iris: only get space for one offset in stream output targets
[mesa.git] / src / gallium / drivers / iris / iris_state.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included
12 * in all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
21 */
22
23 /**
24 * @file iris_state.c
25 *
26 * ============================= GENXML CODE =============================
27 * [This file is compiled once per generation.]
28 * =======================================================================
29 *
30 * This is the main state upload code.
31 *
32 * Gallium uses Constant State Objects, or CSOs, for most state. Large,
33 * complex, or highly reusable state can be created once, and bound and
34 * rebound multiple times. This is modeled with the pipe->create_*_state()
35 * and pipe->bind_*_state() hooks. Highly dynamic or inexpensive state is
36 * streamed out on the fly, via pipe->set_*_state() hooks.
37 *
38 * OpenGL involves frequently mutating context state, which is mirrored in
39 * core Mesa by highly mutable data structures. However, most applications
40 * typically draw the same things over and over - from frame to frame, most
41 * of the same objects are still visible and need to be redrawn. So, rather
42 * than inventing new state all the time, applications usually mutate to swap
43 * between known states that we've seen before.
44 *
45 * Gallium isolates us from this mutation by tracking API state, and
46 * distilling it into a set of Constant State Objects, or CSOs. Large,
47 * complex, or typically reusable state can be created once, then reused
48 * multiple times. Drivers can create and store their own associated data.
49 * This create/bind model corresponds to the pipe->create_*_state() and
50 * pipe->bind_*_state() driver hooks.
51 *
52 * Some state is cheap to create, or expected to be highly dynamic. Rather
53 * than creating and caching piles of CSOs for these, Gallium simply streams
54 * them out, via the pipe->set_*_state() driver hooks.
55 *
56 * To reduce draw time overhead, we try to compute as much state at create
57 * time as possible. Wherever possible, we translate the Gallium pipe state
58 * to 3DSTATE commands, and store those commands in the CSO. At draw time,
59 * we can simply memcpy them into a batch buffer.
60 *
61 * No hardware matches the abstraction perfectly, so some commands require
62 * information from multiple CSOs. In this case, we can store two copies
63 * of the packet (one in each CSO), and simply | together their DWords at
64 * draw time. Sometimes the second set is trivial (one or two fields), so
65 * we simply pack it at draw time.
66 *
67 * There are two main components in the file below. First, the CSO hooks
68 * create/bind/track state. The second are the draw-time upload functions,
69 * iris_upload_render_state() and iris_upload_compute_state(), which read
70 * the context state and emit the commands into the actual batch.
71 */
72
73 #include <stdio.h>
74 #include <errno.h>
75
76 #if HAVE_VALGRIND
77 #include <valgrind.h>
78 #include <memcheck.h>
79 #define VG(x) x
80 #ifndef NDEBUG
81 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
82 #endif
83 #else
84 #define VG(x)
85 #endif
86
87 #include "pipe/p_defines.h"
88 #include "pipe/p_state.h"
89 #include "pipe/p_context.h"
90 #include "pipe/p_screen.h"
91 #include "util/u_inlines.h"
92 #include "util/u_format.h"
93 #include "util/u_framebuffer.h"
94 #include "util/u_transfer.h"
95 #include "util/u_upload_mgr.h"
96 #include "util/u_viewport.h"
97 #include "i915_drm.h"
98 #include "nir.h"
99 #include "intel/compiler/brw_compiler.h"
100 #include "intel/common/gen_l3_config.h"
101 #include "intel/common/gen_sample_positions.h"
102 #include "iris_batch.h"
103 #include "iris_context.h"
104 #include "iris_pipe.h"
105 #include "iris_resource.h"
106
107 #define __gen_address_type struct iris_address
108 #define __gen_user_data struct iris_batch
109
110 #define ARRAY_BYTES(x) (sizeof(uint32_t) * ARRAY_SIZE(x))
111
112 static uint64_t
113 __gen_combine_address(struct iris_batch *batch, void *location,
114 struct iris_address addr, uint32_t delta)
115 {
116 uint64_t result = addr.offset + delta;
117
118 if (addr.bo) {
119 iris_use_pinned_bo(batch, addr.bo, addr.write);
120 /* Assume this is a general address, not relative to a base. */
121 result += addr.bo->gtt_offset;
122 }
123
124 return result;
125 }
126
127 #define __genxml_cmd_length(cmd) cmd ## _length
128 #define __genxml_cmd_length_bias(cmd) cmd ## _length_bias
129 #define __genxml_cmd_header(cmd) cmd ## _header
130 #define __genxml_cmd_pack(cmd) cmd ## _pack
131
132 #define _iris_pack_command(batch, cmd, dst, name) \
133 for (struct cmd name = { __genxml_cmd_header(cmd) }, \
134 *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
135 ({ __genxml_cmd_pack(cmd)(batch, (void *)_dst, &name); \
136 _dst = NULL; \
137 }))
138
139 #define iris_pack_command(cmd, dst, name) \
140 _iris_pack_command(NULL, cmd, dst, name)
141
142 #define iris_pack_state(cmd, dst, name) \
143 for (struct cmd name = {}, \
144 *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
145 __genxml_cmd_pack(cmd)(NULL, (void *)_dst, &name), \
146 _dst = NULL)
147
148 #define iris_emit_cmd(batch, cmd, name) \
149 _iris_pack_command(batch, cmd, iris_get_command_space(batch, 4 * __genxml_cmd_length(cmd)), name)
150
151 #define iris_emit_merge(batch, dwords0, dwords1, num_dwords) \
152 do { \
153 uint32_t *dw = iris_get_command_space(batch, 4 * num_dwords); \
154 for (uint32_t i = 0; i < num_dwords; i++) \
155 dw[i] = (dwords0)[i] | (dwords1)[i]; \
156 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, num_dwords)); \
157 } while (0)
158
159 #include "genxml/genX_pack.h"
160 #include "genxml/gen_macros.h"
161 #include "genxml/genX_bits.h"
162
163 #define MOCS_WB (2 << 1)
164
165 /**
166 * Statically assert that PIPE_* enums match the hardware packets.
167 * (As long as they match, we don't need to translate them.)
168 */
169 UNUSED static void pipe_asserts()
170 {
171 #define PIPE_ASSERT(x) STATIC_ASSERT((int)x)
172
173 /* pipe_logicop happens to match the hardware. */
174 PIPE_ASSERT(PIPE_LOGICOP_CLEAR == LOGICOP_CLEAR);
175 PIPE_ASSERT(PIPE_LOGICOP_NOR == LOGICOP_NOR);
176 PIPE_ASSERT(PIPE_LOGICOP_AND_INVERTED == LOGICOP_AND_INVERTED);
177 PIPE_ASSERT(PIPE_LOGICOP_COPY_INVERTED == LOGICOP_COPY_INVERTED);
178 PIPE_ASSERT(PIPE_LOGICOP_AND_REVERSE == LOGICOP_AND_REVERSE);
179 PIPE_ASSERT(PIPE_LOGICOP_INVERT == LOGICOP_INVERT);
180 PIPE_ASSERT(PIPE_LOGICOP_XOR == LOGICOP_XOR);
181 PIPE_ASSERT(PIPE_LOGICOP_NAND == LOGICOP_NAND);
182 PIPE_ASSERT(PIPE_LOGICOP_AND == LOGICOP_AND);
183 PIPE_ASSERT(PIPE_LOGICOP_EQUIV == LOGICOP_EQUIV);
184 PIPE_ASSERT(PIPE_LOGICOP_NOOP == LOGICOP_NOOP);
185 PIPE_ASSERT(PIPE_LOGICOP_OR_INVERTED == LOGICOP_OR_INVERTED);
186 PIPE_ASSERT(PIPE_LOGICOP_COPY == LOGICOP_COPY);
187 PIPE_ASSERT(PIPE_LOGICOP_OR_REVERSE == LOGICOP_OR_REVERSE);
188 PIPE_ASSERT(PIPE_LOGICOP_OR == LOGICOP_OR);
189 PIPE_ASSERT(PIPE_LOGICOP_SET == LOGICOP_SET);
190
191 /* pipe_blend_func happens to match the hardware. */
192 PIPE_ASSERT(PIPE_BLENDFACTOR_ONE == BLENDFACTOR_ONE);
193 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_COLOR == BLENDFACTOR_SRC_COLOR);
194 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA == BLENDFACTOR_SRC_ALPHA);
195 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_ALPHA == BLENDFACTOR_DST_ALPHA);
196 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_COLOR == BLENDFACTOR_DST_COLOR);
197 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE == BLENDFACTOR_SRC_ALPHA_SATURATE);
198 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_COLOR == BLENDFACTOR_CONST_COLOR);
199 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_ALPHA == BLENDFACTOR_CONST_ALPHA);
200 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_COLOR == BLENDFACTOR_SRC1_COLOR);
201 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_ALPHA == BLENDFACTOR_SRC1_ALPHA);
202 PIPE_ASSERT(PIPE_BLENDFACTOR_ZERO == BLENDFACTOR_ZERO);
203 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_COLOR == BLENDFACTOR_INV_SRC_COLOR);
204 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_ALPHA == BLENDFACTOR_INV_SRC_ALPHA);
205 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_ALPHA == BLENDFACTOR_INV_DST_ALPHA);
206 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_COLOR == BLENDFACTOR_INV_DST_COLOR);
207 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_COLOR == BLENDFACTOR_INV_CONST_COLOR);
208 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_ALPHA == BLENDFACTOR_INV_CONST_ALPHA);
209 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_COLOR == BLENDFACTOR_INV_SRC1_COLOR);
210 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_ALPHA == BLENDFACTOR_INV_SRC1_ALPHA);
211
212 /* pipe_blend_func happens to match the hardware. */
213 PIPE_ASSERT(PIPE_BLEND_ADD == BLENDFUNCTION_ADD);
214 PIPE_ASSERT(PIPE_BLEND_SUBTRACT == BLENDFUNCTION_SUBTRACT);
215 PIPE_ASSERT(PIPE_BLEND_REVERSE_SUBTRACT == BLENDFUNCTION_REVERSE_SUBTRACT);
216 PIPE_ASSERT(PIPE_BLEND_MIN == BLENDFUNCTION_MIN);
217 PIPE_ASSERT(PIPE_BLEND_MAX == BLENDFUNCTION_MAX);
218
219 /* pipe_stencil_op happens to match the hardware. */
220 PIPE_ASSERT(PIPE_STENCIL_OP_KEEP == STENCILOP_KEEP);
221 PIPE_ASSERT(PIPE_STENCIL_OP_ZERO == STENCILOP_ZERO);
222 PIPE_ASSERT(PIPE_STENCIL_OP_REPLACE == STENCILOP_REPLACE);
223 PIPE_ASSERT(PIPE_STENCIL_OP_INCR == STENCILOP_INCRSAT);
224 PIPE_ASSERT(PIPE_STENCIL_OP_DECR == STENCILOP_DECRSAT);
225 PIPE_ASSERT(PIPE_STENCIL_OP_INCR_WRAP == STENCILOP_INCR);
226 PIPE_ASSERT(PIPE_STENCIL_OP_DECR_WRAP == STENCILOP_DECR);
227 PIPE_ASSERT(PIPE_STENCIL_OP_INVERT == STENCILOP_INVERT);
228
229 /* pipe_sprite_coord_mode happens to match 3DSTATE_SBE */
230 PIPE_ASSERT(PIPE_SPRITE_COORD_UPPER_LEFT == UPPERLEFT);
231 PIPE_ASSERT(PIPE_SPRITE_COORD_LOWER_LEFT == LOWERLEFT);
232 #undef PIPE_ASSERT
233 }
234
235 static unsigned
236 translate_prim_type(enum pipe_prim_type prim, uint8_t verts_per_patch)
237 {
238 static const unsigned map[] = {
239 [PIPE_PRIM_POINTS] = _3DPRIM_POINTLIST,
240 [PIPE_PRIM_LINES] = _3DPRIM_LINELIST,
241 [PIPE_PRIM_LINE_LOOP] = _3DPRIM_LINELOOP,
242 [PIPE_PRIM_LINE_STRIP] = _3DPRIM_LINESTRIP,
243 [PIPE_PRIM_TRIANGLES] = _3DPRIM_TRILIST,
244 [PIPE_PRIM_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
245 [PIPE_PRIM_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
246 [PIPE_PRIM_QUADS] = _3DPRIM_QUADLIST,
247 [PIPE_PRIM_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
248 [PIPE_PRIM_POLYGON] = _3DPRIM_POLYGON,
249 [PIPE_PRIM_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
250 [PIPE_PRIM_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
251 [PIPE_PRIM_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
252 [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
253 [PIPE_PRIM_PATCHES] = _3DPRIM_PATCHLIST_1 - 1,
254 };
255
256 return map[prim] + (prim == PIPE_PRIM_PATCHES ? verts_per_patch : 0);
257 }
258
259 static unsigned
260 translate_compare_func(enum pipe_compare_func pipe_func)
261 {
262 static const unsigned map[] = {
263 [PIPE_FUNC_NEVER] = COMPAREFUNCTION_NEVER,
264 [PIPE_FUNC_LESS] = COMPAREFUNCTION_LESS,
265 [PIPE_FUNC_EQUAL] = COMPAREFUNCTION_EQUAL,
266 [PIPE_FUNC_LEQUAL] = COMPAREFUNCTION_LEQUAL,
267 [PIPE_FUNC_GREATER] = COMPAREFUNCTION_GREATER,
268 [PIPE_FUNC_NOTEQUAL] = COMPAREFUNCTION_NOTEQUAL,
269 [PIPE_FUNC_GEQUAL] = COMPAREFUNCTION_GEQUAL,
270 [PIPE_FUNC_ALWAYS] = COMPAREFUNCTION_ALWAYS,
271 };
272 return map[pipe_func];
273 }
274
275 static unsigned
276 translate_shadow_func(enum pipe_compare_func pipe_func)
277 {
278 /* Gallium specifies the result of shadow comparisons as:
279 *
280 * 1 if ref <op> texel,
281 * 0 otherwise.
282 *
283 * The hardware does:
284 *
285 * 0 if texel <op> ref,
286 * 1 otherwise.
287 *
288 * So we need to flip the operator and also negate.
289 */
290 static const unsigned map[] = {
291 [PIPE_FUNC_NEVER] = PREFILTEROPALWAYS,
292 [PIPE_FUNC_LESS] = PREFILTEROPLEQUAL,
293 [PIPE_FUNC_EQUAL] = PREFILTEROPNOTEQUAL,
294 [PIPE_FUNC_LEQUAL] = PREFILTEROPLESS,
295 [PIPE_FUNC_GREATER] = PREFILTEROPGEQUAL,
296 [PIPE_FUNC_NOTEQUAL] = PREFILTEROPEQUAL,
297 [PIPE_FUNC_GEQUAL] = PREFILTEROPGREATER,
298 [PIPE_FUNC_ALWAYS] = PREFILTEROPNEVER,
299 };
300 return map[pipe_func];
301 }
302
303 static unsigned
304 translate_cull_mode(unsigned pipe_face)
305 {
306 static const unsigned map[4] = {
307 [PIPE_FACE_NONE] = CULLMODE_NONE,
308 [PIPE_FACE_FRONT] = CULLMODE_FRONT,
309 [PIPE_FACE_BACK] = CULLMODE_BACK,
310 [PIPE_FACE_FRONT_AND_BACK] = CULLMODE_BOTH,
311 };
312 return map[pipe_face];
313 }
314
315 static unsigned
316 translate_fill_mode(unsigned pipe_polymode)
317 {
318 static const unsigned map[4] = {
319 [PIPE_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
320 [PIPE_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
321 [PIPE_POLYGON_MODE_POINT] = FILL_MODE_POINT,
322 [PIPE_POLYGON_MODE_FILL_RECTANGLE] = FILL_MODE_SOLID,
323 };
324 return map[pipe_polymode];
325 }
326
327 static unsigned
328 translate_mip_filter(enum pipe_tex_mipfilter pipe_mip)
329 {
330 static const unsigned map[] = {
331 [PIPE_TEX_MIPFILTER_NEAREST] = MIPFILTER_NEAREST,
332 [PIPE_TEX_MIPFILTER_LINEAR] = MIPFILTER_LINEAR,
333 [PIPE_TEX_MIPFILTER_NONE] = MIPFILTER_NONE,
334 };
335 return map[pipe_mip];
336 }
337
338 static uint32_t
339 translate_wrap(unsigned pipe_wrap)
340 {
341 static const unsigned map[] = {
342 [PIPE_TEX_WRAP_REPEAT] = TCM_WRAP,
343 [PIPE_TEX_WRAP_CLAMP] = TCM_HALF_BORDER,
344 [PIPE_TEX_WRAP_CLAMP_TO_EDGE] = TCM_CLAMP,
345 [PIPE_TEX_WRAP_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER,
346 [PIPE_TEX_WRAP_MIRROR_REPEAT] = TCM_MIRROR,
347 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE,
348
349 /* These are unsupported. */
350 [PIPE_TEX_WRAP_MIRROR_CLAMP] = -1,
351 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER] = -1,
352 };
353 return map[pipe_wrap];
354 }
355
356 static struct iris_address
357 ro_bo(struct iris_bo *bo, uint64_t offset)
358 {
359 /* CSOs must pass NULL for bo! Otherwise it will add the BO to the
360 * validation list at CSO creation time, instead of draw time.
361 */
362 return (struct iris_address) { .bo = bo, .offset = offset };
363 }
364
365 static struct iris_address
366 rw_bo(struct iris_bo *bo, uint64_t offset)
367 {
368 /* CSOs must pass NULL for bo! Otherwise it will add the BO to the
369 * validation list at CSO creation time, instead of draw time.
370 */
371 return (struct iris_address) { .bo = bo, .offset = offset, .write = true };
372 }
373
374 /**
375 * Allocate space for some indirect state.
376 *
377 * Return a pointer to the map (to fill it out) and a state ref (for
378 * referring to the state in GPU commands).
379 */
380 static void *
381 upload_state(struct u_upload_mgr *uploader,
382 struct iris_state_ref *ref,
383 unsigned size,
384 unsigned alignment)
385 {
386 void *p = NULL;
387 u_upload_alloc(uploader, 0, size, alignment, &ref->offset, &ref->res, &p);
388 return p;
389 }
390
391 /**
392 * Stream out temporary/short-lived state.
393 *
394 * This allocates space, pins the BO, and includes the BO address in the
395 * returned offset (which works because all state lives in 32-bit memory
396 * zones).
397 */
398 static uint32_t *
399 stream_state(struct iris_batch *batch,
400 struct u_upload_mgr *uploader,
401 struct pipe_resource **out_res,
402 unsigned size,
403 unsigned alignment,
404 uint32_t *out_offset)
405 {
406 void *ptr = NULL;
407
408 u_upload_alloc(uploader, 0, size, alignment, out_offset, out_res, &ptr);
409
410 struct iris_bo *bo = iris_resource_bo(*out_res);
411 iris_use_pinned_bo(batch, bo, false);
412
413 *out_offset += iris_bo_offset_from_base_address(bo);
414
415 return ptr;
416 }
417
418 /**
419 * stream_state() + memcpy.
420 */
421 static uint32_t
422 emit_state(struct iris_batch *batch,
423 struct u_upload_mgr *uploader,
424 struct pipe_resource **out_res,
425 const void *data,
426 unsigned size,
427 unsigned alignment)
428 {
429 unsigned offset = 0;
430 uint32_t *map =
431 stream_state(batch, uploader, out_res, size, alignment, &offset);
432
433 if (map)
434 memcpy(map, data, size);
435
436 return offset;
437 }
438
439 /**
440 * Did field 'x' change between 'old_cso' and 'new_cso'?
441 *
442 * (If so, we may want to set some dirty flags.)
443 */
444 #define cso_changed(x) (!old_cso || (old_cso->x != new_cso->x))
445 #define cso_changed_memcmp(x) \
446 (!old_cso || memcmp(old_cso->x, new_cso->x, sizeof(old_cso->x)) != 0)
447
448 static void
449 flush_for_state_base_change(struct iris_batch *batch)
450 {
451 /* Flush before emitting STATE_BASE_ADDRESS.
452 *
453 * This isn't documented anywhere in the PRM. However, it seems to be
454 * necessary prior to changing the surface state base adress. We've
455 * seen issues in Vulkan where we get GPU hangs when using multi-level
456 * command buffers which clear depth, reset state base address, and then
457 * go render stuff.
458 *
459 * Normally, in GL, we would trust the kernel to do sufficient stalls
460 * and flushes prior to executing our batch. However, it doesn't seem
461 * as if the kernel's flushing is always sufficient and we don't want to
462 * rely on it.
463 *
464 * We make this an end-of-pipe sync instead of a normal flush because we
465 * do not know the current status of the GPU. On Haswell at least,
466 * having a fast-clear operation in flight at the same time as a normal
467 * rendering operation can cause hangs. Since the kernel's flushing is
468 * insufficient, we need to ensure that any rendering operations from
469 * other processes are definitely complete before we try to do our own
470 * rendering. It's a bit of a big hammer but it appears to work.
471 */
472 iris_emit_end_of_pipe_sync(batch,
473 PIPE_CONTROL_RENDER_TARGET_FLUSH |
474 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
475 PIPE_CONTROL_DATA_CACHE_FLUSH);
476 }
477
478 static void
479 _iris_emit_lri(struct iris_batch *batch, uint32_t reg, uint32_t val)
480 {
481 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
482 lri.RegisterOffset = reg;
483 lri.DataDWord = val;
484 }
485 }
486 #define iris_emit_lri(b, r, v) _iris_emit_lri(b, GENX(r##_num), v)
487
488 static void
489 _iris_emit_lrr(struct iris_batch *batch, uint32_t dst, uint32_t src)
490 {
491 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
492 lrr.SourceRegisterAddress = src;
493 lrr.DestinationRegisterAddress = dst;
494 }
495 }
496
497 static void
498 emit_pipeline_select(struct iris_batch *batch, uint32_t pipeline)
499 {
500 #if GEN_GEN >= 8 && GEN_GEN < 10
501 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
502 *
503 * Software must clear the COLOR_CALC_STATE Valid field in
504 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
505 * with Pipeline Select set to GPGPU.
506 *
507 * The internal hardware docs recommend the same workaround for Gen9
508 * hardware too.
509 */
510 if (pipeline == GPGPU)
511 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
512 #endif
513
514
515 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
516 * PIPELINE_SELECT [DevBWR+]":
517 *
518 * "Project: DEVSNB+
519 *
520 * Software must ensure all the write caches are flushed through a
521 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
522 * command to invalidate read only caches prior to programming
523 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode."
524 */
525 iris_emit_pipe_control_flush(batch,
526 PIPE_CONTROL_RENDER_TARGET_FLUSH |
527 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
528 PIPE_CONTROL_DATA_CACHE_FLUSH |
529 PIPE_CONTROL_CS_STALL);
530
531 iris_emit_pipe_control_flush(batch,
532 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
533 PIPE_CONTROL_CONST_CACHE_INVALIDATE |
534 PIPE_CONTROL_STATE_CACHE_INVALIDATE |
535 PIPE_CONTROL_INSTRUCTION_INVALIDATE);
536
537 iris_emit_cmd(batch, GENX(PIPELINE_SELECT), sel) {
538 #if GEN_GEN >= 9
539 sel.MaskBits = 3;
540 #endif
541 sel.PipelineSelection = pipeline;
542 }
543 }
544
545 UNUSED static void
546 init_glk_barrier_mode(struct iris_batch *batch, uint32_t value)
547 {
548 #if GEN_GEN == 9
549 /* Project: DevGLK
550 *
551 * "This chicken bit works around a hardware issue with barrier
552 * logic encountered when switching between GPGPU and 3D pipelines.
553 * To workaround the issue, this mode bit should be set after a
554 * pipeline is selected."
555 */
556 uint32_t reg_val;
557 iris_pack_state(GENX(SLICE_COMMON_ECO_CHICKEN1), &reg_val, reg) {
558 reg.GLKBarrierMode = value;
559 reg.GLKBarrierModeMask = 1;
560 }
561 iris_emit_lri(batch, SLICE_COMMON_ECO_CHICKEN1, reg_val);
562 #endif
563 }
564
565 static void
566 init_state_base_address(struct iris_batch *batch)
567 {
568 flush_for_state_base_change(batch);
569
570 /* We program most base addresses once at context initialization time.
571 * Each base address points at a 4GB memory zone, and never needs to
572 * change. See iris_bufmgr.h for a description of the memory zones.
573 *
574 * The one exception is Surface State Base Address, which needs to be
575 * updated occasionally. See iris_binder.c for the details there.
576 */
577 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
578 #if 0
579 // XXX: MOCS is stupid for this.
580 sba.GeneralStateMemoryObjectControlState = MOCS_WB;
581 sba.StatelessDataPortAccessMemoryObjectControlState = MOCS_WB;
582 sba.DynamicStateMemoryObjectControlState = MOCS_WB;
583 sba.IndirectObjectMemoryObjectControlState = MOCS_WB;
584 sba.InstructionMemoryObjectControlState = MOCS_WB;
585 sba.BindlessSurfaceStateMemoryObjectControlState = MOCS_WB;
586 #endif
587
588 sba.GeneralStateBaseAddressModifyEnable = true;
589 sba.DynamicStateBaseAddressModifyEnable = true;
590 sba.IndirectObjectBaseAddressModifyEnable = true;
591 sba.InstructionBaseAddressModifyEnable = true;
592 sba.GeneralStateBufferSizeModifyEnable = true;
593 sba.DynamicStateBufferSizeModifyEnable = true;
594 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
595 sba.IndirectObjectBufferSizeModifyEnable = true;
596 sba.InstructionBuffersizeModifyEnable = true;
597
598 sba.InstructionBaseAddress = ro_bo(NULL, IRIS_MEMZONE_SHADER_START);
599 sba.DynamicStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_DYNAMIC_START);
600
601 sba.GeneralStateBufferSize = 0xfffff;
602 sba.IndirectObjectBufferSize = 0xfffff;
603 sba.InstructionBufferSize = 0xfffff;
604 sba.DynamicStateBufferSize = 0xfffff;
605 }
606 }
607
608 /**
609 * Upload the initial GPU state for a render context.
610 *
611 * This sets some invariant state that needs to be programmed a particular
612 * way, but we never actually change.
613 */
614 static void
615 iris_init_render_context(struct iris_screen *screen,
616 struct iris_batch *batch,
617 struct iris_vtable *vtbl,
618 struct pipe_debug_callback *dbg)
619 {
620 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
621 uint32_t reg_val;
622
623 emit_pipeline_select(batch, _3D);
624
625 init_state_base_address(batch);
626
627 // XXX: INSTPM on Gen8
628 iris_pack_state(GENX(CS_DEBUG_MODE2), &reg_val, reg) {
629 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
630 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
631 }
632 iris_emit_lri(batch, CS_DEBUG_MODE2, reg_val);
633
634 #if GEN_GEN == 9
635 iris_pack_state(GENX(CACHE_MODE_1), &reg_val, reg) {
636 reg.FloatBlendOptimizationEnable = true;
637 reg.FloatBlendOptimizationEnableMask = true;
638 reg.PartialResolveDisableInVC = true;
639 reg.PartialResolveDisableInVCMask = true;
640 }
641 iris_emit_lri(batch, CACHE_MODE_1, reg_val);
642
643 if (devinfo->is_geminilake)
644 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_3D_HULL);
645 #endif
646
647 #if GEN_GEN == 11
648 iris_pack_state(GENX(SAMPLER_MODE), &reg_val, reg) {
649 reg.HeaderlessMessageforPreemptableContexts = 1;
650 reg.HeaderlessMessageforPreemptableContextsMask = 1;
651 }
652 iris_emit_lri(batch, SAMPLER_MODE, reg_val);
653
654 // XXX: 3D_MODE?
655 #endif
656
657 /* 3DSTATE_DRAWING_RECTANGLE is non-pipelined, so we want to avoid
658 * changing it dynamically. We set it to the maximum size here, and
659 * instead include the render target dimensions in the viewport, so
660 * viewport extents clipping takes care of pruning stray geometry.
661 */
662 iris_emit_cmd(batch, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
663 rect.ClippedDrawingRectangleXMax = UINT16_MAX;
664 rect.ClippedDrawingRectangleYMax = UINT16_MAX;
665 }
666
667 /* Set the initial MSAA sample positions. */
668 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_PATTERN), pat) {
669 GEN_SAMPLE_POS_1X(pat._1xSample);
670 GEN_SAMPLE_POS_2X(pat._2xSample);
671 GEN_SAMPLE_POS_4X(pat._4xSample);
672 GEN_SAMPLE_POS_8X(pat._8xSample);
673 GEN_SAMPLE_POS_16X(pat._16xSample);
674 }
675
676 /* Use the legacy AA line coverage computation. */
677 iris_emit_cmd(batch, GENX(3DSTATE_AA_LINE_PARAMETERS), foo);
678
679 /* Disable chromakeying (it's for media) */
680 iris_emit_cmd(batch, GENX(3DSTATE_WM_CHROMAKEY), foo);
681
682 /* We want regular rendering, not special HiZ operations. */
683 iris_emit_cmd(batch, GENX(3DSTATE_WM_HZ_OP), foo);
684
685 /* No polygon stippling offsets are necessary. */
686 // XXX: may need to set an offset for origin-UL framebuffers
687 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_OFFSET), foo);
688
689 /* Set a static partitioning of the push constant area. */
690 // XXX: this may be a bad idea...could starve the push ringbuffers...
691 for (int i = 0; i <= MESA_SHADER_FRAGMENT; i++) {
692 iris_emit_cmd(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
693 alloc._3DCommandSubOpcode = 18 + i;
694 alloc.ConstantBufferOffset = 6 * i;
695 alloc.ConstantBufferSize = i == MESA_SHADER_FRAGMENT ? 8 : 6;
696 }
697 }
698 }
699
700 static void
701 iris_init_compute_context(struct iris_screen *screen,
702 struct iris_batch *batch,
703 struct iris_vtable *vtbl,
704 struct pipe_debug_callback *dbg)
705 {
706 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
707
708 emit_pipeline_select(batch, GPGPU);
709
710 const bool has_slm = true;
711 const bool wants_dc_cache = true;
712
713 const struct gen_l3_weights w =
714 gen_get_default_l3_weights(devinfo, wants_dc_cache, has_slm);
715 const struct gen_l3_config *cfg = gen_get_l3_config(devinfo, w);
716
717 uint32_t reg_val;
718 iris_pack_state(GENX(L3CNTLREG), &reg_val, reg) {
719 reg.SLMEnable = has_slm;
720 #if GEN_GEN == 11
721 /* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set
722 * in L3CNTLREG register. The default setting of the bit is not the
723 * desirable behavior.
724 */
725 reg.ErrorDetectionBehaviorControl = true;
726 #endif
727 reg.URBAllocation = cfg->n[GEN_L3P_URB];
728 reg.ROAllocation = cfg->n[GEN_L3P_RO];
729 reg.DCAllocation = cfg->n[GEN_L3P_DC];
730 reg.AllAllocation = cfg->n[GEN_L3P_ALL];
731 }
732 iris_emit_lri(batch, L3CNTLREG, reg_val);
733
734 init_state_base_address(batch);
735
736 #if GEN_GEN == 9
737 if (devinfo->is_geminilake)
738 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_GPGPU);
739 #endif
740 }
741
742 struct iris_vertex_buffer_state {
743 /** The VERTEX_BUFFER_STATE hardware structure. */
744 uint32_t state[GENX(VERTEX_BUFFER_STATE_length)];
745
746 /** The resource to source vertex data from. */
747 struct pipe_resource *resource;
748 };
749
750 struct iris_depth_buffer_state {
751 /* Depth/HiZ/Stencil related hardware packets. */
752 uint32_t packets[GENX(3DSTATE_DEPTH_BUFFER_length) +
753 GENX(3DSTATE_STENCIL_BUFFER_length) +
754 GENX(3DSTATE_HIER_DEPTH_BUFFER_length) +
755 GENX(3DSTATE_CLEAR_PARAMS_length)];
756 };
757
758 /**
759 * Generation-specific context state (ice->state.genx->...).
760 *
761 * Most state can go in iris_context directly, but these encode hardware
762 * packets which vary by generation.
763 */
764 struct iris_genx_state {
765 struct iris_vertex_buffer_state vertex_buffers[33];
766
767 /** The number of bound vertex buffers. */
768 uint64_t bound_vertex_buffers;
769
770 struct iris_depth_buffer_state depth_buffer;
771
772 uint32_t so_buffers[4 * GENX(3DSTATE_SO_BUFFER_length)];
773 uint32_t streamout[4 * GENX(3DSTATE_STREAMOUT_length)];
774 };
775
776 /**
777 * The pipe->set_blend_color() driver hook.
778 *
779 * This corresponds to our COLOR_CALC_STATE.
780 */
781 static void
782 iris_set_blend_color(struct pipe_context *ctx,
783 const struct pipe_blend_color *state)
784 {
785 struct iris_context *ice = (struct iris_context *) ctx;
786
787 /* Our COLOR_CALC_STATE is exactly pipe_blend_color, so just memcpy */
788 memcpy(&ice->state.blend_color, state, sizeof(struct pipe_blend_color));
789 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
790 }
791
792 /**
793 * Gallium CSO for blend state (see pipe_blend_state).
794 */
795 struct iris_blend_state {
796 /** Partial 3DSTATE_PS_BLEND */
797 uint32_t ps_blend[GENX(3DSTATE_PS_BLEND_length)];
798
799 /** Partial BLEND_STATE */
800 uint32_t blend_state[GENX(BLEND_STATE_length) +
801 BRW_MAX_DRAW_BUFFERS * GENX(BLEND_STATE_ENTRY_length)];
802
803 bool alpha_to_coverage; /* for shader key */
804 };
805
806 static enum pipe_blendfactor
807 fix_blendfactor(enum pipe_blendfactor f, bool alpha_to_one)
808 {
809 if (alpha_to_one) {
810 if (f == PIPE_BLENDFACTOR_SRC1_ALPHA)
811 return PIPE_BLENDFACTOR_ONE;
812
813 if (f == PIPE_BLENDFACTOR_INV_SRC1_ALPHA)
814 return PIPE_BLENDFACTOR_ZERO;
815 }
816
817 return f;
818 }
819
820 /**
821 * The pipe->create_blend_state() driver hook.
822 *
823 * Translates a pipe_blend_state into iris_blend_state.
824 */
825 static void *
826 iris_create_blend_state(struct pipe_context *ctx,
827 const struct pipe_blend_state *state)
828 {
829 struct iris_blend_state *cso = malloc(sizeof(struct iris_blend_state));
830 uint32_t *blend_entry = cso->blend_state + GENX(BLEND_STATE_length);
831
832 cso->alpha_to_coverage = state->alpha_to_coverage;
833
834 bool indep_alpha_blend = false;
835
836 for (int i = 0; i < BRW_MAX_DRAW_BUFFERS; i++) {
837 const struct pipe_rt_blend_state *rt =
838 &state->rt[state->independent_blend_enable ? i : 0];
839
840 enum pipe_blendfactor src_rgb =
841 fix_blendfactor(rt->rgb_src_factor, state->alpha_to_one);
842 enum pipe_blendfactor src_alpha =
843 fix_blendfactor(rt->alpha_src_factor, state->alpha_to_one);
844 enum pipe_blendfactor dst_rgb =
845 fix_blendfactor(rt->rgb_dst_factor, state->alpha_to_one);
846 enum pipe_blendfactor dst_alpha =
847 fix_blendfactor(rt->alpha_dst_factor, state->alpha_to_one);
848
849 if (rt->rgb_func != rt->alpha_func ||
850 src_rgb != src_alpha || dst_rgb != dst_alpha)
851 indep_alpha_blend = true;
852
853 iris_pack_state(GENX(BLEND_STATE_ENTRY), blend_entry, be) {
854 be.LogicOpEnable = state->logicop_enable;
855 be.LogicOpFunction = state->logicop_func;
856
857 be.PreBlendSourceOnlyClampEnable = false;
858 be.ColorClampRange = COLORCLAMP_RTFORMAT;
859 be.PreBlendColorClampEnable = true;
860 be.PostBlendColorClampEnable = true;
861
862 be.ColorBufferBlendEnable = rt->blend_enable;
863
864 be.ColorBlendFunction = rt->rgb_func;
865 be.AlphaBlendFunction = rt->alpha_func;
866 be.SourceBlendFactor = src_rgb;
867 be.SourceAlphaBlendFactor = src_alpha;
868 be.DestinationBlendFactor = dst_rgb;
869 be.DestinationAlphaBlendFactor = dst_alpha;
870
871 be.WriteDisableRed = !(rt->colormask & PIPE_MASK_R);
872 be.WriteDisableGreen = !(rt->colormask & PIPE_MASK_G);
873 be.WriteDisableBlue = !(rt->colormask & PIPE_MASK_B);
874 be.WriteDisableAlpha = !(rt->colormask & PIPE_MASK_A);
875 }
876 blend_entry += GENX(BLEND_STATE_ENTRY_length);
877 }
878
879 iris_pack_command(GENX(3DSTATE_PS_BLEND), cso->ps_blend, pb) {
880 /* pb.HasWriteableRT is filled in at draw time. */
881 /* pb.AlphaTestEnable is filled in at draw time. */
882 pb.AlphaToCoverageEnable = state->alpha_to_coverage;
883 pb.IndependentAlphaBlendEnable = indep_alpha_blend;
884
885 pb.ColorBufferBlendEnable = state->rt[0].blend_enable;
886
887 pb.SourceBlendFactor =
888 fix_blendfactor(state->rt[0].rgb_src_factor, state->alpha_to_one);
889 pb.SourceAlphaBlendFactor =
890 fix_blendfactor(state->rt[0].alpha_src_factor, state->alpha_to_one);
891 pb.DestinationBlendFactor =
892 fix_blendfactor(state->rt[0].rgb_dst_factor, state->alpha_to_one);
893 pb.DestinationAlphaBlendFactor =
894 fix_blendfactor(state->rt[0].alpha_dst_factor, state->alpha_to_one);
895 }
896
897 iris_pack_state(GENX(BLEND_STATE), cso->blend_state, bs) {
898 bs.AlphaToCoverageEnable = state->alpha_to_coverage;
899 bs.IndependentAlphaBlendEnable = indep_alpha_blend;
900 bs.AlphaToOneEnable = state->alpha_to_one;
901 bs.AlphaToCoverageDitherEnable = state->alpha_to_coverage;
902 bs.ColorDitherEnable = state->dither;
903 /* bl.AlphaTestEnable and bs.AlphaTestFunction are filled in later. */
904 }
905
906
907 return cso;
908 }
909
910 /**
911 * The pipe->bind_blend_state() driver hook.
912 *
913 * Bind a blending CSO and flag related dirty bits.
914 */
915 static void
916 iris_bind_blend_state(struct pipe_context *ctx, void *state)
917 {
918 struct iris_context *ice = (struct iris_context *) ctx;
919 ice->state.cso_blend = state;
920 ice->state.dirty |= IRIS_DIRTY_PS_BLEND;
921 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
922 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_BLEND];
923 }
924
925 /**
926 * Gallium CSO for depth, stencil, and alpha testing state.
927 */
928 struct iris_depth_stencil_alpha_state {
929 /** Partial 3DSTATE_WM_DEPTH_STENCIL. */
930 uint32_t wmds[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
931
932 /** Outbound to BLEND_STATE, 3DSTATE_PS_BLEND, COLOR_CALC_STATE. */
933 struct pipe_alpha_state alpha;
934
935 /** Outbound to resolve and cache set tracking. */
936 bool depth_writes_enabled;
937 bool stencil_writes_enabled;
938 };
939
940 /**
941 * The pipe->create_depth_stencil_alpha_state() driver hook.
942 *
943 * We encode most of 3DSTATE_WM_DEPTH_STENCIL, and just save off the alpha
944 * testing state since we need pieces of it in a variety of places.
945 */
946 static void *
947 iris_create_zsa_state(struct pipe_context *ctx,
948 const struct pipe_depth_stencil_alpha_state *state)
949 {
950 struct iris_depth_stencil_alpha_state *cso =
951 malloc(sizeof(struct iris_depth_stencil_alpha_state));
952
953 bool two_sided_stencil = state->stencil[1].enabled;
954
955 cso->alpha = state->alpha;
956 cso->depth_writes_enabled = state->depth.writemask;
957 cso->stencil_writes_enabled =
958 state->stencil[0].writemask != 0 ||
959 (two_sided_stencil && state->stencil[1].writemask != 1);
960
961 /* The state tracker needs to optimize away EQUAL writes for us. */
962 assert(!(state->depth.func == PIPE_FUNC_EQUAL && state->depth.writemask));
963
964 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), cso->wmds, wmds) {
965 wmds.StencilFailOp = state->stencil[0].fail_op;
966 wmds.StencilPassDepthFailOp = state->stencil[0].zfail_op;
967 wmds.StencilPassDepthPassOp = state->stencil[0].zpass_op;
968 wmds.StencilTestFunction =
969 translate_compare_func(state->stencil[0].func);
970 wmds.BackfaceStencilFailOp = state->stencil[1].fail_op;
971 wmds.BackfaceStencilPassDepthFailOp = state->stencil[1].zfail_op;
972 wmds.BackfaceStencilPassDepthPassOp = state->stencil[1].zpass_op;
973 wmds.BackfaceStencilTestFunction =
974 translate_compare_func(state->stencil[1].func);
975 wmds.DepthTestFunction = translate_compare_func(state->depth.func);
976 wmds.DoubleSidedStencilEnable = two_sided_stencil;
977 wmds.StencilTestEnable = state->stencil[0].enabled;
978 wmds.StencilBufferWriteEnable =
979 state->stencil[0].writemask != 0 ||
980 (two_sided_stencil && state->stencil[1].writemask != 0);
981 wmds.DepthTestEnable = state->depth.enabled;
982 wmds.DepthBufferWriteEnable = state->depth.writemask;
983 wmds.StencilTestMask = state->stencil[0].valuemask;
984 wmds.StencilWriteMask = state->stencil[0].writemask;
985 wmds.BackfaceStencilTestMask = state->stencil[1].valuemask;
986 wmds.BackfaceStencilWriteMask = state->stencil[1].writemask;
987 /* wmds.[Backface]StencilReferenceValue are merged later */
988 }
989
990 return cso;
991 }
992
993 /**
994 * The pipe->bind_depth_stencil_alpha_state() driver hook.
995 *
996 * Bind a depth/stencil/alpha CSO and flag related dirty bits.
997 */
998 static void
999 iris_bind_zsa_state(struct pipe_context *ctx, void *state)
1000 {
1001 struct iris_context *ice = (struct iris_context *) ctx;
1002 struct iris_depth_stencil_alpha_state *old_cso = ice->state.cso_zsa;
1003 struct iris_depth_stencil_alpha_state *new_cso = state;
1004
1005 if (new_cso) {
1006 if (cso_changed(alpha.ref_value))
1007 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
1008
1009 if (cso_changed(alpha.enabled))
1010 ice->state.dirty |= IRIS_DIRTY_PS_BLEND | IRIS_DIRTY_BLEND_STATE;
1011
1012 if (cso_changed(alpha.func))
1013 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1014
1015 ice->state.depth_writes_enabled = new_cso->depth_writes_enabled;
1016 ice->state.stencil_writes_enabled = new_cso->stencil_writes_enabled;
1017 }
1018
1019 ice->state.cso_zsa = new_cso;
1020 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1021 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
1022 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_DEPTH_STENCIL_ALPHA];
1023 }
1024
1025 /**
1026 * Gallium CSO for rasterizer state.
1027 */
1028 struct iris_rasterizer_state {
1029 uint32_t sf[GENX(3DSTATE_SF_length)];
1030 uint32_t clip[GENX(3DSTATE_CLIP_length)];
1031 uint32_t raster[GENX(3DSTATE_RASTER_length)];
1032 uint32_t wm[GENX(3DSTATE_WM_length)];
1033 uint32_t line_stipple[GENX(3DSTATE_LINE_STIPPLE_length)];
1034
1035 uint8_t num_clip_plane_consts;
1036 bool clip_halfz; /* for CC_VIEWPORT */
1037 bool depth_clip_near; /* for CC_VIEWPORT */
1038 bool depth_clip_far; /* for CC_VIEWPORT */
1039 bool flatshade; /* for shader state */
1040 bool flatshade_first; /* for stream output */
1041 bool clamp_fragment_color; /* for shader state */
1042 bool light_twoside; /* for shader state */
1043 bool rasterizer_discard; /* for 3DSTATE_STREAMOUT and 3DSTATE_CLIP */
1044 bool half_pixel_center; /* for 3DSTATE_MULTISAMPLE */
1045 bool line_stipple_enable;
1046 bool poly_stipple_enable;
1047 bool multisample;
1048 bool force_persample_interp;
1049 enum pipe_sprite_coord_mode sprite_coord_mode; /* PIPE_SPRITE_* */
1050 uint16_t sprite_coord_enable;
1051 };
1052
1053 static float
1054 get_line_width(const struct pipe_rasterizer_state *state)
1055 {
1056 float line_width = state->line_width;
1057
1058 /* From the OpenGL 4.4 spec:
1059 *
1060 * "The actual width of non-antialiased lines is determined by rounding
1061 * the supplied width to the nearest integer, then clamping it to the
1062 * implementation-dependent maximum non-antialiased line width."
1063 */
1064 if (!state->multisample && !state->line_smooth)
1065 line_width = roundf(state->line_width);
1066
1067 if (!state->multisample && state->line_smooth && line_width < 1.5f) {
1068 /* For 1 pixel line thickness or less, the general anti-aliasing
1069 * algorithm gives up, and a garbage line is generated. Setting a
1070 * Line Width of 0.0 specifies the rasterization of the "thinnest"
1071 * (one-pixel-wide), non-antialiased lines.
1072 *
1073 * Lines rendered with zero Line Width are rasterized using the
1074 * "Grid Intersection Quantization" rules as specified by the
1075 * "Zero-Width (Cosmetic) Line Rasterization" section of the docs.
1076 */
1077 line_width = 0.0f;
1078 }
1079
1080 return line_width;
1081 }
1082
1083 /**
1084 * The pipe->create_rasterizer_state() driver hook.
1085 */
1086 static void *
1087 iris_create_rasterizer_state(struct pipe_context *ctx,
1088 const struct pipe_rasterizer_state *state)
1089 {
1090 struct iris_rasterizer_state *cso =
1091 malloc(sizeof(struct iris_rasterizer_state));
1092
1093 #if 0
1094 point_quad_rasterization -> SBE?
1095
1096 not necessary?
1097 {
1098 poly_smooth
1099 bottom_edge_rule
1100
1101 offset_units_unscaled - cap not exposed
1102 }
1103 #endif
1104
1105 // XXX: it may make more sense just to store the pipe_rasterizer_state,
1106 // we're copying a lot of booleans here. But we don't need all of them...
1107
1108 cso->multisample = state->multisample;
1109 cso->force_persample_interp = state->force_persample_interp;
1110 cso->clip_halfz = state->clip_halfz;
1111 cso->depth_clip_near = state->depth_clip_near;
1112 cso->depth_clip_far = state->depth_clip_far;
1113 cso->flatshade = state->flatshade;
1114 cso->flatshade_first = state->flatshade_first;
1115 cso->clamp_fragment_color = state->clamp_fragment_color;
1116 cso->light_twoside = state->light_twoside;
1117 cso->rasterizer_discard = state->rasterizer_discard;
1118 cso->half_pixel_center = state->half_pixel_center;
1119 cso->sprite_coord_mode = state->sprite_coord_mode;
1120 cso->sprite_coord_enable = state->sprite_coord_enable;
1121 cso->line_stipple_enable = state->line_stipple_enable;
1122 cso->poly_stipple_enable = state->poly_stipple_enable;
1123
1124 if (state->clip_plane_enable != 0)
1125 cso->num_clip_plane_consts = util_logbase2(state->clip_plane_enable) + 1;
1126 else
1127 cso->num_clip_plane_consts = 0;
1128
1129 float line_width = get_line_width(state);
1130
1131 iris_pack_command(GENX(3DSTATE_SF), cso->sf, sf) {
1132 sf.StatisticsEnable = true;
1133 sf.ViewportTransformEnable = true;
1134 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
1135 sf.LineEndCapAntialiasingRegionWidth =
1136 state->line_smooth ? _10pixels : _05pixels;
1137 sf.LastPixelEnable = state->line_last_pixel;
1138 sf.LineWidth = line_width;
1139 sf.SmoothPointEnable = state->point_smooth || state->multisample;
1140 sf.PointWidthSource = state->point_size_per_vertex ? Vertex : State;
1141 sf.PointWidth = state->point_size;
1142
1143 if (state->flatshade_first) {
1144 sf.TriangleFanProvokingVertexSelect = 1;
1145 } else {
1146 sf.TriangleStripListProvokingVertexSelect = 2;
1147 sf.TriangleFanProvokingVertexSelect = 2;
1148 sf.LineStripListProvokingVertexSelect = 1;
1149 }
1150 }
1151
1152 iris_pack_command(GENX(3DSTATE_RASTER), cso->raster, rr) {
1153 rr.FrontWinding = state->front_ccw ? CounterClockwise : Clockwise;
1154 rr.CullMode = translate_cull_mode(state->cull_face);
1155 rr.FrontFaceFillMode = translate_fill_mode(state->fill_front);
1156 rr.BackFaceFillMode = translate_fill_mode(state->fill_back);
1157 rr.DXMultisampleRasterizationEnable = state->multisample;
1158 rr.GlobalDepthOffsetEnableSolid = state->offset_tri;
1159 rr.GlobalDepthOffsetEnableWireframe = state->offset_line;
1160 rr.GlobalDepthOffsetEnablePoint = state->offset_point;
1161 rr.GlobalDepthOffsetConstant = state->offset_units * 2;
1162 rr.GlobalDepthOffsetScale = state->offset_scale;
1163 rr.GlobalDepthOffsetClamp = state->offset_clamp;
1164 rr.SmoothPointEnable = state->point_smooth || state->multisample;
1165 rr.AntialiasingEnable = state->line_smooth;
1166 rr.ScissorRectangleEnable = state->scissor;
1167 rr.ViewportZNearClipTestEnable = state->depth_clip_near;
1168 rr.ViewportZFarClipTestEnable = state->depth_clip_far;
1169 //rr.ConservativeRasterizationEnable = not yet supported by Gallium...
1170 }
1171
1172 iris_pack_command(GENX(3DSTATE_CLIP), cso->clip, cl) {
1173 /* cl.NonPerspectiveBarycentricEnable is filled in at draw time from
1174 * the FS program; cl.ForceZeroRTAIndexEnable is filled in from the FB.
1175 */
1176 cl.EarlyCullEnable = true;
1177 cl.UserClipDistanceClipTestEnableBitmask = state->clip_plane_enable;
1178 cl.ForceUserClipDistanceClipTestEnableBitmask = true;
1179 cl.APIMode = state->clip_halfz ? APIMODE_D3D : APIMODE_OGL;
1180 cl.GuardbandClipTestEnable = true;
1181 cl.ClipEnable = true;
1182 cl.ViewportXYClipTestEnable = state->point_tri_clip;
1183 cl.MinimumPointWidth = 0.125;
1184 cl.MaximumPointWidth = 255.875;
1185
1186 if (state->flatshade_first) {
1187 cl.TriangleFanProvokingVertexSelect = 1;
1188 } else {
1189 cl.TriangleStripListProvokingVertexSelect = 2;
1190 cl.TriangleFanProvokingVertexSelect = 2;
1191 cl.LineStripListProvokingVertexSelect = 1;
1192 }
1193 }
1194
1195 iris_pack_command(GENX(3DSTATE_WM), cso->wm, wm) {
1196 /* wm.BarycentricInterpolationMode and wm.EarlyDepthStencilControl are
1197 * filled in at draw time from the FS program.
1198 */
1199 wm.LineAntialiasingRegionWidth = _10pixels;
1200 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1201 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1202 wm.LineStippleEnable = state->line_stipple_enable;
1203 wm.PolygonStippleEnable = state->poly_stipple_enable;
1204 }
1205
1206 /* Remap from 0..255 back to 1..256 */
1207 const unsigned line_stipple_factor = state->line_stipple_factor + 1;
1208
1209 iris_pack_command(GENX(3DSTATE_LINE_STIPPLE), cso->line_stipple, line) {
1210 line.LineStipplePattern = state->line_stipple_pattern;
1211 line.LineStippleInverseRepeatCount = 1.0f / line_stipple_factor;
1212 line.LineStippleRepeatCount = line_stipple_factor;
1213 }
1214
1215 return cso;
1216 }
1217
1218 /**
1219 * The pipe->bind_rasterizer_state() driver hook.
1220 *
1221 * Bind a rasterizer CSO and flag related dirty bits.
1222 */
1223 static void
1224 iris_bind_rasterizer_state(struct pipe_context *ctx, void *state)
1225 {
1226 struct iris_context *ice = (struct iris_context *) ctx;
1227 struct iris_rasterizer_state *old_cso = ice->state.cso_rast;
1228 struct iris_rasterizer_state *new_cso = state;
1229
1230 if (new_cso) {
1231 /* Try to avoid re-emitting 3DSTATE_LINE_STIPPLE, it's non-pipelined */
1232 if (cso_changed_memcmp(line_stipple))
1233 ice->state.dirty |= IRIS_DIRTY_LINE_STIPPLE;
1234
1235 if (cso_changed(half_pixel_center))
1236 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
1237
1238 if (cso_changed(line_stipple_enable) || cso_changed(poly_stipple_enable))
1239 ice->state.dirty |= IRIS_DIRTY_WM;
1240
1241 if (cso_changed(rasterizer_discard))
1242 ice->state.dirty |= IRIS_DIRTY_STREAMOUT | IRIS_DIRTY_CLIP;
1243
1244 if (cso_changed(flatshade_first))
1245 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
1246
1247 if (cso_changed(depth_clip_near) || cso_changed(depth_clip_far) ||
1248 cso_changed(clip_halfz))
1249 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1250
1251 if (cso_changed(sprite_coord_enable) ||
1252 cso_changed(sprite_coord_mode) ||
1253 cso_changed(light_twoside))
1254 ice->state.dirty |= IRIS_DIRTY_SBE;
1255 }
1256
1257 ice->state.cso_rast = new_cso;
1258 ice->state.dirty |= IRIS_DIRTY_RASTER;
1259 ice->state.dirty |= IRIS_DIRTY_CLIP;
1260 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_RASTERIZER];
1261 }
1262
1263 /**
1264 * Return true if the given wrap mode requires the border color to exist.
1265 *
1266 * (We can skip uploading it if the sampler isn't going to use it.)
1267 */
1268 static bool
1269 wrap_mode_needs_border_color(unsigned wrap_mode)
1270 {
1271 return wrap_mode == TCM_CLAMP_BORDER || wrap_mode == TCM_HALF_BORDER;
1272 }
1273
1274 /**
1275 * Gallium CSO for sampler state.
1276 */
1277 struct iris_sampler_state {
1278 union pipe_color_union border_color;
1279 bool needs_border_color;
1280
1281 uint32_t sampler_state[GENX(SAMPLER_STATE_length)];
1282 };
1283
1284 /**
1285 * The pipe->create_sampler_state() driver hook.
1286 *
1287 * We fill out SAMPLER_STATE (except for the border color pointer), and
1288 * store that on the CPU. It doesn't make sense to upload it to a GPU
1289 * buffer object yet, because 3DSTATE_SAMPLER_STATE_POINTERS requires
1290 * all bound sampler states to be in contiguous memor.
1291 */
1292 static void *
1293 iris_create_sampler_state(struct pipe_context *ctx,
1294 const struct pipe_sampler_state *state)
1295 {
1296 struct iris_sampler_state *cso = CALLOC_STRUCT(iris_sampler_state);
1297
1298 if (!cso)
1299 return NULL;
1300
1301 STATIC_ASSERT(PIPE_TEX_FILTER_NEAREST == MAPFILTER_NEAREST);
1302 STATIC_ASSERT(PIPE_TEX_FILTER_LINEAR == MAPFILTER_LINEAR);
1303
1304 unsigned wrap_s = translate_wrap(state->wrap_s);
1305 unsigned wrap_t = translate_wrap(state->wrap_t);
1306 unsigned wrap_r = translate_wrap(state->wrap_r);
1307
1308 memcpy(&cso->border_color, &state->border_color, sizeof(cso->border_color));
1309
1310 cso->needs_border_color = wrap_mode_needs_border_color(wrap_s) ||
1311 wrap_mode_needs_border_color(wrap_t) ||
1312 wrap_mode_needs_border_color(wrap_r);
1313
1314 float min_lod = state->min_lod;
1315 unsigned mag_img_filter = state->mag_img_filter;
1316
1317 // XXX: explain this code ported from ilo...I don't get it at all...
1318 if (state->min_mip_filter == PIPE_TEX_MIPFILTER_NONE &&
1319 state->min_lod > 0.0f) {
1320 min_lod = 0.0f;
1321 mag_img_filter = state->min_img_filter;
1322 }
1323
1324 iris_pack_state(GENX(SAMPLER_STATE), cso->sampler_state, samp) {
1325 samp.TCXAddressControlMode = wrap_s;
1326 samp.TCYAddressControlMode = wrap_t;
1327 samp.TCZAddressControlMode = wrap_r;
1328 samp.CubeSurfaceControlMode = state->seamless_cube_map;
1329 samp.NonnormalizedCoordinateEnable = !state->normalized_coords;
1330 samp.MinModeFilter = state->min_img_filter;
1331 samp.MagModeFilter = mag_img_filter;
1332 samp.MipModeFilter = translate_mip_filter(state->min_mip_filter);
1333 samp.MaximumAnisotropy = RATIO21;
1334
1335 if (state->max_anisotropy >= 2) {
1336 if (state->min_img_filter == PIPE_TEX_FILTER_LINEAR) {
1337 samp.MinModeFilter = MAPFILTER_ANISOTROPIC;
1338 samp.AnisotropicAlgorithm = EWAApproximation;
1339 }
1340
1341 if (state->mag_img_filter == PIPE_TEX_FILTER_LINEAR)
1342 samp.MagModeFilter = MAPFILTER_ANISOTROPIC;
1343
1344 samp.MaximumAnisotropy =
1345 MIN2((state->max_anisotropy - 2) / 2, RATIO161);
1346 }
1347
1348 /* Set address rounding bits if not using nearest filtering. */
1349 if (state->min_img_filter != PIPE_TEX_FILTER_NEAREST) {
1350 samp.UAddressMinFilterRoundingEnable = true;
1351 samp.VAddressMinFilterRoundingEnable = true;
1352 samp.RAddressMinFilterRoundingEnable = true;
1353 }
1354
1355 if (state->mag_img_filter != PIPE_TEX_FILTER_NEAREST) {
1356 samp.UAddressMagFilterRoundingEnable = true;
1357 samp.VAddressMagFilterRoundingEnable = true;
1358 samp.RAddressMagFilterRoundingEnable = true;
1359 }
1360
1361 if (state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE)
1362 samp.ShadowFunction = translate_shadow_func(state->compare_func);
1363
1364 const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
1365
1366 samp.LODPreClampMode = CLAMP_MODE_OGL;
1367 samp.MinLOD = CLAMP(min_lod, 0, hw_max_lod);
1368 samp.MaxLOD = CLAMP(state->max_lod, 0, hw_max_lod);
1369 samp.TextureLODBias = CLAMP(state->lod_bias, -16, 15);
1370
1371 /* .BorderColorPointer is filled in by iris_bind_sampler_states. */
1372 }
1373
1374 return cso;
1375 }
1376
1377 /**
1378 * The pipe->bind_sampler_states() driver hook.
1379 *
1380 * Now that we know all the sampler states, we upload them all into a
1381 * contiguous area of GPU memory, for 3DSTATE_SAMPLER_STATE_POINTERS_*.
1382 * We also fill out the border color state pointers at this point.
1383 *
1384 * We could defer this work to draw time, but we assume that binding
1385 * will be less frequent than drawing.
1386 */
1387 // XXX: this may be a bad idea, need to make sure that st/mesa calls us
1388 // XXX: with the complete set of shaders. If it makes multiple calls to
1389 // XXX: things one at a time, we could waste a lot of time assembling things.
1390 // XXX: it doesn't even BUY us anything to do it here, because we only flag
1391 // XXX: IRIS_DIRTY_SAMPLER_STATE when this is called...
1392 static void
1393 iris_bind_sampler_states(struct pipe_context *ctx,
1394 enum pipe_shader_type p_stage,
1395 unsigned start, unsigned count,
1396 void **states)
1397 {
1398 struct iris_context *ice = (struct iris_context *) ctx;
1399 gl_shader_stage stage = stage_from_pipe(p_stage);
1400 struct iris_shader_state *shs = &ice->state.shaders[stage];
1401
1402 assert(start + count <= IRIS_MAX_TEXTURE_SAMPLERS);
1403
1404 for (int i = 0; i < count; i++) {
1405 shs->samplers[start + i] = states[i];
1406 }
1407
1408 /* Assemble the SAMPLER_STATEs into a contiguous table that lives
1409 * in the dynamic state memory zone, so we can point to it via the
1410 * 3DSTATE_SAMPLER_STATE_POINTERS_* commands.
1411 */
1412 uint32_t *map =
1413 upload_state(ice->state.dynamic_uploader, &shs->sampler_table,
1414 count * 4 * GENX(SAMPLER_STATE_length), 32);
1415 if (unlikely(!map))
1416 return;
1417
1418 struct pipe_resource *res = shs->sampler_table.res;
1419 shs->sampler_table.offset +=
1420 iris_bo_offset_from_base_address(iris_resource_bo(res));
1421
1422 /* Make sure all land in the same BO */
1423 iris_border_color_pool_reserve(ice, IRIS_MAX_TEXTURE_SAMPLERS);
1424
1425 for (int i = 0; i < count; i++) {
1426 struct iris_sampler_state *state = shs->samplers[i];
1427
1428 if (!state) {
1429 memset(map, 0, 4 * GENX(SAMPLER_STATE_length));
1430 } else if (!state->needs_border_color) {
1431 memcpy(map, state->sampler_state, 4 * GENX(SAMPLER_STATE_length));
1432 } else {
1433 ice->state.need_border_colors = true;
1434
1435 /* Stream out the border color and merge the pointer. */
1436 uint32_t offset =
1437 iris_upload_border_color(ice, &state->border_color);
1438
1439 uint32_t dynamic[GENX(SAMPLER_STATE_length)];
1440 iris_pack_state(GENX(SAMPLER_STATE), dynamic, dyns) {
1441 dyns.BorderColorPointer = offset;
1442 }
1443
1444 for (uint32_t j = 0; j < GENX(SAMPLER_STATE_length); j++)
1445 map[j] = state->sampler_state[j] | dynamic[j];
1446 }
1447
1448 map += GENX(SAMPLER_STATE_length);
1449 }
1450
1451 ice->state.dirty |= IRIS_DIRTY_SAMPLER_STATES_VS << stage;
1452 }
1453
1454 static enum isl_channel_select
1455 fmt_swizzle(const struct iris_format_info *fmt, enum pipe_swizzle swz)
1456 {
1457 switch (swz) {
1458 case PIPE_SWIZZLE_X: return fmt->swizzle.r;
1459 case PIPE_SWIZZLE_Y: return fmt->swizzle.g;
1460 case PIPE_SWIZZLE_Z: return fmt->swizzle.b;
1461 case PIPE_SWIZZLE_W: return fmt->swizzle.a;
1462 case PIPE_SWIZZLE_1: return SCS_ONE;
1463 case PIPE_SWIZZLE_0: return SCS_ZERO;
1464 default: unreachable("invalid swizzle");
1465 }
1466 }
1467
1468 static void
1469 fill_buffer_surface_state(struct isl_device *isl_dev,
1470 struct iris_bo *bo,
1471 void *map,
1472 enum isl_format format,
1473 unsigned offset,
1474 unsigned size)
1475 {
1476 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
1477 const unsigned cpp = fmtl->bpb / 8;
1478
1479 /* The ARB_texture_buffer_specification says:
1480 *
1481 * "The number of texels in the buffer texture's texel array is given by
1482 *
1483 * floor(<buffer_size> / (<components> * sizeof(<base_type>)),
1484 *
1485 * where <buffer_size> is the size of the buffer object, in basic
1486 * machine units and <components> and <base_type> are the element count
1487 * and base data type for elements, as specified in Table X.1. The
1488 * number of texels in the texel array is then clamped to the
1489 * implementation-dependent limit MAX_TEXTURE_BUFFER_SIZE_ARB."
1490 *
1491 * We need to clamp the size in bytes to MAX_TEXTURE_BUFFER_SIZE * stride,
1492 * so that when ISL divides by stride to obtain the number of texels, that
1493 * texel count is clamped to MAX_TEXTURE_BUFFER_SIZE.
1494 */
1495 unsigned final_size =
1496 MIN3(size, bo->size - offset, IRIS_MAX_TEXTURE_BUFFER_SIZE * cpp);
1497
1498 isl_buffer_fill_state(isl_dev, map,
1499 .address = bo->gtt_offset + offset,
1500 .size_B = final_size,
1501 .format = format,
1502 .stride_B = cpp,
1503 .mocs = MOCS_WB);
1504 }
1505
1506 /**
1507 * The pipe->create_sampler_view() driver hook.
1508 */
1509 static struct pipe_sampler_view *
1510 iris_create_sampler_view(struct pipe_context *ctx,
1511 struct pipe_resource *tex,
1512 const struct pipe_sampler_view *tmpl)
1513 {
1514 struct iris_context *ice = (struct iris_context *) ctx;
1515 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1516 const struct gen_device_info *devinfo = &screen->devinfo;
1517 struct iris_sampler_view *isv = calloc(1, sizeof(struct iris_sampler_view));
1518
1519 if (!isv)
1520 return NULL;
1521
1522 /* initialize base object */
1523 isv->base = *tmpl;
1524 isv->base.context = ctx;
1525 isv->base.texture = NULL;
1526 pipe_reference_init(&isv->base.reference, 1);
1527 pipe_resource_reference(&isv->base.texture, tex);
1528
1529 void *map = upload_state(ice->state.surface_uploader, &isv->surface_state,
1530 4 * GENX(RENDER_SURFACE_STATE_length), 64);
1531 if (!unlikely(map))
1532 return NULL;
1533
1534 struct iris_bo *state_bo = iris_resource_bo(isv->surface_state.res);
1535 isv->surface_state.offset += iris_bo_offset_from_base_address(state_bo);
1536
1537 if (util_format_is_depth_or_stencil(tmpl->format)) {
1538 struct iris_resource *zres, *sres;
1539 const struct util_format_description *desc =
1540 util_format_description(tmpl->format);
1541
1542 iris_get_depth_stencil_resources(tex, &zres, &sres);
1543
1544 tex = util_format_has_depth(desc) ? &zres->base : &sres->base;
1545 }
1546
1547 isv->res = (struct iris_resource *) tex;
1548
1549 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_TEXTURE_BIT;
1550
1551 if (isv->base.target == PIPE_TEXTURE_CUBE ||
1552 isv->base.target == PIPE_TEXTURE_CUBE_ARRAY)
1553 usage |= ISL_SURF_USAGE_CUBE_BIT;
1554
1555 const struct iris_format_info fmt =
1556 iris_format_for_usage(devinfo, tmpl->format, usage);
1557
1558 isv->view = (struct isl_view) {
1559 .format = fmt.fmt,
1560 .swizzle = (struct isl_swizzle) {
1561 .r = fmt_swizzle(&fmt, tmpl->swizzle_r),
1562 .g = fmt_swizzle(&fmt, tmpl->swizzle_g),
1563 .b = fmt_swizzle(&fmt, tmpl->swizzle_b),
1564 .a = fmt_swizzle(&fmt, tmpl->swizzle_a),
1565 },
1566 .usage = usage,
1567 };
1568
1569 /* Fill out SURFACE_STATE for this view. */
1570 if (tmpl->target != PIPE_BUFFER) {
1571 isv->view.base_level = tmpl->u.tex.first_level;
1572 isv->view.levels = tmpl->u.tex.last_level - tmpl->u.tex.first_level + 1;
1573 // XXX: do I need to port f9fd0cf4790cb2a530e75d1a2206dbb9d8af7cb2?
1574 isv->view.base_array_layer = tmpl->u.tex.first_layer;
1575 isv->view.array_len =
1576 tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
1577
1578 isl_surf_fill_state(&screen->isl_dev, map,
1579 .surf = &isv->res->surf, .view = &isv->view,
1580 .mocs = MOCS_WB,
1581 .address = isv->res->bo->gtt_offset);
1582 // .aux_surf =
1583 // .clear_color = clear_color,
1584 } else {
1585 fill_buffer_surface_state(&screen->isl_dev, isv->res->bo, map,
1586 isv->view.format, tmpl->u.buf.offset,
1587 tmpl->u.buf.size);
1588 }
1589
1590 return &isv->base;
1591 }
1592
1593 static void
1594 iris_sampler_view_destroy(struct pipe_context *ctx,
1595 struct pipe_sampler_view *state)
1596 {
1597 struct iris_sampler_view *isv = (void *) state;
1598 pipe_resource_reference(&state->texture, NULL);
1599 pipe_resource_reference(&isv->surface_state.res, NULL);
1600 free(isv);
1601 }
1602
1603 /**
1604 * The pipe->create_surface() driver hook.
1605 *
1606 * In Gallium nomenclature, "surfaces" are a view of a resource that
1607 * can be bound as a render target or depth/stencil buffer.
1608 */
1609 static struct pipe_surface *
1610 iris_create_surface(struct pipe_context *ctx,
1611 struct pipe_resource *tex,
1612 const struct pipe_surface *tmpl)
1613 {
1614 struct iris_context *ice = (struct iris_context *) ctx;
1615 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1616 const struct gen_device_info *devinfo = &screen->devinfo;
1617 struct iris_surface *surf = calloc(1, sizeof(struct iris_surface));
1618 struct pipe_surface *psurf = &surf->base;
1619 struct iris_resource *res = (struct iris_resource *) tex;
1620
1621 if (!surf)
1622 return NULL;
1623
1624 pipe_reference_init(&psurf->reference, 1);
1625 pipe_resource_reference(&psurf->texture, tex);
1626 psurf->context = ctx;
1627 psurf->format = tmpl->format;
1628 psurf->width = tex->width0;
1629 psurf->height = tex->height0;
1630 psurf->texture = tex;
1631 psurf->u.tex.first_layer = tmpl->u.tex.first_layer;
1632 psurf->u.tex.last_layer = tmpl->u.tex.last_layer;
1633 psurf->u.tex.level = tmpl->u.tex.level;
1634
1635 isl_surf_usage_flags_t usage = 0;
1636 if (tmpl->writable)
1637 usage = ISL_SURF_USAGE_STORAGE_BIT;
1638 else if (util_format_is_depth_or_stencil(tmpl->format))
1639 usage = ISL_SURF_USAGE_DEPTH_BIT;
1640 else
1641 usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
1642
1643 const struct iris_format_info fmt =
1644 iris_format_for_usage(devinfo, psurf->format, usage);
1645
1646 if ((usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) &&
1647 !isl_format_supports_rendering(devinfo, fmt.fmt)) {
1648 /* Framebuffer validation will reject this invalid case, but it
1649 * hasn't had the opportunity yet. In the meantime, we need to
1650 * avoid hitting ISL asserts about unsupported formats below.
1651 */
1652 free(surf);
1653 return NULL;
1654 }
1655
1656 surf->view = (struct isl_view) {
1657 .format = fmt.fmt,
1658 .base_level = tmpl->u.tex.level,
1659 .levels = 1,
1660 .base_array_layer = tmpl->u.tex.first_layer,
1661 .array_len = tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1,
1662 .swizzle = ISL_SWIZZLE_IDENTITY,
1663 .usage = usage,
1664 };
1665
1666 /* Bail early for depth/stencil - we don't want SURFACE_STATE for them. */
1667 if (res->surf.usage & (ISL_SURF_USAGE_DEPTH_BIT |
1668 ISL_SURF_USAGE_STENCIL_BIT))
1669 return psurf;
1670
1671
1672 void *map = upload_state(ice->state.surface_uploader, &surf->surface_state,
1673 4 * GENX(RENDER_SURFACE_STATE_length), 64);
1674 if (!unlikely(map))
1675 return NULL;
1676
1677 struct iris_bo *state_bo = iris_resource_bo(surf->surface_state.res);
1678 surf->surface_state.offset += iris_bo_offset_from_base_address(state_bo);
1679
1680 isl_surf_fill_state(&screen->isl_dev, map,
1681 .surf = &res->surf, .view = &surf->view,
1682 .mocs = MOCS_WB,
1683 .address = res->bo->gtt_offset);
1684 // .aux_surf =
1685 // .clear_color = clear_color,
1686
1687 return psurf;
1688 }
1689
1690 /**
1691 * The pipe->set_shader_images() driver hook.
1692 */
1693 static void
1694 iris_set_shader_images(struct pipe_context *ctx,
1695 enum pipe_shader_type p_stage,
1696 unsigned start_slot, unsigned count,
1697 const struct pipe_image_view *p_images)
1698 {
1699 struct iris_context *ice = (struct iris_context *) ctx;
1700 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1701 const struct gen_device_info *devinfo = &screen->devinfo;
1702 gl_shader_stage stage = stage_from_pipe(p_stage);
1703 struct iris_shader_state *shs = &ice->state.shaders[stage];
1704
1705 shs->bound_image_views &= ~u_bit_consecutive(start_slot, count);
1706
1707 for (unsigned i = 0; i < count; i++) {
1708 if (p_images && p_images[i].resource) {
1709 const struct pipe_image_view *img = &p_images[i];
1710 struct iris_resource *res = (void *) img->resource;
1711 pipe_resource_reference(&shs->image[start_slot + i].res, &res->base);
1712
1713 shs->bound_image_views |= 1 << (start_slot + i);
1714
1715 res->bind_history |= PIPE_BIND_SHADER_IMAGE;
1716
1717 // XXX: these are not retained forever, use a separate uploader?
1718 void *map =
1719 upload_state(ice->state.surface_uploader,
1720 &shs->image[start_slot + i].surface_state,
1721 4 * GENX(RENDER_SURFACE_STATE_length), 64);
1722 if (!unlikely(map)) {
1723 pipe_resource_reference(&shs->image[start_slot + i].res, NULL);
1724 return;
1725 }
1726
1727 struct iris_bo *surf_state_bo =
1728 iris_resource_bo(shs->image[start_slot + i].surface_state.res);
1729 shs->image[start_slot + i].surface_state.offset +=
1730 iris_bo_offset_from_base_address(surf_state_bo);
1731
1732 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_STORAGE_BIT;
1733 enum isl_format isl_format =
1734 iris_format_for_usage(devinfo, img->format, usage).fmt;
1735
1736 if (img->shader_access & PIPE_IMAGE_ACCESS_READ)
1737 isl_format = isl_lower_storage_image_format(devinfo, isl_format);
1738
1739 shs->image[start_slot + i].access = img->shader_access;
1740
1741 if (res->base.target != PIPE_BUFFER) {
1742 struct isl_view view = {
1743 .format = isl_format,
1744 .base_level = img->u.tex.level,
1745 .levels = 1,
1746 .base_array_layer = img->u.tex.first_layer,
1747 .array_len = img->u.tex.last_layer - img->u.tex.first_layer + 1,
1748 .swizzle = ISL_SWIZZLE_IDENTITY,
1749 .usage = usage,
1750 };
1751
1752 isl_surf_fill_state(&screen->isl_dev, map,
1753 .surf = &res->surf, .view = &view,
1754 .mocs = MOCS_WB,
1755 .address = res->bo->gtt_offset);
1756 // .aux_surf =
1757 // .clear_color = clear_color,
1758 } else {
1759 fill_buffer_surface_state(&screen->isl_dev, res->bo, map,
1760 isl_format, img->u.buf.offset,
1761 img->u.buf.size);
1762 }
1763 } else {
1764 pipe_resource_reference(&shs->image[start_slot + i].res, NULL);
1765 pipe_resource_reference(&shs->image[start_slot + i].surface_state.res,
1766 NULL);
1767 }
1768 }
1769
1770 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
1771 }
1772
1773
1774 /**
1775 * The pipe->set_sampler_views() driver hook.
1776 */
1777 static void
1778 iris_set_sampler_views(struct pipe_context *ctx,
1779 enum pipe_shader_type p_stage,
1780 unsigned start, unsigned count,
1781 struct pipe_sampler_view **views)
1782 {
1783 struct iris_context *ice = (struct iris_context *) ctx;
1784 gl_shader_stage stage = stage_from_pipe(p_stage);
1785 struct iris_shader_state *shs = &ice->state.shaders[stage];
1786
1787 shs->bound_sampler_views &= ~u_bit_consecutive(start, count);
1788
1789 for (unsigned i = 0; i < count; i++) {
1790 pipe_sampler_view_reference((struct pipe_sampler_view **)
1791 &shs->textures[start + i], views[i]);
1792 struct iris_sampler_view *view = (void *) views[i];
1793 if (view) {
1794 view->res->bind_history |= PIPE_BIND_SAMPLER_VIEW;
1795 shs->bound_sampler_views |= 1 << (start + i);
1796 }
1797 }
1798
1799 ice->state.dirty |= (IRIS_DIRTY_BINDINGS_VS << stage);
1800 }
1801
1802 /**
1803 * The pipe->set_tess_state() driver hook.
1804 */
1805 static void
1806 iris_set_tess_state(struct pipe_context *ctx,
1807 const float default_outer_level[4],
1808 const float default_inner_level[2])
1809 {
1810 struct iris_context *ice = (struct iris_context *) ctx;
1811
1812 memcpy(&ice->state.default_outer_level[0], &default_outer_level[0], 4 * sizeof(float));
1813 memcpy(&ice->state.default_inner_level[0], &default_inner_level[0], 2 * sizeof(float));
1814
1815 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_TCS;
1816 }
1817
1818 static void
1819 iris_surface_destroy(struct pipe_context *ctx, struct pipe_surface *p_surf)
1820 {
1821 struct iris_surface *surf = (void *) p_surf;
1822 pipe_resource_reference(&p_surf->texture, NULL);
1823 pipe_resource_reference(&surf->surface_state.res, NULL);
1824 free(surf);
1825 }
1826
1827 static void
1828 iris_set_clip_state(struct pipe_context *ctx,
1829 const struct pipe_clip_state *state)
1830 {
1831 struct iris_context *ice = (struct iris_context *) ctx;
1832 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_VERTEX];
1833
1834 memcpy(&ice->state.clip_planes, state, sizeof(*state));
1835
1836 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS;
1837 shs->cbuf0_needs_upload = true;
1838 }
1839
1840 /**
1841 * The pipe->set_polygon_stipple() driver hook.
1842 */
1843 static void
1844 iris_set_polygon_stipple(struct pipe_context *ctx,
1845 const struct pipe_poly_stipple *state)
1846 {
1847 struct iris_context *ice = (struct iris_context *) ctx;
1848 memcpy(&ice->state.poly_stipple, state, sizeof(*state));
1849 ice->state.dirty |= IRIS_DIRTY_POLYGON_STIPPLE;
1850 }
1851
1852 /**
1853 * The pipe->set_sample_mask() driver hook.
1854 */
1855 static void
1856 iris_set_sample_mask(struct pipe_context *ctx, unsigned sample_mask)
1857 {
1858 struct iris_context *ice = (struct iris_context *) ctx;
1859
1860 /* We only support 16x MSAA, so we have 16 bits of sample maks.
1861 * st/mesa may pass us 0xffffffff though, meaning "enable all samples".
1862 */
1863 ice->state.sample_mask = sample_mask & 0xffff;
1864 ice->state.dirty |= IRIS_DIRTY_SAMPLE_MASK;
1865 }
1866
1867 /**
1868 * The pipe->set_scissor_states() driver hook.
1869 *
1870 * This corresponds to our SCISSOR_RECT state structures. It's an
1871 * exact match, so we just store them, and memcpy them out later.
1872 */
1873 static void
1874 iris_set_scissor_states(struct pipe_context *ctx,
1875 unsigned start_slot,
1876 unsigned num_scissors,
1877 const struct pipe_scissor_state *rects)
1878 {
1879 struct iris_context *ice = (struct iris_context *) ctx;
1880
1881 for (unsigned i = 0; i < num_scissors; i++) {
1882 if (rects[i].minx == rects[i].maxx || rects[i].miny == rects[i].maxy) {
1883 /* If the scissor was out of bounds and got clamped to 0 width/height
1884 * at the bounds, the subtraction of 1 from maximums could produce a
1885 * negative number and thus not clip anything. Instead, just provide
1886 * a min > max scissor inside the bounds, which produces the expected
1887 * no rendering.
1888 */
1889 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
1890 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
1891 };
1892 } else {
1893 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
1894 .minx = rects[i].minx, .miny = rects[i].miny,
1895 .maxx = rects[i].maxx - 1, .maxy = rects[i].maxy - 1,
1896 };
1897 }
1898 }
1899
1900 ice->state.dirty |= IRIS_DIRTY_SCISSOR_RECT;
1901 }
1902
1903 /**
1904 * The pipe->set_stencil_ref() driver hook.
1905 *
1906 * This is added to 3DSTATE_WM_DEPTH_STENCIL dynamically at draw time.
1907 */
1908 static void
1909 iris_set_stencil_ref(struct pipe_context *ctx,
1910 const struct pipe_stencil_ref *state)
1911 {
1912 struct iris_context *ice = (struct iris_context *) ctx;
1913 memcpy(&ice->state.stencil_ref, state, sizeof(*state));
1914 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
1915 }
1916
1917 static float
1918 viewport_extent(const struct pipe_viewport_state *state, int axis, float sign)
1919 {
1920 return copysignf(state->scale[axis], sign) + state->translate[axis];
1921 }
1922
1923 static void
1924 calculate_guardband_size(uint32_t fb_width, uint32_t fb_height,
1925 float m00, float m11, float m30, float m31,
1926 float *xmin, float *xmax,
1927 float *ymin, float *ymax)
1928 {
1929 /* According to the "Vertex X,Y Clamping and Quantization" section of the
1930 * Strips and Fans documentation:
1931 *
1932 * "The vertex X and Y screen-space coordinates are also /clamped/ to the
1933 * fixed-point "guardband" range supported by the rasterization hardware"
1934 *
1935 * and
1936 *
1937 * "In almost all circumstances, if an object’s vertices are actually
1938 * modified by this clamping (i.e., had X or Y coordinates outside of
1939 * the guardband extent the rendered object will not match the intended
1940 * result. Therefore software should take steps to ensure that this does
1941 * not happen - e.g., by clipping objects such that they do not exceed
1942 * these limits after the Drawing Rectangle is applied."
1943 *
1944 * I believe the fundamental restriction is that the rasterizer (in
1945 * the SF/WM stages) have a limit on the number of pixels that can be
1946 * rasterized. We need to ensure any coordinates beyond the rasterizer
1947 * limit are handled by the clipper. So effectively that limit becomes
1948 * the clipper's guardband size.
1949 *
1950 * It goes on to say:
1951 *
1952 * "In addition, in order to be correctly rendered, objects must have a
1953 * screenspace bounding box not exceeding 8K in the X or Y direction.
1954 * This additional restriction must also be comprehended by software,
1955 * i.e., enforced by use of clipping."
1956 *
1957 * This makes no sense. Gen7+ hardware supports 16K render targets,
1958 * and you definitely need to be able to draw polygons that fill the
1959 * surface. Our assumption is that the rasterizer was limited to 8K
1960 * on Sandybridge, which only supports 8K surfaces, and it was actually
1961 * increased to 16K on Ivybridge and later.
1962 *
1963 * So, limit the guardband to 16K on Gen7+ and 8K on Sandybridge.
1964 */
1965 const float gb_size = GEN_GEN >= 7 ? 16384.0f : 8192.0f;
1966
1967 if (m00 != 0 && m11 != 0) {
1968 /* First, we compute the screen-space render area */
1969 const float ss_ra_xmin = MIN3( 0, m30 + m00, m30 - m00);
1970 const float ss_ra_xmax = MAX3( fb_width, m30 + m00, m30 - m00);
1971 const float ss_ra_ymin = MIN3( 0, m31 + m11, m31 - m11);
1972 const float ss_ra_ymax = MAX3(fb_height, m31 + m11, m31 - m11);
1973
1974 /* We want the guardband to be centered on that */
1975 const float ss_gb_xmin = (ss_ra_xmin + ss_ra_xmax) / 2 - gb_size;
1976 const float ss_gb_xmax = (ss_ra_xmin + ss_ra_xmax) / 2 + gb_size;
1977 const float ss_gb_ymin = (ss_ra_ymin + ss_ra_ymax) / 2 - gb_size;
1978 const float ss_gb_ymax = (ss_ra_ymin + ss_ra_ymax) / 2 + gb_size;
1979
1980 /* Now we need it in native device coordinates */
1981 const float ndc_gb_xmin = (ss_gb_xmin - m30) / m00;
1982 const float ndc_gb_xmax = (ss_gb_xmax - m30) / m00;
1983 const float ndc_gb_ymin = (ss_gb_ymin - m31) / m11;
1984 const float ndc_gb_ymax = (ss_gb_ymax - m31) / m11;
1985
1986 /* Thanks to Y-flipping and ORIGIN_UPPER_LEFT, the Y coordinates may be
1987 * flipped upside-down. X should be fine though.
1988 */
1989 assert(ndc_gb_xmin <= ndc_gb_xmax);
1990 *xmin = ndc_gb_xmin;
1991 *xmax = ndc_gb_xmax;
1992 *ymin = MIN2(ndc_gb_ymin, ndc_gb_ymax);
1993 *ymax = MAX2(ndc_gb_ymin, ndc_gb_ymax);
1994 } else {
1995 /* The viewport scales to 0, so nothing will be rendered. */
1996 *xmin = 0.0f;
1997 *xmax = 0.0f;
1998 *ymin = 0.0f;
1999 *ymax = 0.0f;
2000 }
2001 }
2002
2003 /**
2004 * The pipe->set_viewport_states() driver hook.
2005 *
2006 * This corresponds to our SF_CLIP_VIEWPORT states. We can't calculate
2007 * the guardband yet, as we need the framebuffer dimensions, but we can
2008 * at least fill out the rest.
2009 */
2010 static void
2011 iris_set_viewport_states(struct pipe_context *ctx,
2012 unsigned start_slot,
2013 unsigned count,
2014 const struct pipe_viewport_state *states)
2015 {
2016 struct iris_context *ice = (struct iris_context *) ctx;
2017
2018 memcpy(&ice->state.viewports[start_slot], states, sizeof(*states) * count);
2019
2020 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2021
2022 if (ice->state.cso_rast && (!ice->state.cso_rast->depth_clip_near ||
2023 !ice->state.cso_rast->depth_clip_far))
2024 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
2025 }
2026
2027 /**
2028 * The pipe->set_framebuffer_state() driver hook.
2029 *
2030 * Sets the current draw FBO, including color render targets, depth,
2031 * and stencil buffers.
2032 */
2033 static void
2034 iris_set_framebuffer_state(struct pipe_context *ctx,
2035 const struct pipe_framebuffer_state *state)
2036 {
2037 struct iris_context *ice = (struct iris_context *) ctx;
2038 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2039 struct isl_device *isl_dev = &screen->isl_dev;
2040 struct pipe_framebuffer_state *cso = &ice->state.framebuffer;
2041 struct iris_resource *zres;
2042 struct iris_resource *stencil_res;
2043
2044 unsigned samples = util_framebuffer_get_num_samples(state);
2045
2046 if (cso->samples != samples) {
2047 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
2048 }
2049
2050 if (cso->nr_cbufs != state->nr_cbufs) {
2051 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
2052 }
2053
2054 if ((cso->layers == 0) != (state->layers == 0)) {
2055 ice->state.dirty |= IRIS_DIRTY_CLIP;
2056 }
2057
2058 if (cso->width != state->width || cso->height != state->height) {
2059 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2060 }
2061
2062 util_copy_framebuffer_state(cso, state);
2063 cso->samples = samples;
2064
2065 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
2066
2067 struct isl_view view = {
2068 .base_level = 0,
2069 .levels = 1,
2070 .base_array_layer = 0,
2071 .array_len = 1,
2072 .swizzle = ISL_SWIZZLE_IDENTITY,
2073 };
2074
2075 struct isl_depth_stencil_hiz_emit_info info = {
2076 .view = &view,
2077 .mocs = MOCS_WB,
2078 };
2079
2080 if (cso->zsbuf) {
2081 iris_get_depth_stencil_resources(cso->zsbuf->texture, &zres,
2082 &stencil_res);
2083
2084 view.base_level = cso->zsbuf->u.tex.level;
2085 view.base_array_layer = cso->zsbuf->u.tex.first_layer;
2086 view.array_len =
2087 cso->zsbuf->u.tex.last_layer - cso->zsbuf->u.tex.first_layer + 1;
2088
2089 if (zres) {
2090 view.usage |= ISL_SURF_USAGE_DEPTH_BIT;
2091
2092 info.depth_surf = &zres->surf;
2093 info.depth_address = zres->bo->gtt_offset;
2094 info.hiz_usage = ISL_AUX_USAGE_NONE;
2095
2096 view.format = zres->surf.format;
2097 }
2098
2099 if (stencil_res) {
2100 view.usage |= ISL_SURF_USAGE_STENCIL_BIT;
2101 info.stencil_surf = &stencil_res->surf;
2102 info.stencil_address = stencil_res->bo->gtt_offset;
2103 if (!zres)
2104 view.format = stencil_res->surf.format;
2105 }
2106 }
2107
2108 isl_emit_depth_stencil_hiz_s(isl_dev, cso_z->packets, &info);
2109
2110 /* Make a null surface for unbound buffers */
2111 void *null_surf_map =
2112 upload_state(ice->state.surface_uploader, &ice->state.null_fb,
2113 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2114 isl_null_fill_state(&screen->isl_dev, null_surf_map,
2115 isl_extent3d(MAX2(cso->width, 1),
2116 MAX2(cso->height, 1),
2117 cso->layers ? cso->layers : 1));
2118 ice->state.null_fb.offset +=
2119 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.null_fb.res));
2120
2121 ice->state.dirty |= IRIS_DIRTY_DEPTH_BUFFER;
2122
2123 /* Render target change */
2124 ice->state.dirty |= IRIS_DIRTY_BINDINGS_FS;
2125
2126 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_FRAMEBUFFER];
2127
2128 #if GEN_GEN == 11
2129 // XXX: we may want to flag IRIS_DIRTY_MULTISAMPLE (or SAMPLE_MASK?)
2130 // XXX: see commit 979fc1bc9bcc64027ff2cfafd285676f31b930a6
2131
2132 /* The PIPE_CONTROL command description says:
2133 *
2134 * "Whenever a Binding Table Index (BTI) used by a Render Target Message
2135 * points to a different RENDER_SURFACE_STATE, SW must issue a Render
2136 * Target Cache Flush by enabling this bit. When render target flush
2137 * is set due to new association of BTI, PS Scoreboard Stall bit must
2138 * be set in this packet."
2139 */
2140 // XXX: does this need to happen at 3DSTATE_BTP_PS time?
2141 iris_emit_pipe_control_flush(&ice->batches[IRIS_BATCH_RENDER],
2142 PIPE_CONTROL_RENDER_TARGET_FLUSH |
2143 PIPE_CONTROL_STALL_AT_SCOREBOARD);
2144 #endif
2145 }
2146
2147 static void
2148 upload_ubo_surf_state(struct iris_context *ice,
2149 struct iris_const_buffer *cbuf,
2150 unsigned buffer_size)
2151 {
2152 struct pipe_context *ctx = &ice->ctx;
2153 struct iris_screen *screen = (struct iris_screen *) ctx->screen;
2154
2155 // XXX: these are not retained forever, use a separate uploader?
2156 void *map =
2157 upload_state(ice->state.surface_uploader, &cbuf->surface_state,
2158 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2159 if (!unlikely(map)) {
2160 pipe_resource_reference(&cbuf->data.res, NULL);
2161 return;
2162 }
2163
2164 struct iris_resource *res = (void *) cbuf->data.res;
2165 struct iris_bo *surf_bo = iris_resource_bo(cbuf->surface_state.res);
2166 cbuf->surface_state.offset += iris_bo_offset_from_base_address(surf_bo);
2167
2168 isl_buffer_fill_state(&screen->isl_dev, map,
2169 .address = res->bo->gtt_offset + cbuf->data.offset,
2170 .size_B = MIN2(buffer_size,
2171 res->bo->size - cbuf->data.offset),
2172 .format = ISL_FORMAT_R32G32B32A32_FLOAT,
2173 .stride_B = 1,
2174 .mocs = MOCS_WB)
2175 }
2176
2177 /**
2178 * The pipe->set_constant_buffer() driver hook.
2179 *
2180 * This uploads any constant data in user buffers, and references
2181 * any UBO resources containing constant data.
2182 */
2183 static void
2184 iris_set_constant_buffer(struct pipe_context *ctx,
2185 enum pipe_shader_type p_stage, unsigned index,
2186 const struct pipe_constant_buffer *input)
2187 {
2188 struct iris_context *ice = (struct iris_context *) ctx;
2189 gl_shader_stage stage = stage_from_pipe(p_stage);
2190 struct iris_shader_state *shs = &ice->state.shaders[stage];
2191 struct iris_const_buffer *cbuf = &shs->constbuf[index];
2192
2193 if (input && input->buffer) {
2194 assert(index > 0);
2195
2196 pipe_resource_reference(&cbuf->data.res, input->buffer);
2197 cbuf->data.offset = input->buffer_offset;
2198
2199 struct iris_resource *res = (void *) cbuf->data.res;
2200 res->bind_history |= PIPE_BIND_CONSTANT_BUFFER;
2201
2202 upload_ubo_surf_state(ice, cbuf, input->buffer_size);
2203 } else {
2204 pipe_resource_reference(&cbuf->data.res, NULL);
2205 pipe_resource_reference(&cbuf->surface_state.res, NULL);
2206 }
2207
2208 if (index == 0) {
2209 if (input)
2210 memcpy(&shs->cbuf0, input, sizeof(shs->cbuf0));
2211 else
2212 memset(&shs->cbuf0, 0, sizeof(shs->cbuf0));
2213
2214 shs->cbuf0_needs_upload = true;
2215 }
2216
2217 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
2218 // XXX: maybe not necessary all the time...?
2219 // XXX: we need 3DS_BTP to commit these changes, and if we fell back to
2220 // XXX: pull model we may need actual new bindings...
2221 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2222 }
2223
2224 static void
2225 upload_uniforms(struct iris_context *ice,
2226 gl_shader_stage stage)
2227 {
2228 struct iris_shader_state *shs = &ice->state.shaders[stage];
2229 struct iris_const_buffer *cbuf = &shs->constbuf[0];
2230 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
2231
2232 unsigned upload_size = shader->num_system_values * sizeof(uint32_t) +
2233 shs->cbuf0.buffer_size;
2234
2235 if (upload_size == 0)
2236 return;
2237
2238 uint32_t *map =
2239 upload_state(ice->ctx.const_uploader, &cbuf->data, upload_size, 64);
2240
2241 for (int i = 0; i < shader->num_system_values; i++) {
2242 uint32_t sysval = shader->system_values[i];
2243 uint32_t value = 0;
2244
2245 if (BRW_PARAM_BUILTIN_IS_CLIP_PLANE(sysval)) {
2246 int plane = BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(sysval);
2247 int comp = BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(sysval);
2248 value = fui(ice->state.clip_planes.ucp[plane][comp]);
2249 } else if (sysval == BRW_PARAM_BUILTIN_PATCH_VERTICES_IN) {
2250 if (stage == MESA_SHADER_TESS_CTRL) {
2251 value = ice->state.vertices_per_patch;
2252 } else {
2253 assert(stage == MESA_SHADER_TESS_EVAL);
2254 const struct shader_info *tcs_info =
2255 iris_get_shader_info(ice, MESA_SHADER_TESS_CTRL);
2256 assert(tcs_info);
2257
2258 value = tcs_info->tess.tcs_vertices_out;
2259 }
2260 } else {
2261 assert(!"unhandled system value");
2262 }
2263
2264 *map++ = value;
2265 }
2266
2267 if (shs->cbuf0.user_buffer) {
2268 memcpy(map, shs->cbuf0.user_buffer, shs->cbuf0.buffer_size);
2269 }
2270
2271 upload_ubo_surf_state(ice, cbuf, upload_size);
2272 }
2273
2274 /**
2275 * The pipe->set_shader_buffers() driver hook.
2276 *
2277 * This binds SSBOs and ABOs. Unfortunately, we need to stream out
2278 * SURFACE_STATE here, as the buffer offset may change each time.
2279 */
2280 static void
2281 iris_set_shader_buffers(struct pipe_context *ctx,
2282 enum pipe_shader_type p_stage,
2283 unsigned start_slot, unsigned count,
2284 const struct pipe_shader_buffer *buffers)
2285 {
2286 struct iris_context *ice = (struct iris_context *) ctx;
2287 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2288 gl_shader_stage stage = stage_from_pipe(p_stage);
2289 struct iris_shader_state *shs = &ice->state.shaders[stage];
2290
2291 for (unsigned i = 0; i < count; i++) {
2292 if (buffers && buffers[i].buffer) {
2293 const struct pipe_shader_buffer *buffer = &buffers[i];
2294 struct iris_resource *res = (void *) buffer->buffer;
2295 pipe_resource_reference(&shs->ssbo[start_slot + i], &res->base);
2296
2297 res->bind_history |= PIPE_BIND_SHADER_BUFFER;
2298
2299 // XXX: these are not retained forever, use a separate uploader?
2300 void *map =
2301 upload_state(ice->state.surface_uploader,
2302 &shs->ssbo_surface_state[start_slot + i],
2303 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2304 if (!unlikely(map)) {
2305 pipe_resource_reference(&shs->ssbo[start_slot + i], NULL);
2306 return;
2307 }
2308
2309 struct iris_bo *surf_state_bo =
2310 iris_resource_bo(shs->ssbo_surface_state[start_slot + i].res);
2311 shs->ssbo_surface_state[start_slot + i].offset +=
2312 iris_bo_offset_from_base_address(surf_state_bo);
2313
2314 isl_buffer_fill_state(&screen->isl_dev, map,
2315 .address =
2316 res->bo->gtt_offset + buffer->buffer_offset,
2317 .size_B =
2318 MIN2(buffer->buffer_size,
2319 res->bo->size - buffer->buffer_offset),
2320 .format = ISL_FORMAT_RAW,
2321 .stride_B = 1,
2322 .mocs = MOCS_WB);
2323 } else {
2324 pipe_resource_reference(&shs->ssbo[start_slot + i], NULL);
2325 pipe_resource_reference(&shs->ssbo_surface_state[start_slot + i].res,
2326 NULL);
2327 }
2328 }
2329
2330 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2331 }
2332
2333 static void
2334 iris_delete_state(struct pipe_context *ctx, void *state)
2335 {
2336 free(state);
2337 }
2338
2339 /**
2340 * The pipe->set_vertex_buffers() driver hook.
2341 *
2342 * This translates pipe_vertex_buffer to our 3DSTATE_VERTEX_BUFFERS packet.
2343 */
2344 static void
2345 iris_set_vertex_buffers(struct pipe_context *ctx,
2346 unsigned start_slot, unsigned count,
2347 const struct pipe_vertex_buffer *buffers)
2348 {
2349 struct iris_context *ice = (struct iris_context *) ctx;
2350 struct iris_genx_state *genx = ice->state.genx;
2351
2352 ice->state.bound_vertex_buffers &= ~u_bit_consecutive64(start_slot, count);
2353
2354 for (unsigned i = 0; i < count; i++) {
2355 const struct pipe_vertex_buffer *buffer = buffers ? &buffers[i] : NULL;
2356 struct iris_vertex_buffer_state *state =
2357 &genx->vertex_buffers[start_slot + i];
2358
2359 if (!buffer) {
2360 pipe_resource_reference(&state->resource, NULL);
2361 continue;
2362 }
2363
2364 assert(!buffer->is_user_buffer);
2365
2366 ice->state.bound_vertex_buffers |= 1ull << (start_slot + i);
2367
2368 pipe_resource_reference(&state->resource, buffer->buffer.resource);
2369 struct iris_resource *res = (void *) state->resource;
2370
2371 if (res)
2372 res->bind_history |= PIPE_BIND_VERTEX_BUFFER;
2373
2374 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
2375 vb.VertexBufferIndex = start_slot + i;
2376 vb.MOCS = MOCS_WB;
2377 vb.AddressModifyEnable = true;
2378 vb.BufferPitch = buffer->stride;
2379 if (res) {
2380 vb.BufferSize = res->bo->size;
2381 vb.BufferStartingAddress =
2382 ro_bo(NULL, res->bo->gtt_offset + buffer->buffer_offset);
2383 } else {
2384 vb.NullVertexBuffer = true;
2385 }
2386 }
2387 }
2388
2389 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
2390 }
2391
2392 /**
2393 * Gallium CSO for vertex elements.
2394 */
2395 struct iris_vertex_element_state {
2396 uint32_t vertex_elements[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
2397 uint32_t vf_instancing[33 * GENX(3DSTATE_VF_INSTANCING_length)];
2398 unsigned count;
2399 };
2400
2401 /**
2402 * The pipe->create_vertex_elements() driver hook.
2403 *
2404 * This translates pipe_vertex_element to our 3DSTATE_VERTEX_ELEMENTS
2405 * and 3DSTATE_VF_INSTANCING commands. SGVs are handled at draw time.
2406 */
2407 static void *
2408 iris_create_vertex_elements(struct pipe_context *ctx,
2409 unsigned count,
2410 const struct pipe_vertex_element *state)
2411 {
2412 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2413 const struct gen_device_info *devinfo = &screen->devinfo;
2414 struct iris_vertex_element_state *cso =
2415 malloc(sizeof(struct iris_vertex_element_state));
2416
2417 cso->count = count;
2418
2419 /* TODO:
2420 * - create edge flag one
2421 * - create SGV ones
2422 * - if those are necessary, use count + 1/2/3... OR in the length
2423 */
2424 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS), cso->vertex_elements, ve) {
2425 ve.DWordLength =
2426 1 + GENX(VERTEX_ELEMENT_STATE_length) * MAX2(count, 1) - 2;
2427 }
2428
2429 uint32_t *ve_pack_dest = &cso->vertex_elements[1];
2430 uint32_t *vfi_pack_dest = cso->vf_instancing;
2431
2432 if (count == 0) {
2433 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
2434 ve.Valid = true;
2435 ve.SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT;
2436 ve.Component0Control = VFCOMP_STORE_0;
2437 ve.Component1Control = VFCOMP_STORE_0;
2438 ve.Component2Control = VFCOMP_STORE_0;
2439 ve.Component3Control = VFCOMP_STORE_1_FP;
2440 }
2441
2442 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
2443 }
2444 }
2445
2446 for (int i = 0; i < count; i++) {
2447 const struct iris_format_info fmt =
2448 iris_format_for_usage(devinfo, state[i].src_format, 0);
2449 unsigned comp[4] = { VFCOMP_STORE_SRC, VFCOMP_STORE_SRC,
2450 VFCOMP_STORE_SRC, VFCOMP_STORE_SRC };
2451
2452 switch (isl_format_get_num_channels(fmt.fmt)) {
2453 case 0: comp[0] = VFCOMP_STORE_0;
2454 case 1: comp[1] = VFCOMP_STORE_0;
2455 case 2: comp[2] = VFCOMP_STORE_0;
2456 case 3:
2457 comp[3] = isl_format_has_int_channel(fmt.fmt) ? VFCOMP_STORE_1_INT
2458 : VFCOMP_STORE_1_FP;
2459 break;
2460 }
2461 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
2462 ve.VertexBufferIndex = state[i].vertex_buffer_index;
2463 ve.Valid = true;
2464 ve.SourceElementOffset = state[i].src_offset;
2465 ve.SourceElementFormat = fmt.fmt;
2466 ve.Component0Control = comp[0];
2467 ve.Component1Control = comp[1];
2468 ve.Component2Control = comp[2];
2469 ve.Component3Control = comp[3];
2470 }
2471
2472 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
2473 vi.VertexElementIndex = i;
2474 vi.InstancingEnable = state[i].instance_divisor > 0;
2475 vi.InstanceDataStepRate = state[i].instance_divisor;
2476 }
2477
2478 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
2479 vfi_pack_dest += GENX(3DSTATE_VF_INSTANCING_length);
2480 }
2481
2482 return cso;
2483 }
2484
2485 /**
2486 * The pipe->bind_vertex_elements_state() driver hook.
2487 */
2488 static void
2489 iris_bind_vertex_elements_state(struct pipe_context *ctx, void *state)
2490 {
2491 struct iris_context *ice = (struct iris_context *) ctx;
2492 struct iris_vertex_element_state *old_cso = ice->state.cso_vertex_elements;
2493 struct iris_vertex_element_state *new_cso = state;
2494
2495 /* 3DSTATE_VF_SGVs overrides the last VE, so if the count is changing,
2496 * we need to re-emit it to ensure we're overriding the right one.
2497 */
2498 if (new_cso && cso_changed(count))
2499 ice->state.dirty |= IRIS_DIRTY_VF_SGVS;
2500
2501 ice->state.cso_vertex_elements = state;
2502 ice->state.dirty |= IRIS_DIRTY_VERTEX_ELEMENTS;
2503 }
2504
2505 /**
2506 * The pipe->create_stream_output_target() driver hook.
2507 *
2508 * "Target" here refers to a destination buffer. We translate this into
2509 * a 3DSTATE_SO_BUFFER packet. We can handle most fields, but don't yet
2510 * know which buffer this represents, or whether we ought to zero the
2511 * write-offsets, or append. Those are handled in the set() hook.
2512 */
2513 static struct pipe_stream_output_target *
2514 iris_create_stream_output_target(struct pipe_context *ctx,
2515 struct pipe_resource *p_res,
2516 unsigned buffer_offset,
2517 unsigned buffer_size)
2518 {
2519 struct iris_resource *res = (void *) p_res;
2520 struct iris_stream_output_target *cso = calloc(1, sizeof(*cso));
2521 if (!cso)
2522 return NULL;
2523
2524 res->bind_history |= PIPE_BIND_STREAM_OUTPUT;
2525
2526 pipe_reference_init(&cso->base.reference, 1);
2527 pipe_resource_reference(&cso->base.buffer, p_res);
2528 cso->base.buffer_offset = buffer_offset;
2529 cso->base.buffer_size = buffer_size;
2530 cso->base.context = ctx;
2531
2532 upload_state(ctx->stream_uploader, &cso->offset, sizeof(uint32_t), 4);
2533
2534 return &cso->base;
2535 }
2536
2537 static void
2538 iris_stream_output_target_destroy(struct pipe_context *ctx,
2539 struct pipe_stream_output_target *state)
2540 {
2541 struct iris_stream_output_target *cso = (void *) state;
2542
2543 pipe_resource_reference(&cso->base.buffer, NULL);
2544 pipe_resource_reference(&cso->offset.res, NULL);
2545
2546 free(cso);
2547 }
2548
2549 /**
2550 * The pipe->set_stream_output_targets() driver hook.
2551 *
2552 * At this point, we know which targets are bound to a particular index,
2553 * and also whether we want to append or start over. We can finish the
2554 * 3DSTATE_SO_BUFFER packets we started earlier.
2555 */
2556 static void
2557 iris_set_stream_output_targets(struct pipe_context *ctx,
2558 unsigned num_targets,
2559 struct pipe_stream_output_target **targets,
2560 const unsigned *offsets)
2561 {
2562 struct iris_context *ice = (struct iris_context *) ctx;
2563 struct iris_genx_state *genx = ice->state.genx;
2564 uint32_t *so_buffers = genx->so_buffers;
2565
2566 const bool active = num_targets > 0;
2567 if (ice->state.streamout_active != active) {
2568 ice->state.streamout_active = active;
2569 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
2570
2571 /* We only emit 3DSTATE_SO_DECL_LIST when streamout is active, because
2572 * it's a non-pipelined command. If we're switching streamout on, we
2573 * may have missed emitting it earlier, so do so now. (We're already
2574 * taking a stall to update 3DSTATE_SO_BUFFERS anyway...)
2575 */
2576 if (active)
2577 ice->state.dirty |= IRIS_DIRTY_SO_DECL_LIST;
2578 }
2579
2580 for (int i = 0; i < 4; i++) {
2581 pipe_so_target_reference(&ice->state.so_target[i],
2582 i < num_targets ? targets[i] : NULL);
2583 }
2584
2585 /* No need to update 3DSTATE_SO_BUFFER unless SOL is active. */
2586 if (!active)
2587 return;
2588
2589 for (unsigned i = 0; i < 4; i++,
2590 so_buffers += GENX(3DSTATE_SO_BUFFER_length)) {
2591
2592 if (i >= num_targets || !targets[i]) {
2593 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob)
2594 sob.SOBufferIndex = i;
2595 continue;
2596 }
2597
2598 struct iris_stream_output_target *tgt = (void *) targets[i];
2599 struct iris_resource *res = (void *) tgt->base.buffer;
2600
2601 /* Note that offsets[i] will either be 0, causing us to zero
2602 * the value in the buffer, or 0xFFFFFFFF, which happens to mean
2603 * "continue appending at the existing offset."
2604 */
2605 assert(offsets[i] == 0 || offsets[i] == 0xFFFFFFFF);
2606
2607 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob) {
2608 sob.SurfaceBaseAddress =
2609 rw_bo(NULL, res->bo->gtt_offset + tgt->base.buffer_offset);
2610 sob.SOBufferEnable = true;
2611 sob.StreamOffsetWriteEnable = true;
2612 sob.StreamOutputBufferOffsetAddressEnable = true;
2613 sob.MOCS = MOCS_WB; // XXX: MOCS
2614
2615 sob.SurfaceSize = MAX2(tgt->base.buffer_size / 4, 1) - 1;
2616
2617 sob.SOBufferIndex = i;
2618 sob.StreamOffset = offsets[i];
2619 sob.StreamOutputBufferOffsetAddress =
2620 rw_bo(NULL, iris_resource_bo(tgt->offset.res)->gtt_offset +
2621 tgt->offset.offset);
2622 }
2623 }
2624
2625 ice->state.dirty |= IRIS_DIRTY_SO_BUFFERS;
2626 }
2627
2628 /**
2629 * An iris-vtable helper for encoding the 3DSTATE_SO_DECL_LIST and
2630 * 3DSTATE_STREAMOUT packets.
2631 *
2632 * 3DSTATE_SO_DECL_LIST is a list of shader outputs we want the streamout
2633 * hardware to record. We can create it entirely based on the shader, with
2634 * no dynamic state dependencies.
2635 *
2636 * 3DSTATE_STREAMOUT is an annoying mix of shader-based information and
2637 * state-based settings. We capture the shader-related ones here, and merge
2638 * the rest in at draw time.
2639 */
2640 static uint32_t *
2641 iris_create_so_decl_list(const struct pipe_stream_output_info *info,
2642 const struct brw_vue_map *vue_map)
2643 {
2644 struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
2645 int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2646 int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2647 int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2648 int max_decls = 0;
2649 STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
2650
2651 memset(so_decl, 0, sizeof(so_decl));
2652
2653 /* Construct the list of SO_DECLs to be emitted. The formatting of the
2654 * command feels strange -- each dword pair contains a SO_DECL per stream.
2655 */
2656 for (unsigned i = 0; i < info->num_outputs; i++) {
2657 const struct pipe_stream_output *output = &info->output[i];
2658 const int buffer = output->output_buffer;
2659 const int varying = output->register_index;
2660 const unsigned stream_id = output->stream;
2661 assert(stream_id < MAX_VERTEX_STREAMS);
2662
2663 buffer_mask[stream_id] |= 1 << buffer;
2664
2665 assert(vue_map->varying_to_slot[varying] >= 0);
2666
2667 /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
2668 * array. Instead, it simply increments DstOffset for the following
2669 * input by the number of components that should be skipped.
2670 *
2671 * Our hardware is unusual in that it requires us to program SO_DECLs
2672 * for fake "hole" components, rather than simply taking the offset
2673 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
2674 * program as many size = 4 holes as we can, then a final hole to
2675 * accommodate the final 1, 2, or 3 remaining.
2676 */
2677 int skip_components = output->dst_offset - next_offset[buffer];
2678
2679 while (skip_components > 0) {
2680 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
2681 .HoleFlag = 1,
2682 .OutputBufferSlot = output->output_buffer,
2683 .ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
2684 };
2685 skip_components -= 4;
2686 }
2687
2688 next_offset[buffer] = output->dst_offset + output->num_components;
2689
2690 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
2691 .OutputBufferSlot = output->output_buffer,
2692 .RegisterIndex = vue_map->varying_to_slot[varying],
2693 .ComponentMask =
2694 ((1 << output->num_components) - 1) << output->start_component,
2695 };
2696
2697 if (decls[stream_id] > max_decls)
2698 max_decls = decls[stream_id];
2699 }
2700
2701 unsigned dwords = GENX(3DSTATE_STREAMOUT_length) + (3 + 2 * max_decls);
2702 uint32_t *map = ralloc_size(NULL, sizeof(uint32_t) * dwords);
2703 uint32_t *so_decl_map = map + GENX(3DSTATE_STREAMOUT_length);
2704
2705 iris_pack_command(GENX(3DSTATE_STREAMOUT), map, sol) {
2706 int urb_entry_read_offset = 0;
2707 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
2708 urb_entry_read_offset;
2709
2710 /* We always read the whole vertex. This could be reduced at some
2711 * point by reading less and offsetting the register index in the
2712 * SO_DECLs.
2713 */
2714 sol.Stream0VertexReadOffset = urb_entry_read_offset;
2715 sol.Stream0VertexReadLength = urb_entry_read_length - 1;
2716 sol.Stream1VertexReadOffset = urb_entry_read_offset;
2717 sol.Stream1VertexReadLength = urb_entry_read_length - 1;
2718 sol.Stream2VertexReadOffset = urb_entry_read_offset;
2719 sol.Stream2VertexReadLength = urb_entry_read_length - 1;
2720 sol.Stream3VertexReadOffset = urb_entry_read_offset;
2721 sol.Stream3VertexReadLength = urb_entry_read_length - 1;
2722
2723 /* Set buffer pitches; 0 means unbound. */
2724 sol.Buffer0SurfacePitch = 4 * info->stride[0];
2725 sol.Buffer1SurfacePitch = 4 * info->stride[1];
2726 sol.Buffer2SurfacePitch = 4 * info->stride[2];
2727 sol.Buffer3SurfacePitch = 4 * info->stride[3];
2728 }
2729
2730 iris_pack_command(GENX(3DSTATE_SO_DECL_LIST), so_decl_map, list) {
2731 list.DWordLength = 3 + 2 * max_decls - 2;
2732 list.StreamtoBufferSelects0 = buffer_mask[0];
2733 list.StreamtoBufferSelects1 = buffer_mask[1];
2734 list.StreamtoBufferSelects2 = buffer_mask[2];
2735 list.StreamtoBufferSelects3 = buffer_mask[3];
2736 list.NumEntries0 = decls[0];
2737 list.NumEntries1 = decls[1];
2738 list.NumEntries2 = decls[2];
2739 list.NumEntries3 = decls[3];
2740 }
2741
2742 for (int i = 0; i < max_decls; i++) {
2743 iris_pack_state(GENX(SO_DECL_ENTRY), so_decl_map + 3 + i * 2, entry) {
2744 entry.Stream0Decl = so_decl[0][i];
2745 entry.Stream1Decl = so_decl[1][i];
2746 entry.Stream2Decl = so_decl[2][i];
2747 entry.Stream3Decl = so_decl[3][i];
2748 }
2749 }
2750
2751 return map;
2752 }
2753
2754 static void
2755 iris_compute_sbe_urb_read_interval(uint64_t fs_input_slots,
2756 const struct brw_vue_map *last_vue_map,
2757 bool two_sided_color,
2758 unsigned *out_offset,
2759 unsigned *out_length)
2760 {
2761 /* The compiler computes the first URB slot without considering COL/BFC
2762 * swizzling (because it doesn't know whether it's enabled), so we need
2763 * to do that here too. This may result in a smaller offset, which
2764 * should be safe.
2765 */
2766 const unsigned first_slot =
2767 brw_compute_first_urb_slot_required(fs_input_slots, last_vue_map);
2768
2769 /* This becomes the URB read offset (counted in pairs of slots). */
2770 assert(first_slot % 2 == 0);
2771 *out_offset = first_slot / 2;
2772
2773 /* We need to adjust the inputs read to account for front/back color
2774 * swizzling, as it can make the URB length longer.
2775 */
2776 for (int c = 0; c <= 1; c++) {
2777 if (fs_input_slots & (VARYING_BIT_COL0 << c)) {
2778 /* If two sided color is enabled, the fragment shader's gl_Color
2779 * (COL0) input comes from either the gl_FrontColor (COL0) or
2780 * gl_BackColor (BFC0) input varyings. Mark BFC as used, too.
2781 */
2782 if (two_sided_color)
2783 fs_input_slots |= (VARYING_BIT_BFC0 << c);
2784
2785 /* If front color isn't written, we opt to give them back color
2786 * instead of an undefined value. Switch from COL to BFC.
2787 */
2788 if (last_vue_map->varying_to_slot[VARYING_SLOT_COL0 + c] == -1) {
2789 fs_input_slots &= ~(VARYING_BIT_COL0 << c);
2790 fs_input_slots |= (VARYING_BIT_BFC0 << c);
2791 }
2792 }
2793 }
2794
2795 /* Compute the minimum URB Read Length necessary for the FS inputs.
2796 *
2797 * From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
2798 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
2799 *
2800 * "This field should be set to the minimum length required to read the
2801 * maximum source attribute. The maximum source attribute is indicated
2802 * by the maximum value of the enabled Attribute # Source Attribute if
2803 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
2804 * enable is not set.
2805 * read_length = ceiling((max_source_attr + 1) / 2)
2806 *
2807 * [errata] Corruption/Hang possible if length programmed larger than
2808 * recommended"
2809 *
2810 * Similar text exists for Ivy Bridge.
2811 *
2812 * We find the last URB slot that's actually read by the FS.
2813 */
2814 unsigned last_read_slot = last_vue_map->num_slots - 1;
2815 while (last_read_slot > first_slot && !(fs_input_slots &
2816 (1ull << last_vue_map->slot_to_varying[last_read_slot])))
2817 --last_read_slot;
2818
2819 /* The URB read length is the difference of the two, counted in pairs. */
2820 *out_length = DIV_ROUND_UP(last_read_slot - first_slot + 1, 2);
2821 }
2822
2823 static void
2824 iris_emit_sbe_swiz(struct iris_batch *batch,
2825 const struct iris_context *ice,
2826 unsigned urb_read_offset,
2827 unsigned sprite_coord_enables)
2828 {
2829 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = {};
2830 const struct brw_wm_prog_data *wm_prog_data = (void *)
2831 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
2832 const struct brw_vue_map *vue_map = ice->shaders.last_vue_map;
2833 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
2834
2835 /* XXX: this should be generated when putting programs in place */
2836
2837 // XXX: raster->sprite_coord_enable
2838
2839 for (int fs_attr = 0; fs_attr < VARYING_SLOT_MAX; fs_attr++) {
2840 const int input_index = wm_prog_data->urb_setup[fs_attr];
2841 if (input_index < 0 || input_index >= 16)
2842 continue;
2843
2844 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr =
2845 &attr_overrides[input_index];
2846 int slot = vue_map->varying_to_slot[fs_attr];
2847
2848 /* Viewport and Layer are stored in the VUE header. We need to override
2849 * them to zero if earlier stages didn't write them, as GL requires that
2850 * they read back as zero when not explicitly set.
2851 */
2852 switch (fs_attr) {
2853 case VARYING_SLOT_VIEWPORT:
2854 case VARYING_SLOT_LAYER:
2855 attr->ComponentOverrideX = true;
2856 attr->ComponentOverrideW = true;
2857 attr->ConstantSource = CONST_0000;
2858
2859 if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
2860 attr->ComponentOverrideY = true;
2861 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
2862 attr->ComponentOverrideZ = true;
2863 continue;
2864
2865 case VARYING_SLOT_PRIMITIVE_ID:
2866 /* Override if the previous shader stage didn't write gl_PrimitiveID. */
2867 if (slot == -1) {
2868 attr->ComponentOverrideX = true;
2869 attr->ComponentOverrideY = true;
2870 attr->ComponentOverrideZ = true;
2871 attr->ComponentOverrideW = true;
2872 attr->ConstantSource = PRIM_ID;
2873 continue;
2874 }
2875
2876 default:
2877 break;
2878 }
2879
2880 if (sprite_coord_enables & (1 << input_index))
2881 continue;
2882
2883 /* If there was only a back color written but not front, use back
2884 * as the color instead of undefined.
2885 */
2886 if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
2887 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
2888 if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
2889 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
2890
2891 /* Not written by the previous stage - undefined. */
2892 if (slot == -1) {
2893 attr->ComponentOverrideX = true;
2894 attr->ComponentOverrideY = true;
2895 attr->ComponentOverrideZ = true;
2896 attr->ComponentOverrideW = true;
2897 attr->ConstantSource = CONST_0001_FLOAT;
2898 continue;
2899 }
2900
2901 /* Compute the location of the attribute relative to the read offset,
2902 * which is counted in 256-bit increments (two 128-bit VUE slots).
2903 */
2904 const int source_attr = slot - 2 * urb_read_offset;
2905 assert(source_attr >= 0 && source_attr <= 32);
2906 attr->SourceAttribute = source_attr;
2907
2908 /* If we are doing two-sided color, and the VUE slot following this one
2909 * represents a back-facing color, then we need to instruct the SF unit
2910 * to do back-facing swizzling.
2911 */
2912 if (cso_rast->light_twoside &&
2913 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
2914 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
2915 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
2916 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1)))
2917 attr->SwizzleSelect = INPUTATTR_FACING;
2918 }
2919
2920 iris_emit_cmd(batch, GENX(3DSTATE_SBE_SWIZ), sbes) {
2921 for (int i = 0; i < 16; i++)
2922 sbes.Attribute[i] = attr_overrides[i];
2923 }
2924 }
2925
2926 static unsigned
2927 iris_calculate_point_sprite_overrides(const struct brw_wm_prog_data *prog_data,
2928 const struct iris_rasterizer_state *cso)
2929 {
2930 unsigned overrides = 0;
2931
2932 if (prog_data->urb_setup[VARYING_SLOT_PNTC] != -1)
2933 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_PNTC];
2934
2935 for (int i = 0; i < 8; i++) {
2936 if ((cso->sprite_coord_enable & (1 << i)) &&
2937 prog_data->urb_setup[VARYING_SLOT_TEX0 + i] != -1)
2938 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_TEX0 + i];
2939 }
2940
2941 return overrides;
2942 }
2943
2944 static void
2945 iris_emit_sbe(struct iris_batch *batch, const struct iris_context *ice)
2946 {
2947 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
2948 const struct brw_wm_prog_data *wm_prog_data = (void *)
2949 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
2950 const struct shader_info *fs_info =
2951 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
2952
2953 unsigned urb_read_offset, urb_read_length;
2954 iris_compute_sbe_urb_read_interval(fs_info->inputs_read,
2955 ice->shaders.last_vue_map,
2956 cso_rast->light_twoside,
2957 &urb_read_offset, &urb_read_length);
2958
2959 unsigned sprite_coord_overrides =
2960 iris_calculate_point_sprite_overrides(wm_prog_data, cso_rast);
2961
2962 iris_emit_cmd(batch, GENX(3DSTATE_SBE), sbe) {
2963 sbe.AttributeSwizzleEnable = true;
2964 sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
2965 sbe.PointSpriteTextureCoordinateOrigin = cso_rast->sprite_coord_mode;
2966 sbe.VertexURBEntryReadOffset = urb_read_offset;
2967 sbe.VertexURBEntryReadLength = urb_read_length;
2968 sbe.ForceVertexURBEntryReadOffset = true;
2969 sbe.ForceVertexURBEntryReadLength = true;
2970 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
2971 sbe.PointSpriteTextureCoordinateEnable = sprite_coord_overrides;
2972
2973 for (int i = 0; i < 32; i++) {
2974 sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW;
2975 }
2976 }
2977
2978 iris_emit_sbe_swiz(batch, ice, urb_read_offset, sprite_coord_overrides);
2979 }
2980
2981 /* ------------------------------------------------------------------- */
2982
2983 /**
2984 * Populate VS program key fields based on the current state.
2985 */
2986 static void
2987 iris_populate_vs_key(const struct iris_context *ice,
2988 const struct shader_info *info,
2989 struct brw_vs_prog_key *key)
2990 {
2991 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
2992
2993 if (info->clip_distance_array_size == 0 &&
2994 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)))
2995 key->nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
2996 }
2997
2998 /**
2999 * Populate TCS program key fields based on the current state.
3000 */
3001 static void
3002 iris_populate_tcs_key(const struct iris_context *ice,
3003 struct brw_tcs_prog_key *key)
3004 {
3005 }
3006
3007 /**
3008 * Populate TES program key fields based on the current state.
3009 */
3010 static void
3011 iris_populate_tes_key(const struct iris_context *ice,
3012 struct brw_tes_prog_key *key)
3013 {
3014 }
3015
3016 /**
3017 * Populate GS program key fields based on the current state.
3018 */
3019 static void
3020 iris_populate_gs_key(const struct iris_context *ice,
3021 struct brw_gs_prog_key *key)
3022 {
3023 }
3024
3025 /**
3026 * Populate FS program key fields based on the current state.
3027 */
3028 static void
3029 iris_populate_fs_key(const struct iris_context *ice,
3030 struct brw_wm_prog_key *key)
3031 {
3032 /* XXX: dirty flags? */
3033 const struct pipe_framebuffer_state *fb = &ice->state.framebuffer;
3034 const struct iris_depth_stencil_alpha_state *zsa = ice->state.cso_zsa;
3035 const struct iris_rasterizer_state *rast = ice->state.cso_rast;
3036 const struct iris_blend_state *blend = ice->state.cso_blend;
3037
3038 key->nr_color_regions = fb->nr_cbufs;
3039
3040 key->clamp_fragment_color = rast->clamp_fragment_color;
3041
3042 key->replicate_alpha = fb->nr_cbufs > 1 &&
3043 (zsa->alpha.enabled || blend->alpha_to_coverage);
3044
3045 /* XXX: only bother if COL0/1 are read */
3046 key->flat_shade = rast->flatshade;
3047
3048 key->persample_interp = rast->force_persample_interp;
3049 key->multisample_fbo = rast->multisample && fb->samples > 1;
3050
3051 key->coherent_fb_fetch = true;
3052
3053 // XXX: uint64_t input_slots_valid; - for >16 inputs
3054
3055 // XXX: key->force_dual_color_blend for unigine
3056 // XXX: respect hint for high_quality_derivatives:1;
3057 }
3058
3059 static void
3060 iris_populate_cs_key(const struct iris_context *ice,
3061 struct brw_cs_prog_key *key)
3062 {
3063 }
3064
3065 #if 0
3066 // XXX: these need to go in INIT_THREAD_DISPATCH_FIELDS
3067 pkt.SamplerCount = \
3068 DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4); \
3069
3070 #endif
3071
3072 static uint64_t
3073 KSP(const struct iris_compiled_shader *shader)
3074 {
3075 struct iris_resource *res = (void *) shader->assembly.res;
3076 return iris_bo_offset_from_base_address(res->bo) + shader->assembly.offset;
3077 }
3078
3079 // Gen11 workaround table #2056 WABTPPrefetchDisable suggests to disable
3080 // prefetching of binding tables in A0 and B0 steppings. XXX: Revisit
3081 // this WA on C0 stepping.
3082
3083 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix, stage) \
3084 pkt.KernelStartPointer = KSP(shader); \
3085 pkt.BindingTableEntryCount = GEN_GEN == 11 ? 0 : \
3086 prog_data->binding_table.size_bytes / 4; \
3087 pkt.FloatingPointMode = prog_data->use_alt_mode; \
3088 \
3089 pkt.DispatchGRFStartRegisterForURBData = \
3090 prog_data->dispatch_grf_start_reg; \
3091 pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
3092 pkt.prefix##URBEntryReadOffset = 0; \
3093 \
3094 pkt.StatisticsEnable = true; \
3095 pkt.Enable = true; \
3096 \
3097 if (prog_data->total_scratch) { \
3098 uint32_t scratch_addr = \
3099 iris_get_scratch_space(ice, prog_data->total_scratch, stage); \
3100 pkt.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11; \
3101 pkt.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr); \
3102 }
3103
3104 /**
3105 * Encode most of 3DSTATE_VS based on the compiled shader.
3106 */
3107 static void
3108 iris_store_vs_state(struct iris_context *ice,
3109 const struct gen_device_info *devinfo,
3110 struct iris_compiled_shader *shader)
3111 {
3112 struct brw_stage_prog_data *prog_data = shader->prog_data;
3113 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3114
3115 iris_pack_command(GENX(3DSTATE_VS), shader->derived_data, vs) {
3116 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex, MESA_SHADER_VERTEX);
3117 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
3118 vs.SIMD8DispatchEnable = true;
3119 vs.UserClipDistanceCullTestEnableBitmask =
3120 vue_prog_data->cull_distance_mask;
3121 }
3122 }
3123
3124 /**
3125 * Encode most of 3DSTATE_HS based on the compiled shader.
3126 */
3127 static void
3128 iris_store_tcs_state(struct iris_context *ice,
3129 const struct gen_device_info *devinfo,
3130 struct iris_compiled_shader *shader)
3131 {
3132 struct brw_stage_prog_data *prog_data = shader->prog_data;
3133 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3134 struct brw_tcs_prog_data *tcs_prog_data = (void *) prog_data;
3135
3136 iris_pack_command(GENX(3DSTATE_HS), shader->derived_data, hs) {
3137 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex, MESA_SHADER_TESS_CTRL);
3138
3139 hs.InstanceCount = tcs_prog_data->instances - 1;
3140 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
3141 hs.IncludeVertexHandles = true;
3142 }
3143 }
3144
3145 /**
3146 * Encode 3DSTATE_TE and most of 3DSTATE_DS based on the compiled shader.
3147 */
3148 static void
3149 iris_store_tes_state(struct iris_context *ice,
3150 const struct gen_device_info *devinfo,
3151 struct iris_compiled_shader *shader)
3152 {
3153 struct brw_stage_prog_data *prog_data = shader->prog_data;
3154 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3155 struct brw_tes_prog_data *tes_prog_data = (void *) prog_data;
3156
3157 uint32_t *te_state = (void *) shader->derived_data;
3158 uint32_t *ds_state = te_state + GENX(3DSTATE_TE_length);
3159
3160 iris_pack_command(GENX(3DSTATE_TE), te_state, te) {
3161 te.Partitioning = tes_prog_data->partitioning;
3162 te.OutputTopology = tes_prog_data->output_topology;
3163 te.TEDomain = tes_prog_data->domain;
3164 te.TEEnable = true;
3165 te.MaximumTessellationFactorOdd = 63.0;
3166 te.MaximumTessellationFactorNotOdd = 64.0;
3167 }
3168
3169 iris_pack_command(GENX(3DSTATE_DS), ds_state, ds) {
3170 INIT_THREAD_DISPATCH_FIELDS(ds, Patch, MESA_SHADER_TESS_EVAL);
3171
3172 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
3173 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
3174 ds.ComputeWCoordinateEnable =
3175 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
3176
3177 ds.UserClipDistanceCullTestEnableBitmask =
3178 vue_prog_data->cull_distance_mask;
3179 }
3180
3181 }
3182
3183 /**
3184 * Encode most of 3DSTATE_GS based on the compiled shader.
3185 */
3186 static void
3187 iris_store_gs_state(struct iris_context *ice,
3188 const struct gen_device_info *devinfo,
3189 struct iris_compiled_shader *shader)
3190 {
3191 struct brw_stage_prog_data *prog_data = shader->prog_data;
3192 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3193 struct brw_gs_prog_data *gs_prog_data = (void *) prog_data;
3194
3195 iris_pack_command(GENX(3DSTATE_GS), shader->derived_data, gs) {
3196 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex, MESA_SHADER_GEOMETRY);
3197
3198 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
3199 gs.OutputTopology = gs_prog_data->output_topology;
3200 gs.ControlDataHeaderSize =
3201 gs_prog_data->control_data_header_size_hwords;
3202 gs.InstanceControl = gs_prog_data->invocations - 1;
3203 gs.DispatchMode = DISPATCH_MODE_SIMD8;
3204 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
3205 gs.ControlDataFormat = gs_prog_data->control_data_format;
3206 gs.ReorderMode = TRAILING;
3207 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
3208 gs.MaximumNumberofThreads =
3209 GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
3210 : (devinfo->max_gs_threads - 1);
3211
3212 if (gs_prog_data->static_vertex_count != -1) {
3213 gs.StaticOutput = true;
3214 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
3215 }
3216 gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
3217
3218 gs.UserClipDistanceCullTestEnableBitmask =
3219 vue_prog_data->cull_distance_mask;
3220
3221 const int urb_entry_write_offset = 1;
3222 const uint32_t urb_entry_output_length =
3223 DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
3224 urb_entry_write_offset;
3225
3226 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
3227 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
3228 }
3229 }
3230
3231 /**
3232 * Encode most of 3DSTATE_PS and 3DSTATE_PS_EXTRA based on the shader.
3233 */
3234 static void
3235 iris_store_fs_state(struct iris_context *ice,
3236 const struct gen_device_info *devinfo,
3237 struct iris_compiled_shader *shader)
3238 {
3239 struct brw_stage_prog_data *prog_data = shader->prog_data;
3240 struct brw_wm_prog_data *wm_prog_data = (void *) shader->prog_data;
3241
3242 uint32_t *ps_state = (void *) shader->derived_data;
3243 uint32_t *psx_state = ps_state + GENX(3DSTATE_PS_length);
3244
3245 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
3246 ps.VectorMaskEnable = true;
3247 //ps.SamplerCount = ...
3248 // XXX: WABTPPrefetchDisable, see above, drop at C0
3249 ps.BindingTableEntryCount = GEN_GEN == 11 ? 0 :
3250 prog_data->binding_table.size_bytes / 4;
3251 ps.FloatingPointMode = prog_data->use_alt_mode;
3252 ps.MaximumNumberofThreadsPerPSD = 64 - (GEN_GEN == 8 ? 2 : 1);
3253
3254 ps.PushConstantEnable = shader->num_system_values > 0 ||
3255 prog_data->ubo_ranges[0].length > 0;
3256
3257 /* From the documentation for this packet:
3258 * "If the PS kernel does not need the Position XY Offsets to
3259 * compute a Position Value, then this field should be programmed
3260 * to POSOFFSET_NONE."
3261 *
3262 * "SW Recommendation: If the PS kernel needs the Position Offsets
3263 * to compute a Position XY value, this field should match Position
3264 * ZW Interpolation Mode to ensure a consistent position.xyzw
3265 * computation."
3266 *
3267 * We only require XY sample offsets. So, this recommendation doesn't
3268 * look useful at the moment. We might need this in future.
3269 */
3270 ps.PositionXYOffsetSelect =
3271 wm_prog_data->uses_pos_offset ? POSOFFSET_SAMPLE : POSOFFSET_NONE;
3272 ps._8PixelDispatchEnable = wm_prog_data->dispatch_8;
3273 ps._16PixelDispatchEnable = wm_prog_data->dispatch_16;
3274 ps._32PixelDispatchEnable = wm_prog_data->dispatch_32;
3275
3276 // XXX: Disable SIMD32 with 16x MSAA
3277
3278 ps.DispatchGRFStartRegisterForConstantSetupData0 =
3279 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
3280 ps.DispatchGRFStartRegisterForConstantSetupData1 =
3281 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
3282 ps.DispatchGRFStartRegisterForConstantSetupData2 =
3283 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
3284
3285 ps.KernelStartPointer0 =
3286 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
3287 ps.KernelStartPointer1 =
3288 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
3289 ps.KernelStartPointer2 =
3290 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
3291
3292 if (prog_data->total_scratch) {
3293 uint32_t scratch_addr =
3294 iris_get_scratch_space(ice, prog_data->total_scratch,
3295 MESA_SHADER_FRAGMENT);
3296 ps.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
3297 ps.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr);
3298 }
3299 }
3300
3301 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
3302 psx.PixelShaderValid = true;
3303 psx.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
3304 // XXX: alpha test / alpha to coverage :/
3305 psx.PixelShaderKillsPixel = wm_prog_data->uses_kill ||
3306 wm_prog_data->uses_omask;
3307 psx.AttributeEnable = wm_prog_data->num_varying_inputs != 0;
3308 psx.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
3309 psx.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
3310 psx.PixelShaderIsPerSample = wm_prog_data->persample_dispatch;
3311
3312 if (wm_prog_data->uses_sample_mask) {
3313 /* TODO: conservative rasterization */
3314 if (wm_prog_data->post_depth_coverage)
3315 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
3316 else
3317 psx.InputCoverageMaskState = ICMS_NORMAL;
3318 }
3319
3320 psx.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
3321 psx.PixelShaderPullsBary = wm_prog_data->pulls_bary;
3322 psx.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
3323
3324 // XXX: UAV bit
3325 }
3326 }
3327
3328 /**
3329 * Compute the size of the derived data (shader command packets).
3330 *
3331 * This must match the data written by the iris_store_xs_state() functions.
3332 */
3333 static void
3334 iris_store_cs_state(struct iris_context *ice,
3335 const struct gen_device_info *devinfo,
3336 struct iris_compiled_shader *shader)
3337 {
3338 struct brw_stage_prog_data *prog_data = shader->prog_data;
3339 struct brw_cs_prog_data *cs_prog_data = (void *) shader->prog_data;
3340 void *map = shader->derived_data;
3341
3342 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), map, desc) {
3343 desc.KernelStartPointer = KSP(shader);
3344 desc.ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs;
3345 desc.NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads;
3346 desc.SharedLocalMemorySize =
3347 encode_slm_size(GEN_GEN, prog_data->total_shared);
3348 desc.BarrierEnable = cs_prog_data->uses_barrier;
3349 desc.CrossThreadConstantDataReadLength =
3350 cs_prog_data->push.cross_thread.regs;
3351 }
3352 }
3353
3354 static unsigned
3355 iris_derived_program_state_size(enum iris_program_cache_id cache_id)
3356 {
3357 assert(cache_id <= IRIS_CACHE_BLORP);
3358
3359 static const unsigned dwords[] = {
3360 [IRIS_CACHE_VS] = GENX(3DSTATE_VS_length),
3361 [IRIS_CACHE_TCS] = GENX(3DSTATE_HS_length),
3362 [IRIS_CACHE_TES] = GENX(3DSTATE_TE_length) + GENX(3DSTATE_DS_length),
3363 [IRIS_CACHE_GS] = GENX(3DSTATE_GS_length),
3364 [IRIS_CACHE_FS] =
3365 GENX(3DSTATE_PS_length) + GENX(3DSTATE_PS_EXTRA_length),
3366 [IRIS_CACHE_CS] = GENX(INTERFACE_DESCRIPTOR_DATA_length),
3367 [IRIS_CACHE_BLORP] = 0,
3368 };
3369
3370 return sizeof(uint32_t) * dwords[cache_id];
3371 }
3372
3373 /**
3374 * Create any state packets corresponding to the given shader stage
3375 * (i.e. 3DSTATE_VS) and save them as "derived data" in the shader variant.
3376 * This means that we can look up a program in the in-memory cache and
3377 * get most of the state packet without having to reconstruct it.
3378 */
3379 static void
3380 iris_store_derived_program_state(struct iris_context *ice,
3381 enum iris_program_cache_id cache_id,
3382 struct iris_compiled_shader *shader)
3383 {
3384 struct iris_screen *screen = (void *) ice->ctx.screen;
3385 const struct gen_device_info *devinfo = &screen->devinfo;
3386
3387 switch (cache_id) {
3388 case IRIS_CACHE_VS:
3389 iris_store_vs_state(ice, devinfo, shader);
3390 break;
3391 case IRIS_CACHE_TCS:
3392 iris_store_tcs_state(ice, devinfo, shader);
3393 break;
3394 case IRIS_CACHE_TES:
3395 iris_store_tes_state(ice, devinfo, shader);
3396 break;
3397 case IRIS_CACHE_GS:
3398 iris_store_gs_state(ice, devinfo, shader);
3399 break;
3400 case IRIS_CACHE_FS:
3401 iris_store_fs_state(ice, devinfo, shader);
3402 break;
3403 case IRIS_CACHE_CS:
3404 iris_store_cs_state(ice, devinfo, shader);
3405 case IRIS_CACHE_BLORP:
3406 break;
3407 default:
3408 break;
3409 }
3410 }
3411
3412 /* ------------------------------------------------------------------- */
3413
3414 /**
3415 * Configure the URB.
3416 *
3417 * XXX: write a real comment.
3418 */
3419 static void
3420 iris_upload_urb_config(struct iris_context *ice, struct iris_batch *batch)
3421 {
3422 const struct gen_device_info *devinfo = &batch->screen->devinfo;
3423 const unsigned push_size_kB = 32;
3424 unsigned entries[4];
3425 unsigned start[4];
3426 unsigned size[4];
3427
3428 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
3429 if (!ice->shaders.prog[i]) {
3430 size[i] = 1;
3431 } else {
3432 struct brw_vue_prog_data *vue_prog_data =
3433 (void *) ice->shaders.prog[i]->prog_data;
3434 size[i] = vue_prog_data->urb_entry_size;
3435 }
3436 assert(size[i] != 0);
3437 }
3438
3439 gen_get_urb_config(devinfo, 1024 * push_size_kB,
3440 1024 * ice->shaders.urb_size,
3441 ice->shaders.prog[MESA_SHADER_TESS_EVAL] != NULL,
3442 ice->shaders.prog[MESA_SHADER_GEOMETRY] != NULL,
3443 size, entries, start);
3444
3445 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
3446 iris_emit_cmd(batch, GENX(3DSTATE_URB_VS), urb) {
3447 urb._3DCommandSubOpcode += i;
3448 urb.VSURBStartingAddress = start[i];
3449 urb.VSURBEntryAllocationSize = size[i] - 1;
3450 urb.VSNumberofURBEntries = entries[i];
3451 }
3452 }
3453 }
3454
3455 static const uint32_t push_constant_opcodes[] = {
3456 [MESA_SHADER_VERTEX] = 21,
3457 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
3458 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
3459 [MESA_SHADER_GEOMETRY] = 22,
3460 [MESA_SHADER_FRAGMENT] = 23,
3461 [MESA_SHADER_COMPUTE] = 0,
3462 };
3463
3464 static uint32_t
3465 use_null_surface(struct iris_batch *batch, struct iris_context *ice)
3466 {
3467 struct iris_bo *state_bo = iris_resource_bo(ice->state.unbound_tex.res);
3468
3469 iris_use_pinned_bo(batch, state_bo, false);
3470
3471 return ice->state.unbound_tex.offset;
3472 }
3473
3474 static uint32_t
3475 use_null_fb_surface(struct iris_batch *batch, struct iris_context *ice)
3476 {
3477 /* If set_framebuffer_state() was never called, fall back to 1x1x1 */
3478 if (!ice->state.null_fb.res)
3479 return use_null_surface(batch, ice);
3480
3481 struct iris_bo *state_bo = iris_resource_bo(ice->state.null_fb.res);
3482
3483 iris_use_pinned_bo(batch, state_bo, false);
3484
3485 return ice->state.null_fb.offset;
3486 }
3487
3488 /**
3489 * Add a surface to the validation list, as well as the buffer containing
3490 * the corresponding SURFACE_STATE.
3491 *
3492 * Returns the binding table entry (offset to SURFACE_STATE).
3493 */
3494 static uint32_t
3495 use_surface(struct iris_batch *batch,
3496 struct pipe_surface *p_surf,
3497 bool writeable)
3498 {
3499 struct iris_surface *surf = (void *) p_surf;
3500
3501 iris_use_pinned_bo(batch, iris_resource_bo(p_surf->texture), writeable);
3502 iris_use_pinned_bo(batch, iris_resource_bo(surf->surface_state.res), false);
3503
3504 return surf->surface_state.offset;
3505 }
3506
3507 static uint32_t
3508 use_sampler_view(struct iris_batch *batch, struct iris_sampler_view *isv)
3509 {
3510 iris_use_pinned_bo(batch, isv->res->bo, false);
3511 iris_use_pinned_bo(batch, iris_resource_bo(isv->surface_state.res), false);
3512
3513 return isv->surface_state.offset;
3514 }
3515
3516 static uint32_t
3517 use_const_buffer(struct iris_batch *batch,
3518 struct iris_context *ice,
3519 struct iris_const_buffer *cbuf)
3520 {
3521 if (!cbuf->surface_state.res)
3522 return use_null_surface(batch, ice);
3523
3524 iris_use_pinned_bo(batch, iris_resource_bo(cbuf->data.res), false);
3525 iris_use_pinned_bo(batch, iris_resource_bo(cbuf->surface_state.res), false);
3526
3527 return cbuf->surface_state.offset;
3528 }
3529
3530 static uint32_t
3531 use_ssbo(struct iris_batch *batch, struct iris_context *ice,
3532 struct iris_shader_state *shs, int i)
3533 {
3534 if (!shs->ssbo[i])
3535 return use_null_surface(batch, ice);
3536
3537 struct iris_state_ref *surf_state = &shs->ssbo_surface_state[i];
3538
3539 iris_use_pinned_bo(batch, iris_resource_bo(shs->ssbo[i]), true);
3540 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false);
3541
3542 return surf_state->offset;
3543 }
3544
3545 static uint32_t
3546 use_image(struct iris_batch *batch, struct iris_context *ice,
3547 struct iris_shader_state *shs, int i)
3548 {
3549 if (!shs->image[i].res)
3550 return use_null_surface(batch, ice);
3551
3552 struct iris_state_ref *surf_state = &shs->image[i].surface_state;
3553
3554 iris_use_pinned_bo(batch, iris_resource_bo(shs->image[i].res),
3555 shs->image[i].access & PIPE_IMAGE_ACCESS_WRITE);
3556 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false);
3557
3558 return surf_state->offset;
3559 }
3560
3561 #define push_bt_entry(addr) \
3562 assert(addr >= binder_addr); \
3563 assert(s < prog_data->binding_table.size_bytes / sizeof(uint32_t)); \
3564 if (!pin_only) bt_map[s++] = (addr) - binder_addr;
3565
3566 #define bt_assert(section, exists) \
3567 if (!pin_only) assert(prog_data->binding_table.section == \
3568 (exists) ? s : 0xd0d0d0d0)
3569
3570 /**
3571 * Populate the binding table for a given shader stage.
3572 *
3573 * This fills out the table of pointers to surfaces required by the shader,
3574 * and also adds those buffers to the validation list so the kernel can make
3575 * resident before running our batch.
3576 */
3577 static void
3578 iris_populate_binding_table(struct iris_context *ice,
3579 struct iris_batch *batch,
3580 gl_shader_stage stage,
3581 bool pin_only)
3582 {
3583 const struct iris_binder *binder = &ice->state.binder;
3584 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3585 if (!shader)
3586 return;
3587
3588 UNUSED struct brw_stage_prog_data *prog_data = shader->prog_data;
3589 struct iris_shader_state *shs = &ice->state.shaders[stage];
3590 uint32_t binder_addr = binder->bo->gtt_offset;
3591
3592 //struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
3593 uint32_t *bt_map = binder->map + binder->bt_offset[stage];
3594 int s = 0;
3595
3596 const struct shader_info *info = iris_get_shader_info(ice, stage);
3597 if (!info) {
3598 /* TCS passthrough doesn't need a binding table. */
3599 assert(stage == MESA_SHADER_TESS_CTRL);
3600 return;
3601 }
3602
3603 if (stage == MESA_SHADER_COMPUTE) {
3604 /* surface for gl_NumWorkGroups */
3605 struct iris_state_ref *grid_data = &ice->state.grid_size;
3606 struct iris_state_ref *grid_state = &ice->state.grid_surf_state;
3607 iris_use_pinned_bo(batch, iris_resource_bo(grid_data->res), false);
3608 iris_use_pinned_bo(batch, iris_resource_bo(grid_state->res), false);
3609 push_bt_entry(grid_state->offset);
3610 }
3611
3612 if (stage == MESA_SHADER_FRAGMENT) {
3613 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
3614 /* Note that cso_fb->nr_cbufs == fs_key->nr_color_regions. */
3615 if (cso_fb->nr_cbufs) {
3616 for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
3617 uint32_t addr =
3618 cso_fb->cbufs[i] ? use_surface(batch, cso_fb->cbufs[i], true)
3619 : use_null_fb_surface(batch, ice);
3620 push_bt_entry(addr);
3621 }
3622 } else {
3623 uint32_t addr = use_null_fb_surface(batch, ice);
3624 push_bt_entry(addr);
3625 }
3626 }
3627
3628 bt_assert(texture_start, info->num_textures > 0);
3629
3630 for (int i = 0; i < info->num_textures; i++) {
3631 struct iris_sampler_view *view = shs->textures[i];
3632 uint32_t addr = view ? use_sampler_view(batch, view)
3633 : use_null_surface(batch, ice);
3634 push_bt_entry(addr);
3635 }
3636
3637 bt_assert(image_start, info->num_images > 0);
3638
3639 for (int i = 0; i < info->num_images; i++) {
3640 uint32_t addr = use_image(batch, ice, shs, i);
3641 push_bt_entry(addr);
3642 }
3643
3644 const int num_ubos = iris_get_shader_num_ubos(ice, stage);
3645
3646 bt_assert(ubo_start, num_ubos > 0);
3647
3648 for (int i = 0; i < num_ubos; i++) {
3649 uint32_t addr = use_const_buffer(batch, ice, &shs->constbuf[i]);
3650 push_bt_entry(addr);
3651 }
3652
3653 bt_assert(ssbo_start, info->num_abos + info->num_ssbos > 0);
3654
3655 /* XXX: st is wasting 16 binding table slots for ABOs. Should add a cap
3656 * for changing nir_lower_atomics_to_ssbos setting and buffer_base offset
3657 * in st_atom_storagebuf.c so it'll compact them into one range, with
3658 * SSBOs starting at info->num_abos. Ideally it'd reset num_abos to 0 too
3659 */
3660 if (info->num_abos + info->num_ssbos > 0) {
3661 for (int i = 0; i < IRIS_MAX_ABOS + info->num_ssbos; i++) {
3662 uint32_t addr = use_ssbo(batch, ice, shs, i);
3663 push_bt_entry(addr);
3664 }
3665 }
3666
3667 #if 0
3668 // XXX: not implemented yet
3669 bt_assert(plane_start[1], ...);
3670 bt_assert(plane_start[2], ...);
3671 #endif
3672 }
3673
3674 static void
3675 iris_use_optional_res(struct iris_batch *batch,
3676 struct pipe_resource *res,
3677 bool writeable)
3678 {
3679 if (res) {
3680 struct iris_bo *bo = iris_resource_bo(res);
3681 iris_use_pinned_bo(batch, bo, writeable);
3682 }
3683 }
3684
3685 /* ------------------------------------------------------------------- */
3686
3687 /**
3688 * Pin any BOs which were installed by a previous batch, and restored
3689 * via the hardware logical context mechanism.
3690 *
3691 * We don't need to re-emit all state every batch - the hardware context
3692 * mechanism will save and restore it for us. This includes pointers to
3693 * various BOs...which won't exist unless we ask the kernel to pin them
3694 * by adding them to the validation list.
3695 *
3696 * We can skip buffers if we've re-emitted those packets, as we're
3697 * overwriting those stale pointers with new ones, and don't actually
3698 * refer to the old BOs.
3699 */
3700 static void
3701 iris_restore_render_saved_bos(struct iris_context *ice,
3702 struct iris_batch *batch,
3703 const struct pipe_draw_info *draw)
3704 {
3705 struct iris_genx_state *genx = ice->state.genx;
3706
3707 // XXX: whack IRIS_SHADER_DIRTY_BINDING_TABLE on new batch
3708
3709 const uint64_t clean = ~ice->state.dirty;
3710
3711 if (clean & IRIS_DIRTY_CC_VIEWPORT) {
3712 iris_use_optional_res(batch, ice->state.last_res.cc_vp, false);
3713 }
3714
3715 if (clean & IRIS_DIRTY_SF_CL_VIEWPORT) {
3716 iris_use_optional_res(batch, ice->state.last_res.sf_cl_vp, false);
3717 }
3718
3719 if (clean & IRIS_DIRTY_BLEND_STATE) {
3720 iris_use_optional_res(batch, ice->state.last_res.blend, false);
3721 }
3722
3723 if (clean & IRIS_DIRTY_COLOR_CALC_STATE) {
3724 iris_use_optional_res(batch, ice->state.last_res.color_calc, false);
3725 }
3726
3727 if (clean & IRIS_DIRTY_SCISSOR_RECT) {
3728 iris_use_optional_res(batch, ice->state.last_res.scissor, false);
3729 }
3730
3731 if (ice->state.streamout_active && (clean & IRIS_DIRTY_SO_BUFFERS)) {
3732 for (int i = 0; i < 4; i++) {
3733 struct iris_stream_output_target *tgt =
3734 (void *) ice->state.so_target[i];
3735 if (tgt) {
3736 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
3737 true);
3738 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
3739 true);
3740 }
3741 }
3742 }
3743
3744 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3745 if (!(clean & (IRIS_DIRTY_CONSTANTS_VS << stage)))
3746 continue;
3747
3748 struct iris_shader_state *shs = &ice->state.shaders[stage];
3749 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3750
3751 if (!shader)
3752 continue;
3753
3754 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
3755
3756 for (int i = 0; i < 4; i++) {
3757 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
3758
3759 if (range->length == 0)
3760 continue;
3761
3762 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
3763 struct iris_resource *res = (void *) cbuf->data.res;
3764
3765 if (res)
3766 iris_use_pinned_bo(batch, res->bo, false);
3767 else
3768 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
3769 }
3770 }
3771
3772 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3773 if (clean & (IRIS_DIRTY_BINDINGS_VS << stage)) {
3774 /* Re-pin any buffers referred to by the binding table. */
3775 iris_populate_binding_table(ice, batch, stage, true);
3776 }
3777 }
3778
3779 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3780 struct iris_shader_state *shs = &ice->state.shaders[stage];
3781 struct pipe_resource *res = shs->sampler_table.res;
3782 if (res)
3783 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
3784 }
3785
3786 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3787 if (clean & (IRIS_DIRTY_VS << stage)) {
3788 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3789 if (shader) {
3790 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
3791 iris_use_pinned_bo(batch, bo, false);
3792 }
3793
3794 // XXX: scratch buffer
3795 }
3796 }
3797
3798 if (clean & IRIS_DIRTY_DEPTH_BUFFER) {
3799 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
3800
3801 if (cso_fb->zsbuf) {
3802 struct iris_resource *zres, *sres;
3803 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
3804 &zres, &sres);
3805 // XXX: might not be writable...
3806 if (zres)
3807 iris_use_pinned_bo(batch, zres->bo, true);
3808 if (sres)
3809 iris_use_pinned_bo(batch, sres->bo, true);
3810 }
3811 }
3812
3813 if (draw->index_size == 0 && ice->state.last_res.index_buffer) {
3814 /* This draw didn't emit a new index buffer, so we are inheriting the
3815 * older index buffer. This draw didn't need it, but future ones may.
3816 */
3817 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
3818 iris_use_pinned_bo(batch, bo, false);
3819 }
3820
3821 if (clean & IRIS_DIRTY_VERTEX_BUFFERS) {
3822 uint64_t bound = ice->state.bound_vertex_buffers;
3823 while (bound) {
3824 const int i = u_bit_scan64(&bound);
3825 struct pipe_resource *res = genx->vertex_buffers[i].resource;
3826 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
3827 }
3828 }
3829 }
3830
3831 static void
3832 iris_restore_compute_saved_bos(struct iris_context *ice,
3833 struct iris_batch *batch,
3834 const struct pipe_grid_info *grid)
3835 {
3836 const uint64_t clean = ~ice->state.dirty;
3837
3838 const int stage = MESA_SHADER_COMPUTE;
3839 struct iris_shader_state *shs = &ice->state.shaders[stage];
3840
3841 if (clean & IRIS_DIRTY_CONSTANTS_CS) {
3842 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3843
3844 if (shader) {
3845 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
3846 const struct brw_ubo_range *range = &prog_data->ubo_ranges[0];
3847
3848 if (range->length > 0) {
3849 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
3850 struct iris_resource *res = (void *) cbuf->data.res;
3851
3852 if (res)
3853 iris_use_pinned_bo(batch, res->bo, false);
3854 else
3855 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
3856 }
3857 }
3858 }
3859
3860 if (clean & IRIS_DIRTY_BINDINGS_CS) {
3861 /* Re-pin any buffers referred to by the binding table. */
3862 iris_populate_binding_table(ice, batch, stage, true);
3863 }
3864
3865 struct pipe_resource *sampler_res = shs->sampler_table.res;
3866 if (sampler_res)
3867 iris_use_pinned_bo(batch, iris_resource_bo(sampler_res), false);
3868
3869 if (clean & IRIS_DIRTY_CS) {
3870 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3871 if (shader) {
3872 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
3873 iris_use_pinned_bo(batch, bo, false);
3874 }
3875
3876 // XXX: scratch buffer
3877 }
3878 }
3879
3880 /**
3881 * Possibly emit STATE_BASE_ADDRESS to update Surface State Base Address.
3882 */
3883 static void
3884 iris_update_surface_base_address(struct iris_batch *batch,
3885 struct iris_binder *binder)
3886 {
3887 if (batch->last_surface_base_address == binder->bo->gtt_offset)
3888 return;
3889
3890 flush_for_state_base_change(batch);
3891
3892 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
3893 // XXX: sba.SurfaceStateMemoryObjectControlState = MOCS_WB;
3894 sba.SurfaceStateBaseAddressModifyEnable = true;
3895 sba.SurfaceStateBaseAddress = ro_bo(binder->bo, 0);
3896 }
3897
3898 batch->last_surface_base_address = binder->bo->gtt_offset;
3899 }
3900
3901 static void
3902 iris_upload_dirty_render_state(struct iris_context *ice,
3903 struct iris_batch *batch,
3904 const struct pipe_draw_info *draw)
3905 {
3906 const uint64_t dirty = ice->state.dirty;
3907
3908 if (!(dirty & IRIS_ALL_DIRTY_FOR_RENDER))
3909 return;
3910
3911 struct iris_genx_state *genx = ice->state.genx;
3912 struct iris_binder *binder = &ice->state.binder;
3913 struct brw_wm_prog_data *wm_prog_data = (void *)
3914 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3915
3916 if (dirty & IRIS_DIRTY_CC_VIEWPORT) {
3917 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3918 uint32_t cc_vp_address;
3919
3920 /* XXX: could avoid streaming for depth_clip [0,1] case. */
3921 uint32_t *cc_vp_map =
3922 stream_state(batch, ice->state.dynamic_uploader,
3923 &ice->state.last_res.cc_vp,
3924 4 * ice->state.num_viewports *
3925 GENX(CC_VIEWPORT_length), 32, &cc_vp_address);
3926 for (int i = 0; i < ice->state.num_viewports; i++) {
3927 float zmin, zmax;
3928 util_viewport_zmin_zmax(&ice->state.viewports[i],
3929 cso_rast->clip_halfz, &zmin, &zmax);
3930 if (cso_rast->depth_clip_near)
3931 zmin = 0.0;
3932 if (cso_rast->depth_clip_far)
3933 zmax = 1.0;
3934
3935 iris_pack_state(GENX(CC_VIEWPORT), cc_vp_map, ccv) {
3936 ccv.MinimumDepth = zmin;
3937 ccv.MaximumDepth = zmax;
3938 }
3939
3940 cc_vp_map += GENX(CC_VIEWPORT_length);
3941 }
3942
3943 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
3944 ptr.CCViewportPointer = cc_vp_address;
3945 }
3946 }
3947
3948 if (dirty & IRIS_DIRTY_SF_CL_VIEWPORT) {
3949 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
3950 uint32_t sf_cl_vp_address;
3951 uint32_t *vp_map =
3952 stream_state(batch, ice->state.dynamic_uploader,
3953 &ice->state.last_res.sf_cl_vp,
3954 4 * ice->state.num_viewports *
3955 GENX(SF_CLIP_VIEWPORT_length), 64, &sf_cl_vp_address);
3956
3957 for (unsigned i = 0; i < ice->state.num_viewports; i++) {
3958 const struct pipe_viewport_state *state = &ice->state.viewports[i];
3959 float gb_xmin, gb_xmax, gb_ymin, gb_ymax;
3960
3961 float vp_xmin = viewport_extent(state, 0, -1.0f);
3962 float vp_xmax = viewport_extent(state, 0, 1.0f);
3963 float vp_ymin = viewport_extent(state, 1, -1.0f);
3964 float vp_ymax = viewport_extent(state, 1, 1.0f);
3965
3966 calculate_guardband_size(cso_fb->width, cso_fb->height,
3967 state->scale[0], state->scale[1],
3968 state->translate[0], state->translate[1],
3969 &gb_xmin, &gb_xmax, &gb_ymin, &gb_ymax);
3970
3971 iris_pack_state(GENX(SF_CLIP_VIEWPORT), vp_map, vp) {
3972 vp.ViewportMatrixElementm00 = state->scale[0];
3973 vp.ViewportMatrixElementm11 = state->scale[1];
3974 vp.ViewportMatrixElementm22 = state->scale[2];
3975 vp.ViewportMatrixElementm30 = state->translate[0];
3976 vp.ViewportMatrixElementm31 = state->translate[1];
3977 vp.ViewportMatrixElementm32 = state->translate[2];
3978 vp.XMinClipGuardband = gb_xmin;
3979 vp.XMaxClipGuardband = gb_xmax;
3980 vp.YMinClipGuardband = gb_ymin;
3981 vp.YMaxClipGuardband = gb_ymax;
3982 vp.XMinViewPort = MAX2(vp_xmin, 0);
3983 vp.XMaxViewPort = MIN2(vp_xmax, cso_fb->width) - 1;
3984 vp.YMinViewPort = MAX2(vp_ymin, 0);
3985 vp.YMaxViewPort = MIN2(vp_ymax, cso_fb->height) - 1;
3986 }
3987
3988 vp_map += GENX(SF_CLIP_VIEWPORT_length);
3989 }
3990
3991 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
3992 ptr.SFClipViewportPointer = sf_cl_vp_address;
3993 }
3994 }
3995
3996 /* XXX: L3 State */
3997
3998 // XXX: this is only flagged at setup, we assume a static configuration
3999 if (dirty & IRIS_DIRTY_URB) {
4000 iris_upload_urb_config(ice, batch);
4001 }
4002
4003 if (dirty & IRIS_DIRTY_BLEND_STATE) {
4004 struct iris_blend_state *cso_blend = ice->state.cso_blend;
4005 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4006 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
4007 const int header_dwords = GENX(BLEND_STATE_length);
4008 const int rt_dwords = cso_fb->nr_cbufs * GENX(BLEND_STATE_ENTRY_length);
4009 uint32_t blend_offset;
4010 uint32_t *blend_map =
4011 stream_state(batch, ice->state.dynamic_uploader,
4012 &ice->state.last_res.blend,
4013 4 * (header_dwords + rt_dwords), 64, &blend_offset);
4014
4015 uint32_t blend_state_header;
4016 iris_pack_state(GENX(BLEND_STATE), &blend_state_header, bs) {
4017 bs.AlphaTestEnable = cso_zsa->alpha.enabled;
4018 bs.AlphaTestFunction = translate_compare_func(cso_zsa->alpha.func);
4019 }
4020
4021 blend_map[0] = blend_state_header | cso_blend->blend_state[0];
4022 memcpy(&blend_map[1], &cso_blend->blend_state[1], 4 * rt_dwords);
4023
4024 iris_emit_cmd(batch, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
4025 ptr.BlendStatePointer = blend_offset;
4026 ptr.BlendStatePointerValid = true;
4027 }
4028 }
4029
4030 if (dirty & IRIS_DIRTY_COLOR_CALC_STATE) {
4031 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
4032 uint32_t cc_offset;
4033 void *cc_map =
4034 stream_state(batch, ice->state.dynamic_uploader,
4035 &ice->state.last_res.color_calc,
4036 sizeof(uint32_t) * GENX(COLOR_CALC_STATE_length),
4037 64, &cc_offset);
4038 iris_pack_state(GENX(COLOR_CALC_STATE), cc_map, cc) {
4039 cc.AlphaTestFormat = ALPHATEST_FLOAT32;
4040 cc.AlphaReferenceValueAsFLOAT32 = cso->alpha.ref_value;
4041 cc.BlendConstantColorRed = ice->state.blend_color.color[0];
4042 cc.BlendConstantColorGreen = ice->state.blend_color.color[1];
4043 cc.BlendConstantColorBlue = ice->state.blend_color.color[2];
4044 cc.BlendConstantColorAlpha = ice->state.blend_color.color[3];
4045 }
4046 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
4047 ptr.ColorCalcStatePointer = cc_offset;
4048 ptr.ColorCalcStatePointerValid = true;
4049 }
4050 }
4051
4052 /* Upload constants for TCS passthrough. */
4053 if ((dirty & IRIS_DIRTY_CONSTANTS_TCS) &&
4054 ice->shaders.prog[MESA_SHADER_TESS_CTRL] &&
4055 !ice->shaders.uncompiled[MESA_SHADER_TESS_CTRL]) {
4056 struct iris_compiled_shader *tes_shader = ice->shaders.prog[MESA_SHADER_TESS_EVAL];
4057 assert(tes_shader);
4058
4059 /* Passthrough always copies 2 vec4s, so when uploading data we ensure
4060 * it is in the right layout for TES.
4061 */
4062 float hdr[8] = {};
4063 struct brw_tes_prog_data *tes_prog_data = (void *) tes_shader->prog_data;
4064 switch (tes_prog_data->domain) {
4065 case BRW_TESS_DOMAIN_QUAD:
4066 for (int i = 0; i < 4; i++)
4067 hdr[7 - i] = ice->state.default_outer_level[i];
4068 hdr[3] = ice->state.default_inner_level[0];
4069 hdr[2] = ice->state.default_inner_level[1];
4070 break;
4071 case BRW_TESS_DOMAIN_TRI:
4072 for (int i = 0; i < 3; i++)
4073 hdr[7 - i] = ice->state.default_outer_level[i];
4074 hdr[4] = ice->state.default_inner_level[0];
4075 break;
4076 case BRW_TESS_DOMAIN_ISOLINE:
4077 hdr[7] = ice->state.default_outer_level[1];
4078 hdr[6] = ice->state.default_outer_level[0];
4079 break;
4080 }
4081
4082 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_TESS_CTRL];
4083 struct iris_const_buffer *cbuf = &shs->constbuf[0];
4084 u_upload_data(ice->ctx.const_uploader, 0, sizeof(hdr), 32,
4085 &hdr[0], &cbuf->data.offset,
4086 &cbuf->data.res);
4087 }
4088
4089 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4090 if (!(dirty & (IRIS_DIRTY_CONSTANTS_VS << stage)))
4091 continue;
4092
4093 struct iris_shader_state *shs = &ice->state.shaders[stage];
4094 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4095
4096 if (!shader)
4097 continue;
4098
4099 if (shs->cbuf0_needs_upload)
4100 upload_uniforms(ice, stage);
4101
4102 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4103
4104 iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_VS), pkt) {
4105 pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
4106 if (prog_data) {
4107 /* The Skylake PRM contains the following restriction:
4108 *
4109 * "The driver must ensure The following case does not occur
4110 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
4111 * buffer 3 read length equal to zero committed followed by a
4112 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
4113 * zero committed."
4114 *
4115 * To avoid this, we program the buffers in the highest slots.
4116 * This way, slot 0 is only used if slot 3 is also used.
4117 */
4118 int n = 3;
4119
4120 for (int i = 3; i >= 0; i--) {
4121 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4122
4123 if (range->length == 0)
4124 continue;
4125
4126 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
4127 struct iris_resource *res = (void *) cbuf->data.res;
4128
4129 assert(cbuf->data.offset % 32 == 0);
4130
4131 pkt.ConstantBody.ReadLength[n] = range->length;
4132 pkt.ConstantBody.Buffer[n] =
4133 res ? ro_bo(res->bo, range->start * 32 + cbuf->data.offset)
4134 : ro_bo(batch->screen->workaround_bo, 0);
4135 n--;
4136 }
4137 }
4138 }
4139 }
4140
4141 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4142 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4143 iris_emit_cmd(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), ptr) {
4144 ptr._3DCommandSubOpcode = 38 + stage;
4145 ptr.PointertoVSBindingTable = binder->bt_offset[stage];
4146 }
4147 }
4148 }
4149
4150 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4151 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4152 iris_populate_binding_table(ice, batch, stage, false);
4153 }
4154 }
4155
4156 if (ice->state.need_border_colors)
4157 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
4158
4159 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4160 if (!(dirty & (IRIS_DIRTY_SAMPLER_STATES_VS << stage)) ||
4161 !ice->shaders.prog[stage])
4162 continue;
4163
4164 struct iris_shader_state *shs = &ice->state.shaders[stage];
4165 struct pipe_resource *res = shs->sampler_table.res;
4166 if (res)
4167 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4168
4169 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
4170 ptr._3DCommandSubOpcode = 43 + stage;
4171 ptr.PointertoVSSamplerState = shs->sampler_table.offset;
4172 }
4173 }
4174
4175 if (dirty & IRIS_DIRTY_MULTISAMPLE) {
4176 iris_emit_cmd(batch, GENX(3DSTATE_MULTISAMPLE), ms) {
4177 ms.PixelLocation =
4178 ice->state.cso_rast->half_pixel_center ? CENTER : UL_CORNER;
4179 if (ice->state.framebuffer.samples > 0)
4180 ms.NumberofMultisamples = ffs(ice->state.framebuffer.samples) - 1;
4181 }
4182 }
4183
4184 if (dirty & IRIS_DIRTY_SAMPLE_MASK) {
4185 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_MASK), ms) {
4186 ms.SampleMask = MAX2(ice->state.sample_mask, 1);
4187 }
4188 }
4189
4190 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4191 if (!(dirty & (IRIS_DIRTY_VS << stage)))
4192 continue;
4193
4194 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4195
4196 if (shader) {
4197 struct iris_resource *cache = (void *) shader->assembly.res;
4198 iris_use_pinned_bo(batch, cache->bo, false);
4199 iris_batch_emit(batch, shader->derived_data,
4200 iris_derived_program_state_size(stage));
4201 } else {
4202 if (stage == MESA_SHADER_TESS_EVAL) {
4203 iris_emit_cmd(batch, GENX(3DSTATE_HS), hs);
4204 iris_emit_cmd(batch, GENX(3DSTATE_TE), te);
4205 iris_emit_cmd(batch, GENX(3DSTATE_DS), ds);
4206 } else if (stage == MESA_SHADER_GEOMETRY) {
4207 iris_emit_cmd(batch, GENX(3DSTATE_GS), gs);
4208 }
4209 }
4210 }
4211
4212 if (ice->state.streamout_active) {
4213 if (dirty & IRIS_DIRTY_SO_BUFFERS) {
4214 iris_batch_emit(batch, genx->so_buffers,
4215 4 * 4 * GENX(3DSTATE_SO_BUFFER_length));
4216 for (int i = 0; i < 4; i++) {
4217 struct iris_stream_output_target *tgt =
4218 (void *) ice->state.so_target[i];
4219 if (tgt) {
4220 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
4221 true);
4222 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
4223 true);
4224 }
4225 }
4226 }
4227
4228 if ((dirty & IRIS_DIRTY_SO_DECL_LIST) && ice->state.streamout) {
4229 uint32_t *decl_list =
4230 ice->state.streamout + GENX(3DSTATE_STREAMOUT_length);
4231 iris_batch_emit(batch, decl_list, 4 * ((decl_list[0] & 0xff) + 2));
4232 }
4233
4234 if (dirty & IRIS_DIRTY_STREAMOUT) {
4235 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4236
4237 uint32_t dynamic_sol[GENX(3DSTATE_STREAMOUT_length)];
4238 iris_pack_command(GENX(3DSTATE_STREAMOUT), dynamic_sol, sol) {
4239 sol.SOFunctionEnable = true;
4240 sol.SOStatisticsEnable = true;
4241
4242 sol.RenderingDisable = cso_rast->rasterizer_discard &&
4243 !ice->state.prims_generated_query_active;
4244 sol.ReorderMode = cso_rast->flatshade_first ? LEADING : TRAILING;
4245 }
4246
4247 assert(ice->state.streamout);
4248
4249 iris_emit_merge(batch, ice->state.streamout, dynamic_sol,
4250 GENX(3DSTATE_STREAMOUT_length));
4251 }
4252 } else {
4253 if (dirty & IRIS_DIRTY_STREAMOUT) {
4254 iris_emit_cmd(batch, GENX(3DSTATE_STREAMOUT), sol);
4255 }
4256 }
4257
4258 if (dirty & IRIS_DIRTY_CLIP) {
4259 struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4260 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4261
4262 uint32_t dynamic_clip[GENX(3DSTATE_CLIP_length)];
4263 iris_pack_command(GENX(3DSTATE_CLIP), &dynamic_clip, cl) {
4264 cl.StatisticsEnable = ice->state.statistics_counters_enabled;
4265 cl.ClipMode = cso_rast->rasterizer_discard ? CLIPMODE_REJECT_ALL
4266 : CLIPMODE_NORMAL;
4267 if (wm_prog_data->barycentric_interp_modes &
4268 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
4269 cl.NonPerspectiveBarycentricEnable = true;
4270
4271 cl.ForceZeroRTAIndexEnable = cso_fb->layers == 0;
4272 cl.MaximumVPIndex = ice->state.num_viewports - 1;
4273 }
4274 iris_emit_merge(batch, cso_rast->clip, dynamic_clip,
4275 ARRAY_SIZE(cso_rast->clip));
4276 }
4277
4278 if (dirty & IRIS_DIRTY_RASTER) {
4279 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4280 iris_batch_emit(batch, cso->raster, sizeof(cso->raster));
4281 iris_batch_emit(batch, cso->sf, sizeof(cso->sf));
4282
4283 }
4284
4285 /* XXX: FS program updates needs to flag IRIS_DIRTY_WM */
4286 if (dirty & IRIS_DIRTY_WM) {
4287 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4288 uint32_t dynamic_wm[GENX(3DSTATE_WM_length)];
4289
4290 iris_pack_command(GENX(3DSTATE_WM), &dynamic_wm, wm) {
4291 wm.StatisticsEnable = ice->state.statistics_counters_enabled;
4292
4293 wm.BarycentricInterpolationMode =
4294 wm_prog_data->barycentric_interp_modes;
4295
4296 if (wm_prog_data->early_fragment_tests)
4297 wm.EarlyDepthStencilControl = EDSC_PREPS;
4298 else if (wm_prog_data->has_side_effects)
4299 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
4300 }
4301 iris_emit_merge(batch, cso->wm, dynamic_wm, ARRAY_SIZE(cso->wm));
4302 }
4303
4304 if (dirty & IRIS_DIRTY_SBE) {
4305 iris_emit_sbe(batch, ice);
4306 }
4307
4308 if (dirty & IRIS_DIRTY_PS_BLEND) {
4309 struct iris_blend_state *cso_blend = ice->state.cso_blend;
4310 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
4311 uint32_t dynamic_pb[GENX(3DSTATE_PS_BLEND_length)];
4312 iris_pack_command(GENX(3DSTATE_PS_BLEND), &dynamic_pb, pb) {
4313 pb.HasWriteableRT = true; // XXX: comes from somewhere :(
4314 pb.AlphaTestEnable = cso_zsa->alpha.enabled;
4315 }
4316
4317 iris_emit_merge(batch, cso_blend->ps_blend, dynamic_pb,
4318 ARRAY_SIZE(cso_blend->ps_blend));
4319 }
4320
4321 if (dirty & IRIS_DIRTY_WM_DEPTH_STENCIL) {
4322 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
4323 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
4324
4325 uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
4326 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
4327 wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
4328 wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
4329 }
4330 iris_emit_merge(batch, cso->wmds, stencil_refs, ARRAY_SIZE(cso->wmds));
4331 }
4332
4333 if (dirty & IRIS_DIRTY_SCISSOR_RECT) {
4334 uint32_t scissor_offset =
4335 emit_state(batch, ice->state.dynamic_uploader,
4336 &ice->state.last_res.scissor,
4337 ice->state.scissors,
4338 sizeof(struct pipe_scissor_state) *
4339 ice->state.num_viewports, 32);
4340
4341 iris_emit_cmd(batch, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
4342 ptr.ScissorRectPointer = scissor_offset;
4343 }
4344 }
4345
4346 if (dirty & IRIS_DIRTY_DEPTH_BUFFER) {
4347 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4348 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
4349
4350 iris_batch_emit(batch, cso_z->packets, sizeof(cso_z->packets));
4351
4352 if (cso_fb->zsbuf) {
4353 struct iris_resource *zres, *sres;
4354 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
4355 &zres, &sres);
4356 // XXX: might not be writable...
4357 if (zres)
4358 iris_use_pinned_bo(batch, zres->bo, true);
4359 if (sres)
4360 iris_use_pinned_bo(batch, sres->bo, true);
4361 }
4362 }
4363
4364 if (dirty & IRIS_DIRTY_POLYGON_STIPPLE) {
4365 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
4366 for (int i = 0; i < 32; i++) {
4367 poly.PatternRow[i] = ice->state.poly_stipple.stipple[i];
4368 }
4369 }
4370 }
4371
4372 if (dirty & IRIS_DIRTY_LINE_STIPPLE) {
4373 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4374 iris_batch_emit(batch, cso->line_stipple, sizeof(cso->line_stipple));
4375 }
4376
4377 if (dirty & IRIS_DIRTY_VF_TOPOLOGY) {
4378 iris_emit_cmd(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
4379 topo.PrimitiveTopologyType =
4380 translate_prim_type(draw->mode, draw->vertices_per_patch);
4381 }
4382 }
4383
4384 if (dirty & IRIS_DIRTY_VERTEX_BUFFERS) {
4385 int count = util_bitcount64(ice->state.bound_vertex_buffers);
4386
4387 if (count) {
4388 /* The VF cache designers cut corners, and made the cache key's
4389 * <VertexBufferIndex, Memory Address> tuple only consider the bottom
4390 * 32 bits of the address. If you have two vertex buffers which get
4391 * placed exactly 4 GiB apart and use them in back-to-back draw calls,
4392 * you can get collisions (even within a single batch).
4393 *
4394 * So, we need to do a VF cache invalidate if the buffer for a VB
4395 * slot slot changes [48:32] address bits from the previous time.
4396 */
4397 unsigned flush_flags = 0;
4398
4399 uint64_t bound = ice->state.bound_vertex_buffers;
4400 while (bound) {
4401 const int i = u_bit_scan64(&bound);
4402 uint16_t high_bits = 0;
4403
4404 struct iris_resource *res =
4405 (void *) genx->vertex_buffers[i].resource;
4406 if (res) {
4407 iris_use_pinned_bo(batch, res->bo, false);
4408
4409 high_bits = res->bo->gtt_offset >> 32ull;
4410 if (high_bits != ice->state.last_vbo_high_bits[i]) {
4411 flush_flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
4412 ice->state.last_vbo_high_bits[i] = high_bits;
4413 }
4414
4415 /* If the buffer was written to by streamout, we may need
4416 * to stall so those writes land and become visible to the
4417 * vertex fetcher.
4418 *
4419 * TODO: This may stall more than necessary.
4420 */
4421 if (res->bind_history & PIPE_BIND_STREAM_OUTPUT)
4422 flush_flags |= PIPE_CONTROL_CS_STALL;
4423 }
4424 }
4425
4426 if (flush_flags)
4427 iris_emit_pipe_control_flush(batch, flush_flags);
4428
4429 const unsigned vb_dwords = GENX(VERTEX_BUFFER_STATE_length);
4430
4431 uint32_t *map =
4432 iris_get_command_space(batch, 4 * (1 + vb_dwords * count));
4433 _iris_pack_command(batch, GENX(3DSTATE_VERTEX_BUFFERS), map, vb) {
4434 vb.DWordLength = (vb_dwords * count + 1) - 2;
4435 }
4436 map += 1;
4437
4438 bound = ice->state.bound_vertex_buffers;
4439 while (bound) {
4440 const int i = u_bit_scan64(&bound);
4441 memcpy(map, genx->vertex_buffers[i].state,
4442 sizeof(uint32_t) * vb_dwords);
4443 map += vb_dwords;
4444 }
4445 }
4446 }
4447
4448 if (dirty & IRIS_DIRTY_VERTEX_ELEMENTS) {
4449 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
4450 const unsigned entries = MAX2(cso->count, 1);
4451 iris_batch_emit(batch, cso->vertex_elements, sizeof(uint32_t) *
4452 (1 + entries * GENX(VERTEX_ELEMENT_STATE_length)));
4453 iris_batch_emit(batch, cso->vf_instancing, sizeof(uint32_t) *
4454 entries * GENX(3DSTATE_VF_INSTANCING_length));
4455 }
4456
4457 if (dirty & IRIS_DIRTY_VF_SGVS) {
4458 const struct brw_vs_prog_data *vs_prog_data = (void *)
4459 ice->shaders.prog[MESA_SHADER_VERTEX]->prog_data;
4460 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
4461
4462 iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS), sgv) {
4463 if (vs_prog_data->uses_vertexid) {
4464 sgv.VertexIDEnable = true;
4465 sgv.VertexIDComponentNumber = 2;
4466 sgv.VertexIDElementOffset = cso->count;
4467 }
4468
4469 if (vs_prog_data->uses_instanceid) {
4470 sgv.InstanceIDEnable = true;
4471 sgv.InstanceIDComponentNumber = 3;
4472 sgv.InstanceIDElementOffset = cso->count;
4473 }
4474 }
4475 }
4476
4477 if (dirty & IRIS_DIRTY_VF) {
4478 iris_emit_cmd(batch, GENX(3DSTATE_VF), vf) {
4479 if (draw->primitive_restart) {
4480 vf.IndexedDrawCutIndexEnable = true;
4481 vf.CutIndex = draw->restart_index;
4482 }
4483 }
4484 }
4485
4486 // XXX: Gen8 - PMA fix
4487 }
4488
4489 static void
4490 iris_upload_render_state(struct iris_context *ice,
4491 struct iris_batch *batch,
4492 const struct pipe_draw_info *draw)
4493 {
4494 /* Always pin the binder. If we're emitting new binding table pointers,
4495 * we need it. If not, we're probably inheriting old tables via the
4496 * context, and need it anyway. Since true zero-bindings cases are
4497 * practically non-existent, just pin it and avoid last_res tracking.
4498 */
4499 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
4500
4501 if (!batch->contains_draw) {
4502 iris_restore_render_saved_bos(ice, batch, draw);
4503 batch->contains_draw = true;
4504 }
4505
4506 iris_upload_dirty_render_state(ice, batch, draw);
4507
4508 if (draw->index_size > 0) {
4509 unsigned offset;
4510
4511 if (draw->has_user_indices) {
4512 u_upload_data(ice->ctx.stream_uploader, 0,
4513 draw->count * draw->index_size, 4, draw->index.user,
4514 &offset, &ice->state.last_res.index_buffer);
4515 } else {
4516 struct iris_resource *res = (void *) draw->index.resource;
4517 res->bind_history |= PIPE_BIND_INDEX_BUFFER;
4518
4519 pipe_resource_reference(&ice->state.last_res.index_buffer,
4520 draw->index.resource);
4521 offset = 0;
4522 }
4523
4524 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
4525
4526 iris_emit_cmd(batch, GENX(3DSTATE_INDEX_BUFFER), ib) {
4527 ib.IndexFormat = draw->index_size >> 1;
4528 ib.MOCS = MOCS_WB;
4529 ib.BufferSize = bo->size;
4530 ib.BufferStartingAddress = ro_bo(bo, offset);
4531 }
4532
4533 /* The VF cache key only uses 32-bits, see vertex buffer comment above */
4534 uint16_t high_bits = bo->gtt_offset >> 32ull;
4535 if (high_bits != ice->state.last_index_bo_high_bits) {
4536 iris_emit_pipe_control_flush(batch, PIPE_CONTROL_VF_CACHE_INVALIDATE);
4537 ice->state.last_index_bo_high_bits = high_bits;
4538 }
4539 }
4540
4541 #define _3DPRIM_END_OFFSET 0x2420
4542 #define _3DPRIM_START_VERTEX 0x2430
4543 #define _3DPRIM_VERTEX_COUNT 0x2434
4544 #define _3DPRIM_INSTANCE_COUNT 0x2438
4545 #define _3DPRIM_START_INSTANCE 0x243C
4546 #define _3DPRIM_BASE_VERTEX 0x2440
4547
4548 if (draw->indirect) {
4549 /* We don't support this MultidrawIndirect. */
4550 assert(!draw->indirect->indirect_draw_count);
4551
4552 struct iris_bo *bo = iris_resource_bo(draw->indirect->buffer);
4553 assert(bo);
4554
4555 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4556 lrm.RegisterAddress = _3DPRIM_VERTEX_COUNT;
4557 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 0);
4558 }
4559 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4560 lrm.RegisterAddress = _3DPRIM_INSTANCE_COUNT;
4561 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 4);
4562 }
4563 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4564 lrm.RegisterAddress = _3DPRIM_START_VERTEX;
4565 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 8);
4566 }
4567 if (draw->index_size) {
4568 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4569 lrm.RegisterAddress = _3DPRIM_BASE_VERTEX;
4570 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
4571 }
4572 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4573 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
4574 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 16);
4575 }
4576 } else {
4577 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4578 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
4579 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
4580 }
4581 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
4582 lri.RegisterOffset = _3DPRIM_BASE_VERTEX;
4583 lri.DataDWord = 0;
4584 }
4585 }
4586 }
4587
4588 iris_emit_cmd(batch, GENX(3DPRIMITIVE), prim) {
4589 prim.StartInstanceLocation = draw->start_instance;
4590 prim.InstanceCount = draw->instance_count;
4591 prim.VertexCountPerInstance = draw->count;
4592 prim.VertexAccessType = draw->index_size > 0 ? RANDOM : SEQUENTIAL;
4593 prim.PredicateEnable =
4594 ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT;
4595
4596 // XXX: this is probably bonkers.
4597 prim.StartVertexLocation = draw->start;
4598
4599 prim.IndirectParameterEnable = draw->indirect != NULL;
4600
4601 if (draw->index_size) {
4602 prim.BaseVertexLocation += draw->index_bias;
4603 } else {
4604 prim.StartVertexLocation += draw->index_bias;
4605 }
4606
4607 //prim.BaseVertexLocation = ...;
4608 }
4609 }
4610
4611 static void
4612 iris_upload_compute_state(struct iris_context *ice,
4613 struct iris_batch *batch,
4614 const struct pipe_grid_info *grid)
4615 {
4616 const uint64_t dirty = ice->state.dirty;
4617 struct iris_screen *screen = batch->screen;
4618 const struct gen_device_info *devinfo = &screen->devinfo;
4619 struct iris_binder *binder = &ice->state.binder;
4620 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
4621 struct iris_compiled_shader *shader =
4622 ice->shaders.prog[MESA_SHADER_COMPUTE];
4623 struct brw_stage_prog_data *prog_data = shader->prog_data;
4624 struct brw_cs_prog_data *cs_prog_data = (void *) prog_data;
4625
4626 if ((dirty & IRIS_DIRTY_CONSTANTS_CS) && shs->cbuf0_needs_upload)
4627 upload_uniforms(ice, MESA_SHADER_COMPUTE);
4628
4629 if (dirty & IRIS_DIRTY_BINDINGS_CS)
4630 iris_populate_binding_table(ice, batch, MESA_SHADER_COMPUTE, false);
4631
4632 iris_use_optional_res(batch, shs->sampler_table.res, false);
4633 iris_use_pinned_bo(batch, iris_resource_bo(shader->assembly.res), false);
4634
4635 if (ice->state.need_border_colors)
4636 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
4637
4638 if (dirty & IRIS_DIRTY_CS) {
4639 /* The MEDIA_VFE_STATE documentation for Gen8+ says:
4640 *
4641 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
4642 * the only bits that are changed are scoreboard related: Scoreboard
4643 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard Delta. For
4644 * these scoreboard related states, a MEDIA_STATE_FLUSH is
4645 * sufficient."
4646 */
4647 iris_emit_pipe_control_flush(batch, PIPE_CONTROL_CS_STALL);
4648
4649 iris_emit_cmd(batch, GENX(MEDIA_VFE_STATE), vfe) {
4650 if (prog_data->total_scratch) {
4651 uint32_t scratch_addr =
4652 iris_get_scratch_space(ice, prog_data->total_scratch,
4653 MESA_SHADER_COMPUTE);
4654 vfe.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
4655 vfe.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr);
4656 }
4657
4658 vfe.MaximumNumberofThreads =
4659 devinfo->max_cs_threads * screen->subslice_total - 1;
4660 #if GEN_GEN < 11
4661 vfe.ResetGatewayTimer =
4662 Resettingrelativetimerandlatchingtheglobaltimestamp;
4663 #endif
4664
4665 vfe.NumberofURBEntries = 2;
4666 vfe.URBEntryAllocationSize = 2;
4667
4668 // XXX: Use Indirect Payload Storage?
4669 vfe.CURBEAllocationSize =
4670 ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
4671 cs_prog_data->push.cross_thread.regs, 2);
4672 }
4673 }
4674
4675 // XXX: hack iris_set_constant_buffers to upload these thread counts
4676 // XXX: along with regular uniforms for compute shaders, somehow.
4677
4678 uint32_t curbe_data_offset = 0;
4679 // TODO: Move subgroup-id into uniforms ubo so we can push uniforms
4680 assert(cs_prog_data->push.cross_thread.dwords == 0 &&
4681 cs_prog_data->push.per_thread.dwords == 1 &&
4682 cs_prog_data->base.param[0] == BRW_PARAM_BUILTIN_SUBGROUP_ID);
4683 struct pipe_resource *curbe_data_res = NULL;
4684 uint32_t *curbe_data_map =
4685 stream_state(batch, ice->state.dynamic_uploader, &curbe_data_res,
4686 ALIGN(cs_prog_data->push.total.size, 64), 64,
4687 &curbe_data_offset);
4688 assert(curbe_data_map);
4689 memset(curbe_data_map, 0x5a, ALIGN(cs_prog_data->push.total.size, 64));
4690 iris_fill_cs_push_const_buffer(cs_prog_data, curbe_data_map);
4691
4692 if (dirty & IRIS_DIRTY_CONSTANTS_CS) {
4693 iris_emit_cmd(batch, GENX(MEDIA_CURBE_LOAD), curbe) {
4694 curbe.CURBETotalDataLength =
4695 ALIGN(cs_prog_data->push.total.size, 64);
4696 curbe.CURBEDataStartAddress = curbe_data_offset;
4697 }
4698 }
4699
4700 if (dirty & (IRIS_DIRTY_SAMPLER_STATES_CS |
4701 IRIS_DIRTY_BINDINGS_CS |
4702 IRIS_DIRTY_CONSTANTS_CS |
4703 IRIS_DIRTY_CS)) {
4704 struct pipe_resource *desc_res = NULL;
4705 uint32_t desc[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
4706
4707 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), desc, idd) {
4708 idd.SamplerStatePointer = shs->sampler_table.offset;
4709 idd.BindingTablePointer = binder->bt_offset[MESA_SHADER_COMPUTE];
4710 }
4711
4712 for (int i = 0; i < GENX(INTERFACE_DESCRIPTOR_DATA_length); i++)
4713 desc[i] |= ((uint32_t *) shader->derived_data)[i];
4714
4715 iris_emit_cmd(batch, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
4716 load.InterfaceDescriptorTotalLength =
4717 GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
4718 load.InterfaceDescriptorDataStartAddress =
4719 emit_state(batch, ice->state.dynamic_uploader,
4720 &desc_res, desc, sizeof(desc), 32);
4721 }
4722
4723 pipe_resource_reference(&desc_res, NULL);
4724 }
4725
4726 uint32_t group_size = grid->block[0] * grid->block[1] * grid->block[2];
4727 uint32_t remainder = group_size & (cs_prog_data->simd_size - 1);
4728 uint32_t right_mask;
4729
4730 if (remainder > 0)
4731 right_mask = ~0u >> (32 - remainder);
4732 else
4733 right_mask = ~0u >> (32 - cs_prog_data->simd_size);
4734
4735 #define GPGPU_DISPATCHDIMX 0x2500
4736 #define GPGPU_DISPATCHDIMY 0x2504
4737 #define GPGPU_DISPATCHDIMZ 0x2508
4738
4739 if (grid->indirect) {
4740 struct iris_state_ref *grid_size = &ice->state.grid_size;
4741 struct iris_bo *bo = iris_resource_bo(grid_size->res);
4742 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4743 lrm.RegisterAddress = GPGPU_DISPATCHDIMX;
4744 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 0);
4745 }
4746 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4747 lrm.RegisterAddress = GPGPU_DISPATCHDIMY;
4748 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 4);
4749 }
4750 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4751 lrm.RegisterAddress = GPGPU_DISPATCHDIMZ;
4752 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 8);
4753 }
4754 }
4755
4756 iris_emit_cmd(batch, GENX(GPGPU_WALKER), ggw) {
4757 ggw.IndirectParameterEnable = grid->indirect != NULL;
4758 ggw.SIMDSize = cs_prog_data->simd_size / 16;
4759 ggw.ThreadDepthCounterMaximum = 0;
4760 ggw.ThreadHeightCounterMaximum = 0;
4761 ggw.ThreadWidthCounterMaximum = cs_prog_data->threads - 1;
4762 ggw.ThreadGroupIDXDimension = grid->grid[0];
4763 ggw.ThreadGroupIDYDimension = grid->grid[1];
4764 ggw.ThreadGroupIDZDimension = grid->grid[2];
4765 ggw.RightExecutionMask = right_mask;
4766 ggw.BottomExecutionMask = 0xffffffff;
4767 }
4768
4769 iris_emit_cmd(batch, GENX(MEDIA_STATE_FLUSH), msf);
4770
4771 if (!batch->contains_draw) {
4772 iris_restore_compute_saved_bos(ice, batch, grid);
4773 batch->contains_draw = true;
4774 }
4775 }
4776
4777 /**
4778 * State module teardown.
4779 */
4780 static void
4781 iris_destroy_state(struct iris_context *ice)
4782 {
4783 struct iris_genx_state *genx = ice->state.genx;
4784
4785 uint64_t bound_vbs = ice->state.bound_vertex_buffers;
4786 while (bound_vbs) {
4787 const int i = u_bit_scan64(&bound_vbs);
4788 pipe_resource_reference(&genx->vertex_buffers[i].resource, NULL);
4789 }
4790
4791 // XXX: unreference resources/surfaces.
4792 for (unsigned i = 0; i < ice->state.framebuffer.nr_cbufs; i++) {
4793 pipe_surface_reference(&ice->state.framebuffer.cbufs[i], NULL);
4794 }
4795 pipe_surface_reference(&ice->state.framebuffer.zsbuf, NULL);
4796
4797 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4798 struct iris_shader_state *shs = &ice->state.shaders[stage];
4799 pipe_resource_reference(&shs->sampler_table.res, NULL);
4800 }
4801 free(ice->state.genx);
4802
4803 pipe_resource_reference(&ice->state.unbound_tex.res, NULL);
4804
4805 pipe_resource_reference(&ice->state.last_res.cc_vp, NULL);
4806 pipe_resource_reference(&ice->state.last_res.sf_cl_vp, NULL);
4807 pipe_resource_reference(&ice->state.last_res.color_calc, NULL);
4808 pipe_resource_reference(&ice->state.last_res.scissor, NULL);
4809 pipe_resource_reference(&ice->state.last_res.blend, NULL);
4810 pipe_resource_reference(&ice->state.last_res.index_buffer, NULL);
4811 }
4812
4813 /* ------------------------------------------------------------------- */
4814
4815 static void
4816 iris_load_register_reg32(struct iris_batch *batch, uint32_t dst,
4817 uint32_t src)
4818 {
4819 _iris_emit_lrr(batch, dst, src);
4820 }
4821
4822 static void
4823 iris_load_register_reg64(struct iris_batch *batch, uint32_t dst,
4824 uint32_t src)
4825 {
4826 _iris_emit_lrr(batch, dst, src);
4827 _iris_emit_lrr(batch, dst + 4, src + 4);
4828 }
4829
4830 static void
4831 iris_load_register_imm32(struct iris_batch *batch, uint32_t reg,
4832 uint32_t val)
4833 {
4834 _iris_emit_lri(batch, reg, val);
4835 }
4836
4837 static void
4838 iris_load_register_imm64(struct iris_batch *batch, uint32_t reg,
4839 uint64_t val)
4840 {
4841 _iris_emit_lri(batch, reg + 0, val & 0xffffffff);
4842 _iris_emit_lri(batch, reg + 4, val >> 32);
4843 }
4844
4845 /**
4846 * Emit MI_LOAD_REGISTER_MEM to load a 32-bit MMIO register from a buffer.
4847 */
4848 static void
4849 iris_load_register_mem32(struct iris_batch *batch, uint32_t reg,
4850 struct iris_bo *bo, uint32_t offset)
4851 {
4852 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4853 lrm.RegisterAddress = reg;
4854 lrm.MemoryAddress = ro_bo(bo, offset);
4855 }
4856 }
4857
4858 /**
4859 * Load a 64-bit value from a buffer into a MMIO register via
4860 * two MI_LOAD_REGISTER_MEM commands.
4861 */
4862 static void
4863 iris_load_register_mem64(struct iris_batch *batch, uint32_t reg,
4864 struct iris_bo *bo, uint32_t offset)
4865 {
4866 iris_load_register_mem32(batch, reg + 0, bo, offset + 0);
4867 iris_load_register_mem32(batch, reg + 4, bo, offset + 4);
4868 }
4869
4870 static void
4871 iris_store_register_mem32(struct iris_batch *batch, uint32_t reg,
4872 struct iris_bo *bo, uint32_t offset,
4873 bool predicated)
4874 {
4875 iris_emit_cmd(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
4876 srm.RegisterAddress = reg;
4877 srm.MemoryAddress = rw_bo(bo, offset);
4878 srm.PredicateEnable = predicated;
4879 }
4880 }
4881
4882 static void
4883 iris_store_register_mem64(struct iris_batch *batch, uint32_t reg,
4884 struct iris_bo *bo, uint32_t offset,
4885 bool predicated)
4886 {
4887 iris_store_register_mem32(batch, reg + 0, bo, offset + 0, predicated);
4888 iris_store_register_mem32(batch, reg + 4, bo, offset + 4, predicated);
4889 }
4890
4891 static void
4892 iris_store_data_imm32(struct iris_batch *batch,
4893 struct iris_bo *bo, uint32_t offset,
4894 uint32_t imm)
4895 {
4896 iris_emit_cmd(batch, GENX(MI_STORE_DATA_IMM), sdi) {
4897 sdi.Address = rw_bo(bo, offset);
4898 sdi.ImmediateData = imm;
4899 }
4900 }
4901
4902 static void
4903 iris_store_data_imm64(struct iris_batch *batch,
4904 struct iris_bo *bo, uint32_t offset,
4905 uint64_t imm)
4906 {
4907 /* Can't use iris_emit_cmd because MI_STORE_DATA_IMM has a length of
4908 * 2 in genxml but it's actually variable length and we need 5 DWords.
4909 */
4910 void *map = iris_get_command_space(batch, 4 * 5);
4911 _iris_pack_command(batch, GENX(MI_STORE_DATA_IMM), map, sdi) {
4912 sdi.DWordLength = 5 - 2;
4913 sdi.Address = rw_bo(bo, offset);
4914 sdi.ImmediateData = imm;
4915 }
4916 }
4917
4918 static void
4919 iris_copy_mem_mem(struct iris_batch *batch,
4920 struct iris_bo *dst_bo, uint32_t dst_offset,
4921 struct iris_bo *src_bo, uint32_t src_offset,
4922 unsigned bytes)
4923 {
4924 /* MI_COPY_MEM_MEM operates on DWords. */
4925 assert(bytes % 4 == 0);
4926 assert(dst_offset % 4 == 0);
4927 assert(src_offset % 4 == 0);
4928
4929 for (unsigned i = 0; i < bytes; i += 4) {
4930 iris_emit_cmd(batch, GENX(MI_COPY_MEM_MEM), cp) {
4931 cp.DestinationMemoryAddress = rw_bo(dst_bo, dst_offset + i);
4932 cp.SourceMemoryAddress = ro_bo(src_bo, src_offset + i);
4933 }
4934 }
4935 }
4936
4937 /* ------------------------------------------------------------------- */
4938
4939 static unsigned
4940 flags_to_post_sync_op(uint32_t flags)
4941 {
4942 if (flags & PIPE_CONTROL_WRITE_IMMEDIATE)
4943 return WriteImmediateData;
4944
4945 if (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT)
4946 return WritePSDepthCount;
4947
4948 if (flags & PIPE_CONTROL_WRITE_TIMESTAMP)
4949 return WriteTimestamp;
4950
4951 return 0;
4952 }
4953
4954 /**
4955 * Do the given flags have a Post Sync or LRI Post Sync operation?
4956 */
4957 static enum pipe_control_flags
4958 get_post_sync_flags(enum pipe_control_flags flags)
4959 {
4960 flags &= PIPE_CONTROL_WRITE_IMMEDIATE |
4961 PIPE_CONTROL_WRITE_DEPTH_COUNT |
4962 PIPE_CONTROL_WRITE_TIMESTAMP |
4963 PIPE_CONTROL_LRI_POST_SYNC_OP;
4964
4965 /* Only one "Post Sync Op" is allowed, and it's mutually exclusive with
4966 * "LRI Post Sync Operation". So more than one bit set would be illegal.
4967 */
4968 assert(util_bitcount(flags) <= 1);
4969
4970 return flags;
4971 }
4972
4973 #define IS_COMPUTE_PIPELINE(batch) (batch->name == IRIS_BATCH_COMPUTE)
4974
4975 /**
4976 * Emit a series of PIPE_CONTROL commands, taking into account any
4977 * workarounds necessary to actually accomplish the caller's request.
4978 *
4979 * Unless otherwise noted, spec quotations in this function come from:
4980 *
4981 * Synchronization of the 3D Pipeline > PIPE_CONTROL Command > Programming
4982 * Restrictions for PIPE_CONTROL.
4983 *
4984 * You should not use this function directly. Use the helpers in
4985 * iris_pipe_control.c instead, which may split the pipe control further.
4986 */
4987 static void
4988 iris_emit_raw_pipe_control(struct iris_batch *batch, uint32_t flags,
4989 struct iris_bo *bo, uint32_t offset, uint64_t imm)
4990 {
4991 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
4992 enum pipe_control_flags post_sync_flags = get_post_sync_flags(flags);
4993 enum pipe_control_flags non_lri_post_sync_flags =
4994 post_sync_flags & ~PIPE_CONTROL_LRI_POST_SYNC_OP;
4995
4996 /* Recursive PIPE_CONTROL workarounds --------------------------------
4997 * (http://knowyourmeme.com/memes/xzibit-yo-dawg)
4998 *
4999 * We do these first because we want to look at the original operation,
5000 * rather than any workarounds we set.
5001 */
5002 if (GEN_GEN == 9 && (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE)) {
5003 /* The PIPE_CONTROL "VF Cache Invalidation Enable" bit description
5004 * lists several workarounds:
5005 *
5006 * "Project: SKL, KBL, BXT
5007 *
5008 * If the VF Cache Invalidation Enable is set to a 1 in a
5009 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields
5010 * sets to 0, with the VF Cache Invalidation Enable set to 0
5011 * needs to be sent prior to the PIPE_CONTROL with VF Cache
5012 * Invalidation Enable set to a 1."
5013 */
5014 iris_emit_raw_pipe_control(batch, 0, NULL, 0, 0);
5015 }
5016
5017 if (GEN_GEN == 9 && IS_COMPUTE_PIPELINE(batch) && post_sync_flags) {
5018 /* Project: SKL / Argument: LRI Post Sync Operation [23]
5019 *
5020 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
5021 * programmed prior to programming a PIPECONTROL command with "LRI
5022 * Post Sync Operation" in GPGPU mode of operation (i.e when
5023 * PIPELINE_SELECT command is set to GPGPU mode of operation)."
5024 *
5025 * The same text exists a few rows below for Post Sync Op.
5026 */
5027 iris_emit_raw_pipe_control(batch, PIPE_CONTROL_CS_STALL, bo, offset, imm);
5028 }
5029
5030 if (GEN_GEN == 10 && (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH)) {
5031 /* Cannonlake:
5032 * "Before sending a PIPE_CONTROL command with bit 12 set, SW must issue
5033 * another PIPE_CONTROL with Render Target Cache Flush Enable (bit 12)
5034 * = 0 and Pipe Control Flush Enable (bit 7) = 1"
5035 */
5036 iris_emit_raw_pipe_control(batch, PIPE_CONTROL_FLUSH_ENABLE, bo,
5037 offset, imm);
5038 }
5039
5040 /* "Flush Types" workarounds ---------------------------------------------
5041 * We do these now because they may add post-sync operations or CS stalls.
5042 */
5043
5044 if (GEN_GEN < 11 && flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) {
5045 /* Project: BDW, SKL+ (stopping at CNL) / Argument: VF Invalidate
5046 *
5047 * "'Post Sync Operation' must be enabled to 'Write Immediate Data' or
5048 * 'Write PS Depth Count' or 'Write Timestamp'."
5049 */
5050 if (!bo) {
5051 flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
5052 post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
5053 non_lri_post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
5054 bo = batch->screen->workaround_bo;
5055 }
5056 }
5057
5058 /* #1130 from Gen10 workarounds page:
5059 *
5060 * "Enable Depth Stall on every Post Sync Op if Render target Cache
5061 * Flush is not enabled in same PIPE CONTROL and Enable Pixel score
5062 * board stall if Render target cache flush is enabled."
5063 *
5064 * Applicable to CNL B0 and C0 steppings only.
5065 *
5066 * The wording here is unclear, and this workaround doesn't look anything
5067 * like the internal bug report recommendations, but leave it be for now...
5068 */
5069 if (GEN_GEN == 10) {
5070 if (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) {
5071 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
5072 } else if (flags & non_lri_post_sync_flags) {
5073 flags |= PIPE_CONTROL_DEPTH_STALL;
5074 }
5075 }
5076
5077 if (flags & PIPE_CONTROL_DEPTH_STALL) {
5078 /* From the PIPE_CONTROL instruction table, bit 13 (Depth Stall Enable):
5079 *
5080 * "This bit must be DISABLED for operations other than writing
5081 * PS_DEPTH_COUNT."
5082 *
5083 * This seems like nonsense. An Ivybridge workaround requires us to
5084 * emit a PIPE_CONTROL with a depth stall and write immediate post-sync
5085 * operation. Gen8+ requires us to emit depth stalls and depth cache
5086 * flushes together. So, it's hard to imagine this means anything other
5087 * than "we originally intended this to be used for PS_DEPTH_COUNT".
5088 *
5089 * We ignore the supposed restriction and do nothing.
5090 */
5091 }
5092
5093 if (flags & (PIPE_CONTROL_RENDER_TARGET_FLUSH |
5094 PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
5095 /* From the PIPE_CONTROL instruction table, bit 12 and bit 1:
5096 *
5097 * "This bit must be DISABLED for End-of-pipe (Read) fences,
5098 * PS_DEPTH_COUNT or TIMESTAMP queries."
5099 *
5100 * TODO: Implement end-of-pipe checking.
5101 */
5102 assert(!(post_sync_flags & (PIPE_CONTROL_WRITE_DEPTH_COUNT |
5103 PIPE_CONTROL_WRITE_TIMESTAMP)));
5104 }
5105
5106 if (GEN_GEN < 11 && (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
5107 /* From the PIPE_CONTROL instruction table, bit 1:
5108 *
5109 * "This bit is ignored if Depth Stall Enable is set.
5110 * Further, the render cache is not flushed even if Write Cache
5111 * Flush Enable bit is set."
5112 *
5113 * We assert that the caller doesn't do this combination, to try and
5114 * prevent mistakes. It shouldn't hurt the GPU, though.
5115 *
5116 * We skip this check on Gen11+ as the "Stall at Pixel Scoreboard"
5117 * and "Render Target Flush" combo is explicitly required for BTI
5118 * update workarounds.
5119 */
5120 assert(!(flags & (PIPE_CONTROL_DEPTH_STALL |
5121 PIPE_CONTROL_RENDER_TARGET_FLUSH)));
5122 }
5123
5124 /* PIPE_CONTROL page workarounds ------------------------------------- */
5125
5126 if (GEN_GEN <= 8 && (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE)) {
5127 /* From the PIPE_CONTROL page itself:
5128 *
5129 * "IVB, HSW, BDW
5130 * Restriction: Pipe_control with CS-stall bit set must be issued
5131 * before a pipe-control command that has the State Cache
5132 * Invalidate bit set."
5133 */
5134 flags |= PIPE_CONTROL_CS_STALL;
5135 }
5136
5137 if (flags & PIPE_CONTROL_FLUSH_LLC) {
5138 /* From the PIPE_CONTROL instruction table, bit 26 (Flush LLC):
5139 *
5140 * "Project: ALL
5141 * SW must always program Post-Sync Operation to "Write Immediate
5142 * Data" when Flush LLC is set."
5143 *
5144 * For now, we just require the caller to do it.
5145 */
5146 assert(flags & PIPE_CONTROL_WRITE_IMMEDIATE);
5147 }
5148
5149 /* "Post-Sync Operation" workarounds -------------------------------- */
5150
5151 /* Project: All / Argument: Global Snapshot Count Reset [19]
5152 *
5153 * "This bit must not be exercised on any product.
5154 * Requires stall bit ([20] of DW1) set."
5155 *
5156 * We don't use this, so we just assert that it isn't used. The
5157 * PIPE_CONTROL instruction page indicates that they intended this
5158 * as a debug feature and don't think it is useful in production,
5159 * but it may actually be usable, should we ever want to.
5160 */
5161 assert((flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) == 0);
5162
5163 if (flags & (PIPE_CONTROL_MEDIA_STATE_CLEAR |
5164 PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE)) {
5165 /* Project: All / Arguments:
5166 *
5167 * - Generic Media State Clear [16]
5168 * - Indirect State Pointers Disable [16]
5169 *
5170 * "Requires stall bit ([20] of DW1) set."
5171 *
5172 * Also, the PIPE_CONTROL instruction table, bit 16 (Generic Media
5173 * State Clear) says:
5174 *
5175 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
5176 * programmed prior to programming a PIPECONTROL command with "Media
5177 * State Clear" set in GPGPU mode of operation"
5178 *
5179 * This is a subset of the earlier rule, so there's nothing to do.
5180 */
5181 flags |= PIPE_CONTROL_CS_STALL;
5182 }
5183
5184 if (flags & PIPE_CONTROL_STORE_DATA_INDEX) {
5185 /* Project: All / Argument: Store Data Index
5186 *
5187 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
5188 * than '0'."
5189 *
5190 * For now, we just assert that the caller does this. We might want to
5191 * automatically add a write to the workaround BO...
5192 */
5193 assert(non_lri_post_sync_flags != 0);
5194 }
5195
5196 if (flags & PIPE_CONTROL_SYNC_GFDT) {
5197 /* Project: All / Argument: Sync GFDT
5198 *
5199 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
5200 * than '0' or 0x2520[13] must be set."
5201 *
5202 * For now, we just assert that the caller does this.
5203 */
5204 assert(non_lri_post_sync_flags != 0);
5205 }
5206
5207 if (flags & PIPE_CONTROL_TLB_INVALIDATE) {
5208 /* Project: IVB+ / Argument: TLB inv
5209 *
5210 * "Requires stall bit ([20] of DW1) set."
5211 *
5212 * Also, from the PIPE_CONTROL instruction table:
5213 *
5214 * "Project: SKL+
5215 * Post Sync Operation or CS stall must be set to ensure a TLB
5216 * invalidation occurs. Otherwise no cycle will occur to the TLB
5217 * cache to invalidate."
5218 *
5219 * This is not a subset of the earlier rule, so there's nothing to do.
5220 */
5221 flags |= PIPE_CONTROL_CS_STALL;
5222 }
5223
5224 if (GEN_GEN == 9 && devinfo->gt == 4) {
5225 /* TODO: The big Skylake GT4 post sync op workaround */
5226 }
5227
5228 /* "GPGPU specific workarounds" (both post-sync and flush) ------------ */
5229
5230 if (IS_COMPUTE_PIPELINE(batch)) {
5231 if (GEN_GEN >= 9 && (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE)) {
5232 /* Project: SKL+ / Argument: Tex Invalidate
5233 * "Requires stall bit ([20] of DW) set for all GPGPU Workloads."
5234 */
5235 flags |= PIPE_CONTROL_CS_STALL;
5236 }
5237
5238 if (GEN_GEN == 8 && (post_sync_flags ||
5239 (flags & (PIPE_CONTROL_NOTIFY_ENABLE |
5240 PIPE_CONTROL_DEPTH_STALL |
5241 PIPE_CONTROL_RENDER_TARGET_FLUSH |
5242 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
5243 PIPE_CONTROL_DATA_CACHE_FLUSH)))) {
5244 /* Project: BDW / Arguments:
5245 *
5246 * - LRI Post Sync Operation [23]
5247 * - Post Sync Op [15:14]
5248 * - Notify En [8]
5249 * - Depth Stall [13]
5250 * - Render Target Cache Flush [12]
5251 * - Depth Cache Flush [0]
5252 * - DC Flush Enable [5]
5253 *
5254 * "Requires stall bit ([20] of DW) set for all GPGPU and Media
5255 * Workloads."
5256 */
5257 flags |= PIPE_CONTROL_CS_STALL;
5258
5259 /* Also, from the PIPE_CONTROL instruction table, bit 20:
5260 *
5261 * "Project: BDW
5262 * This bit must be always set when PIPE_CONTROL command is
5263 * programmed by GPGPU and MEDIA workloads, except for the cases
5264 * when only Read Only Cache Invalidation bits are set (State
5265 * Cache Invalidation Enable, Instruction cache Invalidation
5266 * Enable, Texture Cache Invalidation Enable, Constant Cache
5267 * Invalidation Enable). This is to WA FFDOP CG issue, this WA
5268 * need not implemented when FF_DOP_CG is disable via "Fixed
5269 * Function DOP Clock Gate Disable" bit in RC_PSMI_CTRL register."
5270 *
5271 * It sounds like we could avoid CS stalls in some cases, but we
5272 * don't currently bother. This list isn't exactly the list above,
5273 * either...
5274 */
5275 }
5276 }
5277
5278 /* "Stall" workarounds ----------------------------------------------
5279 * These have to come after the earlier ones because we may have added
5280 * some additional CS stalls above.
5281 */
5282
5283 if (GEN_GEN < 9 && (flags & PIPE_CONTROL_CS_STALL)) {
5284 /* Project: PRE-SKL, VLV, CHV
5285 *
5286 * "[All Stepping][All SKUs]:
5287 *
5288 * One of the following must also be set:
5289 *
5290 * - Render Target Cache Flush Enable ([12] of DW1)
5291 * - Depth Cache Flush Enable ([0] of DW1)
5292 * - Stall at Pixel Scoreboard ([1] of DW1)
5293 * - Depth Stall ([13] of DW1)
5294 * - Post-Sync Operation ([13] of DW1)
5295 * - DC Flush Enable ([5] of DW1)"
5296 *
5297 * If we don't already have one of those bits set, we choose to add
5298 * "Stall at Pixel Scoreboard". Some of the other bits require a
5299 * CS stall as a workaround (see above), which would send us into
5300 * an infinite recursion of PIPE_CONTROLs. "Stall at Pixel Scoreboard"
5301 * appears to be safe, so we choose that.
5302 */
5303 const uint32_t wa_bits = PIPE_CONTROL_RENDER_TARGET_FLUSH |
5304 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
5305 PIPE_CONTROL_WRITE_IMMEDIATE |
5306 PIPE_CONTROL_WRITE_DEPTH_COUNT |
5307 PIPE_CONTROL_WRITE_TIMESTAMP |
5308 PIPE_CONTROL_STALL_AT_SCOREBOARD |
5309 PIPE_CONTROL_DEPTH_STALL |
5310 PIPE_CONTROL_DATA_CACHE_FLUSH;
5311 if (!(flags & wa_bits))
5312 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
5313 }
5314
5315 /* Emit --------------------------------------------------------------- */
5316
5317 iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
5318 pc.LRIPostSyncOperation = NoLRIOperation;
5319 pc.PipeControlFlushEnable = flags & PIPE_CONTROL_FLUSH_ENABLE;
5320 pc.DCFlushEnable = flags & PIPE_CONTROL_DATA_CACHE_FLUSH;
5321 pc.StoreDataIndex = 0;
5322 pc.CommandStreamerStallEnable = flags & PIPE_CONTROL_CS_STALL;
5323 pc.GlobalSnapshotCountReset =
5324 flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET;
5325 pc.TLBInvalidate = flags & PIPE_CONTROL_TLB_INVALIDATE;
5326 pc.GenericMediaStateClear = flags & PIPE_CONTROL_MEDIA_STATE_CLEAR;
5327 pc.StallAtPixelScoreboard = flags & PIPE_CONTROL_STALL_AT_SCOREBOARD;
5328 pc.RenderTargetCacheFlushEnable =
5329 flags & PIPE_CONTROL_RENDER_TARGET_FLUSH;
5330 pc.DepthCacheFlushEnable = flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH;
5331 pc.StateCacheInvalidationEnable =
5332 flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE;
5333 pc.VFCacheInvalidationEnable = flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
5334 pc.ConstantCacheInvalidationEnable =
5335 flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE;
5336 pc.PostSyncOperation = flags_to_post_sync_op(flags);
5337 pc.DepthStallEnable = flags & PIPE_CONTROL_DEPTH_STALL;
5338 pc.InstructionCacheInvalidateEnable =
5339 flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE;
5340 pc.NotifyEnable = flags & PIPE_CONTROL_NOTIFY_ENABLE;
5341 pc.IndirectStatePointersDisable =
5342 flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE;
5343 pc.TextureCacheInvalidationEnable =
5344 flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
5345 pc.Address = rw_bo(bo, offset);
5346 pc.ImmediateData = imm;
5347 }
5348 }
5349
5350 void
5351 genX(init_state)(struct iris_context *ice)
5352 {
5353 struct pipe_context *ctx = &ice->ctx;
5354 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
5355
5356 ctx->create_blend_state = iris_create_blend_state;
5357 ctx->create_depth_stencil_alpha_state = iris_create_zsa_state;
5358 ctx->create_rasterizer_state = iris_create_rasterizer_state;
5359 ctx->create_sampler_state = iris_create_sampler_state;
5360 ctx->create_sampler_view = iris_create_sampler_view;
5361 ctx->create_surface = iris_create_surface;
5362 ctx->create_vertex_elements_state = iris_create_vertex_elements;
5363 ctx->bind_blend_state = iris_bind_blend_state;
5364 ctx->bind_depth_stencil_alpha_state = iris_bind_zsa_state;
5365 ctx->bind_sampler_states = iris_bind_sampler_states;
5366 ctx->bind_rasterizer_state = iris_bind_rasterizer_state;
5367 ctx->bind_vertex_elements_state = iris_bind_vertex_elements_state;
5368 ctx->delete_blend_state = iris_delete_state;
5369 ctx->delete_depth_stencil_alpha_state = iris_delete_state;
5370 ctx->delete_rasterizer_state = iris_delete_state;
5371 ctx->delete_sampler_state = iris_delete_state;
5372 ctx->delete_vertex_elements_state = iris_delete_state;
5373 ctx->set_blend_color = iris_set_blend_color;
5374 ctx->set_clip_state = iris_set_clip_state;
5375 ctx->set_constant_buffer = iris_set_constant_buffer;
5376 ctx->set_shader_buffers = iris_set_shader_buffers;
5377 ctx->set_shader_images = iris_set_shader_images;
5378 ctx->set_sampler_views = iris_set_sampler_views;
5379 ctx->set_tess_state = iris_set_tess_state;
5380 ctx->set_framebuffer_state = iris_set_framebuffer_state;
5381 ctx->set_polygon_stipple = iris_set_polygon_stipple;
5382 ctx->set_sample_mask = iris_set_sample_mask;
5383 ctx->set_scissor_states = iris_set_scissor_states;
5384 ctx->set_stencil_ref = iris_set_stencil_ref;
5385 ctx->set_vertex_buffers = iris_set_vertex_buffers;
5386 ctx->set_viewport_states = iris_set_viewport_states;
5387 ctx->sampler_view_destroy = iris_sampler_view_destroy;
5388 ctx->surface_destroy = iris_surface_destroy;
5389 ctx->draw_vbo = iris_draw_vbo;
5390 ctx->launch_grid = iris_launch_grid;
5391 ctx->create_stream_output_target = iris_create_stream_output_target;
5392 ctx->stream_output_target_destroy = iris_stream_output_target_destroy;
5393 ctx->set_stream_output_targets = iris_set_stream_output_targets;
5394
5395 ice->vtbl.destroy_state = iris_destroy_state;
5396 ice->vtbl.init_render_context = iris_init_render_context;
5397 ice->vtbl.init_compute_context = iris_init_compute_context;
5398 ice->vtbl.upload_render_state = iris_upload_render_state;
5399 ice->vtbl.update_surface_base_address = iris_update_surface_base_address;
5400 ice->vtbl.upload_compute_state = iris_upload_compute_state;
5401 ice->vtbl.emit_raw_pipe_control = iris_emit_raw_pipe_control;
5402 ice->vtbl.load_register_reg32 = iris_load_register_reg32;
5403 ice->vtbl.load_register_reg64 = iris_load_register_reg64;
5404 ice->vtbl.load_register_imm32 = iris_load_register_imm32;
5405 ice->vtbl.load_register_imm64 = iris_load_register_imm64;
5406 ice->vtbl.load_register_mem32 = iris_load_register_mem32;
5407 ice->vtbl.load_register_mem64 = iris_load_register_mem64;
5408 ice->vtbl.store_register_mem32 = iris_store_register_mem32;
5409 ice->vtbl.store_register_mem64 = iris_store_register_mem64;
5410 ice->vtbl.store_data_imm32 = iris_store_data_imm32;
5411 ice->vtbl.store_data_imm64 = iris_store_data_imm64;
5412 ice->vtbl.copy_mem_mem = iris_copy_mem_mem;
5413 ice->vtbl.derived_program_state_size = iris_derived_program_state_size;
5414 ice->vtbl.store_derived_program_state = iris_store_derived_program_state;
5415 ice->vtbl.create_so_decl_list = iris_create_so_decl_list;
5416 ice->vtbl.populate_vs_key = iris_populate_vs_key;
5417 ice->vtbl.populate_tcs_key = iris_populate_tcs_key;
5418 ice->vtbl.populate_tes_key = iris_populate_tes_key;
5419 ice->vtbl.populate_gs_key = iris_populate_gs_key;
5420 ice->vtbl.populate_fs_key = iris_populate_fs_key;
5421 ice->vtbl.populate_cs_key = iris_populate_cs_key;
5422
5423 ice->state.dirty = ~0ull;
5424
5425 ice->state.statistics_counters_enabled = true;
5426
5427 ice->state.sample_mask = 0xffff;
5428 ice->state.num_viewports = 1;
5429 ice->state.genx = calloc(1, sizeof(struct iris_genx_state));
5430
5431 /* Make a 1x1x1 null surface for unbound textures */
5432 void *null_surf_map =
5433 upload_state(ice->state.surface_uploader, &ice->state.unbound_tex,
5434 4 * GENX(RENDER_SURFACE_STATE_length), 64);
5435 isl_null_fill_state(&screen->isl_dev, null_surf_map, isl_extent3d(1, 1, 1));
5436 ice->state.unbound_tex.offset +=
5437 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.unbound_tex.res));
5438
5439 /* Default all scissor rectangles to be empty regions. */
5440 for (int i = 0; i < IRIS_MAX_VIEWPORTS; i++) {
5441 ice->state.scissors[i] = (struct pipe_scissor_state) {
5442 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
5443 };
5444 }
5445 }