBias = CLAMP(state->lod_bias, -16, 15);
1917
1918 /* .BorderColorPointer is filled in by iris_bind_sampler_states. */
1919 }
1920
1921 return cso;
1922 }
1923
1924 /**
1925 * The pipe->bind_sampler_states() driver hook.
1926 */
1927 static void
1928 iris_bind_sampler_states(struct pipe_context *ctx,
1929 enum pipe_shader_type p_stage,
1930 unsigned start, unsigned count,
1931 void **states)
1932 {
1933 struct iris_context *ice = (struct iris_context *) ctx;
1934 gl_shader_stage stage = stage_from_pipe(p_stage);
1935 struct iris_shader_state *shs = &ice->state.shaders[stage];
1936
1937 assert(start + count <= IRIS_MAX_TEXTURE_SAMPLERS);
1938
1939 bool dirty = false;
1940
1941 for (int i = 0; i < count; i++) {
1942 if (shs->samplers[start + i] != states[i]) {
1943 shs->samplers[start + i] = states[i];
1944 dirty = true;
1945 }
1946 }
1947
1948 if (dirty)
1949 ice->state.dirty |= IRIS_DIRTY_SAMPLER_STATES_VS << stage;
1950 }
1951
1952 /**
1953 * Upload the sampler states into a contiguous area of GPU memory, for
1954 * for 3DSTATE_SAMPLER_STATE_POINTERS_*.
1955 *
1956 * Also fill out the border color state pointers.
1957 */
1958 static void
1959 iris_upload_sampler_states(struct iris_context *ice, gl_shader_stage stage)
1960 {
1961 struct iris_shader_state *shs = &ice->state.shaders[stage];
1962 const struct shader_info *info = iris_get_shader_info(ice, stage);
1963
1964 /* We assume the state tracker will call pipe->bind_sampler_states()
1965 * if the program's number of textures changes.
1966 */
1967 unsigned count = info ? util_last_bit(info->textures_used) : 0;
1968
1969 if (!count)
1970 return;
1971
1972 /* Assemble the SAMPLER_STATEs into a contiguous table that lives
1973 * in the dynamic state memory zone, so we can point to it via the
1974 * 3DSTATE_SAMPLER_STATE_POINTERS_* commands.
1975 */
1976 unsigned size = count * 4 * GENX(SAMPLER_STATE_length);
1977 uint32_t *map =
1978 upload_state(ice->state.dynamic_uploader, &shs->sampler_table, size, 32);
1979 if (unlikely(!map))
1980 return;
1981
1982 struct pipe_resource *res = shs->sampler_table.res;
1983 shs->sampler_table.offset +=
1984 iris_bo_offset_from_base_address(iris_resource_bo(res));
1985
1986 iris_record_state_size(ice->state.sizes, shs->sampler_table.offset, size);
1987
1988 /* Make sure all land in the same BO */
1989 iris_border_color_pool_reserve(ice, IRIS_MAX_TEXTURE_SAMPLERS);
1990
1991 ice->state.need_border_colors &= ~(1 << stage);
1992
1993 for (int i = 0; i < count; i++) {
1994 struct iris_sampler_state *state = shs->samplers[i];
1995 struct iris_sampler_view *tex = shs->textures[i];
1996
1997 if (!state) {
1998 memset(map, 0, 4 * GENX(SAMPLER_STATE_length));
1999 } else if (!state->needs_border_color) {
2000 memcpy(map, state->sampler_state, 4 * GENX(SAMPLER_STATE_length));
2001 } else {
2002 ice->state.need_border_colors |= 1 << stage;
2003
2004 /* We may need to swizzle the border color for format faking.
2005 * A/LA formats are faked as R/RG with 000R or R00G swizzles.
2006 * This means we need to move the border color's A channel into
2007 * the R or G channels so that those read swizzles will move it
2008 * back into A.
2009 */
2010 union pipe_color_union *color = &state->border_color;
2011 union pipe_color_union tmp;
2012 if (tex) {
2013 enum pipe_format internal_format = tex->res->internal_format;
2014
2015 if (util_format_is_alpha(internal_format)) {
2016 unsigned char swz[4] = {
2017 PIPE_SWIZZLE_W, PIPE_SWIZZLE_0,
2018 PIPE_SWIZZLE_0, PIPE_SWIZZLE_0
2019 };
2020 util_format_apply_color_swizzle(&tmp, color, swz, true);
2021 color = &tmp;
2022 } else if (util_format_is_luminance_alpha(internal_format) &&
2023 internal_format != PIPE_FORMAT_L8A8_SRGB) {
2024 unsigned char swz[4] = {
2025 PIPE_SWIZZLE_X, PIPE_SWIZZLE_W,
2026 PIPE_SWIZZLE_0, PIPE_SWIZZLE_0
2027 };
2028 util_format_apply_color_swizzle(&tmp, color, swz, true);
2029 color = &tmp;
2030 }
2031 }
2032
2033 /* Stream out the border color and merge the pointer. */
2034 uint32_t offset = iris_upload_border_color(ice, color);
2035
2036 uint32_t dynamic[GENX(SAMPLER_STATE_length)];
2037 iris_pack_state(GENX(SAMPLER_STATE), dynamic, dyns) {
2038 dyns.BorderColorPointer = offset;
2039 }
2040
2041 for (uint32_t j = 0; j < GENX(SAMPLER_STATE_length); j++)
2042 map[j] = state->sampler_state[j] | dynamic[j];
2043 }
2044
2045 map += GENX(SAMPLER_STATE_length);
2046 }
2047 }
2048
2049 static enum isl_channel_select
2050 fmt_swizzle(const struct iris_format_info *fmt, enum pipe_swizzle swz)
2051 {
2052 switch (swz) {
2053 case PIPE_SWIZZLE_X: return fmt->swizzle.r;
2054 case PIPE_SWIZZLE_Y: return fmt->swizzle.g;
2055 case PIPE_SWIZZLE_Z: return fmt->swizzle.b;
2056 case PIPE_SWIZZLE_W: return fmt->swizzle.a;
2057 case PIPE_SWIZZLE_1: return SCS_ONE;
2058 case PIPE_SWIZZLE_0: return SCS_ZERO;
2059 default: unreachable("invalid swizzle");
2060 }
2061 }
2062
2063 static void
2064 fill_buffer_surface_state(struct isl_device *isl_dev,
2065 struct iris_resource *res,
2066 void *map,
2067 enum isl_format format,
2068 struct isl_swizzle swizzle,
2069 unsigned offset,
2070 unsigned size)
2071 {
2072 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
2073 const unsigned cpp = format == ISL_FORMAT_RAW ? 1 : fmtl->bpb / 8;
2074
2075 /* The ARB_texture_buffer_specification says:
2076 *
2077 * "The number of texels in the buffer texture's texel array is given by
2078 *
2079 * floor(<buffer_size> / (<components> * sizeof(<base_type>)),
2080 *
2081 * where <buffer_size> is the size of the buffer object, in basic
2082 * machine units and <components> and <base_type> are the element count
2083 * and base data type for elements, as specified in Table X.1. The
2084 * number of texels in the texel array is then clamped to the
2085 * implementation-dependent limit MAX_TEXTURE_BUFFER_SIZE_ARB."
2086 *
2087 * We need to clamp the size in bytes to MAX_TEXTURE_BUFFER_SIZE * stride,
2088 * so that when ISL divides by stride to obtain the number of texels, that
2089 * texel count is clamped to MAX_TEXTURE_BUFFER_SIZE.
2090 */
2091 unsigned final_size =
2092 MIN3(size, res->bo->size - res->offset - offset,
2093 IRIS_MAX_TEXTURE_BUFFER_SIZE * cpp);
2094
2095 isl_buffer_fill_state(isl_dev, map,
2096 .address = res->bo->gtt_offset + res->offset + offset,
2097 .size_B = final_size,
2098 .format = format,
2099 .swizzle = swizzle,
2100 .stride_B = cpp,
2101 .mocs = mocs(res->bo, isl_dev));
2102 }
2103
2104 #define SURFACE_STATE_ALIGNMENT 64
2105
2106 /**
2107 * Allocate several contiguous SURFACE_STATE structures, one for each
2108 * supported auxiliary surface mode.
2109 */
2110 static void *
2111 alloc_surface_states(struct u_upload_mgr *mgr,
2112 struct iris_state_ref *ref,
2113 unsigned aux_usages)
2114 {
2115 const unsigned surf_size = 4 * GENX(RENDER_SURFACE_STATE_length);
2116
2117 /* If this changes, update this to explicitly align pointers */
2118 STATIC_ASSERT(surf_size == SURFACE_STATE_ALIGNMENT);
2119
2120 assert(aux_usages != 0);
2121
2122 void *map =
2123 upload_state(mgr, ref, util_bitcount(aux_usages) * surf_size,
2124 SURFACE_STATE_ALIGNMENT);
2125
2126 ref->offset += iris_bo_offset_from_base_address(iris_resource_bo(ref->res));
2127
2128 return map;
2129 }
2130
2131 #if GEN_GEN == 8
2132 /**
2133 * Return an ISL surface for use with non-coherent render target reads.
2134 *
2135 * In a few complex cases, we can't use the SURFACE_STATE for normal render
2136 * target writes. We need to make a separate one for sampling which refers
2137 * to the single slice of the texture being read.
2138 */
2139 static void
2140 get_rt_read_isl_surf(const struct gen_device_info *devinfo,
2141 struct iris_resource *res,
2142 enum pipe_texture_target target,
2143 struct isl_view *view,
2144 uint32_t *offset_to_tile,
2145 uint32_t *tile_x_sa,
2146 uint32_t *tile_y_sa,
2147 struct isl_surf *surf)
2148 {
2149 *surf = res->surf;
2150
2151 const enum isl_dim_layout dim_layout =
2152 iris_get_isl_dim_layout(devinfo, res->surf.tiling, target);
2153
2154 surf->dim = target_to_isl_surf_dim(target);
2155
2156 if (surf->dim_layout == dim_layout)
2157 return;
2158
2159 /* The layout of the specified texture target is not compatible with the
2160 * actual layout of the miptree structure in memory -- You're entering
2161 * dangerous territory, this can only possibly work if you only intended
2162 * to access a single level and slice of the texture, and the hardware
2163 * supports the tile offset feature in order to allow non-tile-aligned
2164 * base offsets, since we'll have to point the hardware to the first
2165 * texel of the level instead of relying on the usual base level/layer
2166 * controls.
2167 */
2168 assert(view->levels == 1 && view->array_len == 1);
2169 assert(*tile_x_sa == 0 && *tile_y_sa == 0);
2170
2171 *offset_to_tile = iris_resource_get_tile_offsets(res, view->base_level,
2172 view->base_array_layer,
2173 tile_x_sa, tile_y_sa);
2174 const unsigned l = view->base_level;
2175
2176 surf->logical_level0_px.width = minify(surf->logical_level0_px.width, l);
2177 surf->logical_level0_px.height = surf->dim <= ISL_SURF_DIM_1D ? 1 :
2178 minify(surf->logical_level0_px.height, l);
2179 surf->logical_level0_px.depth = surf->dim <= ISL_SURF_DIM_2D ? 1 :
2180 minify(surf->logical_level0_px.depth, l);
2181
2182 surf->logical_level0_px.array_len = 1;
2183 surf->levels = 1;
2184 surf->dim_layout = dim_layout;
2185
2186 view->base_level = 0;
2187 view->base_array_layer = 0;
2188 }
2189 #endif
2190
2191 static void
2192 fill_surface_state(struct isl_device *isl_dev,
2193 void *map,
2194 struct iris_resource *res,
2195 struct isl_surf *surf,
2196 struct isl_view *view,
2197 unsigned aux_usage,
2198 uint32_t extra_main_offset,
2199 uint32_t tile_x_sa,
2200 uint32_t tile_y_sa)
2201 {
2202 struct isl_surf_fill_state_info f = {
2203 .surf = surf,
2204 .view = view,
2205 .mocs = mocs(res->bo, isl_dev),
2206 .address = res->bo->gtt_offset + res->offset + extra_main_offset,
2207 .x_offset_sa = tile_x_sa,
2208 .y_offset_sa = tile_y_sa,
2209 };
2210
2211 assert(!iris_resource_unfinished_aux_import(res));
2212
2213 if (aux_usage != ISL_AUX_USAGE_NONE) {
2214 f.aux_surf = &res->aux.surf;
2215 f.aux_usage = aux_usage;
2216 f.aux_address = res->aux.bo->gtt_offset + res->aux.offset;
2217
2218 struct iris_bo *clear_bo = NULL;
2219 uint64_t clear_offset = 0;
2220 f.clear_color =
2221 iris_resource_get_clear_color(res, &clear_bo, &clear_offset);
2222 if (clear_bo) {
2223 f.clear_address = clear_bo->gtt_offset + clear_offset;
2224 f.use_clear_address = isl_dev->info->gen > 9;
2225 }
2226 }
2227
2228 isl_surf_fill_state_s(isl_dev, map, &f);
2229 }
2230
2231 /**
2232 * The pipe->create_sampler_view() driver hook.
2233 */
2234 static struct pipe_sampler_view *
2235 iris_create_sampler_view(struct pipe_context *ctx,
2236 struct pipe_resource *tex,
2237 const struct pipe_sampler_view *tmpl)
2238 {
2239 struct iris_context *ice = (struct iris_context *) ctx;
2240 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2241 const struct gen_device_info *devinfo = &screen->devinfo;
2242 struct iris_sampler_view *isv = calloc(1, sizeof(struct iris_sampler_view));
2243
2244 if (!isv)
2245 return NULL;
2246
2247 /* initialize base object */
2248 isv->base = *tmpl;
2249 isv->base.context = ctx;
2250 isv->base.texture = NULL;
2251 pipe_reference_init(&isv->base.reference, 1);
2252 pipe_resource_reference(&isv->base.texture, tex);
2253
2254 if (util_format_is_depth_or_stencil(tmpl->format)) {
2255 struct iris_resource *zres, *sres;
2256 const struct util_format_description *desc =
2257 util_format_description(tmpl->format);
2258
2259 iris_get_depth_stencil_resources(tex, &zres, &sres);
2260
2261 tex = util_format_has_depth(desc) ? &zres->base : &sres->base;
2262 }
2263
2264 isv->res = (struct iris_resource *) tex;
2265
2266 void *map = alloc_surface_states(ice->state.surface_uploader,
2267 &isv->surface_state,
2268 isv->res->aux.sampler_usages);
2269 if (!unlikely(map))
2270 return NULL;
2271
2272 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_TEXTURE_BIT;
2273
2274 if (isv->base.target == PIPE_TEXTURE_CUBE ||
2275 isv->base.target == PIPE_TEXTURE_CUBE_ARRAY)
2276 usage |= ISL_SURF_USAGE_CUBE_BIT;
2277
2278 const struct iris_format_info fmt =
2279 iris_format_for_usage(devinfo, tmpl->format, usage);
2280
2281 isv->clear_color = isv->res->aux.clear_color;
2282
2283 isv->view = (struct isl_view) {
2284 .format = fmt.fmt,
2285 .swizzle = (struct isl_swizzle) {
2286 .r = fmt_swizzle(&fmt, tmpl->swizzle_r),
2287 .g = fmt_swizzle(&fmt, tmpl->swizzle_g),
2288 .b = fmt_swizzle(&fmt, tmpl->swizzle_b),
2289 .a = fmt_swizzle(&fmt, tmpl->swizzle_a),
2290 },
2291 .usage = usage,
2292 };
2293
2294 /* Fill out SURFACE_STATE for this view. */
2295 if (tmpl->target != PIPE_BUFFER) {
2296 isv->view.base_level = tmpl->u.tex.first_level;
2297 isv->view.levels = tmpl->u.tex.last_level - tmpl->u.tex.first_level + 1;
2298 // XXX: do I need to port f9fd0cf4790cb2a530e75d1a2206dbb9d8af7cb2?
2299 isv->view.base_array_layer = tmpl->u.tex.first_layer;
2300 isv->view.array_len =
2301 tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
2302
2303 if (iris_resource_unfinished_aux_import(isv->res))
2304 iris_resource_finish_aux_import(&screen->base, isv->res);
2305
2306 unsigned aux_modes = isv->res->aux.sampler_usages;
2307 while (aux_modes) {
2308 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
2309
2310 /* If we have a multisampled depth buffer, do not create a sampler
2311 * surface state with HiZ.
2312 */
2313 fill_surface_state(&screen->isl_dev, map, isv->res, &isv->res->surf,
2314 &isv->view, aux_usage, 0, 0, 0);
2315
2316 map += SURFACE_STATE_ALIGNMENT;
2317 }
2318 } else {
2319 fill_buffer_surface_state(&screen->isl_dev, isv->res, map,
2320 isv->view.format, isv->view.swizzle,
2321 tmpl->u.buf.offset, tmpl->u.buf.size);
2322 }
2323
2324 return &isv->base;
2325 }
2326
2327 static void
2328 iris_sampler_view_destroy(struct pipe_context *ctx,
2329 struct pipe_sampler_view *state)
2330 {
2331 struct iris_sampler_view *isv = (void *) state;
2332 pipe_resource_reference(&state->texture, NULL);
2333 pipe_resource_reference(&isv->surface_state.res, NULL);
2334 free(isv);
2335 }
2336
2337 /**
2338 * The pipe->create_surface() driver hook.
2339 *
2340 * In Gallium nomenclature, "surfaces" are a view of a resource that
2341 * can be bound as a render target or depth/stencil buffer.
2342 */
2343 static struct pipe_surface *
2344 iris_create_surface(struct pipe_context *ctx,
2345 struct pipe_resource *tex,
2346 const struct pipe_surface *tmpl)
2347 {
2348 struct iris_context *ice = (struct iris_context *) ctx;
2349 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2350 const struct gen_device_info *devinfo = &screen->devinfo;
2351
2352 isl_surf_usage_flags_t usage = 0;
2353 if (tmpl->writable)
2354 usage = ISL_SURF_USAGE_STORAGE_BIT;
2355 else if (util_format_is_depth_or_stencil(tmpl->format))
2356 usage = ISL_SURF_USAGE_DEPTH_BIT;
2357 else
2358 usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
2359
2360 const struct iris_format_info fmt =
2361 iris_format_for_usage(devinfo, tmpl->format, usage);
2362
2363 if ((usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) &&
2364 !isl_format_supports_rendering(devinfo, fmt.fmt)) {
2365 /* Framebuffer validation will reject this invalid case, but it
2366 * hasn't had the opportunity yet. In the meantime, we need to
2367 * avoid hitting ISL asserts about unsupported formats below.
2368 */
2369 return NULL;
2370 }
2371
2372 struct iris_surface *surf = calloc(1, sizeof(struct iris_surface));
2373 struct pipe_surface *psurf = &surf->base;
2374 struct iris_resource *res = (struct iris_resource *) tex;
2375
2376 if (!surf)
2377 return NULL;
2378
2379 pipe_reference_init(&psurf->reference, 1);
2380 pipe_resource_reference(&psurf->texture, tex);
2381 psurf->context = ctx;
2382 psurf->format = tmpl->format;
2383 psurf->width = tex->width0;
2384 psurf->height = tex->height0;
2385 psurf->texture = tex;
2386 psurf->u.tex.first_layer = tmpl->u.tex.first_layer;
2387 psurf->u.tex.last_layer = tmpl->u.tex.last_layer;
2388 psurf->u.tex.level = tmpl->u.tex.level;
2389
2390 uint32_t array_len = tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
2391
2392 struct isl_view *view = &surf->view;
2393 *view = (struct isl_view) {
2394 .format = fmt.fmt,
2395 .base_level = tmpl->u.tex.level,
2396 .levels = 1,
2397 .base_array_layer = tmpl->u.tex.first_layer,
2398 .array_len = array_len,
2399 .swizzle = ISL_SWIZZLE_IDENTITY,
2400 .usage = usage,
2401 };
2402
2403 #if GEN_GEN == 8
2404 enum pipe_texture_target target = (tex->target == PIPE_TEXTURE_3D &&
2405 array_len == 1) ? PIPE_TEXTURE_2D :
2406 tex->target == PIPE_TEXTURE_1D_ARRAY ?
2407 PIPE_TEXTURE_2D_ARRAY : tex->target;
2408
2409 struct isl_view *read_view = &surf->read_view;
2410 *read_view = (struct isl_view) {
2411 .format = fmt.fmt,
2412 .base_level = tmpl->u.tex.level,
2413 .levels = 1,
2414 .base_array_layer = tmpl->u.tex.first_layer,
2415 .array_len = array_len,
2416 .swizzle = ISL_SWIZZLE_IDENTITY,
2417 .usage = ISL_SURF_USAGE_TEXTURE_BIT,
2418 };
2419 #endif
2420
2421 surf->clear_color = res->aux.clear_color;
2422
2423 /* Bail early for depth/stencil - we don't want SURFACE_STATE for them. */
2424 if (res->surf.usage & (ISL_SURF_USAGE_DEPTH_BIT |
2425 ISL_SURF_USAGE_STENCIL_BIT))
2426 return psurf;
2427
2428
2429 void *map = alloc_surface_states(ice->state.surface_uploader,
2430 &surf->surface_state,
2431 res->aux.possible_usages);
2432 if (!unlikely(map)) {
2433 pipe_resource_reference(&surf->surface_state.res, NULL);
2434 return NULL;
2435 }
2436
2437 #if GEN_GEN == 8
2438 void *map_read = alloc_surface_states(ice->state.surface_uploader,
2439 &surf->surface_state_read,
2440 res->aux.possible_usages);
2441 if (!unlikely(map_read)) {
2442 pipe_resource_reference(&surf->surface_state_read.res, NULL);
2443 return NULL;
2444 }
2445 #endif
2446
2447 if (!isl_format_is_compressed(res->surf.format)) {
2448 if (iris_resource_unfinished_aux_import(res))
2449 iris_resource_finish_aux_import(&screen->base, res);
2450
2451 /* This is a normal surface. Fill out a SURFACE_STATE for each possible
2452 * auxiliary surface mode and return the pipe_surface.
2453 */
2454 unsigned aux_modes = res->aux.possible_usages;
2455 while (aux_modes) {
2456 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
2457 fill_surface_state(&screen->isl_dev, map, res, &res->surf,
2458 view, aux_usage, 0, 0, 0);
2459 map += SURFACE_STATE_ALIGNMENT;
2460
2461 #if GEN_GEN == 8
2462 struct isl_surf surf;
2463 uint32_t offset_to_tile = 0, tile_x_sa = 0, tile_y_sa = 0;
2464 get_rt_read_isl_surf(devinfo, res, target, read_view,
2465 &offset_to_tile, &tile_x_sa, &tile_y_sa, &surf);
2466 fill_surface_state(&screen->isl_dev, map_read, res, &surf, read_view,
2467 aux_usage, offset_to_tile, tile_x_sa, tile_y_sa);
2468 map_read += SURFACE_STATE_ALIGNMENT;
2469 #endif
2470 }
2471
2472 return psurf;
2473 }
2474
2475 /* The resource has a compressed format, which is not renderable, but we
2476 * have a renderable view format. We must be attempting to upload blocks
2477 * of compressed data via an uncompressed view.
2478 *
2479 * In this case, we can assume there are no auxiliary buffers, a single
2480 * miplevel, and that the resource is single-sampled. Gallium may try
2481 * and create an uncompressed view with multiple layers, however.
2482 */
2483 assert(!isl_format_is_compressed(fmt.fmt));
2484 assert(res->aux.possible_usages == 1 << ISL_AUX_USAGE_NONE);
2485 assert(res->surf.samples == 1);
2486 assert(view->levels == 1);
2487
2488 struct isl_surf isl_surf;
2489 uint32_t offset_B = 0, tile_x_sa = 0, tile_y_sa = 0;
2490
2491 if (view->base_level > 0) {
2492 /* We can't rely on the hardware's miplevel selection with such
2493 * a substantial lie about the format, so we select a single image
2494 * using the Tile X/Y Offset fields. In this case, we can't handle
2495 * multiple array slices.
2496 *
2497 * On Broadwell, HALIGN and VALIGN are specified in pixels and are
2498 * hard-coded to align to exactly the block size of the compressed
2499 * texture. This means that, when reinterpreted as a non-compressed
2500 * texture, the tile offsets may be anything and we can't rely on
2501 * X/Y Offset.
2502 *
2503 * Return NULL to force the state tracker to take fallback paths.
2504 */
2505 if (view->array_len > 1 || GEN_GEN == 8)
2506 return NULL;
2507
2508 const bool is_3d = res->surf.dim == ISL_SURF_DIM_3D;
2509 isl_surf_get_image_surf(&screen->isl_dev, &res->surf,
2510 view->base_level,
2511 is_3d ? 0 : view->base_array_layer,
2512 is_3d ? view->base_array_layer : 0,
2513 &isl_surf,
2514 &offset_B, &tile_x_sa, &tile_y_sa);
2515
2516 /* We use address and tile offsets to access a single level/layer
2517 * as a subimage, so reset level/layer so it doesn't offset again.
2518 */
2519 view->base_array_layer = 0;
2520 view->base_level = 0;
2521 } else {
2522 /* Level 0 doesn't require tile offsets, and the hardware can find
2523 * array slices using QPitch even with the format override, so we
2524 * can allow layers in this case. Copy the original ISL surface.
2525 */
2526 memcpy(&isl_surf, &res->surf, sizeof(isl_surf));
2527 }
2528
2529 /* Scale down the image dimensions by the block size. */
2530 const struct isl_format_layout *fmtl =
2531 isl_format_get_layout(res->surf.format);
2532 isl_surf.format = fmt.fmt;
2533 isl_surf.logical_level0_px = isl_surf_get_logical_level0_el(&isl_surf);
2534 isl_surf.phys_level0_sa = isl_surf_get_phys_level0_el(&isl_surf);
2535 tile_x_sa /= fmtl->bw;
2536 tile_y_sa /= fmtl->bh;
2537
2538 psurf->width = isl_surf.logical_level0_px.width;
2539 psurf->height = isl_surf.logical_level0_px.height;
2540
2541 struct isl_surf_fill_state_info f = {
2542 .surf = &isl_surf,
2543 .view = view,
2544 .mocs = mocs(res->bo, &screen->isl_dev),
2545 .address = res->bo->gtt_offset + offset_B,
2546 .x_offset_sa = tile_x_sa,
2547 .y_offset_sa = tile_y_sa,
2548 };
2549
2550 isl_surf_fill_state_s(&screen->isl_dev, map, &f);
2551 return psurf;
2552 }
2553
2554 #if GEN_GEN < 9
2555 static void
2556 fill_default_image_param(struct brw_image_param *param)
2557 {
2558 memset(param, 0, sizeof(*param));
2559 /* Set the swizzling shifts to all-ones to effectively disable swizzling --
2560 * See emit_address_calculation() in brw_fs_surface_builder.cpp for a more
2561 * detailed explanation of these parameters.
2562 */
2563 param->swizzling[0] = 0xff;
2564 param->swizzling[1] = 0xff;
2565 }
2566
2567 static void
2568 fill_buffer_image_param(struct brw_image_param *param,
2569 enum pipe_format pfmt,
2570 unsigned size)
2571 {
2572 const unsigned cpp = util_format_get_blocksize(pfmt);
2573
2574 fill_default_image_param(param);
2575 param->size[0] = size / cpp;
2576 param->stride[0] = cpp;
2577 }
2578 #else
2579 #define isl_surf_fill_image_param(x, ...)
2580 #define fill_default_image_param(x, ...)
2581 #define fill_buffer_image_param(x, ...)
2582 #endif
2583
2584 /**
2585 * The pipe->set_shader_images() driver hook.
2586 */
2587 static void
2588 iris_set_shader_images(struct pipe_context *ctx,
2589 enum pipe_shader_type p_stage,
2590 unsigned start_slot, unsigned count,
2591 const struct pipe_image_view *p_images)
2592 {
2593 struct iris_context *ice = (struct iris_context *) ctx;
2594 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2595 const struct gen_device_info *devinfo = &screen->devinfo;
2596 gl_shader_stage stage = stage_from_pipe(p_stage);
2597 struct iris_shader_state *shs = &ice->state.shaders[stage];
2598 #if GEN_GEN == 8
2599 struct iris_genx_state *genx = ice->state.genx;
2600 struct brw_image_param *image_params = genx->shaders[stage].image_param;
2601 #endif
2602
2603 shs->bound_image_views &= ~u_bit_consecutive(start_slot, count);
2604
2605 for (unsigned i = 0; i < count; i++) {
2606 struct iris_image_view *iv = &shs->image[start_slot + i];
2607
2608 if (p_images && p_images[i].resource) {
2609 const struct pipe_image_view *img = &p_images[i];
2610 struct iris_resource *res = (void *) img->resource;
2611
2612 void *map =
2613 alloc_surface_states(ice->state.surface_uploader,
2614 &iv->surface_state, 1 << ISL_AUX_USAGE_NONE);
2615 if (!unlikely(map))
2616 return;
2617
2618 util_copy_image_view(&iv->base, img);
2619
2620 shs->bound_image_views |= 1 << (start_slot + i);
2621
2622 res->bind_history |= PIPE_BIND_SHADER_IMAGE;
2623 res->bind_stages |= 1 << stage;
2624
2625 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_STORAGE_BIT;
2626 enum isl_format isl_fmt =
2627 iris_format_for_usage(devinfo, img->format, usage).fmt;
2628
2629 bool untyped_fallback = false;
2630
2631 if (img->shader_access & PIPE_IMAGE_ACCESS_READ) {
2632 /* On Gen8, try to use typed surfaces reads (which support a
2633 * limited number of formats), and if not possible, fall back
2634 * to untyped reads.
2635 */
2636 untyped_fallback = GEN_GEN == 8 &&
2637 !isl_has_matching_typed_storage_image_format(devinfo, isl_fmt);
2638
2639 if (untyped_fallback)
2640 isl_fmt = ISL_FORMAT_RAW;
2641 else
2642 isl_fmt = isl_lower_storage_image_format(devinfo, isl_fmt);
2643 }
2644
2645 if (res->base.target != PIPE_BUFFER) {
2646 struct isl_view view = {
2647 .format = isl_fmt,
2648 .base_level = img->u.tex.level,
2649 .levels = 1,
2650 .base_array_layer = img->u.tex.first_layer,
2651 .array_len = img->u.tex.last_layer - img->u.tex.first_layer + 1,
2652 .swizzle = ISL_SWIZZLE_IDENTITY,
2653 .usage = usage,
2654 };
2655
2656 if (untyped_fallback) {
2657 fill_buffer_surface_state(&screen->isl_dev, res, map,
2658 isl_fmt, ISL_SWIZZLE_IDENTITY,
2659 0, res->bo->size);
2660 } else {
2661 /* Images don't support compression */
2662 unsigned aux_modes = 1 << ISL_AUX_USAGE_NONE;
2663 while (aux_modes) {
2664 enum isl_aux_usage usage = u_bit_scan(&aux_modes);
2665
2666 fill_surface_state(&screen->isl_dev, map, res, &res->surf,
2667 &view, usage, 0, 0, 0);
2668
2669 map += SURFACE_STATE_ALIGNMENT;
2670 }
2671 }
2672
2673 isl_surf_fill_image_param(&screen->isl_dev,
2674 &image_params[start_slot + i],
2675 &res->surf, &view);
2676 } else {
2677 util_range_add(&res->base, &res->valid_buffer_range, img->u.buf.offset,
2678 img->u.buf.offset + img->u.buf.size);
2679
2680 fill_buffer_surface_state(&screen->isl_dev, res, map,
2681 isl_fmt, ISL_SWIZZLE_IDENTITY,
2682 img->u.buf.offset, img->u.buf.size);
2683 fill_buffer_image_param(&image_params[start_slot + i],
2684 img->format, img->u.buf.size);
2685 }
2686 } else {
2687 pipe_resource_reference(&iv->base.resource, NULL);
2688 pipe_resource_reference(&iv->surface_state.res, NULL);
2689 fill_default_image_param(&image_params[start_slot + i]);
2690 }
2691 }
2692
2693 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2694 ice->state.dirty |=
2695 stage == MESA_SHADER_COMPUTE ? IRIS_DIRTY_COMPUTE_RESOLVES_AND_FLUSHES
2696 : IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
2697
2698 /* Broadwell also needs brw_image_params re-uploaded */
2699 if (GEN_GEN < 9) {
2700 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
2701 shs->sysvals_need_upload = true;
2702 }
2703 }
2704
2705
2706 /**
2707 * The pipe->set_sampler_views() driver hook.
2708 */
2709 static void
2710 iris_set_sampler_views(struct pipe_context *ctx,
2711 enum pipe_shader_type p_stage,
2712 unsigned start, unsigned count,
2713 struct pipe_sampler_view **views)
2714 {
2715 struct iris_context *ice = (struct iris_context *) ctx;
2716 gl_shader_stage stage = stage_from_pipe(p_stage);
2717 struct iris_shader_state *shs = &ice->state.shaders[stage];
2718
2719 shs->bound_sampler_views &= ~u_bit_consecutive(start, count);
2720
2721 for (unsigned i = 0; i < count; i++) {
2722 struct pipe_sampler_view *pview = views ? views[i] : NULL;
2723 pipe_sampler_view_reference((struct pipe_sampler_view **)
2724 &shs->textures[start + i], pview);
2725 struct iris_sampler_view *view = (void *) pview;
2726 if (view) {
2727 view->res->bind_history |= PIPE_BIND_SAMPLER_VIEW;
2728 view->res->bind_stages |= 1 << stage;
2729
2730 shs->bound_sampler_views |= 1 << (start + i);
2731 }
2732 }
2733
2734 ice->state.dirty |= (IRIS_DIRTY_BINDINGS_VS << stage);
2735 ice->state.dirty |=
2736 stage == MESA_SHADER_COMPUTE ? IRIS_DIRTY_COMPUTE_RESOLVES_AND_FLUSHES
2737 : IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
2738 }
2739
2740 /**
2741 * The pipe->set_tess_state() driver hook.
2742 */
2743 static void
2744 iris_set_tess_state(struct pipe_context *ctx,
2745 const float default_outer_level[4],
2746 const float default_inner_level[2])
2747 {
2748 struct iris_context *ice = (struct iris_context *) ctx;
2749 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_TESS_CTRL];
2750
2751 memcpy(&ice->state.default_outer_level[0], &default_outer_level[0], 4 * sizeof(float));
2752 memcpy(&ice->state.default_inner_level[0], &default_inner_level[0], 2 * sizeof(float));
2753
2754 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_TCS;
2755 shs->sysvals_need_upload = true;
2756 }
2757
2758 static void
2759 iris_surface_destroy(struct pipe_context *ctx, struct pipe_surface *p_surf)
2760 {
2761 struct iris_surface *surf = (void *) p_surf;
2762 pipe_resource_reference(&p_surf->texture, NULL);
2763 pipe_resource_reference(&surf->surface_state.res, NULL);
2764 pipe_resource_reference(&surf->surface_state_read.res, NULL);
2765 free(surf);
2766 }
2767
2768 static void
2769 iris_set_clip_state(struct pipe_context *ctx,
2770 const struct pipe_clip_state *state)
2771 {
2772 struct iris_context *ice = (struct iris_context *) ctx;
2773 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_VERTEX];
2774 struct iris_shader_state *gshs = &ice->state.shaders[MESA_SHADER_GEOMETRY];
2775 struct iris_shader_state *tshs = &ice->state.shaders[MESA_SHADER_TESS_EVAL];
2776
2777 memcpy(&ice->state.clip_planes, state, sizeof(*state));
2778
2779 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS | IRIS_DIRTY_CONSTANTS_GS |
2780 IRIS_DIRTY_CONSTANTS_TES;
2781 shs->sysvals_need_upload = true;
2782 gshs->sysvals_need_upload = true;
2783 tshs->sysvals_need_upload = true;
2784 }
2785
2786 /**
2787 * The pipe->set_polygon_stipple() driver hook.
2788 */
2789 static void
2790 iris_set_polygon_stipple(struct pipe_context *ctx,
2791 const struct pipe_poly_stipple *state)
2792 {
2793 struct iris_context *ice = (struct iris_context *) ctx;
2794 memcpy(&ice->state.poly_stipple, state, sizeof(*state));
2795 ice->state.dirty |= IRIS_DIRTY_POLYGON_STIPPLE;
2796 }
2797
2798 /**
2799 * The pipe->set_sample_mask() driver hook.
2800 */
2801 static void
2802 iris_set_sample_mask(struct pipe_context *ctx, unsigned sample_mask)
2803 {
2804 struct iris_context *ice = (struct iris_context *) ctx;
2805
2806 /* We only support 16x MSAA, so we have 16 bits of sample maks.
2807 * st/mesa may pass us 0xffffffff though, meaning "enable all samples".
2808 */
2809 ice->state.sample_mask = sample_mask & 0xffff;
2810 ice->state.dirty |= IRIS_DIRTY_SAMPLE_MASK;
2811 }
2812
2813 /**
2814 * The pipe->set_scissor_states() driver hook.
2815 *
2816 * This corresponds to our SCISSOR_RECT state structures. It's an
2817 * exact match, so we just store them, and memcpy them out later.
2818 */
2819 static void
2820 iris_set_scissor_states(struct pipe_context *ctx,
2821 unsigned start_slot,
2822 unsigned num_scissors,
2823 const struct pipe_scissor_state *rects)
2824 {
2825 struct iris_context *ice = (struct iris_context *) ctx;
2826
2827 for (unsigned i = 0; i < num_scissors; i++) {
2828 if (rects[i].minx == rects[i].maxx || rects[i].miny == rects[i].maxy) {
2829 /* If the scissor was out of bounds and got clamped to 0 width/height
2830 * at the bounds, the subtraction of 1 from maximums could produce a
2831 * negative number and thus not clip anything. Instead, just provide
2832 * a min > max scissor inside the bounds, which produces the expected
2833 * no rendering.
2834 */
2835 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
2836 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
2837 };
2838 } else {
2839 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
2840 .minx = rects[i].minx, .miny = rects[i].miny,
2841 .maxx = rects[i].maxx - 1, .maxy = rects[i].maxy - 1,
2842 };
2843 }
2844 }
2845
2846 ice->state.dirty |= IRIS_DIRTY_SCISSOR_RECT;
2847 }
2848
2849 /**
2850 * The pipe->set_stencil_ref() driver hook.
2851 *
2852 * This is added to 3DSTATE_WM_DEPTH_STENCIL dynamically at draw time.
2853 */
2854 static void
2855 iris_set_stencil_ref(struct pipe_context *ctx,
2856 const struct pipe_stencil_ref *state)
2857 {
2858 struct iris_context *ice = (struct iris_context *) ctx;
2859 memcpy(&ice->state.stencil_ref, state, sizeof(*state));
2860 if (GEN_GEN == 8)
2861 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
2862 else
2863 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
2864 }
2865
2866 static float
2867 viewport_extent(const struct pipe_viewport_state *state, int axis, float sign)
2868 {
2869 return copysignf(state->scale[axis], sign) + state->translate[axis];
2870 }
2871
2872 /**
2873 * The pipe->set_viewport_states() driver hook.
2874 *
2875 * This corresponds to our SF_CLIP_VIEWPORT states. We can't calculate
2876 * the guardband yet, as we need the framebuffer dimensions, but we can
2877 * at least fill out the rest.
2878 */
2879 static void
2880 iris_set_viewport_states(struct pipe_context *ctx,
2881 unsigned start_slot,
2882 unsigned count,
2883 const struct pipe_viewport_state *states)
2884 {
2885 struct iris_context *ice = (struct iris_context *) ctx;
2886
2887 memcpy(&ice->state.viewports[start_slot], states, sizeof(*states) * count);
2888
2889 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2890
2891 if (ice->state.cso_rast && (!ice->state.cso_rast->depth_clip_near ||
2892 !ice->state.cso_rast->depth_clip_far))
2893 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
2894 }
2895
2896 /**
2897 * The pipe->set_framebuffer_state() driver hook.
2898 *
2899 * Sets the current draw FBO, including color render targets, depth,
2900 * and stencil buffers.
2901 */
2902 static void
2903 iris_set_framebuffer_state(struct pipe_context *ctx,
2904 const struct pipe_framebuffer_state *state)
2905 {
2906 struct iris_context *ice = (struct iris_context *) ctx;
2907 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2908 struct isl_device *isl_dev = &screen->isl_dev;
2909 struct pipe_framebuffer_state *cso = &ice->state.framebuffer;
2910 struct iris_resource *zres;
2911 struct iris_resource *stencil_res;
2912
2913 unsigned samples = util_framebuffer_get_num_samples(state);
2914 unsigned layers = util_framebuffer_get_num_layers(state);
2915
2916 if (cso->samples != samples) {
2917 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
2918
2919 /* We need to toggle 3DSTATE_PS::32 Pixel Dispatch Enable */
2920 if (GEN_GEN >= 9 && (cso->samples == 16 || samples == 16))
2921 ice->state.dirty |= IRIS_DIRTY_FS;
2922 }
2923
2924 if (cso->nr_cbufs != state->nr_cbufs) {
2925 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
2926 }
2927
2928 if ((cso->layers == 0) != (layers == 0)) {
2929 ice->state.dirty |= IRIS_DIRTY_CLIP;
2930 }
2931
2932 if (cso->width != state->width || cso->height != state->height) {
2933 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2934 }
2935
2936 if (cso->zsbuf || state->zsbuf) {
2937 ice->state.dirty |= IRIS_DIRTY_DEPTH_BUFFER;
2938 }
2939
2940 util_copy_framebuffer_state(cso, state);
2941 cso->samples = samples;
2942 cso->layers = layers;
2943
2944 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
2945
2946 struct isl_view view = {
2947 .base_level = 0,
2948 .levels = 1,
2949 .base_array_layer = 0,
2950 .array_len = 1,
2951 .swizzle = ISL_SWIZZLE_IDENTITY,
2952 };
2953
2954 struct isl_depth_stencil_hiz_emit_info info = { .view = &view };
2955
2956 if (cso->zsbuf) {
2957 iris_get_depth_stencil_resources(cso->zsbuf->texture, &zres,
2958 &stencil_res);
2959
2960 view.base_level = cso->zsbuf->u.tex.level;
2961 view.base_array_layer = cso->zsbuf->u.tex.first_layer;
2962 view.array_len =
2963 cso->zsbuf->u.tex.last_layer - cso->zsbuf->u.tex.first_layer + 1;
2964
2965 if (zres) {
2966 view.usage |= ISL_SURF_USAGE_DEPTH_BIT;
2967
2968 info.depth_surf = &zres->surf;
2969 info.depth_address = zres->bo->gtt_offset + zres->offset;
2970 info.mocs = mocs(zres->bo, isl_dev);
2971
2972 view.format = zres->surf.format;
2973
2974 if (iris_resource_level_has_hiz(zres, view.base_level)) {
2975 info.hiz_usage = zres->aux.usage;
2976 info.hiz_surf = &zres->aux.surf;
2977 info.hiz_address = zres->aux.bo->gtt_offset + zres->aux.offset;
2978 }
2979 }
2980
2981 if (stencil_res) {
2982 view.usage |= ISL_SURF_USAGE_STENCIL_BIT;
2983 info.stencil_aux_usage = stencil_res->aux.usage;
2984 info.stencil_surf = &stencil_res->surf;
2985 info.stencil_address = stencil_res->bo->gtt_offset + stencil_res->offset;
2986 if (!zres) {
2987 view.format = stencil_res->surf.format;
2988 info.mocs = mocs(stencil_res->bo, isl_dev);
2989 }
2990 }
2991 }
2992
2993 isl_emit_depth_stencil_hiz_s(isl_dev, cso_z->packets, &info);
2994
2995 /* Make a null surface for unbound buffers */
2996 void *null_surf_map =
2997 upload_state(ice->state.surface_uploader, &ice->state.null_fb,
2998 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2999 isl_null_fill_state(&screen->isl_dev, null_surf_map,
3000 isl_extent3d(MAX2(cso->width, 1),
3001 MAX2(cso->height, 1),
3002 cso->layers ? cso->layers : 1));
3003 ice->state.null_fb.offset +=
3004 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.null_fb.res));
3005
3006 /* Render target change */
3007 ice->state.dirty |= IRIS_DIRTY_BINDINGS_FS;
3008
3009 ice->state.dirty |= IRIS_DIRTY_RENDER_BUFFER;
3010
3011 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
3012
3013 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_FRAMEBUFFER];
3014
3015 if (GEN_GEN == 8)
3016 ice->state.dirty |= IRIS_DIRTY_PMA_FIX;
3017 }
3018
3019 /**
3020 * The pipe->set_constant_buffer() driver hook.
3021 *
3022 * This uploads any constant data in user buffers, and references
3023 * any UBO resources containing constant data.
3024 */
3025 static void
3026 iris_set_constant_buffer(struct pipe_context *ctx,
3027 enum pipe_shader_type p_stage, unsigned index,
3028 const struct pipe_constant_buffer *input)
3029 {
3030 struct iris_context *ice = (struct iris_context *) ctx;
3031 gl_shader_stage stage = stage_from_pipe(p_stage);
3032 struct iris_shader_state *shs = &ice->state.shaders[stage];
3033 struct pipe_shader_buffer *cbuf = &shs->constbuf[index];
3034
3035 /* TODO: Only do this if the buffer changes? */
3036 pipe_resource_reference(&shs->constbuf_surf_state[index].res, NULL);
3037
3038 if (input && input->buffer_size && (input->buffer || input->user_buffer)) {
3039 shs->bound_cbufs |= 1u << index;
3040
3041 if (input->user_buffer) {
3042 void *map = NULL;
3043 pipe_resource_reference(&cbuf->buffer, NULL);
3044 u_upload_alloc(ice->ctx.const_uploader, 0, input->buffer_size, 64,
3045 &cbuf->buffer_offset, &cbuf->buffer, (void **) &map);
3046
3047 if (!cbuf->buffer) {
3048 /* Allocation was unsuccessful - just unbind */
3049 iris_set_constant_buffer(ctx, p_stage, index, NULL);
3050 return;
3051 }
3052
3053 assert(map);
3054 memcpy(map, input->user_buffer, input->buffer_size);
3055 } else if (input->buffer) {
3056 pipe_resource_reference(&cbuf->buffer, input->buffer);
3057
3058 cbuf->buffer_offset = input->buffer_offset;
3059 }
3060
3061 cbuf->buffer_size =
3062 MIN2(input->buffer_size,
3063 iris_resource_bo(cbuf->buffer)->size - cbuf->buffer_offset);
3064
3065 struct iris_resource *res = (void *) cbuf->buffer;
3066 res->bind_history |= PIPE_BIND_CONSTANT_BUFFER;
3067 res->bind_stages |= 1 << stage;
3068 } else {
3069 shs->bound_cbufs &= ~(1u << index);
3070 pipe_resource_reference(&cbuf->buffer, NULL);
3071 }
3072
3073 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
3074 }
3075
3076 static void
3077 upload_sysvals(struct iris_context *ice,
3078 gl_shader_stage stage)
3079 {
3080 UNUSED struct iris_genx_state *genx = ice->state.genx;
3081 struct iris_shader_state *shs = &ice->state.shaders[stage];
3082
3083 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3084 if (!shader || shader->num_system_values == 0)
3085 return;
3086
3087 assert(shader->num_cbufs > 0);
3088
3089 unsigned sysval_cbuf_index = shader->num_cbufs - 1;
3090 struct pipe_shader_buffer *cbuf = &shs->constbuf[sysval_cbuf_index];
3091 unsigned upload_size = shader->num_system_values * sizeof(uint32_t);
3092 uint32_t *map = NULL;
3093
3094 assert(sysval_cbuf_index < PIPE_MAX_CONSTANT_BUFFERS);
3095 u_upload_alloc(ice->ctx.const_uploader, 0, upload_size, 64,
3096 &cbuf->buffer_offset, &cbuf->buffer, (void **) &map);
3097
3098 for (int i = 0; i < shader->num_system_values; i++) {
3099 uint32_t sysval = shader->system_values[i];
3100 uint32_t value = 0;
3101
3102 if (BRW_PARAM_DOMAIN(sysval) == BRW_PARAM_DOMAIN_IMAGE) {
3103 #if GEN_GEN == 8
3104 unsigned img = BRW_PARAM_IMAGE_IDX(sysval);
3105 unsigned offset = BRW_PARAM_IMAGE_OFFSET(sysval);
3106 struct brw_image_param *param =
3107 &genx->shaders[stage].image_param[img];
3108
3109 assert(offset < sizeof(struct brw_image_param));
3110 value = ((uint32_t *) param)[offset];
3111 #endif
3112 } else if (sysval == BRW_PARAM_BUILTIN_ZERO) {
3113 value = 0;
3114 } else if (BRW_PARAM_BUILTIN_IS_CLIP_PLANE(sysval)) {
3115 int plane = BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(sysval);
3116 int comp = BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(sysval);
3117 value = fui(ice->state.clip_planes.ucp[plane][comp]);
3118 } else if (sysval == BRW_PARAM_BUILTIN_PATCH_VERTICES_IN) {
3119 if (stage == MESA_SHADER_TESS_CTRL) {
3120 value = ice->state.vertices_per_patch;
3121 } else {
3122 assert(stage == MESA_SHADER_TESS_EVAL);
3123 const struct shader_info *tcs_info =
3124 iris_get_shader_info(ice, MESA_SHADER_TESS_CTRL);
3125 if (tcs_info)
3126 value = tcs_info->tess.tcs_vertices_out;
3127 else
3128 value = ice->state.vertices_per_patch;
3129 }
3130 } else if (sysval >= BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X &&
3131 sysval <= BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W) {
3132 unsigned i = sysval - BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X;
3133 value = fui(ice->state.default_outer_level[i]);
3134 } else if (sysval == BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X) {
3135 value = fui(ice->state.default_inner_level[0]);
3136 } else if (sysval == BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y) {
3137 value = fui(ice->state.default_inner_level[1]);
3138 } else {
3139 assert(!"unhandled system value");
3140 }
3141
3142 *map++ = value;
3143 }
3144
3145 cbuf->buffer_size = upload_size;
3146 iris_upload_ubo_ssbo_surf_state(ice, cbuf,
3147 &shs->constbuf_surf_state[sysval_cbuf_index], false);
3148
3149 shs->sysvals_need_upload = false;
3150 }
3151
3152 /**
3153 * The pipe->set_shader_buffers() driver hook.
3154 *
3155 * This binds SSBOs and ABOs. Unfortunately, we need to stream out
3156 * SURFACE_STATE here, as the buffer offset may change each time.
3157 */
3158 static void
3159 iris_set_shader_buffers(struct pipe_context *ctx,
3160 enum pipe_shader_type p_stage,
3161 unsigned start_slot, unsigned count,
3162 const struct pipe_shader_buffer *buffers,
3163 unsigned writable_bitmask)
3164 {
3165 struct iris_context *ice = (struct iris_context *) ctx;
3166 gl_shader_stage stage = stage_from_pipe(p_stage);
3167 struct iris_shader_state *shs = &ice->state.shaders[stage];
3168
3169 unsigned modified_bits = u_bit_consecutive(start_slot, count);
3170
3171 shs->bound_ssbos &= ~modified_bits;
3172 shs->writable_ssbos &= ~modified_bits;
3173 shs->writable_ssbos |= writable_bitmask << start_slot;
3174
3175 for (unsigned i = 0; i < count; i++) {
3176 if (buffers && buffers[i].buffer) {
3177 struct iris_resource *res = (void *) buffers[i].buffer;
3178 struct pipe_shader_buffer *ssbo = &shs->ssbo[start_slot + i];
3179 struct iris_state_ref *surf_state =
3180 &shs->ssbo_surf_state[start_slot + i];
3181 pipe_resource_reference(&ssbo->buffer, &res->base);
3182 ssbo->buffer_offset = buffers[i].buffer_offset;
3183 ssbo->buffer_size =
3184 MIN2(buffers[i].buffer_size, res->bo->size - ssbo->buffer_offset);
3185
3186 shs->bound_ssbos |= 1 << (start_slot + i);
3187
3188 iris_upload_ubo_ssbo_surf_state(ice, ssbo, surf_state, true);
3189
3190 res->bind_history |= PIPE_BIND_SHADER_BUFFER;
3191 res->bind_stages |= 1 << stage;
3192
3193 util_range_add(&res->base, &res->valid_buffer_range, ssbo->buffer_offset,
3194 ssbo->buffer_offset + ssbo->buffer_size);
3195 } else {
3196 pipe_resource_reference(&shs->ssbo[start_slot + i].buffer, NULL);
3197 pipe_resource_reference(&shs->ssbo_surf_state[start_slot + i].res,
3198 NULL);
3199 }
3200 }
3201
3202 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
3203 }
3204
3205 static void
3206 iris_delete_state(struct pipe_context *ctx, void *state)
3207 {
3208 free(state);
3209 }
3210
3211 /**
3212 * The pipe->set_vertex_buffers() driver hook.
3213 *
3214 * This translates pipe_vertex_buffer to our 3DSTATE_VERTEX_BUFFERS packet.
3215 */
3216 static void
3217 iris_set_vertex_buffers(struct pipe_context *ctx,
3218 unsigned start_slot, unsigned count,
3219 const struct pipe_vertex_buffer *buffers)
3220 {
3221 struct iris_context *ice = (struct iris_context *) ctx;
3222 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
3223 struct iris_genx_state *genx = ice->state.genx;
3224
3225 ice->state.bound_vertex_buffers &= ~u_bit_consecutive64(start_slot, count);
3226
3227 for (unsigned i = 0; i < count; i++) {
3228 const struct pipe_vertex_buffer *buffer = buffers ? &buffers[i] : NULL;
3229 struct iris_vertex_buffer_state *state =
3230 &genx->vertex_buffers[start_slot + i];
3231
3232 if (!buffer) {
3233 pipe_resource_reference(&state->resource, NULL);
3234 continue;
3235 }
3236
3237 /* We may see user buffers that are NULL bindings. */
3238 assert(!(buffer->is_user_buffer && buffer->buffer.user != NULL));
3239
3240 pipe_resource_reference(&state->resource, buffer->buffer.resource);
3241 struct iris_resource *res = (void *) state->resource;
3242
3243 state->offset = (int) buffer->buffer_offset;
3244
3245 if (res) {
3246 ice->state.bound_vertex_buffers |= 1ull << (start_slot + i);
3247 res->bind_history |= PIPE_BIND_VERTEX_BUFFER;
3248 }
3249
3250 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
3251 vb.VertexBufferIndex = start_slot + i;
3252 vb.AddressModifyEnable = true;
3253 vb.BufferPitch = buffer->stride;
3254 if (res) {
3255 vb.BufferSize = res->bo->size - (int) buffer->buffer_offset;
3256 vb.BufferStartingAddress =
3257 ro_bo(NULL, res->bo->gtt_offset + (int) buffer->buffer_offset);
3258 vb.MOCS = mocs(res->bo, &screen->isl_dev);
3259 } else {
3260 vb.NullVertexBuffer = true;
3261 }
3262 }
3263 }
3264
3265 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
3266 }
3267
3268 /**
3269 * Gallium CSO for vertex elements.
3270 */
3271 struct iris_vertex_element_state {
3272 uint32_t vertex_elements[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
3273 uint32_t vf_instancing[33 * GENX(3DSTATE_VF_INSTANCING_length)];
3274 uint32_t edgeflag_ve[GENX(VERTEX_ELEMENT_STATE_length)];
3275 uint32_t edgeflag_vfi[GENX(3DSTATE_VF_INSTANCING_length)];
3276 unsigned count;
3277 };
3278
3279 /**
3280 * The pipe->create_vertex_elements() driver hook.
3281 *
3282 * This translates pipe_vertex_element to our 3DSTATE_VERTEX_ELEMENTS
3283 * and 3DSTATE_VF_INSTANCING commands. The vertex_elements and vf_instancing
3284 * arrays are ready to be emitted at draw time if no EdgeFlag or SGVs are
3285 * needed. In these cases we will need information available at draw time.
3286 * We setup edgeflag_ve and edgeflag_vfi as alternatives last
3287 * 3DSTATE_VERTEX_ELEMENT and 3DSTATE_VF_INSTANCING that can be used at
3288 * draw time if we detect that EdgeFlag is needed by the Vertex Shader.
3289 */
3290 static void *
3291 iris_create_vertex_elements(struct pipe_context *ctx,
3292 unsigned count,
3293 const struct pipe_vertex_element *state)
3294 {
3295 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
3296 const struct gen_device_info *devinfo = &screen->devinfo;
3297 struct iris_vertex_element_state *cso =
3298 malloc(sizeof(struct iris_vertex_element_state));
3299
3300 cso->count = count;
3301
3302 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS), cso->vertex_elements, ve) {
3303 ve.DWordLength =
3304 1 + GENX(VERTEX_ELEMENT_STATE_length) * MAX2(count, 1) - 2;
3305 }
3306
3307 uint32_t *ve_pack_dest = &cso->vertex_elements[1];
3308 uint32_t *vfi_pack_dest = cso->vf_instancing;
3309
3310 if (count == 0) {
3311 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
3312 ve.Valid = true;
3313 ve.SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT;
3314 ve.Component0Control = VFCOMP_STORE_0;
3315 ve.Component1Control = VFCOMP_STORE_0;
3316 ve.Component2Control = VFCOMP_STORE_0;
3317 ve.Component3Control = VFCOMP_STORE_1_FP;
3318 }
3319
3320 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
3321 }
3322 }
3323
3324 for (int i = 0; i < count; i++) {
3325 const struct iris_format_info fmt =
3326 iris_format_for_usage(devinfo, state[i].src_format, 0);
3327 unsigned comp[4] = { VFCOMP_STORE_SRC, VFCOMP_STORE_SRC,
3328 VFCOMP_STORE_SRC, VFCOMP_STORE_SRC };
3329
3330 switch (isl_format_get_num_channels(fmt.fmt)) {
3331 case 0: comp[0] = VFCOMP_STORE_0; /* fallthrough */
3332 case 1: comp[1] = VFCOMP_STORE_0; /* fallthrough */
3333 case 2: comp[2] = VFCOMP_STORE_0; /* fallthrough */
3334 case 3:
3335 comp[3] = isl_format_has_int_channel(fmt.fmt) ? VFCOMP_STORE_1_INT
3336 : VFCOMP_STORE_1_FP;
3337 break;
3338 }
3339 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
3340 ve.EdgeFlagEnable = false;
3341 ve.VertexBufferIndex = state[i].vertex_buffer_index;
3342 ve.Valid = true;
3343 ve.SourceElementOffset = state[i].src_offset;
3344 ve.SourceElementFormat = fmt.fmt;
3345 ve.Component0Control = comp[0];
3346 ve.Component1Control = comp[1];
3347 ve.Component2Control = comp[2];
3348 ve.Component3Control = comp[3];
3349 }
3350
3351 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
3352 vi.VertexElementIndex = i;
3353 vi.InstancingEnable = state[i].instance_divisor > 0;
3354 vi.InstanceDataStepRate = state[i].instance_divisor;
3355 }
3356
3357 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
3358 vfi_pack_dest += GENX(3DSTATE_VF_INSTANCING_length);
3359 }
3360
3361 /* An alternative version of the last VE and VFI is stored so it
3362 * can be used at draw time in case Vertex Shader uses EdgeFlag
3363 */
3364 if (count) {
3365 const unsigned edgeflag_index = count - 1;
3366 const struct iris_format_info fmt =
3367 iris_format_for_usage(devinfo, state[edgeflag_index].src_format, 0);
3368 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), cso->edgeflag_ve, ve) {
3369 ve.EdgeFlagEnable = true ;
3370 ve.VertexBufferIndex = state[edgeflag_index].vertex_buffer_index;
3371 ve.Valid = true;
3372 ve.SourceElementOffset = state[edgeflag_index].src_offset;
3373 ve.SourceElementFormat = fmt.fmt;
3374 ve.Component0Control = VFCOMP_STORE_SRC;
3375 ve.Component1Control = VFCOMP_STORE_0;
3376 ve.Component2Control = VFCOMP_STORE_0;
3377 ve.Component3Control = VFCOMP_STORE_0;
3378 }
3379 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), cso->edgeflag_vfi, vi) {
3380 /* The vi.VertexElementIndex of the EdgeFlag Vertex Element is filled
3381 * at draw time, as it should change if SGVs are emitted.
3382 */
3383 vi.InstancingEnable = state[edgeflag_index].instance_divisor > 0;
3384 vi.InstanceDataStepRate = state[edgeflag_index].instance_divisor;
3385 }
3386 }
3387
3388 return cso;
3389 }
3390
3391 /**
3392 * The pipe->bind_vertex_elements_state() driver hook.
3393 */
3394 static void
3395 iris_bind_vertex_elements_state(struct pipe_context *ctx, void *state)
3396 {
3397 struct iris_context *ice = (struct iris_context *) ctx;
3398 struct iris_vertex_element_state *old_cso = ice->state.cso_vertex_elements;
3399 struct iris_vertex_element_state *new_cso = state;
3400
3401 /* 3DSTATE_VF_SGVs overrides the last VE, so if the count is changing,
3402 * we need to re-emit it to ensure we're overriding the right one.
3403 */
3404 if (new_cso && cso_changed(count))
3405 ice->state.dirty |= IRIS_DIRTY_VF_SGVS;
3406
3407 ice->state.cso_vertex_elements = state;
3408 ice->state.dirty |= IRIS_DIRTY_VERTEX_ELEMENTS;
3409 }
3410
3411 /**
3412 * The pipe->create_stream_output_target() driver hook.
3413 *
3414 * "Target" here refers to a destination buffer. We translate this into
3415 * a 3DSTATE_SO_BUFFER packet. We can handle most fields, but don't yet
3416 * know which buffer this represents, or whether we ought to zero the
3417 * write-offsets, or append. Those are handled in the set() hook.
3418 */
3419 static struct pipe_stream_output_target *
3420 iris_create_stream_output_target(struct pipe_context *ctx,
3421 struct pipe_resource *p_res,
3422 unsigned buffer_offset,
3423 unsigned buffer_size)
3424 {
3425 struct iris_resource *res = (void *) p_res;
3426 struct iris_stream_output_target *cso = calloc(1, sizeof(*cso));
3427 if (!cso)
3428 return NULL;
3429
3430 res->bind_history |= PIPE_BIND_STREAM_OUTPUT;
3431
3432 pipe_reference_init(&cso->base.reference, 1);
3433 pipe_resource_reference(&cso->base.buffer, p_res);
3434 cso->base.buffer_offset = buffer_offset;
3435 cso->base.buffer_size = buffer_size;
3436 cso->base.context = ctx;
3437
3438 util_range_add(&res->base, &res->valid_buffer_range, buffer_offset,
3439 buffer_offset + buffer_size);
3440
3441 upload_state(ctx->stream_uploader, &cso->offset, sizeof(uint32_t), 4);
3442
3443 return &cso->base;
3444 }
3445
3446 static void
3447 iris_stream_output_target_destroy(struct pipe_context *ctx,
3448 struct pipe_stream_output_target *state)
3449 {
3450 struct iris_stream_output_target *cso = (void *) state;
3451
3452 pipe_resource_reference(&cso->base.buffer, NULL);
3453 pipe_resource_reference(&cso->offset.res, NULL);
3454
3455 free(cso);
3456 }
3457
3458 /**
3459 * The pipe->set_stream_output_targets() driver hook.
3460 *
3461 * At this point, we know which targets are bound to a particular index,
3462 * and also whether we want to append or start over. We can finish the
3463 * 3DSTATE_SO_BUFFER packets we started earlier.
3464 */
3465 static void
3466 iris_set_stream_output_targets(struct pipe_context *ctx,
3467 unsigned num_targets,
3468 struct pipe_stream_output_target **targets,
3469 const unsigned *offsets)
3470 {
3471 struct iris_context *ice = (struct iris_context *) ctx;
3472 struct iris_genx_state *genx = ice->state.genx;
3473 uint32_t *so_buffers = genx->so_buffers;
3474 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
3475
3476 const bool active = num_targets > 0;
3477 if (ice->state.streamout_active != active) {
3478 ice->state.streamout_active = active;
3479 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
3480
3481 /* We only emit 3DSTATE_SO_DECL_LIST when streamout is active, because
3482 * it's a non-pipelined command. If we're switching streamout on, we
3483 * may have missed emitting it earlier, so do so now. (We're already
3484 * taking a stall to update 3DSTATE_SO_BUFFERS anyway...)
3485 */
3486 if (active) {
3487 ice->state.dirty |= IRIS_DIRTY_SO_DECL_LIST;
3488 } else {
3489 uint32_t flush = 0;
3490 for (int i = 0; i < PIPE_MAX_SO_BUFFERS; i++) {
3491 struct iris_stream_output_target *tgt =
3492 (void *) ice->state.so_target[i];
3493 if (tgt) {
3494 struct iris_resource *res = (void *) tgt->base.buffer;
3495
3496 flush |= iris_flush_bits_for_history(res);
3497 iris_dirty_for_history(ice, res);
3498 }
3499 }
3500 iris_emit_pipe_control_flush(&ice->batches[IRIS_BATCH_RENDER],
3501 "make streamout results visible", flush);
3502 }
3503 }
3504
3505 for (int i = 0; i < 4; i++) {
3506 pipe_so_target_reference(&ice->state.so_target[i],
3507 i < num_targets ? targets[i] : NULL);
3508 }
3509
3510 /* No need to update 3DSTATE_SO_BUFFER unless SOL is active. */
3511 if (!active)
3512 return;
3513
3514 for (unsigned i = 0; i < 4; i++,
3515 so_buffers += GENX(3DSTATE_SO_BUFFER_length)) {
3516
3517 struct iris_stream_output_target *tgt = (void *) ice->state.so_target[i];
3518 unsigned offset = offsets[i];
3519
3520 if (!tgt) {
3521 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob) {
3522 #if GEN_GEN < 12
3523 sob.SOBufferIndex = i;
3524 #else
3525 sob._3DCommandOpcode = 0;
3526 sob._3DCommandSubOpcode = SO_BUFFER_INDEX_0_CMD + i;
3527 #endif
3528 }
3529 continue;
3530 }
3531
3532 struct iris_resource *res = (void *) tgt->base.buffer;
3533
3534 /* Note that offsets[i] will either be 0, causing us to zero
3535 * the value in the buffer, or 0xFFFFFFFF, which happens to mean
3536 * "continue appending at the existing offset."
3537 */
3538 assert(offset == 0 || offset == 0xFFFFFFFF);
3539
3540 /* We might be called by Begin (offset = 0), Pause, then Resume
3541 * (offset = 0xFFFFFFFF) before ever drawing (where these commands
3542 * will actually be sent to the GPU). In this case, we don't want
3543 * to append - we still want to do our initial zeroing.
3544 */
3545 if (!tgt->zeroed)
3546 offset = 0;
3547
3548 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob) {
3549 #if GEN_GEN < 12
3550 sob.SOBufferIndex = i;
3551 #else
3552 sob._3DCommandOpcode = 0;
3553 sob._3DCommandSubOpcode = SO_BUFFER_INDEX_0_CMD + i;
3554 #endif
3555 sob.SurfaceBaseAddress =
3556 rw_bo(NULL, res->bo->gtt_offset + tgt->base.buffer_offset);
3557 sob.SOBufferEnable = true;
3558 sob.StreamOffsetWriteEnable = true;
3559 sob.StreamOutputBufferOffsetAddressEnable = true;
3560 sob.MOCS = mocs(res->bo, &screen->isl_dev);
3561
3562 sob.SurfaceSize = MAX2(tgt->base.buffer_size / 4, 1) - 1;
3563 sob.StreamOffset = offset;
3564 sob.StreamOutputBufferOffsetAddress =
3565 rw_bo(NULL, iris_resource_bo(tgt->offset.res)->gtt_offset +
3566 tgt->offset.offset);
3567 }
3568 }
3569
3570 ice->state.dirty |= IRIS_DIRTY_SO_BUFFERS;
3571 }
3572
3573 /**
3574 * An iris-vtable helper for encoding the 3DSTATE_SO_DECL_LIST and
3575 * 3DSTATE_STREAMOUT packets.
3576 *
3577 * 3DSTATE_SO_DECL_LIST is a list of shader outputs we want the streamout
3578 * hardware to record. We can create it entirely based on the shader, with
3579 * no dynamic state dependencies.
3580 *
3581 * 3DSTATE_STREAMOUT is an annoying mix of shader-based information and
3582 * state-based settings. We capture the shader-related ones here, and merge
3583 * the rest in at draw time.
3584 */
3585 static uint32_t *
3586 iris_create_so_decl_list(const struct pipe_stream_output_info *info,
3587 const struct brw_vue_map *vue_map)
3588 {
3589 struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
3590 int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3591 int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3592 int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3593 int max_decls = 0;
3594 STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
3595
3596 memset(so_decl, 0, sizeof(so_decl));
3597
3598 /* Construct the list of SO_DECLs to be emitted. The formatting of the
3599 * command feels strange -- each dword pair contains a SO_DECL per stream.
3600 */
3601 for (unsigned i = 0; i < info->num_outputs; i++) {
3602 const struct pipe_stream_output *output = &info->output[i];
3603 const int buffer = output->output_buffer;
3604 const int varying = output->register_index;
3605 const unsigned stream_id = output->stream;
3606 assert(stream_id < MAX_VERTEX_STREAMS);
3607
3608 buffer_mask[stream_id] |= 1 << buffer;
3609
3610 assert(vue_map->varying_to_slot[varying] >= 0);
3611
3612 /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
3613 * array. Instead, it simply increments DstOffset for the following
3614 * input by the number of components that should be skipped.
3615 *
3616 * Our hardware is unusual in that it requires us to program SO_DECLs
3617 * for fake "hole" components, rather than simply taking the offset
3618 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
3619 * program as many size = 4 holes as we can, then a final hole to
3620 * accommodate the final 1, 2, or 3 remaining.
3621 */
3622 int skip_components = output->dst_offset - next_offset[buffer];
3623
3624 while (skip_components > 0) {
3625 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3626 .HoleFlag = 1,
3627 .OutputBufferSlot = output->output_buffer,
3628 .ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
3629 };
3630 skip_components -= 4;
3631 }
3632
3633 next_offset[buffer] = output->dst_offset + output->num_components;
3634
3635 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3636 .OutputBufferSlot = output->output_buffer,
3637 .RegisterIndex = vue_map->varying_to_slot[varying],
3638 .ComponentMask =
3639 ((1 << output->num_components) - 1) << output->start_component,
3640 };
3641
3642 if (decls[stream_id] > max_decls)
3643 max_decls = decls[stream_id];
3644 }
3645
3646 unsigned dwords = GENX(3DSTATE_STREAMOUT_length) + (3 + 2 * max_decls);
3647 uint32_t *map = ralloc_size(NULL, sizeof(uint32_t) * dwords);
3648 uint32_t *so_decl_map = map + GENX(3DSTATE_STREAMOUT_length);
3649
3650 iris_pack_command(GENX(3DSTATE_STREAMOUT), map, sol) {
3651 int urb_entry_read_offset = 0;
3652 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
3653 urb_entry_read_offset;
3654
3655 /* We always read the whole vertex. This could be reduced at some
3656 * point by reading less and offsetting the register index in the
3657 * SO_DECLs.
3658 */
3659 sol.Stream0VertexReadOffset = urb_entry_read_offset;
3660 sol.Stream0VertexReadLength = urb_entry_read_length - 1;
3661 sol.Stream1VertexReadOffset = urb_entry_read_offset;
3662 sol.Stream1VertexReadLength = urb_entry_read_length - 1;
3663 sol.Stream2VertexReadOffset = urb_entry_read_offset;
3664 sol.Stream2VertexReadLength = urb_entry_read_length - 1;
3665 sol.Stream3VertexReadOffset = urb_entry_read_offset;
3666 sol.Stream3VertexReadLength = urb_entry_read_length - 1;
3667
3668 /* Set buffer pitches; 0 means unbound. */
3669 sol.Buffer0SurfacePitch = 4 * info->stride[0];
3670 sol.Buffer1SurfacePitch = 4 * info->stride[1];
3671 sol.Buffer2SurfacePitch = 4 * info->stride[2];
3672 sol.Buffer3SurfacePitch = 4 * info->stride[3];
3673 }
3674
3675 iris_pack_command(GENX(3DSTATE_SO_DECL_LIST), so_decl_map, list) {
3676 list.DWordLength = 3 + 2 * max_decls - 2;
3677 list.StreamtoBufferSelects0 = buffer_mask[0];
3678 list.StreamtoBufferSelects1 = buffer_mask[1];
3679 list.StreamtoBufferSelects2 = buffer_mask[2];
3680 list.StreamtoBufferSelects3 = buffer_mask[3];
3681 list.NumEntries0 = decls[0];
3682 list.NumEntries1 = decls[1];
3683 list.NumEntries2 = decls[2];
3684 list.NumEntries3 = decls[3];
3685 }
3686
3687 for (int i = 0; i < max_decls; i++) {
3688 iris_pack_state(GENX(SO_DECL_ENTRY), so_decl_map + 3 + i * 2, entry) {
3689 entry.Stream0Decl = so_decl[0][i];
3690 entry.Stream1Decl = so_decl[1][i];
3691 entry.Stream2Decl = so_decl[2][i];
3692 entry.Stream3Decl = so_decl[3][i];
3693 }
3694 }
3695
3696 return map;
3697 }
3698
3699 static void
3700 iris_compute_sbe_urb_read_interval(uint64_t fs_input_slots,
3701 const struct brw_vue_map *last_vue_map,
3702 bool two_sided_color,
3703 unsigned *out_offset,
3704 unsigned *out_length)
3705 {
3706 /* The compiler computes the first URB slot without considering COL/BFC
3707 * swizzling (because it doesn't know whether it's enabled), so we need
3708 * to do that here too. This may result in a smaller offset, which
3709 * should be safe.
3710 */
3711 const unsigned first_slot =
3712 brw_compute_first_urb_slot_required(fs_input_slots, last_vue_map);
3713
3714 /* This becomes the URB read offset (counted in pairs of slots). */
3715 assert(first_slot % 2 == 0);
3716 *out_offset = first_slot / 2;
3717
3718 /* We need to adjust the inputs read to account for front/back color
3719 * swizzling, as it can make the URB length longer.
3720 */
3721 for (int c = 0; c <= 1; c++) {
3722 if (fs_input_slots & (VARYING_BIT_COL0 << c)) {
3723 /* If two sided color is enabled, the fragment shader's gl_Color
3724 * (COL0) input comes from either the gl_FrontColor (COL0) or
3725 * gl_BackColor (BFC0) input varyings. Mark BFC as used, too.
3726 */
3727 if (two_sided_color)
3728 fs_input_slots |= (VARYING_BIT_BFC0 << c);
3729
3730 /* If front color isn't written, we opt to give them back color
3731 * instead of an undefined value. Switch from COL to BFC.
3732 */
3733 if (last_vue_map->varying_to_slot[VARYING_SLOT_COL0 + c] == -1) {
3734 fs_input_slots &= ~(VARYING_BIT_COL0 << c);
3735 fs_input_slots |= (VARYING_BIT_BFC0 << c);
3736 }
3737 }
3738 }
3739
3740 /* Compute the minimum URB Read Length necessary for the FS inputs.
3741 *
3742 * From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
3743 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
3744 *
3745 * "This field should be set to the minimum length required to read the
3746 * maximum source attribute. The maximum source attribute is indicated
3747 * by the maximum value of the enabled Attribute # Source Attribute if
3748 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
3749 * enable is not set.
3750 * read_length = ceiling((max_source_attr + 1) / 2)
3751 *
3752 * [errata] Corruption/Hang possible if length programmed larger than
3753 * recommended"
3754 *
3755 * Similar text exists for Ivy Bridge.
3756 *
3757 * We find the last URB slot that's actually read by the FS.
3758 */
3759 unsigned last_read_slot = last_vue_map->num_slots - 1;
3760 while (last_read_slot > first_slot && !(fs_input_slots &
3761 (1ull << last_vue_map->slot_to_varying[last_read_slot])))
3762 --last_read_slot;
3763
3764 /* The URB read length is the difference of the two, counted in pairs. */
3765 *out_length = DIV_ROUND_UP(last_read_slot - first_slot + 1, 2);
3766 }
3767
3768 static void
3769 iris_emit_sbe_swiz(struct iris_batch *batch,
3770 const struct iris_context *ice,
3771 unsigned urb_read_offset,
3772 unsigned sprite_coord_enables)
3773 {
3774 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = {};
3775 const struct brw_wm_prog_data *wm_prog_data = (void *)
3776 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3777 const struct brw_vue_map *vue_map = ice->shaders.last_vue_map;
3778 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3779
3780 /* XXX: this should be generated when putting programs in place */
3781
3782 for (int fs_attr = 0; fs_attr < VARYING_SLOT_MAX; fs_attr++) {
3783 const int input_index = wm_prog_data->urb_setup[fs_attr];
3784 if (input_index < 0 || input_index >= 16)
3785 continue;
3786
3787 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr =
3788 &attr_overrides[input_index];
3789 int slot = vue_map->varying_to_slot[fs_attr];
3790
3791 /* Viewport and Layer are stored in the VUE header. We need to override
3792 * them to zero if earlier stages didn't write them, as GL requires that
3793 * they read back as zero when not explicitly set.
3794 */
3795 switch (fs_attr) {
3796 case VARYING_SLOT_VIEWPORT:
3797 case VARYING_SLOT_LAYER:
3798 attr->ComponentOverrideX = true;
3799 attr->ComponentOverrideW = true;
3800 attr->ConstantSource = CONST_0000;
3801
3802 if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
3803 attr->ComponentOverrideY = true;
3804 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
3805 attr->ComponentOverrideZ = true;
3806 continue;
3807
3808 case VARYING_SLOT_PRIMITIVE_ID:
3809 /* Override if the previous shader stage didn't write gl_PrimitiveID. */
3810 if (slot == -1) {
3811 attr->ComponentOverrideX = true;
3812 attr->ComponentOverrideY = true;
3813 attr->ComponentOverrideZ = true;
3814 attr->ComponentOverrideW = true;
3815 attr->ConstantSource = PRIM_ID;
3816 continue;
3817 }
3818
3819 default:
3820 break;
3821 }
3822
3823 if (sprite_coord_enables & (1 << input_index))
3824 continue;
3825
3826 /* If there was only a back color written but not front, use back
3827 * as the color instead of undefined.
3828 */
3829 if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
3830 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
3831 if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
3832 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
3833
3834 /* Not written by the previous stage - undefined. */
3835 if (slot == -1) {
3836 attr->ComponentOverrideX = true;
3837 attr->ComponentOverrideY = true;
3838 attr->ComponentOverrideZ = true;
3839 attr->ComponentOverrideW = true;
3840 attr->ConstantSource = CONST_0001_FLOAT;
3841 continue;
3842 }
3843
3844 /* Compute the location of the attribute relative to the read offset,
3845 * which is counted in 256-bit increments (two 128-bit VUE slots).
3846 */
3847 const int source_attr = slot - 2 * urb_read_offset;
3848 assert(source_attr >= 0 && source_attr <= 32);
3849 attr->SourceAttribute = source_attr;
3850
3851 /* If we are doing two-sided color, and the VUE slot following this one
3852 * represents a back-facing color, then we need to instruct the SF unit
3853 * to do back-facing swizzling.
3854 */
3855 if (cso_rast->light_twoside &&
3856 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
3857 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
3858 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
3859 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1)))
3860 attr->SwizzleSelect = INPUTATTR_FACING;
3861 }
3862
3863 iris_emit_cmd(batch, GENX(3DSTATE_SBE_SWIZ), sbes) {
3864 for (int i = 0; i < 16; i++)
3865 sbes.Attribute[i] = attr_overrides[i];
3866 }
3867 }
3868
3869 static unsigned
3870 iris_calculate_point_sprite_overrides(const struct brw_wm_prog_data *prog_data,
3871 const struct iris_rasterizer_state *cso)
3872 {
3873 unsigned overrides = 0;
3874
3875 if (prog_data->urb_setup[VARYING_SLOT_PNTC] != -1)
3876 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_PNTC];
3877
3878 for (int i = 0; i < 8; i++) {
3879 if ((cso->sprite_coord_enable & (1 << i)) &&
3880 prog_data->urb_setup[VARYING_SLOT_TEX0 + i] != -1)
3881 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_TEX0 + i];
3882 }
3883
3884 return overrides;
3885 }
3886
3887 static void
3888 iris_emit_sbe(struct iris_batch *batch, const struct iris_context *ice)
3889 {
3890 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3891 const struct brw_wm_prog_data *wm_prog_data = (void *)
3892 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3893 const struct shader_info *fs_info =
3894 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
3895
3896 unsigned urb_read_offset, urb_read_length;
3897 iris_compute_sbe_urb_read_interval(fs_info->inputs_read,
3898 ice->shaders.last_vue_map,
3899 cso_rast->light_twoside,
3900 &urb_read_offset, &urb_read_length);
3901
3902 unsigned sprite_coord_overrides =
3903 iris_calculate_point_sprite_overrides(wm_prog_data, cso_rast);
3904
3905 iris_emit_cmd(batch, GENX(3DSTATE_SBE), sbe) {
3906 sbe.AttributeSwizzleEnable = true;
3907 sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
3908 sbe.PointSpriteTextureCoordinateOrigin = cso_rast->sprite_coord_mode;
3909 sbe.VertexURBEntryReadOffset = urb_read_offset;
3910 sbe.VertexURBEntryReadLength = urb_read_length;
3911 sbe.ForceVertexURBEntryReadOffset = true;
3912 sbe.ForceVertexURBEntryReadLength = true;
3913 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
3914 sbe.PointSpriteTextureCoordinateEnable = sprite_coord_overrides;
3915 #if GEN_GEN >= 9
3916 for (int i = 0; i < 32; i++) {
3917 sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW;
3918 }
3919 #endif
3920 }
3921
3922 iris_emit_sbe_swiz(batch, ice, urb_read_offset, sprite_coord_overrides);
3923 }
3924
3925 /* ------------------------------------------------------------------- */
3926
3927 /**
3928 * Populate VS program key fields based on the current state.
3929 */
3930 static void
3931 iris_populate_vs_key(const struct iris_context *ice,
3932 const struct shader_info *info,
3933 gl_shader_stage last_stage,
3934 struct brw_vs_prog_key *key)
3935 {
3936 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3937
3938 if (info->clip_distance_array_size == 0 &&
3939 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
3940 last_stage == MESA_SHADER_VERTEX)
3941 key->nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
3942 }
3943
3944 /**
3945 * Populate TCS program key fields based on the current state.
3946 */
3947 static void
3948 iris_populate_tcs_key(const struct iris_context *ice,
3949 struct brw_tcs_prog_key *key)
3950 {
3951 }
3952
3953 /**
3954 * Populate TES program key fields based on the current state.
3955 */
3956 static void
3957 iris_populate_tes_key(const struct iris_context *ice,
3958 const struct shader_info *info,
3959 gl_shader_stage last_stage,
3960 struct brw_tes_prog_key *key)
3961 {
3962 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3963
3964 if (info->clip_distance_array_size == 0 &&
3965 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
3966 last_stage == MESA_SHADER_TESS_EVAL)
3967 key->nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
3968 }
3969
3970 /**
3971 * Populate GS program key fields based on the current state.
3972 */
3973 static void
3974 iris_populate_gs_key(const struct iris_context *ice,
3975 const struct shader_info *info,
3976 gl_shader_stage last_stage,
3977 struct brw_gs_prog_key *key)
3978 {
3979 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3980
3981 if (info->clip_distance_array_size == 0 &&
3982 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
3983 last_stage == MESA_SHADER_GEOMETRY)
3984 key->nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
3985 }
3986
3987 /**
3988 * Populate FS program key fields based on the current state.
3989 */
3990 static void
3991 iris_populate_fs_key(const struct iris_context *ice,
3992 const struct shader_info *info,
3993 struct brw_wm_prog_key *key)
3994 {
3995 struct iris_screen *screen = (void *) ice->ctx.screen;
3996 const struct pipe_framebuffer_state *fb = &ice->state.framebuffer;
3997 const struct iris_depth_stencil_alpha_state *zsa = ice->state.cso_zsa;
3998 const struct iris_rasterizer_state *rast = ice->state.cso_rast;
3999 const struct iris_blend_state *blend = ice->state.cso_blend;
4000
4001 key->nr_color_regions = fb->nr_cbufs;
4002
4003 key->clamp_fragment_color = rast->clamp_fragment_color;
4004
4005 key->alpha_to_coverage = blend->alpha_to_coverage;
4006
4007 key->alpha_test_replicate_alpha = fb->nr_cbufs > 1 && zsa->alpha.enabled;
4008
4009 key->flat_shade = rast->flatshade &&
4010 (info->inputs_read & (VARYING_BIT_COL0 | VARYING_BIT_COL1));
4011
4012 key->persample_interp = rast->force_persample_interp;
4013 key->multisample_fbo = rast->multisample && fb->samples > 1;
4014
4015 key->coherent_fb_fetch = GEN_GEN >= 9;
4016
4017 key->force_dual_color_blend =
4018 screen->driconf.dual_color_blend_by_location &&
4019 (blend->blend_enables & 1) && blend->dual_color_blending;
4020
4021 /* TODO: Respect glHint for key->high_quality_derivatives */
4022 }
4023
4024 static void
4025 iris_populate_cs_key(const struct iris_context *ice,
4026 struct brw_cs_prog_key *key)
4027 {
4028 }
4029
4030 static uint64_t
4031 KSP(const struct iris_compiled_shader *shader)
4032 {
4033 struct iris_resource *res = (void *) shader->assembly.res;
4034 return iris_bo_offset_from_base_address(res->bo) + shader->assembly.offset;
4035 }
4036
4037 /* Gen11 workaround table #2056 WABTPPrefetchDisable suggests to disable
4038 * prefetching of binding tables in A0 and B0 steppings. XXX: Revisit
4039 * this WA on C0 stepping.
4040 *
4041 * TODO: Fill out SamplerCount for prefetching?
4042 */
4043
4044 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix, stage) \
4045 pkt.KernelStartPointer = KSP(shader); \
4046 pkt.BindingTableEntryCount = GEN_GEN == 11 ? 0 : \
4047 shader->bt.size_bytes / 4; \
4048 pkt.FloatingPointMode = prog_data->use_alt_mode; \
4049 \
4050 pkt.DispatchGRFStartRegisterForURBData = \
4051 prog_data->dispatch_grf_start_reg; \
4052 pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
4053 pkt.prefix##URBEntryReadOffset = 0; \
4054 \
4055 pkt.StatisticsEnable = true; \
4056 pkt.Enable = true; \
4057 \
4058 if (prog_data->total_scratch) { \
4059 struct iris_bo *bo = \
4060 iris_get_scratch_space(ice, prog_data->total_scratch, stage); \
4061 uint32_t scratch_addr = bo->gtt_offset; \
4062 pkt.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11; \
4063 pkt.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr); \
4064 }
4065
4066 /**
4067 * Encode most of 3DSTATE_VS based on the compiled shader.
4068 */
4069 static void
4070 iris_store_vs_state(struct iris_context *ice,
4071 const struct gen_device_info *devinfo,
4072 struct iris_compiled_shader *shader)
4073 {
4074 struct brw_stage_prog_data *prog_data = shader->prog_data;
4075 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
4076
4077 iris_pack_command(GENX(3DSTATE_VS), shader->derived_data, vs) {
4078 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex, MESA_SHADER_VERTEX);
4079 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
4080 vs.SIMD8DispatchEnable = true;
4081 vs.UserClipDistanceCullTestEnableBitmask =
4082 vue_prog_data->cull_distance_mask;
4083 }
4084 }
4085
4086 /**
4087 * Encode most of 3DSTATE_HS based on the compiled shader.
4088 */
4089 static void
4090 iris_store_tcs_state(struct iris_context *ice,
4091 const struct gen_device_info *devinfo,
4092 struct iris_compiled_shader *shader)
4093 {
4094 struct brw_stage_prog_data *prog_data = shader->prog_data;
4095 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
4096 struct brw_tcs_prog_data *tcs_prog_data = (void *) prog_data;
4097
4098 iris_pack_command(GENX(3DSTATE_HS), shader->derived_data, hs) {
4099 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex, MESA_SHADER_TESS_CTRL);
4100
4101 hs.InstanceCount = tcs_prog_data->instances - 1;
4102 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
4103 hs.IncludeVertexHandles = true;
4104
4105 #if GEN_GEN >= 9
4106 hs.DispatchMode = vue_prog_data->dispatch_mode;
4107 hs.IncludePrimitiveID = tcs_prog_data->include_primitive_id;
4108 #endif
4109 }
4110 }
4111
4112 /**
4113 * Encode 3DSTATE_TE and most of 3DSTATE_DS based on the compiled shader.
4114 */
4115 static void
4116 iris_store_tes_state(struct iris_context *ice,
4117 const struct gen_device_info *devinfo,
4118 struct iris_compiled_shader *shader)
4119 {
4120 struct brw_stage_prog_data *prog_data = shader->prog_data;
4121 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
4122 struct brw_tes_prog_data *tes_prog_data = (void *) prog_data;
4123
4124 uint32_t *te_state = (void *) shader->derived_data;
4125 uint32_t *ds_state = te_state + GENX(3DSTATE_TE_length);
4126
4127 iris_pack_command(GENX(3DSTATE_TE), te_state, te) {
4128 te.Partitioning = tes_prog_data->partitioning;
4129 te.OutputTopology = tes_prog_data->output_topology;
4130 te.TEDomain = tes_prog_data->domain;
4131 te.TEEnable = true;
4132 te.MaximumTessellationFactorOdd = 63.0;
4133 te.MaximumTessellationFactorNotOdd = 64.0;
4134 }
4135
4136 iris_pack_command(GENX(3DSTATE_DS), ds_state, ds) {
4137 INIT_THREAD_DISPATCH_FIELDS(ds, Patch, MESA_SHADER_TESS_EVAL);
4138
4139 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
4140 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
4141 ds.ComputeWCoordinateEnable =
4142 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
4143
4144 ds.UserClipDistanceCullTestEnableBitmask =
4145 vue_prog_data->cull_distance_mask;
4146 }
4147
4148 }
4149
4150 /**
4151 * Encode most of 3DSTATE_GS based on the compiled shader.
4152 */
4153 static void
4154 iris_store_gs_state(struct iris_context *ice,
4155 const struct gen_device_info *devinfo,
4156 struct iris_compiled_shader *shader)
4157 {
4158 struct brw_stage_prog_data *prog_data = shader->prog_data;
4159 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
4160 struct brw_gs_prog_data *gs_prog_data = (void *) prog_data;
4161
4162 iris_pack_command(GENX(3DSTATE_GS), shader->derived_data, gs) {
4163 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex, MESA_SHADER_GEOMETRY);
4164
4165 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
4166 gs.OutputTopology = gs_prog_data->output_topology;
4167 gs.ControlDataHeaderSize =
4168 gs_prog_data->control_data_header_size_hwords;
4169 gs.InstanceControl = gs_prog_data->invocations - 1;
4170 gs.DispatchMode = DISPATCH_MODE_SIMD8;
4171 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
4172 gs.ControlDataFormat = gs_prog_data->control_data_format;
4173 gs.ReorderMode = TRAILING;
4174 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
4175 gs.MaximumNumberofThreads =
4176 GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
4177 : (devinfo->max_gs_threads - 1);
4178
4179 if (gs_prog_data->static_vertex_count != -1) {
4180 gs.StaticOutput = true;
4181 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
4182 }
4183 gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
4184
4185 gs.UserClipDistanceCullTestEnableBitmask =
4186 vue_prog_data->cull_distance_mask;
4187
4188 const int urb_entry_write_offset = 1;
4189 const uint32_t urb_entry_output_length =
4190 DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
4191 urb_entry_write_offset;
4192
4193 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
4194 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
4195 }
4196 }
4197
4198 /**
4199 * Encode most of 3DSTATE_PS and 3DSTATE_PS_EXTRA based on the shader.
4200 */
4201 static void
4202 iris_store_fs_state(struct iris_context *ice,
4203 const struct gen_device_info *devinfo,
4204 struct iris_compiled_shader *shader)
4205 {
4206 struct brw_stage_prog_data *prog_data = shader->prog_data;
4207 struct brw_wm_prog_data *wm_prog_data = (void *) shader->prog_data;
4208
4209 uint32_t *ps_state = (void *) shader->derived_data;
4210 uint32_t *psx_state = ps_state + GENX(3DSTATE_PS_length);
4211
4212 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
4213 ps.VectorMaskEnable = true;
4214 // XXX: WABTPPrefetchDisable, see above, drop at C0
4215 ps.BindingTableEntryCount = GEN_GEN == 11 ? 0 :
4216 shader->bt.size_bytes / 4;
4217 ps.FloatingPointMode = prog_data->use_alt_mode;
4218 ps.MaximumNumberofThreadsPerPSD = 64 - (GEN_GEN == 8 ? 2 : 1);
4219
4220 ps.PushConstantEnable = prog_data->ubo_ranges[0].length > 0;
4221
4222 /* From the documentation for this packet:
4223 * "If the PS kernel does not need the Position XY Offsets to
4224 * compute a Position Value, then this field should be programmed
4225 * to POSOFFSET_NONE."
4226 *
4227 * "SW Recommendation: If the PS kernel needs the Position Offsets
4228 * to compute a Position XY value, this field should match Position
4229 * ZW Interpolation Mode to ensure a consistent position.xyzw
4230 * computation."
4231 *
4232 * We only require XY sample offsets. So, this recommendation doesn't
4233 * look useful at the moment. We might need this in future.
4234 */
4235 ps.PositionXYOffsetSelect =
4236 wm_prog_data->uses_pos_offset ? POSOFFSET_SAMPLE : POSOFFSET_NONE;
4237
4238 if (prog_data->total_scratch) {
4239 struct iris_bo *bo =
4240 iris_get_scratch_space(ice, prog_data->total_scratch,
4241 MESA_SHADER_FRAGMENT);
4242 uint32_t scratch_addr = bo->gtt_offset;
4243 ps.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
4244 ps.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr);
4245 }
4246 }
4247
4248 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
4249 psx.PixelShaderValid = true;
4250 psx.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
4251 psx.PixelShaderKillsPixel = wm_prog_data->uses_kill;
4252 psx.AttributeEnable = wm_prog_data->num_varying_inputs != 0;
4253 psx.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
4254 psx.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
4255 psx.PixelShaderIsPerSample = wm_prog_data->persample_dispatch;
4256 psx.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
4257
4258 #if GEN_GEN >= 9
4259 psx.PixelShaderPullsBary = wm_prog_data->pulls_bary;
4260 psx.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
4261 #endif
4262 }
4263 }
4264
4265 /**
4266 * Compute the size of the derived data (shader command packets).
4267 *
4268 * This must match the data written by the iris_store_xs_state() functions.
4269 */
4270 static void
4271 iris_store_cs_state(struct iris_context *ice,
4272 const struct gen_device_info *devinfo,
4273 struct iris_compiled_shader *shader)
4274 {
4275 struct brw_stage_prog_data *prog_data = shader->prog_data;
4276 struct brw_cs_prog_data *cs_prog_data = (void *) shader->prog_data;
4277 void *map = shader->derived_data;
4278
4279 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), map, desc) {
4280 desc.KernelStartPointer = KSP(shader);
4281 desc.ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs;
4282 desc.NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads;
4283 desc.SharedLocalMemorySize =
4284 encode_slm_size(GEN_GEN, prog_data->total_shared);
4285 desc.BarrierEnable = cs_prog_data->uses_barrier;
4286 desc.CrossThreadConstantDataReadLength =
4287 cs_prog_data->push.cross_thread.regs;
4288 }
4289 }
4290
4291 static unsigned
4292 iris_derived_program_state_size(enum iris_program_cache_id cache_id)
4293 {
4294 assert(cache_id <= IRIS_CACHE_BLORP);
4295
4296 static const unsigned dwords[] = {
4297 [IRIS_CACHE_VS] = GENX(3DSTATE_VS_length),
4298 [IRIS_CACHE_TCS] = GENX(3DSTATE_HS_length),
4299 [IRIS_CACHE_TES] = GENX(3DSTATE_TE_length) + GENX(3DSTATE_DS_length),
4300 [IRIS_CACHE_GS] = GENX(3DSTATE_GS_length),
4301 [IRIS_CACHE_FS] =
4302 GENX(3DSTATE_PS_length) + GENX(3DSTATE_PS_EXTRA_length),
4303 [IRIS_CACHE_CS] = GENX(INTERFACE_DESCRIPTOR_DATA_length),
4304 [IRIS_CACHE_BLORP] = 0,
4305 };
4306
4307 return sizeof(uint32_t) * dwords[cache_id];
4308 }
4309
4310 /**
4311 * Create any state packets corresponding to the given shader stage
4312 * (i.e. 3DSTATE_VS) and save them as "derived data" in the shader variant.
4313 * This means that we can look up a program in the in-memory cache and
4314 * get most of the state packet without having to reconstruct it.
4315 */
4316 static void
4317 iris_store_derived_program_state(struct iris_context *ice,
4318 enum iris_program_cache_id cache_id,
4319 struct iris_compiled_shader *shader)
4320 {
4321 struct iris_screen *screen = (void *) ice->ctx.screen;
4322 const struct gen_device_info *devinfo = &screen->devinfo;
4323
4324 switch (cache_id) {
4325 case IRIS_CACHE_VS:
4326 iris_store_vs_state(ice, devinfo, shader);
4327 break;
4328 case IRIS_CACHE_TCS:
4329 iris_store_tcs_state(ice, devinfo, shader);
4330 break;
4331 case IRIS_CACHE_TES:
4332 iris_store_tes_state(ice, devinfo, shader);
4333 break;
4334 case IRIS_CACHE_GS:
4335 iris_store_gs_state(ice, devinfo, shader);
4336 break;
4337 case IRIS_CACHE_FS:
4338 iris_store_fs_state(ice, devinfo, shader);
4339 break;
4340 case IRIS_CACHE_CS:
4341 iris_store_cs_state(ice, devinfo, shader);
4342 case IRIS_CACHE_BLORP:
4343 break;
4344 default:
4345 break;
4346 }
4347 }
4348
4349 /* ------------------------------------------------------------------- */
4350
4351 static const uint32_t push_constant_opcodes[] = {
4352 [MESA_SHADER_VERTEX] = 21,
4353 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
4354 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
4355 [MESA_SHADER_GEOMETRY] = 22,
4356 [MESA_SHADER_FRAGMENT] = 23,
4357 [MESA_SHADER_COMPUTE] = 0,
4358 };
4359
4360 static uint32_t
4361 use_null_surface(struct iris_batch *batch, struct iris_context *ice)
4362 {
4363 struct iris_bo *state_bo = iris_resource_bo(ice->state.unbound_tex.res);
4364
4365 iris_use_pinned_bo(batch, state_bo, false);
4366
4367 return ice->state.unbound_tex.offset;
4368 }
4369
4370 static uint32_t
4371 use_null_fb_surface(struct iris_batch *batch, struct iris_context *ice)
4372 {
4373 /* If set_framebuffer_state() was never called, fall back to 1x1x1 */
4374 if (!ice->state.null_fb.res)
4375 return use_null_surface(batch, ice);
4376
4377 struct iris_bo *state_bo = iris_resource_bo(ice->state.null_fb.res);
4378
4379 iris_use_pinned_bo(batch, state_bo, false);
4380
4381 return ice->state.null_fb.offset;
4382 }
4383
4384 static uint32_t
4385 surf_state_offset_for_aux(struct iris_resource *res,
4386 unsigned aux_modes,
4387 enum isl_aux_usage aux_usage)
4388 {
4389 return SURFACE_STATE_ALIGNMENT *
4390 util_bitcount(aux_modes & ((1 << aux_usage) - 1));
4391 }
4392
4393 #if GEN_GEN == 9
4394 static void
4395 surf_state_update_clear_value(struct iris_batch *batch,
4396 struct iris_resource *res,
4397 struct iris_state_ref *state,
4398 unsigned aux_modes,
4399 enum isl_aux_usage aux_usage)
4400 {
4401 struct isl_device *isl_dev = &batch->screen->isl_dev;
4402 struct iris_bo *state_bo = iris_resource_bo(state->res);
4403 uint64_t real_offset = state->offset + IRIS_MEMZONE_BINDER_START;
4404 uint32_t offset_into_bo = real_offset - state_bo->gtt_offset;
4405 uint32_t clear_offset = offset_into_bo +
4406 isl_dev->ss.clear_value_offset +
4407 surf_state_offset_for_aux(res, aux_modes, aux_usage);
4408 uint32_t *color = res->aux.clear_color.u32;
4409
4410 assert(isl_dev->ss.clear_value_size == 16);
4411
4412 if (aux_usage == ISL_AUX_USAGE_HIZ) {
4413 iris_emit_pipe_control_write(batch, "update fast clear value (Z)",
4414 PIPE_CONTROL_WRITE_IMMEDIATE,
4415 state_bo, clear_offset, color[0]);
4416 } else {
4417 iris_emit_pipe_control_write(batch, "update fast clear color (RG__)",
4418 PIPE_CONTROL_WRITE_IMMEDIATE,
4419 state_bo, clear_offset,
4420 (uint64_t) color[0] |
4421 (uint64_t) color[1] << 32);
4422 iris_emit_pipe_control_write(batch, "update fast clear color (__BA)",
4423 PIPE_CONTROL_WRITE_IMMEDIATE,
4424 state_bo, clear_offset + 8,
4425 (uint64_t) color[2] |
4426 (uint64_t) color[3] << 32);
4427 }
4428
4429 iris_emit_pipe_control_flush(batch,
4430 "update fast clear: state cache invalidate",
4431 PIPE_CONTROL_FLUSH_ENABLE |
4432 PIPE_CONTROL_STATE_CACHE_INVALIDATE);
4433 }
4434 #endif
4435
4436 static void
4437 update_clear_value(struct iris_context *ice,
4438 struct iris_batch *batch,
4439 struct iris_resource *res,
4440 struct iris_state_ref *state,
4441 unsigned all_aux_modes,
4442 struct isl_view *view)
4443 {
4444 UNUSED struct isl_device *isl_dev = &batch->screen->isl_dev;
4445 UNUSED unsigned aux_modes = all_aux_modes;
4446
4447 /* We only need to update the clear color in the surface state for gen8 and
4448 * gen9. Newer gens can read it directly from the clear color state buffer.
4449 */
4450 #if GEN_GEN == 9
4451 /* Skip updating the ISL_AUX_USAGE_NONE surface state */
4452 aux_modes &= ~(1 << ISL_AUX_USAGE_NONE);
4453
4454 while (aux_modes) {
4455 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
4456
4457 surf_state_update_clear_value(batch, res, state, all_aux_modes,
4458 aux_usage);
4459 }
4460 #elif GEN_GEN == 8
4461 pipe_resource_reference(&state->res, NULL);
4462
4463 void *map = alloc_surface_states(ice->state.surface_uploader,
4464 state, all_aux_modes);
4465 while (aux_modes) {
4466 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
4467 fill_surface_state(isl_dev, map, res, &res->surf, view, aux_usage,
4468 0, 0, 0);
4469 map += SURFACE_STATE_ALIGNMENT;
4470 }
4471 #endif
4472 }
4473
4474 /**
4475 * Add a surface to the validation list, as well as the buffer containing
4476 * the corresponding SURFACE_STATE.
4477 *
4478 * Returns the binding table entry (offset to SURFACE_STATE).
4479 */
4480 static uint32_t
4481 use_surface(struct iris_context *ice,
4482 struct iris_batch *batch,
4483 struct pipe_surface *p_surf,
4484 bool writeable,
4485 enum isl_aux_usage aux_usage,
4486 bool is_read_surface)
4487 {
4488 struct iris_surface *surf = (void *) p_surf;
4489 struct iris_resource *res = (void *) p_surf->texture;
4490 uint32_t offset = 0;
4491
4492 iris_use_pinned_bo(batch, iris_resource_bo(p_surf->texture), writeable);
4493 if (GEN_GEN == 8 && is_read_surface) {
4494 iris_use_pinned_bo(batch, iris_resource_bo(surf->surface_state_read.res), false);
4495 } else {
4496 iris_use_pinned_bo(batch, iris_resource_bo(surf->surface_state.res), false);
4497 }
4498
4499 if (res->aux.bo) {
4500 iris_use_pinned_bo(batch, res->aux.bo, writeable);
4501 if (res->aux.clear_color_bo)
4502 iris_use_pinned_bo(batch, res->aux.clear_color_bo, false);
4503
4504 if (memcmp(&res->aux.clear_color, &surf->clear_color,
4505 sizeof(surf->clear_color)) != 0) {
4506 update_clear_value(ice, batch, res, &surf->surface_state,
4507 res->aux.possible_usages, &surf->view);
4508 if (GEN_GEN == 8) {
4509 update_clear_value(ice, batch, res, &surf->surface_state_read,
4510 res->aux.possible_usages, &surf->read_view);
4511 }
4512 surf->clear_color = res->aux.clear_color;
4513 }
4514 }
4515
4516 offset = (GEN_GEN == 8 && is_read_surface) ? surf->surface_state_read.offset
4517 : surf->surface_state.offset;
4518
4519 return offset +
4520 surf_state_offset_for_aux(res, res->aux.possible_usages, aux_usage);
4521 }
4522
4523 static uint32_t
4524 use_sampler_view(struct iris_context *ice,
4525 struct iris_batch *batch,
4526 struct iris_sampler_view *isv)
4527 {
4528 // XXX: ASTC hacks
4529 enum isl_aux_usage aux_usage =
4530 iris_resource_texture_aux_usage(ice, isv->res, isv->view.format, 0);
4531
4532 iris_use_pinned_bo(batch, isv->res->bo, false);
4533 iris_use_pinned_bo(batch, iris_resource_bo(isv->surface_state.res), false);
4534
4535 if (isv->res->aux.bo) {
4536 iris_use_pinned_bo(batch, isv->res->aux.bo, false);
4537 if (isv->res->aux.clear_color_bo)
4538 iris_use_pinned_bo(batch, isv->res->aux.clear_color_bo, false);
4539 if (memcmp(&isv->res->aux.clear_color, &isv->clear_color,
4540 sizeof(isv->clear_color)) != 0) {
4541 update_clear_value(ice, batch, isv->res, &isv->surface_state,
4542 isv->res->aux.sampler_usages, &isv->view);
4543 isv->clear_color = isv->res->aux.clear_color;
4544 }
4545 }
4546
4547 return isv->surface_state.offset +
4548 surf_state_offset_for_aux(isv->res, isv->res->aux.sampler_usages,
4549 aux_usage);
4550 }
4551
4552 static uint32_t
4553 use_ubo_ssbo(struct iris_batch *batch,
4554 struct iris_context *ice,
4555 struct pipe_shader_buffer *buf,
4556 struct iris_state_ref *surf_state,
4557 bool writable)
4558 {
4559 if (!buf->buffer || !surf_state->res)
4560 return use_null_surface(batch, ice);
4561
4562 iris_use_pinned_bo(batch, iris_resource_bo(buf->buffer), writable);
4563 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false);
4564
4565 return surf_state->offset;
4566 }
4567
4568 static uint32_t
4569 use_image(struct iris_batch *batch, struct iris_context *ice,
4570 struct iris_shader_state *shs, int i)
4571 {
4572 struct iris_image_view *iv = &shs->image[i];
4573 struct iris_resource *res = (void *) iv->base.resource;
4574
4575 if (!res)
4576 return use_null_surface(batch, ice);
4577
4578 bool write = iv->base.shader_access & PIPE_IMAGE_ACCESS_WRITE;
4579
4580 iris_use_pinned_bo(batch, res->bo, write);
4581 iris_use_pinned_bo(batch, iris_resource_bo(iv->surface_state.res), false);
4582
4583 if (res->aux.bo)
4584 iris_use_pinned_bo(batch, res->aux.bo, write);
4585
4586 return iv->surface_state.offset;
4587 }
4588
4589 #define push_bt_entry(addr) \
4590 assert(addr >= binder_addr); \
4591 assert(s < shader->bt.size_bytes / sizeof(uint32_t)); \
4592 if (!pin_only) bt_map[s++] = (addr) - binder_addr;
4593
4594 #define bt_assert(section) \
4595 if (!pin_only && shader->bt.used_mask[section] != 0) \
4596 assert(shader->bt.offsets[section] == s);
4597
4598 /**
4599 * Populate the binding table for a given shader stage.
4600 *
4601 * This fills out the table of pointers to surfaces required by the shader,
4602 * and also adds those buffers to the validation list so the kernel can make
4603 * resident before running our batch.
4604 */
4605 static void
4606 iris_populate_binding_table(struct iris_context *ice,
4607 struct iris_batch *batch,
4608 gl_shader_stage stage,
4609 bool pin_only)
4610 {
4611 const struct iris_binder *binder = &ice->state.binder;
4612 struct iris_uncompiled_shader *ish = ice->shaders.uncompiled[stage];
4613 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4614 if (!shader)
4615 return;
4616
4617 struct iris_binding_table *bt = &shader->bt;
4618 UNUSED struct brw_stage_prog_data *prog_data = shader->prog_data;
4619 struct iris_shader_state *shs = &ice->state.shaders[stage];
4620 uint32_t binder_addr = binder->bo->gtt_offset;
4621
4622 uint32_t *bt_map = binder->map + binder->bt_offset[stage];
4623 int s = 0;
4624
4625 const struct shader_info *info = iris_get_shader_info(ice, stage);
4626 if (!info) {
4627 /* TCS passthrough doesn't need a binding table. */
4628 assert(stage == MESA_SHADER_TESS_CTRL);
4629 return;
4630 }
4631
4632 if (stage == MESA_SHADER_COMPUTE &&
4633 shader->bt.used_mask[IRIS_SURFACE_GROUP_CS_WORK_GROUPS]) {
4634 /* surface for gl_NumWorkGroups */
4635 struct iris_state_ref *grid_data = &ice->state.grid_size;
4636 struct iris_state_ref *grid_state = &ice->state.grid_surf_state;
4637 iris_use_pinned_bo(batch, iris_resource_bo(grid_data->res), false);
4638 iris_use_pinned_bo(batch, iris_resource_bo(grid_state->res), false);
4639 push_bt_entry(grid_state->offset);
4640 }
4641
4642 if (stage == MESA_SHADER_FRAGMENT) {
4643 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4644 /* Note that cso_fb->nr_cbufs == fs_key->nr_color_regions. */
4645 if (cso_fb->nr_cbufs) {
4646 for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
4647 uint32_t addr;
4648 if (cso_fb->cbufs[i]) {
4649 addr = use_surface(ice, batch, cso_fb->cbufs[i], true,
4650 ice->state.draw_aux_usage[i], false);
4651 } else {
4652 addr = use_null_fb_surface(batch, ice);
4653 }
4654 push_bt_entry(addr);
4655 }
4656 } else if (GEN_GEN < 11) {
4657 uint32_t addr = use_null_fb_surface(batch, ice);
4658 push_bt_entry(addr);
4659 }
4660 }
4661
4662 #define foreach_surface_used(index, group) \
4663 bt_assert(group); \
4664 for (int index = 0; index < bt->sizes[group]; index++) \
4665 if (iris_group_index_to_bti(bt, group, index) != \
4666 IRIS_SURFACE_NOT_USED)
4667
4668 foreach_surface_used(i, IRIS_SURFACE_GROUP_RENDER_TARGET_READ) {
4669 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4670 uint32_t addr;
4671 if (cso_fb->cbufs[i]) {
4672 addr = use_surface(ice, batch, cso_fb->cbufs[i],
4673 true, ice->state.draw_aux_usage[i], true);
4674 push_bt_entry(addr);
4675 }
4676 }
4677
4678 foreach_surface_used(i, IRIS_SURFACE_GROUP_TEXTURE) {
4679 struct iris_sampler_view *view = shs->textures[i];
4680 uint32_t addr = view ? use_sampler_view(ice, batch, view)
4681 : use_null_surface(batch, ice);
4682 push_bt_entry(addr);
4683 }
4684
4685 foreach_surface_used(i, IRIS_SURFACE_GROUP_IMAGE) {
4686 uint32_t addr = use_image(batch, ice, shs, i);
4687 push_bt_entry(addr);
4688 }
4689
4690 foreach_surface_used(i, IRIS_SURFACE_GROUP_UBO) {
4691 uint32_t addr;
4692
4693 if (i == bt->sizes[IRIS_SURFACE_GROUP_UBO] - 1) {
4694 if (ish->const_data) {
4695 iris_use_pinned_bo(batch, iris_resource_bo(ish->const_data), false);
4696 iris_use_pinned_bo(batch, iris_resource_bo(ish->const_data_state.res),
4697 false);
4698 addr = ish->const_data_state.offset;
4699 } else {
4700 /* This can only happen with INTEL_DISABLE_COMPACT_BINDING_TABLE=1. */
4701 addr = use_null_surface(batch, ice);
4702 }
4703 } else {
4704 addr = use_ubo_ssbo(batch, ice, &shs->constbuf[i],
4705 &shs->constbuf_surf_state[i], false);
4706 }
4707
4708 push_bt_entry(addr);
4709 }
4710
4711 foreach_surface_used(i, IRIS_SURFACE_GROUP_SSBO) {
4712 uint32_t addr =
4713 use_ubo_ssbo(batch, ice, &shs->ssbo[i], &shs->ssbo_surf_state[i],
4714 shs->writable_ssbos & (1u << i));
4715 push_bt_entry(addr);
4716 }
4717
4718 #if 0
4719 /* XXX: YUV surfaces not implemented yet */
4720 bt_assert(plane_start[1], ...);
4721 bt_assert(plane_start[2], ...);
4722 #endif
4723 }
4724
4725 static void
4726 iris_use_optional_res(struct iris_batch *batch,
4727 struct pipe_resource *res,
4728 bool writeable)
4729 {
4730 if (res) {
4731 struct iris_bo *bo = iris_resource_bo(res);
4732 iris_use_pinned_bo(batch, bo, writeable);
4733 }
4734 }
4735
4736 static void
4737 pin_depth_and_stencil_buffers(struct iris_batch *batch,
4738 struct pipe_surface *zsbuf,
4739 struct iris_depth_stencil_alpha_state *cso_zsa)
4740 {
4741 if (!zsbuf)
4742 return;
4743
4744 struct iris_resource *zres, *sres;
4745 iris_get_depth_stencil_resources(zsbuf->texture, &zres, &sres);
4746
4747 if (zres) {
4748 iris_use_pinned_bo(batch, zres->bo, cso_zsa->depth_writes_enabled);
4749 if (zres->aux.bo) {
4750 iris_use_pinned_bo(batch, zres->aux.bo,
4751 cso_zsa->depth_writes_enabled);
4752 }
4753 }
4754
4755 if (sres) {
4756 iris_use_pinned_bo(batch, sres->bo, cso_zsa->stencil_writes_enabled);
4757 }
4758 }
4759
4760 /* ------------------------------------------------------------------- */
4761
4762 /**
4763 * Pin any BOs which were installed by a previous batch, and restored
4764 * via the hardware logical context mechanism.
4765 *
4766 * We don't need to re-emit all state every batch - the hardware context
4767 * mechanism will save and restore it for us. This includes pointers to
4768 * various BOs...which won't exist unless we ask the kernel to pin them
4769 * by adding them to the validation list.
4770 *
4771 * We can skip buffers if we've re-emitted those packets, as we're
4772 * overwriting those stale pointers with new ones, and don't actually
4773 * refer to the old BOs.
4774 */
4775 static void
4776 iris_restore_render_saved_bos(struct iris_context *ice,
4777 struct iris_batch *batch,
4778 const struct pipe_draw_info *draw)
4779 {
4780 struct iris_genx_state *genx = ice->state.genx;
4781
4782 const uint64_t clean = ~ice->state.dirty;
4783
4784 if (clean & IRIS_DIRTY_CC_VIEWPORT) {
4785 iris_use_optional_res(batch, ice->state.last_res.cc_vp, false);
4786 }
4787
4788 if (clean & IRIS_DIRTY_SF_CL_VIEWPORT) {
4789 iris_use_optional_res(batch, ice->state.last_res.sf_cl_vp, false);
4790 }
4791
4792 if (clean & IRIS_DIRTY_BLEND_STATE) {
4793 iris_use_optional_res(batch, ice->state.last_res.blend, false);
4794 }
4795
4796 if (clean & IRIS_DIRTY_COLOR_CALC_STATE) {
4797 iris_use_optional_res(batch, ice->state.last_res.color_calc, false);
4798 }
4799
4800 if (clean & IRIS_DIRTY_SCISSOR_RECT) {
4801 iris_use_optional_res(batch, ice->state.last_res.scissor, false);
4802 }
4803
4804 if (ice->state.streamout_active && (clean & IRIS_DIRTY_SO_BUFFERS)) {
4805 for (int i = 0; i < 4; i++) {
4806 struct iris_stream_output_target *tgt =
4807 (void *) ice->state.so_target[i];
4808 if (tgt) {
4809 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
4810 true);
4811 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
4812 true);
4813 }
4814 }
4815 }
4816
4817 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4818 if (!(clean & (IRIS_DIRTY_CONSTANTS_VS << stage)))
4819 continue;
4820
4821 struct iris_shader_state *shs = &ice->state.shaders[stage];
4822 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4823
4824 if (!shader)
4825 continue;
4826
4827 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4828
4829 for (int i = 0; i < 4; i++) {
4830 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4831
4832 if (range->length == 0)
4833 continue;
4834
4835 /* Range block is a binding table index, map back to UBO index. */
4836 unsigned block_index = iris_bti_to_group_index(
4837 &shader->bt, IRIS_SURFACE_GROUP_UBO, range->block);
4838 assert(block_index != IRIS_SURFACE_NOT_USED);
4839
4840 struct pipe_shader_buffer *cbuf = &shs->constbuf[block_index];
4841 struct iris_resource *res = (void *) cbuf->buffer;
4842
4843 if (res)
4844 iris_use_pinned_bo(batch, res->bo, false);
4845 else
4846 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
4847 }
4848 }
4849
4850 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4851 if (clean & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4852 /* Re-pin any buffers referred to by the binding table. */
4853 iris_populate_binding_table(ice, batch, stage, true);
4854 }
4855 }
4856
4857 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4858 struct iris_shader_state *shs = &ice->state.shaders[stage];
4859 struct pipe_resource *res = shs->sampler_table.res;
4860 if (res)
4861 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4862 }
4863
4864 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4865 if (clean & (IRIS_DIRTY_VS << stage)) {
4866 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4867
4868 if (shader) {
4869 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
4870 iris_use_pinned_bo(batch, bo, false);
4871
4872 struct brw_stage_prog_data *prog_data = shader->prog_data;
4873
4874 if (prog_data->total_scratch > 0) {
4875 struct iris_bo *bo =
4876 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4877 iris_use_pinned_bo(batch, bo, true);
4878 }
4879 }
4880 }
4881 }
4882
4883 if ((clean & IRIS_DIRTY_DEPTH_BUFFER) &&
4884 (clean & IRIS_DIRTY_WM_DEPTH_STENCIL)) {
4885 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4886 pin_depth_and_stencil_buffers(batch, cso_fb->zsbuf, ice->state.cso_zsa);
4887 }
4888
4889 iris_use_optional_res(batch, ice->state.last_res.index_buffer, false);
4890
4891 if (clean & IRIS_DIRTY_VERTEX_BUFFERS) {
4892 uint64_t bound = ice->state.bound_vertex_buffers;
4893 while (bound) {
4894 const int i = u_bit_scan64(&bound);
4895 struct pipe_resource *res = genx->vertex_buffers[i].resource;
4896 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4897 }
4898 }
4899 }
4900
4901 static void
4902 iris_restore_compute_saved_bos(struct iris_context *ice,
4903 struct iris_batch *batch,
4904 const struct pipe_grid_info *grid)
4905 {
4906 const uint64_t clean = ~ice->state.dirty;
4907
4908 const int stage = MESA_SHADER_COMPUTE;
4909 struct iris_shader_state *shs = &ice->state.shaders[stage];
4910
4911 if (clean & IRIS_DIRTY_BINDINGS_CS) {
4912 /* Re-pin any buffers referred to by the binding table. */
4913 iris_populate_binding_table(ice, batch, stage, true);
4914 }
4915
4916 struct pipe_resource *sampler_res = shs->sampler_table.res;
4917 if (sampler_res)
4918 iris_use_pinned_bo(batch, iris_resource_bo(sampler_res), false);
4919
4920 if ((clean & IRIS_DIRTY_SAMPLER_STATES_CS) &&
4921 (clean & IRIS_DIRTY_BINDINGS_CS) &&
4922 (clean & IRIS_DIRTY_CONSTANTS_CS) &&
4923 (clean & IRIS_DIRTY_CS)) {
4924 iris_use_optional_res(batch, ice->state.last_res.cs_desc, false);
4925 }
4926
4927 if (clean & IRIS_DIRTY_CS) {
4928 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4929
4930 if (shader) {
4931 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
4932 iris_use_pinned_bo(batch, bo, false);
4933
4934 struct iris_bo *curbe_bo =
4935 iris_resource_bo(ice->state.last_res.cs_thread_ids);
4936 iris_use_pinned_bo(batch, curbe_bo, false);
4937
4938 struct brw_stage_prog_data *prog_data = shader->prog_data;
4939
4940 if (prog_data->total_scratch > 0) {
4941 struct iris_bo *bo =
4942 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4943 iris_use_pinned_bo(batch, bo, true);
4944 }
4945 }
4946 }
4947 }
4948
4949 /**
4950 * Possibly emit STATE_BASE_ADDRESS to update Surface State Base Address.
4951 */
4952 static void
4953 iris_update_surface_base_address(struct iris_batch *batch,
4954 struct iris_binder *binder)
4955 {
4956 if (batch->last_surface_base_address == binder->bo->gtt_offset)
4957 return;
4958
4959 uint32_t mocs = batch->screen->isl_dev.mocs.internal;
4960
4961 flush_before_state_base_change(batch);
4962
4963 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
4964 sba.SurfaceStateBaseAddressModifyEnable = true;
4965 sba.SurfaceStateBaseAddress = ro_bo(binder->bo, 0);
4966
4967 /* The hardware appears to pay attention to the MOCS fields even
4968 * if you don't set the "Address Modify Enable" bit for the base.
4969 */
4970 sba.GeneralStateMOCS = mocs;
4971 sba.StatelessDataPortAccessMOCS = mocs;
4972 sba.DynamicStateMOCS = mocs;
4973 sba.IndirectObjectMOCS = mocs;
4974 sba.InstructionMOCS = mocs;
4975 sba.SurfaceStateMOCS = mocs;
4976 #if GEN_GEN >= 9
4977 sba.BindlessSurfaceStateMOCS = mocs;
4978 #endif
4979 }
4980
4981 flush_after_state_base_change(batch);
4982
4983 batch->last_surface_base_address = binder->bo->gtt_offset;
4984 }
4985
4986 static inline void
4987 iris_viewport_zmin_zmax(const struct pipe_viewport_state *vp, bool halfz,
4988 bool window_space_position, float *zmin, float *zmax)
4989 {
4990 if (window_space_position) {
4991 *zmin = 0.f;
4992 *zmax = 1.f;
4993 return;
4994 }
4995 util_viewport_zmin_zmax(vp, halfz, zmin, zmax);
4996 }
4997
4998 #if GEN_GEN >= 12
4999 void
5000 genX(emit_aux_map_state)(struct iris_batch *batch)
5001 {
5002 struct iris_screen *screen = batch->screen;
5003 void *aux_map_ctx = iris_bufmgr_get_aux_map_context(screen->bufmgr);
5004 if (!aux_map_ctx)
5005 return;
5006 uint32_t aux_map_state_num = gen_aux_map_get_state_num(aux_map_ctx);
5007 if (batch->last_aux_map_state != aux_map_state_num) {
5008 /* If the aux-map state number increased, then we need to rewrite the
5009 * register. Rewriting the register is used to both set the aux-map
5010 * translation table address, and also to invalidate any previously
5011 * cached translations.
5012 */
5013 uint64_t base_addr = gen_aux_map_get_base(aux_map_ctx);
5014 assert(base_addr != 0 && ALIGN(base_addr, 32 * 1024) == base_addr);
5015 iris_load_register_imm64(batch, GENX(GFX_AUX_TABLE_BASE_ADDR_num),
5016 base_addr);
5017 batch->last_aux_map_state = aux_map_state_num;
5018 }
5019 }
5020 #endif
5021
5022 static void
5023 iris_upload_dirty_render_state(struct iris_context *ice,
5024 struct iris_batch *batch,
5025 const struct pipe_draw_info *draw)
5026 {
5027 const uint64_t dirty = ice->state.dirty;
5028
5029 if (!(dirty & IRIS_ALL_DIRTY_FOR_RENDER))
5030 return;
5031
5032 struct iris_genx_state *genx = ice->state.genx;
5033 struct iris_binder *binder = &ice->state.binder;
5034 struct brw_wm_prog_data *wm_prog_data = (void *)
5035 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
5036
5037 if (dirty & IRIS_DIRTY_CC_VIEWPORT) {
5038 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
5039 uint32_t cc_vp_address;
5040
5041 /* XXX: could avoid streaming for depth_clip [0,1] case. */
5042 uint32_t *cc_vp_map =
5043 stream_state(batch, ice->state.dynamic_uploader,
5044 &ice->state.last_res.cc_vp,
5045 4 * ice->state.num_viewports *
5046 GENX(CC_VIEWPORT_length), 32, &cc_vp_address);
5047 for (int i = 0; i < ice->state.num_viewports; i++) {
5048 float zmin, zmax;
5049 iris_viewport_zmin_zmax(&ice->state.viewports[i], cso_rast->clip_halfz,
5050 ice->state.window_space_position,
5051 &zmin, &zmax);
5052 if (cso_rast->depth_clip_near)
5053 zmin = 0.0;
5054 if (cso_rast->depth_clip_far)
5055 zmax = 1.0;
5056
5057 iris_pack_state(GENX(CC_VIEWPORT), cc_vp_map, ccv) {
5058 ccv.MinimumDepth = zmin;
5059 ccv.MaximumDepth = zmax;
5060 }
5061
5062 cc_vp_map += GENX(CC_VIEWPORT_length);
5063 }
5064
5065 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
5066 ptr.CCViewportPointer = cc_vp_address;
5067 }
5068 }
5069
5070 if (dirty & IRIS_DIRTY_SF_CL_VIEWPORT) {
5071 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5072 uint32_t sf_cl_vp_address;
5073 uint32_t *vp_map =
5074 stream_state(batch, ice->state.dynamic_uploader,
5075 &ice->state.last_res.sf_cl_vp,
5076 4 * ice->state.num_viewports *
5077 GENX(SF_CLIP_VIEWPORT_length), 64, &sf_cl_vp_address);
5078
5079 for (unsigned i = 0; i < ice->state.num_viewports; i++) {
5080 const struct pipe_viewport_state *state = &ice->state.viewports[i];
5081 float gb_xmin, gb_xmax, gb_ymin, gb_ymax;
5082
5083 float vp_xmin = viewport_extent(state, 0, -1.0f);
5084 float vp_xmax = viewport_extent(state, 0, 1.0f);
5085 float vp_ymin = viewport_extent(state, 1, -1.0f);
5086 float vp_ymax = viewport_extent(state, 1, 1.0f);
5087
5088 gen_calculate_guardband_size(cso_fb->width, cso_fb->height,
5089 state->scale[0], state->scale[1],
5090 state->translate[0], state->translate[1],
5091 &gb_xmin, &gb_xmax, &gb_ymin, &gb_ymax);
5092
5093 iris_pack_state(GENX(SF_CLIP_VIEWPORT), vp_map, vp) {
5094 vp.ViewportMatrixElementm00 = state->scale[0];
5095 vp.ViewportMatrixElementm11 = state->scale[1];
5096 vp.ViewportMatrixElementm22 = state->scale[2];
5097 vp.ViewportMatrixElementm30 = state->translate[0];
5098 vp.ViewportMatrixElementm31 = state->translate[1];
5099 vp.ViewportMatrixElementm32 = state->translate[2];
5100 vp.XMinClipGuardband = gb_xmin;
5101 vp.XMaxClipGuardband = gb_xmax;
5102 vp.YMinClipGuardband = gb_ymin;
5103 vp.YMaxClipGuardband = gb_ymax;
5104 vp.XMinViewPort = MAX2(vp_xmin, 0);
5105 vp.XMaxViewPort = MIN2(vp_xmax, cso_fb->width) - 1;
5106 vp.YMinViewPort = MAX2(vp_ymin, 0);
5107 vp.YMaxViewPort = MIN2(vp_ymax, cso_fb->height) - 1;
5108 }
5109
5110 vp_map += GENX(SF_CLIP_VIEWPORT_length);
5111 }
5112
5113 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
5114 ptr.SFClipViewportPointer = sf_cl_vp_address;
5115 }
5116 }
5117
5118 if (dirty & IRIS_DIRTY_URB) {
5119 unsigned size[4];
5120
5121 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
5122 if (!ice->shaders.prog[i]) {
5123 size[i] = 1;
5124 } else {
5125 struct brw_vue_prog_data *vue_prog_data =
5126 (void *) ice->shaders.prog[i]->prog_data;
5127 size[i] = vue_prog_data->urb_entry_size;
5128 }
5129 assert(size[i] != 0);
5130 }
5131
5132 genX(emit_urb_setup)(ice, batch, size,
5133 ice->shaders.prog[MESA_SHADER_TESS_EVAL] != NULL,
5134 ice->shaders.prog[MESA_SHADER_GEOMETRY] != NULL);
5135 }
5136
5137 if (dirty & IRIS_DIRTY_BLEND_STATE) {
5138 struct iris_blend_state *cso_blend = ice->state.cso_blend;
5139 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5140 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
5141 const int header_dwords = GENX(BLEND_STATE_length);
5142
5143 /* Always write at least one BLEND_STATE - the final RT message will
5144 * reference BLEND_STATE[0] even if there aren't color writes. There
5145 * may still be alpha testing, computed depth, and so on.
5146 */
5147 const int rt_dwords =
5148 MAX2(cso_fb->nr_cbufs, 1) * GENX(BLEND_STATE_ENTRY_length);
5149
5150 uint32_t blend_offset;
5151 uint32_t *blend_map =
5152 stream_state(batch, ice->state.dynamic_uploader,
5153 &ice->state.last_res.blend,
5154 4 * (header_dwords + rt_dwords), 64, &blend_offset);
5155
5156 uint32_t blend_state_header;
5157 iris_pack_state(GENX(BLEND_STATE), &blend_state_header, bs) {
5158 bs.AlphaTestEnable = cso_zsa->alpha.enabled;
5159 bs.AlphaTestFunction = translate_compare_func(cso_zsa->alpha.func);
5160 }
5161
5162 blend_map[0] = blend_state_header | cso_blend->blend_state[0];
5163 memcpy(&blend_map[1], &cso_blend->blend_state[1], 4 * rt_dwords);
5164
5165 iris_emit_cmd(batch, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
5166 ptr.BlendStatePointer = blend_offset;
5167 ptr.BlendStatePointerValid = true;
5168 }
5169 }
5170
5171 if (dirty & IRIS_DIRTY_COLOR_CALC_STATE) {
5172 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
5173 #if GEN_GEN == 8
5174 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
5175 #endif
5176 uint32_t cc_offset;
5177 void *cc_map =
5178 stream_state(batch, ice->state.dynamic_uploader,
5179 &ice->state.last_res.color_calc,
5180 sizeof(uint32_t) * GENX(COLOR_CALC_STATE_length),
5181 64, &cc_offset);
5182 iris_pack_state(GENX(COLOR_CALC_STATE), cc_map, cc) {
5183 cc.AlphaTestFormat = ALPHATEST_FLOAT32;
5184 cc.AlphaReferenceValueAsFLOAT32 = cso->alpha.ref_value;
5185 cc.BlendConstantColorRed = ice->state.blend_color.color[0];
5186 cc.BlendConstantColorGreen = ice->state.blend_color.color[1];
5187 cc.BlendConstantColorBlue = ice->state.blend_color.color[2];
5188 cc.BlendConstantColorAlpha = ice->state.blend_color.color[3];
5189 #if GEN_GEN == 8
5190 cc.StencilReferenceValue = p_stencil_refs->ref_value[0];
5191 cc.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
5192 #endif
5193 }
5194 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
5195 ptr.ColorCalcStatePointer = cc_offset;
5196 ptr.ColorCalcStatePointerValid = true;
5197 }
5198 }
5199
5200 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
5201 if (!(dirty & (IRIS_DIRTY_CONSTANTS_VS << stage)))
5202 continue;
5203
5204 struct iris_shader_state *shs = &ice->state.shaders[stage];
5205 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
5206
5207 if (!shader)
5208 continue;
5209
5210 if (shs->sysvals_need_upload)
5211 upload_sysvals(ice, stage);
5212
5213 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
5214
5215 iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_VS), pkt) {
5216 pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
5217 if (prog_data) {
5218 /* The Skylake PRM contains the following restriction:
5219 *
5220 * "The driver must ensure The following case does not occur
5221 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
5222 * buffer 3 read length equal to zero committed followed by a
5223 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
5224 * zero committed."
5225 *
5226 * To avoid this, we program the buffers in the highest slots.
5227 * This way, slot 0 is only used if slot 3 is also used.
5228 */
5229 int n = 3;
5230
5231 for (int i = 3; i >= 0; i--) {
5232 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
5233
5234 if (range->length == 0)
5235 continue;
5236
5237 /* Range block is a binding table index, map back to UBO index. */
5238 unsigned block_index = iris_bti_to_group_index(
5239 &shader->bt, IRIS_SURFACE_GROUP_UBO, range->block);
5240 assert(block_index != IRIS_SURFACE_NOT_USED);
5241
5242 struct pipe_shader_buffer *cbuf = &shs->constbuf[block_index];
5243 struct iris_resource *res = (void *) cbuf->buffer;
5244
5245 assert(cbuf->buffer_offset % 32 == 0);
5246
5247 pkt.ConstantBody.ReadLength[n] = range->length;
5248 pkt.ConstantBody.Buffer[n] =
5249 res ? ro_bo(res->bo, range->start * 32 + cbuf->buffer_offset)
5250 : ro_bo(batch->screen->workaround_bo, 0);
5251 n--;
5252 }
5253 }
5254 }
5255 }
5256
5257 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
5258 /* Gen9 requires 3DSTATE_BINDING_TABLE_POINTERS_XS to be re-emitted
5259 * in order to commit constants. TODO: Investigate "Disable Gather
5260 * at Set Shader" to go back to legacy mode...
5261 */
5262 if (dirty & ((IRIS_DIRTY_BINDINGS_VS |
5263 (GEN_GEN == 9 ? IRIS_DIRTY_CONSTANTS_VS : 0)) << stage)) {
5264 iris_emit_cmd(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), ptr) {
5265 ptr._3DCommandSubOpcode = 38 + stage;
5266 ptr.PointertoVSBindingTable = binder->bt_offset[stage];
5267 }
5268 }
5269 }
5270
5271 if (GEN_GEN >= 11 && (dirty & IRIS_DIRTY_RENDER_BUFFER)) {
5272 // XXX: we may want to flag IRIS_DIRTY_MULTISAMPLE (or SAMPLE_MASK?)
5273 // XXX: see commit 979fc1bc9bcc64027ff2cfafd285676f31b930a6
5274
5275 /* The PIPE_CONTROL command description says:
5276 *
5277 * "Whenever a Binding Table Index (BTI) used by a Render Target
5278 * Message points to a different RENDER_SURFACE_STATE, SW must issue a
5279 * Render Target Cache Flush by enabling this bit. When render target
5280 * flush is set due to new association of BTI, PS Scoreboard Stall bit
5281 * must be set in this packet."
5282 */
5283 // XXX: does this need to happen at 3DSTATE_BTP_PS time?
5284 iris_emit_pipe_control_flush(batch, "workaround: RT BTI change [draw]",
5285 PIPE_CONTROL_RENDER_TARGET_FLUSH |
5286 PIPE_CONTROL_STALL_AT_SCOREBOARD);
5287 }
5288
5289 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
5290 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
5291 iris_populate_binding_table(ice, batch, stage, false);
5292 }
5293 }
5294
5295 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
5296 if (!(dirty & (IRIS_DIRTY_SAMPLER_STATES_VS << stage)) ||
5297 !ice->shaders.prog[stage])
5298 continue;
5299
5300 iris_upload_sampler_states(ice, stage);
5301
5302 struct iris_shader_state *shs = &ice->state.shaders[stage];
5303 struct pipe_resource *res = shs->sampler_table.res;
5304 if (res)
5305 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
5306
5307 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
5308 ptr._3DCommandSubOpcode = 43 + stage;
5309 ptr.PointertoVSSamplerState = shs->sampler_table.offset;
5310 }
5311 }
5312
5313 if (ice->state.need_border_colors)
5314 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
5315
5316 if (dirty & IRIS_DIRTY_MULTISAMPLE) {
5317 iris_emit_cmd(batch, GENX(3DSTATE_MULTISAMPLE), ms) {
5318 ms.PixelLocation =
5319 ice->state.cso_rast->half_pixel_center ? CENTER : UL_CORNER;
5320 if (ice->state.framebuffer.samples > 0)
5321 ms.NumberofMultisamples = ffs(ice->state.framebuffer.samples) - 1;
5322 }
5323 }
5324
5325 if (dirty & IRIS_DIRTY_SAMPLE_MASK) {
5326 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_MASK), ms) {
5327 ms.SampleMask = ice->state.sample_mask;
5328 }
5329 }
5330
5331 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
5332 if (!(dirty & (IRIS_DIRTY_VS << stage)))
5333 continue;
5334
5335 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
5336
5337 if (shader) {
5338 struct brw_stage_prog_data *prog_data = shader->prog_data;
5339 struct iris_resource *cache = (void *) shader->assembly.res;
5340 iris_use_pinned_bo(batch, cache->bo, false);
5341
5342 if (prog_data->total_scratch > 0) {
5343 struct iris_bo *bo =
5344 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
5345 iris_use_pinned_bo(batch, bo, true);
5346 }
5347
5348 if (stage == MESA_SHADER_FRAGMENT) {
5349 UNUSED struct iris_rasterizer_state *cso = ice->state.cso_rast;
5350 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5351
5352 uint32_t ps_state[GENX(3DSTATE_PS_length)] = {0};
5353 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
5354 ps._8PixelDispatchEnable = wm_prog_data->dispatch_8;
5355 ps._16PixelDispatchEnable = wm_prog_data->dispatch_16;
5356 ps._32PixelDispatchEnable = wm_prog_data->dispatch_32;
5357
5358 /* The docs for 3DSTATE_PS::32 Pixel Dispatch Enable say:
5359 *
5360 * "When NUM_MULTISAMPLES = 16 or FORCE_SAMPLE_COUNT = 16,
5361 * SIMD32 Dispatch must not be enabled for PER_PIXEL dispatch
5362 * mode."
5363 *
5364 * 16x MSAA only exists on Gen9+, so we can skip this on Gen8.
5365 */
5366 if (GEN_GEN >= 9 && cso_fb->samples == 16 &&
5367 !wm_prog_data->persample_dispatch) {
5368 assert(ps._8PixelDispatchEnable || ps._16PixelDispatchEnable);
5369 ps._32PixelDispatchEnable = false;
5370 }
5371
5372 ps.DispatchGRFStartRegisterForConstantSetupData0 =
5373 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
5374 ps.DispatchGRFStartRegisterForConstantSetupData1 =
5375 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
5376 ps.DispatchGRFStartRegisterForConstantSetupData2 =
5377 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
5378
5379 ps.KernelStartPointer0 = KSP(shader) +
5380 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
5381 ps.KernelStartPointer1 = KSP(shader) +
5382 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
5383 ps.KernelStartPointer2 = KSP(shader) +
5384 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
5385 }
5386
5387 uint32_t psx_state[GENX(3DSTATE_PS_EXTRA_length)] = {0};
5388 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
5389 #if GEN_GEN >= 9
5390 if (!wm_prog_data->uses_sample_mask)
5391 psx.InputCoverageMaskState = ICMS_NONE;
5392 else if (wm_prog_data->post_depth_coverage)
5393 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
5394 else if (wm_prog_data->inner_coverage &&
5395 cso->conservative_rasterization)
5396 psx.InputCoverageMaskState = ICMS_INNER_CONSERVATIVE;
5397 else
5398 psx.InputCoverageMaskState = ICMS_NORMAL;
5399 #else
5400 psx.PixelShaderUsesInputCoverageMask =
5401 wm_prog_data->uses_sample_mask;
5402 #endif
5403 }
5404
5405 uint32_t *shader_ps = (uint32_t *) shader->derived_data;
5406 uint32_t *shader_psx = shader_ps + GENX(3DSTATE_PS_length);
5407 iris_emit_merge(batch, shader_ps, ps_state,
5408 GENX(3DSTATE_PS_length));
5409 iris_emit_merge(batch, shader_psx, psx_state,
5410 GENX(3DSTATE_PS_EXTRA_length));
5411 } else {
5412 iris_batch_emit(batch, shader->derived_data,
5413 iris_derived_program_state_size(stage));
5414 }
5415 } else {
5416 if (stage == MESA_SHADER_TESS_EVAL) {
5417 iris_emit_cmd(batch, GENX(3DSTATE_HS), hs);
5418 iris_emit_cmd(batch, GENX(3DSTATE_TE), te);
5419 iris_emit_cmd(batch, GENX(3DSTATE_DS), ds);
5420 } else if (stage == MESA_SHADER_GEOMETRY) {
5421 iris_emit_cmd(batch, GENX(3DSTATE_GS), gs);
5422 }
5423 }
5424 }
5425
5426 if (ice->state.streamout_active) {
5427 if (dirty & IRIS_DIRTY_SO_BUFFERS) {
5428 iris_batch_emit(batch, genx->so_buffers,
5429 4 * 4 * GENX(3DSTATE_SO_BUFFER_length));
5430 for (int i = 0; i < 4; i++) {
5431 struct iris_stream_output_target *tgt =
5432 (void *) ice->state.so_target[i];
5433 if (tgt) {
5434 tgt->zeroed = true;
5435 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
5436 true);
5437 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
5438 true);
5439 }
5440 }
5441 }
5442
5443 if ((dirty & IRIS_DIRTY_SO_DECL_LIST) && ice->state.streamout) {
5444 uint32_t *decl_list =
5445 ice->state.streamout + GENX(3DSTATE_STREAMOUT_length);
5446 iris_batch_emit(batch, decl_list, 4 * ((decl_list[0] & 0xff) + 2));
5447 }
5448
5449 if (dirty & IRIS_DIRTY_STREAMOUT) {
5450 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
5451
5452 uint32_t dynamic_sol[GENX(3DSTATE_STREAMOUT_length)];
5453 iris_pack_command(GENX(3DSTATE_STREAMOUT), dynamic_sol, sol) {
5454 sol.SOFunctionEnable = true;
5455 sol.SOStatisticsEnable = true;
5456
5457 sol.RenderingDisable = cso_rast->rasterizer_discard &&
5458 !ice->state.prims_generated_query_active;
5459 sol.ReorderMode = cso_rast->flatshade_first ? LEADING : TRAILING;
5460 }
5461
5462 assert(ice->state.streamout);
5463
5464 iris_emit_merge(batch, ice->state.streamout, dynamic_sol,
5465 GENX(3DSTATE_STREAMOUT_length));
5466 }
5467 } else {
5468 if (dirty & IRIS_DIRTY_STREAMOUT) {
5469 iris_emit_cmd(batch, GENX(3DSTATE_STREAMOUT), sol);
5470 }
5471 }
5472
5473 if (dirty & IRIS_DIRTY_CLIP) {
5474 struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
5475 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5476
5477 bool gs_or_tes = ice->shaders.prog[MESA_SHADER_GEOMETRY] ||
5478 ice->shaders.prog[MESA_SHADER_TESS_EVAL];
5479 bool points_or_lines = cso_rast->fill_mode_point_or_line ||
5480 (gs_or_tes ? ice->shaders.output_topology_is_points_or_lines
5481 : ice->state.prim_is_points_or_lines);
5482
5483 uint32_t dynamic_clip[GENX(3DSTATE_CLIP_length)];
5484 iris_pack_command(GENX(3DSTATE_CLIP), &dynamic_clip, cl) {
5485 cl.StatisticsEnable = ice->state.statistics_counters_enabled;
5486 if (cso_rast->rasterizer_discard)
5487 cl.ClipMode = CLIPMODE_REJECT_ALL;
5488 else if (ice->state.window_space_position)
5489 cl.ClipMode = CLIPMODE_ACCEPT_ALL;
5490 else
5491 cl.ClipMode = CLIPMODE_NORMAL;
5492
5493 cl.PerspectiveDivideDisable = ice->state.window_space_position;
5494 cl.ViewportXYClipTestEnable = !points_or_lines;
5495
5496 if (wm_prog_data->barycentric_interp_modes &
5497 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
5498 cl.NonPerspectiveBarycentricEnable = true;
5499
5500 cl.ForceZeroRTAIndexEnable = cso_fb->layers <= 1;
5501 cl.MaximumVPIndex = ice->state.num_viewports - 1;
5502 }
5503 iris_emit_merge(batch, cso_rast->clip, dynamic_clip,
5504 ARRAY_SIZE(cso_rast->clip));
5505 }
5506
5507 if (dirty & IRIS_DIRTY_RASTER) {
5508 struct iris_rasterizer_state *cso = ice->state.cso_rast;
5509 iris_batch_emit(batch, cso->raster, sizeof(cso->raster));
5510
5511 uint32_t dynamic_sf[GENX(3DSTATE_SF_length)];
5512 iris_pack_command(GENX(3DSTATE_SF), &dynamic_sf, sf) {
5513 sf.ViewportTransformEnable = !ice->state.window_space_position;
5514 }
5515 iris_emit_merge(batch, cso->sf, dynamic_sf,
5516 ARRAY_SIZE(dynamic_sf));
5517 }
5518
5519 if (dirty & IRIS_DIRTY_WM) {
5520 struct iris_rasterizer_state *cso = ice->state.cso_rast;
5521 uint32_t dynamic_wm[GENX(3DSTATE_WM_length)];
5522
5523 iris_pack_command(GENX(3DSTATE_WM), &dynamic_wm, wm) {
5524 wm.StatisticsEnable = ice->state.statistics_counters_enabled;
5525
5526 wm.BarycentricInterpolationMode =
5527 wm_prog_data->barycentric_interp_modes;
5528
5529 if (wm_prog_data->early_fragment_tests)
5530 wm.EarlyDepthStencilControl = EDSC_PREPS;
5531 else if (wm_prog_data->has_side_effects)
5532 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
5533
5534 /* We could skip this bit if color writes are enabled. */
5535 if (wm_prog_data->has_side_effects || wm_prog_data->uses_kill)
5536 wm.ForceThreadDispatchEnable = ForceON;
5537 }
5538 iris_emit_merge(batch, cso->wm, dynamic_wm, ARRAY_SIZE(cso->wm));
5539 }
5540
5541 if (dirty & IRIS_DIRTY_SBE) {
5542 iris_emit_sbe(batch, ice);
5543 }
5544
5545 if (dirty & IRIS_DIRTY_PS_BLEND) {
5546 struct iris_blend_state *cso_blend = ice->state.cso_blend;
5547 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
5548 const struct shader_info *fs_info =
5549 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
5550
5551 uint32_t dynamic_pb[GENX(3DSTATE_PS_BLEND_length)];
5552 iris_pack_command(GENX(3DSTATE_PS_BLEND), &dynamic_pb, pb) {
5553 pb.HasWriteableRT = has_writeable_rt(cso_blend, fs_info);
5554 pb.AlphaTestEnable = cso_zsa->alpha.enabled;
5555
5556 /* The dual source blending docs caution against using SRC1 factors
5557 * when the shader doesn't use a dual source render target write.
5558 * Empirically, this can lead to GPU hangs, and the results are
5559 * undefined anyway, so simply disable blending to avoid the hang.
5560 */
5561 pb.ColorBufferBlendEnable = (cso_blend->blend_enables & 1) &&
5562 (!cso_blend->dual_color_blending || wm_prog_data->dual_src_blend);
5563 }
5564
5565 iris_emit_merge(batch, cso_blend->ps_blend, dynamic_pb,
5566 ARRAY_SIZE(cso_blend->ps_blend));
5567 }
5568
5569 if (dirty & IRIS_DIRTY_WM_DEPTH_STENCIL) {
5570 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
5571 #if GEN_GEN >= 9
5572 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
5573 uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
5574 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
5575 wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
5576 wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
5577 }
5578 iris_emit_merge(batch, cso->wmds, stencil_refs, ARRAY_SIZE(cso->wmds));
5579 #else
5580 iris_batch_emit(batch, cso->wmds, sizeof(cso->wmds));
5581 #endif
5582
5583 #if GEN_GEN >= 12
5584 iris_batch_emit(batch, cso->depth_bounds, sizeof(cso->depth_bounds));
5585 #endif
5586 }
5587
5588 if (dirty & IRIS_DIRTY_SCISSOR_RECT) {
5589 uint32_t scissor_offset =
5590 emit_state(batch, ice->state.dynamic_uploader,
5591 &ice->state.last_res.scissor,
5592 ice->state.scissors,
5593 sizeof(struct pipe_scissor_state) *
5594 ice->state.num_viewports, 32);
5595
5596 iris_emit_cmd(batch, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
5597 ptr.ScissorRectPointer = scissor_offset;
5598 }
5599 }
5600
5601 if (dirty & IRIS_DIRTY_DEPTH_BUFFER) {
5602 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
5603
5604 /* Do not emit the clear params yets. We need to update the clear value
5605 * first.
5606 */
5607 uint32_t clear_length = GENX(3DSTATE_CLEAR_PARAMS_length) * 4;
5608 uint32_t cso_z_size = sizeof(cso_z->packets) - clear_length;
5609 iris_batch_emit(batch, cso_z->packets, cso_z_size);
5610 if (GEN_GEN >= 12) {
5611 /* GEN:BUG:1408224581
5612 *
5613 * Workaround: Gen12LP Astep only An additional pipe control with
5614 * post-sync = store dword operation would be required.( w/a is to
5615 * have an additional pipe control after the stencil state whenever
5616 * the surface state bits of this state is changing).
5617 */
5618 iris_emit_pipe_control_write(batch, "WA for stencil state",
5619 PIPE_CONTROL_WRITE_IMMEDIATE,
5620 batch->screen->workaround_bo, 0, 0);
5621 }
5622
5623 union isl_color_value clear_value = { .f32 = { 0, } };
5624
5625 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5626 if (cso_fb->zsbuf) {
5627 struct iris_resource *zres, *sres;
5628 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
5629 &zres, &sres);
5630 if (zres && zres->aux.bo)
5631 clear_value = iris_resource_get_clear_color(zres, NULL, NULL);
5632 }
5633
5634 uint32_t clear_params[GENX(3DSTATE_CLEAR_PARAMS_length)];
5635 iris_pack_command(GENX(3DSTATE_CLEAR_PARAMS), clear_params, clear) {
5636 clear.DepthClearValueValid = true;
5637 clear.DepthClearValue = clear_value.f32[0];
5638 }
5639 iris_batch_emit(batch, clear_params, clear_length);
5640 }
5641
5642 if (dirty & (IRIS_DIRTY_DEPTH_BUFFER | IRIS_DIRTY_WM_DEPTH_STENCIL)) {
5643 /* Listen for buffer changes, and also write enable changes. */
5644 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5645 pin_depth_and_stencil_buffers(batch, cso_fb->zsbuf, ice->state.cso_zsa);
5646 }
5647
5648 if (dirty & IRIS_DIRTY_POLYGON_STIPPLE) {
5649 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
5650 for (int i = 0; i < 32; i++) {
5651 poly.PatternRow[i] = ice->state.poly_stipple.stipple[i];
5652 }
5653 }
5654 }
5655
5656 if (dirty & IRIS_DIRTY_LINE_STIPPLE) {
5657 struct iris_rasterizer_state *cso = ice->state.cso_rast;
5658 iris_batch_emit(batch, cso->line_stipple, sizeof(cso->line_stipple));
5659 }
5660
5661 if (dirty & IRIS_DIRTY_VF_TOPOLOGY) {
5662 iris_emit_cmd(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
5663 topo.PrimitiveTopologyType =
5664 translate_prim_type(draw->mode, draw->vertices_per_patch);
5665 }
5666 }
5667
5668 if (dirty & IRIS_DIRTY_VERTEX_BUFFERS) {
5669 int count = util_bitcount64(ice->state.bound_vertex_buffers);
5670 int dynamic_bound = ice->state.bound_vertex_buffers;
5671
5672 if (ice->state.vs_uses_draw_params) {
5673 assert(ice->draw.draw_params.res);
5674
5675 struct iris_vertex_buffer_state *state =
5676 &(ice->state.genx->vertex_buffers[count]);
5677 pipe_resource_reference(&state->resource, ice->draw.draw_params.res);
5678 struct iris_resource *res = (void *) state->resource;
5679
5680 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
5681 vb.VertexBufferIndex = count;
5682 vb.AddressModifyEnable = true;
5683 vb.BufferPitch = 0;
5684 vb.BufferSize = res->bo->size - ice->draw.draw_params.offset;
5685 vb.BufferStartingAddress =
5686 ro_bo(NULL, res->bo->gtt_offset +
5687 (int) ice->draw.draw_params.offset);
5688 vb.MOCS = mocs(res->bo, &batch->screen->isl_dev);
5689 }
5690 dynamic_bound |= 1ull << count;
5691 count++;
5692 }
5693
5694 if (ice->state.vs_uses_derived_draw_params) {
5695 struct iris_vertex_buffer_state *state =
5696 &(ice->state.genx->vertex_buffers[count]);
5697 pipe_resource_reference(&state->resource,
5698 ice->draw.derived_draw_params.res);
5699 struct iris_resource *res = (void *) ice->draw.derived_draw_params.res;
5700
5701 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
5702 vb.VertexBufferIndex = count;
5703 vb.AddressModifyEnable = true;
5704 vb.BufferPitch = 0;
5705 vb.BufferSize =
5706 res->bo->size - ice->draw.derived_draw_params.offset;
5707 vb.BufferStartingAddress =
5708 ro_bo(NULL, res->bo->gtt_offset +
5709 (int) ice->draw.derived_draw_params.offset);
5710 vb.MOCS = mocs(res->bo, &batch->screen->isl_dev);
5711 }
5712 dynamic_bound |= 1ull << count;
5713 count++;
5714 }
5715
5716 if (count) {
5717 /* The VF cache designers cut corners, and made the cache key's
5718 * <VertexBufferIndex, Memory Address> tuple only consider the bottom
5719 * 32 bits of the address. If you have two vertex buffers which get
5720 * placed exactly 4 GiB apart and use them in back-to-back draw calls,
5721 * you can get collisions (even within a single batch).
5722 *
5723 * So, we need to do a VF cache invalidate if the buffer for a VB
5724 * slot slot changes [48:32] address bits from the previous time.
5725 */
5726 unsigned flush_flags = 0;
5727
5728 uint64_t bound = dynamic_bound;
5729 while (bound) {
5730 const int i = u_bit_scan64(&bound);
5731 uint16_t high_bits = 0;
5732
5733 struct iris_resource *res =
5734 (void *) genx->vertex_buffers[i].resource;
5735 if (res) {
5736 iris_use_pinned_bo(batch, res->bo, false);
5737
5738 high_bits = res->bo->gtt_offset >> 32ull;
5739 if (high_bits != ice->state.last_vbo_high_bits[i]) {
5740 flush_flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE |
5741 PIPE_CONTROL_CS_STALL;
5742 ice->state.last_vbo_high_bits[i] = high_bits;
5743 }
5744 }
5745 }
5746
5747 if (flush_flags) {
5748 iris_emit_pipe_control_flush(batch,
5749 "workaround: VF cache 32-bit key [VB]",
5750 flush_flags);
5751 }
5752
5753 const unsigned vb_dwords = GENX(VERTEX_BUFFER_STATE_length);
5754
5755 uint32_t *map =
5756 iris_get_command_space(batch, 4 * (1 + vb_dwords * count));
5757 _iris_pack_command(batch, GENX(3DSTATE_VERTEX_BUFFERS), map, vb) {
5758 vb.DWordLength = (vb_dwords * count + 1) - 2;
5759 }
5760 map += 1;
5761
5762 bound = dynamic_bound;
5763 while (bound) {
5764 const int i = u_bit_scan64(&bound);
5765 memcpy(map, genx->vertex_buffers[i].state,
5766 sizeof(uint32_t) * vb_dwords);
5767 map += vb_dwords;
5768 }
5769 }
5770 }
5771
5772 if (dirty & IRIS_DIRTY_VERTEX_ELEMENTS) {
5773 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
5774 const unsigned entries = MAX2(cso->count, 1);
5775 if (!(ice->state.vs_needs_sgvs_element ||
5776 ice->state.vs_uses_derived_draw_params ||
5777 ice->state.vs_needs_edge_flag)) {
5778 iris_batch_emit(batch, cso->vertex_elements, sizeof(uint32_t) *
5779 (1 + entries * GENX(VERTEX_ELEMENT_STATE_length)));
5780 } else {
5781 uint32_t dynamic_ves[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
5782 const unsigned dyn_count = cso->count +
5783 ice->state.vs_needs_sgvs_element +
5784 ice->state.vs_uses_derived_draw_params;
5785
5786 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS),
5787 &dynamic_ves, ve) {
5788 ve.DWordLength =
5789 1 + GENX(VERTEX_ELEMENT_STATE_length) * dyn_count - 2;
5790 }
5791 memcpy(&dynamic_ves[1], &cso->vertex_elements[1],
5792 (cso->count - ice->state.vs_needs_edge_flag) *
5793 GENX(VERTEX_ELEMENT_STATE_length) * sizeof(uint32_t));
5794 uint32_t *ve_pack_dest =
5795 &dynamic_ves[1 + (cso->count - ice->state.vs_needs_edge_flag) *
5796 GENX(VERTEX_ELEMENT_STATE_length)];
5797
5798 if (ice->state.vs_needs_sgvs_element) {
5799 uint32_t base_ctrl = ice->state.vs_uses_draw_params ?
5800 VFCOMP_STORE_SRC : VFCOMP_STORE_0;
5801 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
5802 ve.Valid = true;
5803 ve.VertexBufferIndex =
5804 util_bitcount64(ice->state.bound_vertex_buffers);
5805 ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
5806 ve.Component0Control = base_ctrl;
5807 ve.Component1Control = base_ctrl;
5808 ve.Component2Control = VFCOMP_STORE_0;
5809 ve.Component3Control = VFCOMP_STORE_0;
5810 }
5811 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
5812 }
5813 if (ice->state.vs_uses_derived_draw_params) {
5814 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
5815 ve.Valid = true;
5816 ve.VertexBufferIndex =
5817 util_bitcount64(ice->state.bound_vertex_buffers) +
5818 ice->state.vs_uses_draw_params;
5819 ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
5820 ve.Component0Control = VFCOMP_STORE_SRC;
5821 ve.Component1Control = VFCOMP_STORE_SRC;
5822 ve.Component2Control = VFCOMP_STORE_0;
5823 ve.Component3Control = VFCOMP_STORE_0;
5824 }
5825 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
5826 }
5827 if (ice->state.vs_needs_edge_flag) {
5828 for (int i = 0; i < GENX(VERTEX_ELEMENT_STATE_length); i++)
5829 ve_pack_dest[i] = cso->edgeflag_ve[i];
5830 }
5831
5832 iris_batch_emit(batch, &dynamic_ves, sizeof(uint32_t) *
5833 (1 + dyn_count * GENX(VERTEX_ELEMENT_STATE_length)));
5834 }
5835
5836 if (!ice->state.vs_needs_edge_flag) {
5837 iris_batch_emit(batch, cso->vf_instancing, sizeof(uint32_t) *
5838 entries * GENX(3DSTATE_VF_INSTANCING_length));
5839 } else {
5840 assert(cso->count > 0);
5841 const unsigned edgeflag_index = cso->count - 1;
5842 uint32_t dynamic_vfi[33 * GENX(3DSTATE_VF_INSTANCING_length)];
5843 memcpy(&dynamic_vfi[0], cso->vf_instancing, edgeflag_index *
5844 GENX(3DSTATE_VF_INSTANCING_length) * sizeof(uint32_t));
5845
5846 uint32_t *vfi_pack_dest = &dynamic_vfi[0] +
5847 edgeflag_index * GENX(3DSTATE_VF_INSTANCING_length);
5848 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
5849 vi.VertexElementIndex = edgeflag_index +
5850 ice->state.vs_needs_sgvs_element +
5851 ice->state.vs_uses_derived_draw_params;
5852 }
5853 for (int i = 0; i < GENX(3DSTATE_VF_INSTANCING_length); i++)
5854 vfi_pack_dest[i] |= cso->edgeflag_vfi[i];
5855
5856 iris_batch_emit(batch, &dynamic_vfi[0], sizeof(uint32_t) *
5857 entries * GENX(3DSTATE_VF_INSTANCING_length));
5858 }
5859 }
5860
5861 if (dirty & IRIS_DIRTY_VF_SGVS) {
5862 const struct brw_vs_prog_data *vs_prog_data = (void *)
5863 ice->shaders.prog[MESA_SHADER_VERTEX]->prog_data;
5864 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
5865
5866 iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS), sgv) {
5867 if (vs_prog_data->uses_vertexid) {
5868 sgv.VertexIDEnable = true;
5869 sgv.VertexIDComponentNumber = 2;
5870 sgv.VertexIDElementOffset =
5871 cso->count - ice->state.vs_needs_edge_flag;
5872 }
5873
5874 if (vs_prog_data->uses_instanceid) {
5875 sgv.InstanceIDEnable = true;
5876 sgv.InstanceIDComponentNumber = 3;
5877 sgv.InstanceIDElementOffset =
5878 cso->count - ice->state.vs_needs_edge_flag;
5879 }
5880 }
5881 }
5882
5883 if (dirty & IRIS_DIRTY_VF) {
5884 iris_emit_cmd(batch, GENX(3DSTATE_VF), vf) {
5885 if (draw->primitive_restart) {
5886 vf.IndexedDrawCutIndexEnable = true;
5887 vf.CutIndex = draw->restart_index;
5888 }
5889 }
5890 }
5891
5892 if (dirty & IRIS_DIRTY_VF_STATISTICS) {
5893 iris_emit_cmd(batch, GENX(3DSTATE_VF_STATISTICS), vf) {
5894 vf.StatisticsEnable = true;
5895 }
5896 }
5897
5898 #if GEN_GEN == 8
5899 if (dirty & IRIS_DIRTY_PMA_FIX) {
5900 bool enable = want_pma_fix(ice);
5901 genX(update_pma_fix)(ice, batch, enable);
5902 }
5903 #endif
5904
5905 if (ice->state.current_hash_scale != 1)
5906 genX(emit_hashing_mode)(ice, batch, UINT_MAX, UINT_MAX, 1);
5907
5908 #if GEN_GEN >= 12
5909 genX(emit_aux_map_state)(batch);
5910 #endif
5911 }
5912
5913 static void
5914 iris_upload_render_state(struct iris_context *ice,
5915 struct iris_batch *batch,
5916 const struct pipe_draw_info *draw)
5917 {
5918 bool use_predicate = ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT;
5919
5920 /* Always pin the binder. If we're emitting new binding table pointers,
5921 * we need it. If not, we're probably inheriting old tables via the
5922 * context, and need it anyway. Since true zero-bindings cases are
5923 * practically non-existent, just pin it and avoid last_res tracking.
5924 */
5925 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
5926
5927 if (!batch->contains_draw) {
5928 iris_restore_render_saved_bos(ice, batch, draw);
5929 batch->contains_draw = true;
5930 }
5931
5932 iris_upload_dirty_render_state(ice, batch, draw);
5933
5934 if (draw->index_size > 0) {
5935 unsigned offset;
5936
5937 if (draw->has_user_indices) {
5938 u_upload_data(ice->ctx.stream_uploader, 0,
5939 draw->count * draw->index_size, 4, draw->index.user,
5940 &offset, &ice->state.last_res.index_buffer);
5941 } else {
5942 struct iris_resource *res = (void *) draw->index.resource;
5943 res->bind_history |= PIPE_BIND_INDEX_BUFFER;
5944
5945 pipe_resource_reference(&ice->state.last_res.index_buffer,
5946 draw->index.resource);
5947 offset = 0;
5948 }
5949
5950 struct iris_genx_state *genx = ice->state.genx;
5951 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
5952
5953 uint32_t ib_packet[GENX(3DSTATE_INDEX_BUFFER_length)];
5954 iris_pack_command(GENX(3DSTATE_INDEX_BUFFER), ib_packet, ib) {
5955 ib.IndexFormat = draw->index_size >> 1;
5956 ib.MOCS = mocs(bo, &batch->screen->isl_dev);
5957 ib.BufferSize = bo->size - offset;
5958 ib.BufferStartingAddress = ro_bo(NULL, bo->gtt_offset + offset);
5959 }
5960
5961 if (memcmp(genx->last_index_buffer, ib_packet, sizeof(ib_packet)) != 0) {
5962 memcpy(genx->last_index_buffer, ib_packet, sizeof(ib_packet));
5963 iris_batch_emit(batch, ib_packet, sizeof(ib_packet));
5964 iris_use_pinned_bo(batch, bo, false);
5965 }
5966
5967 /* The VF cache key only uses 32-bits, see vertex buffer comment above */
5968 uint16_t high_bits = bo->gtt_offset >> 32ull;
5969 if (high_bits != ice->state.last_index_bo_high_bits) {
5970 iris_emit_pipe_control_flush(batch,
5971 "workaround: VF cache 32-bit key [IB]",
5972 PIPE_CONTROL_VF_CACHE_INVALIDATE |
5973 PIPE_CONTROL_CS_STALL);
5974 ice->state.last_index_bo_high_bits = high_bits;
5975 }
5976 }
5977
5978 #define _3DPRIM_END_OFFSET 0x2420
5979 #define _3DPRIM_START_VERTEX 0x2430
5980 #define _3DPRIM_VERTEX_COUNT 0x2434
5981 #define _3DPRIM_INSTANCE_COUNT 0x2438
5982 #define _3DPRIM_START_INSTANCE 0x243C
5983 #define _3DPRIM_BASE_VERTEX 0x2440
5984
5985 if (draw->indirect) {
5986 if (draw->indirect->indirect_draw_count) {
5987 use_predicate = true;
5988
5989 struct iris_bo *draw_count_bo =
5990 iris_resource_bo(draw->indirect->indirect_draw_count);
5991 unsigned draw_count_offset =
5992 draw->indirect->indirect_draw_count_offset;
5993
5994 iris_emit_pipe_control_flush(batch,
5995 "ensure indirect draw buffer is flushed",
5996 PIPE_CONTROL_FLUSH_ENABLE);
5997
5998 if (ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT) {
5999 struct gen_mi_builder b;
6000 gen_mi_builder_init(&b, batch);
6001
6002 /* comparison = draw id < draw count */
6003 struct gen_mi_value comparison =
6004 gen_mi_ult(&b, gen_mi_imm(draw->drawid),
6005 gen_mi_mem32(ro_bo(draw_count_bo,
6006 draw_count_offset)));
6007
6008 /* predicate = comparison & conditional rendering predicate */
6009 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_RESULT),
6010 gen_mi_iand(&b, comparison,
6011 gen_mi_reg32(CS_GPR(15))));
6012 } else {
6013 uint32_t mi_predicate;
6014
6015 /* Upload the id of the current primitive to MI_PREDICATE_SRC1. */
6016 iris_load_register_imm64(batch, MI_PREDICATE_SRC1, draw->drawid);
6017 /* Upload the current draw count from the draw parameters buffer
6018 * to MI_PREDICATE_SRC0.
6019 */
6020 iris_load_register_mem32(batch, MI_PREDICATE_SRC0,
6021 draw_count_bo, draw_count_offset);
6022 /* Zero the top 32-bits of MI_PREDICATE_SRC0 */
6023 iris_load_register_imm32(batch, MI_PREDICATE_SRC0 + 4, 0);
6024
6025 if (draw->drawid == 0) {
6026 mi_predicate = MI_PREDICATE | MI_PREDICATE_LOADOP_LOADINV |
6027 MI_PREDICATE_COMBINEOP_SET |
6028 MI_PREDICATE_COMPAREOP_SRCS_EQUAL;
6029 } else {
6030 /* While draw_index < draw_count the predicate's result will be
6031 * (draw_index == draw_count) ^ TRUE = TRUE
6032 * When draw_index == draw_count the result is
6033 * (TRUE) ^ TRUE = FALSE
6034 * After this all results will be:
6035 * (FALSE) ^ FALSE = FALSE
6036 */
6037 mi_predicate = MI_PREDICATE | MI_PREDICATE_LOADOP_LOAD |
6038 MI_PREDICATE_COMBINEOP_XOR |
6039 MI_PREDICATE_COMPAREOP_SRCS_EQUAL;
6040 }
6041 iris_batch_emit(batch, &mi_predicate, sizeof(uint32_t));
6042 }
6043 }
6044 struct iris_bo *bo = iris_resource_bo(draw->indirect->buffer);
6045 assert(bo);
6046
6047 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6048 lrm.RegisterAddress = _3DPRIM_VERTEX_COUNT;
6049 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 0);
6050 }
6051 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6052 lrm.RegisterAddress = _3DPRIM_INSTANCE_COUNT;
6053 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 4);
6054 }
6055 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6056 lrm.RegisterAddress = _3DPRIM_START_VERTEX;
6057 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 8);
6058 }
6059 if (draw->index_size) {
6060 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6061 lrm.RegisterAddress = _3DPRIM_BASE_VERTEX;
6062 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
6063 }
6064 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6065 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
6066 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 16);
6067 }
6068 } else {
6069 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6070 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
6071 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
6072 }
6073 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
6074 lri.RegisterOffset = _3DPRIM_BASE_VERTEX;
6075 lri.DataDWord = 0;
6076 }
6077 }
6078 } else if (draw->count_from_stream_output) {
6079 struct iris_stream_output_target *so =
6080 (void *) draw->count_from_stream_output;
6081
6082 /* XXX: Replace with actual cache tracking */
6083 iris_emit_pipe_control_flush(batch,
6084 "draw count from stream output stall",
6085 PIPE_CONTROL_CS_STALL);
6086
6087 struct gen_mi_builder b;
6088 gen_mi_builder_init(&b, batch);
6089
6090 struct iris_address addr =
6091 ro_bo(iris_resource_bo(so->offset.res), so->offset.offset);
6092 struct gen_mi_value offset =
6093 gen_mi_iadd_imm(&b, gen_mi_mem32(addr), -so->base.buffer_offset);
6094
6095 gen_mi_store(&b, gen_mi_reg32(_3DPRIM_VERTEX_COUNT),
6096 gen_mi_udiv32_imm(&b, offset, so->stride));
6097
6098 _iris_emit_lri(batch, _3DPRIM_START_VERTEX, 0);
6099 _iris_emit_lri(batch, _3DPRIM_BASE_VERTEX, 0);
6100 _iris_emit_lri(batch, _3DPRIM_START_INSTANCE, 0);
6101 _iris_emit_lri(batch, _3DPRIM_INSTANCE_COUNT, draw->instance_count);
6102 }
6103
6104 iris_emit_cmd(batch, GENX(3DPRIMITIVE), prim) {
6105 prim.VertexAccessType = draw->index_size > 0 ? RANDOM : SEQUENTIAL;
6106 prim.PredicateEnable = use_predicate;
6107
6108 if (draw->indirect || draw->count_from_stream_output) {
6109 prim.IndirectParameterEnable = true;
6110 } else {
6111 prim.StartInstanceLocation = draw->start_instance;
6112 prim.InstanceCount = draw->instance_count;
6113 prim.VertexCountPerInstance = draw->count;
6114
6115 prim.StartVertexLocation = draw->start;
6116
6117 if (draw->index_size) {
6118 prim.BaseVertexLocation += draw->index_bias;
6119 } else {
6120 prim.StartVertexLocation += draw->index_bias;
6121 }
6122 }
6123 }
6124 }
6125
6126 static void
6127 iris_upload_compute_state(struct iris_context *ice,
6128 struct iris_batch *batch,
6129 const struct pipe_grid_info *grid)
6130 {
6131 const uint64_t dirty = ice->state.dirty;
6132 struct iris_screen *screen = batch->screen;
6133 const struct gen_device_info *devinfo = &screen->devinfo;
6134 struct iris_binder *binder = &ice->state.binder;
6135 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
6136 struct iris_compiled_shader *shader =
6137 ice->shaders.prog[MESA_SHADER_COMPUTE];
6138 struct brw_stage_prog_data *prog_data = shader->prog_data;
6139 struct brw_cs_prog_data *cs_prog_data = (void *) prog_data;
6140
6141 /* Always pin the binder. If we're emitting new binding table pointers,
6142 * we need it. If not, we're probably inheriting old tables via the
6143 * context, and need it anyway. Since true zero-bindings cases are
6144 * practically non-existent, just pin it and avoid last_res tracking.
6145 */
6146 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
6147
6148 if ((dirty & IRIS_DIRTY_CONSTANTS_CS) && shs->sysvals_need_upload)
6149 upload_sysvals(ice, MESA_SHADER_COMPUTE);
6150
6151 if (dirty & IRIS_DIRTY_BINDINGS_CS)
6152 iris_populate_binding_table(ice, batch, MESA_SHADER_COMPUTE, false);
6153
6154 if (dirty & IRIS_DIRTY_SAMPLER_STATES_CS)
6155 iris_upload_sampler_states(ice, MESA_SHADER_COMPUTE);
6156
6157 iris_use_optional_res(batch, shs->sampler_table.res, false);
6158 iris_use_pinned_bo(batch, iris_resource_bo(shader->assembly.res), false);
6159
6160 if (ice->state.need_border_colors)
6161 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
6162
6163 #if GEN_GEN >= 12
6164 genX(emit_aux_map_state)(batch);
6165 #endif
6166
6167 if (dirty & IRIS_DIRTY_CS) {
6168 /* The MEDIA_VFE_STATE documentation for Gen8+ says:
6169 *
6170 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
6171 * the only bits that are changed are scoreboard related: Scoreboard
6172 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard Delta. For
6173 * these scoreboard related states, a MEDIA_STATE_FLUSH is
6174 * sufficient."
6175 */
6176 iris_emit_pipe_control_flush(batch,
6177 "workaround: stall before MEDIA_VFE_STATE",
6178 PIPE_CONTROL_CS_STALL);
6179
6180 iris_emit_cmd(batch, GENX(MEDIA_VFE_STATE), vfe) {
6181 if (prog_data->total_scratch) {
6182 struct iris_bo *bo =
6183 iris_get_scratch_space(ice, prog_data->total_scratch,
6184 MESA_SHADER_COMPUTE);
6185 vfe.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
6186 vfe.ScratchSpaceBasePointer = rw_bo(bo, 0);
6187 }
6188
6189 vfe.MaximumNumberofThreads =
6190 devinfo->max_cs_threads * screen->subslice_total - 1;
6191 #if GEN_GEN < 11
6192 vfe.ResetGatewayTimer =
6193 Resettingrelativetimerandlatchingtheglobaltimestamp;
6194 #endif
6195 #if GEN_GEN == 8
6196 vfe.BypassGatewayControl = true;
6197 #endif
6198 vfe.NumberofURBEntries = 2;
6199 vfe.URBEntryAllocationSize = 2;
6200
6201 vfe.CURBEAllocationSize =
6202 ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
6203 cs_prog_data->push.cross_thread.regs, 2);
6204 }
6205 }
6206
6207 /* TODO: Combine subgroup-id with cbuf0 so we can push regular uniforms */
6208 if (dirty & IRIS_DIRTY_CS) {
6209 uint32_t curbe_data_offset = 0;
6210 assert(cs_prog_data->push.cross_thread.dwords == 0 &&
6211 cs_prog_data->push.per_thread.dwords == 1 &&
6212 cs_prog_data->base.param[0] == BRW_PARAM_BUILTIN_SUBGROUP_ID);
6213 uint32_t *curbe_data_map =
6214 stream_state(batch, ice->state.dynamic_uploader,
6215 &ice->state.last_res.cs_thread_ids,
6216 ALIGN(cs_prog_data->push.total.size, 64), 64,
6217 &curbe_data_offset);
6218 assert(curbe_data_map);
6219 memset(curbe_data_map, 0x5a, ALIGN(cs_prog_data->push.total.size, 64));
6220 iris_fill_cs_push_const_buffer(cs_prog_data, curbe_data_map);
6221
6222 iris_emit_cmd(batch, GENX(MEDIA_CURBE_LOAD), curbe) {
6223 curbe.CURBETotalDataLength =
6224 ALIGN(cs_prog_data->push.total.size, 64);
6225 curbe.CURBEDataStartAddress = curbe_data_offset;
6226 }
6227 }
6228
6229 if (dirty & (IRIS_DIRTY_SAMPLER_STATES_CS |
6230 IRIS_DIRTY_BINDINGS_CS |
6231 IRIS_DIRTY_CONSTANTS_CS |
6232 IRIS_DIRTY_CS)) {
6233 uint32_t desc[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
6234
6235 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), desc, idd) {
6236 idd.SamplerStatePointer = shs->sampler_table.offset;
6237 idd.BindingTablePointer = binder->bt_offset[MESA_SHADER_COMPUTE];
6238 }
6239
6240 for (int i = 0; i < GENX(INTERFACE_DESCRIPTOR_DATA_length); i++)
6241 desc[i] |= ((uint32_t *) shader->derived_data)[i];
6242
6243 iris_emit_cmd(batch, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
6244 load.InterfaceDescriptorTotalLength =
6245 GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
6246 load.InterfaceDescriptorDataStartAddress =
6247 emit_state(batch, ice->state.dynamic_uploader,
6248 &ice->state.last_res.cs_desc, desc, sizeof(desc), 64);
6249 }
6250 }
6251
6252 uint32_t group_size = grid->block[0] * grid->block[1] * grid->block[2];
6253 uint32_t remainder = group_size & (cs_prog_data->simd_size - 1);
6254 uint32_t right_mask;
6255
6256 if (remainder > 0)
6257 right_mask = ~0u >> (32 - remainder);
6258 else
6259 right_mask = ~0u >> (32 - cs_prog_data->simd_size);
6260
6261 #define GPGPU_DISPATCHDIMX 0x2500
6262 #define GPGPU_DISPATCHDIMY 0x2504
6263 #define GPGPU_DISPATCHDIMZ 0x2508
6264
6265 if (grid->indirect) {
6266 struct iris_state_ref *grid_size = &ice->state.grid_size;
6267 struct iris_bo *bo = iris_resource_bo(grid_size->res);
6268 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6269 lrm.RegisterAddress = GPGPU_DISPATCHDIMX;
6270 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 0);
6271 }
6272 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6273 lrm.RegisterAddress = GPGPU_DISPATCHDIMY;
6274 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 4);
6275 }
6276 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6277 lrm.RegisterAddress = GPGPU_DISPATCHDIMZ;
6278 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 8);
6279 }
6280 }
6281
6282 iris_emit_cmd(batch, GENX(GPGPU_WALKER), ggw) {
6283 ggw.IndirectParameterEnable = grid->indirect != NULL;
6284 ggw.SIMDSize = cs_prog_data->simd_size / 16;
6285 ggw.ThreadDepthCounterMaximum = 0;
6286 ggw.ThreadHeightCounterMaximum = 0;
6287 ggw.ThreadWidthCounterMaximum = cs_prog_data->threads - 1;
6288 ggw.ThreadGroupIDXDimension = grid->grid[0];
6289 ggw.ThreadGroupIDYDimension = grid->grid[1];
6290 ggw.ThreadGroupIDZDimension = grid->grid[2];
6291 ggw.RightExecutionMask = right_mask;
6292 ggw.BottomExecutionMask = 0xffffffff;
6293 }
6294
6295 iris_emit_cmd(batch, GENX(MEDIA_STATE_FLUSH), msf);
6296
6297 if (!batch->contains_draw) {
6298 iris_restore_compute_saved_bos(ice, batch, grid);
6299 batch->contains_draw = true;
6300 }
6301 }
6302
6303 /**
6304 * State module teardown.
6305 */
6306 static void
6307 iris_destroy_state(struct iris_context *ice)
6308 {
6309 struct iris_genx_state *genx = ice->state.genx;
6310
6311 pipe_resource_reference(&ice->draw.draw_params.res, NULL);
6312 pipe_resource_reference(&ice->draw.derived_draw_params.res, NULL);
6313
6314 /* Loop over all VBOs, including ones for draw parameters */
6315 for (unsigned i = 0; i < ARRAY_SIZE(genx->vertex_buffers); i++) {
6316 pipe_resource_reference(&genx->vertex_buffers[i].resource, NULL);
6317 }
6318
6319 free(ice->state.genx);
6320
6321 for (int i = 0; i < 4; i++) {
6322 pipe_so_target_reference(&ice->state.so_target[i], NULL);
6323 }
6324
6325 for (unsigned i = 0; i < ice->state.framebuffer.nr_cbufs; i++) {
6326 pipe_surface_reference(&ice->state.framebuffer.cbufs[i], NULL);
6327 }
6328 pipe_surface_reference(&ice->state.framebuffer.zsbuf, NULL);
6329
6330 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
6331 struct iris_shader_state *shs = &ice->state.shaders[stage];
6332 pipe_resource_reference(&shs->sampler_table.res, NULL);
6333 for (int i = 0; i < PIPE_MAX_CONSTANT_BUFFERS; i++) {
6334 pipe_resource_reference(&shs->constbuf[i].buffer, NULL);
6335 pipe_resource_reference(&shs->constbuf_surf_state[i].res, NULL);
6336 }
6337 for (int i = 0; i < PIPE_MAX_SHADER_IMAGES; i++) {
6338 pipe_resource_reference(&shs->image[i].base.resource, NULL);
6339 pipe_resource_reference(&shs->image[i].surface_state.res, NULL);
6340 }
6341 for (int i = 0; i < PIPE_MAX_SHADER_BUFFERS; i++) {
6342 pipe_resource_reference(&shs->ssbo[i].buffer, NULL);
6343 pipe_resource_reference(&shs->ssbo_surf_state[i].res, NULL);
6344 }
6345 for (int i = 0; i < IRIS_MAX_TEXTURE_SAMPLERS; i++) {
6346 pipe_sampler_view_reference((struct pipe_sampler_view **)
6347 &shs->textures[i], NULL);
6348 }
6349 }
6350
6351 pipe_resource_reference(&ice->state.grid_size.res, NULL);
6352 pipe_resource_reference(&ice->state.grid_surf_state.res, NULL);
6353
6354 pipe_resource_reference(&ice->state.null_fb.res, NULL);
6355 pipe_resource_reference(&ice->state.unbound_tex.res, NULL);
6356
6357 pipe_resource_reference(&ice->state.last_res.cc_vp, NULL);
6358 pipe_resource_reference(&ice->state.last_res.sf_cl_vp, NULL);
6359 pipe_resource_reference(&ice->state.last_res.color_calc, NULL);
6360 pipe_resource_reference(&ice->state.last_res.scissor, NULL);
6361 pipe_resource_reference(&ice->state.last_res.blend, NULL);
6362 pipe_resource_reference(&ice->state.last_res.index_buffer, NULL);
6363 pipe_resource_reference(&ice->state.last_res.cs_thread_ids, NULL);
6364 pipe_resource_reference(&ice->state.last_res.cs_desc, NULL);
6365 }
6366
6367 /* ------------------------------------------------------------------- */
6368
6369 static void
6370 iris_rebind_buffer(struct iris_context *ice,
6371 struct iris_resource *res,
6372 uint64_t old_address)
6373 {
6374 struct pipe_context *ctx = &ice->ctx;
6375 struct iris_screen *screen = (void *) ctx->screen;
6376 struct iris_genx_state *genx = ice->state.genx;
6377
6378 assert(res->base.target == PIPE_BUFFER);
6379
6380 /* Buffers can't be framebuffer attachments, nor display related,
6381 * and we don't have upstream Clover support.
6382 */
6383 assert(!(res->bind_history & (PIPE_BIND_DEPTH_STENCIL |
6384 PIPE_BIND_RENDER_TARGET |
6385 PIPE_BIND_BLENDABLE |
6386 PIPE_BIND_DISPLAY_TARGET |
6387 PIPE_BIND_CURSOR |
6388 PIPE_BIND_COMPUTE_RESOURCE |
6389 PIPE_BIND_GLOBAL)));
6390
6391 if (res->bind_history & PIPE_BIND_VERTEX_BUFFER) {
6392 uint64_t bound_vbs = ice->state.bound_vertex_buffers;
6393 while (bound_vbs) {
6394 const int i = u_bit_scan64(&bound_vbs);
6395 struct iris_vertex_buffer_state *state = &genx->vertex_buffers[i];
6396
6397 /* Update the CPU struct */
6398 STATIC_ASSERT(GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_start) == 32);
6399 STATIC_ASSERT(GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_bits) == 64);
6400 uint64_t *addr = (uint64_t *) &state->state[1];
6401
6402 if (*addr == old_address + state->offset) {
6403 *addr = res->bo->gtt_offset + state->offset;
6404 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
6405 }
6406 }
6407 }
6408
6409 /* We don't need to handle PIPE_BIND_INDEX_BUFFER here: we re-emit
6410 * the 3DSTATE_INDEX_BUFFER packet whenever the address changes.
6411 *
6412 * There is also no need to handle these:
6413 * - PIPE_BIND_COMMAND_ARGS_BUFFER (emitted for every indirect draw)
6414 * - PIPE_BIND_QUERY_BUFFER (no persistent state references)
6415 */
6416
6417 if (res->bind_history & PIPE_BIND_STREAM_OUTPUT) {
6418 /* XXX: be careful about resetting vs appending... */
6419 assert(false);
6420 }
6421
6422 for (int s = MESA_SHADER_VERTEX; s < MESA_SHADER_STAGES; s++) {
6423 struct iris_shader_state *shs = &ice->state.shaders[s];
6424 enum pipe_shader_type p_stage = stage_to_pipe(s);
6425
6426 if (!(res->bind_stages & (1 << s)))
6427 continue;
6428
6429 if (res->bind_history & PIPE_BIND_CONSTANT_BUFFER) {
6430 /* Skip constant buffer 0, it's for regular uniforms, not UBOs */
6431 uint32_t bound_cbufs = shs->bound_cbufs & ~1u;
6432 while (bound_cbufs) {
6433 const int i = u_bit_scan(&bound_cbufs);
6434 struct pipe_shader_buffer *cbuf = &shs->constbuf[i];
6435 struct iris_state_ref *surf_state = &shs->constbuf_surf_state[i];
6436
6437 if (res->bo == iris_resource_bo(cbuf->buffer)) {
6438 pipe_resource_reference(&surf_state->res, NULL);
6439 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << s;
6440 }
6441 }
6442 }
6443
6444 if (res->bind_history & PIPE_BIND_SHADER_BUFFER) {
6445 uint32_t bound_ssbos = shs->bound_ssbos;
6446 while (bound_ssbos) {
6447 const int i = u_bit_scan(&bound_ssbos);
6448 struct pipe_shader_buffer *ssbo = &shs->ssbo[i];
6449
6450 if (res->bo == iris_resource_bo(ssbo->buffer)) {
6451 struct pipe_shader_buffer buf = {
6452 .buffer = &res->base,
6453 .buffer_offset = ssbo->buffer_offset,
6454 .buffer_size = ssbo->buffer_size,
6455 };
6456 iris_set_shader_buffers(ctx, p_stage, i, 1, &buf,
6457 (shs->writable_ssbos >> i) & 1);
6458 }
6459 }
6460 }
6461
6462 if (res->bind_history & PIPE_BIND_SAMPLER_VIEW) {
6463 uint32_t bound_sampler_views = shs->bound_sampler_views;
6464 while (bound_sampler_views) {
6465 const int i = u_bit_scan(&bound_sampler_views);
6466 struct iris_sampler_view *isv = shs->textures[i];
6467
6468 if (res->bo == iris_resource_bo(isv->base.texture)) {
6469 void *map = alloc_surface_states(ice->state.surface_uploader,
6470 &isv->surface_state,
6471 isv->res->aux.sampler_usages);
6472 assert(map);
6473 fill_buffer_surface_state(&screen->isl_dev, isv->res, map,
6474 isv->view.format, isv->view.swizzle,
6475 isv->base.u.buf.offset,
6476 isv->base.u.buf.size);
6477 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << s;
6478 }
6479 }
6480 }
6481
6482 if (res->bind_history & PIPE_BIND_SHADER_IMAGE) {
6483 uint32_t bound_image_views = shs->bound_image_views;
6484 while (bound_image_views) {
6485 const int i = u_bit_scan(&bound_image_views);
6486 struct iris_image_view *iv = &shs->image[i];
6487
6488 if (res->bo == iris_resource_bo(iv->base.resource)) {
6489 iris_set_shader_images(ctx, p_stage, i, 1, &iv->base);
6490 }
6491 }
6492 }
6493 }
6494 }
6495
6496 /* ------------------------------------------------------------------- */
6497
6498 static unsigned
6499 flags_to_post_sync_op(uint32_t flags)
6500 {
6501 if (flags & PIPE_CONTROL_WRITE_IMMEDIATE)
6502 return WriteImmediateData;
6503
6504 if (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT)
6505 return WritePSDepthCount;
6506
6507 if (flags & PIPE_CONTROL_WRITE_TIMESTAMP)
6508 return WriteTimestamp;
6509
6510 return 0;
6511 }
6512
6513 /**
6514 * Do the given flags have a Post Sync or LRI Post Sync operation?
6515 */
6516 static enum pipe_control_flags
6517 get_post_sync_flags(enum pipe_control_flags flags)
6518 {
6519 flags &= PIPE_CONTROL_WRITE_IMMEDIATE |
6520 PIPE_CONTROL_WRITE_DEPTH_COUNT |
6521 PIPE_CONTROL_WRITE_TIMESTAMP |
6522 PIPE_CONTROL_LRI_POST_SYNC_OP;
6523
6524 /* Only one "Post Sync Op" is allowed, and it's mutually exclusive with
6525 * "LRI Post Sync Operation". So more than one bit set would be illegal.
6526 */
6527 assert(util_bitcount(flags) <= 1);
6528
6529 return flags;
6530 }
6531
6532 #define IS_COMPUTE_PIPELINE(batch) (batch->name == IRIS_BATCH_COMPUTE)
6533
6534 /**
6535 * Emit a series of PIPE_CONTROL commands, taking into account any
6536 * workarounds necessary to actually accomplish the caller's request.
6537 *
6538 * Unless otherwise noted, spec quotations in this function come from:
6539 *
6540 * Synchronization of the 3D Pipeline > PIPE_CONTROL Command > Programming
6541 * Restrictions for PIPE_CONTROL.
6542 *
6543 * You should not use this function directly. Use the helpers in
6544 * iris_pipe_control.c instead, which may split the pipe control further.
6545 */
6546 static void
6547 iris_emit_raw_pipe_control(struct iris_batch *batch,
6548 const char *reason,
6549 uint32_t flags,
6550 struct iris_bo *bo,
6551 uint32_t offset,
6552 uint64_t imm)
6553 {
6554 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
6555 enum pipe_control_flags post_sync_flags = get_post_sync_flags(flags);
6556 enum pipe_control_flags non_lri_post_sync_flags =
6557 post_sync_flags & ~PIPE_CONTROL_LRI_POST_SYNC_OP;
6558
6559 /* Recursive PIPE_CONTROL workarounds --------------------------------
6560 * (http://knowyourmeme.com/memes/xzibit-yo-dawg)
6561 *
6562 * We do these first because we want to look at the original operation,
6563 * rather than any workarounds we set.
6564 */
6565 if (GEN_GEN == 9 && (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE)) {
6566 /* The PIPE_CONTROL "VF Cache Invalidation Enable" bit description
6567 * lists several workarounds:
6568 *
6569 * "Project: SKL, KBL, BXT
6570 *
6571 * If the VF Cache Invalidation Enable is set to a 1 in a
6572 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields
6573 * sets to 0, with the VF Cache Invalidation Enable set to 0
6574 * needs to be sent prior to the PIPE_CONTROL with VF Cache
6575 * Invalidation Enable set to a 1."
6576 */
6577 iris_emit_raw_pipe_control(batch,
6578 "workaround: recursive VF cache invalidate",
6579 0, NULL, 0, 0);
6580 }
6581
6582 if (GEN_GEN == 9 && IS_COMPUTE_PIPELINE(batch) && post_sync_flags) {
6583 /* Project: SKL / Argument: LRI Post Sync Operation [23]
6584 *
6585 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
6586 * programmed prior to programming a PIPECONTROL command with "LRI
6587 * Post Sync Operation" in GPGPU mode of operation (i.e when
6588 * PIPELINE_SELECT command is set to GPGPU mode of operation)."
6589 *
6590 * The same text exists a few rows below for Post Sync Op.
6591 */
6592 iris_emit_raw_pipe_control(batch,
6593 "workaround: CS stall before gpgpu post-sync",
6594 PIPE_CONTROL_CS_STALL, bo, offset, imm);
6595 }
6596
6597 if (GEN_GEN == 10 && (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH)) {
6598 /* Cannonlake:
6599 * "Before sending a PIPE_CONTROL command with bit 12 set, SW must issue
6600 * another PIPE_CONTROL with Render Target Cache Flush Enable (bit 12)
6601 * = 0 and Pipe Control Flush Enable (bit 7) = 1"
6602 */
6603 iris_emit_raw_pipe_control(batch,
6604 "workaround: PC flush before RT flush",
6605 PIPE_CONTROL_FLUSH_ENABLE, bo, offset, imm);
6606 }
6607
6608 /* "Flush Types" workarounds ---------------------------------------------
6609 * We do these now because they may add post-sync operations or CS stalls.
6610 */
6611
6612 if (GEN_GEN < 11 && flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) {
6613 /* Project: BDW, SKL+ (stopping at CNL) / Argument: VF Invalidate
6614 *
6615 * "'Post Sync Operation' must be enabled to 'Write Immediate Data' or
6616 * 'Write PS Depth Count' or 'Write Timestamp'."
6617 */
6618 if (!bo) {
6619 flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
6620 post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
6621 non_lri_post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
6622 bo = batch->screen->workaround_bo;
6623 }
6624 }
6625
6626 /* #1130 from Gen10 workarounds page:
6627 *
6628 * "Enable Depth Stall on every Post Sync Op if Render target Cache
6629 * Flush is not enabled in same PIPE CONTROL and Enable Pixel score
6630 * board stall if Render target cache flush is enabled."
6631 *
6632 * Applicable to CNL B0 and C0 steppings only.
6633 *
6634 * The wording here is unclear, and this workaround doesn't look anything
6635 * like the internal bug report recommendations, but leave it be for now...
6636 */
6637 if (GEN_GEN == 10) {
6638 if (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) {
6639 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
6640 } else if (flags & non_lri_post_sync_flags) {
6641 flags |= PIPE_CONTROL_DEPTH_STALL;
6642 }
6643 }
6644
6645 if (flags & PIPE_CONTROL_DEPTH_STALL) {
6646 /* From the PIPE_CONTROL instruction table, bit 13 (Depth Stall Enable):
6647 *
6648 * "This bit must be DISABLED for operations other than writing
6649 * PS_DEPTH_COUNT."
6650 *
6651 * This seems like nonsense. An Ivybridge workaround requires us to
6652 * emit a PIPE_CONTROL with a depth stall and write immediate post-sync
6653 * operation. Gen8+ requires us to emit depth stalls and depth cache
6654 * flushes together. So, it's hard to imagine this means anything other
6655 * than "we originally intended this to be used for PS_DEPTH_COUNT".
6656 *
6657 * We ignore the supposed restriction and do nothing.
6658 */
6659 }
6660
6661 if (flags & (PIPE_CONTROL_RENDER_TARGET_FLUSH |
6662 PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
6663 /* From the PIPE_CONTROL instruction table, bit 12 and bit 1:
6664 *
6665 * "This bit must be DISABLED for End-of-pipe (Read) fences,
6666 * PS_DEPTH_COUNT or TIMESTAMP queries."
6667 *
6668 * TODO: Implement end-of-pipe checking.
6669 */
6670 assert(!(post_sync_flags & (PIPE_CONTROL_WRITE_DEPTH_COUNT |
6671 PIPE_CONTROL_WRITE_TIMESTAMP)));
6672 }
6673
6674 if (GEN_GEN < 11 && (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
6675 /* From the PIPE_CONTROL instruction table, bit 1:
6676 *
6677 * "This bit is ignored if Depth Stall Enable is set.
6678 * Further, the render cache is not flushed even if Write Cache
6679 * Flush Enable bit is set."
6680 *
6681 * We assert that the caller doesn't do this combination, to try and
6682 * prevent mistakes. It shouldn't hurt the GPU, though.
6683 *
6684 * We skip this check on Gen11+ as the "Stall at Pixel Scoreboard"
6685 * and "Render Target Flush" combo is explicitly required for BTI
6686 * update workarounds.
6687 */
6688 assert(!(flags & (PIPE_CONTROL_DEPTH_STALL |
6689 PIPE_CONTROL_RENDER_TARGET_FLUSH)));
6690 }
6691
6692 /* PIPE_CONTROL page workarounds ------------------------------------- */
6693
6694 if (GEN_GEN <= 8 && (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE)) {
6695 /* From the PIPE_CONTROL page itself:
6696 *
6697 * "IVB, HSW, BDW
6698 * Restriction: Pipe_control with CS-stall bit set must be issued
6699 * before a pipe-control command that has the State Cache
6700 * Invalidate bit set."
6701 */
6702 flags |= PIPE_CONTROL_CS_STALL;
6703 }
6704
6705 if (flags & PIPE_CONTROL_FLUSH_LLC) {
6706 /* From the PIPE_CONTROL instruction table, bit 26 (Flush LLC):
6707 *
6708 * "Project: ALL
6709 * SW must always program Post-Sync Operation to "Write Immediate
6710 * Data" when Flush LLC is set."
6711 *
6712 * For now, we just require the caller to do it.
6713 */
6714 assert(flags & PIPE_CONTROL_WRITE_IMMEDIATE);
6715 }
6716
6717 /* "Post-Sync Operation" workarounds -------------------------------- */
6718
6719 /* Project: All / Argument: Global Snapshot Count Reset [19]
6720 *
6721 * "This bit must not be exercised on any product.
6722 * Requires stall bit ([20] of DW1) set."
6723 *
6724 * We don't use this, so we just assert that it isn't used. The
6725 * PIPE_CONTROL instruction page indicates that they intended this
6726 * as a debug feature and don't think it is useful in production,
6727 * but it may actually be usable, should we ever want to.
6728 */
6729 assert((flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) == 0);
6730
6731 if (flags & (PIPE_CONTROL_MEDIA_STATE_CLEAR |
6732 PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE)) {
6733 /* Project: All / Arguments:
6734 *
6735 * - Generic Media State Clear [16]
6736 * - Indirect State Pointers Disable [16]
6737 *
6738 * "Requires stall bit ([20] of DW1) set."
6739 *
6740 * Also, the PIPE_CONTROL instruction table, bit 16 (Generic Media
6741 * State Clear) says:
6742 *
6743 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
6744 * programmed prior to programming a PIPECONTROL command with "Media
6745 * State Clear" set in GPGPU mode of operation"
6746 *
6747 * This is a subset of the earlier rule, so there's nothing to do.
6748 */
6749 flags |= PIPE_CONTROL_CS_STALL;
6750 }
6751
6752 if (flags & PIPE_CONTROL_STORE_DATA_INDEX) {
6753 /* Project: All / Argument: Store Data Index
6754 *
6755 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
6756 * than '0'."
6757 *
6758 * For now, we just assert that the caller does this. We might want to
6759 * automatically add a write to the workaround BO...
6760 */
6761 assert(non_lri_post_sync_flags != 0);
6762 }
6763
6764 if (flags & PIPE_CONTROL_SYNC_GFDT) {
6765 /* Project: All / Argument: Sync GFDT
6766 *
6767 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
6768 * than '0' or 0x2520[13] must be set."
6769 *
6770 * For now, we just assert that the caller does this.
6771 */
6772 assert(non_lri_post_sync_flags != 0);
6773 }
6774
6775 if (flags & PIPE_CONTROL_TLB_INVALIDATE) {
6776 /* Project: IVB+ / Argument: TLB inv
6777 *
6778 * "Requires stall bit ([20] of DW1) set."
6779 *
6780 * Also, from the PIPE_CONTROL instruction table:
6781 *
6782 * "Project: SKL+
6783 * Post Sync Operation or CS stall must be set to ensure a TLB
6784 * invalidation occurs. Otherwise no cycle will occur to the TLB
6785 * cache to invalidate."
6786 *
6787 * This is not a subset of the earlier rule, so there's nothing to do.
6788 */
6789 flags |= PIPE_CONTROL_CS_STALL;
6790 }
6791
6792 if (GEN_GEN >= 12 && ((flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) ||
6793 (flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH))) {
6794 /* From the PIPE_CONTROL instruction table, bit 28 (Tile Cache Flush
6795 * Enable):
6796 *
6797 * Unified Cache (Tile Cache Disabled):
6798 *
6799 * When the Color and Depth (Z) streams are enabled to be cached in
6800 * the DC space of L2, Software must use "Render Target Cache Flush
6801 * Enable" and "Depth Cache Flush Enable" along with "Tile Cache
6802 * Flush" for getting the color and depth (Z) write data to be
6803 * globally observable. In this mode of operation it is not required
6804 * to set "CS Stall" upon setting "Tile Cache Flush" bit.
6805 */
6806 flags |= PIPE_CONTROL_TILE_CACHE_FLUSH;
6807 }
6808
6809 if (GEN_GEN == 9 && devinfo->gt == 4) {
6810 /* TODO: The big Skylake GT4 post sync op workaround */
6811 }
6812
6813 /* "GPGPU specific workarounds" (both post-sync and flush) ------------ */
6814
6815 if (IS_COMPUTE_PIPELINE(batch)) {
6816 if (GEN_GEN >= 9 && (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE)) {
6817 /* Project: SKL+ / Argument: Tex Invalidate
6818 * "Requires stall bit ([20] of DW) set for all GPGPU Workloads."
6819 */
6820 flags |= PIPE_CONTROL_CS_STALL;
6821 }
6822
6823 if (GEN_GEN == 8 && (post_sync_flags ||
6824 (flags & (PIPE_CONTROL_NOTIFY_ENABLE |
6825 PIPE_CONTROL_DEPTH_STALL |
6826 PIPE_CONTROL_RENDER_TARGET_FLUSH |
6827 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
6828 PIPE_CONTROL_DATA_CACHE_FLUSH)))) {
6829 /* Project: BDW / Arguments:
6830 *
6831 * - LRI Post Sync Operation [23]
6832 * - Post Sync Op [15:14]
6833 * - Notify En [8]
6834 * - Depth Stall [13]
6835 * - Render Target Cache Flush [12]
6836 * - Depth Cache Flush [0]
6837 * - DC Flush Enable [5]
6838 *
6839 * "Requires stall bit ([20] of DW) set for all GPGPU and Media
6840 * Workloads."
6841 */
6842 flags |= PIPE_CONTROL_CS_STALL;
6843
6844 /* Also, from the PIPE_CONTROL instruction table, bit 20:
6845 *
6846 * "Project: BDW
6847 * This bit must be always set when PIPE_CONTROL command is
6848 * programmed by GPGPU and MEDIA workloads, except for the cases
6849 * when only Read Only Cache Invalidation bits are set (State
6850 * Cache Invalidation Enable, Instruction cache Invalidation
6851 * Enable, Texture Cache Invalidation Enable, Constant Cache
6852 * Invalidation Enable). This is to WA FFDOP CG issue, this WA
6853 * need not implemented when FF_DOP_CG is disable via "Fixed
6854 * Function DOP Clock Gate Disable" bit in RC_PSMI_CTRL register."
6855 *
6856 * It sounds like we could avoid CS stalls in some cases, but we
6857 * don't currently bother. This list isn't exactly the list above,
6858 * either...
6859 */
6860 }
6861 }
6862
6863 /* "Stall" workarounds ----------------------------------------------
6864 * These have to come after the earlier ones because we may have added
6865 * some additional CS stalls above.
6866 */
6867
6868 if (GEN_GEN < 9 && (flags & PIPE_CONTROL_CS_STALL)) {
6869 /* Project: PRE-SKL, VLV, CHV
6870 *
6871 * "[All Stepping][All SKUs]:
6872 *
6873 * One of the following must also be set:
6874 *
6875 * - Render Target Cache Flush Enable ([12] of DW1)
6876 * - Depth Cache Flush Enable ([0] of DW1)
6877 * - Stall at Pixel Scoreboard ([1] of DW1)
6878 * - Depth Stall ([13] of DW1)
6879 * - Post-Sync Operation ([13] of DW1)
6880 * - DC Flush Enable ([5] of DW1)"
6881 *
6882 * If we don't already have one of those bits set, we choose to add
6883 * "Stall at Pixel Scoreboard". Some of the other bits require a
6884 * CS stall as a workaround (see above), which would send us into
6885 * an infinite recursion of PIPE_CONTROLs. "Stall at Pixel Scoreboard"
6886 * appears to be safe, so we choose that.
6887 */
6888 const uint32_t wa_bits = PIPE_CONTROL_RENDER_TARGET_FLUSH |
6889 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
6890 PIPE_CONTROL_WRITE_IMMEDIATE |
6891 PIPE_CONTROL_WRITE_DEPTH_COUNT |
6892 PIPE_CONTROL_WRITE_TIMESTAMP |
6893 PIPE_CONTROL_STALL_AT_SCOREBOARD |
6894 PIPE_CONTROL_DEPTH_STALL |
6895 PIPE_CONTROL_DATA_CACHE_FLUSH;
6896 if (!(flags & wa_bits))
6897 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
6898 }
6899
6900 /* Emit --------------------------------------------------------------- */
6901
6902 if (INTEL_DEBUG & DEBUG_PIPE_CONTROL) {
6903 fprintf(stderr,
6904 " PC [%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%"PRIx64"]: %s\n",
6905 (flags & PIPE_CONTROL_FLUSH_ENABLE) ? "PipeCon " : "",
6906 (flags & PIPE_CONTROL_CS_STALL) ? "CS " : "",
6907 (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD) ? "Scoreboard " : "",
6908 (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) ? "VF " : "",
6909 (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) ? "RT " : "",
6910 (flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE) ? "Const " : "",
6911 (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE) ? "TC " : "",
6912 (flags & PIPE_CONTROL_DATA_CACHE_FLUSH) ? "DC " : "",
6913 (flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH) ? "ZFlush " : "",
6914 (flags & PIPE_CONTROL_DEPTH_STALL) ? "ZStall " : "",
6915 (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE) ? "State " : "",
6916 (flags & PIPE_CONTROL_TLB_INVALIDATE) ? "TLB " : "",
6917 (flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE) ? "Inst " : "",
6918 (flags & PIPE_CONTROL_MEDIA_STATE_CLEAR) ? "MediaClear " : "",
6919 (flags & PIPE_CONTROL_NOTIFY_ENABLE) ? "Notify " : "",
6920 (flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) ?
6921 "SnapRes" : "",
6922 (flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE) ?
6923 "ISPDis" : "",
6924 (flags & PIPE_CONTROL_WRITE_IMMEDIATE) ? "WriteImm " : "",
6925 (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT) ? "WriteZCount " : "",
6926 (flags & PIPE_CONTROL_WRITE_TIMESTAMP) ? "WriteTimestamp " : "",
6927 imm, reason);
6928 }
6929
6930 iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
6931 #if GEN_GEN >= 12
6932 pc.TileCacheFlushEnable = flags & PIPE_CONTROL_TILE_CACHE_FLUSH;
6933 #endif
6934 pc.LRIPostSyncOperation = NoLRIOperation;
6935 pc.PipeControlFlushEnable = flags & PIPE_CONTROL_FLUSH_ENABLE;
6936 pc.DCFlushEnable = flags & PIPE_CONTROL_DATA_CACHE_FLUSH;
6937 pc.StoreDataIndex = 0;
6938 pc.CommandStreamerStallEnable = flags & PIPE_CONTROL_CS_STALL;
6939 pc.GlobalSnapshotCountReset =
6940 flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET;
6941 pc.TLBInvalidate = flags & PIPE_CONTROL_TLB_INVALIDATE;
6942 pc.GenericMediaStateClear = flags & PIPE_CONTROL_MEDIA_STATE_CLEAR;
6943 pc.StallAtPixelScoreboard = flags & PIPE_CONTROL_STALL_AT_SCOREBOARD;
6944 pc.RenderTargetCacheFlushEnable =
6945 flags & PIPE_CONTROL_RENDER_TARGET_FLUSH;
6946 pc.DepthCacheFlushEnable = flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH;
6947 pc.StateCacheInvalidationEnable =
6948 flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE;
6949 pc.VFCacheInvalidationEnable = flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
6950 pc.ConstantCacheInvalidationEnable =
6951 flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE;
6952 pc.PostSyncOperation = flags_to_post_sync_op(flags);
6953 pc.DepthStallEnable = flags & PIPE_CONTROL_DEPTH_STALL;
6954 pc.InstructionCacheInvalidateEnable =
6955 flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE;
6956 pc.NotifyEnable = flags & PIPE_CONTROL_NOTIFY_ENABLE;
6957 pc.IndirectStatePointersDisable =
6958 flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE;
6959 pc.TextureCacheInvalidationEnable =
6960 flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
6961 pc.Address = rw_bo(bo, offset);
6962 pc.ImmediateData = imm;
6963 }
6964 }
6965
6966 void
6967 genX(emit_urb_setup)(struct iris_context *ice,
6968 struct iris_batch *batch,
6969 const unsigned size[4],
6970 bool tess_present, bool gs_present)
6971 {
6972 const struct gen_device_info *devinfo = &batch->screen->devinfo;
6973 const unsigned push_size_kB = 32;
6974 unsigned entries[4];
6975 unsigned start[4];
6976
6977 ice->shaders.last_vs_entry_size = size[MESA_SHADER_VERTEX];
6978
6979 gen_get_urb_config(devinfo, 1024 * push_size_kB,
6980 1024 * ice->shaders.urb_size,
6981 tess_present, gs_present,
6982 size, entries, start);
6983
6984 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
6985 iris_emit_cmd(batch, GENX(3DSTATE_URB_VS), urb) {
6986 urb._3DCommandSubOpcode += i;
6987 urb.VSURBStartingAddress = start[i];
6988 urb.VSURBEntryAllocationSize = size[i] - 1;
6989 urb.VSNumberofURBEntries = entries[i];
6990 }
6991 }
6992 }
6993
6994 #if GEN_GEN == 9
6995 /**
6996 * Preemption on Gen9 has to be enabled or disabled in various cases.
6997 *
6998 * See these workarounds for preemption:
6999 * - WaDisableMidObjectPreemptionForGSLineStripAdj
7000 * - WaDisableMidObjectPreemptionForTrifanOrPolygon
7001 * - WaDisableMidObjectPreemptionForLineLoop
7002 * - WA#0798
7003 *
7004 * We don't put this in the vtable because it's only used on Gen9.
7005 */
7006 void
7007 gen9_toggle_preemption(struct iris_context *ice,
7008 struct iris_batch *batch,
7009 const struct pipe_draw_info *draw)
7010 {
7011 struct iris_genx_state *genx = ice->state.genx;
7012 bool object_preemption = true;
7013
7014 /* WaDisableMidObjectPreemptionForGSLineStripAdj
7015 *
7016 * "WA: Disable mid-draw preemption when draw-call is a linestrip_adj
7017 * and GS is enabled."
7018 */
7019 if (draw->mode == PIPE_PRIM_LINE_STRIP_ADJACENCY &&
7020 ice->shaders.prog[MESA_SHADER_GEOMETRY])
7021 object_preemption = false;
7022
7023 /* WaDisableMidObjectPreemptionForTrifanOrPolygon
7024 *
7025 * "TriFan miscompare in Execlist Preemption test. Cut index that is
7026 * on a previous context. End the previous, the resume another context
7027 * with a tri-fan or polygon, and the vertex count is corrupted. If we
7028 * prempt again we will cause corruption.
7029 *
7030 * WA: Disable mid-draw preemption when draw-call has a tri-fan."
7031 */
7032 if (draw->mode == PIPE_PRIM_TRIANGLE_FAN)
7033 object_preemption = false;
7034
7035 /* WaDisableMidObjectPreemptionForLineLoop
7036 *
7037 * "VF Stats Counters Missing a vertex when preemption enabled.
7038 *
7039 * WA: Disable mid-draw preemption when the draw uses a lineloop
7040 * topology."
7041 */
7042 if (draw->mode == PIPE_PRIM_LINE_LOOP)
7043 object_preemption = false;
7044
7045 /* WA#0798
7046 *
7047 * "VF is corrupting GAFS data when preempted on an instance boundary
7048 * and replayed with instancing enabled.
7049 *
7050 * WA: Disable preemption when using instanceing."
7051 */
7052 if (draw->instance_count > 1)
7053 object_preemption = false;
7054
7055 if (genx->object_preemption != object_preemption) {
7056 iris_enable_obj_preemption(batch, object_preemption);
7057 genx->object_preemption = object_preemption;
7058 }
7059 }
7060 #endif
7061
7062 static void
7063 iris_lost_genx_state(struct iris_context *ice, struct iris_batch *batch)
7064 {
7065 struct iris_genx_state *genx = ice->state.genx;
7066
7067 memset(genx->last_index_buffer, 0, sizeof(genx->last_index_buffer));
7068 }
7069
7070 static void
7071 iris_emit_mi_report_perf_count(struct iris_batch *batch,
7072 struct iris_bo *bo,
7073 uint32_t offset_in_bytes,
7074 uint32_t report_id)
7075 {
7076 iris_emit_cmd(batch, GENX(MI_REPORT_PERF_COUNT), mi_rpc) {
7077 mi_rpc.MemoryAddress = rw_bo(bo, offset_in_bytes);
7078 mi_rpc.ReportID = report_id;
7079 }
7080 }
7081
7082 /**
7083 * Update the pixel hashing modes that determine the balancing of PS threads
7084 * across subslices and slices.
7085 *
7086 * \param width Width bound of the rendering area (already scaled down if \p
7087 * scale is greater than 1).
7088 * \param height Height bound of the rendering area (already scaled down if \p
7089 * scale is greater than 1).
7090 * \param scale The number of framebuffer samples that could potentially be
7091 * affected by an individual channel of the PS thread. This is
7092 * typically one for single-sampled rendering, but for operations
7093 * like CCS resolves and fast clears a single PS invocation may
7094 * update a huge number of pixels, in which case a finer
7095 * balancing is desirable in order to maximally utilize the
7096 * bandwidth available. UINT_MAX can be used as shorthand for
7097 * "finest hashing mode available".
7098 */
7099 void
7100 genX(emit_hashing_mode)(struct iris_context *ice, struct iris_batch *batch,
7101 unsigned width, unsigned height, unsigned scale)
7102 {
7103 #if GEN_GEN == 9
7104 const struct gen_device_info *devinfo = &batch->screen->devinfo;
7105 const unsigned slice_hashing[] = {
7106 /* Because all Gen9 platforms with more than one slice require
7107 * three-way subslice hashing, a single "normal" 16x16 slice hashing
7108 * block is guaranteed to suffer from substantial imbalance, with one
7109 * subslice receiving twice as much work as the other two in the
7110 * slice.
7111 *
7112 * The performance impact of that would be particularly severe when
7113 * three-way hashing is also in use for slice balancing (which is the
7114 * case for all Gen9 GT4 platforms), because one of the slices
7115 * receives one every three 16x16 blocks in either direction, which
7116 * is roughly the periodicity of the underlying subslice imbalance
7117 * pattern ("roughly" because in reality the hardware's
7118 * implementation of three-way hashing doesn't do exact modulo 3
7119 * arithmetic, which somewhat decreases the magnitude of this effect
7120 * in practice). This leads to a systematic subslice imbalance
7121 * within that slice regardless of the size of the primitive. The
7122 * 32x32 hashing mode guarantees that the subslice imbalance within a
7123 * single slice hashing block is minimal, largely eliminating this
7124 * effect.
7125 */
7126 _32x32,
7127 /* Finest slice hashing mode available. */
7128 NORMAL
7129 };
7130 const unsigned subslice_hashing[] = {
7131 /* 16x16 would provide a slight cache locality benefit especially
7132 * visible in the sampler L1 cache efficiency of low-bandwidth
7133 * non-LLC platforms, but it comes at the cost of greater subslice
7134 * imbalance for primitives of dimensions approximately intermediate
7135 * between 16x4 and 16x16.
7136 */
7137 _16x4,
7138 /* Finest subslice hashing mode available. */
7139 _8x4
7140 };
7141 /* Dimensions of the smallest hashing block of a given hashing mode. If
7142 * the rendering area is smaller than this there can't possibly be any
7143 * benefit from switching to this mode, so we optimize out the
7144 * transition.
7145 */
7146 const unsigned min_size[][2] = {
7147 { 16, 4 },
7148 { 8, 4 }
7149 };
7150 const unsigned idx = scale > 1;
7151
7152 if (width > min_size[idx][0] || height > min_size[idx][1]) {
7153 uint32_t gt_mode;
7154
7155 iris_pack_state(GENX(GT_MODE), &gt_mode, reg) {
7156 reg.SliceHashing = (devinfo->num_slices > 1 ? slice_hashing[idx] : 0);
7157 reg.SliceHashingMask = (devinfo->num_slices > 1 ? -1 : 0);
7158 reg.SubsliceHashing = subslice_hashing[idx];
7159 reg.SubsliceHashingMask = -1;
7160 };
7161
7162 iris_emit_raw_pipe_control(batch,
7163 "workaround: CS stall before GT_MODE LRI",
7164 PIPE_CONTROL_STALL_AT_SCOREBOARD |
7165 PIPE_CONTROL_CS_STALL,
7166 NULL, 0, 0);
7167
7168 iris_emit_lri(batch, GT_MODE, gt_mode);
7169
7170 ice->state.current_hash_scale = scale;
7171 }
7172 #endif
7173 }
7174
7175 void
7176 genX(init_state)(struct iris_context *ice)
7177 {
7178 struct pipe_context *ctx = &ice->ctx;
7179 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
7180
7181 ctx->create_blend_state = iris_create_blend_state;
7182 ctx->create_depth_stencil_alpha_state = iris_create_zsa_state;
7183 ctx->create_rasterizer_state = iris_create_rasterizer_state;
7184 ctx->create_sampler_state = iris_create_sampler_state;
7185 ctx->create_sampler_view = iris_create_sampler_view;
7186 ctx->create_surface = iris_create_surface;
7187 ctx->create_vertex_elements_state = iris_create_vertex_elements;
7188 ctx->bind_blend_state = iris_bind_blend_state;
7189 ctx->bind_depth_stencil_alpha_state = iris_bind_zsa_state;
7190 ctx->bind_sampler_states = iris_bind_sampler_states;
7191 ctx->bind_rasterizer_state = iris_bind_rasterizer_state;
7192 ctx->bind_vertex_elements_state = iris_bind_vertex_elements_state;
7193 ctx->delete_blend_state = iris_delete_state;
7194 ctx->delete_depth_stencil_alpha_state = iris_delete_state;
7195 ctx->delete_rasterizer_state = iris_delete_state;
7196 ctx->delete_sampler_state = iris_delete_state;
7197 ctx->delete_vertex_elements_state = iris_delete_state;
7198 ctx->set_blend_color = iris_set_blend_color;
7199 ctx->set_clip_state = iris_set_clip_state;
7200 ctx->set_constant_buffer = iris_set_constant_buffer;
7201 ctx->set_shader_buffers = iris_set_shader_buffers;
7202 ctx->set_shader_images = iris_set_shader_images;
7203 ctx->set_sampler_views = iris_set_sampler_views;
7204 ctx->set_tess_state = iris_set_tess_state;
7205 ctx->set_framebuffer_state = iris_set_framebuffer_state;
7206 ctx->set_polygon_stipple = iris_set_polygon_stipple;
7207 ctx->set_sample_mask = iris_set_sample_mask;
7208 ctx->set_scissor_states = iris_set_scissor_states;
7209 ctx->set_stencil_ref = iris_set_stencil_ref;
7210 ctx->set_vertex_buffers = iris_set_vertex_buffers;
7211 ctx->set_viewport_states = iris_set_viewport_states;
7212 ctx->sampler_view_destroy = iris_sampler_view_destroy;
7213 ctx->surface_destroy = iris_surface_destroy;
7214 ctx->draw_vbo = iris_draw_vbo;
7215 ctx->launch_grid = iris_launch_grid;
7216 ctx->create_stream_output_target = iris_create_stream_output_target;
7217 ctx->stream_output_target_destroy = iris_stream_output_target_destroy;
7218 ctx->set_stream_output_targets = iris_set_stream_output_targets;
7219
7220 ice->vtbl.destroy_state = iris_destroy_state;
7221 ice->vtbl.init_render_context = iris_init_render_context;
7222 ice->vtbl.init_compute_context = iris_init_compute_context;
7223 ice->vtbl.upload_render_state = iris_upload_render_state;
7224 ice->vtbl.update_surface_base_address = iris_update_surface_base_address;
7225 ice->vtbl.upload_compute_state = iris_upload_compute_state;
7226 ice->vtbl.emit_raw_pipe_control = iris_emit_raw_pipe_control;
7227 ice->vtbl.emit_mi_report_perf_count = iris_emit_mi_report_perf_count;
7228 ice->vtbl.rebind_buffer = iris_rebind_buffer;
7229 ice->vtbl.load_register_reg32 = iris_load_register_reg32;
7230 ice->vtbl.load_register_reg64 = iris_load_register_reg64;
7231 ice->vtbl.load_register_imm32 = iris_load_register_imm32;
7232 ice->vtbl.load_register_imm64 = iris_load_register_imm64;
7233 ice->vtbl.load_register_mem32 = iris_load_register_mem32;
7234 ice->vtbl.load_register_mem64 = iris_load_register_mem64;
7235 ice->vtbl.store_register_mem32 = iris_store_register_mem32;
7236 ice->vtbl.store_register_mem64 = iris_store_register_mem64;
7237 ice->vtbl.store_data_imm32 = iris_store_data_imm32;
7238 ice->vtbl.store_data_imm64 = iris_store_data_imm64;
7239 ice->vtbl.copy_mem_mem = iris_copy_mem_mem;
7240 ice->vtbl.derived_program_state_size = iris_derived_program_state_size;
7241 ice->vtbl.store_derived_program_state = iris_store_derived_program_state;
7242 ice->vtbl.create_so_decl_list = iris_create_so_decl_list;
7243 ice->vtbl.populate_vs_key = iris_populate_vs_key;
7244 ice->vtbl.populate_tcs_key = iris_populate_tcs_key;
7245 ice->vtbl.populate_tes_key = iris_populate_tes_key;
7246 ice->vtbl.populate_gs_key = iris_populate_gs_key;
7247 ice->vtbl.populate_fs_key = iris_populate_fs_key;
7248 ice->vtbl.populate_cs_key = iris_populate_cs_key;
7249 ice->vtbl.mocs = mocs;
7250 ice->vtbl.lost_genx_state = iris_lost_genx_state;
7251
7252 ice->state.dirty = ~0ull;
7253
7254 ice->state.statistics_counters_enabled = true;
7255
7256 ice->state.sample_mask = 0xffff;
7257 ice->state.num_viewports = 1;
7258 ice->state.prim_mode = PIPE_PRIM_MAX;
7259 ice->state.genx = calloc(1, sizeof(struct iris_genx_state));
7260 ice->draw.derived_params.drawid = -1;
7261
7262 /* Make a 1x1x1 null surface for unbound textures */
7263 void *null_surf_map =
7264 upload_state(ice->state.surface_uploader, &ice->state.unbound_tex,
7265 4 * GENX(RENDER_SURFACE_STATE_length), 64);
7266 isl_null_fill_state(&screen->isl_dev, null_surf_map, isl_extent3d(1, 1, 1));
7267 ice->state.unbound_tex.offset +=
7268 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.unbound_tex.res));
7269
7270 /* Default all scissor rectangles to be empty regions. */
7271 for (int i = 0; i < IRIS_MAX_VIEWPORTS; i++) {
7272 ice->state.scissors[i] = (struct pipe_scissor_state) {
7273 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
7274 };
7275 }
7276 }