iris: Replace num_textures etc with a bitmask we can scan
[mesa.git] / src / gallium / drivers / iris / iris_state.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included
12 * in all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
21 */
22
23 /**
24 * @file iris_state.c
25 *
26 * ============================= GENXML CODE =============================
27 * [This file is compiled once per generation.]
28 * =======================================================================
29 *
30 * This is the main state upload code.
31 *
32 * Gallium uses Constant State Objects, or CSOs, for most state. Large,
33 * complex, or highly reusable state can be created once, and bound and
34 * rebound multiple times. This is modeled with the pipe->create_*_state()
35 * and pipe->bind_*_state() hooks. Highly dynamic or inexpensive state is
36 * streamed out on the fly, via pipe->set_*_state() hooks.
37 *
38 * OpenGL involves frequently mutating context state, which is mirrored in
39 * core Mesa by highly mutable data structures. However, most applications
40 * typically draw the same things over and over - from frame to frame, most
41 * of the same objects are still visible and need to be redrawn. So, rather
42 * than inventing new state all the time, applications usually mutate to swap
43 * between known states that we've seen before.
44 *
45 * Gallium isolates us from this mutation by tracking API state, and
46 * distilling it into a set of Constant State Objects, or CSOs. Large,
47 * complex, or typically reusable state can be created once, then reused
48 * multiple times. Drivers can create and store their own associated data.
49 * This create/bind model corresponds to the pipe->create_*_state() and
50 * pipe->bind_*_state() driver hooks.
51 *
52 * Some state is cheap to create, or expected to be highly dynamic. Rather
53 * than creating and caching piles of CSOs for these, Gallium simply streams
54 * them out, via the pipe->set_*_state() driver hooks.
55 *
56 * To reduce draw time overhead, we try to compute as much state at create
57 * time as possible. Wherever possible, we translate the Gallium pipe state
58 * to 3DSTATE commands, and store those commands in the CSO. At draw time,
59 * we can simply memcpy them into a batch buffer.
60 *
61 * No hardware matches the abstraction perfectly, so some commands require
62 * information from multiple CSOs. In this case, we can store two copies
63 * of the packet (one in each CSO), and simply | together their DWords at
64 * draw time. Sometimes the second set is trivial (one or two fields), so
65 * we simply pack it at draw time.
66 *
67 * There are two main components in the file below. First, the CSO hooks
68 * create/bind/track state. The second are the draw-time upload functions,
69 * iris_upload_render_state() and iris_upload_compute_state(), which read
70 * the context state and emit the commands into the actual batch.
71 */
72
73 #include <stdio.h>
74 #include <errno.h>
75
76 #if HAVE_VALGRIND
77 #include <valgrind.h>
78 #include <memcheck.h>
79 #define VG(x) x
80 #ifndef NDEBUG
81 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
82 #endif
83 #else
84 #define VG(x)
85 #endif
86
87 #include "pipe/p_defines.h"
88 #include "pipe/p_state.h"
89 #include "pipe/p_context.h"
90 #include "pipe/p_screen.h"
91 #include "util/u_inlines.h"
92 #include "util/u_format.h"
93 #include "util/u_framebuffer.h"
94 #include "util/u_transfer.h"
95 #include "util/u_upload_mgr.h"
96 #include "util/u_viewport.h"
97 #include "i915_drm.h"
98 #include "nir.h"
99 #include "intel/compiler/brw_compiler.h"
100 #include "intel/common/gen_l3_config.h"
101 #include "intel/common/gen_sample_positions.h"
102 #include "iris_batch.h"
103 #include "iris_context.h"
104 #include "iris_pipe.h"
105 #include "iris_resource.h"
106
107 #define __gen_address_type struct iris_address
108 #define __gen_user_data struct iris_batch
109
110 #define ARRAY_BYTES(x) (sizeof(uint32_t) * ARRAY_SIZE(x))
111
112 static uint64_t
113 __gen_combine_address(struct iris_batch *batch, void *location,
114 struct iris_address addr, uint32_t delta)
115 {
116 uint64_t result = addr.offset + delta;
117
118 if (addr.bo) {
119 iris_use_pinned_bo(batch, addr.bo, addr.write);
120 /* Assume this is a general address, not relative to a base. */
121 result += addr.bo->gtt_offset;
122 }
123
124 return result;
125 }
126
127 #define __genxml_cmd_length(cmd) cmd ## _length
128 #define __genxml_cmd_length_bias(cmd) cmd ## _length_bias
129 #define __genxml_cmd_header(cmd) cmd ## _header
130 #define __genxml_cmd_pack(cmd) cmd ## _pack
131
132 #define _iris_pack_command(batch, cmd, dst, name) \
133 for (struct cmd name = { __genxml_cmd_header(cmd) }, \
134 *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
135 ({ __genxml_cmd_pack(cmd)(batch, (void *)_dst, &name); \
136 _dst = NULL; \
137 }))
138
139 #define iris_pack_command(cmd, dst, name) \
140 _iris_pack_command(NULL, cmd, dst, name)
141
142 #define iris_pack_state(cmd, dst, name) \
143 for (struct cmd name = {}, \
144 *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
145 __genxml_cmd_pack(cmd)(NULL, (void *)_dst, &name), \
146 _dst = NULL)
147
148 #define iris_emit_cmd(batch, cmd, name) \
149 _iris_pack_command(batch, cmd, iris_get_command_space(batch, 4 * __genxml_cmd_length(cmd)), name)
150
151 #define iris_emit_merge(batch, dwords0, dwords1, num_dwords) \
152 do { \
153 uint32_t *dw = iris_get_command_space(batch, 4 * num_dwords); \
154 for (uint32_t i = 0; i < num_dwords; i++) \
155 dw[i] = (dwords0)[i] | (dwords1)[i]; \
156 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, num_dwords)); \
157 } while (0)
158
159 #include "genxml/genX_pack.h"
160 #include "genxml/gen_macros.h"
161 #include "genxml/genX_bits.h"
162
163 #define MOCS_WB (2 << 1)
164
165 /**
166 * Statically assert that PIPE_* enums match the hardware packets.
167 * (As long as they match, we don't need to translate them.)
168 */
169 UNUSED static void pipe_asserts()
170 {
171 #define PIPE_ASSERT(x) STATIC_ASSERT((int)x)
172
173 /* pipe_logicop happens to match the hardware. */
174 PIPE_ASSERT(PIPE_LOGICOP_CLEAR == LOGICOP_CLEAR);
175 PIPE_ASSERT(PIPE_LOGICOP_NOR == LOGICOP_NOR);
176 PIPE_ASSERT(PIPE_LOGICOP_AND_INVERTED == LOGICOP_AND_INVERTED);
177 PIPE_ASSERT(PIPE_LOGICOP_COPY_INVERTED == LOGICOP_COPY_INVERTED);
178 PIPE_ASSERT(PIPE_LOGICOP_AND_REVERSE == LOGICOP_AND_REVERSE);
179 PIPE_ASSERT(PIPE_LOGICOP_INVERT == LOGICOP_INVERT);
180 PIPE_ASSERT(PIPE_LOGICOP_XOR == LOGICOP_XOR);
181 PIPE_ASSERT(PIPE_LOGICOP_NAND == LOGICOP_NAND);
182 PIPE_ASSERT(PIPE_LOGICOP_AND == LOGICOP_AND);
183 PIPE_ASSERT(PIPE_LOGICOP_EQUIV == LOGICOP_EQUIV);
184 PIPE_ASSERT(PIPE_LOGICOP_NOOP == LOGICOP_NOOP);
185 PIPE_ASSERT(PIPE_LOGICOP_OR_INVERTED == LOGICOP_OR_INVERTED);
186 PIPE_ASSERT(PIPE_LOGICOP_COPY == LOGICOP_COPY);
187 PIPE_ASSERT(PIPE_LOGICOP_OR_REVERSE == LOGICOP_OR_REVERSE);
188 PIPE_ASSERT(PIPE_LOGICOP_OR == LOGICOP_OR);
189 PIPE_ASSERT(PIPE_LOGICOP_SET == LOGICOP_SET);
190
191 /* pipe_blend_func happens to match the hardware. */
192 PIPE_ASSERT(PIPE_BLENDFACTOR_ONE == BLENDFACTOR_ONE);
193 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_COLOR == BLENDFACTOR_SRC_COLOR);
194 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA == BLENDFACTOR_SRC_ALPHA);
195 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_ALPHA == BLENDFACTOR_DST_ALPHA);
196 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_COLOR == BLENDFACTOR_DST_COLOR);
197 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE == BLENDFACTOR_SRC_ALPHA_SATURATE);
198 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_COLOR == BLENDFACTOR_CONST_COLOR);
199 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_ALPHA == BLENDFACTOR_CONST_ALPHA);
200 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_COLOR == BLENDFACTOR_SRC1_COLOR);
201 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_ALPHA == BLENDFACTOR_SRC1_ALPHA);
202 PIPE_ASSERT(PIPE_BLENDFACTOR_ZERO == BLENDFACTOR_ZERO);
203 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_COLOR == BLENDFACTOR_INV_SRC_COLOR);
204 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_ALPHA == BLENDFACTOR_INV_SRC_ALPHA);
205 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_ALPHA == BLENDFACTOR_INV_DST_ALPHA);
206 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_COLOR == BLENDFACTOR_INV_DST_COLOR);
207 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_COLOR == BLENDFACTOR_INV_CONST_COLOR);
208 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_ALPHA == BLENDFACTOR_INV_CONST_ALPHA);
209 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_COLOR == BLENDFACTOR_INV_SRC1_COLOR);
210 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_ALPHA == BLENDFACTOR_INV_SRC1_ALPHA);
211
212 /* pipe_blend_func happens to match the hardware. */
213 PIPE_ASSERT(PIPE_BLEND_ADD == BLENDFUNCTION_ADD);
214 PIPE_ASSERT(PIPE_BLEND_SUBTRACT == BLENDFUNCTION_SUBTRACT);
215 PIPE_ASSERT(PIPE_BLEND_REVERSE_SUBTRACT == BLENDFUNCTION_REVERSE_SUBTRACT);
216 PIPE_ASSERT(PIPE_BLEND_MIN == BLENDFUNCTION_MIN);
217 PIPE_ASSERT(PIPE_BLEND_MAX == BLENDFUNCTION_MAX);
218
219 /* pipe_stencil_op happens to match the hardware. */
220 PIPE_ASSERT(PIPE_STENCIL_OP_KEEP == STENCILOP_KEEP);
221 PIPE_ASSERT(PIPE_STENCIL_OP_ZERO == STENCILOP_ZERO);
222 PIPE_ASSERT(PIPE_STENCIL_OP_REPLACE == STENCILOP_REPLACE);
223 PIPE_ASSERT(PIPE_STENCIL_OP_INCR == STENCILOP_INCRSAT);
224 PIPE_ASSERT(PIPE_STENCIL_OP_DECR == STENCILOP_DECRSAT);
225 PIPE_ASSERT(PIPE_STENCIL_OP_INCR_WRAP == STENCILOP_INCR);
226 PIPE_ASSERT(PIPE_STENCIL_OP_DECR_WRAP == STENCILOP_DECR);
227 PIPE_ASSERT(PIPE_STENCIL_OP_INVERT == STENCILOP_INVERT);
228
229 /* pipe_sprite_coord_mode happens to match 3DSTATE_SBE */
230 PIPE_ASSERT(PIPE_SPRITE_COORD_UPPER_LEFT == UPPERLEFT);
231 PIPE_ASSERT(PIPE_SPRITE_COORD_LOWER_LEFT == LOWERLEFT);
232 #undef PIPE_ASSERT
233 }
234
235 static unsigned
236 translate_prim_type(enum pipe_prim_type prim, uint8_t verts_per_patch)
237 {
238 static const unsigned map[] = {
239 [PIPE_PRIM_POINTS] = _3DPRIM_POINTLIST,
240 [PIPE_PRIM_LINES] = _3DPRIM_LINELIST,
241 [PIPE_PRIM_LINE_LOOP] = _3DPRIM_LINELOOP,
242 [PIPE_PRIM_LINE_STRIP] = _3DPRIM_LINESTRIP,
243 [PIPE_PRIM_TRIANGLES] = _3DPRIM_TRILIST,
244 [PIPE_PRIM_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
245 [PIPE_PRIM_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
246 [PIPE_PRIM_QUADS] = _3DPRIM_QUADLIST,
247 [PIPE_PRIM_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
248 [PIPE_PRIM_POLYGON] = _3DPRIM_POLYGON,
249 [PIPE_PRIM_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
250 [PIPE_PRIM_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
251 [PIPE_PRIM_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
252 [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
253 [PIPE_PRIM_PATCHES] = _3DPRIM_PATCHLIST_1 - 1,
254 };
255
256 return map[prim] + (prim == PIPE_PRIM_PATCHES ? verts_per_patch : 0);
257 }
258
259 static unsigned
260 translate_compare_func(enum pipe_compare_func pipe_func)
261 {
262 static const unsigned map[] = {
263 [PIPE_FUNC_NEVER] = COMPAREFUNCTION_NEVER,
264 [PIPE_FUNC_LESS] = COMPAREFUNCTION_LESS,
265 [PIPE_FUNC_EQUAL] = COMPAREFUNCTION_EQUAL,
266 [PIPE_FUNC_LEQUAL] = COMPAREFUNCTION_LEQUAL,
267 [PIPE_FUNC_GREATER] = COMPAREFUNCTION_GREATER,
268 [PIPE_FUNC_NOTEQUAL] = COMPAREFUNCTION_NOTEQUAL,
269 [PIPE_FUNC_GEQUAL] = COMPAREFUNCTION_GEQUAL,
270 [PIPE_FUNC_ALWAYS] = COMPAREFUNCTION_ALWAYS,
271 };
272 return map[pipe_func];
273 }
274
275 static unsigned
276 translate_shadow_func(enum pipe_compare_func pipe_func)
277 {
278 /* Gallium specifies the result of shadow comparisons as:
279 *
280 * 1 if ref <op> texel,
281 * 0 otherwise.
282 *
283 * The hardware does:
284 *
285 * 0 if texel <op> ref,
286 * 1 otherwise.
287 *
288 * So we need to flip the operator and also negate.
289 */
290 static const unsigned map[] = {
291 [PIPE_FUNC_NEVER] = PREFILTEROPALWAYS,
292 [PIPE_FUNC_LESS] = PREFILTEROPLEQUAL,
293 [PIPE_FUNC_EQUAL] = PREFILTEROPNOTEQUAL,
294 [PIPE_FUNC_LEQUAL] = PREFILTEROPLESS,
295 [PIPE_FUNC_GREATER] = PREFILTEROPGEQUAL,
296 [PIPE_FUNC_NOTEQUAL] = PREFILTEROPEQUAL,
297 [PIPE_FUNC_GEQUAL] = PREFILTEROPGREATER,
298 [PIPE_FUNC_ALWAYS] = PREFILTEROPNEVER,
299 };
300 return map[pipe_func];
301 }
302
303 static unsigned
304 translate_cull_mode(unsigned pipe_face)
305 {
306 static const unsigned map[4] = {
307 [PIPE_FACE_NONE] = CULLMODE_NONE,
308 [PIPE_FACE_FRONT] = CULLMODE_FRONT,
309 [PIPE_FACE_BACK] = CULLMODE_BACK,
310 [PIPE_FACE_FRONT_AND_BACK] = CULLMODE_BOTH,
311 };
312 return map[pipe_face];
313 }
314
315 static unsigned
316 translate_fill_mode(unsigned pipe_polymode)
317 {
318 static const unsigned map[4] = {
319 [PIPE_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
320 [PIPE_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
321 [PIPE_POLYGON_MODE_POINT] = FILL_MODE_POINT,
322 [PIPE_POLYGON_MODE_FILL_RECTANGLE] = FILL_MODE_SOLID,
323 };
324 return map[pipe_polymode];
325 }
326
327 static unsigned
328 translate_mip_filter(enum pipe_tex_mipfilter pipe_mip)
329 {
330 static const unsigned map[] = {
331 [PIPE_TEX_MIPFILTER_NEAREST] = MIPFILTER_NEAREST,
332 [PIPE_TEX_MIPFILTER_LINEAR] = MIPFILTER_LINEAR,
333 [PIPE_TEX_MIPFILTER_NONE] = MIPFILTER_NONE,
334 };
335 return map[pipe_mip];
336 }
337
338 static uint32_t
339 translate_wrap(unsigned pipe_wrap)
340 {
341 static const unsigned map[] = {
342 [PIPE_TEX_WRAP_REPEAT] = TCM_WRAP,
343 [PIPE_TEX_WRAP_CLAMP] = TCM_HALF_BORDER,
344 [PIPE_TEX_WRAP_CLAMP_TO_EDGE] = TCM_CLAMP,
345 [PIPE_TEX_WRAP_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER,
346 [PIPE_TEX_WRAP_MIRROR_REPEAT] = TCM_MIRROR,
347 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE,
348
349 /* These are unsupported. */
350 [PIPE_TEX_WRAP_MIRROR_CLAMP] = -1,
351 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER] = -1,
352 };
353 return map[pipe_wrap];
354 }
355
356 static struct iris_address
357 ro_bo(struct iris_bo *bo, uint64_t offset)
358 {
359 /* CSOs must pass NULL for bo! Otherwise it will add the BO to the
360 * validation list at CSO creation time, instead of draw time.
361 */
362 return (struct iris_address) { .bo = bo, .offset = offset };
363 }
364
365 static struct iris_address
366 rw_bo(struct iris_bo *bo, uint64_t offset)
367 {
368 /* CSOs must pass NULL for bo! Otherwise it will add the BO to the
369 * validation list at CSO creation time, instead of draw time.
370 */
371 return (struct iris_address) { .bo = bo, .offset = offset, .write = true };
372 }
373
374 /**
375 * Allocate space for some indirect state.
376 *
377 * Return a pointer to the map (to fill it out) and a state ref (for
378 * referring to the state in GPU commands).
379 */
380 static void *
381 upload_state(struct u_upload_mgr *uploader,
382 struct iris_state_ref *ref,
383 unsigned size,
384 unsigned alignment)
385 {
386 void *p = NULL;
387 u_upload_alloc(uploader, 0, size, alignment, &ref->offset, &ref->res, &p);
388 return p;
389 }
390
391 /**
392 * Stream out temporary/short-lived state.
393 *
394 * This allocates space, pins the BO, and includes the BO address in the
395 * returned offset (which works because all state lives in 32-bit memory
396 * zones).
397 */
398 static uint32_t *
399 stream_state(struct iris_batch *batch,
400 struct u_upload_mgr *uploader,
401 struct pipe_resource **out_res,
402 unsigned size,
403 unsigned alignment,
404 uint32_t *out_offset)
405 {
406 void *ptr = NULL;
407
408 u_upload_alloc(uploader, 0, size, alignment, out_offset, out_res, &ptr);
409
410 struct iris_bo *bo = iris_resource_bo(*out_res);
411 iris_use_pinned_bo(batch, bo, false);
412
413 *out_offset += iris_bo_offset_from_base_address(bo);
414
415 return ptr;
416 }
417
418 /**
419 * stream_state() + memcpy.
420 */
421 static uint32_t
422 emit_state(struct iris_batch *batch,
423 struct u_upload_mgr *uploader,
424 struct pipe_resource **out_res,
425 const void *data,
426 unsigned size,
427 unsigned alignment)
428 {
429 unsigned offset = 0;
430 uint32_t *map =
431 stream_state(batch, uploader, out_res, size, alignment, &offset);
432
433 if (map)
434 memcpy(map, data, size);
435
436 return offset;
437 }
438
439 /**
440 * Did field 'x' change between 'old_cso' and 'new_cso'?
441 *
442 * (If so, we may want to set some dirty flags.)
443 */
444 #define cso_changed(x) (!old_cso || (old_cso->x != new_cso->x))
445 #define cso_changed_memcmp(x) \
446 (!old_cso || memcmp(old_cso->x, new_cso->x, sizeof(old_cso->x)) != 0)
447
448 static void
449 flush_for_state_base_change(struct iris_batch *batch)
450 {
451 /* Flush before emitting STATE_BASE_ADDRESS.
452 *
453 * This isn't documented anywhere in the PRM. However, it seems to be
454 * necessary prior to changing the surface state base adress. We've
455 * seen issues in Vulkan where we get GPU hangs when using multi-level
456 * command buffers which clear depth, reset state base address, and then
457 * go render stuff.
458 *
459 * Normally, in GL, we would trust the kernel to do sufficient stalls
460 * and flushes prior to executing our batch. However, it doesn't seem
461 * as if the kernel's flushing is always sufficient and we don't want to
462 * rely on it.
463 *
464 * We make this an end-of-pipe sync instead of a normal flush because we
465 * do not know the current status of the GPU. On Haswell at least,
466 * having a fast-clear operation in flight at the same time as a normal
467 * rendering operation can cause hangs. Since the kernel's flushing is
468 * insufficient, we need to ensure that any rendering operations from
469 * other processes are definitely complete before we try to do our own
470 * rendering. It's a bit of a big hammer but it appears to work.
471 */
472 iris_emit_end_of_pipe_sync(batch,
473 PIPE_CONTROL_RENDER_TARGET_FLUSH |
474 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
475 PIPE_CONTROL_DATA_CACHE_FLUSH);
476 }
477
478 static void
479 _iris_emit_lri(struct iris_batch *batch, uint32_t reg, uint32_t val)
480 {
481 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
482 lri.RegisterOffset = reg;
483 lri.DataDWord = val;
484 }
485 }
486 #define iris_emit_lri(b, r, v) _iris_emit_lri(b, GENX(r##_num), v)
487
488 static void
489 _iris_emit_lrr(struct iris_batch *batch, uint32_t src, uint32_t dst)
490 {
491 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
492 lrr.SourceRegisterAddress = src;
493 lrr.DestinationRegisterAddress = dst;
494 }
495 }
496
497 static void
498 emit_pipeline_select(struct iris_batch *batch, uint32_t pipeline)
499 {
500 #if GEN_GEN >= 8 && GEN_GEN < 10
501 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
502 *
503 * Software must clear the COLOR_CALC_STATE Valid field in
504 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
505 * with Pipeline Select set to GPGPU.
506 *
507 * The internal hardware docs recommend the same workaround for Gen9
508 * hardware too.
509 */
510 if (pipeline == GPGPU)
511 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
512 #endif
513
514
515 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
516 * PIPELINE_SELECT [DevBWR+]":
517 *
518 * "Project: DEVSNB+
519 *
520 * Software must ensure all the write caches are flushed through a
521 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
522 * command to invalidate read only caches prior to programming
523 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode."
524 */
525 iris_emit_pipe_control_flush(batch,
526 PIPE_CONTROL_RENDER_TARGET_FLUSH |
527 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
528 PIPE_CONTROL_DATA_CACHE_FLUSH |
529 PIPE_CONTROL_CS_STALL);
530
531 iris_emit_pipe_control_flush(batch,
532 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
533 PIPE_CONTROL_CONST_CACHE_INVALIDATE |
534 PIPE_CONTROL_STATE_CACHE_INVALIDATE |
535 PIPE_CONTROL_INSTRUCTION_INVALIDATE);
536
537 iris_emit_cmd(batch, GENX(PIPELINE_SELECT), sel) {
538 #if GEN_GEN >= 9
539 sel.MaskBits = 3;
540 #endif
541 sel.PipelineSelection = pipeline;
542 }
543 }
544
545 UNUSED static void
546 init_glk_barrier_mode(struct iris_batch *batch, uint32_t value)
547 {
548 #if GEN_GEN == 9
549 /* Project: DevGLK
550 *
551 * "This chicken bit works around a hardware issue with barrier
552 * logic encountered when switching between GPGPU and 3D pipelines.
553 * To workaround the issue, this mode bit should be set after a
554 * pipeline is selected."
555 */
556 uint32_t reg_val;
557 iris_pack_state(GENX(SLICE_COMMON_ECO_CHICKEN1), &reg_val, reg) {
558 reg.GLKBarrierMode = value;
559 reg.GLKBarrierModeMask = 1;
560 }
561 iris_emit_lri(batch, SLICE_COMMON_ECO_CHICKEN1, reg_val);
562 #endif
563 }
564
565 static void
566 init_state_base_address(struct iris_batch *batch)
567 {
568 flush_for_state_base_change(batch);
569
570 /* We program most base addresses once at context initialization time.
571 * Each base address points at a 4GB memory zone, and never needs to
572 * change. See iris_bufmgr.h for a description of the memory zones.
573 *
574 * The one exception is Surface State Base Address, which needs to be
575 * updated occasionally. See iris_binder.c for the details there.
576 */
577 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
578 #if 0
579 // XXX: MOCS is stupid for this.
580 sba.GeneralStateMemoryObjectControlState = MOCS_WB;
581 sba.StatelessDataPortAccessMemoryObjectControlState = MOCS_WB;
582 sba.DynamicStateMemoryObjectControlState = MOCS_WB;
583 sba.IndirectObjectMemoryObjectControlState = MOCS_WB;
584 sba.InstructionMemoryObjectControlState = MOCS_WB;
585 sba.BindlessSurfaceStateMemoryObjectControlState = MOCS_WB;
586 #endif
587
588 sba.GeneralStateBaseAddressModifyEnable = true;
589 sba.DynamicStateBaseAddressModifyEnable = true;
590 sba.IndirectObjectBaseAddressModifyEnable = true;
591 sba.InstructionBaseAddressModifyEnable = true;
592 sba.GeneralStateBufferSizeModifyEnable = true;
593 sba.DynamicStateBufferSizeModifyEnable = true;
594 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
595 sba.IndirectObjectBufferSizeModifyEnable = true;
596 sba.InstructionBuffersizeModifyEnable = true;
597
598 sba.InstructionBaseAddress = ro_bo(NULL, IRIS_MEMZONE_SHADER_START);
599 sba.DynamicStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_DYNAMIC_START);
600
601 sba.GeneralStateBufferSize = 0xfffff;
602 sba.IndirectObjectBufferSize = 0xfffff;
603 sba.InstructionBufferSize = 0xfffff;
604 sba.DynamicStateBufferSize = 0xfffff;
605 }
606 }
607
608 /**
609 * Upload the initial GPU state for a render context.
610 *
611 * This sets some invariant state that needs to be programmed a particular
612 * way, but we never actually change.
613 */
614 static void
615 iris_init_render_context(struct iris_screen *screen,
616 struct iris_batch *batch,
617 struct iris_vtable *vtbl,
618 struct pipe_debug_callback *dbg)
619 {
620 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
621 uint32_t reg_val;
622
623 emit_pipeline_select(batch, _3D);
624
625 init_state_base_address(batch);
626
627 // XXX: INSTPM on Gen8
628 iris_pack_state(GENX(CS_DEBUG_MODE2), &reg_val, reg) {
629 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
630 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
631 }
632 iris_emit_lri(batch, CS_DEBUG_MODE2, reg_val);
633
634 #if GEN_GEN == 9
635 iris_pack_state(GENX(CACHE_MODE_1), &reg_val, reg) {
636 reg.FloatBlendOptimizationEnable = true;
637 reg.FloatBlendOptimizationEnableMask = true;
638 reg.PartialResolveDisableInVC = true;
639 reg.PartialResolveDisableInVCMask = true;
640 }
641 iris_emit_lri(batch, CACHE_MODE_1, reg_val);
642
643 if (devinfo->is_geminilake)
644 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_3D_HULL);
645 #endif
646
647 #if GEN_GEN == 11
648 iris_pack_state(GENX(SAMPLER_MODE), &reg_val, reg) {
649 reg.HeaderlessMessageforPreemptableContexts = 1;
650 reg.HeaderlessMessageforPreemptableContextsMask = 1;
651 }
652 iris_emit_lri(batch, SAMPLER_MODE, reg_val);
653
654 // XXX: 3D_MODE?
655 #endif
656
657 /* 3DSTATE_DRAWING_RECTANGLE is non-pipelined, so we want to avoid
658 * changing it dynamically. We set it to the maximum size here, and
659 * instead include the render target dimensions in the viewport, so
660 * viewport extents clipping takes care of pruning stray geometry.
661 */
662 iris_emit_cmd(batch, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
663 rect.ClippedDrawingRectangleXMax = UINT16_MAX;
664 rect.ClippedDrawingRectangleYMax = UINT16_MAX;
665 }
666
667 /* Set the initial MSAA sample positions. */
668 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_PATTERN), pat) {
669 GEN_SAMPLE_POS_1X(pat._1xSample);
670 GEN_SAMPLE_POS_2X(pat._2xSample);
671 GEN_SAMPLE_POS_4X(pat._4xSample);
672 GEN_SAMPLE_POS_8X(pat._8xSample);
673 GEN_SAMPLE_POS_16X(pat._16xSample);
674 }
675
676 /* Use the legacy AA line coverage computation. */
677 iris_emit_cmd(batch, GENX(3DSTATE_AA_LINE_PARAMETERS), foo);
678
679 /* Disable chromakeying (it's for media) */
680 iris_emit_cmd(batch, GENX(3DSTATE_WM_CHROMAKEY), foo);
681
682 /* We want regular rendering, not special HiZ operations. */
683 iris_emit_cmd(batch, GENX(3DSTATE_WM_HZ_OP), foo);
684
685 /* No polygon stippling offsets are necessary. */
686 // XXX: may need to set an offset for origin-UL framebuffers
687 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_OFFSET), foo);
688
689 /* Set a static partitioning of the push constant area. */
690 // XXX: this may be a bad idea...could starve the push ringbuffers...
691 for (int i = 0; i <= MESA_SHADER_FRAGMENT; i++) {
692 iris_emit_cmd(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
693 alloc._3DCommandSubOpcode = 18 + i;
694 alloc.ConstantBufferOffset = 6 * i;
695 alloc.ConstantBufferSize = i == MESA_SHADER_FRAGMENT ? 8 : 6;
696 }
697 }
698 }
699
700 static void
701 iris_init_compute_context(struct iris_screen *screen,
702 struct iris_batch *batch,
703 struct iris_vtable *vtbl,
704 struct pipe_debug_callback *dbg)
705 {
706 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
707
708 emit_pipeline_select(batch, GPGPU);
709
710 const bool has_slm = true;
711 const bool wants_dc_cache = true;
712
713 const struct gen_l3_weights w =
714 gen_get_default_l3_weights(devinfo, wants_dc_cache, has_slm);
715 const struct gen_l3_config *cfg = gen_get_l3_config(devinfo, w);
716
717 uint32_t reg_val;
718 iris_pack_state(GENX(L3CNTLREG), &reg_val, reg) {
719 reg.SLMEnable = has_slm;
720 #if GEN_GEN == 11
721 /* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set
722 * in L3CNTLREG register. The default setting of the bit is not the
723 * desirable behavior.
724 */
725 reg.ErrorDetectionBehaviorControl = true;
726 #endif
727 reg.URBAllocation = cfg->n[GEN_L3P_URB];
728 reg.ROAllocation = cfg->n[GEN_L3P_RO];
729 reg.DCAllocation = cfg->n[GEN_L3P_DC];
730 reg.AllAllocation = cfg->n[GEN_L3P_ALL];
731 }
732 iris_emit_lri(batch, L3CNTLREG, reg_val);
733
734 init_state_base_address(batch);
735
736 #if GEN_GEN == 9
737 if (devinfo->is_geminilake)
738 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_GPGPU);
739 #endif
740 }
741
742 struct iris_vertex_buffer_state {
743 /** The 3DSTATE_VERTEX_BUFFERS hardware packet. */
744 uint32_t vertex_buffers[1 + 33 * GENX(VERTEX_BUFFER_STATE_length)];
745
746 /** The resource to source vertex data from. */
747 struct pipe_resource *resources[33];
748
749 /** The number of bound vertex buffers. */
750 unsigned num_buffers;
751 };
752
753 struct iris_depth_buffer_state {
754 /* Depth/HiZ/Stencil related hardware packets. */
755 uint32_t packets[GENX(3DSTATE_DEPTH_BUFFER_length) +
756 GENX(3DSTATE_STENCIL_BUFFER_length) +
757 GENX(3DSTATE_HIER_DEPTH_BUFFER_length) +
758 GENX(3DSTATE_CLEAR_PARAMS_length)];
759 };
760
761 /**
762 * Generation-specific context state (ice->state.genx->...).
763 *
764 * Most state can go in iris_context directly, but these encode hardware
765 * packets which vary by generation.
766 */
767 struct iris_genx_state {
768 /** SF_CLIP_VIEWPORT */
769 uint32_t sf_cl_vp[GENX(SF_CLIP_VIEWPORT_length) * IRIS_MAX_VIEWPORTS];
770
771 struct iris_vertex_buffer_state vertex_buffers;
772 struct iris_depth_buffer_state depth_buffer;
773
774 uint32_t so_buffers[4 * GENX(3DSTATE_SO_BUFFER_length)];
775 uint32_t streamout[4 * GENX(3DSTATE_STREAMOUT_length)];
776 };
777
778 /**
779 * The pipe->set_blend_color() driver hook.
780 *
781 * This corresponds to our COLOR_CALC_STATE.
782 */
783 static void
784 iris_set_blend_color(struct pipe_context *ctx,
785 const struct pipe_blend_color *state)
786 {
787 struct iris_context *ice = (struct iris_context *) ctx;
788
789 /* Our COLOR_CALC_STATE is exactly pipe_blend_color, so just memcpy */
790 memcpy(&ice->state.blend_color, state, sizeof(struct pipe_blend_color));
791 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
792 }
793
794 /**
795 * Gallium CSO for blend state (see pipe_blend_state).
796 */
797 struct iris_blend_state {
798 /** Partial 3DSTATE_PS_BLEND */
799 uint32_t ps_blend[GENX(3DSTATE_PS_BLEND_length)];
800
801 /** Partial BLEND_STATE */
802 uint32_t blend_state[GENX(BLEND_STATE_length) +
803 BRW_MAX_DRAW_BUFFERS * GENX(BLEND_STATE_ENTRY_length)];
804
805 bool alpha_to_coverage; /* for shader key */
806 };
807
808 /**
809 * The pipe->create_blend_state() driver hook.
810 *
811 * Translates a pipe_blend_state into iris_blend_state.
812 */
813 static void *
814 iris_create_blend_state(struct pipe_context *ctx,
815 const struct pipe_blend_state *state)
816 {
817 struct iris_blend_state *cso = malloc(sizeof(struct iris_blend_state));
818 uint32_t *blend_entry = cso->blend_state + GENX(BLEND_STATE_length);
819
820 cso->alpha_to_coverage = state->alpha_to_coverage;
821
822 bool indep_alpha_blend = false;
823
824 for (int i = 0; i < BRW_MAX_DRAW_BUFFERS; i++) {
825 const struct pipe_rt_blend_state *rt =
826 &state->rt[state->independent_blend_enable ? i : 0];
827
828 if (rt->rgb_func != rt->alpha_func ||
829 rt->rgb_src_factor != rt->alpha_src_factor ||
830 rt->rgb_dst_factor != rt->alpha_dst_factor)
831 indep_alpha_blend = true;
832
833 iris_pack_state(GENX(BLEND_STATE_ENTRY), blend_entry, be) {
834 be.LogicOpEnable = state->logicop_enable;
835 be.LogicOpFunction = state->logicop_func;
836
837 be.PreBlendSourceOnlyClampEnable = false;
838 be.ColorClampRange = COLORCLAMP_RTFORMAT;
839 be.PreBlendColorClampEnable = true;
840 be.PostBlendColorClampEnable = true;
841
842 be.ColorBufferBlendEnable = rt->blend_enable;
843
844 be.ColorBlendFunction = rt->rgb_func;
845 be.AlphaBlendFunction = rt->alpha_func;
846 be.SourceBlendFactor = rt->rgb_src_factor;
847 be.SourceAlphaBlendFactor = rt->alpha_src_factor;
848 be.DestinationBlendFactor = rt->rgb_dst_factor;
849 be.DestinationAlphaBlendFactor = rt->alpha_dst_factor;
850
851 be.WriteDisableRed = !(rt->colormask & PIPE_MASK_R);
852 be.WriteDisableGreen = !(rt->colormask & PIPE_MASK_G);
853 be.WriteDisableBlue = !(rt->colormask & PIPE_MASK_B);
854 be.WriteDisableAlpha = !(rt->colormask & PIPE_MASK_A);
855 }
856 blend_entry += GENX(BLEND_STATE_ENTRY_length);
857 }
858
859 iris_pack_command(GENX(3DSTATE_PS_BLEND), cso->ps_blend, pb) {
860 /* pb.HasWriteableRT is filled in at draw time. */
861 /* pb.AlphaTestEnable is filled in at draw time. */
862 pb.AlphaToCoverageEnable = state->alpha_to_coverage;
863 pb.IndependentAlphaBlendEnable = indep_alpha_blend;
864
865 pb.ColorBufferBlendEnable = state->rt[0].blend_enable;
866
867 pb.SourceBlendFactor = state->rt[0].rgb_src_factor;
868 pb.SourceAlphaBlendFactor = state->rt[0].alpha_src_factor;
869 pb.DestinationBlendFactor = state->rt[0].rgb_dst_factor;
870 pb.DestinationAlphaBlendFactor = state->rt[0].alpha_dst_factor;
871 }
872
873 iris_pack_state(GENX(BLEND_STATE), cso->blend_state, bs) {
874 bs.AlphaToCoverageEnable = state->alpha_to_coverage;
875 bs.IndependentAlphaBlendEnable = indep_alpha_blend;
876 bs.AlphaToOneEnable = state->alpha_to_one;
877 bs.AlphaToCoverageDitherEnable = state->alpha_to_coverage;
878 bs.ColorDitherEnable = state->dither;
879 /* bl.AlphaTestEnable and bs.AlphaTestFunction are filled in later. */
880 }
881
882
883 return cso;
884 }
885
886 /**
887 * The pipe->bind_blend_state() driver hook.
888 *
889 * Bind a blending CSO and flag related dirty bits.
890 */
891 static void
892 iris_bind_blend_state(struct pipe_context *ctx, void *state)
893 {
894 struct iris_context *ice = (struct iris_context *) ctx;
895 ice->state.cso_blend = state;
896 ice->state.dirty |= IRIS_DIRTY_PS_BLEND;
897 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
898 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_BLEND];
899 }
900
901 /**
902 * Gallium CSO for depth, stencil, and alpha testing state.
903 */
904 struct iris_depth_stencil_alpha_state {
905 /** Partial 3DSTATE_WM_DEPTH_STENCIL. */
906 uint32_t wmds[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
907
908 /** Outbound to BLEND_STATE, 3DSTATE_PS_BLEND, COLOR_CALC_STATE. */
909 struct pipe_alpha_state alpha;
910
911 /** Outbound to resolve and cache set tracking. */
912 bool depth_writes_enabled;
913 bool stencil_writes_enabled;
914 };
915
916 /**
917 * The pipe->create_depth_stencil_alpha_state() driver hook.
918 *
919 * We encode most of 3DSTATE_WM_DEPTH_STENCIL, and just save off the alpha
920 * testing state since we need pieces of it in a variety of places.
921 */
922 static void *
923 iris_create_zsa_state(struct pipe_context *ctx,
924 const struct pipe_depth_stencil_alpha_state *state)
925 {
926 struct iris_depth_stencil_alpha_state *cso =
927 malloc(sizeof(struct iris_depth_stencil_alpha_state));
928
929 bool two_sided_stencil = state->stencil[1].enabled;
930
931 cso->alpha = state->alpha;
932 cso->depth_writes_enabled = state->depth.writemask;
933 cso->stencil_writes_enabled =
934 state->stencil[0].writemask != 0 ||
935 (two_sided_stencil && state->stencil[1].writemask != 1);
936
937 /* The state tracker needs to optimize away EQUAL writes for us. */
938 assert(!(state->depth.func == PIPE_FUNC_EQUAL && state->depth.writemask));
939
940 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), cso->wmds, wmds) {
941 wmds.StencilFailOp = state->stencil[0].fail_op;
942 wmds.StencilPassDepthFailOp = state->stencil[0].zfail_op;
943 wmds.StencilPassDepthPassOp = state->stencil[0].zpass_op;
944 wmds.StencilTestFunction =
945 translate_compare_func(state->stencil[0].func);
946 wmds.BackfaceStencilFailOp = state->stencil[1].fail_op;
947 wmds.BackfaceStencilPassDepthFailOp = state->stencil[1].zfail_op;
948 wmds.BackfaceStencilPassDepthPassOp = state->stencil[1].zpass_op;
949 wmds.BackfaceStencilTestFunction =
950 translate_compare_func(state->stencil[1].func);
951 wmds.DepthTestFunction = translate_compare_func(state->depth.func);
952 wmds.DoubleSidedStencilEnable = two_sided_stencil;
953 wmds.StencilTestEnable = state->stencil[0].enabled;
954 wmds.StencilBufferWriteEnable =
955 state->stencil[0].writemask != 0 ||
956 (two_sided_stencil && state->stencil[1].writemask != 0);
957 wmds.DepthTestEnable = state->depth.enabled;
958 wmds.DepthBufferWriteEnable = state->depth.writemask;
959 wmds.StencilTestMask = state->stencil[0].valuemask;
960 wmds.StencilWriteMask = state->stencil[0].writemask;
961 wmds.BackfaceStencilTestMask = state->stencil[1].valuemask;
962 wmds.BackfaceStencilWriteMask = state->stencil[1].writemask;
963 /* wmds.[Backface]StencilReferenceValue are merged later */
964 }
965
966 return cso;
967 }
968
969 /**
970 * The pipe->bind_depth_stencil_alpha_state() driver hook.
971 *
972 * Bind a depth/stencil/alpha CSO and flag related dirty bits.
973 */
974 static void
975 iris_bind_zsa_state(struct pipe_context *ctx, void *state)
976 {
977 struct iris_context *ice = (struct iris_context *) ctx;
978 struct iris_depth_stencil_alpha_state *old_cso = ice->state.cso_zsa;
979 struct iris_depth_stencil_alpha_state *new_cso = state;
980
981 if (new_cso) {
982 if (cso_changed(alpha.ref_value))
983 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
984
985 if (cso_changed(alpha.enabled))
986 ice->state.dirty |= IRIS_DIRTY_PS_BLEND | IRIS_DIRTY_BLEND_STATE;
987
988 if (cso_changed(alpha.func))
989 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
990
991 ice->state.depth_writes_enabled = new_cso->depth_writes_enabled;
992 ice->state.stencil_writes_enabled = new_cso->stencil_writes_enabled;
993 }
994
995 ice->state.cso_zsa = new_cso;
996 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
997 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
998 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_DEPTH_STENCIL_ALPHA];
999 }
1000
1001 /**
1002 * Gallium CSO for rasterizer state.
1003 */
1004 struct iris_rasterizer_state {
1005 uint32_t sf[GENX(3DSTATE_SF_length)];
1006 uint32_t clip[GENX(3DSTATE_CLIP_length)];
1007 uint32_t raster[GENX(3DSTATE_RASTER_length)];
1008 uint32_t wm[GENX(3DSTATE_WM_length)];
1009 uint32_t line_stipple[GENX(3DSTATE_LINE_STIPPLE_length)];
1010
1011 uint8_t num_clip_plane_consts;
1012 bool clip_halfz; /* for CC_VIEWPORT */
1013 bool depth_clip_near; /* for CC_VIEWPORT */
1014 bool depth_clip_far; /* for CC_VIEWPORT */
1015 bool flatshade; /* for shader state */
1016 bool flatshade_first; /* for stream output */
1017 bool clamp_fragment_color; /* for shader state */
1018 bool light_twoside; /* for shader state */
1019 bool rasterizer_discard; /* for 3DSTATE_STREAMOUT */
1020 bool half_pixel_center; /* for 3DSTATE_MULTISAMPLE */
1021 bool line_stipple_enable;
1022 bool poly_stipple_enable;
1023 bool multisample;
1024 bool force_persample_interp;
1025 enum pipe_sprite_coord_mode sprite_coord_mode; /* PIPE_SPRITE_* */
1026 uint16_t sprite_coord_enable;
1027 };
1028
1029 static float
1030 get_line_width(const struct pipe_rasterizer_state *state)
1031 {
1032 float line_width = state->line_width;
1033
1034 /* From the OpenGL 4.4 spec:
1035 *
1036 * "The actual width of non-antialiased lines is determined by rounding
1037 * the supplied width to the nearest integer, then clamping it to the
1038 * implementation-dependent maximum non-antialiased line width."
1039 */
1040 if (!state->multisample && !state->line_smooth)
1041 line_width = roundf(state->line_width);
1042
1043 if (!state->multisample && state->line_smooth && line_width < 1.5f) {
1044 /* For 1 pixel line thickness or less, the general anti-aliasing
1045 * algorithm gives up, and a garbage line is generated. Setting a
1046 * Line Width of 0.0 specifies the rasterization of the "thinnest"
1047 * (one-pixel-wide), non-antialiased lines.
1048 *
1049 * Lines rendered with zero Line Width are rasterized using the
1050 * "Grid Intersection Quantization" rules as specified by the
1051 * "Zero-Width (Cosmetic) Line Rasterization" section of the docs.
1052 */
1053 line_width = 0.0f;
1054 }
1055
1056 return line_width;
1057 }
1058
1059 /**
1060 * The pipe->create_rasterizer_state() driver hook.
1061 */
1062 static void *
1063 iris_create_rasterizer_state(struct pipe_context *ctx,
1064 const struct pipe_rasterizer_state *state)
1065 {
1066 struct iris_rasterizer_state *cso =
1067 malloc(sizeof(struct iris_rasterizer_state));
1068
1069 #if 0
1070 point_quad_rasterization -> SBE?
1071
1072 not necessary?
1073 {
1074 poly_smooth
1075 bottom_edge_rule
1076
1077 offset_units_unscaled - cap not exposed
1078 }
1079 #endif
1080
1081 // XXX: it may make more sense just to store the pipe_rasterizer_state,
1082 // we're copying a lot of booleans here. But we don't need all of them...
1083
1084 cso->multisample = state->multisample;
1085 cso->force_persample_interp = state->force_persample_interp;
1086 cso->clip_halfz = state->clip_halfz;
1087 cso->depth_clip_near = state->depth_clip_near;
1088 cso->depth_clip_far = state->depth_clip_far;
1089 cso->flatshade = state->flatshade;
1090 cso->flatshade_first = state->flatshade_first;
1091 cso->clamp_fragment_color = state->clamp_fragment_color;
1092 cso->light_twoside = state->light_twoside;
1093 cso->rasterizer_discard = state->rasterizer_discard;
1094 cso->half_pixel_center = state->half_pixel_center;
1095 cso->sprite_coord_mode = state->sprite_coord_mode;
1096 cso->sprite_coord_enable = state->sprite_coord_enable;
1097 cso->line_stipple_enable = state->line_stipple_enable;
1098 cso->poly_stipple_enable = state->poly_stipple_enable;
1099
1100 if (state->clip_plane_enable != 0)
1101 cso->num_clip_plane_consts = util_logbase2(state->clip_plane_enable) + 1;
1102 else
1103 cso->num_clip_plane_consts = 0;
1104
1105 float line_width = get_line_width(state);
1106
1107 iris_pack_command(GENX(3DSTATE_SF), cso->sf, sf) {
1108 sf.StatisticsEnable = true;
1109 sf.ViewportTransformEnable = true;
1110 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
1111 sf.LineEndCapAntialiasingRegionWidth =
1112 state->line_smooth ? _10pixels : _05pixels;
1113 sf.LastPixelEnable = state->line_last_pixel;
1114 sf.LineWidth = line_width;
1115 sf.SmoothPointEnable = state->point_smooth || state->multisample;
1116 sf.PointWidthSource = state->point_size_per_vertex ? Vertex : State;
1117 sf.PointWidth = state->point_size;
1118
1119 if (state->flatshade_first) {
1120 sf.TriangleFanProvokingVertexSelect = 1;
1121 } else {
1122 sf.TriangleStripListProvokingVertexSelect = 2;
1123 sf.TriangleFanProvokingVertexSelect = 2;
1124 sf.LineStripListProvokingVertexSelect = 1;
1125 }
1126 }
1127
1128 iris_pack_command(GENX(3DSTATE_RASTER), cso->raster, rr) {
1129 rr.FrontWinding = state->front_ccw ? CounterClockwise : Clockwise;
1130 rr.CullMode = translate_cull_mode(state->cull_face);
1131 rr.FrontFaceFillMode = translate_fill_mode(state->fill_front);
1132 rr.BackFaceFillMode = translate_fill_mode(state->fill_back);
1133 rr.DXMultisampleRasterizationEnable = state->multisample;
1134 rr.GlobalDepthOffsetEnableSolid = state->offset_tri;
1135 rr.GlobalDepthOffsetEnableWireframe = state->offset_line;
1136 rr.GlobalDepthOffsetEnablePoint = state->offset_point;
1137 rr.GlobalDepthOffsetConstant = state->offset_units * 2;
1138 rr.GlobalDepthOffsetScale = state->offset_scale;
1139 rr.GlobalDepthOffsetClamp = state->offset_clamp;
1140 rr.SmoothPointEnable = state->point_smooth || state->multisample;
1141 rr.AntialiasingEnable = state->line_smooth;
1142 rr.ScissorRectangleEnable = state->scissor;
1143 rr.ViewportZNearClipTestEnable = state->depth_clip_near;
1144 rr.ViewportZFarClipTestEnable = state->depth_clip_far;
1145 //rr.ConservativeRasterizationEnable = not yet supported by Gallium...
1146 }
1147
1148 iris_pack_command(GENX(3DSTATE_CLIP), cso->clip, cl) {
1149 /* cl.NonPerspectiveBarycentricEnable is filled in at draw time from
1150 * the FS program; cl.ForceZeroRTAIndexEnable is filled in from the FB.
1151 */
1152 cl.EarlyCullEnable = true;
1153 cl.UserClipDistanceClipTestEnableBitmask = state->clip_plane_enable;
1154 cl.ForceUserClipDistanceClipTestEnableBitmask = true;
1155 cl.APIMode = state->clip_halfz ? APIMODE_D3D : APIMODE_OGL;
1156 cl.GuardbandClipTestEnable = true;
1157 cl.ClipEnable = true;
1158 cl.ViewportXYClipTestEnable = state->point_tri_clip;
1159 cl.MinimumPointWidth = 0.125;
1160 cl.MaximumPointWidth = 255.875;
1161
1162 if (state->flatshade_first) {
1163 cl.TriangleFanProvokingVertexSelect = 1;
1164 } else {
1165 cl.TriangleStripListProvokingVertexSelect = 2;
1166 cl.TriangleFanProvokingVertexSelect = 2;
1167 cl.LineStripListProvokingVertexSelect = 1;
1168 }
1169 }
1170
1171 iris_pack_command(GENX(3DSTATE_WM), cso->wm, wm) {
1172 /* wm.BarycentricInterpolationMode and wm.EarlyDepthStencilControl are
1173 * filled in at draw time from the FS program.
1174 */
1175 wm.LineAntialiasingRegionWidth = _10pixels;
1176 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1177 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1178 wm.LineStippleEnable = state->line_stipple_enable;
1179 wm.PolygonStippleEnable = state->poly_stipple_enable;
1180 }
1181
1182 /* Remap from 0..255 back to 1..256 */
1183 const unsigned line_stipple_factor = state->line_stipple_factor + 1;
1184
1185 iris_pack_command(GENX(3DSTATE_LINE_STIPPLE), cso->line_stipple, line) {
1186 line.LineStipplePattern = state->line_stipple_pattern;
1187 line.LineStippleInverseRepeatCount = 1.0f / line_stipple_factor;
1188 line.LineStippleRepeatCount = line_stipple_factor;
1189 }
1190
1191 return cso;
1192 }
1193
1194 /**
1195 * The pipe->bind_rasterizer_state() driver hook.
1196 *
1197 * Bind a rasterizer CSO and flag related dirty bits.
1198 */
1199 static void
1200 iris_bind_rasterizer_state(struct pipe_context *ctx, void *state)
1201 {
1202 struct iris_context *ice = (struct iris_context *) ctx;
1203 struct iris_rasterizer_state *old_cso = ice->state.cso_rast;
1204 struct iris_rasterizer_state *new_cso = state;
1205
1206 if (new_cso) {
1207 /* Try to avoid re-emitting 3DSTATE_LINE_STIPPLE, it's non-pipelined */
1208 if (cso_changed_memcmp(line_stipple))
1209 ice->state.dirty |= IRIS_DIRTY_LINE_STIPPLE;
1210
1211 if (cso_changed(half_pixel_center))
1212 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
1213
1214 if (cso_changed(line_stipple_enable) || cso_changed(poly_stipple_enable))
1215 ice->state.dirty |= IRIS_DIRTY_WM;
1216
1217 if (cso_changed(rasterizer_discard) || cso_changed(flatshade_first))
1218 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
1219
1220 if (cso_changed(depth_clip_near) || cso_changed(depth_clip_far) ||
1221 cso_changed(clip_halfz))
1222 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1223
1224 if (cso_changed(sprite_coord_enable) ||
1225 cso_changed(sprite_coord_mode) ||
1226 cso_changed(light_twoside))
1227 ice->state.dirty |= IRIS_DIRTY_SBE;
1228 }
1229
1230 ice->state.cso_rast = new_cso;
1231 ice->state.dirty |= IRIS_DIRTY_RASTER;
1232 ice->state.dirty |= IRIS_DIRTY_CLIP;
1233 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_RASTERIZER];
1234 }
1235
1236 /**
1237 * Return true if the given wrap mode requires the border color to exist.
1238 *
1239 * (We can skip uploading it if the sampler isn't going to use it.)
1240 */
1241 static bool
1242 wrap_mode_needs_border_color(unsigned wrap_mode)
1243 {
1244 return wrap_mode == TCM_CLAMP_BORDER || wrap_mode == TCM_HALF_BORDER;
1245 }
1246
1247 /**
1248 * Gallium CSO for sampler state.
1249 */
1250 struct iris_sampler_state {
1251 union pipe_color_union border_color;
1252 bool needs_border_color;
1253
1254 uint32_t sampler_state[GENX(SAMPLER_STATE_length)];
1255 };
1256
1257 /**
1258 * The pipe->create_sampler_state() driver hook.
1259 *
1260 * We fill out SAMPLER_STATE (except for the border color pointer), and
1261 * store that on the CPU. It doesn't make sense to upload it to a GPU
1262 * buffer object yet, because 3DSTATE_SAMPLER_STATE_POINTERS requires
1263 * all bound sampler states to be in contiguous memor.
1264 */
1265 static void *
1266 iris_create_sampler_state(struct pipe_context *ctx,
1267 const struct pipe_sampler_state *state)
1268 {
1269 struct iris_sampler_state *cso = CALLOC_STRUCT(iris_sampler_state);
1270
1271 if (!cso)
1272 return NULL;
1273
1274 STATIC_ASSERT(PIPE_TEX_FILTER_NEAREST == MAPFILTER_NEAREST);
1275 STATIC_ASSERT(PIPE_TEX_FILTER_LINEAR == MAPFILTER_LINEAR);
1276
1277 unsigned wrap_s = translate_wrap(state->wrap_s);
1278 unsigned wrap_t = translate_wrap(state->wrap_t);
1279 unsigned wrap_r = translate_wrap(state->wrap_r);
1280
1281 memcpy(&cso->border_color, &state->border_color, sizeof(cso->border_color));
1282
1283 cso->needs_border_color = wrap_mode_needs_border_color(wrap_s) ||
1284 wrap_mode_needs_border_color(wrap_t) ||
1285 wrap_mode_needs_border_color(wrap_r);
1286
1287 float min_lod = state->min_lod;
1288 unsigned mag_img_filter = state->mag_img_filter;
1289
1290 // XXX: explain this code ported from ilo...I don't get it at all...
1291 if (state->min_mip_filter == PIPE_TEX_MIPFILTER_NONE &&
1292 state->min_lod > 0.0f) {
1293 min_lod = 0.0f;
1294 mag_img_filter = state->min_img_filter;
1295 }
1296
1297 iris_pack_state(GENX(SAMPLER_STATE), cso->sampler_state, samp) {
1298 samp.TCXAddressControlMode = wrap_s;
1299 samp.TCYAddressControlMode = wrap_t;
1300 samp.TCZAddressControlMode = wrap_r;
1301 samp.CubeSurfaceControlMode = state->seamless_cube_map;
1302 samp.NonnormalizedCoordinateEnable = !state->normalized_coords;
1303 samp.MinModeFilter = state->min_img_filter;
1304 samp.MagModeFilter = mag_img_filter;
1305 samp.MipModeFilter = translate_mip_filter(state->min_mip_filter);
1306 samp.MaximumAnisotropy = RATIO21;
1307
1308 if (state->max_anisotropy >= 2) {
1309 if (state->min_img_filter == PIPE_TEX_FILTER_LINEAR) {
1310 samp.MinModeFilter = MAPFILTER_ANISOTROPIC;
1311 samp.AnisotropicAlgorithm = EWAApproximation;
1312 }
1313
1314 if (state->mag_img_filter == PIPE_TEX_FILTER_LINEAR)
1315 samp.MagModeFilter = MAPFILTER_ANISOTROPIC;
1316
1317 samp.MaximumAnisotropy =
1318 MIN2((state->max_anisotropy - 2) / 2, RATIO161);
1319 }
1320
1321 /* Set address rounding bits if not using nearest filtering. */
1322 if (state->min_img_filter != PIPE_TEX_FILTER_NEAREST) {
1323 samp.UAddressMinFilterRoundingEnable = true;
1324 samp.VAddressMinFilterRoundingEnable = true;
1325 samp.RAddressMinFilterRoundingEnable = true;
1326 }
1327
1328 if (state->mag_img_filter != PIPE_TEX_FILTER_NEAREST) {
1329 samp.UAddressMagFilterRoundingEnable = true;
1330 samp.VAddressMagFilterRoundingEnable = true;
1331 samp.RAddressMagFilterRoundingEnable = true;
1332 }
1333
1334 if (state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE)
1335 samp.ShadowFunction = translate_shadow_func(state->compare_func);
1336
1337 const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
1338
1339 samp.LODPreClampMode = CLAMP_MODE_OGL;
1340 samp.MinLOD = CLAMP(min_lod, 0, hw_max_lod);
1341 samp.MaxLOD = CLAMP(state->max_lod, 0, hw_max_lod);
1342 samp.TextureLODBias = CLAMP(state->lod_bias, -16, 15);
1343
1344 /* .BorderColorPointer is filled in by iris_bind_sampler_states. */
1345 }
1346
1347 return cso;
1348 }
1349
1350 /**
1351 * The pipe->bind_sampler_states() driver hook.
1352 *
1353 * Now that we know all the sampler states, we upload them all into a
1354 * contiguous area of GPU memory, for 3DSTATE_SAMPLER_STATE_POINTERS_*.
1355 * We also fill out the border color state pointers at this point.
1356 *
1357 * We could defer this work to draw time, but we assume that binding
1358 * will be less frequent than drawing.
1359 */
1360 // XXX: this may be a bad idea, need to make sure that st/mesa calls us
1361 // XXX: with the complete set of shaders. If it makes multiple calls to
1362 // XXX: things one at a time, we could waste a lot of time assembling things.
1363 // XXX: it doesn't even BUY us anything to do it here, because we only flag
1364 // XXX: IRIS_DIRTY_SAMPLER_STATE when this is called...
1365 static void
1366 iris_bind_sampler_states(struct pipe_context *ctx,
1367 enum pipe_shader_type p_stage,
1368 unsigned start, unsigned count,
1369 void **states)
1370 {
1371 struct iris_context *ice = (struct iris_context *) ctx;
1372 gl_shader_stage stage = stage_from_pipe(p_stage);
1373 struct iris_shader_state *shs = &ice->state.shaders[stage];
1374
1375 assert(start + count <= IRIS_MAX_TEXTURE_SAMPLERS);
1376
1377 for (int i = 0; i < count; i++) {
1378 shs->samplers[start + i] = states[i];
1379 }
1380
1381 /* Assemble the SAMPLER_STATEs into a contiguous table that lives
1382 * in the dynamic state memory zone, so we can point to it via the
1383 * 3DSTATE_SAMPLER_STATE_POINTERS_* commands.
1384 */
1385 uint32_t *map =
1386 upload_state(ice->state.dynamic_uploader, &shs->sampler_table,
1387 count * 4 * GENX(SAMPLER_STATE_length), 32);
1388 if (unlikely(!map))
1389 return;
1390
1391 struct pipe_resource *res = shs->sampler_table.res;
1392 shs->sampler_table.offset +=
1393 iris_bo_offset_from_base_address(iris_resource_bo(res));
1394
1395 /* Make sure all land in the same BO */
1396 iris_border_color_pool_reserve(ice, IRIS_MAX_TEXTURE_SAMPLERS);
1397
1398 for (int i = 0; i < count; i++) {
1399 struct iris_sampler_state *state = shs->samplers[i];
1400
1401 if (!state) {
1402 memset(map, 0, 4 * GENX(SAMPLER_STATE_length));
1403 } else if (!state->needs_border_color) {
1404 memcpy(map, state->sampler_state, 4 * GENX(SAMPLER_STATE_length));
1405 } else {
1406 ice->state.need_border_colors = true;
1407
1408 /* Stream out the border color and merge the pointer. */
1409 uint32_t offset =
1410 iris_upload_border_color(ice, &state->border_color);
1411
1412 uint32_t dynamic[GENX(SAMPLER_STATE_length)];
1413 iris_pack_state(GENX(SAMPLER_STATE), dynamic, dyns) {
1414 dyns.BorderColorPointer = offset;
1415 }
1416
1417 for (uint32_t j = 0; j < GENX(SAMPLER_STATE_length); j++)
1418 map[j] = state->sampler_state[j] | dynamic[j];
1419 }
1420
1421 map += GENX(SAMPLER_STATE_length);
1422 }
1423
1424 ice->state.dirty |= IRIS_DIRTY_SAMPLER_STATES_VS << stage;
1425 }
1426
1427 static enum isl_channel_select
1428 fmt_swizzle(const struct iris_format_info *fmt, enum pipe_swizzle swz)
1429 {
1430 switch (swz) {
1431 case PIPE_SWIZZLE_X: return fmt->swizzle.r;
1432 case PIPE_SWIZZLE_Y: return fmt->swizzle.g;
1433 case PIPE_SWIZZLE_Z: return fmt->swizzle.b;
1434 case PIPE_SWIZZLE_W: return fmt->swizzle.a;
1435 case PIPE_SWIZZLE_1: return SCS_ONE;
1436 case PIPE_SWIZZLE_0: return SCS_ZERO;
1437 default: unreachable("invalid swizzle");
1438 }
1439 }
1440
1441 static void
1442 fill_buffer_surface_state(struct isl_device *isl_dev,
1443 struct iris_bo *bo,
1444 void *map,
1445 enum isl_format format,
1446 unsigned offset,
1447 unsigned size)
1448 {
1449 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
1450 const unsigned cpp = fmtl->bpb / 8;
1451
1452 /* The ARB_texture_buffer_specification says:
1453 *
1454 * "The number of texels in the buffer texture's texel array is given by
1455 *
1456 * floor(<buffer_size> / (<components> * sizeof(<base_type>)),
1457 *
1458 * where <buffer_size> is the size of the buffer object, in basic
1459 * machine units and <components> and <base_type> are the element count
1460 * and base data type for elements, as specified in Table X.1. The
1461 * number of texels in the texel array is then clamped to the
1462 * implementation-dependent limit MAX_TEXTURE_BUFFER_SIZE_ARB."
1463 *
1464 * We need to clamp the size in bytes to MAX_TEXTURE_BUFFER_SIZE * stride,
1465 * so that when ISL divides by stride to obtain the number of texels, that
1466 * texel count is clamped to MAX_TEXTURE_BUFFER_SIZE.
1467 */
1468 unsigned final_size =
1469 MIN3(size, bo->size - offset, IRIS_MAX_TEXTURE_BUFFER_SIZE * cpp);
1470
1471 isl_buffer_fill_state(isl_dev, map,
1472 .address = bo->gtt_offset + offset,
1473 .size_B = final_size,
1474 .format = format,
1475 .stride_B = cpp,
1476 .mocs = MOCS_WB);
1477 }
1478
1479 /**
1480 * The pipe->create_sampler_view() driver hook.
1481 */
1482 static struct pipe_sampler_view *
1483 iris_create_sampler_view(struct pipe_context *ctx,
1484 struct pipe_resource *tex,
1485 const struct pipe_sampler_view *tmpl)
1486 {
1487 struct iris_context *ice = (struct iris_context *) ctx;
1488 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1489 const struct gen_device_info *devinfo = &screen->devinfo;
1490 struct iris_sampler_view *isv = calloc(1, sizeof(struct iris_sampler_view));
1491
1492 if (!isv)
1493 return NULL;
1494
1495 /* initialize base object */
1496 isv->base = *tmpl;
1497 isv->base.context = ctx;
1498 isv->base.texture = NULL;
1499 pipe_reference_init(&isv->base.reference, 1);
1500 pipe_resource_reference(&isv->base.texture, tex);
1501
1502 void *map = upload_state(ice->state.surface_uploader, &isv->surface_state,
1503 4 * GENX(RENDER_SURFACE_STATE_length), 64);
1504 if (!unlikely(map))
1505 return NULL;
1506
1507 struct iris_bo *state_bo = iris_resource_bo(isv->surface_state.res);
1508 isv->surface_state.offset += iris_bo_offset_from_base_address(state_bo);
1509
1510 if (util_format_is_depth_or_stencil(tmpl->format)) {
1511 struct iris_resource *zres, *sres;
1512 const struct util_format_description *desc =
1513 util_format_description(tmpl->format);
1514
1515 iris_get_depth_stencil_resources(tex, &zres, &sres);
1516
1517 tex = util_format_has_depth(desc) ? &zres->base : &sres->base;
1518 }
1519
1520 isv->res = (struct iris_resource *) tex;
1521
1522 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_TEXTURE_BIT;
1523
1524 if (isv->base.target == PIPE_TEXTURE_CUBE ||
1525 isv->base.target == PIPE_TEXTURE_CUBE_ARRAY)
1526 usage |= ISL_SURF_USAGE_CUBE_BIT;
1527
1528 const struct iris_format_info fmt =
1529 iris_format_for_usage(devinfo, tmpl->format, usage);
1530
1531 isv->view = (struct isl_view) {
1532 .format = fmt.fmt,
1533 .swizzle = (struct isl_swizzle) {
1534 .r = fmt_swizzle(&fmt, tmpl->swizzle_r),
1535 .g = fmt_swizzle(&fmt, tmpl->swizzle_g),
1536 .b = fmt_swizzle(&fmt, tmpl->swizzle_b),
1537 .a = fmt_swizzle(&fmt, tmpl->swizzle_a),
1538 },
1539 .usage = usage,
1540 };
1541
1542 /* Fill out SURFACE_STATE for this view. */
1543 if (tmpl->target != PIPE_BUFFER) {
1544 isv->view.base_level = tmpl->u.tex.first_level;
1545 isv->view.levels = tmpl->u.tex.last_level - tmpl->u.tex.first_level + 1;
1546 // XXX: do I need to port f9fd0cf4790cb2a530e75d1a2206dbb9d8af7cb2?
1547 isv->view.base_array_layer = tmpl->u.tex.first_layer;
1548 isv->view.array_len =
1549 tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
1550
1551 isl_surf_fill_state(&screen->isl_dev, map,
1552 .surf = &isv->res->surf, .view = &isv->view,
1553 .mocs = MOCS_WB,
1554 .address = isv->res->bo->gtt_offset);
1555 // .aux_surf =
1556 // .clear_color = clear_color,
1557 } else {
1558 fill_buffer_surface_state(&screen->isl_dev, isv->res->bo, map,
1559 isv->view.format, tmpl->u.buf.offset,
1560 tmpl->u.buf.size);
1561 }
1562
1563 return &isv->base;
1564 }
1565
1566 static void
1567 iris_sampler_view_destroy(struct pipe_context *ctx,
1568 struct pipe_sampler_view *state)
1569 {
1570 struct iris_sampler_view *isv = (void *) state;
1571 pipe_resource_reference(&state->texture, NULL);
1572 pipe_resource_reference(&isv->surface_state.res, NULL);
1573 free(isv);
1574 }
1575
1576 /**
1577 * The pipe->create_surface() driver hook.
1578 *
1579 * In Gallium nomenclature, "surfaces" are a view of a resource that
1580 * can be bound as a render target or depth/stencil buffer.
1581 */
1582 static struct pipe_surface *
1583 iris_create_surface(struct pipe_context *ctx,
1584 struct pipe_resource *tex,
1585 const struct pipe_surface *tmpl)
1586 {
1587 struct iris_context *ice = (struct iris_context *) ctx;
1588 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1589 const struct gen_device_info *devinfo = &screen->devinfo;
1590 struct iris_surface *surf = calloc(1, sizeof(struct iris_surface));
1591 struct pipe_surface *psurf = &surf->base;
1592 struct iris_resource *res = (struct iris_resource *) tex;
1593
1594 if (!surf)
1595 return NULL;
1596
1597 pipe_reference_init(&psurf->reference, 1);
1598 pipe_resource_reference(&psurf->texture, tex);
1599 psurf->context = ctx;
1600 psurf->format = tmpl->format;
1601 psurf->width = tex->width0;
1602 psurf->height = tex->height0;
1603 psurf->texture = tex;
1604 psurf->u.tex.first_layer = tmpl->u.tex.first_layer;
1605 psurf->u.tex.last_layer = tmpl->u.tex.last_layer;
1606 psurf->u.tex.level = tmpl->u.tex.level;
1607
1608 isl_surf_usage_flags_t usage = 0;
1609 if (tmpl->writable)
1610 usage = ISL_SURF_USAGE_STORAGE_BIT;
1611 else if (util_format_is_depth_or_stencil(tmpl->format))
1612 usage = ISL_SURF_USAGE_DEPTH_BIT;
1613 else
1614 usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
1615
1616 const struct iris_format_info fmt =
1617 iris_format_for_usage(devinfo, psurf->format, usage);
1618
1619 if ((usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) &&
1620 !isl_format_supports_rendering(devinfo, fmt.fmt)) {
1621 /* Framebuffer validation will reject this invalid case, but it
1622 * hasn't had the opportunity yet. In the meantime, we need to
1623 * avoid hitting ISL asserts about unsupported formats below.
1624 */
1625 free(surf);
1626 return NULL;
1627 }
1628
1629 surf->view = (struct isl_view) {
1630 .format = fmt.fmt,
1631 .base_level = tmpl->u.tex.level,
1632 .levels = 1,
1633 .base_array_layer = tmpl->u.tex.first_layer,
1634 .array_len = tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1,
1635 .swizzle = ISL_SWIZZLE_IDENTITY,
1636 .usage = usage,
1637 };
1638
1639 /* Bail early for depth/stencil - we don't want SURFACE_STATE for them. */
1640 if (res->surf.usage & (ISL_SURF_USAGE_DEPTH_BIT |
1641 ISL_SURF_USAGE_STENCIL_BIT))
1642 return psurf;
1643
1644
1645 void *map = upload_state(ice->state.surface_uploader, &surf->surface_state,
1646 4 * GENX(RENDER_SURFACE_STATE_length), 64);
1647 if (!unlikely(map))
1648 return NULL;
1649
1650 struct iris_bo *state_bo = iris_resource_bo(surf->surface_state.res);
1651 surf->surface_state.offset += iris_bo_offset_from_base_address(state_bo);
1652
1653 isl_surf_fill_state(&screen->isl_dev, map,
1654 .surf = &res->surf, .view = &surf->view,
1655 .mocs = MOCS_WB,
1656 .address = res->bo->gtt_offset);
1657 // .aux_surf =
1658 // .clear_color = clear_color,
1659
1660 return psurf;
1661 }
1662
1663 /**
1664 * The pipe->set_shader_images() driver hook.
1665 */
1666 static void
1667 iris_set_shader_images(struct pipe_context *ctx,
1668 enum pipe_shader_type p_stage,
1669 unsigned start_slot, unsigned count,
1670 const struct pipe_image_view *p_images)
1671 {
1672 struct iris_context *ice = (struct iris_context *) ctx;
1673 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1674 const struct gen_device_info *devinfo = &screen->devinfo;
1675 gl_shader_stage stage = stage_from_pipe(p_stage);
1676 struct iris_shader_state *shs = &ice->state.shaders[stage];
1677
1678 shs->bound_image_views &= ~u_bit_consecutive(start_slot, count);
1679
1680 for (unsigned i = 0; i < count; i++) {
1681 if (p_images && p_images[i].resource) {
1682 const struct pipe_image_view *img = &p_images[i];
1683 struct iris_resource *res = (void *) img->resource;
1684 pipe_resource_reference(&shs->image[start_slot + i].res, &res->base);
1685
1686 shs->bound_image_views |= 1 << (start_slot + i);
1687
1688 res->bind_history |= PIPE_BIND_SHADER_IMAGE;
1689
1690 // XXX: these are not retained forever, use a separate uploader?
1691 void *map =
1692 upload_state(ice->state.surface_uploader,
1693 &shs->image[start_slot + i].surface_state,
1694 4 * GENX(RENDER_SURFACE_STATE_length), 64);
1695 if (!unlikely(map)) {
1696 pipe_resource_reference(&shs->image[start_slot + i].res, NULL);
1697 return;
1698 }
1699
1700 struct iris_bo *surf_state_bo =
1701 iris_resource_bo(shs->image[start_slot + i].surface_state.res);
1702 shs->image[start_slot + i].surface_state.offset +=
1703 iris_bo_offset_from_base_address(surf_state_bo);
1704
1705 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_STORAGE_BIT;
1706 enum isl_format isl_format =
1707 iris_format_for_usage(devinfo, img->format, usage).fmt;
1708
1709 if (img->shader_access & PIPE_IMAGE_ACCESS_READ)
1710 isl_format = isl_lower_storage_image_format(devinfo, isl_format);
1711
1712 shs->image[start_slot + i].access = img->shader_access;
1713
1714 if (res->base.target != PIPE_BUFFER) {
1715 struct isl_view view = {
1716 .format = isl_format,
1717 .base_level = img->u.tex.level,
1718 .levels = 1,
1719 .base_array_layer = img->u.tex.first_layer,
1720 .array_len = img->u.tex.last_layer - img->u.tex.first_layer + 1,
1721 .swizzle = ISL_SWIZZLE_IDENTITY,
1722 .usage = usage,
1723 };
1724
1725 isl_surf_fill_state(&screen->isl_dev, map,
1726 .surf = &res->surf, .view = &view,
1727 .mocs = MOCS_WB,
1728 .address = res->bo->gtt_offset);
1729 // .aux_surf =
1730 // .clear_color = clear_color,
1731 } else {
1732 fill_buffer_surface_state(&screen->isl_dev, res->bo, map,
1733 isl_format, img->u.buf.offset,
1734 img->u.buf.size);
1735 }
1736 } else {
1737 pipe_resource_reference(&shs->image[start_slot + i].res, NULL);
1738 pipe_resource_reference(&shs->image[start_slot + i].surface_state.res,
1739 NULL);
1740 }
1741 }
1742
1743 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
1744 }
1745
1746
1747 /**
1748 * The pipe->set_sampler_views() driver hook.
1749 */
1750 static void
1751 iris_set_sampler_views(struct pipe_context *ctx,
1752 enum pipe_shader_type p_stage,
1753 unsigned start, unsigned count,
1754 struct pipe_sampler_view **views)
1755 {
1756 struct iris_context *ice = (struct iris_context *) ctx;
1757 gl_shader_stage stage = stage_from_pipe(p_stage);
1758 struct iris_shader_state *shs = &ice->state.shaders[stage];
1759
1760 shs->bound_sampler_views &= ~u_bit_consecutive(start, count);
1761
1762 for (unsigned i = 0; i < count; i++) {
1763 pipe_sampler_view_reference((struct pipe_sampler_view **)
1764 &shs->textures[start + i], views[i]);
1765 struct iris_sampler_view *view = (void *) views[i];
1766 if (view) {
1767 view->res->bind_history |= PIPE_BIND_SAMPLER_VIEW;
1768 shs->bound_sampler_views |= 1 << (start + i);
1769 }
1770 }
1771
1772 ice->state.dirty |= (IRIS_DIRTY_BINDINGS_VS << stage);
1773 }
1774
1775 /**
1776 * The pipe->set_tess_state() driver hook.
1777 */
1778 static void
1779 iris_set_tess_state(struct pipe_context *ctx,
1780 const float default_outer_level[4],
1781 const float default_inner_level[2])
1782 {
1783 struct iris_context *ice = (struct iris_context *) ctx;
1784
1785 memcpy(&ice->state.default_outer_level[0], &default_outer_level[0], 4 * sizeof(float));
1786 memcpy(&ice->state.default_inner_level[0], &default_inner_level[0], 2 * sizeof(float));
1787
1788 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_TCS;
1789 }
1790
1791 static void
1792 iris_surface_destroy(struct pipe_context *ctx, struct pipe_surface *p_surf)
1793 {
1794 struct iris_surface *surf = (void *) p_surf;
1795 pipe_resource_reference(&p_surf->texture, NULL);
1796 pipe_resource_reference(&surf->surface_state.res, NULL);
1797 free(surf);
1798 }
1799
1800 static void
1801 iris_set_clip_state(struct pipe_context *ctx,
1802 const struct pipe_clip_state *state)
1803 {
1804 struct iris_context *ice = (struct iris_context *) ctx;
1805 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_VERTEX];
1806
1807 memcpy(&ice->state.clip_planes, state, sizeof(*state));
1808
1809 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS;
1810 shs->cbuf0_needs_upload = true;
1811 }
1812
1813 /**
1814 * The pipe->set_polygon_stipple() driver hook.
1815 */
1816 static void
1817 iris_set_polygon_stipple(struct pipe_context *ctx,
1818 const struct pipe_poly_stipple *state)
1819 {
1820 struct iris_context *ice = (struct iris_context *) ctx;
1821 memcpy(&ice->state.poly_stipple, state, sizeof(*state));
1822 ice->state.dirty |= IRIS_DIRTY_POLYGON_STIPPLE;
1823 }
1824
1825 /**
1826 * The pipe->set_sample_mask() driver hook.
1827 */
1828 static void
1829 iris_set_sample_mask(struct pipe_context *ctx, unsigned sample_mask)
1830 {
1831 struct iris_context *ice = (struct iris_context *) ctx;
1832
1833 /* We only support 16x MSAA, so we have 16 bits of sample maks.
1834 * st/mesa may pass us 0xffffffff though, meaning "enable all samples".
1835 */
1836 ice->state.sample_mask = sample_mask & 0xffff;
1837 ice->state.dirty |= IRIS_DIRTY_SAMPLE_MASK;
1838 }
1839
1840 /**
1841 * The pipe->set_scissor_states() driver hook.
1842 *
1843 * This corresponds to our SCISSOR_RECT state structures. It's an
1844 * exact match, so we just store them, and memcpy them out later.
1845 */
1846 static void
1847 iris_set_scissor_states(struct pipe_context *ctx,
1848 unsigned start_slot,
1849 unsigned num_scissors,
1850 const struct pipe_scissor_state *rects)
1851 {
1852 struct iris_context *ice = (struct iris_context *) ctx;
1853
1854 for (unsigned i = 0; i < num_scissors; i++) {
1855 if (rects[i].minx == rects[i].maxx || rects[i].miny == rects[i].maxy) {
1856 /* If the scissor was out of bounds and got clamped to 0 width/height
1857 * at the bounds, the subtraction of 1 from maximums could produce a
1858 * negative number and thus not clip anything. Instead, just provide
1859 * a min > max scissor inside the bounds, which produces the expected
1860 * no rendering.
1861 */
1862 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
1863 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
1864 };
1865 } else {
1866 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
1867 .minx = rects[i].minx, .miny = rects[i].miny,
1868 .maxx = rects[i].maxx - 1, .maxy = rects[i].maxy - 1,
1869 };
1870 }
1871 }
1872
1873 ice->state.dirty |= IRIS_DIRTY_SCISSOR_RECT;
1874 }
1875
1876 /**
1877 * The pipe->set_stencil_ref() driver hook.
1878 *
1879 * This is added to 3DSTATE_WM_DEPTH_STENCIL dynamically at draw time.
1880 */
1881 static void
1882 iris_set_stencil_ref(struct pipe_context *ctx,
1883 const struct pipe_stencil_ref *state)
1884 {
1885 struct iris_context *ice = (struct iris_context *) ctx;
1886 memcpy(&ice->state.stencil_ref, state, sizeof(*state));
1887 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
1888 }
1889
1890 static float
1891 viewport_extent(const struct pipe_viewport_state *state, int axis, float sign)
1892 {
1893 return copysignf(state->scale[axis], sign) + state->translate[axis];
1894 }
1895
1896 #if 0
1897 static void
1898 calculate_guardband_size(uint32_t fb_width, uint32_t fb_height,
1899 float m00, float m11, float m30, float m31,
1900 float *xmin, float *xmax,
1901 float *ymin, float *ymax)
1902 {
1903 /* According to the "Vertex X,Y Clamping and Quantization" section of the
1904 * Strips and Fans documentation:
1905 *
1906 * "The vertex X and Y screen-space coordinates are also /clamped/ to the
1907 * fixed-point "guardband" range supported by the rasterization hardware"
1908 *
1909 * and
1910 *
1911 * "In almost all circumstances, if an object’s vertices are actually
1912 * modified by this clamping (i.e., had X or Y coordinates outside of
1913 * the guardband extent the rendered object will not match the intended
1914 * result. Therefore software should take steps to ensure that this does
1915 * not happen - e.g., by clipping objects such that they do not exceed
1916 * these limits after the Drawing Rectangle is applied."
1917 *
1918 * I believe the fundamental restriction is that the rasterizer (in
1919 * the SF/WM stages) have a limit on the number of pixels that can be
1920 * rasterized. We need to ensure any coordinates beyond the rasterizer
1921 * limit are handled by the clipper. So effectively that limit becomes
1922 * the clipper's guardband size.
1923 *
1924 * It goes on to say:
1925 *
1926 * "In addition, in order to be correctly rendered, objects must have a
1927 * screenspace bounding box not exceeding 8K in the X or Y direction.
1928 * This additional restriction must also be comprehended by software,
1929 * i.e., enforced by use of clipping."
1930 *
1931 * This makes no sense. Gen7+ hardware supports 16K render targets,
1932 * and you definitely need to be able to draw polygons that fill the
1933 * surface. Our assumption is that the rasterizer was limited to 8K
1934 * on Sandybridge, which only supports 8K surfaces, and it was actually
1935 * increased to 16K on Ivybridge and later.
1936 *
1937 * So, limit the guardband to 16K on Gen7+ and 8K on Sandybridge.
1938 */
1939 const float gb_size = GEN_GEN >= 7 ? 16384.0f : 8192.0f;
1940
1941 if (m00 != 0 && m11 != 0) {
1942 /* First, we compute the screen-space render area */
1943 const float ss_ra_xmin = MIN3( 0, m30 + m00, m30 - m00);
1944 const float ss_ra_xmax = MAX3( fb_width, m30 + m00, m30 - m00);
1945 const float ss_ra_ymin = MIN3( 0, m31 + m11, m31 - m11);
1946 const float ss_ra_ymax = MAX3(fb_height, m31 + m11, m31 - m11);
1947
1948 /* We want the guardband to be centered on that */
1949 const float ss_gb_xmin = (ss_ra_xmin + ss_ra_xmax) / 2 - gb_size;
1950 const float ss_gb_xmax = (ss_ra_xmin + ss_ra_xmax) / 2 + gb_size;
1951 const float ss_gb_ymin = (ss_ra_ymin + ss_ra_ymax) / 2 - gb_size;
1952 const float ss_gb_ymax = (ss_ra_ymin + ss_ra_ymax) / 2 + gb_size;
1953
1954 /* Now we need it in native device coordinates */
1955 const float ndc_gb_xmin = (ss_gb_xmin - m30) / m00;
1956 const float ndc_gb_xmax = (ss_gb_xmax - m30) / m00;
1957 const float ndc_gb_ymin = (ss_gb_ymin - m31) / m11;
1958 const float ndc_gb_ymax = (ss_gb_ymax - m31) / m11;
1959
1960 /* Thanks to Y-flipping and ORIGIN_UPPER_LEFT, the Y coordinates may be
1961 * flipped upside-down. X should be fine though.
1962 */
1963 assert(ndc_gb_xmin <= ndc_gb_xmax);
1964 *xmin = ndc_gb_xmin;
1965 *xmax = ndc_gb_xmax;
1966 *ymin = MIN2(ndc_gb_ymin, ndc_gb_ymax);
1967 *ymax = MAX2(ndc_gb_ymin, ndc_gb_ymax);
1968 } else {
1969 /* The viewport scales to 0, so nothing will be rendered. */
1970 *xmin = 0.0f;
1971 *xmax = 0.0f;
1972 *ymin = 0.0f;
1973 *ymax = 0.0f;
1974 }
1975 }
1976 #endif
1977
1978 /**
1979 * The pipe->set_viewport_states() driver hook.
1980 *
1981 * This corresponds to our SF_CLIP_VIEWPORT states. We can't calculate
1982 * the guardband yet, as we need the framebuffer dimensions, but we can
1983 * at least fill out the rest.
1984 */
1985 static void
1986 iris_set_viewport_states(struct pipe_context *ctx,
1987 unsigned start_slot,
1988 unsigned count,
1989 const struct pipe_viewport_state *states)
1990 {
1991 struct iris_context *ice = (struct iris_context *) ctx;
1992 struct iris_genx_state *genx = ice->state.genx;
1993 uint32_t *vp_map =
1994 &genx->sf_cl_vp[start_slot * GENX(SF_CLIP_VIEWPORT_length)];
1995
1996 for (unsigned i = 0; i < count; i++) {
1997 const struct pipe_viewport_state *state = &states[i];
1998
1999 memcpy(&ice->state.viewports[start_slot + i], state, sizeof(*state));
2000
2001 iris_pack_state(GENX(SF_CLIP_VIEWPORT), vp_map, vp) {
2002 vp.ViewportMatrixElementm00 = state->scale[0];
2003 vp.ViewportMatrixElementm11 = state->scale[1];
2004 vp.ViewportMatrixElementm22 = state->scale[2];
2005 vp.ViewportMatrixElementm30 = state->translate[0];
2006 vp.ViewportMatrixElementm31 = state->translate[1];
2007 vp.ViewportMatrixElementm32 = state->translate[2];
2008 /* XXX: in i965 this is computed based on the drawbuffer size,
2009 * but we don't have that here...
2010 */
2011 vp.XMinClipGuardband = -1.0;
2012 vp.XMaxClipGuardband = 1.0;
2013 vp.YMinClipGuardband = -1.0;
2014 vp.YMaxClipGuardband = 1.0;
2015 vp.XMinViewPort = viewport_extent(state, 0, -1.0f);
2016 vp.XMaxViewPort = viewport_extent(state, 0, 1.0f) - 1;
2017 vp.YMinViewPort = viewport_extent(state, 1, -1.0f);
2018 vp.YMaxViewPort = viewport_extent(state, 1, 1.0f) - 1;
2019 }
2020
2021 vp_map += GENX(SF_CLIP_VIEWPORT_length);
2022 }
2023
2024 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2025
2026 if (ice->state.cso_rast && (!ice->state.cso_rast->depth_clip_near ||
2027 !ice->state.cso_rast->depth_clip_far))
2028 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
2029 }
2030
2031 /**
2032 * The pipe->set_framebuffer_state() driver hook.
2033 *
2034 * Sets the current draw FBO, including color render targets, depth,
2035 * and stencil buffers.
2036 */
2037 static void
2038 iris_set_framebuffer_state(struct pipe_context *ctx,
2039 const struct pipe_framebuffer_state *state)
2040 {
2041 struct iris_context *ice = (struct iris_context *) ctx;
2042 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2043 struct isl_device *isl_dev = &screen->isl_dev;
2044 struct pipe_framebuffer_state *cso = &ice->state.framebuffer;
2045 struct iris_resource *zres;
2046 struct iris_resource *stencil_res;
2047
2048 unsigned samples = util_framebuffer_get_num_samples(state);
2049
2050 if (cso->samples != samples) {
2051 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
2052 }
2053
2054 if (cso->nr_cbufs != state->nr_cbufs) {
2055 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
2056 }
2057
2058 if ((cso->layers == 0) != (state->layers == 0)) {
2059 ice->state.dirty |= IRIS_DIRTY_CLIP;
2060 }
2061
2062 util_copy_framebuffer_state(cso, state);
2063 cso->samples = samples;
2064
2065 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
2066
2067 struct isl_view view = {
2068 .base_level = 0,
2069 .levels = 1,
2070 .base_array_layer = 0,
2071 .array_len = 1,
2072 .swizzle = ISL_SWIZZLE_IDENTITY,
2073 };
2074
2075 struct isl_depth_stencil_hiz_emit_info info = {
2076 .view = &view,
2077 .mocs = MOCS_WB,
2078 };
2079
2080 if (cso->zsbuf) {
2081 iris_get_depth_stencil_resources(cso->zsbuf->texture, &zres,
2082 &stencil_res);
2083
2084 view.base_level = cso->zsbuf->u.tex.level;
2085 view.base_array_layer = cso->zsbuf->u.tex.first_layer;
2086 view.array_len =
2087 cso->zsbuf->u.tex.last_layer - cso->zsbuf->u.tex.first_layer + 1;
2088
2089 if (zres) {
2090 view.usage |= ISL_SURF_USAGE_DEPTH_BIT;
2091
2092 info.depth_surf = &zres->surf;
2093 info.depth_address = zres->bo->gtt_offset;
2094 info.hiz_usage = ISL_AUX_USAGE_NONE;
2095
2096 view.format = zres->surf.format;
2097 }
2098
2099 if (stencil_res) {
2100 view.usage |= ISL_SURF_USAGE_STENCIL_BIT;
2101 info.stencil_surf = &stencil_res->surf;
2102 info.stencil_address = stencil_res->bo->gtt_offset;
2103 if (!zres)
2104 view.format = stencil_res->surf.format;
2105 }
2106 }
2107
2108 isl_emit_depth_stencil_hiz_s(isl_dev, cso_z->packets, &info);
2109
2110 /* Make a null surface for unbound buffers */
2111 void *null_surf_map =
2112 upload_state(ice->state.surface_uploader, &ice->state.null_fb,
2113 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2114 isl_null_fill_state(&screen->isl_dev, null_surf_map,
2115 isl_extent3d(MAX2(cso->width, 1),
2116 MAX2(cso->height, 1),
2117 cso->layers ? cso->layers : 1));
2118 ice->state.null_fb.offset +=
2119 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.null_fb.res));
2120
2121 ice->state.dirty |= IRIS_DIRTY_DEPTH_BUFFER;
2122
2123 /* Render target change */
2124 ice->state.dirty |= IRIS_DIRTY_BINDINGS_FS;
2125
2126 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_FRAMEBUFFER];
2127
2128 #if GEN_GEN == 11
2129 // XXX: we may want to flag IRIS_DIRTY_MULTISAMPLE (or SAMPLE_MASK?)
2130 // XXX: see commit 979fc1bc9bcc64027ff2cfafd285676f31b930a6
2131
2132 /* The PIPE_CONTROL command description says:
2133 *
2134 * "Whenever a Binding Table Index (BTI) used by a Render Target Message
2135 * points to a different RENDER_SURFACE_STATE, SW must issue a Render
2136 * Target Cache Flush by enabling this bit. When render target flush
2137 * is set due to new association of BTI, PS Scoreboard Stall bit must
2138 * be set in this packet."
2139 */
2140 // XXX: does this need to happen at 3DSTATE_BTP_PS time?
2141 iris_emit_pipe_control_flush(&ice->batches[IRIS_BATCH_RENDER],
2142 PIPE_CONTROL_RENDER_TARGET_FLUSH |
2143 PIPE_CONTROL_STALL_AT_SCOREBOARD);
2144 #endif
2145 }
2146
2147 static void
2148 upload_ubo_surf_state(struct iris_context *ice,
2149 struct iris_const_buffer *cbuf,
2150 unsigned buffer_size)
2151 {
2152 struct pipe_context *ctx = &ice->ctx;
2153 struct iris_screen *screen = (struct iris_screen *) ctx->screen;
2154
2155 // XXX: these are not retained forever, use a separate uploader?
2156 void *map =
2157 upload_state(ice->state.surface_uploader, &cbuf->surface_state,
2158 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2159 if (!unlikely(map)) {
2160 pipe_resource_reference(&cbuf->data.res, NULL);
2161 return;
2162 }
2163
2164 struct iris_resource *res = (void *) cbuf->data.res;
2165 struct iris_bo *surf_bo = iris_resource_bo(cbuf->surface_state.res);
2166 cbuf->surface_state.offset += iris_bo_offset_from_base_address(surf_bo);
2167
2168 isl_buffer_fill_state(&screen->isl_dev, map,
2169 .address = res->bo->gtt_offset + cbuf->data.offset,
2170 .size_B = MIN2(buffer_size,
2171 res->bo->size - cbuf->data.offset),
2172 .format = ISL_FORMAT_R32G32B32A32_FLOAT,
2173 .stride_B = 1,
2174 .mocs = MOCS_WB)
2175 }
2176
2177 /**
2178 * The pipe->set_constant_buffer() driver hook.
2179 *
2180 * This uploads any constant data in user buffers, and references
2181 * any UBO resources containing constant data.
2182 */
2183 static void
2184 iris_set_constant_buffer(struct pipe_context *ctx,
2185 enum pipe_shader_type p_stage, unsigned index,
2186 const struct pipe_constant_buffer *input)
2187 {
2188 struct iris_context *ice = (struct iris_context *) ctx;
2189 gl_shader_stage stage = stage_from_pipe(p_stage);
2190 struct iris_shader_state *shs = &ice->state.shaders[stage];
2191 struct iris_const_buffer *cbuf = &shs->constbuf[index];
2192
2193 if (input && input->buffer) {
2194 assert(index > 0);
2195
2196 pipe_resource_reference(&cbuf->data.res, input->buffer);
2197 cbuf->data.offset = input->buffer_offset;
2198
2199 struct iris_resource *res = (void *) cbuf->data.res;
2200 res->bind_history |= PIPE_BIND_CONSTANT_BUFFER;
2201
2202 upload_ubo_surf_state(ice, cbuf, input->buffer_size);
2203 } else {
2204 pipe_resource_reference(&cbuf->data.res, NULL);
2205 pipe_resource_reference(&cbuf->surface_state.res, NULL);
2206 }
2207
2208 if (index == 0) {
2209 if (input)
2210 memcpy(&shs->cbuf0, input, sizeof(shs->cbuf0));
2211 else
2212 memset(&shs->cbuf0, 0, sizeof(shs->cbuf0));
2213
2214 shs->cbuf0_needs_upload = true;
2215 }
2216
2217 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
2218 // XXX: maybe not necessary all the time...?
2219 // XXX: we need 3DS_BTP to commit these changes, and if we fell back to
2220 // XXX: pull model we may need actual new bindings...
2221 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2222 }
2223
2224 static void
2225 upload_uniforms(struct iris_context *ice,
2226 gl_shader_stage stage)
2227 {
2228 struct iris_shader_state *shs = &ice->state.shaders[stage];
2229 struct iris_const_buffer *cbuf = &shs->constbuf[0];
2230 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
2231
2232 unsigned upload_size = shader->num_system_values * sizeof(uint32_t) +
2233 shs->cbuf0.buffer_size;
2234
2235 if (upload_size == 0)
2236 return;
2237
2238 uint32_t *map =
2239 upload_state(ice->ctx.const_uploader, &cbuf->data, upload_size, 64);
2240
2241 for (int i = 0; i < shader->num_system_values; i++) {
2242 uint32_t sysval = shader->system_values[i];
2243 uint32_t value = 0;
2244
2245 if (BRW_PARAM_BUILTIN_IS_CLIP_PLANE(sysval)) {
2246 int plane = BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(sysval);
2247 int comp = BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(sysval);
2248 value = fui(ice->state.clip_planes.ucp[plane][comp]);
2249 } else {
2250 assert(!"unhandled system value");
2251 }
2252
2253 *map++ = value;
2254 }
2255
2256 if (shs->cbuf0.user_buffer) {
2257 memcpy(map, shs->cbuf0.user_buffer, shs->cbuf0.buffer_size);
2258 }
2259
2260 upload_ubo_surf_state(ice, cbuf, upload_size);
2261 }
2262
2263 /**
2264 * The pipe->set_shader_buffers() driver hook.
2265 *
2266 * This binds SSBOs and ABOs. Unfortunately, we need to stream out
2267 * SURFACE_STATE here, as the buffer offset may change each time.
2268 */
2269 static void
2270 iris_set_shader_buffers(struct pipe_context *ctx,
2271 enum pipe_shader_type p_stage,
2272 unsigned start_slot, unsigned count,
2273 const struct pipe_shader_buffer *buffers)
2274 {
2275 struct iris_context *ice = (struct iris_context *) ctx;
2276 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2277 gl_shader_stage stage = stage_from_pipe(p_stage);
2278 struct iris_shader_state *shs = &ice->state.shaders[stage];
2279
2280 for (unsigned i = 0; i < count; i++) {
2281 if (buffers && buffers[i].buffer) {
2282 const struct pipe_shader_buffer *buffer = &buffers[i];
2283 struct iris_resource *res = (void *) buffer->buffer;
2284 pipe_resource_reference(&shs->ssbo[start_slot + i], &res->base);
2285
2286 res->bind_history |= PIPE_BIND_SHADER_BUFFER;
2287
2288 // XXX: these are not retained forever, use a separate uploader?
2289 void *map =
2290 upload_state(ice->state.surface_uploader,
2291 &shs->ssbo_surface_state[start_slot + i],
2292 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2293 if (!unlikely(map)) {
2294 pipe_resource_reference(&shs->ssbo[start_slot + i], NULL);
2295 return;
2296 }
2297
2298 struct iris_bo *surf_state_bo =
2299 iris_resource_bo(shs->ssbo_surface_state[start_slot + i].res);
2300 shs->ssbo_surface_state[start_slot + i].offset +=
2301 iris_bo_offset_from_base_address(surf_state_bo);
2302
2303 isl_buffer_fill_state(&screen->isl_dev, map,
2304 .address =
2305 res->bo->gtt_offset + buffer->buffer_offset,
2306 .size_B =
2307 MIN2(buffer->buffer_size,
2308 res->bo->size - buffer->buffer_offset),
2309 .format = ISL_FORMAT_RAW,
2310 .stride_B = 1,
2311 .mocs = MOCS_WB);
2312 } else {
2313 pipe_resource_reference(&shs->ssbo[start_slot + i], NULL);
2314 pipe_resource_reference(&shs->ssbo_surface_state[start_slot + i].res,
2315 NULL);
2316 }
2317 }
2318
2319 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2320 }
2321
2322 static void
2323 iris_delete_state(struct pipe_context *ctx, void *state)
2324 {
2325 free(state);
2326 }
2327
2328 static void
2329 iris_free_vertex_buffers(struct iris_vertex_buffer_state *cso)
2330 {
2331 for (unsigned i = 0; i < cso->num_buffers; i++)
2332 pipe_resource_reference(&cso->resources[i], NULL);
2333 }
2334
2335 /**
2336 * The pipe->set_vertex_buffers() driver hook.
2337 *
2338 * This translates pipe_vertex_buffer to our 3DSTATE_VERTEX_BUFFERS packet.
2339 */
2340 static void
2341 iris_set_vertex_buffers(struct pipe_context *ctx,
2342 unsigned start_slot, unsigned count,
2343 const struct pipe_vertex_buffer *buffers)
2344 {
2345 struct iris_context *ice = (struct iris_context *) ctx;
2346 struct iris_vertex_buffer_state *cso = &ice->state.genx->vertex_buffers;
2347
2348 iris_free_vertex_buffers(&ice->state.genx->vertex_buffers);
2349
2350 if (!buffers)
2351 count = 0;
2352
2353 cso->num_buffers = count;
2354
2355 iris_pack_command(GENX(3DSTATE_VERTEX_BUFFERS), cso->vertex_buffers, vb) {
2356 vb.DWordLength = 4 * MAX2(cso->num_buffers, 1) - 1;
2357 }
2358
2359 uint32_t *vb_pack_dest = &cso->vertex_buffers[1];
2360
2361 if (count == 0) {
2362 iris_pack_state(GENX(VERTEX_BUFFER_STATE), vb_pack_dest, vb) {
2363 vb.VertexBufferIndex = start_slot;
2364 vb.NullVertexBuffer = true;
2365 vb.AddressModifyEnable = true;
2366 }
2367 }
2368
2369 for (unsigned i = 0; i < count; i++) {
2370 assert(!buffers[i].is_user_buffer);
2371
2372 pipe_resource_reference(&cso->resources[i], buffers[i].buffer.resource);
2373 struct iris_resource *res = (void *) cso->resources[i];
2374
2375 if (res)
2376 res->bind_history |= PIPE_BIND_VERTEX_BUFFER;
2377
2378 iris_pack_state(GENX(VERTEX_BUFFER_STATE), vb_pack_dest, vb) {
2379 vb.VertexBufferIndex = start_slot + i;
2380 vb.MOCS = MOCS_WB;
2381 vb.AddressModifyEnable = true;
2382 vb.BufferPitch = buffers[i].stride;
2383 if (res) {
2384 vb.BufferSize = res->bo->size;
2385 vb.BufferStartingAddress =
2386 ro_bo(NULL, res->bo->gtt_offset + buffers[i].buffer_offset);
2387 } else {
2388 vb.NullVertexBuffer = true;
2389 }
2390 }
2391
2392 vb_pack_dest += GENX(VERTEX_BUFFER_STATE_length);
2393 }
2394
2395 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
2396 }
2397
2398 /**
2399 * Gallium CSO for vertex elements.
2400 */
2401 struct iris_vertex_element_state {
2402 uint32_t vertex_elements[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
2403 uint32_t vf_instancing[33 * GENX(3DSTATE_VF_INSTANCING_length)];
2404 unsigned count;
2405 };
2406
2407 /**
2408 * The pipe->create_vertex_elements() driver hook.
2409 *
2410 * This translates pipe_vertex_element to our 3DSTATE_VERTEX_ELEMENTS
2411 * and 3DSTATE_VF_INSTANCING commands. SGVs are handled at draw time.
2412 */
2413 static void *
2414 iris_create_vertex_elements(struct pipe_context *ctx,
2415 unsigned count,
2416 const struct pipe_vertex_element *state)
2417 {
2418 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2419 const struct gen_device_info *devinfo = &screen->devinfo;
2420 struct iris_vertex_element_state *cso =
2421 malloc(sizeof(struct iris_vertex_element_state));
2422
2423 cso->count = count;
2424
2425 /* TODO:
2426 * - create edge flag one
2427 * - create SGV ones
2428 * - if those are necessary, use count + 1/2/3... OR in the length
2429 */
2430 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS), cso->vertex_elements, ve) {
2431 ve.DWordLength =
2432 1 + GENX(VERTEX_ELEMENT_STATE_length) * MAX2(count, 1) - 2;
2433 }
2434
2435 uint32_t *ve_pack_dest = &cso->vertex_elements[1];
2436 uint32_t *vfi_pack_dest = cso->vf_instancing;
2437
2438 if (count == 0) {
2439 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
2440 ve.Valid = true;
2441 ve.SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT;
2442 ve.Component0Control = VFCOMP_STORE_0;
2443 ve.Component1Control = VFCOMP_STORE_0;
2444 ve.Component2Control = VFCOMP_STORE_0;
2445 ve.Component3Control = VFCOMP_STORE_1_FP;
2446 }
2447
2448 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
2449 }
2450 }
2451
2452 for (int i = 0; i < count; i++) {
2453 const struct iris_format_info fmt =
2454 iris_format_for_usage(devinfo, state[i].src_format, 0);
2455 unsigned comp[4] = { VFCOMP_STORE_SRC, VFCOMP_STORE_SRC,
2456 VFCOMP_STORE_SRC, VFCOMP_STORE_SRC };
2457
2458 switch (isl_format_get_num_channels(fmt.fmt)) {
2459 case 0: comp[0] = VFCOMP_STORE_0;
2460 case 1: comp[1] = VFCOMP_STORE_0;
2461 case 2: comp[2] = VFCOMP_STORE_0;
2462 case 3:
2463 comp[3] = isl_format_has_int_channel(fmt.fmt) ? VFCOMP_STORE_1_INT
2464 : VFCOMP_STORE_1_FP;
2465 break;
2466 }
2467 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
2468 ve.VertexBufferIndex = state[i].vertex_buffer_index;
2469 ve.Valid = true;
2470 ve.SourceElementOffset = state[i].src_offset;
2471 ve.SourceElementFormat = fmt.fmt;
2472 ve.Component0Control = comp[0];
2473 ve.Component1Control = comp[1];
2474 ve.Component2Control = comp[2];
2475 ve.Component3Control = comp[3];
2476 }
2477
2478 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
2479 vi.VertexElementIndex = i;
2480 vi.InstancingEnable = state[i].instance_divisor > 0;
2481 vi.InstanceDataStepRate = state[i].instance_divisor;
2482 }
2483
2484 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
2485 vfi_pack_dest += GENX(3DSTATE_VF_INSTANCING_length);
2486 }
2487
2488 return cso;
2489 }
2490
2491 /**
2492 * The pipe->bind_vertex_elements_state() driver hook.
2493 */
2494 static void
2495 iris_bind_vertex_elements_state(struct pipe_context *ctx, void *state)
2496 {
2497 struct iris_context *ice = (struct iris_context *) ctx;
2498 struct iris_vertex_element_state *old_cso = ice->state.cso_vertex_elements;
2499 struct iris_vertex_element_state *new_cso = state;
2500
2501 /* 3DSTATE_VF_SGVs overrides the last VE, so if the count is changing,
2502 * we need to re-emit it to ensure we're overriding the right one.
2503 */
2504 if (new_cso && cso_changed(count))
2505 ice->state.dirty |= IRIS_DIRTY_VF_SGVS;
2506
2507 ice->state.cso_vertex_elements = state;
2508 ice->state.dirty |= IRIS_DIRTY_VERTEX_ELEMENTS;
2509 }
2510
2511 /**
2512 * Gallium CSO for stream output (transform feedback) targets.
2513 */
2514 struct iris_stream_output_target {
2515 struct pipe_stream_output_target base;
2516
2517 uint32_t so_buffer[GENX(3DSTATE_SO_BUFFER_length)];
2518
2519 /** Storage holding the offset where we're writing in the buffer */
2520 struct iris_state_ref offset;
2521 };
2522
2523 /**
2524 * The pipe->create_stream_output_target() driver hook.
2525 *
2526 * "Target" here refers to a destination buffer. We translate this into
2527 * a 3DSTATE_SO_BUFFER packet. We can handle most fields, but don't yet
2528 * know which buffer this represents, or whether we ought to zero the
2529 * write-offsets, or append. Those are handled in the set() hook.
2530 */
2531 static struct pipe_stream_output_target *
2532 iris_create_stream_output_target(struct pipe_context *ctx,
2533 struct pipe_resource *p_res,
2534 unsigned buffer_offset,
2535 unsigned buffer_size)
2536 {
2537 struct iris_resource *res = (void *) p_res;
2538 struct iris_stream_output_target *cso = calloc(1, sizeof(*cso));
2539 if (!cso)
2540 return NULL;
2541
2542 res->bind_history |= PIPE_BIND_STREAM_OUTPUT;
2543
2544 pipe_reference_init(&cso->base.reference, 1);
2545 pipe_resource_reference(&cso->base.buffer, p_res);
2546 cso->base.buffer_offset = buffer_offset;
2547 cso->base.buffer_size = buffer_size;
2548 cso->base.context = ctx;
2549
2550 upload_state(ctx->stream_uploader, &cso->offset, 4 * sizeof(uint32_t), 4);
2551
2552 iris_pack_command(GENX(3DSTATE_SO_BUFFER), cso->so_buffer, sob) {
2553 sob.SurfaceBaseAddress =
2554 rw_bo(NULL, res->bo->gtt_offset + buffer_offset);
2555 sob.SOBufferEnable = true;
2556 sob.StreamOffsetWriteEnable = true;
2557 sob.StreamOutputBufferOffsetAddressEnable = true;
2558 sob.MOCS = MOCS_WB; // XXX: MOCS
2559
2560 sob.SurfaceSize = MAX2(buffer_size / 4, 1) - 1;
2561
2562 /* .SOBufferIndex, .StreamOffset, and .StreamOutputBufferOffsetAddress
2563 * are filled in later when we have stream IDs.
2564 */
2565 }
2566
2567 return &cso->base;
2568 }
2569
2570 static void
2571 iris_stream_output_target_destroy(struct pipe_context *ctx,
2572 struct pipe_stream_output_target *state)
2573 {
2574 struct iris_stream_output_target *cso = (void *) state;
2575
2576 pipe_resource_reference(&cso->base.buffer, NULL);
2577 pipe_resource_reference(&cso->offset.res, NULL);
2578
2579 free(cso);
2580 }
2581
2582 /**
2583 * The pipe->set_stream_output_targets() driver hook.
2584 *
2585 * At this point, we know which targets are bound to a particular index,
2586 * and also whether we want to append or start over. We can finish the
2587 * 3DSTATE_SO_BUFFER packets we started earlier.
2588 */
2589 static void
2590 iris_set_stream_output_targets(struct pipe_context *ctx,
2591 unsigned num_targets,
2592 struct pipe_stream_output_target **targets,
2593 const unsigned *offsets)
2594 {
2595 struct iris_context *ice = (struct iris_context *) ctx;
2596 struct iris_genx_state *genx = ice->state.genx;
2597 uint32_t *so_buffers = genx->so_buffers;
2598
2599 const bool active = num_targets > 0;
2600 if (ice->state.streamout_active != active) {
2601 ice->state.streamout_active = active;
2602 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
2603
2604 /* We only emit 3DSTATE_SO_DECL_LIST when streamout is active, because
2605 * it's a non-pipelined command. If we're switching streamout on, we
2606 * may have missed emitting it earlier, so do so now. (We're already
2607 * taking a stall to update 3DSTATE_SO_BUFFERS anyway...)
2608 */
2609 if (active)
2610 ice->state.dirty |= IRIS_DIRTY_SO_DECL_LIST;
2611 }
2612
2613 for (int i = 0; i < 4; i++) {
2614 pipe_so_target_reference(&ice->state.so_target[i],
2615 i < num_targets ? targets[i] : NULL);
2616 }
2617
2618 /* No need to update 3DSTATE_SO_BUFFER unless SOL is active. */
2619 if (!active)
2620 return;
2621
2622 for (unsigned i = 0; i < 4; i++,
2623 so_buffers += GENX(3DSTATE_SO_BUFFER_length)) {
2624
2625 if (i >= num_targets || !targets[i]) {
2626 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob)
2627 sob.SOBufferIndex = i;
2628 continue;
2629 }
2630
2631 struct iris_stream_output_target *tgt = (void *) targets[i];
2632
2633 /* Note that offsets[i] will either be 0, causing us to zero
2634 * the value in the buffer, or 0xFFFFFFFF, which happens to mean
2635 * "continue appending at the existing offset."
2636 */
2637 assert(offsets[i] == 0 || offsets[i] == 0xFFFFFFFF);
2638
2639 uint32_t dynamic[GENX(3DSTATE_SO_BUFFER_length)];
2640 iris_pack_state(GENX(3DSTATE_SO_BUFFER), dynamic, dyns) {
2641 dyns.SOBufferIndex = i;
2642 dyns.StreamOffset = offsets[i];
2643 dyns.StreamOutputBufferOffsetAddress =
2644 rw_bo(NULL, iris_resource_bo(tgt->offset.res)->gtt_offset + tgt->offset.offset + i * sizeof(uint32_t));
2645 }
2646
2647 for (uint32_t j = 0; j < GENX(3DSTATE_SO_BUFFER_length); j++) {
2648 so_buffers[j] = tgt->so_buffer[j] | dynamic[j];
2649 }
2650 }
2651
2652 ice->state.dirty |= IRIS_DIRTY_SO_BUFFERS;
2653 }
2654
2655 /**
2656 * An iris-vtable helper for encoding the 3DSTATE_SO_DECL_LIST and
2657 * 3DSTATE_STREAMOUT packets.
2658 *
2659 * 3DSTATE_SO_DECL_LIST is a list of shader outputs we want the streamout
2660 * hardware to record. We can create it entirely based on the shader, with
2661 * no dynamic state dependencies.
2662 *
2663 * 3DSTATE_STREAMOUT is an annoying mix of shader-based information and
2664 * state-based settings. We capture the shader-related ones here, and merge
2665 * the rest in at draw time.
2666 */
2667 static uint32_t *
2668 iris_create_so_decl_list(const struct pipe_stream_output_info *info,
2669 const struct brw_vue_map *vue_map)
2670 {
2671 struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
2672 int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2673 int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2674 int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2675 int max_decls = 0;
2676 STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
2677
2678 memset(so_decl, 0, sizeof(so_decl));
2679
2680 /* Construct the list of SO_DECLs to be emitted. The formatting of the
2681 * command feels strange -- each dword pair contains a SO_DECL per stream.
2682 */
2683 for (unsigned i = 0; i < info->num_outputs; i++) {
2684 const struct pipe_stream_output *output = &info->output[i];
2685 const int buffer = output->output_buffer;
2686 const int varying = output->register_index;
2687 const unsigned stream_id = output->stream;
2688 assert(stream_id < MAX_VERTEX_STREAMS);
2689
2690 buffer_mask[stream_id] |= 1 << buffer;
2691
2692 assert(vue_map->varying_to_slot[varying] >= 0);
2693
2694 /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
2695 * array. Instead, it simply increments DstOffset for the following
2696 * input by the number of components that should be skipped.
2697 *
2698 * Our hardware is unusual in that it requires us to program SO_DECLs
2699 * for fake "hole" components, rather than simply taking the offset
2700 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
2701 * program as many size = 4 holes as we can, then a final hole to
2702 * accommodate the final 1, 2, or 3 remaining.
2703 */
2704 int skip_components = output->dst_offset - next_offset[buffer];
2705
2706 while (skip_components > 0) {
2707 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
2708 .HoleFlag = 1,
2709 .OutputBufferSlot = output->output_buffer,
2710 .ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
2711 };
2712 skip_components -= 4;
2713 }
2714
2715 next_offset[buffer] = output->dst_offset + output->num_components;
2716
2717 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
2718 .OutputBufferSlot = output->output_buffer,
2719 .RegisterIndex = vue_map->varying_to_slot[varying],
2720 .ComponentMask =
2721 ((1 << output->num_components) - 1) << output->start_component,
2722 };
2723
2724 if (decls[stream_id] > max_decls)
2725 max_decls = decls[stream_id];
2726 }
2727
2728 unsigned dwords = GENX(3DSTATE_STREAMOUT_length) + (3 + 2 * max_decls);
2729 uint32_t *map = ralloc_size(NULL, sizeof(uint32_t) * dwords);
2730 uint32_t *so_decl_map = map + GENX(3DSTATE_STREAMOUT_length);
2731
2732 iris_pack_command(GENX(3DSTATE_STREAMOUT), map, sol) {
2733 int urb_entry_read_offset = 0;
2734 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
2735 urb_entry_read_offset;
2736
2737 /* We always read the whole vertex. This could be reduced at some
2738 * point by reading less and offsetting the register index in the
2739 * SO_DECLs.
2740 */
2741 sol.Stream0VertexReadOffset = urb_entry_read_offset;
2742 sol.Stream0VertexReadLength = urb_entry_read_length - 1;
2743 sol.Stream1VertexReadOffset = urb_entry_read_offset;
2744 sol.Stream1VertexReadLength = urb_entry_read_length - 1;
2745 sol.Stream2VertexReadOffset = urb_entry_read_offset;
2746 sol.Stream2VertexReadLength = urb_entry_read_length - 1;
2747 sol.Stream3VertexReadOffset = urb_entry_read_offset;
2748 sol.Stream3VertexReadLength = urb_entry_read_length - 1;
2749
2750 /* Set buffer pitches; 0 means unbound. */
2751 sol.Buffer0SurfacePitch = 4 * info->stride[0];
2752 sol.Buffer1SurfacePitch = 4 * info->stride[1];
2753 sol.Buffer2SurfacePitch = 4 * info->stride[2];
2754 sol.Buffer3SurfacePitch = 4 * info->stride[3];
2755 }
2756
2757 iris_pack_command(GENX(3DSTATE_SO_DECL_LIST), so_decl_map, list) {
2758 list.DWordLength = 3 + 2 * max_decls - 2;
2759 list.StreamtoBufferSelects0 = buffer_mask[0];
2760 list.StreamtoBufferSelects1 = buffer_mask[1];
2761 list.StreamtoBufferSelects2 = buffer_mask[2];
2762 list.StreamtoBufferSelects3 = buffer_mask[3];
2763 list.NumEntries0 = decls[0];
2764 list.NumEntries1 = decls[1];
2765 list.NumEntries2 = decls[2];
2766 list.NumEntries3 = decls[3];
2767 }
2768
2769 for (int i = 0; i < max_decls; i++) {
2770 iris_pack_state(GENX(SO_DECL_ENTRY), so_decl_map + 3 + i * 2, entry) {
2771 entry.Stream0Decl = so_decl[0][i];
2772 entry.Stream1Decl = so_decl[1][i];
2773 entry.Stream2Decl = so_decl[2][i];
2774 entry.Stream3Decl = so_decl[3][i];
2775 }
2776 }
2777
2778 return map;
2779 }
2780
2781 static void
2782 iris_compute_sbe_urb_read_interval(uint64_t fs_input_slots,
2783 const struct brw_vue_map *last_vue_map,
2784 bool two_sided_color,
2785 unsigned *out_offset,
2786 unsigned *out_length)
2787 {
2788 /* The compiler computes the first URB slot without considering COL/BFC
2789 * swizzling (because it doesn't know whether it's enabled), so we need
2790 * to do that here too. This may result in a smaller offset, which
2791 * should be safe.
2792 */
2793 const unsigned first_slot =
2794 brw_compute_first_urb_slot_required(fs_input_slots, last_vue_map);
2795
2796 /* This becomes the URB read offset (counted in pairs of slots). */
2797 assert(first_slot % 2 == 0);
2798 *out_offset = first_slot / 2;
2799
2800 /* We need to adjust the inputs read to account for front/back color
2801 * swizzling, as it can make the URB length longer.
2802 */
2803 for (int c = 0; c <= 1; c++) {
2804 if (fs_input_slots & (VARYING_BIT_COL0 << c)) {
2805 /* If two sided color is enabled, the fragment shader's gl_Color
2806 * (COL0) input comes from either the gl_FrontColor (COL0) or
2807 * gl_BackColor (BFC0) input varyings. Mark BFC as used, too.
2808 */
2809 if (two_sided_color)
2810 fs_input_slots |= (VARYING_BIT_BFC0 << c);
2811
2812 /* If front color isn't written, we opt to give them back color
2813 * instead of an undefined value. Switch from COL to BFC.
2814 */
2815 if (last_vue_map->varying_to_slot[VARYING_SLOT_COL0 + c] == -1) {
2816 fs_input_slots &= ~(VARYING_BIT_COL0 << c);
2817 fs_input_slots |= (VARYING_BIT_BFC0 << c);
2818 }
2819 }
2820 }
2821
2822 /* Compute the minimum URB Read Length necessary for the FS inputs.
2823 *
2824 * From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
2825 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
2826 *
2827 * "This field should be set to the minimum length required to read the
2828 * maximum source attribute. The maximum source attribute is indicated
2829 * by the maximum value of the enabled Attribute # Source Attribute if
2830 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
2831 * enable is not set.
2832 * read_length = ceiling((max_source_attr + 1) / 2)
2833 *
2834 * [errata] Corruption/Hang possible if length programmed larger than
2835 * recommended"
2836 *
2837 * Similar text exists for Ivy Bridge.
2838 *
2839 * We find the last URB slot that's actually read by the FS.
2840 */
2841 unsigned last_read_slot = last_vue_map->num_slots - 1;
2842 while (last_read_slot > first_slot && !(fs_input_slots &
2843 (1ull << last_vue_map->slot_to_varying[last_read_slot])))
2844 --last_read_slot;
2845
2846 /* The URB read length is the difference of the two, counted in pairs. */
2847 *out_length = DIV_ROUND_UP(last_read_slot - first_slot + 1, 2);
2848 }
2849
2850 static void
2851 iris_emit_sbe_swiz(struct iris_batch *batch,
2852 const struct iris_context *ice,
2853 unsigned urb_read_offset,
2854 unsigned sprite_coord_enables)
2855 {
2856 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = {};
2857 const struct brw_wm_prog_data *wm_prog_data = (void *)
2858 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
2859 const struct brw_vue_map *vue_map = ice->shaders.last_vue_map;
2860 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
2861
2862 /* XXX: this should be generated when putting programs in place */
2863
2864 // XXX: raster->sprite_coord_enable
2865
2866 for (int fs_attr = 0; fs_attr < VARYING_SLOT_MAX; fs_attr++) {
2867 const int input_index = wm_prog_data->urb_setup[fs_attr];
2868 if (input_index < 0 || input_index >= 16)
2869 continue;
2870
2871 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr =
2872 &attr_overrides[input_index];
2873 int slot = vue_map->varying_to_slot[fs_attr];
2874
2875 /* Viewport and Layer are stored in the VUE header. We need to override
2876 * them to zero if earlier stages didn't write them, as GL requires that
2877 * they read back as zero when not explicitly set.
2878 */
2879 switch (fs_attr) {
2880 case VARYING_SLOT_VIEWPORT:
2881 case VARYING_SLOT_LAYER:
2882 attr->ComponentOverrideX = true;
2883 attr->ComponentOverrideW = true;
2884 attr->ConstantSource = CONST_0000;
2885
2886 if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
2887 attr->ComponentOverrideY = true;
2888 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
2889 attr->ComponentOverrideZ = true;
2890 continue;
2891
2892 case VARYING_SLOT_PRIMITIVE_ID:
2893 /* Override if the previous shader stage didn't write gl_PrimitiveID. */
2894 if (slot == -1) {
2895 attr->ComponentOverrideX = true;
2896 attr->ComponentOverrideY = true;
2897 attr->ComponentOverrideZ = true;
2898 attr->ComponentOverrideW = true;
2899 attr->ConstantSource = PRIM_ID;
2900 continue;
2901 }
2902
2903 default:
2904 break;
2905 }
2906
2907 if (sprite_coord_enables & (1 << input_index))
2908 continue;
2909
2910 /* If there was only a back color written but not front, use back
2911 * as the color instead of undefined.
2912 */
2913 if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
2914 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
2915 if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
2916 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
2917
2918 /* Not written by the previous stage - undefined. */
2919 if (slot == -1) {
2920 attr->ComponentOverrideX = true;
2921 attr->ComponentOverrideY = true;
2922 attr->ComponentOverrideZ = true;
2923 attr->ComponentOverrideW = true;
2924 attr->ConstantSource = CONST_0001_FLOAT;
2925 continue;
2926 }
2927
2928 /* Compute the location of the attribute relative to the read offset,
2929 * which is counted in 256-bit increments (two 128-bit VUE slots).
2930 */
2931 const int source_attr = slot - 2 * urb_read_offset;
2932 assert(source_attr >= 0 && source_attr <= 32);
2933 attr->SourceAttribute = source_attr;
2934
2935 /* If we are doing two-sided color, and the VUE slot following this one
2936 * represents a back-facing color, then we need to instruct the SF unit
2937 * to do back-facing swizzling.
2938 */
2939 if (cso_rast->light_twoside &&
2940 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
2941 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
2942 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
2943 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1)))
2944 attr->SwizzleSelect = INPUTATTR_FACING;
2945 }
2946
2947 iris_emit_cmd(batch, GENX(3DSTATE_SBE_SWIZ), sbes) {
2948 for (int i = 0; i < 16; i++)
2949 sbes.Attribute[i] = attr_overrides[i];
2950 }
2951 }
2952
2953 static unsigned
2954 iris_calculate_point_sprite_overrides(const struct brw_wm_prog_data *prog_data,
2955 const struct iris_rasterizer_state *cso)
2956 {
2957 unsigned overrides = 0;
2958
2959 if (prog_data->urb_setup[VARYING_SLOT_PNTC] != -1)
2960 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_PNTC];
2961
2962 for (int i = 0; i < 8; i++) {
2963 if ((cso->sprite_coord_enable & (1 << i)) &&
2964 prog_data->urb_setup[VARYING_SLOT_TEX0 + i] != -1)
2965 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_TEX0 + i];
2966 }
2967
2968 return overrides;
2969 }
2970
2971 static void
2972 iris_emit_sbe(struct iris_batch *batch, const struct iris_context *ice)
2973 {
2974 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
2975 const struct brw_wm_prog_data *wm_prog_data = (void *)
2976 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
2977 const struct shader_info *fs_info =
2978 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
2979
2980 unsigned urb_read_offset, urb_read_length;
2981 iris_compute_sbe_urb_read_interval(fs_info->inputs_read,
2982 ice->shaders.last_vue_map,
2983 cso_rast->light_twoside,
2984 &urb_read_offset, &urb_read_length);
2985
2986 unsigned sprite_coord_overrides =
2987 iris_calculate_point_sprite_overrides(wm_prog_data, cso_rast);
2988
2989 iris_emit_cmd(batch, GENX(3DSTATE_SBE), sbe) {
2990 sbe.AttributeSwizzleEnable = true;
2991 sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
2992 sbe.PointSpriteTextureCoordinateOrigin = cso_rast->sprite_coord_mode;
2993 sbe.VertexURBEntryReadOffset = urb_read_offset;
2994 sbe.VertexURBEntryReadLength = urb_read_length;
2995 sbe.ForceVertexURBEntryReadOffset = true;
2996 sbe.ForceVertexURBEntryReadLength = true;
2997 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
2998 sbe.PointSpriteTextureCoordinateEnable = sprite_coord_overrides;
2999
3000 for (int i = 0; i < 32; i++) {
3001 sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW;
3002 }
3003 }
3004
3005 iris_emit_sbe_swiz(batch, ice, urb_read_offset, sprite_coord_overrides);
3006 }
3007
3008 /* ------------------------------------------------------------------- */
3009
3010 /**
3011 * Populate VS program key fields based on the current state.
3012 */
3013 static void
3014 iris_populate_vs_key(const struct iris_context *ice,
3015 const struct shader_info *info,
3016 struct brw_vs_prog_key *key)
3017 {
3018 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3019
3020 if (info->clip_distance_array_size == 0 &&
3021 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)))
3022 key->nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
3023 }
3024
3025 /**
3026 * Populate TCS program key fields based on the current state.
3027 */
3028 static void
3029 iris_populate_tcs_key(const struct iris_context *ice,
3030 struct brw_tcs_prog_key *key)
3031 {
3032 }
3033
3034 /**
3035 * Populate TES program key fields based on the current state.
3036 */
3037 static void
3038 iris_populate_tes_key(const struct iris_context *ice,
3039 struct brw_tes_prog_key *key)
3040 {
3041 }
3042
3043 /**
3044 * Populate GS program key fields based on the current state.
3045 */
3046 static void
3047 iris_populate_gs_key(const struct iris_context *ice,
3048 struct brw_gs_prog_key *key)
3049 {
3050 }
3051
3052 /**
3053 * Populate FS program key fields based on the current state.
3054 */
3055 static void
3056 iris_populate_fs_key(const struct iris_context *ice,
3057 struct brw_wm_prog_key *key)
3058 {
3059 /* XXX: dirty flags? */
3060 const struct pipe_framebuffer_state *fb = &ice->state.framebuffer;
3061 const struct iris_depth_stencil_alpha_state *zsa = ice->state.cso_zsa;
3062 const struct iris_rasterizer_state *rast = ice->state.cso_rast;
3063 const struct iris_blend_state *blend = ice->state.cso_blend;
3064
3065 key->nr_color_regions = fb->nr_cbufs;
3066
3067 key->clamp_fragment_color = rast->clamp_fragment_color;
3068
3069 key->replicate_alpha = fb->nr_cbufs > 1 &&
3070 (zsa->alpha.enabled || blend->alpha_to_coverage);
3071
3072 /* XXX: only bother if COL0/1 are read */
3073 key->flat_shade = rast->flatshade;
3074
3075 key->persample_interp = rast->force_persample_interp;
3076 key->multisample_fbo = rast->multisample && fb->samples > 1;
3077
3078 key->coherent_fb_fetch = true;
3079
3080 // XXX: uint64_t input_slots_valid; - for >16 inputs
3081
3082 // XXX: key->force_dual_color_blend for unigine
3083 // XXX: respect hint for high_quality_derivatives:1;
3084 }
3085
3086 static void
3087 iris_populate_cs_key(const struct iris_context *ice,
3088 struct brw_cs_prog_key *key)
3089 {
3090 }
3091
3092 #if 0
3093 // XXX: these need to go in INIT_THREAD_DISPATCH_FIELDS
3094 pkt.SamplerCount = \
3095 DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4); \
3096
3097 #endif
3098
3099 static uint64_t
3100 KSP(const struct iris_compiled_shader *shader)
3101 {
3102 struct iris_resource *res = (void *) shader->assembly.res;
3103 return iris_bo_offset_from_base_address(res->bo) + shader->assembly.offset;
3104 }
3105
3106 // Gen11 workaround table #2056 WABTPPrefetchDisable suggests to disable
3107 // prefetching of binding tables in A0 and B0 steppings. XXX: Revisit
3108 // this WA on C0 stepping.
3109
3110 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix, stage) \
3111 pkt.KernelStartPointer = KSP(shader); \
3112 pkt.BindingTableEntryCount = GEN_GEN == 11 ? 0 : \
3113 prog_data->binding_table.size_bytes / 4; \
3114 pkt.FloatingPointMode = prog_data->use_alt_mode; \
3115 \
3116 pkt.DispatchGRFStartRegisterForURBData = \
3117 prog_data->dispatch_grf_start_reg; \
3118 pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
3119 pkt.prefix##URBEntryReadOffset = 0; \
3120 \
3121 pkt.StatisticsEnable = true; \
3122 pkt.Enable = true; \
3123 \
3124 if (prog_data->total_scratch) { \
3125 uint32_t scratch_addr = \
3126 iris_get_scratch_space(ice, prog_data->total_scratch, stage); \
3127 pkt.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11; \
3128 pkt.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr); \
3129 }
3130
3131 /**
3132 * Encode most of 3DSTATE_VS based on the compiled shader.
3133 */
3134 static void
3135 iris_store_vs_state(struct iris_context *ice,
3136 const struct gen_device_info *devinfo,
3137 struct iris_compiled_shader *shader)
3138 {
3139 struct brw_stage_prog_data *prog_data = shader->prog_data;
3140 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3141
3142 iris_pack_command(GENX(3DSTATE_VS), shader->derived_data, vs) {
3143 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex, MESA_SHADER_VERTEX);
3144 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
3145 vs.SIMD8DispatchEnable = true;
3146 vs.UserClipDistanceCullTestEnableBitmask =
3147 vue_prog_data->cull_distance_mask;
3148 }
3149 }
3150
3151 /**
3152 * Encode most of 3DSTATE_HS based on the compiled shader.
3153 */
3154 static void
3155 iris_store_tcs_state(struct iris_context *ice,
3156 const struct gen_device_info *devinfo,
3157 struct iris_compiled_shader *shader)
3158 {
3159 struct brw_stage_prog_data *prog_data = shader->prog_data;
3160 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3161 struct brw_tcs_prog_data *tcs_prog_data = (void *) prog_data;
3162
3163 iris_pack_command(GENX(3DSTATE_HS), shader->derived_data, hs) {
3164 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex, MESA_SHADER_TESS_CTRL);
3165
3166 hs.InstanceCount = tcs_prog_data->instances - 1;
3167 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
3168 hs.IncludeVertexHandles = true;
3169 }
3170 }
3171
3172 /**
3173 * Encode 3DSTATE_TE and most of 3DSTATE_DS based on the compiled shader.
3174 */
3175 static void
3176 iris_store_tes_state(struct iris_context *ice,
3177 const struct gen_device_info *devinfo,
3178 struct iris_compiled_shader *shader)
3179 {
3180 struct brw_stage_prog_data *prog_data = shader->prog_data;
3181 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3182 struct brw_tes_prog_data *tes_prog_data = (void *) prog_data;
3183
3184 uint32_t *te_state = (void *) shader->derived_data;
3185 uint32_t *ds_state = te_state + GENX(3DSTATE_TE_length);
3186
3187 iris_pack_command(GENX(3DSTATE_TE), te_state, te) {
3188 te.Partitioning = tes_prog_data->partitioning;
3189 te.OutputTopology = tes_prog_data->output_topology;
3190 te.TEDomain = tes_prog_data->domain;
3191 te.TEEnable = true;
3192 te.MaximumTessellationFactorOdd = 63.0;
3193 te.MaximumTessellationFactorNotOdd = 64.0;
3194 }
3195
3196 iris_pack_command(GENX(3DSTATE_DS), ds_state, ds) {
3197 INIT_THREAD_DISPATCH_FIELDS(ds, Patch, MESA_SHADER_TESS_EVAL);
3198
3199 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
3200 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
3201 ds.ComputeWCoordinateEnable =
3202 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
3203
3204 ds.UserClipDistanceCullTestEnableBitmask =
3205 vue_prog_data->cull_distance_mask;
3206 }
3207
3208 }
3209
3210 /**
3211 * Encode most of 3DSTATE_GS based on the compiled shader.
3212 */
3213 static void
3214 iris_store_gs_state(struct iris_context *ice,
3215 const struct gen_device_info *devinfo,
3216 struct iris_compiled_shader *shader)
3217 {
3218 struct brw_stage_prog_data *prog_data = shader->prog_data;
3219 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3220 struct brw_gs_prog_data *gs_prog_data = (void *) prog_data;
3221
3222 iris_pack_command(GENX(3DSTATE_GS), shader->derived_data, gs) {
3223 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex, MESA_SHADER_GEOMETRY);
3224
3225 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
3226 gs.OutputTopology = gs_prog_data->output_topology;
3227 gs.ControlDataHeaderSize =
3228 gs_prog_data->control_data_header_size_hwords;
3229 gs.InstanceControl = gs_prog_data->invocations - 1;
3230 gs.DispatchMode = DISPATCH_MODE_SIMD8;
3231 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
3232 gs.ControlDataFormat = gs_prog_data->control_data_format;
3233 gs.ReorderMode = TRAILING;
3234 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
3235 gs.MaximumNumberofThreads =
3236 GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
3237 : (devinfo->max_gs_threads - 1);
3238
3239 if (gs_prog_data->static_vertex_count != -1) {
3240 gs.StaticOutput = true;
3241 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
3242 }
3243 gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
3244
3245 gs.UserClipDistanceCullTestEnableBitmask =
3246 vue_prog_data->cull_distance_mask;
3247
3248 const int urb_entry_write_offset = 1;
3249 const uint32_t urb_entry_output_length =
3250 DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
3251 urb_entry_write_offset;
3252
3253 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
3254 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
3255 }
3256 }
3257
3258 /**
3259 * Encode most of 3DSTATE_PS and 3DSTATE_PS_EXTRA based on the shader.
3260 */
3261 static void
3262 iris_store_fs_state(struct iris_context *ice,
3263 const struct gen_device_info *devinfo,
3264 struct iris_compiled_shader *shader)
3265 {
3266 struct brw_stage_prog_data *prog_data = shader->prog_data;
3267 struct brw_wm_prog_data *wm_prog_data = (void *) shader->prog_data;
3268
3269 uint32_t *ps_state = (void *) shader->derived_data;
3270 uint32_t *psx_state = ps_state + GENX(3DSTATE_PS_length);
3271
3272 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
3273 ps.VectorMaskEnable = true;
3274 //ps.SamplerCount = ...
3275 // XXX: WABTPPrefetchDisable, see above, drop at C0
3276 ps.BindingTableEntryCount = GEN_GEN == 11 ? 0 :
3277 prog_data->binding_table.size_bytes / 4;
3278 ps.FloatingPointMode = prog_data->use_alt_mode;
3279 ps.MaximumNumberofThreadsPerPSD = 64 - (GEN_GEN == 8 ? 2 : 1);
3280
3281 ps.PushConstantEnable = shader->num_system_values > 0 ||
3282 prog_data->ubo_ranges[0].length > 0;
3283
3284 /* From the documentation for this packet:
3285 * "If the PS kernel does not need the Position XY Offsets to
3286 * compute a Position Value, then this field should be programmed
3287 * to POSOFFSET_NONE."
3288 *
3289 * "SW Recommendation: If the PS kernel needs the Position Offsets
3290 * to compute a Position XY value, this field should match Position
3291 * ZW Interpolation Mode to ensure a consistent position.xyzw
3292 * computation."
3293 *
3294 * We only require XY sample offsets. So, this recommendation doesn't
3295 * look useful at the moment. We might need this in future.
3296 */
3297 ps.PositionXYOffsetSelect =
3298 wm_prog_data->uses_pos_offset ? POSOFFSET_SAMPLE : POSOFFSET_NONE;
3299 ps._8PixelDispatchEnable = wm_prog_data->dispatch_8;
3300 ps._16PixelDispatchEnable = wm_prog_data->dispatch_16;
3301 ps._32PixelDispatchEnable = wm_prog_data->dispatch_32;
3302
3303 // XXX: Disable SIMD32 with 16x MSAA
3304
3305 ps.DispatchGRFStartRegisterForConstantSetupData0 =
3306 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
3307 ps.DispatchGRFStartRegisterForConstantSetupData1 =
3308 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
3309 ps.DispatchGRFStartRegisterForConstantSetupData2 =
3310 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
3311
3312 ps.KernelStartPointer0 =
3313 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
3314 ps.KernelStartPointer1 =
3315 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
3316 ps.KernelStartPointer2 =
3317 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
3318
3319 if (prog_data->total_scratch) {
3320 uint32_t scratch_addr =
3321 iris_get_scratch_space(ice, prog_data->total_scratch,
3322 MESA_SHADER_FRAGMENT);
3323 ps.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
3324 ps.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr);
3325 }
3326 }
3327
3328 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
3329 psx.PixelShaderValid = true;
3330 psx.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
3331 // XXX: alpha test / alpha to coverage :/
3332 psx.PixelShaderKillsPixel = wm_prog_data->uses_kill ||
3333 wm_prog_data->uses_omask;
3334 psx.AttributeEnable = wm_prog_data->num_varying_inputs != 0;
3335 psx.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
3336 psx.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
3337 psx.PixelShaderIsPerSample = wm_prog_data->persample_dispatch;
3338
3339 if (wm_prog_data->uses_sample_mask) {
3340 /* TODO: conservative rasterization */
3341 if (wm_prog_data->post_depth_coverage)
3342 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
3343 else
3344 psx.InputCoverageMaskState = ICMS_NORMAL;
3345 }
3346
3347 psx.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
3348 psx.PixelShaderPullsBary = wm_prog_data->pulls_bary;
3349 psx.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
3350
3351 // XXX: UAV bit
3352 }
3353 }
3354
3355 /**
3356 * Compute the size of the derived data (shader command packets).
3357 *
3358 * This must match the data written by the iris_store_xs_state() functions.
3359 */
3360 static void
3361 iris_store_cs_state(struct iris_context *ice,
3362 const struct gen_device_info *devinfo,
3363 struct iris_compiled_shader *shader)
3364 {
3365 struct brw_stage_prog_data *prog_data = shader->prog_data;
3366 struct brw_cs_prog_data *cs_prog_data = (void *) shader->prog_data;
3367 void *map = shader->derived_data;
3368
3369 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), map, desc) {
3370 desc.KernelStartPointer = KSP(shader);
3371 desc.ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs;
3372 desc.NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads;
3373 desc.SharedLocalMemorySize =
3374 encode_slm_size(GEN_GEN, prog_data->total_shared);
3375 desc.BarrierEnable = cs_prog_data->uses_barrier;
3376 desc.CrossThreadConstantDataReadLength =
3377 cs_prog_data->push.cross_thread.regs;
3378 }
3379 }
3380
3381 static unsigned
3382 iris_derived_program_state_size(enum iris_program_cache_id cache_id)
3383 {
3384 assert(cache_id <= IRIS_CACHE_BLORP);
3385
3386 static const unsigned dwords[] = {
3387 [IRIS_CACHE_VS] = GENX(3DSTATE_VS_length),
3388 [IRIS_CACHE_TCS] = GENX(3DSTATE_HS_length),
3389 [IRIS_CACHE_TES] = GENX(3DSTATE_TE_length) + GENX(3DSTATE_DS_length),
3390 [IRIS_CACHE_GS] = GENX(3DSTATE_GS_length),
3391 [IRIS_CACHE_FS] =
3392 GENX(3DSTATE_PS_length) + GENX(3DSTATE_PS_EXTRA_length),
3393 [IRIS_CACHE_CS] = GENX(INTERFACE_DESCRIPTOR_DATA_length),
3394 [IRIS_CACHE_BLORP] = 0,
3395 };
3396
3397 return sizeof(uint32_t) * dwords[cache_id];
3398 }
3399
3400 /**
3401 * Create any state packets corresponding to the given shader stage
3402 * (i.e. 3DSTATE_VS) and save them as "derived data" in the shader variant.
3403 * This means that we can look up a program in the in-memory cache and
3404 * get most of the state packet without having to reconstruct it.
3405 */
3406 static void
3407 iris_store_derived_program_state(struct iris_context *ice,
3408 enum iris_program_cache_id cache_id,
3409 struct iris_compiled_shader *shader)
3410 {
3411 struct iris_screen *screen = (void *) ice->ctx.screen;
3412 const struct gen_device_info *devinfo = &screen->devinfo;
3413
3414 switch (cache_id) {
3415 case IRIS_CACHE_VS:
3416 iris_store_vs_state(ice, devinfo, shader);
3417 break;
3418 case IRIS_CACHE_TCS:
3419 iris_store_tcs_state(ice, devinfo, shader);
3420 break;
3421 case IRIS_CACHE_TES:
3422 iris_store_tes_state(ice, devinfo, shader);
3423 break;
3424 case IRIS_CACHE_GS:
3425 iris_store_gs_state(ice, devinfo, shader);
3426 break;
3427 case IRIS_CACHE_FS:
3428 iris_store_fs_state(ice, devinfo, shader);
3429 break;
3430 case IRIS_CACHE_CS:
3431 iris_store_cs_state(ice, devinfo, shader);
3432 case IRIS_CACHE_BLORP:
3433 break;
3434 default:
3435 break;
3436 }
3437 }
3438
3439 /* ------------------------------------------------------------------- */
3440
3441 /**
3442 * Configure the URB.
3443 *
3444 * XXX: write a real comment.
3445 */
3446 static void
3447 iris_upload_urb_config(struct iris_context *ice, struct iris_batch *batch)
3448 {
3449 const struct gen_device_info *devinfo = &batch->screen->devinfo;
3450 const unsigned push_size_kB = 32;
3451 unsigned entries[4];
3452 unsigned start[4];
3453 unsigned size[4];
3454
3455 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
3456 if (!ice->shaders.prog[i]) {
3457 size[i] = 1;
3458 } else {
3459 struct brw_vue_prog_data *vue_prog_data =
3460 (void *) ice->shaders.prog[i]->prog_data;
3461 size[i] = vue_prog_data->urb_entry_size;
3462 }
3463 assert(size[i] != 0);
3464 }
3465
3466 gen_get_urb_config(devinfo, 1024 * push_size_kB,
3467 1024 * ice->shaders.urb_size,
3468 ice->shaders.prog[MESA_SHADER_TESS_EVAL] != NULL,
3469 ice->shaders.prog[MESA_SHADER_GEOMETRY] != NULL,
3470 size, entries, start);
3471
3472 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
3473 iris_emit_cmd(batch, GENX(3DSTATE_URB_VS), urb) {
3474 urb._3DCommandSubOpcode += i;
3475 urb.VSURBStartingAddress = start[i];
3476 urb.VSURBEntryAllocationSize = size[i] - 1;
3477 urb.VSNumberofURBEntries = entries[i];
3478 }
3479 }
3480 }
3481
3482 static const uint32_t push_constant_opcodes[] = {
3483 [MESA_SHADER_VERTEX] = 21,
3484 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
3485 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
3486 [MESA_SHADER_GEOMETRY] = 22,
3487 [MESA_SHADER_FRAGMENT] = 23,
3488 [MESA_SHADER_COMPUTE] = 0,
3489 };
3490
3491 static uint32_t
3492 use_null_surface(struct iris_batch *batch, struct iris_context *ice)
3493 {
3494 struct iris_bo *state_bo = iris_resource_bo(ice->state.unbound_tex.res);
3495
3496 iris_use_pinned_bo(batch, state_bo, false);
3497
3498 return ice->state.unbound_tex.offset;
3499 }
3500
3501 static uint32_t
3502 use_null_fb_surface(struct iris_batch *batch, struct iris_context *ice)
3503 {
3504 /* If set_framebuffer_state() was never called, fall back to 1x1x1 */
3505 if (!ice->state.null_fb.res)
3506 return use_null_surface(batch, ice);
3507
3508 struct iris_bo *state_bo = iris_resource_bo(ice->state.null_fb.res);
3509
3510 iris_use_pinned_bo(batch, state_bo, false);
3511
3512 return ice->state.null_fb.offset;
3513 }
3514
3515 /**
3516 * Add a surface to the validation list, as well as the buffer containing
3517 * the corresponding SURFACE_STATE.
3518 *
3519 * Returns the binding table entry (offset to SURFACE_STATE).
3520 */
3521 static uint32_t
3522 use_surface(struct iris_batch *batch,
3523 struct pipe_surface *p_surf,
3524 bool writeable)
3525 {
3526 struct iris_surface *surf = (void *) p_surf;
3527
3528 iris_use_pinned_bo(batch, iris_resource_bo(p_surf->texture), writeable);
3529 iris_use_pinned_bo(batch, iris_resource_bo(surf->surface_state.res), false);
3530
3531 return surf->surface_state.offset;
3532 }
3533
3534 static uint32_t
3535 use_sampler_view(struct iris_batch *batch, struct iris_sampler_view *isv)
3536 {
3537 iris_use_pinned_bo(batch, isv->res->bo, false);
3538 iris_use_pinned_bo(batch, iris_resource_bo(isv->surface_state.res), false);
3539
3540 return isv->surface_state.offset;
3541 }
3542
3543 static uint32_t
3544 use_const_buffer(struct iris_batch *batch,
3545 struct iris_context *ice,
3546 struct iris_const_buffer *cbuf)
3547 {
3548 if (!cbuf->surface_state.res)
3549 return use_null_surface(batch, ice);
3550
3551 iris_use_pinned_bo(batch, iris_resource_bo(cbuf->data.res), false);
3552 iris_use_pinned_bo(batch, iris_resource_bo(cbuf->surface_state.res), false);
3553
3554 return cbuf->surface_state.offset;
3555 }
3556
3557 static uint32_t
3558 use_ssbo(struct iris_batch *batch, struct iris_context *ice,
3559 struct iris_shader_state *shs, int i)
3560 {
3561 if (!shs->ssbo[i])
3562 return use_null_surface(batch, ice);
3563
3564 struct iris_state_ref *surf_state = &shs->ssbo_surface_state[i];
3565
3566 iris_use_pinned_bo(batch, iris_resource_bo(shs->ssbo[i]), true);
3567 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false);
3568
3569 return surf_state->offset;
3570 }
3571
3572 static uint32_t
3573 use_image(struct iris_batch *batch, struct iris_context *ice,
3574 struct iris_shader_state *shs, int i)
3575 {
3576 if (!shs->image[i].res)
3577 return use_null_surface(batch, ice);
3578
3579 struct iris_state_ref *surf_state = &shs->image[i].surface_state;
3580
3581 iris_use_pinned_bo(batch, iris_resource_bo(shs->image[i].res),
3582 shs->image[i].access & PIPE_IMAGE_ACCESS_WRITE);
3583 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false);
3584
3585 return surf_state->offset;
3586 }
3587
3588 #define push_bt_entry(addr) \
3589 assert(addr >= binder_addr); \
3590 assert(s < prog_data->binding_table.size_bytes / sizeof(uint32_t)); \
3591 if (!pin_only) bt_map[s++] = (addr) - binder_addr;
3592
3593 #define bt_assert(section, exists) \
3594 if (!pin_only) assert(prog_data->binding_table.section == \
3595 (exists) ? s : 0xd0d0d0d0)
3596
3597 /**
3598 * Populate the binding table for a given shader stage.
3599 *
3600 * This fills out the table of pointers to surfaces required by the shader,
3601 * and also adds those buffers to the validation list so the kernel can make
3602 * resident before running our batch.
3603 */
3604 static void
3605 iris_populate_binding_table(struct iris_context *ice,
3606 struct iris_batch *batch,
3607 gl_shader_stage stage,
3608 bool pin_only)
3609 {
3610 const struct iris_binder *binder = &ice->state.binder;
3611 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3612 if (!shader)
3613 return;
3614
3615 UNUSED struct brw_stage_prog_data *prog_data = shader->prog_data;
3616 struct iris_shader_state *shs = &ice->state.shaders[stage];
3617 uint32_t binder_addr = binder->bo->gtt_offset;
3618
3619 //struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
3620 uint32_t *bt_map = binder->map + binder->bt_offset[stage];
3621 int s = 0;
3622
3623 const struct shader_info *info = iris_get_shader_info(ice, stage);
3624 if (!info) {
3625 /* TCS passthrough doesn't need a binding table. */
3626 assert(stage == MESA_SHADER_TESS_CTRL);
3627 return;
3628 }
3629
3630 if (stage == MESA_SHADER_COMPUTE) {
3631 /* surface for gl_NumWorkGroups */
3632 struct iris_state_ref *grid_data = &ice->state.grid_size;
3633 struct iris_state_ref *grid_state = &ice->state.grid_surf_state;
3634 iris_use_pinned_bo(batch, iris_resource_bo(grid_data->res), false);
3635 iris_use_pinned_bo(batch, iris_resource_bo(grid_state->res), false);
3636 push_bt_entry(grid_state->offset);
3637 }
3638
3639 if (stage == MESA_SHADER_FRAGMENT) {
3640 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
3641 /* Note that cso_fb->nr_cbufs == fs_key->nr_color_regions. */
3642 if (cso_fb->nr_cbufs) {
3643 for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
3644 uint32_t addr =
3645 cso_fb->cbufs[i] ? use_surface(batch, cso_fb->cbufs[i], true)
3646 : use_null_fb_surface(batch, ice);
3647 push_bt_entry(addr);
3648 }
3649 } else {
3650 uint32_t addr = use_null_fb_surface(batch, ice);
3651 push_bt_entry(addr);
3652 }
3653 }
3654
3655 bt_assert(texture_start, info->num_textures > 0);
3656
3657 for (int i = 0; i < info->num_textures; i++) {
3658 struct iris_sampler_view *view = shs->textures[i];
3659 uint32_t addr = view ? use_sampler_view(batch, view)
3660 : use_null_surface(batch, ice);
3661 push_bt_entry(addr);
3662 }
3663
3664 bt_assert(image_start, info->num_images > 0);
3665
3666 for (int i = 0; i < info->num_images; i++) {
3667 uint32_t addr = use_image(batch, ice, shs, i);
3668 push_bt_entry(addr);
3669 }
3670
3671 const int num_ubos = iris_get_shader_num_ubos(ice, stage);
3672
3673 bt_assert(ubo_start, num_ubos > 0);
3674
3675 for (int i = 0; i < num_ubos; i++) {
3676 uint32_t addr = use_const_buffer(batch, ice, &shs->constbuf[i]);
3677 push_bt_entry(addr);
3678 }
3679
3680 bt_assert(ssbo_start, info->num_abos + info->num_ssbos > 0);
3681
3682 /* XXX: st is wasting 16 binding table slots for ABOs. Should add a cap
3683 * for changing nir_lower_atomics_to_ssbos setting and buffer_base offset
3684 * in st_atom_storagebuf.c so it'll compact them into one range, with
3685 * SSBOs starting at info->num_abos. Ideally it'd reset num_abos to 0 too
3686 */
3687 if (info->num_abos + info->num_ssbos > 0) {
3688 for (int i = 0; i < IRIS_MAX_ABOS + info->num_ssbos; i++) {
3689 uint32_t addr = use_ssbo(batch, ice, shs, i);
3690 push_bt_entry(addr);
3691 }
3692 }
3693
3694 #if 0
3695 // XXX: not implemented yet
3696 bt_assert(plane_start[1], ...);
3697 bt_assert(plane_start[2], ...);
3698 #endif
3699 }
3700
3701 static void
3702 iris_use_optional_res(struct iris_batch *batch,
3703 struct pipe_resource *res,
3704 bool writeable)
3705 {
3706 if (res) {
3707 struct iris_bo *bo = iris_resource_bo(res);
3708 iris_use_pinned_bo(batch, bo, writeable);
3709 }
3710 }
3711
3712 /* ------------------------------------------------------------------- */
3713
3714 /**
3715 * Pin any BOs which were installed by a previous batch, and restored
3716 * via the hardware logical context mechanism.
3717 *
3718 * We don't need to re-emit all state every batch - the hardware context
3719 * mechanism will save and restore it for us. This includes pointers to
3720 * various BOs...which won't exist unless we ask the kernel to pin them
3721 * by adding them to the validation list.
3722 *
3723 * We can skip buffers if we've re-emitted those packets, as we're
3724 * overwriting those stale pointers with new ones, and don't actually
3725 * refer to the old BOs.
3726 */
3727 static void
3728 iris_restore_render_saved_bos(struct iris_context *ice,
3729 struct iris_batch *batch,
3730 const struct pipe_draw_info *draw)
3731 {
3732 // XXX: whack IRIS_SHADER_DIRTY_BINDING_TABLE on new batch
3733
3734 const uint64_t clean = ~ice->state.dirty;
3735
3736 if (clean & IRIS_DIRTY_CC_VIEWPORT) {
3737 iris_use_optional_res(batch, ice->state.last_res.cc_vp, false);
3738 }
3739
3740 if (clean & IRIS_DIRTY_SF_CL_VIEWPORT) {
3741 iris_use_optional_res(batch, ice->state.last_res.sf_cl_vp, false);
3742 }
3743
3744 if (clean & IRIS_DIRTY_BLEND_STATE) {
3745 iris_use_optional_res(batch, ice->state.last_res.blend, false);
3746 }
3747
3748 if (clean & IRIS_DIRTY_COLOR_CALC_STATE) {
3749 iris_use_optional_res(batch, ice->state.last_res.color_calc, false);
3750 }
3751
3752 if (clean & IRIS_DIRTY_SCISSOR_RECT) {
3753 iris_use_optional_res(batch, ice->state.last_res.scissor, false);
3754 }
3755
3756 if (ice->state.streamout_active && (clean & IRIS_DIRTY_SO_BUFFERS)) {
3757 for (int i = 0; i < 4; i++) {
3758 struct iris_stream_output_target *tgt =
3759 (void *) ice->state.so_target[i];
3760 if (tgt) {
3761 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
3762 true);
3763 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
3764 true);
3765 }
3766 }
3767 }
3768
3769 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3770 if (!(clean & (IRIS_DIRTY_CONSTANTS_VS << stage)))
3771 continue;
3772
3773 struct iris_shader_state *shs = &ice->state.shaders[stage];
3774 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3775
3776 if (!shader)
3777 continue;
3778
3779 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
3780
3781 for (int i = 0; i < 4; i++) {
3782 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
3783
3784 if (range->length == 0)
3785 continue;
3786
3787 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
3788 struct iris_resource *res = (void *) cbuf->data.res;
3789
3790 if (res)
3791 iris_use_pinned_bo(batch, res->bo, false);
3792 else
3793 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
3794 }
3795 }
3796
3797 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3798 if (clean & (IRIS_DIRTY_BINDINGS_VS << stage)) {
3799 /* Re-pin any buffers referred to by the binding table. */
3800 iris_populate_binding_table(ice, batch, stage, true);
3801 }
3802 }
3803
3804 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3805 struct iris_shader_state *shs = &ice->state.shaders[stage];
3806 struct pipe_resource *res = shs->sampler_table.res;
3807 if (res)
3808 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
3809 }
3810
3811 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3812 if (clean & (IRIS_DIRTY_VS << stage)) {
3813 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3814 if (shader) {
3815 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
3816 iris_use_pinned_bo(batch, bo, false);
3817 }
3818
3819 // XXX: scratch buffer
3820 }
3821 }
3822
3823 if (clean & IRIS_DIRTY_DEPTH_BUFFER) {
3824 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
3825
3826 if (cso_fb->zsbuf) {
3827 struct iris_resource *zres, *sres;
3828 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
3829 &zres, &sres);
3830 // XXX: might not be writable...
3831 if (zres)
3832 iris_use_pinned_bo(batch, zres->bo, true);
3833 if (sres)
3834 iris_use_pinned_bo(batch, sres->bo, true);
3835 }
3836 }
3837
3838 if (draw->index_size == 0 && ice->state.last_res.index_buffer) {
3839 /* This draw didn't emit a new index buffer, so we are inheriting the
3840 * older index buffer. This draw didn't need it, but future ones may.
3841 */
3842 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
3843 iris_use_pinned_bo(batch, bo, false);
3844 }
3845
3846 if (clean & IRIS_DIRTY_VERTEX_BUFFERS) {
3847 struct iris_vertex_buffer_state *cso = &ice->state.genx->vertex_buffers;
3848 for (unsigned i = 0; i < cso->num_buffers; i++) {
3849 struct iris_resource *res = (void *) cso->resources[i];
3850 iris_use_pinned_bo(batch, res->bo, false);
3851 }
3852 }
3853 }
3854
3855 static void
3856 iris_restore_compute_saved_bos(struct iris_context *ice,
3857 struct iris_batch *batch,
3858 const struct pipe_grid_info *grid)
3859 {
3860 const uint64_t clean = ~ice->state.dirty;
3861
3862 const int stage = MESA_SHADER_COMPUTE;
3863 struct iris_shader_state *shs = &ice->state.shaders[stage];
3864
3865 if (clean & IRIS_DIRTY_CONSTANTS_CS) {
3866 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3867
3868 if (shader) {
3869 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
3870 const struct brw_ubo_range *range = &prog_data->ubo_ranges[0];
3871
3872 if (range->length > 0) {
3873 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
3874 struct iris_resource *res = (void *) cbuf->data.res;
3875
3876 if (res)
3877 iris_use_pinned_bo(batch, res->bo, false);
3878 else
3879 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
3880 }
3881 }
3882 }
3883
3884 if (clean & IRIS_DIRTY_BINDINGS_CS) {
3885 /* Re-pin any buffers referred to by the binding table. */
3886 iris_populate_binding_table(ice, batch, stage, true);
3887 }
3888
3889 struct pipe_resource *sampler_res = shs->sampler_table.res;
3890 if (sampler_res)
3891 iris_use_pinned_bo(batch, iris_resource_bo(sampler_res), false);
3892
3893 if (clean & IRIS_DIRTY_CS) {
3894 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3895 if (shader) {
3896 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
3897 iris_use_pinned_bo(batch, bo, false);
3898 }
3899
3900 // XXX: scratch buffer
3901 }
3902 }
3903
3904 /**
3905 * Possibly emit STATE_BASE_ADDRESS to update Surface State Base Address.
3906 */
3907 static void
3908 iris_update_surface_base_address(struct iris_batch *batch,
3909 struct iris_binder *binder)
3910 {
3911 if (batch->last_surface_base_address == binder->bo->gtt_offset)
3912 return;
3913
3914 flush_for_state_base_change(batch);
3915
3916 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
3917 // XXX: sba.SurfaceStateMemoryObjectControlState = MOCS_WB;
3918 sba.SurfaceStateBaseAddressModifyEnable = true;
3919 sba.SurfaceStateBaseAddress = ro_bo(binder->bo, 0);
3920 }
3921
3922 batch->last_surface_base_address = binder->bo->gtt_offset;
3923 }
3924
3925 static void
3926 iris_upload_dirty_render_state(struct iris_context *ice,
3927 struct iris_batch *batch,
3928 const struct pipe_draw_info *draw)
3929 {
3930 const uint64_t dirty = ice->state.dirty;
3931
3932 if (!(dirty & IRIS_ALL_DIRTY_FOR_RENDER))
3933 return;
3934
3935 struct iris_genx_state *genx = ice->state.genx;
3936 struct iris_binder *binder = &ice->state.binder;
3937 struct brw_wm_prog_data *wm_prog_data = (void *)
3938 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3939
3940 if (dirty & IRIS_DIRTY_CC_VIEWPORT) {
3941 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3942 uint32_t cc_vp_address;
3943
3944 /* XXX: could avoid streaming for depth_clip [0,1] case. */
3945 uint32_t *cc_vp_map =
3946 stream_state(batch, ice->state.dynamic_uploader,
3947 &ice->state.last_res.cc_vp,
3948 4 * ice->state.num_viewports *
3949 GENX(CC_VIEWPORT_length), 32, &cc_vp_address);
3950 for (int i = 0; i < ice->state.num_viewports; i++) {
3951 float zmin, zmax;
3952 util_viewport_zmin_zmax(&ice->state.viewports[i],
3953 cso_rast->clip_halfz, &zmin, &zmax);
3954 if (cso_rast->depth_clip_near)
3955 zmin = 0.0;
3956 if (cso_rast->depth_clip_far)
3957 zmax = 1.0;
3958
3959 iris_pack_state(GENX(CC_VIEWPORT), cc_vp_map, ccv) {
3960 ccv.MinimumDepth = zmin;
3961 ccv.MaximumDepth = zmax;
3962 }
3963
3964 cc_vp_map += GENX(CC_VIEWPORT_length);
3965 }
3966
3967 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
3968 ptr.CCViewportPointer = cc_vp_address;
3969 }
3970 }
3971
3972 if (dirty & IRIS_DIRTY_SF_CL_VIEWPORT) {
3973 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
3974 ptr.SFClipViewportPointer =
3975 emit_state(batch, ice->state.dynamic_uploader,
3976 &ice->state.last_res.sf_cl_vp,
3977 genx->sf_cl_vp, 4 * GENX(SF_CLIP_VIEWPORT_length) *
3978 ice->state.num_viewports, 64);
3979 }
3980 }
3981
3982 /* XXX: L3 State */
3983
3984 // XXX: this is only flagged at setup, we assume a static configuration
3985 if (dirty & IRIS_DIRTY_URB) {
3986 iris_upload_urb_config(ice, batch);
3987 }
3988
3989 if (dirty & IRIS_DIRTY_BLEND_STATE) {
3990 struct iris_blend_state *cso_blend = ice->state.cso_blend;
3991 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
3992 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
3993 const int header_dwords = GENX(BLEND_STATE_length);
3994 const int rt_dwords = cso_fb->nr_cbufs * GENX(BLEND_STATE_ENTRY_length);
3995 uint32_t blend_offset;
3996 uint32_t *blend_map =
3997 stream_state(batch, ice->state.dynamic_uploader,
3998 &ice->state.last_res.blend,
3999 4 * (header_dwords + rt_dwords), 64, &blend_offset);
4000
4001 uint32_t blend_state_header;
4002 iris_pack_state(GENX(BLEND_STATE), &blend_state_header, bs) {
4003 bs.AlphaTestEnable = cso_zsa->alpha.enabled;
4004 bs.AlphaTestFunction = translate_compare_func(cso_zsa->alpha.func);
4005 }
4006
4007 blend_map[0] = blend_state_header | cso_blend->blend_state[0];
4008 memcpy(&blend_map[1], &cso_blend->blend_state[1], 4 * rt_dwords);
4009
4010 iris_emit_cmd(batch, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
4011 ptr.BlendStatePointer = blend_offset;
4012 ptr.BlendStatePointerValid = true;
4013 }
4014 }
4015
4016 if (dirty & IRIS_DIRTY_COLOR_CALC_STATE) {
4017 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
4018 uint32_t cc_offset;
4019 void *cc_map =
4020 stream_state(batch, ice->state.dynamic_uploader,
4021 &ice->state.last_res.color_calc,
4022 sizeof(uint32_t) * GENX(COLOR_CALC_STATE_length),
4023 64, &cc_offset);
4024 iris_pack_state(GENX(COLOR_CALC_STATE), cc_map, cc) {
4025 cc.AlphaTestFormat = ALPHATEST_FLOAT32;
4026 cc.AlphaReferenceValueAsFLOAT32 = cso->alpha.ref_value;
4027 cc.BlendConstantColorRed = ice->state.blend_color.color[0];
4028 cc.BlendConstantColorGreen = ice->state.blend_color.color[1];
4029 cc.BlendConstantColorBlue = ice->state.blend_color.color[2];
4030 cc.BlendConstantColorAlpha = ice->state.blend_color.color[3];
4031 }
4032 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
4033 ptr.ColorCalcStatePointer = cc_offset;
4034 ptr.ColorCalcStatePointerValid = true;
4035 }
4036 }
4037
4038 /* Upload constants for TCS passthrough. */
4039 if ((dirty & IRIS_DIRTY_CONSTANTS_TCS) &&
4040 ice->shaders.prog[MESA_SHADER_TESS_CTRL] &&
4041 !ice->shaders.uncompiled[MESA_SHADER_TESS_CTRL]) {
4042 struct iris_compiled_shader *tes_shader = ice->shaders.prog[MESA_SHADER_TESS_EVAL];
4043 assert(tes_shader);
4044
4045 /* Passthrough always copies 2 vec4s, so when uploading data we ensure
4046 * it is in the right layout for TES.
4047 */
4048 float hdr[8] = {};
4049 struct brw_tes_prog_data *tes_prog_data = (void *) tes_shader->prog_data;
4050 switch (tes_prog_data->domain) {
4051 case BRW_TESS_DOMAIN_QUAD:
4052 for (int i = 0; i < 4; i++)
4053 hdr[7 - i] = ice->state.default_outer_level[i];
4054 hdr[3] = ice->state.default_inner_level[0];
4055 hdr[2] = ice->state.default_inner_level[1];
4056 break;
4057 case BRW_TESS_DOMAIN_TRI:
4058 for (int i = 0; i < 3; i++)
4059 hdr[7 - i] = ice->state.default_outer_level[i];
4060 hdr[4] = ice->state.default_inner_level[0];
4061 break;
4062 case BRW_TESS_DOMAIN_ISOLINE:
4063 hdr[7] = ice->state.default_outer_level[1];
4064 hdr[6] = ice->state.default_outer_level[0];
4065 break;
4066 }
4067
4068 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_TESS_CTRL];
4069 struct iris_const_buffer *cbuf = &shs->constbuf[0];
4070 u_upload_data(ice->ctx.const_uploader, 0, sizeof(hdr), 32,
4071 &hdr[0], &cbuf->data.offset,
4072 &cbuf->data.res);
4073 }
4074
4075 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4076 if (!(dirty & (IRIS_DIRTY_CONSTANTS_VS << stage)))
4077 continue;
4078
4079 struct iris_shader_state *shs = &ice->state.shaders[stage];
4080 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4081
4082 if (!shader)
4083 continue;
4084
4085 if (shs->cbuf0_needs_upload)
4086 upload_uniforms(ice, stage);
4087
4088 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4089
4090 iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_VS), pkt) {
4091 pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
4092 if (prog_data) {
4093 /* The Skylake PRM contains the following restriction:
4094 *
4095 * "The driver must ensure The following case does not occur
4096 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
4097 * buffer 3 read length equal to zero committed followed by a
4098 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
4099 * zero committed."
4100 *
4101 * To avoid this, we program the buffers in the highest slots.
4102 * This way, slot 0 is only used if slot 3 is also used.
4103 */
4104 int n = 3;
4105
4106 for (int i = 3; i >= 0; i--) {
4107 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4108
4109 if (range->length == 0)
4110 continue;
4111
4112 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
4113 struct iris_resource *res = (void *) cbuf->data.res;
4114
4115 assert(cbuf->data.offset % 32 == 0);
4116
4117 pkt.ConstantBody.ReadLength[n] = range->length;
4118 pkt.ConstantBody.Buffer[n] =
4119 res ? ro_bo(res->bo, range->start * 32 + cbuf->data.offset)
4120 : ro_bo(batch->screen->workaround_bo, 0);
4121 n--;
4122 }
4123 }
4124 }
4125 }
4126
4127 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4128 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4129 iris_emit_cmd(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), ptr) {
4130 ptr._3DCommandSubOpcode = 38 + stage;
4131 ptr.PointertoVSBindingTable = binder->bt_offset[stage];
4132 }
4133 }
4134 }
4135
4136 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4137 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4138 iris_populate_binding_table(ice, batch, stage, false);
4139 }
4140 }
4141
4142 if (ice->state.need_border_colors)
4143 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
4144
4145 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4146 if (!(dirty & (IRIS_DIRTY_SAMPLER_STATES_VS << stage)) ||
4147 !ice->shaders.prog[stage])
4148 continue;
4149
4150 struct iris_shader_state *shs = &ice->state.shaders[stage];
4151 struct pipe_resource *res = shs->sampler_table.res;
4152 if (res)
4153 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4154
4155 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
4156 ptr._3DCommandSubOpcode = 43 + stage;
4157 ptr.PointertoVSSamplerState = shs->sampler_table.offset;
4158 }
4159 }
4160
4161 if (dirty & IRIS_DIRTY_MULTISAMPLE) {
4162 iris_emit_cmd(batch, GENX(3DSTATE_MULTISAMPLE), ms) {
4163 ms.PixelLocation =
4164 ice->state.cso_rast->half_pixel_center ? CENTER : UL_CORNER;
4165 if (ice->state.framebuffer.samples > 0)
4166 ms.NumberofMultisamples = ffs(ice->state.framebuffer.samples) - 1;
4167 }
4168 }
4169
4170 if (dirty & IRIS_DIRTY_SAMPLE_MASK) {
4171 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_MASK), ms) {
4172 ms.SampleMask = MAX2(ice->state.sample_mask, 1);
4173 }
4174 }
4175
4176 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4177 if (!(dirty & (IRIS_DIRTY_VS << stage)))
4178 continue;
4179
4180 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4181
4182 if (shader) {
4183 struct iris_resource *cache = (void *) shader->assembly.res;
4184 iris_use_pinned_bo(batch, cache->bo, false);
4185 iris_batch_emit(batch, shader->derived_data,
4186 iris_derived_program_state_size(stage));
4187 } else {
4188 if (stage == MESA_SHADER_TESS_EVAL) {
4189 iris_emit_cmd(batch, GENX(3DSTATE_HS), hs);
4190 iris_emit_cmd(batch, GENX(3DSTATE_TE), te);
4191 iris_emit_cmd(batch, GENX(3DSTATE_DS), ds);
4192 } else if (stage == MESA_SHADER_GEOMETRY) {
4193 iris_emit_cmd(batch, GENX(3DSTATE_GS), gs);
4194 }
4195 }
4196 }
4197
4198 if (ice->state.streamout_active) {
4199 if (dirty & IRIS_DIRTY_SO_BUFFERS) {
4200 iris_batch_emit(batch, genx->so_buffers,
4201 4 * 4 * GENX(3DSTATE_SO_BUFFER_length));
4202 for (int i = 0; i < 4; i++) {
4203 struct iris_stream_output_target *tgt =
4204 (void *) ice->state.so_target[i];
4205 if (tgt) {
4206 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
4207 true);
4208 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
4209 true);
4210 }
4211 }
4212 }
4213
4214 if ((dirty & IRIS_DIRTY_SO_DECL_LIST) && ice->state.streamout) {
4215 uint32_t *decl_list =
4216 ice->state.streamout + GENX(3DSTATE_STREAMOUT_length);
4217 iris_batch_emit(batch, decl_list, 4 * ((decl_list[0] & 0xff) + 2));
4218 }
4219
4220 if (dirty & IRIS_DIRTY_STREAMOUT) {
4221 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4222
4223 uint32_t dynamic_sol[GENX(3DSTATE_STREAMOUT_length)];
4224 iris_pack_command(GENX(3DSTATE_STREAMOUT), dynamic_sol, sol) {
4225 sol.SOFunctionEnable = true;
4226 sol.SOStatisticsEnable = true;
4227
4228 sol.RenderingDisable = cso_rast->rasterizer_discard &&
4229 !ice->state.prims_generated_query_active;
4230 sol.ReorderMode = cso_rast->flatshade_first ? LEADING : TRAILING;
4231 }
4232
4233 assert(ice->state.streamout);
4234
4235 iris_emit_merge(batch, ice->state.streamout, dynamic_sol,
4236 GENX(3DSTATE_STREAMOUT_length));
4237 }
4238 } else {
4239 if (dirty & IRIS_DIRTY_STREAMOUT) {
4240 iris_emit_cmd(batch, GENX(3DSTATE_STREAMOUT), sol);
4241 }
4242 }
4243
4244 if (dirty & IRIS_DIRTY_CLIP) {
4245 struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4246 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4247
4248 bool reject = cso_rast->rasterizer_discard &&
4249 ice->state.prims_generated_query_active;
4250
4251 uint32_t dynamic_clip[GENX(3DSTATE_CLIP_length)];
4252 iris_pack_command(GENX(3DSTATE_CLIP), &dynamic_clip, cl) {
4253 cl.StatisticsEnable = ice->state.statistics_counters_enabled;
4254 cl.ClipMode = reject ? CLIPMODE_REJECT_ALL : CLIPMODE_NORMAL;
4255 if (wm_prog_data->barycentric_interp_modes &
4256 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
4257 cl.NonPerspectiveBarycentricEnable = true;
4258
4259 cl.ForceZeroRTAIndexEnable = cso_fb->layers == 0;
4260 cl.MaximumVPIndex = ice->state.num_viewports - 1;
4261 }
4262 iris_emit_merge(batch, cso_rast->clip, dynamic_clip,
4263 ARRAY_SIZE(cso_rast->clip));
4264 }
4265
4266 if (dirty & IRIS_DIRTY_RASTER) {
4267 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4268 iris_batch_emit(batch, cso->raster, sizeof(cso->raster));
4269 iris_batch_emit(batch, cso->sf, sizeof(cso->sf));
4270
4271 }
4272
4273 /* XXX: FS program updates needs to flag IRIS_DIRTY_WM */
4274 if (dirty & IRIS_DIRTY_WM) {
4275 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4276 uint32_t dynamic_wm[GENX(3DSTATE_WM_length)];
4277
4278 iris_pack_command(GENX(3DSTATE_WM), &dynamic_wm, wm) {
4279 wm.StatisticsEnable = ice->state.statistics_counters_enabled;
4280
4281 wm.BarycentricInterpolationMode =
4282 wm_prog_data->barycentric_interp_modes;
4283
4284 if (wm_prog_data->early_fragment_tests)
4285 wm.EarlyDepthStencilControl = EDSC_PREPS;
4286 else if (wm_prog_data->has_side_effects)
4287 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
4288 }
4289 iris_emit_merge(batch, cso->wm, dynamic_wm, ARRAY_SIZE(cso->wm));
4290 }
4291
4292 if (dirty & IRIS_DIRTY_SBE) {
4293 iris_emit_sbe(batch, ice);
4294 }
4295
4296 if (dirty & IRIS_DIRTY_PS_BLEND) {
4297 struct iris_blend_state *cso_blend = ice->state.cso_blend;
4298 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
4299 uint32_t dynamic_pb[GENX(3DSTATE_PS_BLEND_length)];
4300 iris_pack_command(GENX(3DSTATE_PS_BLEND), &dynamic_pb, pb) {
4301 pb.HasWriteableRT = true; // XXX: comes from somewhere :(
4302 pb.AlphaTestEnable = cso_zsa->alpha.enabled;
4303 }
4304
4305 iris_emit_merge(batch, cso_blend->ps_blend, dynamic_pb,
4306 ARRAY_SIZE(cso_blend->ps_blend));
4307 }
4308
4309 if (dirty & IRIS_DIRTY_WM_DEPTH_STENCIL) {
4310 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
4311 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
4312
4313 uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
4314 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
4315 wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
4316 wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
4317 }
4318 iris_emit_merge(batch, cso->wmds, stencil_refs, ARRAY_SIZE(cso->wmds));
4319 }
4320
4321 if (dirty & IRIS_DIRTY_SCISSOR_RECT) {
4322 uint32_t scissor_offset =
4323 emit_state(batch, ice->state.dynamic_uploader,
4324 &ice->state.last_res.scissor,
4325 ice->state.scissors,
4326 sizeof(struct pipe_scissor_state) *
4327 ice->state.num_viewports, 32);
4328
4329 iris_emit_cmd(batch, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
4330 ptr.ScissorRectPointer = scissor_offset;
4331 }
4332 }
4333
4334 if (dirty & IRIS_DIRTY_DEPTH_BUFFER) {
4335 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4336 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
4337
4338 iris_batch_emit(batch, cso_z->packets, sizeof(cso_z->packets));
4339
4340 if (cso_fb->zsbuf) {
4341 struct iris_resource *zres, *sres;
4342 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
4343 &zres, &sres);
4344 // XXX: might not be writable...
4345 if (zres)
4346 iris_use_pinned_bo(batch, zres->bo, true);
4347 if (sres)
4348 iris_use_pinned_bo(batch, sres->bo, true);
4349 }
4350 }
4351
4352 if (dirty & IRIS_DIRTY_POLYGON_STIPPLE) {
4353 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
4354 for (int i = 0; i < 32; i++) {
4355 poly.PatternRow[i] = ice->state.poly_stipple.stipple[i];
4356 }
4357 }
4358 }
4359
4360 if (dirty & IRIS_DIRTY_LINE_STIPPLE) {
4361 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4362 iris_batch_emit(batch, cso->line_stipple, sizeof(cso->line_stipple));
4363 }
4364
4365 if (dirty & IRIS_DIRTY_VF_TOPOLOGY) {
4366 iris_emit_cmd(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
4367 topo.PrimitiveTopologyType =
4368 translate_prim_type(draw->mode, draw->vertices_per_patch);
4369 }
4370 }
4371
4372 if (dirty & IRIS_DIRTY_VERTEX_BUFFERS) {
4373 struct iris_vertex_buffer_state *cso = &ice->state.genx->vertex_buffers;
4374 const unsigned vb_dwords = GENX(VERTEX_BUFFER_STATE_length);
4375
4376 if (cso->num_buffers > 0) {
4377 /* The VF cache designers cut corners, and made the cache key's
4378 * <VertexBufferIndex, Memory Address> tuple only consider the bottom
4379 * 32 bits of the address. If you have two vertex buffers which get
4380 * placed exactly 4 GiB apart and use them in back-to-back draw calls,
4381 * you can get collisions (even within a single batch).
4382 *
4383 * So, we need to do a VF cache invalidate if the buffer for a VB
4384 * slot slot changes [48:32] address bits from the previous time.
4385 */
4386 unsigned flush_flags = 0;
4387
4388 for (unsigned i = 0; i < cso->num_buffers; i++) {
4389 uint16_t high_bits = 0;
4390
4391 struct iris_resource *res = (void *) cso->resources[i];
4392 if (res) {
4393 iris_use_pinned_bo(batch, res->bo, false);
4394
4395 high_bits = res->bo->gtt_offset >> 32ull;
4396 if (high_bits != ice->state.last_vbo_high_bits[i]) {
4397 flush_flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
4398 ice->state.last_vbo_high_bits[i] = high_bits;
4399 }
4400
4401 /* If the buffer was written to by streamout, we may need
4402 * to stall so those writes land and become visible to the
4403 * vertex fetcher.
4404 *
4405 * TODO: This may stall more than necessary.
4406 */
4407 if (res->bind_history & PIPE_BIND_STREAM_OUTPUT)
4408 flush_flags |= PIPE_CONTROL_CS_STALL;
4409 }
4410 }
4411
4412 if (flush_flags)
4413 iris_emit_pipe_control_flush(batch, flush_flags);
4414
4415 iris_batch_emit(batch, cso->vertex_buffers, sizeof(uint32_t) *
4416 (1 + vb_dwords * cso->num_buffers));
4417 }
4418 }
4419
4420 if (dirty & IRIS_DIRTY_VERTEX_ELEMENTS) {
4421 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
4422 const unsigned entries = MAX2(cso->count, 1);
4423 iris_batch_emit(batch, cso->vertex_elements, sizeof(uint32_t) *
4424 (1 + entries * GENX(VERTEX_ELEMENT_STATE_length)));
4425 iris_batch_emit(batch, cso->vf_instancing, sizeof(uint32_t) *
4426 entries * GENX(3DSTATE_VF_INSTANCING_length));
4427 }
4428
4429 if (dirty & IRIS_DIRTY_VF_SGVS) {
4430 const struct brw_vs_prog_data *vs_prog_data = (void *)
4431 ice->shaders.prog[MESA_SHADER_VERTEX]->prog_data;
4432 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
4433
4434 iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS), sgv) {
4435 if (vs_prog_data->uses_vertexid) {
4436 sgv.VertexIDEnable = true;
4437 sgv.VertexIDComponentNumber = 2;
4438 sgv.VertexIDElementOffset = cso->count;
4439 }
4440
4441 if (vs_prog_data->uses_instanceid) {
4442 sgv.InstanceIDEnable = true;
4443 sgv.InstanceIDComponentNumber = 3;
4444 sgv.InstanceIDElementOffset = cso->count;
4445 }
4446 }
4447 }
4448
4449 if (dirty & IRIS_DIRTY_VF) {
4450 iris_emit_cmd(batch, GENX(3DSTATE_VF), vf) {
4451 if (draw->primitive_restart) {
4452 vf.IndexedDrawCutIndexEnable = true;
4453 vf.CutIndex = draw->restart_index;
4454 }
4455 }
4456 }
4457
4458 // XXX: Gen8 - PMA fix
4459 }
4460
4461 static void
4462 iris_upload_render_state(struct iris_context *ice,
4463 struct iris_batch *batch,
4464 const struct pipe_draw_info *draw)
4465 {
4466 /* Always pin the binder. If we're emitting new binding table pointers,
4467 * we need it. If not, we're probably inheriting old tables via the
4468 * context, and need it anyway. Since true zero-bindings cases are
4469 * practically non-existent, just pin it and avoid last_res tracking.
4470 */
4471 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
4472
4473 if (!batch->contains_draw) {
4474 iris_restore_render_saved_bos(ice, batch, draw);
4475 batch->contains_draw = true;
4476 }
4477
4478 iris_upload_dirty_render_state(ice, batch, draw);
4479
4480 if (draw->index_size > 0) {
4481 unsigned offset;
4482
4483 if (draw->has_user_indices) {
4484 u_upload_data(ice->ctx.stream_uploader, 0,
4485 draw->count * draw->index_size, 4, draw->index.user,
4486 &offset, &ice->state.last_res.index_buffer);
4487 } else {
4488 struct iris_resource *res = (void *) draw->index.resource;
4489 res->bind_history |= PIPE_BIND_INDEX_BUFFER;
4490
4491 pipe_resource_reference(&ice->state.last_res.index_buffer,
4492 draw->index.resource);
4493 offset = 0;
4494 }
4495
4496 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
4497
4498 iris_emit_cmd(batch, GENX(3DSTATE_INDEX_BUFFER), ib) {
4499 ib.IndexFormat = draw->index_size >> 1;
4500 ib.MOCS = MOCS_WB;
4501 ib.BufferSize = bo->size;
4502 ib.BufferStartingAddress = ro_bo(bo, offset);
4503 }
4504
4505 /* The VF cache key only uses 32-bits, see vertex buffer comment above */
4506 uint16_t high_bits = bo->gtt_offset >> 32ull;
4507 if (high_bits != ice->state.last_index_bo_high_bits) {
4508 iris_emit_pipe_control_flush(batch, PIPE_CONTROL_VF_CACHE_INVALIDATE);
4509 ice->state.last_index_bo_high_bits = high_bits;
4510 }
4511 }
4512
4513 #define _3DPRIM_END_OFFSET 0x2420
4514 #define _3DPRIM_START_VERTEX 0x2430
4515 #define _3DPRIM_VERTEX_COUNT 0x2434
4516 #define _3DPRIM_INSTANCE_COUNT 0x2438
4517 #define _3DPRIM_START_INSTANCE 0x243C
4518 #define _3DPRIM_BASE_VERTEX 0x2440
4519
4520 if (draw->indirect) {
4521 /* We don't support this MultidrawIndirect. */
4522 assert(!draw->indirect->indirect_draw_count);
4523
4524 struct iris_bo *bo = iris_resource_bo(draw->indirect->buffer);
4525 assert(bo);
4526
4527 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4528 lrm.RegisterAddress = _3DPRIM_VERTEX_COUNT;
4529 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 0);
4530 }
4531 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4532 lrm.RegisterAddress = _3DPRIM_INSTANCE_COUNT;
4533 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 4);
4534 }
4535 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4536 lrm.RegisterAddress = _3DPRIM_START_VERTEX;
4537 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 8);
4538 }
4539 if (draw->index_size) {
4540 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4541 lrm.RegisterAddress = _3DPRIM_BASE_VERTEX;
4542 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
4543 }
4544 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4545 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
4546 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 16);
4547 }
4548 } else {
4549 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4550 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
4551 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
4552 }
4553 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
4554 lri.RegisterOffset = _3DPRIM_BASE_VERTEX;
4555 lri.DataDWord = 0;
4556 }
4557 }
4558 }
4559
4560 iris_emit_cmd(batch, GENX(3DPRIMITIVE), prim) {
4561 prim.StartInstanceLocation = draw->start_instance;
4562 prim.InstanceCount = draw->instance_count;
4563 prim.VertexCountPerInstance = draw->count;
4564 prim.VertexAccessType = draw->index_size > 0 ? RANDOM : SEQUENTIAL;
4565 prim.PredicateEnable =
4566 ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT;
4567
4568 // XXX: this is probably bonkers.
4569 prim.StartVertexLocation = draw->start;
4570
4571 prim.IndirectParameterEnable = draw->indirect != NULL;
4572
4573 if (draw->index_size) {
4574 prim.BaseVertexLocation += draw->index_bias;
4575 } else {
4576 prim.StartVertexLocation += draw->index_bias;
4577 }
4578
4579 //prim.BaseVertexLocation = ...;
4580 }
4581 }
4582
4583 static void
4584 iris_upload_compute_state(struct iris_context *ice,
4585 struct iris_batch *batch,
4586 const struct pipe_grid_info *grid)
4587 {
4588 const uint64_t dirty = ice->state.dirty;
4589 struct iris_screen *screen = batch->screen;
4590 const struct gen_device_info *devinfo = &screen->devinfo;
4591 struct iris_binder *binder = &ice->state.binder;
4592 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
4593 struct iris_compiled_shader *shader =
4594 ice->shaders.prog[MESA_SHADER_COMPUTE];
4595 struct brw_stage_prog_data *prog_data = shader->prog_data;
4596 struct brw_cs_prog_data *cs_prog_data = (void *) prog_data;
4597
4598 if ((dirty & IRIS_DIRTY_CONSTANTS_CS) && shs->cbuf0_needs_upload)
4599 upload_uniforms(ice, MESA_SHADER_COMPUTE);
4600
4601 if (dirty & IRIS_DIRTY_BINDINGS_CS)
4602 iris_populate_binding_table(ice, batch, MESA_SHADER_COMPUTE, false);
4603
4604 iris_use_optional_res(batch, shs->sampler_table.res, false);
4605 iris_use_pinned_bo(batch, iris_resource_bo(shader->assembly.res), false);
4606
4607 if (ice->state.need_border_colors)
4608 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
4609
4610 if (dirty & IRIS_DIRTY_CS) {
4611 /* The MEDIA_VFE_STATE documentation for Gen8+ says:
4612 *
4613 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
4614 * the only bits that are changed are scoreboard related: Scoreboard
4615 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard Delta. For
4616 * these scoreboard related states, a MEDIA_STATE_FLUSH is
4617 * sufficient."
4618 */
4619 iris_emit_pipe_control_flush(batch, PIPE_CONTROL_CS_STALL);
4620
4621 iris_emit_cmd(batch, GENX(MEDIA_VFE_STATE), vfe) {
4622 if (prog_data->total_scratch) {
4623 uint32_t scratch_addr =
4624 iris_get_scratch_space(ice, prog_data->total_scratch,
4625 MESA_SHADER_COMPUTE);
4626 vfe.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
4627 vfe.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr);
4628 }
4629
4630 vfe.MaximumNumberofThreads =
4631 devinfo->max_cs_threads * screen->subslice_total - 1;
4632 #if GEN_GEN < 11
4633 vfe.ResetGatewayTimer =
4634 Resettingrelativetimerandlatchingtheglobaltimestamp;
4635 #endif
4636
4637 vfe.NumberofURBEntries = 2;
4638 vfe.URBEntryAllocationSize = 2;
4639
4640 // XXX: Use Indirect Payload Storage?
4641 vfe.CURBEAllocationSize =
4642 ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
4643 cs_prog_data->push.cross_thread.regs, 2);
4644 }
4645 }
4646
4647 // XXX: hack iris_set_constant_buffers to upload these thread counts
4648 // XXX: along with regular uniforms for compute shaders, somehow.
4649
4650 uint32_t curbe_data_offset = 0;
4651 // TODO: Move subgroup-id into uniforms ubo so we can push uniforms
4652 assert(cs_prog_data->push.cross_thread.dwords == 0 &&
4653 cs_prog_data->push.per_thread.dwords == 1 &&
4654 cs_prog_data->base.param[0] == BRW_PARAM_BUILTIN_SUBGROUP_ID);
4655 struct pipe_resource *curbe_data_res = NULL;
4656 uint32_t *curbe_data_map =
4657 stream_state(batch, ice->state.dynamic_uploader, &curbe_data_res,
4658 ALIGN(cs_prog_data->push.total.size, 64), 64,
4659 &curbe_data_offset);
4660 assert(curbe_data_map);
4661 memset(curbe_data_map, 0x5a, ALIGN(cs_prog_data->push.total.size, 64));
4662 iris_fill_cs_push_const_buffer(cs_prog_data, curbe_data_map);
4663
4664 if (dirty & IRIS_DIRTY_CONSTANTS_CS) {
4665 iris_emit_cmd(batch, GENX(MEDIA_CURBE_LOAD), curbe) {
4666 curbe.CURBETotalDataLength =
4667 ALIGN(cs_prog_data->push.total.size, 64);
4668 curbe.CURBEDataStartAddress = curbe_data_offset;
4669 }
4670 }
4671
4672 if (dirty & (IRIS_DIRTY_SAMPLER_STATES_CS |
4673 IRIS_DIRTY_BINDINGS_CS |
4674 IRIS_DIRTY_CONSTANTS_CS |
4675 IRIS_DIRTY_CS)) {
4676 struct pipe_resource *desc_res = NULL;
4677 uint32_t desc[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
4678
4679 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), desc, idd) {
4680 idd.SamplerStatePointer = shs->sampler_table.offset;
4681 idd.BindingTablePointer = binder->bt_offset[MESA_SHADER_COMPUTE];
4682 }
4683
4684 for (int i = 0; i < GENX(INTERFACE_DESCRIPTOR_DATA_length); i++)
4685 desc[i] |= ((uint32_t *) shader->derived_data)[i];
4686
4687 iris_emit_cmd(batch, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
4688 load.InterfaceDescriptorTotalLength =
4689 GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
4690 load.InterfaceDescriptorDataStartAddress =
4691 emit_state(batch, ice->state.dynamic_uploader,
4692 &desc_res, desc, sizeof(desc), 32);
4693 }
4694
4695 pipe_resource_reference(&desc_res, NULL);
4696 }
4697
4698 uint32_t group_size = grid->block[0] * grid->block[1] * grid->block[2];
4699 uint32_t remainder = group_size & (cs_prog_data->simd_size - 1);
4700 uint32_t right_mask;
4701
4702 if (remainder > 0)
4703 right_mask = ~0u >> (32 - remainder);
4704 else
4705 right_mask = ~0u >> (32 - cs_prog_data->simd_size);
4706
4707 #define GPGPU_DISPATCHDIMX 0x2500
4708 #define GPGPU_DISPATCHDIMY 0x2504
4709 #define GPGPU_DISPATCHDIMZ 0x2508
4710
4711 if (grid->indirect) {
4712 struct iris_state_ref *grid_size = &ice->state.grid_size;
4713 struct iris_bo *bo = iris_resource_bo(grid_size->res);
4714 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4715 lrm.RegisterAddress = GPGPU_DISPATCHDIMX;
4716 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 0);
4717 }
4718 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4719 lrm.RegisterAddress = GPGPU_DISPATCHDIMY;
4720 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 4);
4721 }
4722 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4723 lrm.RegisterAddress = GPGPU_DISPATCHDIMZ;
4724 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 8);
4725 }
4726 }
4727
4728 iris_emit_cmd(batch, GENX(GPGPU_WALKER), ggw) {
4729 ggw.IndirectParameterEnable = grid->indirect != NULL;
4730 ggw.SIMDSize = cs_prog_data->simd_size / 16;
4731 ggw.ThreadDepthCounterMaximum = 0;
4732 ggw.ThreadHeightCounterMaximum = 0;
4733 ggw.ThreadWidthCounterMaximum = cs_prog_data->threads - 1;
4734 ggw.ThreadGroupIDXDimension = grid->grid[0];
4735 ggw.ThreadGroupIDYDimension = grid->grid[1];
4736 ggw.ThreadGroupIDZDimension = grid->grid[2];
4737 ggw.RightExecutionMask = right_mask;
4738 ggw.BottomExecutionMask = 0xffffffff;
4739 }
4740
4741 iris_emit_cmd(batch, GENX(MEDIA_STATE_FLUSH), msf);
4742
4743 if (!batch->contains_draw) {
4744 iris_restore_compute_saved_bos(ice, batch, grid);
4745 batch->contains_draw = true;
4746 }
4747 }
4748
4749 /**
4750 * State module teardown.
4751 */
4752 static void
4753 iris_destroy_state(struct iris_context *ice)
4754 {
4755 iris_free_vertex_buffers(&ice->state.genx->vertex_buffers);
4756
4757 // XXX: unreference resources/surfaces.
4758 for (unsigned i = 0; i < ice->state.framebuffer.nr_cbufs; i++) {
4759 pipe_surface_reference(&ice->state.framebuffer.cbufs[i], NULL);
4760 }
4761 pipe_surface_reference(&ice->state.framebuffer.zsbuf, NULL);
4762
4763 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4764 struct iris_shader_state *shs = &ice->state.shaders[stage];
4765 pipe_resource_reference(&shs->sampler_table.res, NULL);
4766 }
4767 free(ice->state.genx);
4768
4769 pipe_resource_reference(&ice->state.unbound_tex.res, NULL);
4770
4771 pipe_resource_reference(&ice->state.last_res.cc_vp, NULL);
4772 pipe_resource_reference(&ice->state.last_res.sf_cl_vp, NULL);
4773 pipe_resource_reference(&ice->state.last_res.color_calc, NULL);
4774 pipe_resource_reference(&ice->state.last_res.scissor, NULL);
4775 pipe_resource_reference(&ice->state.last_res.blend, NULL);
4776 pipe_resource_reference(&ice->state.last_res.index_buffer, NULL);
4777 }
4778
4779 /* ------------------------------------------------------------------- */
4780
4781 static void
4782 iris_load_register_reg32(struct iris_batch *batch, uint32_t src,
4783 uint32_t dst)
4784 {
4785 _iris_emit_lrr(batch, src, dst);
4786 }
4787
4788 static void
4789 iris_load_register_reg64(struct iris_batch *batch, uint32_t src,
4790 uint32_t dst)
4791 {
4792 _iris_emit_lrr(batch, src, dst);
4793 _iris_emit_lrr(batch, src + 4, dst + 4);
4794 }
4795
4796 static void
4797 iris_load_register_imm32(struct iris_batch *batch, uint32_t reg,
4798 uint32_t val)
4799 {
4800 _iris_emit_lri(batch, reg, val);
4801 }
4802
4803 static void
4804 iris_load_register_imm64(struct iris_batch *batch, uint32_t reg,
4805 uint64_t val)
4806 {
4807 _iris_emit_lri(batch, reg + 0, val & 0xffffffff);
4808 _iris_emit_lri(batch, reg + 4, val >> 32);
4809 }
4810
4811 /**
4812 * Emit MI_LOAD_REGISTER_MEM to load a 32-bit MMIO register from a buffer.
4813 */
4814 static void
4815 iris_load_register_mem32(struct iris_batch *batch, uint32_t reg,
4816 struct iris_bo *bo, uint32_t offset)
4817 {
4818 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4819 lrm.RegisterAddress = reg;
4820 lrm.MemoryAddress = ro_bo(bo, offset);
4821 }
4822 }
4823
4824 /**
4825 * Load a 64-bit value from a buffer into a MMIO register via
4826 * two MI_LOAD_REGISTER_MEM commands.
4827 */
4828 static void
4829 iris_load_register_mem64(struct iris_batch *batch, uint32_t reg,
4830 struct iris_bo *bo, uint32_t offset)
4831 {
4832 iris_load_register_mem32(batch, reg + 0, bo, offset + 0);
4833 iris_load_register_mem32(batch, reg + 4, bo, offset + 4);
4834 }
4835
4836 static void
4837 iris_store_register_mem32(struct iris_batch *batch, uint32_t reg,
4838 struct iris_bo *bo, uint32_t offset,
4839 bool predicated)
4840 {
4841 iris_emit_cmd(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
4842 srm.RegisterAddress = reg;
4843 srm.MemoryAddress = rw_bo(bo, offset);
4844 srm.PredicateEnable = predicated;
4845 }
4846 }
4847
4848 static void
4849 iris_store_register_mem64(struct iris_batch *batch, uint32_t reg,
4850 struct iris_bo *bo, uint32_t offset,
4851 bool predicated)
4852 {
4853 iris_store_register_mem32(batch, reg + 0, bo, offset + 0, predicated);
4854 iris_store_register_mem32(batch, reg + 4, bo, offset + 4, predicated);
4855 }
4856
4857 static void
4858 iris_store_data_imm32(struct iris_batch *batch,
4859 struct iris_bo *bo, uint32_t offset,
4860 uint32_t imm)
4861 {
4862 iris_emit_cmd(batch, GENX(MI_STORE_DATA_IMM), sdi) {
4863 sdi.Address = rw_bo(bo, offset);
4864 sdi.ImmediateData = imm;
4865 }
4866 }
4867
4868 static void
4869 iris_store_data_imm64(struct iris_batch *batch,
4870 struct iris_bo *bo, uint32_t offset,
4871 uint64_t imm)
4872 {
4873 /* Can't use iris_emit_cmd because MI_STORE_DATA_IMM has a length of
4874 * 2 in genxml but it's actually variable length and we need 5 DWords.
4875 */
4876 void *map = iris_get_command_space(batch, 4 * 5);
4877 _iris_pack_command(batch, GENX(MI_STORE_DATA_IMM), map, sdi) {
4878 sdi.DWordLength = 5 - 2;
4879 sdi.Address = rw_bo(bo, offset);
4880 sdi.ImmediateData = imm;
4881 }
4882 }
4883
4884 static void
4885 iris_copy_mem_mem(struct iris_batch *batch,
4886 struct iris_bo *dst_bo, uint32_t dst_offset,
4887 struct iris_bo *src_bo, uint32_t src_offset,
4888 unsigned bytes)
4889 {
4890 /* MI_COPY_MEM_MEM operates on DWords. */
4891 assert(bytes % 4 == 0);
4892 assert(dst_offset % 4 == 0);
4893 assert(src_offset % 4 == 0);
4894
4895 for (unsigned i = 0; i < bytes; i += 4) {
4896 iris_emit_cmd(batch, GENX(MI_COPY_MEM_MEM), cp) {
4897 cp.DestinationMemoryAddress = rw_bo(dst_bo, dst_offset + i);
4898 cp.SourceMemoryAddress = ro_bo(src_bo, src_offset + i);
4899 }
4900 }
4901 }
4902
4903 /* ------------------------------------------------------------------- */
4904
4905 static unsigned
4906 flags_to_post_sync_op(uint32_t flags)
4907 {
4908 if (flags & PIPE_CONTROL_WRITE_IMMEDIATE)
4909 return WriteImmediateData;
4910
4911 if (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT)
4912 return WritePSDepthCount;
4913
4914 if (flags & PIPE_CONTROL_WRITE_TIMESTAMP)
4915 return WriteTimestamp;
4916
4917 return 0;
4918 }
4919
4920 /**
4921 * Do the given flags have a Post Sync or LRI Post Sync operation?
4922 */
4923 static enum pipe_control_flags
4924 get_post_sync_flags(enum pipe_control_flags flags)
4925 {
4926 flags &= PIPE_CONTROL_WRITE_IMMEDIATE |
4927 PIPE_CONTROL_WRITE_DEPTH_COUNT |
4928 PIPE_CONTROL_WRITE_TIMESTAMP |
4929 PIPE_CONTROL_LRI_POST_SYNC_OP;
4930
4931 /* Only one "Post Sync Op" is allowed, and it's mutually exclusive with
4932 * "LRI Post Sync Operation". So more than one bit set would be illegal.
4933 */
4934 assert(util_bitcount(flags) <= 1);
4935
4936 return flags;
4937 }
4938
4939 #define IS_COMPUTE_PIPELINE(batch) (batch->name == IRIS_BATCH_COMPUTE)
4940
4941 /**
4942 * Emit a series of PIPE_CONTROL commands, taking into account any
4943 * workarounds necessary to actually accomplish the caller's request.
4944 *
4945 * Unless otherwise noted, spec quotations in this function come from:
4946 *
4947 * Synchronization of the 3D Pipeline > PIPE_CONTROL Command > Programming
4948 * Restrictions for PIPE_CONTROL.
4949 *
4950 * You should not use this function directly. Use the helpers in
4951 * iris_pipe_control.c instead, which may split the pipe control further.
4952 */
4953 static void
4954 iris_emit_raw_pipe_control(struct iris_batch *batch, uint32_t flags,
4955 struct iris_bo *bo, uint32_t offset, uint64_t imm)
4956 {
4957 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
4958 enum pipe_control_flags post_sync_flags = get_post_sync_flags(flags);
4959 enum pipe_control_flags non_lri_post_sync_flags =
4960 post_sync_flags & ~PIPE_CONTROL_LRI_POST_SYNC_OP;
4961
4962 /* Recursive PIPE_CONTROL workarounds --------------------------------
4963 * (http://knowyourmeme.com/memes/xzibit-yo-dawg)
4964 *
4965 * We do these first because we want to look at the original operation,
4966 * rather than any workarounds we set.
4967 */
4968 if (GEN_GEN == 9 && (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE)) {
4969 /* The PIPE_CONTROL "VF Cache Invalidation Enable" bit description
4970 * lists several workarounds:
4971 *
4972 * "Project: SKL, KBL, BXT
4973 *
4974 * If the VF Cache Invalidation Enable is set to a 1 in a
4975 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields
4976 * sets to 0, with the VF Cache Invalidation Enable set to 0
4977 * needs to be sent prior to the PIPE_CONTROL with VF Cache
4978 * Invalidation Enable set to a 1."
4979 */
4980 iris_emit_raw_pipe_control(batch, 0, NULL, 0, 0);
4981 }
4982
4983 if (GEN_GEN == 9 && IS_COMPUTE_PIPELINE(batch) && post_sync_flags) {
4984 /* Project: SKL / Argument: LRI Post Sync Operation [23]
4985 *
4986 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
4987 * programmed prior to programming a PIPECONTROL command with "LRI
4988 * Post Sync Operation" in GPGPU mode of operation (i.e when
4989 * PIPELINE_SELECT command is set to GPGPU mode of operation)."
4990 *
4991 * The same text exists a few rows below for Post Sync Op.
4992 */
4993 iris_emit_raw_pipe_control(batch, PIPE_CONTROL_CS_STALL, bo, offset, imm);
4994 }
4995
4996 if (GEN_GEN == 10 && (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH)) {
4997 /* Cannonlake:
4998 * "Before sending a PIPE_CONTROL command with bit 12 set, SW must issue
4999 * another PIPE_CONTROL with Render Target Cache Flush Enable (bit 12)
5000 * = 0 and Pipe Control Flush Enable (bit 7) = 1"
5001 */
5002 iris_emit_raw_pipe_control(batch, PIPE_CONTROL_FLUSH_ENABLE, bo,
5003 offset, imm);
5004 }
5005
5006 /* "Flush Types" workarounds ---------------------------------------------
5007 * We do these now because they may add post-sync operations or CS stalls.
5008 */
5009
5010 if (GEN_GEN < 11 && flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) {
5011 /* Project: BDW, SKL+ (stopping at CNL) / Argument: VF Invalidate
5012 *
5013 * "'Post Sync Operation' must be enabled to 'Write Immediate Data' or
5014 * 'Write PS Depth Count' or 'Write Timestamp'."
5015 */
5016 if (!bo) {
5017 flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
5018 post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
5019 non_lri_post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
5020 bo = batch->screen->workaround_bo;
5021 }
5022 }
5023
5024 /* #1130 from Gen10 workarounds page:
5025 *
5026 * "Enable Depth Stall on every Post Sync Op if Render target Cache
5027 * Flush is not enabled in same PIPE CONTROL and Enable Pixel score
5028 * board stall if Render target cache flush is enabled."
5029 *
5030 * Applicable to CNL B0 and C0 steppings only.
5031 *
5032 * The wording here is unclear, and this workaround doesn't look anything
5033 * like the internal bug report recommendations, but leave it be for now...
5034 */
5035 if (GEN_GEN == 10) {
5036 if (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) {
5037 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
5038 } else if (flags & non_lri_post_sync_flags) {
5039 flags |= PIPE_CONTROL_DEPTH_STALL;
5040 }
5041 }
5042
5043 if (flags & PIPE_CONTROL_DEPTH_STALL) {
5044 /* From the PIPE_CONTROL instruction table, bit 13 (Depth Stall Enable):
5045 *
5046 * "This bit must be DISABLED for operations other than writing
5047 * PS_DEPTH_COUNT."
5048 *
5049 * This seems like nonsense. An Ivybridge workaround requires us to
5050 * emit a PIPE_CONTROL with a depth stall and write immediate post-sync
5051 * operation. Gen8+ requires us to emit depth stalls and depth cache
5052 * flushes together. So, it's hard to imagine this means anything other
5053 * than "we originally intended this to be used for PS_DEPTH_COUNT".
5054 *
5055 * We ignore the supposed restriction and do nothing.
5056 */
5057 }
5058
5059 if (flags & (PIPE_CONTROL_RENDER_TARGET_FLUSH |
5060 PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
5061 /* From the PIPE_CONTROL instruction table, bit 12 and bit 1:
5062 *
5063 * "This bit must be DISABLED for End-of-pipe (Read) fences,
5064 * PS_DEPTH_COUNT or TIMESTAMP queries."
5065 *
5066 * TODO: Implement end-of-pipe checking.
5067 */
5068 assert(!(post_sync_flags & (PIPE_CONTROL_WRITE_DEPTH_COUNT |
5069 PIPE_CONTROL_WRITE_TIMESTAMP)));
5070 }
5071
5072 if (GEN_GEN < 11 && (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
5073 /* From the PIPE_CONTROL instruction table, bit 1:
5074 *
5075 * "This bit is ignored if Depth Stall Enable is set.
5076 * Further, the render cache is not flushed even if Write Cache
5077 * Flush Enable bit is set."
5078 *
5079 * We assert that the caller doesn't do this combination, to try and
5080 * prevent mistakes. It shouldn't hurt the GPU, though.
5081 *
5082 * We skip this check on Gen11+ as the "Stall at Pixel Scoreboard"
5083 * and "Render Target Flush" combo is explicitly required for BTI
5084 * update workarounds.
5085 */
5086 assert(!(flags & (PIPE_CONTROL_DEPTH_STALL |
5087 PIPE_CONTROL_RENDER_TARGET_FLUSH)));
5088 }
5089
5090 /* PIPE_CONTROL page workarounds ------------------------------------- */
5091
5092 if (GEN_GEN <= 8 && (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE)) {
5093 /* From the PIPE_CONTROL page itself:
5094 *
5095 * "IVB, HSW, BDW
5096 * Restriction: Pipe_control with CS-stall bit set must be issued
5097 * before a pipe-control command that has the State Cache
5098 * Invalidate bit set."
5099 */
5100 flags |= PIPE_CONTROL_CS_STALL;
5101 }
5102
5103 if (flags & PIPE_CONTROL_FLUSH_LLC) {
5104 /* From the PIPE_CONTROL instruction table, bit 26 (Flush LLC):
5105 *
5106 * "Project: ALL
5107 * SW must always program Post-Sync Operation to "Write Immediate
5108 * Data" when Flush LLC is set."
5109 *
5110 * For now, we just require the caller to do it.
5111 */
5112 assert(flags & PIPE_CONTROL_WRITE_IMMEDIATE);
5113 }
5114
5115 /* "Post-Sync Operation" workarounds -------------------------------- */
5116
5117 /* Project: All / Argument: Global Snapshot Count Reset [19]
5118 *
5119 * "This bit must not be exercised on any product.
5120 * Requires stall bit ([20] of DW1) set."
5121 *
5122 * We don't use this, so we just assert that it isn't used. The
5123 * PIPE_CONTROL instruction page indicates that they intended this
5124 * as a debug feature and don't think it is useful in production,
5125 * but it may actually be usable, should we ever want to.
5126 */
5127 assert((flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) == 0);
5128
5129 if (flags & (PIPE_CONTROL_MEDIA_STATE_CLEAR |
5130 PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE)) {
5131 /* Project: All / Arguments:
5132 *
5133 * - Generic Media State Clear [16]
5134 * - Indirect State Pointers Disable [16]
5135 *
5136 * "Requires stall bit ([20] of DW1) set."
5137 *
5138 * Also, the PIPE_CONTROL instruction table, bit 16 (Generic Media
5139 * State Clear) says:
5140 *
5141 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
5142 * programmed prior to programming a PIPECONTROL command with "Media
5143 * State Clear" set in GPGPU mode of operation"
5144 *
5145 * This is a subset of the earlier rule, so there's nothing to do.
5146 */
5147 flags |= PIPE_CONTROL_CS_STALL;
5148 }
5149
5150 if (flags & PIPE_CONTROL_STORE_DATA_INDEX) {
5151 /* Project: All / Argument: Store Data Index
5152 *
5153 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
5154 * than '0'."
5155 *
5156 * For now, we just assert that the caller does this. We might want to
5157 * automatically add a write to the workaround BO...
5158 */
5159 assert(non_lri_post_sync_flags != 0);
5160 }
5161
5162 if (flags & PIPE_CONTROL_SYNC_GFDT) {
5163 /* Project: All / Argument: Sync GFDT
5164 *
5165 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
5166 * than '0' or 0x2520[13] must be set."
5167 *
5168 * For now, we just assert that the caller does this.
5169 */
5170 assert(non_lri_post_sync_flags != 0);
5171 }
5172
5173 if (flags & PIPE_CONTROL_TLB_INVALIDATE) {
5174 /* Project: IVB+ / Argument: TLB inv
5175 *
5176 * "Requires stall bit ([20] of DW1) set."
5177 *
5178 * Also, from the PIPE_CONTROL instruction table:
5179 *
5180 * "Project: SKL+
5181 * Post Sync Operation or CS stall must be set to ensure a TLB
5182 * invalidation occurs. Otherwise no cycle will occur to the TLB
5183 * cache to invalidate."
5184 *
5185 * This is not a subset of the earlier rule, so there's nothing to do.
5186 */
5187 flags |= PIPE_CONTROL_CS_STALL;
5188 }
5189
5190 if (GEN_GEN == 9 && devinfo->gt == 4) {
5191 /* TODO: The big Skylake GT4 post sync op workaround */
5192 }
5193
5194 /* "GPGPU specific workarounds" (both post-sync and flush) ------------ */
5195
5196 if (IS_COMPUTE_PIPELINE(batch)) {
5197 if (GEN_GEN >= 9 && (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE)) {
5198 /* Project: SKL+ / Argument: Tex Invalidate
5199 * "Requires stall bit ([20] of DW) set for all GPGPU Workloads."
5200 */
5201 flags |= PIPE_CONTROL_CS_STALL;
5202 }
5203
5204 if (GEN_GEN == 8 && (post_sync_flags ||
5205 (flags & (PIPE_CONTROL_NOTIFY_ENABLE |
5206 PIPE_CONTROL_DEPTH_STALL |
5207 PIPE_CONTROL_RENDER_TARGET_FLUSH |
5208 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
5209 PIPE_CONTROL_DATA_CACHE_FLUSH)))) {
5210 /* Project: BDW / Arguments:
5211 *
5212 * - LRI Post Sync Operation [23]
5213 * - Post Sync Op [15:14]
5214 * - Notify En [8]
5215 * - Depth Stall [13]
5216 * - Render Target Cache Flush [12]
5217 * - Depth Cache Flush [0]
5218 * - DC Flush Enable [5]
5219 *
5220 * "Requires stall bit ([20] of DW) set for all GPGPU and Media
5221 * Workloads."
5222 */
5223 flags |= PIPE_CONTROL_CS_STALL;
5224
5225 /* Also, from the PIPE_CONTROL instruction table, bit 20:
5226 *
5227 * "Project: BDW
5228 * This bit must be always set when PIPE_CONTROL command is
5229 * programmed by GPGPU and MEDIA workloads, except for the cases
5230 * when only Read Only Cache Invalidation bits are set (State
5231 * Cache Invalidation Enable, Instruction cache Invalidation
5232 * Enable, Texture Cache Invalidation Enable, Constant Cache
5233 * Invalidation Enable). This is to WA FFDOP CG issue, this WA
5234 * need not implemented when FF_DOP_CG is disable via "Fixed
5235 * Function DOP Clock Gate Disable" bit in RC_PSMI_CTRL register."
5236 *
5237 * It sounds like we could avoid CS stalls in some cases, but we
5238 * don't currently bother. This list isn't exactly the list above,
5239 * either...
5240 */
5241 }
5242 }
5243
5244 /* "Stall" workarounds ----------------------------------------------
5245 * These have to come after the earlier ones because we may have added
5246 * some additional CS stalls above.
5247 */
5248
5249 if (GEN_GEN < 9 && (flags & PIPE_CONTROL_CS_STALL)) {
5250 /* Project: PRE-SKL, VLV, CHV
5251 *
5252 * "[All Stepping][All SKUs]:
5253 *
5254 * One of the following must also be set:
5255 *
5256 * - Render Target Cache Flush Enable ([12] of DW1)
5257 * - Depth Cache Flush Enable ([0] of DW1)
5258 * - Stall at Pixel Scoreboard ([1] of DW1)
5259 * - Depth Stall ([13] of DW1)
5260 * - Post-Sync Operation ([13] of DW1)
5261 * - DC Flush Enable ([5] of DW1)"
5262 *
5263 * If we don't already have one of those bits set, we choose to add
5264 * "Stall at Pixel Scoreboard". Some of the other bits require a
5265 * CS stall as a workaround (see above), which would send us into
5266 * an infinite recursion of PIPE_CONTROLs. "Stall at Pixel Scoreboard"
5267 * appears to be safe, so we choose that.
5268 */
5269 const uint32_t wa_bits = PIPE_CONTROL_RENDER_TARGET_FLUSH |
5270 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
5271 PIPE_CONTROL_WRITE_IMMEDIATE |
5272 PIPE_CONTROL_WRITE_DEPTH_COUNT |
5273 PIPE_CONTROL_WRITE_TIMESTAMP |
5274 PIPE_CONTROL_STALL_AT_SCOREBOARD |
5275 PIPE_CONTROL_DEPTH_STALL |
5276 PIPE_CONTROL_DATA_CACHE_FLUSH;
5277 if (!(flags & wa_bits))
5278 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
5279 }
5280
5281 /* Emit --------------------------------------------------------------- */
5282
5283 iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
5284 pc.LRIPostSyncOperation = NoLRIOperation;
5285 pc.PipeControlFlushEnable = flags & PIPE_CONTROL_FLUSH_ENABLE;
5286 pc.DCFlushEnable = flags & PIPE_CONTROL_DATA_CACHE_FLUSH;
5287 pc.StoreDataIndex = 0;
5288 pc.CommandStreamerStallEnable = flags & PIPE_CONTROL_CS_STALL;
5289 pc.GlobalSnapshotCountReset =
5290 flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET;
5291 pc.TLBInvalidate = flags & PIPE_CONTROL_TLB_INVALIDATE;
5292 pc.GenericMediaStateClear = flags & PIPE_CONTROL_MEDIA_STATE_CLEAR;
5293 pc.StallAtPixelScoreboard = flags & PIPE_CONTROL_STALL_AT_SCOREBOARD;
5294 pc.RenderTargetCacheFlushEnable =
5295 flags & PIPE_CONTROL_RENDER_TARGET_FLUSH;
5296 pc.DepthCacheFlushEnable = flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH;
5297 pc.StateCacheInvalidationEnable =
5298 flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE;
5299 pc.VFCacheInvalidationEnable = flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
5300 pc.ConstantCacheInvalidationEnable =
5301 flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE;
5302 pc.PostSyncOperation = flags_to_post_sync_op(flags);
5303 pc.DepthStallEnable = flags & PIPE_CONTROL_DEPTH_STALL;
5304 pc.InstructionCacheInvalidateEnable =
5305 flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE;
5306 pc.NotifyEnable = flags & PIPE_CONTROL_NOTIFY_ENABLE;
5307 pc.IndirectStatePointersDisable =
5308 flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE;
5309 pc.TextureCacheInvalidationEnable =
5310 flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
5311 pc.Address = rw_bo(bo, offset);
5312 pc.ImmediateData = imm;
5313 }
5314 }
5315
5316 void
5317 genX(init_state)(struct iris_context *ice)
5318 {
5319 struct pipe_context *ctx = &ice->ctx;
5320 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
5321
5322 ctx->create_blend_state = iris_create_blend_state;
5323 ctx->create_depth_stencil_alpha_state = iris_create_zsa_state;
5324 ctx->create_rasterizer_state = iris_create_rasterizer_state;
5325 ctx->create_sampler_state = iris_create_sampler_state;
5326 ctx->create_sampler_view = iris_create_sampler_view;
5327 ctx->create_surface = iris_create_surface;
5328 ctx->create_vertex_elements_state = iris_create_vertex_elements;
5329 ctx->bind_blend_state = iris_bind_blend_state;
5330 ctx->bind_depth_stencil_alpha_state = iris_bind_zsa_state;
5331 ctx->bind_sampler_states = iris_bind_sampler_states;
5332 ctx->bind_rasterizer_state = iris_bind_rasterizer_state;
5333 ctx->bind_vertex_elements_state = iris_bind_vertex_elements_state;
5334 ctx->delete_blend_state = iris_delete_state;
5335 ctx->delete_depth_stencil_alpha_state = iris_delete_state;
5336 ctx->delete_rasterizer_state = iris_delete_state;
5337 ctx->delete_sampler_state = iris_delete_state;
5338 ctx->delete_vertex_elements_state = iris_delete_state;
5339 ctx->set_blend_color = iris_set_blend_color;
5340 ctx->set_clip_state = iris_set_clip_state;
5341 ctx->set_constant_buffer = iris_set_constant_buffer;
5342 ctx->set_shader_buffers = iris_set_shader_buffers;
5343 ctx->set_shader_images = iris_set_shader_images;
5344 ctx->set_sampler_views = iris_set_sampler_views;
5345 ctx->set_tess_state = iris_set_tess_state;
5346 ctx->set_framebuffer_state = iris_set_framebuffer_state;
5347 ctx->set_polygon_stipple = iris_set_polygon_stipple;
5348 ctx->set_sample_mask = iris_set_sample_mask;
5349 ctx->set_scissor_states = iris_set_scissor_states;
5350 ctx->set_stencil_ref = iris_set_stencil_ref;
5351 ctx->set_vertex_buffers = iris_set_vertex_buffers;
5352 ctx->set_viewport_states = iris_set_viewport_states;
5353 ctx->sampler_view_destroy = iris_sampler_view_destroy;
5354 ctx->surface_destroy = iris_surface_destroy;
5355 ctx->draw_vbo = iris_draw_vbo;
5356 ctx->launch_grid = iris_launch_grid;
5357 ctx->create_stream_output_target = iris_create_stream_output_target;
5358 ctx->stream_output_target_destroy = iris_stream_output_target_destroy;
5359 ctx->set_stream_output_targets = iris_set_stream_output_targets;
5360
5361 ice->vtbl.destroy_state = iris_destroy_state;
5362 ice->vtbl.init_render_context = iris_init_render_context;
5363 ice->vtbl.init_compute_context = iris_init_compute_context;
5364 ice->vtbl.upload_render_state = iris_upload_render_state;
5365 ice->vtbl.update_surface_base_address = iris_update_surface_base_address;
5366 ice->vtbl.upload_compute_state = iris_upload_compute_state;
5367 ice->vtbl.emit_raw_pipe_control = iris_emit_raw_pipe_control;
5368 ice->vtbl.load_register_reg32 = iris_load_register_reg32;
5369 ice->vtbl.load_register_reg64 = iris_load_register_reg64;
5370 ice->vtbl.load_register_imm32 = iris_load_register_imm32;
5371 ice->vtbl.load_register_imm64 = iris_load_register_imm64;
5372 ice->vtbl.load_register_mem32 = iris_load_register_mem32;
5373 ice->vtbl.load_register_mem64 = iris_load_register_mem64;
5374 ice->vtbl.store_register_mem32 = iris_store_register_mem32;
5375 ice->vtbl.store_register_mem64 = iris_store_register_mem64;
5376 ice->vtbl.store_data_imm32 = iris_store_data_imm32;
5377 ice->vtbl.store_data_imm64 = iris_store_data_imm64;
5378 ice->vtbl.copy_mem_mem = iris_copy_mem_mem;
5379 ice->vtbl.derived_program_state_size = iris_derived_program_state_size;
5380 ice->vtbl.store_derived_program_state = iris_store_derived_program_state;
5381 ice->vtbl.create_so_decl_list = iris_create_so_decl_list;
5382 ice->vtbl.populate_vs_key = iris_populate_vs_key;
5383 ice->vtbl.populate_tcs_key = iris_populate_tcs_key;
5384 ice->vtbl.populate_tes_key = iris_populate_tes_key;
5385 ice->vtbl.populate_gs_key = iris_populate_gs_key;
5386 ice->vtbl.populate_fs_key = iris_populate_fs_key;
5387 ice->vtbl.populate_cs_key = iris_populate_cs_key;
5388
5389 ice->state.dirty = ~0ull;
5390
5391 ice->state.statistics_counters_enabled = true;
5392
5393 ice->state.sample_mask = 0xffff;
5394 ice->state.num_viewports = 1;
5395 ice->state.genx = calloc(1, sizeof(struct iris_genx_state));
5396
5397 /* Make a 1x1x1 null surface for unbound textures */
5398 void *null_surf_map =
5399 upload_state(ice->state.surface_uploader, &ice->state.unbound_tex,
5400 4 * GENX(RENDER_SURFACE_STATE_length), 64);
5401 isl_null_fill_state(&screen->isl_dev, null_surf_map, isl_extent3d(1, 1, 1));
5402 ice->state.unbound_tex.offset +=
5403 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.unbound_tex.res));
5404
5405 /* Default all scissor rectangles to be empty regions. */
5406 for (int i = 0; i < IRIS_MAX_VIEWPORTS; i++) {
5407 ice->state.scissors[i] = (struct pipe_scissor_state) {
5408 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
5409 };
5410 }
5411 }