iris: Upload kernel inputs with system values
[mesa.git] / src / gallium / drivers / iris / iris_state.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included
12 * in all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
21 */
22
23 /**
24 * @file iris_state.c
25 *
26 * ============================= GENXML CODE =============================
27 * [This file is compiled once per generation.]
28 * =======================================================================
29 *
30 * This is the main state upload code.
31 *
32 * Gallium uses Constant State Objects, or CSOs, for most state. Large,
33 * complex, or highly reusable state can be created once, and bound and
34 * rebound multiple times. This is modeled with the pipe->create_*_state()
35 * and pipe->bind_*_state() hooks. Highly dynamic or inexpensive state is
36 * streamed out on the fly, via pipe->set_*_state() hooks.
37 *
38 * OpenGL involves frequently mutating context state, which is mirrored in
39 * core Mesa by highly mutable data structures. However, most applications
40 * typically draw the same things over and over - from frame to frame, most
41 * of the same objects are still visible and need to be redrawn. So, rather
42 * than inventing new state all the time, applications usually mutate to swap
43 * between known states that we've seen before.
44 *
45 * Gallium isolates us from this mutation by tracking API state, and
46 * distilling it into a set of Constant State Objects, or CSOs. Large,
47 * complex, or typically reusable state can be created once, then reused
48 * multiple times. Drivers can create and store their own associated data.
49 * This create/bind model corresponds to the pipe->create_*_state() and
50 * pipe->bind_*_state() driver hooks.
51 *
52 * Some state is cheap to create, or expected to be highly dynamic. Rather
53 * than creating and caching piles of CSOs for these, Gallium simply streams
54 * them out, via the pipe->set_*_state() driver hooks.
55 *
56 * To reduce draw time overhead, we try to compute as much state at create
57 * time as possible. Wherever possible, we translate the Gallium pipe state
58 * to 3DSTATE commands, and store those commands in the CSO. At draw time,
59 * we can simply memcpy them into a batch buffer.
60 *
61 * No hardware matches the abstraction perfectly, so some commands require
62 * information from multiple CSOs. In this case, we can store two copies
63 * of the packet (one in each CSO), and simply | together their DWords at
64 * draw time. Sometimes the second set is trivial (one or two fields), so
65 * we simply pack it at draw time.
66 *
67 * There are two main components in the file below. First, the CSO hooks
68 * create/bind/track state. The second are the draw-time upload functions,
69 * iris_upload_render_state() and iris_upload_compute_state(), which read
70 * the context state and emit the commands into the actual batch.
71 */
72
73 #include <stdio.h>
74 #include <errno.h>
75
76 #if HAVE_VALGRIND
77 #include <valgrind.h>
78 #include <memcheck.h>
79 #define VG(x) x
80 #ifdef DEBUG
81 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
82 #endif
83 #else
84 #define VG(x)
85 #endif
86
87 #include "pipe/p_defines.h"
88 #include "pipe/p_state.h"
89 #include "pipe/p_context.h"
90 #include "pipe/p_screen.h"
91 #include "util/u_dual_blend.h"
92 #include "util/u_inlines.h"
93 #include "util/format/u_format.h"
94 #include "util/u_framebuffer.h"
95 #include "util/u_transfer.h"
96 #include "util/u_upload_mgr.h"
97 #include "util/u_viewport.h"
98 #include "util/u_memory.h"
99 #include "drm-uapi/i915_drm.h"
100 #include "nir.h"
101 #include "intel/compiler/brw_compiler.h"
102 #include "intel/common/gen_aux_map.h"
103 #include "intel/common/gen_l3_config.h"
104 #include "intel/common/gen_sample_positions.h"
105 #include "iris_batch.h"
106 #include "iris_context.h"
107 #include "iris_defines.h"
108 #include "iris_pipe.h"
109 #include "iris_resource.h"
110
111 #include "iris_genx_macros.h"
112 #include "intel/common/gen_guardband.h"
113
114 /**
115 * Statically assert that PIPE_* enums match the hardware packets.
116 * (As long as they match, we don't need to translate them.)
117 */
118 UNUSED static void pipe_asserts()
119 {
120 #define PIPE_ASSERT(x) STATIC_ASSERT((int)x)
121
122 /* pipe_logicop happens to match the hardware. */
123 PIPE_ASSERT(PIPE_LOGICOP_CLEAR == LOGICOP_CLEAR);
124 PIPE_ASSERT(PIPE_LOGICOP_NOR == LOGICOP_NOR);
125 PIPE_ASSERT(PIPE_LOGICOP_AND_INVERTED == LOGICOP_AND_INVERTED);
126 PIPE_ASSERT(PIPE_LOGICOP_COPY_INVERTED == LOGICOP_COPY_INVERTED);
127 PIPE_ASSERT(PIPE_LOGICOP_AND_REVERSE == LOGICOP_AND_REVERSE);
128 PIPE_ASSERT(PIPE_LOGICOP_INVERT == LOGICOP_INVERT);
129 PIPE_ASSERT(PIPE_LOGICOP_XOR == LOGICOP_XOR);
130 PIPE_ASSERT(PIPE_LOGICOP_NAND == LOGICOP_NAND);
131 PIPE_ASSERT(PIPE_LOGICOP_AND == LOGICOP_AND);
132 PIPE_ASSERT(PIPE_LOGICOP_EQUIV == LOGICOP_EQUIV);
133 PIPE_ASSERT(PIPE_LOGICOP_NOOP == LOGICOP_NOOP);
134 PIPE_ASSERT(PIPE_LOGICOP_OR_INVERTED == LOGICOP_OR_INVERTED);
135 PIPE_ASSERT(PIPE_LOGICOP_COPY == LOGICOP_COPY);
136 PIPE_ASSERT(PIPE_LOGICOP_OR_REVERSE == LOGICOP_OR_REVERSE);
137 PIPE_ASSERT(PIPE_LOGICOP_OR == LOGICOP_OR);
138 PIPE_ASSERT(PIPE_LOGICOP_SET == LOGICOP_SET);
139
140 /* pipe_blend_func happens to match the hardware. */
141 PIPE_ASSERT(PIPE_BLENDFACTOR_ONE == BLENDFACTOR_ONE);
142 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_COLOR == BLENDFACTOR_SRC_COLOR);
143 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA == BLENDFACTOR_SRC_ALPHA);
144 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_ALPHA == BLENDFACTOR_DST_ALPHA);
145 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_COLOR == BLENDFACTOR_DST_COLOR);
146 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE == BLENDFACTOR_SRC_ALPHA_SATURATE);
147 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_COLOR == BLENDFACTOR_CONST_COLOR);
148 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_ALPHA == BLENDFACTOR_CONST_ALPHA);
149 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_COLOR == BLENDFACTOR_SRC1_COLOR);
150 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_ALPHA == BLENDFACTOR_SRC1_ALPHA);
151 PIPE_ASSERT(PIPE_BLENDFACTOR_ZERO == BLENDFACTOR_ZERO);
152 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_COLOR == BLENDFACTOR_INV_SRC_COLOR);
153 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_ALPHA == BLENDFACTOR_INV_SRC_ALPHA);
154 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_ALPHA == BLENDFACTOR_INV_DST_ALPHA);
155 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_COLOR == BLENDFACTOR_INV_DST_COLOR);
156 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_COLOR == BLENDFACTOR_INV_CONST_COLOR);
157 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_ALPHA == BLENDFACTOR_INV_CONST_ALPHA);
158 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_COLOR == BLENDFACTOR_INV_SRC1_COLOR);
159 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_ALPHA == BLENDFACTOR_INV_SRC1_ALPHA);
160
161 /* pipe_blend_func happens to match the hardware. */
162 PIPE_ASSERT(PIPE_BLEND_ADD == BLENDFUNCTION_ADD);
163 PIPE_ASSERT(PIPE_BLEND_SUBTRACT == BLENDFUNCTION_SUBTRACT);
164 PIPE_ASSERT(PIPE_BLEND_REVERSE_SUBTRACT == BLENDFUNCTION_REVERSE_SUBTRACT);
165 PIPE_ASSERT(PIPE_BLEND_MIN == BLENDFUNCTION_MIN);
166 PIPE_ASSERT(PIPE_BLEND_MAX == BLENDFUNCTION_MAX);
167
168 /* pipe_stencil_op happens to match the hardware. */
169 PIPE_ASSERT(PIPE_STENCIL_OP_KEEP == STENCILOP_KEEP);
170 PIPE_ASSERT(PIPE_STENCIL_OP_ZERO == STENCILOP_ZERO);
171 PIPE_ASSERT(PIPE_STENCIL_OP_REPLACE == STENCILOP_REPLACE);
172 PIPE_ASSERT(PIPE_STENCIL_OP_INCR == STENCILOP_INCRSAT);
173 PIPE_ASSERT(PIPE_STENCIL_OP_DECR == STENCILOP_DECRSAT);
174 PIPE_ASSERT(PIPE_STENCIL_OP_INCR_WRAP == STENCILOP_INCR);
175 PIPE_ASSERT(PIPE_STENCIL_OP_DECR_WRAP == STENCILOP_DECR);
176 PIPE_ASSERT(PIPE_STENCIL_OP_INVERT == STENCILOP_INVERT);
177
178 /* pipe_sprite_coord_mode happens to match 3DSTATE_SBE */
179 PIPE_ASSERT(PIPE_SPRITE_COORD_UPPER_LEFT == UPPERLEFT);
180 PIPE_ASSERT(PIPE_SPRITE_COORD_LOWER_LEFT == LOWERLEFT);
181 #undef PIPE_ASSERT
182 }
183
184 static unsigned
185 translate_prim_type(enum pipe_prim_type prim, uint8_t verts_per_patch)
186 {
187 static const unsigned map[] = {
188 [PIPE_PRIM_POINTS] = _3DPRIM_POINTLIST,
189 [PIPE_PRIM_LINES] = _3DPRIM_LINELIST,
190 [PIPE_PRIM_LINE_LOOP] = _3DPRIM_LINELOOP,
191 [PIPE_PRIM_LINE_STRIP] = _3DPRIM_LINESTRIP,
192 [PIPE_PRIM_TRIANGLES] = _3DPRIM_TRILIST,
193 [PIPE_PRIM_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
194 [PIPE_PRIM_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
195 [PIPE_PRIM_QUADS] = _3DPRIM_QUADLIST,
196 [PIPE_PRIM_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
197 [PIPE_PRIM_POLYGON] = _3DPRIM_POLYGON,
198 [PIPE_PRIM_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
199 [PIPE_PRIM_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
200 [PIPE_PRIM_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
201 [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
202 [PIPE_PRIM_PATCHES] = _3DPRIM_PATCHLIST_1 - 1,
203 };
204
205 return map[prim] + (prim == PIPE_PRIM_PATCHES ? verts_per_patch : 0);
206 }
207
208 static unsigned
209 translate_compare_func(enum pipe_compare_func pipe_func)
210 {
211 static const unsigned map[] = {
212 [PIPE_FUNC_NEVER] = COMPAREFUNCTION_NEVER,
213 [PIPE_FUNC_LESS] = COMPAREFUNCTION_LESS,
214 [PIPE_FUNC_EQUAL] = COMPAREFUNCTION_EQUAL,
215 [PIPE_FUNC_LEQUAL] = COMPAREFUNCTION_LEQUAL,
216 [PIPE_FUNC_GREATER] = COMPAREFUNCTION_GREATER,
217 [PIPE_FUNC_NOTEQUAL] = COMPAREFUNCTION_NOTEQUAL,
218 [PIPE_FUNC_GEQUAL] = COMPAREFUNCTION_GEQUAL,
219 [PIPE_FUNC_ALWAYS] = COMPAREFUNCTION_ALWAYS,
220 };
221 return map[pipe_func];
222 }
223
224 static unsigned
225 translate_shadow_func(enum pipe_compare_func pipe_func)
226 {
227 /* Gallium specifies the result of shadow comparisons as:
228 *
229 * 1 if ref <op> texel,
230 * 0 otherwise.
231 *
232 * The hardware does:
233 *
234 * 0 if texel <op> ref,
235 * 1 otherwise.
236 *
237 * So we need to flip the operator and also negate.
238 */
239 static const unsigned map[] = {
240 [PIPE_FUNC_NEVER] = PREFILTEROPALWAYS,
241 [PIPE_FUNC_LESS] = PREFILTEROPLEQUAL,
242 [PIPE_FUNC_EQUAL] = PREFILTEROPNOTEQUAL,
243 [PIPE_FUNC_LEQUAL] = PREFILTEROPLESS,
244 [PIPE_FUNC_GREATER] = PREFILTEROPGEQUAL,
245 [PIPE_FUNC_NOTEQUAL] = PREFILTEROPEQUAL,
246 [PIPE_FUNC_GEQUAL] = PREFILTEROPGREATER,
247 [PIPE_FUNC_ALWAYS] = PREFILTEROPNEVER,
248 };
249 return map[pipe_func];
250 }
251
252 static unsigned
253 translate_cull_mode(unsigned pipe_face)
254 {
255 static const unsigned map[4] = {
256 [PIPE_FACE_NONE] = CULLMODE_NONE,
257 [PIPE_FACE_FRONT] = CULLMODE_FRONT,
258 [PIPE_FACE_BACK] = CULLMODE_BACK,
259 [PIPE_FACE_FRONT_AND_BACK] = CULLMODE_BOTH,
260 };
261 return map[pipe_face];
262 }
263
264 static unsigned
265 translate_fill_mode(unsigned pipe_polymode)
266 {
267 static const unsigned map[4] = {
268 [PIPE_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
269 [PIPE_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
270 [PIPE_POLYGON_MODE_POINT] = FILL_MODE_POINT,
271 [PIPE_POLYGON_MODE_FILL_RECTANGLE] = FILL_MODE_SOLID,
272 };
273 return map[pipe_polymode];
274 }
275
276 static unsigned
277 translate_mip_filter(enum pipe_tex_mipfilter pipe_mip)
278 {
279 static const unsigned map[] = {
280 [PIPE_TEX_MIPFILTER_NEAREST] = MIPFILTER_NEAREST,
281 [PIPE_TEX_MIPFILTER_LINEAR] = MIPFILTER_LINEAR,
282 [PIPE_TEX_MIPFILTER_NONE] = MIPFILTER_NONE,
283 };
284 return map[pipe_mip];
285 }
286
287 static uint32_t
288 translate_wrap(unsigned pipe_wrap)
289 {
290 static const unsigned map[] = {
291 [PIPE_TEX_WRAP_REPEAT] = TCM_WRAP,
292 [PIPE_TEX_WRAP_CLAMP] = TCM_HALF_BORDER,
293 [PIPE_TEX_WRAP_CLAMP_TO_EDGE] = TCM_CLAMP,
294 [PIPE_TEX_WRAP_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER,
295 [PIPE_TEX_WRAP_MIRROR_REPEAT] = TCM_MIRROR,
296 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE,
297
298 /* These are unsupported. */
299 [PIPE_TEX_WRAP_MIRROR_CLAMP] = -1,
300 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER] = -1,
301 };
302 return map[pipe_wrap];
303 }
304
305 /**
306 * Allocate space for some indirect state.
307 *
308 * Return a pointer to the map (to fill it out) and a state ref (for
309 * referring to the state in GPU commands).
310 */
311 static void *
312 upload_state(struct u_upload_mgr *uploader,
313 struct iris_state_ref *ref,
314 unsigned size,
315 unsigned alignment)
316 {
317 void *p = NULL;
318 u_upload_alloc(uploader, 0, size, alignment, &ref->offset, &ref->res, &p);
319 return p;
320 }
321
322 /**
323 * Stream out temporary/short-lived state.
324 *
325 * This allocates space, pins the BO, and includes the BO address in the
326 * returned offset (which works because all state lives in 32-bit memory
327 * zones).
328 */
329 static uint32_t *
330 stream_state(struct iris_batch *batch,
331 struct u_upload_mgr *uploader,
332 struct pipe_resource **out_res,
333 unsigned size,
334 unsigned alignment,
335 uint32_t *out_offset)
336 {
337 void *ptr = NULL;
338
339 u_upload_alloc(uploader, 0, size, alignment, out_offset, out_res, &ptr);
340
341 struct iris_bo *bo = iris_resource_bo(*out_res);
342 iris_use_pinned_bo(batch, bo, false, IRIS_DOMAIN_NONE);
343
344 iris_record_state_size(batch->state_sizes,
345 bo->gtt_offset + *out_offset, size);
346
347 *out_offset += iris_bo_offset_from_base_address(bo);
348
349 return ptr;
350 }
351
352 /**
353 * stream_state() + memcpy.
354 */
355 static uint32_t
356 emit_state(struct iris_batch *batch,
357 struct u_upload_mgr *uploader,
358 struct pipe_resource **out_res,
359 const void *data,
360 unsigned size,
361 unsigned alignment)
362 {
363 unsigned offset = 0;
364 uint32_t *map =
365 stream_state(batch, uploader, out_res, size, alignment, &offset);
366
367 if (map)
368 memcpy(map, data, size);
369
370 return offset;
371 }
372
373 /**
374 * Did field 'x' change between 'old_cso' and 'new_cso'?
375 *
376 * (If so, we may want to set some dirty flags.)
377 */
378 #define cso_changed(x) (!old_cso || (old_cso->x != new_cso->x))
379 #define cso_changed_memcmp(x) \
380 (!old_cso || memcmp(old_cso->x, new_cso->x, sizeof(old_cso->x)) != 0)
381
382 static void
383 flush_before_state_base_change(struct iris_batch *batch)
384 {
385 const struct gen_device_info *devinfo = &batch->screen->devinfo;
386
387 /* Flush before emitting STATE_BASE_ADDRESS.
388 *
389 * This isn't documented anywhere in the PRM. However, it seems to be
390 * necessary prior to changing the surface state base adress. We've
391 * seen issues in Vulkan where we get GPU hangs when using multi-level
392 * command buffers which clear depth, reset state base address, and then
393 * go render stuff.
394 *
395 * Normally, in GL, we would trust the kernel to do sufficient stalls
396 * and flushes prior to executing our batch. However, it doesn't seem
397 * as if the kernel's flushing is always sufficient and we don't want to
398 * rely on it.
399 *
400 * We make this an end-of-pipe sync instead of a normal flush because we
401 * do not know the current status of the GPU. On Haswell at least,
402 * having a fast-clear operation in flight at the same time as a normal
403 * rendering operation can cause hangs. Since the kernel's flushing is
404 * insufficient, we need to ensure that any rendering operations from
405 * other processes are definitely complete before we try to do our own
406 * rendering. It's a bit of a big hammer but it appears to work.
407 */
408 iris_emit_end_of_pipe_sync(batch,
409 "change STATE_BASE_ADDRESS (flushes)",
410 PIPE_CONTROL_RENDER_TARGET_FLUSH |
411 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
412 PIPE_CONTROL_DATA_CACHE_FLUSH |
413 /* GEN:BUG:1606662791:
414 *
415 * Software must program PIPE_CONTROL command
416 * with "HDC Pipeline Flush" prior to
417 * programming of the below two non-pipeline
418 * state :
419 * * STATE_BASE_ADDRESS
420 * * 3DSTATE_BINDING_TABLE_POOL_ALLOC
421 */
422 ((GEN_GEN == 12 && devinfo->revision == 0 /* A0 */ ?
423 PIPE_CONTROL_FLUSH_HDC : 0)));
424 }
425
426 static void
427 flush_after_state_base_change(struct iris_batch *batch)
428 {
429 /* After re-setting the surface state base address, we have to do some
430 * cache flusing so that the sampler engine will pick up the new
431 * SURFACE_STATE objects and binding tables. From the Broadwell PRM,
432 * Shared Function > 3D Sampler > State > State Caching (page 96):
433 *
434 * Coherency with system memory in the state cache, like the texture
435 * cache is handled partially by software. It is expected that the
436 * command stream or shader will issue Cache Flush operation or
437 * Cache_Flush sampler message to ensure that the L1 cache remains
438 * coherent with system memory.
439 *
440 * [...]
441 *
442 * Whenever the value of the Dynamic_State_Base_Addr,
443 * Surface_State_Base_Addr are altered, the L1 state cache must be
444 * invalidated to ensure the new surface or sampler state is fetched
445 * from system memory.
446 *
447 * The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
448 * which, according the PIPE_CONTROL instruction documentation in the
449 * Broadwell PRM:
450 *
451 * Setting this bit is independent of any other bit in this packet.
452 * This bit controls the invalidation of the L1 and L2 state caches
453 * at the top of the pipe i.e. at the parsing time.
454 *
455 * Unfortunately, experimentation seems to indicate that state cache
456 * invalidation through a PIPE_CONTROL does nothing whatsoever in
457 * regards to surface state and binding tables. In stead, it seems that
458 * invalidating the texture cache is what is actually needed.
459 *
460 * XXX: As far as we have been able to determine through
461 * experimentation, shows that flush the texture cache appears to be
462 * sufficient. The theory here is that all of the sampling/rendering
463 * units cache the binding table in the texture cache. However, we have
464 * yet to be able to actually confirm this.
465 */
466 iris_emit_end_of_pipe_sync(batch,
467 "change STATE_BASE_ADDRESS (invalidates)",
468 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
469 PIPE_CONTROL_CONST_CACHE_INVALIDATE |
470 PIPE_CONTROL_STATE_CACHE_INVALIDATE);
471 }
472
473 static void
474 _iris_emit_lri(struct iris_batch *batch, uint32_t reg, uint32_t val)
475 {
476 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
477 lri.RegisterOffset = reg;
478 lri.DataDWord = val;
479 }
480 }
481 #define iris_emit_lri(b, r, v) _iris_emit_lri(b, GENX(r##_num), v)
482
483 static void
484 _iris_emit_lrr(struct iris_batch *batch, uint32_t dst, uint32_t src)
485 {
486 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
487 lrr.SourceRegisterAddress = src;
488 lrr.DestinationRegisterAddress = dst;
489 }
490 }
491
492 static void
493 iris_load_register_reg32(struct iris_batch *batch, uint32_t dst,
494 uint32_t src)
495 {
496 _iris_emit_lrr(batch, dst, src);
497 }
498
499 static void
500 iris_load_register_reg64(struct iris_batch *batch, uint32_t dst,
501 uint32_t src)
502 {
503 _iris_emit_lrr(batch, dst, src);
504 _iris_emit_lrr(batch, dst + 4, src + 4);
505 }
506
507 static void
508 iris_load_register_imm32(struct iris_batch *batch, uint32_t reg,
509 uint32_t val)
510 {
511 _iris_emit_lri(batch, reg, val);
512 }
513
514 static void
515 iris_load_register_imm64(struct iris_batch *batch, uint32_t reg,
516 uint64_t val)
517 {
518 _iris_emit_lri(batch, reg + 0, val & 0xffffffff);
519 _iris_emit_lri(batch, reg + 4, val >> 32);
520 }
521
522 /**
523 * Emit MI_LOAD_REGISTER_MEM to load a 32-bit MMIO register from a buffer.
524 */
525 static void
526 iris_load_register_mem32(struct iris_batch *batch, uint32_t reg,
527 struct iris_bo *bo, uint32_t offset)
528 {
529 iris_batch_sync_region_start(batch);
530 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
531 lrm.RegisterAddress = reg;
532 lrm.MemoryAddress = ro_bo(bo, offset);
533 }
534 iris_batch_sync_region_end(batch);
535 }
536
537 /**
538 * Load a 64-bit value from a buffer into a MMIO register via
539 * two MI_LOAD_REGISTER_MEM commands.
540 */
541 static void
542 iris_load_register_mem64(struct iris_batch *batch, uint32_t reg,
543 struct iris_bo *bo, uint32_t offset)
544 {
545 iris_load_register_mem32(batch, reg + 0, bo, offset + 0);
546 iris_load_register_mem32(batch, reg + 4, bo, offset + 4);
547 }
548
549 static void
550 iris_store_register_mem32(struct iris_batch *batch, uint32_t reg,
551 struct iris_bo *bo, uint32_t offset,
552 bool predicated)
553 {
554 iris_batch_sync_region_start(batch);
555 iris_emit_cmd(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
556 srm.RegisterAddress = reg;
557 srm.MemoryAddress = rw_bo(bo, offset, IRIS_DOMAIN_OTHER_WRITE);
558 srm.PredicateEnable = predicated;
559 }
560 iris_batch_sync_region_end(batch);
561 }
562
563 static void
564 iris_store_register_mem64(struct iris_batch *batch, uint32_t reg,
565 struct iris_bo *bo, uint32_t offset,
566 bool predicated)
567 {
568 iris_store_register_mem32(batch, reg + 0, bo, offset + 0, predicated);
569 iris_store_register_mem32(batch, reg + 4, bo, offset + 4, predicated);
570 }
571
572 static void
573 iris_store_data_imm32(struct iris_batch *batch,
574 struct iris_bo *bo, uint32_t offset,
575 uint32_t imm)
576 {
577 iris_batch_sync_region_start(batch);
578 iris_emit_cmd(batch, GENX(MI_STORE_DATA_IMM), sdi) {
579 sdi.Address = rw_bo(bo, offset, IRIS_DOMAIN_OTHER_WRITE);
580 sdi.ImmediateData = imm;
581 }
582 iris_batch_sync_region_end(batch);
583 }
584
585 static void
586 iris_store_data_imm64(struct iris_batch *batch,
587 struct iris_bo *bo, uint32_t offset,
588 uint64_t imm)
589 {
590 /* Can't use iris_emit_cmd because MI_STORE_DATA_IMM has a length of
591 * 2 in genxml but it's actually variable length and we need 5 DWords.
592 */
593 void *map = iris_get_command_space(batch, 4 * 5);
594 iris_batch_sync_region_start(batch);
595 _iris_pack_command(batch, GENX(MI_STORE_DATA_IMM), map, sdi) {
596 sdi.DWordLength = 5 - 2;
597 sdi.Address = rw_bo(bo, offset, IRIS_DOMAIN_OTHER_WRITE);
598 sdi.ImmediateData = imm;
599 }
600 iris_batch_sync_region_end(batch);
601 }
602
603 static void
604 iris_copy_mem_mem(struct iris_batch *batch,
605 struct iris_bo *dst_bo, uint32_t dst_offset,
606 struct iris_bo *src_bo, uint32_t src_offset,
607 unsigned bytes)
608 {
609 /* MI_COPY_MEM_MEM operates on DWords. */
610 assert(bytes % 4 == 0);
611 assert(dst_offset % 4 == 0);
612 assert(src_offset % 4 == 0);
613 iris_batch_sync_region_start(batch);
614
615 for (unsigned i = 0; i < bytes; i += 4) {
616 iris_emit_cmd(batch, GENX(MI_COPY_MEM_MEM), cp) {
617 cp.DestinationMemoryAddress = rw_bo(dst_bo, dst_offset + i,
618 IRIS_DOMAIN_OTHER_WRITE);
619 cp.SourceMemoryAddress = ro_bo(src_bo, src_offset + i);
620 }
621 }
622
623 iris_batch_sync_region_end(batch);
624 }
625
626 static void
627 emit_pipeline_select(struct iris_batch *batch, uint32_t pipeline)
628 {
629 #if GEN_GEN >= 8 && GEN_GEN < 10
630 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
631 *
632 * Software must clear the COLOR_CALC_STATE Valid field in
633 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
634 * with Pipeline Select set to GPGPU.
635 *
636 * The internal hardware docs recommend the same workaround for Gen9
637 * hardware too.
638 */
639 if (pipeline == GPGPU)
640 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
641 #endif
642
643
644 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
645 * PIPELINE_SELECT [DevBWR+]":
646 *
647 * "Project: DEVSNB+
648 *
649 * Software must ensure all the write caches are flushed through a
650 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
651 * command to invalidate read only caches prior to programming
652 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode."
653 */
654 iris_emit_pipe_control_flush(batch,
655 "workaround: PIPELINE_SELECT flushes (1/2)",
656 PIPE_CONTROL_RENDER_TARGET_FLUSH |
657 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
658 PIPE_CONTROL_DATA_CACHE_FLUSH |
659 PIPE_CONTROL_CS_STALL);
660
661 iris_emit_pipe_control_flush(batch,
662 "workaround: PIPELINE_SELECT flushes (2/2)",
663 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
664 PIPE_CONTROL_CONST_CACHE_INVALIDATE |
665 PIPE_CONTROL_STATE_CACHE_INVALIDATE |
666 PIPE_CONTROL_INSTRUCTION_INVALIDATE);
667
668 iris_emit_cmd(batch, GENX(PIPELINE_SELECT), sel) {
669 #if GEN_GEN >= 9
670 sel.MaskBits = 3;
671 #endif
672 sel.PipelineSelection = pipeline;
673 }
674 }
675
676 UNUSED static void
677 init_glk_barrier_mode(struct iris_batch *batch, uint32_t value)
678 {
679 #if GEN_GEN == 9
680 /* Project: DevGLK
681 *
682 * "This chicken bit works around a hardware issue with barrier
683 * logic encountered when switching between GPGPU and 3D pipelines.
684 * To workaround the issue, this mode bit should be set after a
685 * pipeline is selected."
686 */
687 uint32_t reg_val;
688 iris_pack_state(GENX(SLICE_COMMON_ECO_CHICKEN1), &reg_val, reg) {
689 reg.GLKBarrierMode = value;
690 reg.GLKBarrierModeMask = 1;
691 }
692 iris_emit_lri(batch, SLICE_COMMON_ECO_CHICKEN1, reg_val);
693 #endif
694 }
695
696 static void
697 init_state_base_address(struct iris_batch *batch)
698 {
699 uint32_t mocs = batch->screen->isl_dev.mocs.internal;
700 flush_before_state_base_change(batch);
701
702 /* We program most base addresses once at context initialization time.
703 * Each base address points at a 4GB memory zone, and never needs to
704 * change. See iris_bufmgr.h for a description of the memory zones.
705 *
706 * The one exception is Surface State Base Address, which needs to be
707 * updated occasionally. See iris_binder.c for the details there.
708 */
709 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
710 sba.GeneralStateMOCS = mocs;
711 sba.StatelessDataPortAccessMOCS = mocs;
712 sba.DynamicStateMOCS = mocs;
713 sba.IndirectObjectMOCS = mocs;
714 sba.InstructionMOCS = mocs;
715 sba.SurfaceStateMOCS = mocs;
716
717 sba.GeneralStateBaseAddressModifyEnable = true;
718 sba.DynamicStateBaseAddressModifyEnable = true;
719 sba.IndirectObjectBaseAddressModifyEnable = true;
720 sba.InstructionBaseAddressModifyEnable = true;
721 sba.GeneralStateBufferSizeModifyEnable = true;
722 sba.DynamicStateBufferSizeModifyEnable = true;
723 #if (GEN_GEN >= 9)
724 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
725 sba.BindlessSurfaceStateMOCS = mocs;
726 #endif
727 sba.IndirectObjectBufferSizeModifyEnable = true;
728 sba.InstructionBuffersizeModifyEnable = true;
729
730 sba.InstructionBaseAddress = ro_bo(NULL, IRIS_MEMZONE_SHADER_START);
731 sba.DynamicStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_DYNAMIC_START);
732
733 sba.GeneralStateBufferSize = 0xfffff;
734 sba.IndirectObjectBufferSize = 0xfffff;
735 sba.InstructionBufferSize = 0xfffff;
736 sba.DynamicStateBufferSize = 0xfffff;
737 }
738
739 flush_after_state_base_change(batch);
740 }
741
742 static void
743 iris_emit_l3_config(struct iris_batch *batch,
744 const struct gen_l3_config *cfg)
745 {
746 uint32_t reg_val;
747 assert(cfg || GEN_GEN >= 12);
748
749 #if GEN_GEN >= 12
750 #define L3_ALLOCATION_REG GENX(L3ALLOC)
751 #define L3_ALLOCATION_REG_num GENX(L3ALLOC_num)
752 #else
753 #define L3_ALLOCATION_REG GENX(L3CNTLREG)
754 #define L3_ALLOCATION_REG_num GENX(L3CNTLREG_num)
755 #endif
756
757 iris_pack_state(L3_ALLOCATION_REG, &reg_val, reg) {
758 #if GEN_GEN < 11
759 reg.SLMEnable = cfg->n[GEN_L3P_SLM] > 0;
760 #endif
761 #if GEN_GEN == 11
762 /* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set
763 * in L3CNTLREG register. The default setting of the bit is not the
764 * desirable behavior.
765 */
766 reg.ErrorDetectionBehaviorControl = true;
767 reg.UseFullWays = true;
768 #endif
769 if (GEN_GEN < 12 || cfg) {
770 reg.URBAllocation = cfg->n[GEN_L3P_URB];
771 reg.ROAllocation = cfg->n[GEN_L3P_RO];
772 reg.DCAllocation = cfg->n[GEN_L3P_DC];
773 reg.AllAllocation = cfg->n[GEN_L3P_ALL];
774 } else {
775 #if GEN_GEN >= 12
776 reg.L3FullWayAllocationEnable = true;
777 #endif
778 }
779 }
780 _iris_emit_lri(batch, L3_ALLOCATION_REG_num, reg_val);
781 }
782
783 #if GEN_GEN == 9
784 static void
785 iris_enable_obj_preemption(struct iris_batch *batch, bool enable)
786 {
787 uint32_t reg_val;
788
789 /* A fixed function pipe flush is required before modifying this field */
790 iris_emit_end_of_pipe_sync(batch, enable ? "enable preemption"
791 : "disable preemption",
792 PIPE_CONTROL_RENDER_TARGET_FLUSH);
793
794 /* enable object level preemption */
795 iris_pack_state(GENX(CS_CHICKEN1), &reg_val, reg) {
796 reg.ReplayMode = enable;
797 reg.ReplayModeMask = true;
798 }
799 iris_emit_lri(batch, CS_CHICKEN1, reg_val);
800 }
801 #endif
802
803 #if GEN_GEN == 11
804 static void
805 iris_upload_slice_hashing_state(struct iris_batch *batch)
806 {
807 const struct gen_device_info *devinfo = &batch->screen->devinfo;
808 int subslices_delta =
809 devinfo->ppipe_subslices[0] - devinfo->ppipe_subslices[1];
810 if (subslices_delta == 0)
811 return;
812
813 struct iris_context *ice = NULL;
814 ice = container_of(batch, ice, batches[IRIS_BATCH_RENDER]);
815 assert(&ice->batches[IRIS_BATCH_RENDER] == batch);
816
817 unsigned size = GENX(SLICE_HASH_TABLE_length) * 4;
818 uint32_t hash_address;
819 struct pipe_resource *tmp = NULL;
820 uint32_t *map =
821 stream_state(batch, ice->state.dynamic_uploader, &tmp,
822 size, 64, &hash_address);
823 pipe_resource_reference(&tmp, NULL);
824
825 struct GENX(SLICE_HASH_TABLE) table0 = {
826 .Entry = {
827 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
828 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
829 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
830 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
831 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
832 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
833 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
834 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
835 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
836 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
837 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
838 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
839 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
840 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
841 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
842 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 }
843 }
844 };
845
846 struct GENX(SLICE_HASH_TABLE) table1 = {
847 .Entry = {
848 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
849 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
850 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
851 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
852 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
853 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
854 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
855 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
856 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
857 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
858 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
859 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
860 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
861 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
862 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
863 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 }
864 }
865 };
866
867 const struct GENX(SLICE_HASH_TABLE) *table =
868 subslices_delta < 0 ? &table0 : &table1;
869 GENX(SLICE_HASH_TABLE_pack)(NULL, map, table);
870
871 iris_emit_cmd(batch, GENX(3DSTATE_SLICE_TABLE_STATE_POINTERS), ptr) {
872 ptr.SliceHashStatePointerValid = true;
873 ptr.SliceHashTableStatePointer = hash_address;
874 }
875
876 iris_emit_cmd(batch, GENX(3DSTATE_3D_MODE), mode) {
877 mode.SliceHashingTableEnable = true;
878 }
879 }
880 #endif
881
882 static void
883 iris_alloc_push_constants(struct iris_batch *batch)
884 {
885 /* For now, we set a static partitioning of the push constant area,
886 * assuming that all stages could be in use.
887 *
888 * TODO: Try lazily allocating the HS/DS/GS sections as needed, and
889 * see if that improves performance by offering more space to
890 * the VS/FS when those aren't in use. Also, try dynamically
891 * enabling/disabling it like i965 does. This would be more
892 * stalls and may not actually help; we don't know yet.
893 */
894 for (int i = 0; i <= MESA_SHADER_FRAGMENT; i++) {
895 iris_emit_cmd(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
896 alloc._3DCommandSubOpcode = 18 + i;
897 alloc.ConstantBufferOffset = 6 * i;
898 alloc.ConstantBufferSize = i == MESA_SHADER_FRAGMENT ? 8 : 6;
899 }
900 }
901 }
902
903 #if GEN_GEN >= 12
904 static void
905 init_aux_map_state(struct iris_batch *batch);
906 #endif
907
908 /**
909 * Upload the initial GPU state for a render context.
910 *
911 * This sets some invariant state that needs to be programmed a particular
912 * way, but we never actually change.
913 */
914 static void
915 iris_init_render_context(struct iris_batch *batch)
916 {
917 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
918 uint32_t reg_val;
919
920 iris_batch_sync_region_start(batch);
921
922 emit_pipeline_select(batch, _3D);
923
924 iris_emit_l3_config(batch, batch->screen->l3_config_3d);
925
926 init_state_base_address(batch);
927
928 #if GEN_GEN >= 9
929 iris_pack_state(GENX(CS_DEBUG_MODE2), &reg_val, reg) {
930 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
931 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
932 }
933 iris_emit_lri(batch, CS_DEBUG_MODE2, reg_val);
934 #else
935 iris_pack_state(GENX(INSTPM), &reg_val, reg) {
936 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
937 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
938 }
939 iris_emit_lri(batch, INSTPM, reg_val);
940 #endif
941
942 #if GEN_GEN == 9
943 iris_pack_state(GENX(CACHE_MODE_1), &reg_val, reg) {
944 reg.FloatBlendOptimizationEnable = true;
945 reg.FloatBlendOptimizationEnableMask = true;
946 reg.PartialResolveDisableInVC = true;
947 reg.PartialResolveDisableInVCMask = true;
948 }
949 iris_emit_lri(batch, CACHE_MODE_1, reg_val);
950
951 if (devinfo->is_geminilake)
952 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_3D_HULL);
953 #endif
954
955 #if GEN_GEN == 11
956 iris_pack_state(GENX(TCCNTLREG), &reg_val, reg) {
957 reg.L3DataPartialWriteMergingEnable = true;
958 reg.ColorZPartialWriteMergingEnable = true;
959 reg.URBPartialWriteMergingEnable = true;
960 reg.TCDisable = true;
961 }
962 iris_emit_lri(batch, TCCNTLREG, reg_val);
963
964 iris_pack_state(GENX(SAMPLER_MODE), &reg_val, reg) {
965 reg.HeaderlessMessageforPreemptableContexts = 1;
966 reg.HeaderlessMessageforPreemptableContextsMask = 1;
967 }
968 iris_emit_lri(batch, SAMPLER_MODE, reg_val);
969
970 /* Bit 1 must be set in HALF_SLICE_CHICKEN7. */
971 iris_pack_state(GENX(HALF_SLICE_CHICKEN7), &reg_val, reg) {
972 reg.EnabledTexelOffsetPrecisionFix = 1;
973 reg.EnabledTexelOffsetPrecisionFixMask = 1;
974 }
975 iris_emit_lri(batch, HALF_SLICE_CHICKEN7, reg_val);
976
977 /* Hardware specification recommends disabling repacking for the
978 * compatibility with decompression mechanism in display controller.
979 */
980 if (devinfo->disable_ccs_repack) {
981 iris_pack_state(GENX(CACHE_MODE_0), &reg_val, reg) {
982 reg.DisableRepackingforCompression = true;
983 reg.DisableRepackingforCompressionMask = true;
984 }
985 iris_emit_lri(batch, CACHE_MODE_0, reg_val);
986 }
987
988 iris_upload_slice_hashing_state(batch);
989 #endif
990
991 /* 3DSTATE_DRAWING_RECTANGLE is non-pipelined, so we want to avoid
992 * changing it dynamically. We set it to the maximum size here, and
993 * instead include the render target dimensions in the viewport, so
994 * viewport extents clipping takes care of pruning stray geometry.
995 */
996 iris_emit_cmd(batch, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
997 rect.ClippedDrawingRectangleXMax = UINT16_MAX;
998 rect.ClippedDrawingRectangleYMax = UINT16_MAX;
999 }
1000
1001 /* Set the initial MSAA sample positions. */
1002 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_PATTERN), pat) {
1003 GEN_SAMPLE_POS_1X(pat._1xSample);
1004 GEN_SAMPLE_POS_2X(pat._2xSample);
1005 GEN_SAMPLE_POS_4X(pat._4xSample);
1006 GEN_SAMPLE_POS_8X(pat._8xSample);
1007 #if GEN_GEN >= 9
1008 GEN_SAMPLE_POS_16X(pat._16xSample);
1009 #endif
1010 }
1011
1012 /* Use the legacy AA line coverage computation. */
1013 iris_emit_cmd(batch, GENX(3DSTATE_AA_LINE_PARAMETERS), foo);
1014
1015 /* Disable chromakeying (it's for media) */
1016 iris_emit_cmd(batch, GENX(3DSTATE_WM_CHROMAKEY), foo);
1017
1018 /* We want regular rendering, not special HiZ operations. */
1019 iris_emit_cmd(batch, GENX(3DSTATE_WM_HZ_OP), foo);
1020
1021 /* No polygon stippling offsets are necessary. */
1022 /* TODO: may need to set an offset for origin-UL framebuffers */
1023 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_OFFSET), foo);
1024
1025 iris_alloc_push_constants(batch);
1026
1027
1028 #if GEN_GEN >= 12
1029 init_aux_map_state(batch);
1030 #endif
1031
1032 iris_batch_sync_region_end(batch);
1033 }
1034
1035 static void
1036 iris_init_compute_context(struct iris_batch *batch)
1037 {
1038 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
1039
1040 iris_batch_sync_region_start(batch);
1041
1042 /* GEN:BUG:1607854226:
1043 *
1044 * Start with pipeline in 3D mode to set the STATE_BASE_ADDRESS.
1045 */
1046 #if GEN_GEN == 12
1047 emit_pipeline_select(batch, _3D);
1048 #else
1049 emit_pipeline_select(batch, GPGPU);
1050 #endif
1051
1052 iris_emit_l3_config(batch, batch->screen->l3_config_cs);
1053
1054 init_state_base_address(batch);
1055
1056 #if GEN_GEN == 12
1057 emit_pipeline_select(batch, GPGPU);
1058 #endif
1059
1060 #if GEN_GEN == 9
1061 if (devinfo->is_geminilake)
1062 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_GPGPU);
1063 #endif
1064
1065 #if GEN_GEN >= 12
1066 init_aux_map_state(batch);
1067 #endif
1068
1069 iris_batch_sync_region_end(batch);
1070 }
1071
1072 struct iris_vertex_buffer_state {
1073 /** The VERTEX_BUFFER_STATE hardware structure. */
1074 uint32_t state[GENX(VERTEX_BUFFER_STATE_length)];
1075
1076 /** The resource to source vertex data from. */
1077 struct pipe_resource *resource;
1078
1079 int offset;
1080 };
1081
1082 struct iris_depth_buffer_state {
1083 /* Depth/HiZ/Stencil related hardware packets. */
1084 uint32_t packets[GENX(3DSTATE_DEPTH_BUFFER_length) +
1085 GENX(3DSTATE_STENCIL_BUFFER_length) +
1086 GENX(3DSTATE_HIER_DEPTH_BUFFER_length) +
1087 GENX(3DSTATE_CLEAR_PARAMS_length) +
1088 GENX(MI_LOAD_REGISTER_IMM_length) * 2];
1089 };
1090
1091 /**
1092 * Generation-specific context state (ice->state.genx->...).
1093 *
1094 * Most state can go in iris_context directly, but these encode hardware
1095 * packets which vary by generation.
1096 */
1097 struct iris_genx_state {
1098 struct iris_vertex_buffer_state vertex_buffers[33];
1099 uint32_t last_index_buffer[GENX(3DSTATE_INDEX_BUFFER_length)];
1100
1101 struct iris_depth_buffer_state depth_buffer;
1102
1103 uint32_t so_buffers[4 * GENX(3DSTATE_SO_BUFFER_length)];
1104
1105 #if GEN_GEN == 8
1106 bool pma_fix_enabled;
1107 #endif
1108
1109 #if GEN_GEN == 9
1110 /* Is object level preemption enabled? */
1111 bool object_preemption;
1112 #endif
1113
1114 struct {
1115 #if GEN_GEN == 8
1116 struct brw_image_param image_param[PIPE_MAX_SHADER_IMAGES];
1117 #endif
1118 } shaders[MESA_SHADER_STAGES];
1119 };
1120
1121 /**
1122 * The pipe->set_blend_color() driver hook.
1123 *
1124 * This corresponds to our COLOR_CALC_STATE.
1125 */
1126 static void
1127 iris_set_blend_color(struct pipe_context *ctx,
1128 const struct pipe_blend_color *state)
1129 {
1130 struct iris_context *ice = (struct iris_context *) ctx;
1131
1132 /* Our COLOR_CALC_STATE is exactly pipe_blend_color, so just memcpy */
1133 memcpy(&ice->state.blend_color, state, sizeof(struct pipe_blend_color));
1134 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
1135 }
1136
1137 /**
1138 * Gallium CSO for blend state (see pipe_blend_state).
1139 */
1140 struct iris_blend_state {
1141 /** Partial 3DSTATE_PS_BLEND */
1142 uint32_t ps_blend[GENX(3DSTATE_PS_BLEND_length)];
1143
1144 /** Partial BLEND_STATE */
1145 uint32_t blend_state[GENX(BLEND_STATE_length) +
1146 BRW_MAX_DRAW_BUFFERS * GENX(BLEND_STATE_ENTRY_length)];
1147
1148 bool alpha_to_coverage; /* for shader key */
1149
1150 /** Bitfield of whether blending is enabled for RT[i] - for aux resolves */
1151 uint8_t blend_enables;
1152
1153 /** Bitfield of whether color writes are enabled for RT[i] */
1154 uint8_t color_write_enables;
1155
1156 /** Does RT[0] use dual color blending? */
1157 bool dual_color_blending;
1158 };
1159
1160 static enum pipe_blendfactor
1161 fix_blendfactor(enum pipe_blendfactor f, bool alpha_to_one)
1162 {
1163 if (alpha_to_one) {
1164 if (f == PIPE_BLENDFACTOR_SRC1_ALPHA)
1165 return PIPE_BLENDFACTOR_ONE;
1166
1167 if (f == PIPE_BLENDFACTOR_INV_SRC1_ALPHA)
1168 return PIPE_BLENDFACTOR_ZERO;
1169 }
1170
1171 return f;
1172 }
1173
1174 /**
1175 * The pipe->create_blend_state() driver hook.
1176 *
1177 * Translates a pipe_blend_state into iris_blend_state.
1178 */
1179 static void *
1180 iris_create_blend_state(struct pipe_context *ctx,
1181 const struct pipe_blend_state *state)
1182 {
1183 struct iris_blend_state *cso = malloc(sizeof(struct iris_blend_state));
1184 uint32_t *blend_entry = cso->blend_state + GENX(BLEND_STATE_length);
1185
1186 cso->blend_enables = 0;
1187 cso->color_write_enables = 0;
1188 STATIC_ASSERT(BRW_MAX_DRAW_BUFFERS <= 8);
1189
1190 cso->alpha_to_coverage = state->alpha_to_coverage;
1191
1192 bool indep_alpha_blend = false;
1193
1194 for (int i = 0; i < BRW_MAX_DRAW_BUFFERS; i++) {
1195 const struct pipe_rt_blend_state *rt =
1196 &state->rt[state->independent_blend_enable ? i : 0];
1197
1198 enum pipe_blendfactor src_rgb =
1199 fix_blendfactor(rt->rgb_src_factor, state->alpha_to_one);
1200 enum pipe_blendfactor src_alpha =
1201 fix_blendfactor(rt->alpha_src_factor, state->alpha_to_one);
1202 enum pipe_blendfactor dst_rgb =
1203 fix_blendfactor(rt->rgb_dst_factor, state->alpha_to_one);
1204 enum pipe_blendfactor dst_alpha =
1205 fix_blendfactor(rt->alpha_dst_factor, state->alpha_to_one);
1206
1207 if (rt->rgb_func != rt->alpha_func ||
1208 src_rgb != src_alpha || dst_rgb != dst_alpha)
1209 indep_alpha_blend = true;
1210
1211 if (rt->blend_enable)
1212 cso->blend_enables |= 1u << i;
1213
1214 if (rt->colormask)
1215 cso->color_write_enables |= 1u << i;
1216
1217 iris_pack_state(GENX(BLEND_STATE_ENTRY), blend_entry, be) {
1218 be.LogicOpEnable = state->logicop_enable;
1219 be.LogicOpFunction = state->logicop_func;
1220
1221 be.PreBlendSourceOnlyClampEnable = false;
1222 be.ColorClampRange = COLORCLAMP_RTFORMAT;
1223 be.PreBlendColorClampEnable = true;
1224 be.PostBlendColorClampEnable = true;
1225
1226 be.ColorBufferBlendEnable = rt->blend_enable;
1227
1228 be.ColorBlendFunction = rt->rgb_func;
1229 be.AlphaBlendFunction = rt->alpha_func;
1230 be.SourceBlendFactor = src_rgb;
1231 be.SourceAlphaBlendFactor = src_alpha;
1232 be.DestinationBlendFactor = dst_rgb;
1233 be.DestinationAlphaBlendFactor = dst_alpha;
1234
1235 be.WriteDisableRed = !(rt->colormask & PIPE_MASK_R);
1236 be.WriteDisableGreen = !(rt->colormask & PIPE_MASK_G);
1237 be.WriteDisableBlue = !(rt->colormask & PIPE_MASK_B);
1238 be.WriteDisableAlpha = !(rt->colormask & PIPE_MASK_A);
1239 }
1240 blend_entry += GENX(BLEND_STATE_ENTRY_length);
1241 }
1242
1243 iris_pack_command(GENX(3DSTATE_PS_BLEND), cso->ps_blend, pb) {
1244 /* pb.HasWriteableRT is filled in at draw time.
1245 * pb.AlphaTestEnable is filled in at draw time.
1246 *
1247 * pb.ColorBufferBlendEnable is filled in at draw time so we can avoid
1248 * setting it when dual color blending without an appropriate shader.
1249 */
1250
1251 pb.AlphaToCoverageEnable = state->alpha_to_coverage;
1252 pb.IndependentAlphaBlendEnable = indep_alpha_blend;
1253
1254 pb.SourceBlendFactor =
1255 fix_blendfactor(state->rt[0].rgb_src_factor, state->alpha_to_one);
1256 pb.SourceAlphaBlendFactor =
1257 fix_blendfactor(state->rt[0].alpha_src_factor, state->alpha_to_one);
1258 pb.DestinationBlendFactor =
1259 fix_blendfactor(state->rt[0].rgb_dst_factor, state->alpha_to_one);
1260 pb.DestinationAlphaBlendFactor =
1261 fix_blendfactor(state->rt[0].alpha_dst_factor, state->alpha_to_one);
1262 }
1263
1264 iris_pack_state(GENX(BLEND_STATE), cso->blend_state, bs) {
1265 bs.AlphaToCoverageEnable = state->alpha_to_coverage;
1266 bs.IndependentAlphaBlendEnable = indep_alpha_blend;
1267 bs.AlphaToOneEnable = state->alpha_to_one;
1268 bs.AlphaToCoverageDitherEnable = state->alpha_to_coverage;
1269 bs.ColorDitherEnable = state->dither;
1270 /* bl.AlphaTestEnable and bs.AlphaTestFunction are filled in later. */
1271 }
1272
1273 cso->dual_color_blending = util_blend_state_is_dual(state, 0);
1274
1275 return cso;
1276 }
1277
1278 /**
1279 * The pipe->bind_blend_state() driver hook.
1280 *
1281 * Bind a blending CSO and flag related dirty bits.
1282 */
1283 static void
1284 iris_bind_blend_state(struct pipe_context *ctx, void *state)
1285 {
1286 struct iris_context *ice = (struct iris_context *) ctx;
1287 struct iris_blend_state *cso = state;
1288
1289 ice->state.cso_blend = cso;
1290
1291 ice->state.dirty |= IRIS_DIRTY_PS_BLEND;
1292 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1293 ice->state.stage_dirty |= ice->state.stage_dirty_for_nos[IRIS_NOS_BLEND];
1294
1295 if (GEN_GEN == 8)
1296 ice->state.dirty |= IRIS_DIRTY_PMA_FIX;
1297 }
1298
1299 /**
1300 * Return true if the FS writes to any color outputs which are not disabled
1301 * via color masking.
1302 */
1303 static bool
1304 has_writeable_rt(const struct iris_blend_state *cso_blend,
1305 const struct shader_info *fs_info)
1306 {
1307 if (!fs_info)
1308 return false;
1309
1310 unsigned rt_outputs = fs_info->outputs_written >> FRAG_RESULT_DATA0;
1311
1312 if (fs_info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_COLOR))
1313 rt_outputs = (1 << BRW_MAX_DRAW_BUFFERS) - 1;
1314
1315 return cso_blend->color_write_enables & rt_outputs;
1316 }
1317
1318 /**
1319 * Gallium CSO for depth, stencil, and alpha testing state.
1320 */
1321 struct iris_depth_stencil_alpha_state {
1322 /** Partial 3DSTATE_WM_DEPTH_STENCIL. */
1323 uint32_t wmds[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
1324
1325 #if GEN_GEN >= 12
1326 uint32_t depth_bounds[GENX(3DSTATE_DEPTH_BOUNDS_length)];
1327 #endif
1328
1329 /** Outbound to BLEND_STATE, 3DSTATE_PS_BLEND, COLOR_CALC_STATE. */
1330 struct pipe_alpha_state alpha;
1331
1332 /** Outbound to resolve and cache set tracking. */
1333 bool depth_writes_enabled;
1334 bool stencil_writes_enabled;
1335
1336 /** Outbound to Gen8-9 PMA stall equations */
1337 bool depth_test_enabled;
1338 };
1339
1340 /**
1341 * The pipe->create_depth_stencil_alpha_state() driver hook.
1342 *
1343 * We encode most of 3DSTATE_WM_DEPTH_STENCIL, and just save off the alpha
1344 * testing state since we need pieces of it in a variety of places.
1345 */
1346 static void *
1347 iris_create_zsa_state(struct pipe_context *ctx,
1348 const struct pipe_depth_stencil_alpha_state *state)
1349 {
1350 struct iris_depth_stencil_alpha_state *cso =
1351 malloc(sizeof(struct iris_depth_stencil_alpha_state));
1352
1353 bool two_sided_stencil = state->stencil[1].enabled;
1354
1355 cso->alpha = state->alpha;
1356 cso->depth_writes_enabled = state->depth.writemask;
1357 cso->depth_test_enabled = state->depth.enabled;
1358 cso->stencil_writes_enabled =
1359 state->stencil[0].writemask != 0 ||
1360 (two_sided_stencil && state->stencil[1].writemask != 0);
1361
1362 /* gallium frontends need to optimize away EQUAL writes for us. */
1363 assert(!(state->depth.func == PIPE_FUNC_EQUAL && state->depth.writemask));
1364
1365 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), cso->wmds, wmds) {
1366 wmds.StencilFailOp = state->stencil[0].fail_op;
1367 wmds.StencilPassDepthFailOp = state->stencil[0].zfail_op;
1368 wmds.StencilPassDepthPassOp = state->stencil[0].zpass_op;
1369 wmds.StencilTestFunction =
1370 translate_compare_func(state->stencil[0].func);
1371 wmds.BackfaceStencilFailOp = state->stencil[1].fail_op;
1372 wmds.BackfaceStencilPassDepthFailOp = state->stencil[1].zfail_op;
1373 wmds.BackfaceStencilPassDepthPassOp = state->stencil[1].zpass_op;
1374 wmds.BackfaceStencilTestFunction =
1375 translate_compare_func(state->stencil[1].func);
1376 wmds.DepthTestFunction = translate_compare_func(state->depth.func);
1377 wmds.DoubleSidedStencilEnable = two_sided_stencil;
1378 wmds.StencilTestEnable = state->stencil[0].enabled;
1379 wmds.StencilBufferWriteEnable =
1380 state->stencil[0].writemask != 0 ||
1381 (two_sided_stencil && state->stencil[1].writemask != 0);
1382 wmds.DepthTestEnable = state->depth.enabled;
1383 wmds.DepthBufferWriteEnable = state->depth.writemask;
1384 wmds.StencilTestMask = state->stencil[0].valuemask;
1385 wmds.StencilWriteMask = state->stencil[0].writemask;
1386 wmds.BackfaceStencilTestMask = state->stencil[1].valuemask;
1387 wmds.BackfaceStencilWriteMask = state->stencil[1].writemask;
1388 /* wmds.[Backface]StencilReferenceValue are merged later */
1389 #if GEN_GEN >= 12
1390 wmds.StencilReferenceValueModifyDisable = true;
1391 #endif
1392 }
1393
1394 #if GEN_GEN >= 12
1395 iris_pack_command(GENX(3DSTATE_DEPTH_BOUNDS), cso->depth_bounds, depth_bounds) {
1396 depth_bounds.DepthBoundsTestValueModifyDisable = false;
1397 depth_bounds.DepthBoundsTestEnableModifyDisable = false;
1398 depth_bounds.DepthBoundsTestEnable = state->depth.bounds_test;
1399 depth_bounds.DepthBoundsTestMinValue = state->depth.bounds_min;
1400 depth_bounds.DepthBoundsTestMaxValue = state->depth.bounds_max;
1401 }
1402 #endif
1403
1404 return cso;
1405 }
1406
1407 /**
1408 * The pipe->bind_depth_stencil_alpha_state() driver hook.
1409 *
1410 * Bind a depth/stencil/alpha CSO and flag related dirty bits.
1411 */
1412 static void
1413 iris_bind_zsa_state(struct pipe_context *ctx, void *state)
1414 {
1415 struct iris_context *ice = (struct iris_context *) ctx;
1416 struct iris_depth_stencil_alpha_state *old_cso = ice->state.cso_zsa;
1417 struct iris_depth_stencil_alpha_state *new_cso = state;
1418
1419 if (new_cso) {
1420 if (cso_changed(alpha.ref_value))
1421 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
1422
1423 if (cso_changed(alpha.enabled))
1424 ice->state.dirty |= IRIS_DIRTY_PS_BLEND | IRIS_DIRTY_BLEND_STATE;
1425
1426 if (cso_changed(alpha.func))
1427 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1428
1429 if (cso_changed(depth_writes_enabled))
1430 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
1431
1432 ice->state.depth_writes_enabled = new_cso->depth_writes_enabled;
1433 ice->state.stencil_writes_enabled = new_cso->stencil_writes_enabled;
1434
1435 #if GEN_GEN >= 12
1436 if (cso_changed(depth_bounds))
1437 ice->state.dirty |= IRIS_DIRTY_DEPTH_BOUNDS;
1438 #endif
1439 }
1440
1441 ice->state.cso_zsa = new_cso;
1442 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1443 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
1444 ice->state.stage_dirty |=
1445 ice->state.stage_dirty_for_nos[IRIS_NOS_DEPTH_STENCIL_ALPHA];
1446
1447 if (GEN_GEN == 8)
1448 ice->state.dirty |= IRIS_DIRTY_PMA_FIX;
1449 }
1450
1451 #if GEN_GEN == 8
1452 static bool
1453 want_pma_fix(struct iris_context *ice)
1454 {
1455 UNUSED struct iris_screen *screen = (void *) ice->ctx.screen;
1456 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
1457 const struct brw_wm_prog_data *wm_prog_data = (void *)
1458 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
1459 const struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
1460 const struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
1461 const struct iris_blend_state *cso_blend = ice->state.cso_blend;
1462
1463 /* In very specific combinations of state, we can instruct Gen8-9 hardware
1464 * to avoid stalling at the pixel mask array. The state equations are
1465 * documented in these places:
1466 *
1467 * - Gen8 Depth PMA Fix: CACHE_MODE_1::NP_PMA_FIX_ENABLE
1468 * - Gen9 Stencil PMA Fix: CACHE_MODE_0::STC PMA Optimization Enable
1469 *
1470 * Both equations share some common elements:
1471 *
1472 * no_hiz_op =
1473 * !(3DSTATE_WM_HZ_OP::DepthBufferClear ||
1474 * 3DSTATE_WM_HZ_OP::DepthBufferResolve ||
1475 * 3DSTATE_WM_HZ_OP::Hierarchical Depth Buffer Resolve Enable ||
1476 * 3DSTATE_WM_HZ_OP::StencilBufferClear) &&
1477 *
1478 * killpixels =
1479 * 3DSTATE_WM::ForceKillPix != ForceOff &&
1480 * (3DSTATE_PS_EXTRA::PixelShaderKillsPixels ||
1481 * 3DSTATE_PS_EXTRA::oMask Present to RenderTarget ||
1482 * 3DSTATE_PS_BLEND::AlphaToCoverageEnable ||
1483 * 3DSTATE_PS_BLEND::AlphaTestEnable ||
1484 * 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable)
1485 *
1486 * (Technically the stencil PMA treats ForceKillPix differently,
1487 * but I think this is a documentation oversight, and we don't
1488 * ever use it in this way, so it doesn't matter).
1489 *
1490 * common_pma_fix =
1491 * 3DSTATE_WM::ForceThreadDispatch != 1 &&
1492 * 3DSTATE_RASTER::ForceSampleCount == NUMRASTSAMPLES_0 &&
1493 * 3DSTATE_DEPTH_BUFFER::SURFACE_TYPE != NULL &&
1494 * 3DSTATE_DEPTH_BUFFER::HIZ Enable &&
1495 * 3DSTATE_WM::EDSC_Mode != EDSC_PREPS &&
1496 * 3DSTATE_PS_EXTRA::PixelShaderValid &&
1497 * no_hiz_op
1498 *
1499 * These are always true:
1500 *
1501 * 3DSTATE_RASTER::ForceSampleCount == NUMRASTSAMPLES_0
1502 * 3DSTATE_PS_EXTRA::PixelShaderValid
1503 *
1504 * Also, we never use the normal drawing path for HiZ ops; these are true:
1505 *
1506 * !(3DSTATE_WM_HZ_OP::DepthBufferClear ||
1507 * 3DSTATE_WM_HZ_OP::DepthBufferResolve ||
1508 * 3DSTATE_WM_HZ_OP::Hierarchical Depth Buffer Resolve Enable ||
1509 * 3DSTATE_WM_HZ_OP::StencilBufferClear)
1510 *
1511 * This happens sometimes:
1512 *
1513 * 3DSTATE_WM::ForceThreadDispatch != 1
1514 *
1515 * However, we choose to ignore it as it either agrees with the signal
1516 * (dispatch was already enabled, so nothing out of the ordinary), or
1517 * there are no framebuffer attachments (so no depth or HiZ anyway,
1518 * meaning the PMA signal will already be disabled).
1519 */
1520
1521 if (!cso_fb->zsbuf)
1522 return false;
1523
1524 struct iris_resource *zres, *sres;
1525 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture, &zres, &sres);
1526
1527 /* 3DSTATE_DEPTH_BUFFER::SURFACE_TYPE != NULL &&
1528 * 3DSTATE_DEPTH_BUFFER::HIZ Enable &&
1529 */
1530 if (!zres || !iris_resource_level_has_hiz(zres, cso_fb->zsbuf->u.tex.level))
1531 return false;
1532
1533 /* 3DSTATE_WM::EDSC_Mode != EDSC_PREPS */
1534 if (wm_prog_data->early_fragment_tests)
1535 return false;
1536
1537 /* 3DSTATE_WM::ForceKillPix != ForceOff &&
1538 * (3DSTATE_PS_EXTRA::PixelShaderKillsPixels ||
1539 * 3DSTATE_PS_EXTRA::oMask Present to RenderTarget ||
1540 * 3DSTATE_PS_BLEND::AlphaToCoverageEnable ||
1541 * 3DSTATE_PS_BLEND::AlphaTestEnable ||
1542 * 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable)
1543 */
1544 bool killpixels = wm_prog_data->uses_kill || wm_prog_data->uses_omask ||
1545 cso_blend->alpha_to_coverage || cso_zsa->alpha.enabled;
1546
1547 /* The Gen8 depth PMA equation becomes:
1548 *
1549 * depth_writes =
1550 * 3DSTATE_WM_DEPTH_STENCIL::DepthWriteEnable &&
1551 * 3DSTATE_DEPTH_BUFFER::DEPTH_WRITE_ENABLE
1552 *
1553 * stencil_writes =
1554 * 3DSTATE_WM_DEPTH_STENCIL::Stencil Buffer Write Enable &&
1555 * 3DSTATE_DEPTH_BUFFER::STENCIL_WRITE_ENABLE &&
1556 * 3DSTATE_STENCIL_BUFFER::STENCIL_BUFFER_ENABLE
1557 *
1558 * Z_PMA_OPT =
1559 * common_pma_fix &&
1560 * 3DSTATE_WM_DEPTH_STENCIL::DepthTestEnable &&
1561 * ((killpixels && (depth_writes || stencil_writes)) ||
1562 * 3DSTATE_PS_EXTRA::PixelShaderComputedDepthMode != PSCDEPTH_OFF)
1563 *
1564 */
1565 if (!cso_zsa->depth_test_enabled)
1566 return false;
1567
1568 return wm_prog_data->computed_depth_mode != PSCDEPTH_OFF ||
1569 (killpixels && (cso_zsa->depth_writes_enabled ||
1570 (sres && cso_zsa->stencil_writes_enabled)));
1571 }
1572 #endif
1573
1574 void
1575 genX(update_pma_fix)(struct iris_context *ice,
1576 struct iris_batch *batch,
1577 bool enable)
1578 {
1579 #if GEN_GEN == 8
1580 struct iris_genx_state *genx = ice->state.genx;
1581
1582 if (genx->pma_fix_enabled == enable)
1583 return;
1584
1585 genx->pma_fix_enabled = enable;
1586
1587 /* According to the Broadwell PIPE_CONTROL documentation, software should
1588 * emit a PIPE_CONTROL with the CS Stall and Depth Cache Flush bits set
1589 * prior to the LRI. If stencil buffer writes are enabled, then a Render * Cache Flush is also necessary.
1590 *
1591 * The Gen9 docs say to use a depth stall rather than a command streamer
1592 * stall. However, the hardware seems to violently disagree. A full
1593 * command streamer stall seems to be needed in both cases.
1594 */
1595 iris_emit_pipe_control_flush(batch, "PMA fix change (1/2)",
1596 PIPE_CONTROL_CS_STALL |
1597 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
1598 PIPE_CONTROL_RENDER_TARGET_FLUSH);
1599
1600 uint32_t reg_val;
1601 iris_pack_state(GENX(CACHE_MODE_1), &reg_val, reg) {
1602 reg.NPPMAFixEnable = enable;
1603 reg.NPEarlyZFailsDisable = enable;
1604 reg.NPPMAFixEnableMask = true;
1605 reg.NPEarlyZFailsDisableMask = true;
1606 }
1607 iris_emit_lri(batch, CACHE_MODE_1, reg_val);
1608
1609 /* After the LRI, a PIPE_CONTROL with both the Depth Stall and Depth Cache
1610 * Flush bits is often necessary. We do it regardless because it's easier.
1611 * The render cache flush is also necessary if stencil writes are enabled.
1612 *
1613 * Again, the Gen9 docs give a different set of flushes but the Broadwell
1614 * flushes seem to work just as well.
1615 */
1616 iris_emit_pipe_control_flush(batch, "PMA fix change (1/2)",
1617 PIPE_CONTROL_DEPTH_STALL |
1618 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
1619 PIPE_CONTROL_RENDER_TARGET_FLUSH);
1620 #endif
1621 }
1622
1623 /**
1624 * Gallium CSO for rasterizer state.
1625 */
1626 struct iris_rasterizer_state {
1627 uint32_t sf[GENX(3DSTATE_SF_length)];
1628 uint32_t clip[GENX(3DSTATE_CLIP_length)];
1629 uint32_t raster[GENX(3DSTATE_RASTER_length)];
1630 uint32_t wm[GENX(3DSTATE_WM_length)];
1631 uint32_t line_stipple[GENX(3DSTATE_LINE_STIPPLE_length)];
1632
1633 uint8_t num_clip_plane_consts;
1634 bool clip_halfz; /* for CC_VIEWPORT */
1635 bool depth_clip_near; /* for CC_VIEWPORT */
1636 bool depth_clip_far; /* for CC_VIEWPORT */
1637 bool flatshade; /* for shader state */
1638 bool flatshade_first; /* for stream output */
1639 bool clamp_fragment_color; /* for shader state */
1640 bool light_twoside; /* for shader state */
1641 bool rasterizer_discard; /* for 3DSTATE_STREAMOUT and 3DSTATE_CLIP */
1642 bool half_pixel_center; /* for 3DSTATE_MULTISAMPLE */
1643 bool line_stipple_enable;
1644 bool poly_stipple_enable;
1645 bool multisample;
1646 bool force_persample_interp;
1647 bool conservative_rasterization;
1648 bool fill_mode_point_or_line;
1649 enum pipe_sprite_coord_mode sprite_coord_mode; /* PIPE_SPRITE_* */
1650 uint16_t sprite_coord_enable;
1651 };
1652
1653 static float
1654 get_line_width(const struct pipe_rasterizer_state *state)
1655 {
1656 float line_width = state->line_width;
1657
1658 /* From the OpenGL 4.4 spec:
1659 *
1660 * "The actual width of non-antialiased lines is determined by rounding
1661 * the supplied width to the nearest integer, then clamping it to the
1662 * implementation-dependent maximum non-antialiased line width."
1663 */
1664 if (!state->multisample && !state->line_smooth)
1665 line_width = roundf(state->line_width);
1666
1667 if (!state->multisample && state->line_smooth && line_width < 1.5f) {
1668 /* For 1 pixel line thickness or less, the general anti-aliasing
1669 * algorithm gives up, and a garbage line is generated. Setting a
1670 * Line Width of 0.0 specifies the rasterization of the "thinnest"
1671 * (one-pixel-wide), non-antialiased lines.
1672 *
1673 * Lines rendered with zero Line Width are rasterized using the
1674 * "Grid Intersection Quantization" rules as specified by the
1675 * "Zero-Width (Cosmetic) Line Rasterization" section of the docs.
1676 */
1677 line_width = 0.0f;
1678 }
1679
1680 return line_width;
1681 }
1682
1683 /**
1684 * The pipe->create_rasterizer_state() driver hook.
1685 */
1686 static void *
1687 iris_create_rasterizer_state(struct pipe_context *ctx,
1688 const struct pipe_rasterizer_state *state)
1689 {
1690 struct iris_rasterizer_state *cso =
1691 malloc(sizeof(struct iris_rasterizer_state));
1692
1693 cso->multisample = state->multisample;
1694 cso->force_persample_interp = state->force_persample_interp;
1695 cso->clip_halfz = state->clip_halfz;
1696 cso->depth_clip_near = state->depth_clip_near;
1697 cso->depth_clip_far = state->depth_clip_far;
1698 cso->flatshade = state->flatshade;
1699 cso->flatshade_first = state->flatshade_first;
1700 cso->clamp_fragment_color = state->clamp_fragment_color;
1701 cso->light_twoside = state->light_twoside;
1702 cso->rasterizer_discard = state->rasterizer_discard;
1703 cso->half_pixel_center = state->half_pixel_center;
1704 cso->sprite_coord_mode = state->sprite_coord_mode;
1705 cso->sprite_coord_enable = state->sprite_coord_enable;
1706 cso->line_stipple_enable = state->line_stipple_enable;
1707 cso->poly_stipple_enable = state->poly_stipple_enable;
1708 cso->conservative_rasterization =
1709 state->conservative_raster_mode == PIPE_CONSERVATIVE_RASTER_POST_SNAP;
1710
1711 cso->fill_mode_point_or_line =
1712 state->fill_front == PIPE_POLYGON_MODE_LINE ||
1713 state->fill_front == PIPE_POLYGON_MODE_POINT ||
1714 state->fill_back == PIPE_POLYGON_MODE_LINE ||
1715 state->fill_back == PIPE_POLYGON_MODE_POINT;
1716
1717 if (state->clip_plane_enable != 0)
1718 cso->num_clip_plane_consts = util_logbase2(state->clip_plane_enable) + 1;
1719 else
1720 cso->num_clip_plane_consts = 0;
1721
1722 float line_width = get_line_width(state);
1723
1724 iris_pack_command(GENX(3DSTATE_SF), cso->sf, sf) {
1725 sf.StatisticsEnable = true;
1726 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
1727 sf.LineEndCapAntialiasingRegionWidth =
1728 state->line_smooth ? _10pixels : _05pixels;
1729 sf.LastPixelEnable = state->line_last_pixel;
1730 sf.LineWidth = line_width;
1731 sf.SmoothPointEnable = (state->point_smooth || state->multisample) &&
1732 !state->point_quad_rasterization;
1733 sf.PointWidthSource = state->point_size_per_vertex ? Vertex : State;
1734 sf.PointWidth = state->point_size;
1735
1736 if (state->flatshade_first) {
1737 sf.TriangleFanProvokingVertexSelect = 1;
1738 } else {
1739 sf.TriangleStripListProvokingVertexSelect = 2;
1740 sf.TriangleFanProvokingVertexSelect = 2;
1741 sf.LineStripListProvokingVertexSelect = 1;
1742 }
1743 }
1744
1745 iris_pack_command(GENX(3DSTATE_RASTER), cso->raster, rr) {
1746 rr.FrontWinding = state->front_ccw ? CounterClockwise : Clockwise;
1747 rr.CullMode = translate_cull_mode(state->cull_face);
1748 rr.FrontFaceFillMode = translate_fill_mode(state->fill_front);
1749 rr.BackFaceFillMode = translate_fill_mode(state->fill_back);
1750 rr.DXMultisampleRasterizationEnable = state->multisample;
1751 rr.GlobalDepthOffsetEnableSolid = state->offset_tri;
1752 rr.GlobalDepthOffsetEnableWireframe = state->offset_line;
1753 rr.GlobalDepthOffsetEnablePoint = state->offset_point;
1754 rr.GlobalDepthOffsetConstant = state->offset_units * 2;
1755 rr.GlobalDepthOffsetScale = state->offset_scale;
1756 rr.GlobalDepthOffsetClamp = state->offset_clamp;
1757 rr.SmoothPointEnable = state->point_smooth;
1758 rr.AntialiasingEnable = state->line_smooth;
1759 rr.ScissorRectangleEnable = state->scissor;
1760 #if GEN_GEN >= 9
1761 rr.ViewportZNearClipTestEnable = state->depth_clip_near;
1762 rr.ViewportZFarClipTestEnable = state->depth_clip_far;
1763 rr.ConservativeRasterizationEnable =
1764 cso->conservative_rasterization;
1765 #else
1766 rr.ViewportZClipTestEnable = (state->depth_clip_near || state->depth_clip_far);
1767 #endif
1768 }
1769
1770 iris_pack_command(GENX(3DSTATE_CLIP), cso->clip, cl) {
1771 /* cl.NonPerspectiveBarycentricEnable is filled in at draw time from
1772 * the FS program; cl.ForceZeroRTAIndexEnable is filled in from the FB.
1773 */
1774 cl.EarlyCullEnable = true;
1775 cl.UserClipDistanceClipTestEnableBitmask = state->clip_plane_enable;
1776 cl.ForceUserClipDistanceClipTestEnableBitmask = true;
1777 cl.APIMode = state->clip_halfz ? APIMODE_D3D : APIMODE_OGL;
1778 cl.GuardbandClipTestEnable = true;
1779 cl.ClipEnable = true;
1780 cl.MinimumPointWidth = 0.125;
1781 cl.MaximumPointWidth = 255.875;
1782
1783 if (state->flatshade_first) {
1784 cl.TriangleFanProvokingVertexSelect = 1;
1785 } else {
1786 cl.TriangleStripListProvokingVertexSelect = 2;
1787 cl.TriangleFanProvokingVertexSelect = 2;
1788 cl.LineStripListProvokingVertexSelect = 1;
1789 }
1790 }
1791
1792 iris_pack_command(GENX(3DSTATE_WM), cso->wm, wm) {
1793 /* wm.BarycentricInterpolationMode and wm.EarlyDepthStencilControl are
1794 * filled in at draw time from the FS program.
1795 */
1796 wm.LineAntialiasingRegionWidth = _10pixels;
1797 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1798 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1799 wm.LineStippleEnable = state->line_stipple_enable;
1800 wm.PolygonStippleEnable = state->poly_stipple_enable;
1801 }
1802
1803 /* Remap from 0..255 back to 1..256 */
1804 const unsigned line_stipple_factor = state->line_stipple_factor + 1;
1805
1806 iris_pack_command(GENX(3DSTATE_LINE_STIPPLE), cso->line_stipple, line) {
1807 if (state->line_stipple_enable) {
1808 line.LineStipplePattern = state->line_stipple_pattern;
1809 line.LineStippleInverseRepeatCount = 1.0f / line_stipple_factor;
1810 line.LineStippleRepeatCount = line_stipple_factor;
1811 }
1812 }
1813
1814 return cso;
1815 }
1816
1817 /**
1818 * The pipe->bind_rasterizer_state() driver hook.
1819 *
1820 * Bind a rasterizer CSO and flag related dirty bits.
1821 */
1822 static void
1823 iris_bind_rasterizer_state(struct pipe_context *ctx, void *state)
1824 {
1825 struct iris_context *ice = (struct iris_context *) ctx;
1826 struct iris_rasterizer_state *old_cso = ice->state.cso_rast;
1827 struct iris_rasterizer_state *new_cso = state;
1828
1829 if (new_cso) {
1830 /* Try to avoid re-emitting 3DSTATE_LINE_STIPPLE, it's non-pipelined */
1831 if (cso_changed_memcmp(line_stipple))
1832 ice->state.dirty |= IRIS_DIRTY_LINE_STIPPLE;
1833
1834 if (cso_changed(half_pixel_center))
1835 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
1836
1837 if (cso_changed(line_stipple_enable) || cso_changed(poly_stipple_enable))
1838 ice->state.dirty |= IRIS_DIRTY_WM;
1839
1840 if (cso_changed(rasterizer_discard))
1841 ice->state.dirty |= IRIS_DIRTY_STREAMOUT | IRIS_DIRTY_CLIP;
1842
1843 if (cso_changed(flatshade_first))
1844 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
1845
1846 if (cso_changed(depth_clip_near) || cso_changed(depth_clip_far) ||
1847 cso_changed(clip_halfz))
1848 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1849
1850 if (cso_changed(sprite_coord_enable) ||
1851 cso_changed(sprite_coord_mode) ||
1852 cso_changed(light_twoside))
1853 ice->state.dirty |= IRIS_DIRTY_SBE;
1854
1855 if (cso_changed(conservative_rasterization))
1856 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_FS;
1857 }
1858
1859 ice->state.cso_rast = new_cso;
1860 ice->state.dirty |= IRIS_DIRTY_RASTER;
1861 ice->state.dirty |= IRIS_DIRTY_CLIP;
1862 ice->state.stage_dirty |=
1863 ice->state.stage_dirty_for_nos[IRIS_NOS_RASTERIZER];
1864 }
1865
1866 /**
1867 * Return true if the given wrap mode requires the border color to exist.
1868 *
1869 * (We can skip uploading it if the sampler isn't going to use it.)
1870 */
1871 static bool
1872 wrap_mode_needs_border_color(unsigned wrap_mode)
1873 {
1874 return wrap_mode == TCM_CLAMP_BORDER || wrap_mode == TCM_HALF_BORDER;
1875 }
1876
1877 /**
1878 * Gallium CSO for sampler state.
1879 */
1880 struct iris_sampler_state {
1881 union pipe_color_union border_color;
1882 bool needs_border_color;
1883
1884 uint32_t sampler_state[GENX(SAMPLER_STATE_length)];
1885 };
1886
1887 /**
1888 * The pipe->create_sampler_state() driver hook.
1889 *
1890 * We fill out SAMPLER_STATE (except for the border color pointer), and
1891 * store that on the CPU. It doesn't make sense to upload it to a GPU
1892 * buffer object yet, because 3DSTATE_SAMPLER_STATE_POINTERS requires
1893 * all bound sampler states to be in contiguous memor.
1894 */
1895 static void *
1896 iris_create_sampler_state(struct pipe_context *ctx,
1897 const struct pipe_sampler_state *state)
1898 {
1899 struct iris_sampler_state *cso = CALLOC_STRUCT(iris_sampler_state);
1900
1901 if (!cso)
1902 return NULL;
1903
1904 STATIC_ASSERT(PIPE_TEX_FILTER_NEAREST == MAPFILTER_NEAREST);
1905 STATIC_ASSERT(PIPE_TEX_FILTER_LINEAR == MAPFILTER_LINEAR);
1906
1907 unsigned wrap_s = translate_wrap(state->wrap_s);
1908 unsigned wrap_t = translate_wrap(state->wrap_t);
1909 unsigned wrap_r = translate_wrap(state->wrap_r);
1910
1911 memcpy(&cso->border_color, &state->border_color, sizeof(cso->border_color));
1912
1913 cso->needs_border_color = wrap_mode_needs_border_color(wrap_s) ||
1914 wrap_mode_needs_border_color(wrap_t) ||
1915 wrap_mode_needs_border_color(wrap_r);
1916
1917 float min_lod = state->min_lod;
1918 unsigned mag_img_filter = state->mag_img_filter;
1919
1920 // XXX: explain this code ported from ilo...I don't get it at all...
1921 if (state->min_mip_filter == PIPE_TEX_MIPFILTER_NONE &&
1922 state->min_lod > 0.0f) {
1923 min_lod = 0.0f;
1924 mag_img_filter = state->min_img_filter;
1925 }
1926
1927 iris_pack_state(GENX(SAMPLER_STATE), cso->sampler_state, samp) {
1928 samp.TCXAddressControlMode = wrap_s;
1929 samp.TCYAddressControlMode = wrap_t;
1930 samp.TCZAddressControlMode = wrap_r;
1931 samp.CubeSurfaceControlMode = state->seamless_cube_map;
1932 samp.NonnormalizedCoordinateEnable = !state->normalized_coords;
1933 samp.MinModeFilter = state->min_img_filter;
1934 samp.MagModeFilter = mag_img_filter;
1935 samp.MipModeFilter = translate_mip_filter(state->min_mip_filter);
1936 samp.MaximumAnisotropy = RATIO21;
1937
1938 if (state->max_anisotropy >= 2) {
1939 if (state->min_img_filter == PIPE_TEX_FILTER_LINEAR) {
1940 samp.MinModeFilter = MAPFILTER_ANISOTROPIC;
1941 samp.AnisotropicAlgorithm = EWAApproximation;
1942 }
1943
1944 if (state->mag_img_filter == PIPE_TEX_FILTER_LINEAR)
1945 samp.MagModeFilter = MAPFILTER_ANISOTROPIC;
1946
1947 samp.MaximumAnisotropy =
1948 MIN2((state->max_anisotropy - 2) / 2, RATIO161);
1949 }
1950
1951 /* Set address rounding bits if not using nearest filtering. */
1952 if (state->min_img_filter != PIPE_TEX_FILTER_NEAREST) {
1953 samp.UAddressMinFilterRoundingEnable = true;
1954 samp.VAddressMinFilterRoundingEnable = true;
1955 samp.RAddressMinFilterRoundingEnable = true;
1956 }
1957
1958 if (state->mag_img_filter != PIPE_TEX_FILTER_NEAREST) {
1959 samp.UAddressMagFilterRoundingEnable = true;
1960 samp.VAddressMagFilterRoundingEnable = true;
1961 samp.RAddressMagFilterRoundingEnable = true;
1962 }
1963
1964 if (state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE)
1965 samp.ShadowFunction = translate_shadow_func(state->compare_func);
1966
1967 const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
1968
1969 samp.LODPreClampMode = CLAMP_MODE_OGL;
1970 samp.MinLOD = CLAMP(min_lod, 0, hw_max_lod);
1971 samp.MaxLOD = CLAMP(state->max_lod, 0, hw_max_lod);
1972 samp.TextureLODBias = CLAMP(state->lod_bias, -16, 15);
1973
1974 /* .BorderColorPointer is filled in by iris_bind_sampler_states. */
1975 }
1976
1977 return cso;
1978 }
1979
1980 /**
1981 * The pipe->bind_sampler_states() driver hook.
1982 */
1983 static void
1984 iris_bind_sampler_states(struct pipe_context *ctx,
1985 enum pipe_shader_type p_stage,
1986 unsigned start, unsigned count,
1987 void **states)
1988 {
1989 struct iris_context *ice = (struct iris_context *) ctx;
1990 gl_shader_stage stage = stage_from_pipe(p_stage);
1991 struct iris_shader_state *shs = &ice->state.shaders[stage];
1992
1993 assert(start + count <= IRIS_MAX_TEXTURE_SAMPLERS);
1994
1995 bool dirty = false;
1996
1997 for (int i = 0; i < count; i++) {
1998 if (shs->samplers[start + i] != states[i]) {
1999 shs->samplers[start + i] = states[i];
2000 dirty = true;
2001 }
2002 }
2003
2004 if (dirty)
2005 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_SAMPLER_STATES_VS << stage;
2006 }
2007
2008 /**
2009 * Upload the sampler states into a contiguous area of GPU memory, for
2010 * for 3DSTATE_SAMPLER_STATE_POINTERS_*.
2011 *
2012 * Also fill out the border color state pointers.
2013 */
2014 static void
2015 iris_upload_sampler_states(struct iris_context *ice, gl_shader_stage stage)
2016 {
2017 struct iris_shader_state *shs = &ice->state.shaders[stage];
2018 const struct shader_info *info = iris_get_shader_info(ice, stage);
2019
2020 /* We assume gallium frontends will call pipe->bind_sampler_states()
2021 * if the program's number of textures changes.
2022 */
2023 unsigned count = info ? util_last_bit(info->textures_used) : 0;
2024
2025 if (!count)
2026 return;
2027
2028 /* Assemble the SAMPLER_STATEs into a contiguous table that lives
2029 * in the dynamic state memory zone, so we can point to it via the
2030 * 3DSTATE_SAMPLER_STATE_POINTERS_* commands.
2031 */
2032 unsigned size = count * 4 * GENX(SAMPLER_STATE_length);
2033 uint32_t *map =
2034 upload_state(ice->state.dynamic_uploader, &shs->sampler_table, size, 32);
2035 if (unlikely(!map))
2036 return;
2037
2038 struct pipe_resource *res = shs->sampler_table.res;
2039 struct iris_bo *bo = iris_resource_bo(res);
2040
2041 iris_record_state_size(ice->state.sizes,
2042 bo->gtt_offset + shs->sampler_table.offset, size);
2043
2044 shs->sampler_table.offset += iris_bo_offset_from_base_address(bo);
2045
2046 /* Make sure all land in the same BO */
2047 iris_border_color_pool_reserve(ice, IRIS_MAX_TEXTURE_SAMPLERS);
2048
2049 ice->state.need_border_colors &= ~(1 << stage);
2050
2051 for (int i = 0; i < count; i++) {
2052 struct iris_sampler_state *state = shs->samplers[i];
2053 struct iris_sampler_view *tex = shs->textures[i];
2054
2055 if (!state) {
2056 memset(map, 0, 4 * GENX(SAMPLER_STATE_length));
2057 } else if (!state->needs_border_color) {
2058 memcpy(map, state->sampler_state, 4 * GENX(SAMPLER_STATE_length));
2059 } else {
2060 ice->state.need_border_colors |= 1 << stage;
2061
2062 /* We may need to swizzle the border color for format faking.
2063 * A/LA formats are faked as R/RG with 000R or R00G swizzles.
2064 * This means we need to move the border color's A channel into
2065 * the R or G channels so that those read swizzles will move it
2066 * back into A.
2067 */
2068 union pipe_color_union *color = &state->border_color;
2069 union pipe_color_union tmp;
2070 if (tex) {
2071 enum pipe_format internal_format = tex->res->internal_format;
2072
2073 if (util_format_is_alpha(internal_format)) {
2074 unsigned char swz[4] = {
2075 PIPE_SWIZZLE_W, PIPE_SWIZZLE_0,
2076 PIPE_SWIZZLE_0, PIPE_SWIZZLE_0
2077 };
2078 util_format_apply_color_swizzle(&tmp, color, swz, true);
2079 color = &tmp;
2080 } else if (util_format_is_luminance_alpha(internal_format) &&
2081 internal_format != PIPE_FORMAT_L8A8_SRGB) {
2082 unsigned char swz[4] = {
2083 PIPE_SWIZZLE_X, PIPE_SWIZZLE_W,
2084 PIPE_SWIZZLE_0, PIPE_SWIZZLE_0
2085 };
2086 util_format_apply_color_swizzle(&tmp, color, swz, true);
2087 color = &tmp;
2088 }
2089 }
2090
2091 /* Stream out the border color and merge the pointer. */
2092 uint32_t offset = iris_upload_border_color(ice, color);
2093
2094 uint32_t dynamic[GENX(SAMPLER_STATE_length)];
2095 iris_pack_state(GENX(SAMPLER_STATE), dynamic, dyns) {
2096 dyns.BorderColorPointer = offset;
2097 }
2098
2099 for (uint32_t j = 0; j < GENX(SAMPLER_STATE_length); j++)
2100 map[j] = state->sampler_state[j] | dynamic[j];
2101 }
2102
2103 map += GENX(SAMPLER_STATE_length);
2104 }
2105 }
2106
2107 static enum isl_channel_select
2108 fmt_swizzle(const struct iris_format_info *fmt, enum pipe_swizzle swz)
2109 {
2110 switch (swz) {
2111 case PIPE_SWIZZLE_X: return fmt->swizzle.r;
2112 case PIPE_SWIZZLE_Y: return fmt->swizzle.g;
2113 case PIPE_SWIZZLE_Z: return fmt->swizzle.b;
2114 case PIPE_SWIZZLE_W: return fmt->swizzle.a;
2115 case PIPE_SWIZZLE_1: return SCS_ONE;
2116 case PIPE_SWIZZLE_0: return SCS_ZERO;
2117 default: unreachable("invalid swizzle");
2118 }
2119 }
2120
2121 static void
2122 fill_buffer_surface_state(struct isl_device *isl_dev,
2123 struct iris_resource *res,
2124 void *map,
2125 enum isl_format format,
2126 struct isl_swizzle swizzle,
2127 unsigned offset,
2128 unsigned size)
2129 {
2130 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
2131 const unsigned cpp = format == ISL_FORMAT_RAW ? 1 : fmtl->bpb / 8;
2132
2133 /* The ARB_texture_buffer_specification says:
2134 *
2135 * "The number of texels in the buffer texture's texel array is given by
2136 *
2137 * floor(<buffer_size> / (<components> * sizeof(<base_type>)),
2138 *
2139 * where <buffer_size> is the size of the buffer object, in basic
2140 * machine units and <components> and <base_type> are the element count
2141 * and base data type for elements, as specified in Table X.1. The
2142 * number of texels in the texel array is then clamped to the
2143 * implementation-dependent limit MAX_TEXTURE_BUFFER_SIZE_ARB."
2144 *
2145 * We need to clamp the size in bytes to MAX_TEXTURE_BUFFER_SIZE * stride,
2146 * so that when ISL divides by stride to obtain the number of texels, that
2147 * texel count is clamped to MAX_TEXTURE_BUFFER_SIZE.
2148 */
2149 unsigned final_size =
2150 MIN3(size, res->bo->size - res->offset - offset,
2151 IRIS_MAX_TEXTURE_BUFFER_SIZE * cpp);
2152
2153 isl_buffer_fill_state(isl_dev, map,
2154 .address = res->bo->gtt_offset + res->offset + offset,
2155 .size_B = final_size,
2156 .format = format,
2157 .swizzle = swizzle,
2158 .stride_B = cpp,
2159 .mocs = iris_mocs(res->bo, isl_dev));
2160 }
2161
2162 #define SURFACE_STATE_ALIGNMENT 64
2163
2164 /**
2165 * Allocate several contiguous SURFACE_STATE structures, one for each
2166 * supported auxiliary surface mode. This only allocates the CPU-side
2167 * copy, they will need to be uploaded later after they're filled in.
2168 */
2169 static void
2170 alloc_surface_states(struct iris_surface_state *surf_state,
2171 unsigned aux_usages)
2172 {
2173 const unsigned surf_size = 4 * GENX(RENDER_SURFACE_STATE_length);
2174
2175 /* If this changes, update this to explicitly align pointers */
2176 STATIC_ASSERT(surf_size == SURFACE_STATE_ALIGNMENT);
2177
2178 assert(aux_usages != 0);
2179
2180 /* In case we're re-allocating them... */
2181 free(surf_state->cpu);
2182
2183 surf_state->num_states = util_bitcount(aux_usages);
2184 surf_state->cpu = calloc(surf_state->num_states, surf_size);
2185 surf_state->ref.offset = 0;
2186 pipe_resource_reference(&surf_state->ref.res, NULL);
2187
2188 assert(surf_state->cpu);
2189 }
2190
2191 /**
2192 * Upload the CPU side SURFACE_STATEs into a GPU buffer.
2193 */
2194 static void
2195 upload_surface_states(struct u_upload_mgr *mgr,
2196 struct iris_surface_state *surf_state)
2197 {
2198 const unsigned surf_size = 4 * GENX(RENDER_SURFACE_STATE_length);
2199 const unsigned bytes = surf_state->num_states * surf_size;
2200
2201 void *map =
2202 upload_state(mgr, &surf_state->ref, bytes, SURFACE_STATE_ALIGNMENT);
2203
2204 surf_state->ref.offset +=
2205 iris_bo_offset_from_base_address(iris_resource_bo(surf_state->ref.res));
2206
2207 if (map)
2208 memcpy(map, surf_state->cpu, bytes);
2209 }
2210
2211 /**
2212 * Update resource addresses in a set of SURFACE_STATE descriptors,
2213 * and re-upload them if necessary.
2214 */
2215 static bool
2216 update_surface_state_addrs(struct u_upload_mgr *mgr,
2217 struct iris_surface_state *surf_state,
2218 struct iris_bo *bo)
2219 {
2220 if (surf_state->bo_address == bo->gtt_offset)
2221 return false;
2222
2223 STATIC_ASSERT(GENX(RENDER_SURFACE_STATE_SurfaceBaseAddress_start) % 64 == 0);
2224 STATIC_ASSERT(GENX(RENDER_SURFACE_STATE_SurfaceBaseAddress_bits) == 64);
2225
2226 uint64_t *ss_addr = (uint64_t *) &surf_state->cpu[GENX(RENDER_SURFACE_STATE_SurfaceBaseAddress_start) / 32];
2227
2228 /* First, update the CPU copies. We assume no other fields exist in
2229 * the QWord containing Surface Base Address.
2230 */
2231 for (unsigned i = 0; i < surf_state->num_states; i++) {
2232 *ss_addr = *ss_addr - surf_state->bo_address + bo->gtt_offset;
2233 ss_addr = ((void *) ss_addr) + SURFACE_STATE_ALIGNMENT;
2234 }
2235
2236 /* Next, upload the updated copies to a GPU buffer. */
2237 upload_surface_states(mgr, surf_state);
2238
2239 surf_state->bo_address = bo->gtt_offset;
2240
2241 return true;
2242 }
2243
2244 #if GEN_GEN == 8
2245 /**
2246 * Return an ISL surface for use with non-coherent render target reads.
2247 *
2248 * In a few complex cases, we can't use the SURFACE_STATE for normal render
2249 * target writes. We need to make a separate one for sampling which refers
2250 * to the single slice of the texture being read.
2251 */
2252 static void
2253 get_rt_read_isl_surf(const struct gen_device_info *devinfo,
2254 struct iris_resource *res,
2255 enum pipe_texture_target target,
2256 struct isl_view *view,
2257 uint32_t *offset_to_tile,
2258 uint32_t *tile_x_sa,
2259 uint32_t *tile_y_sa,
2260 struct isl_surf *surf)
2261 {
2262 *surf = res->surf;
2263
2264 const enum isl_dim_layout dim_layout =
2265 iris_get_isl_dim_layout(devinfo, res->surf.tiling, target);
2266
2267 surf->dim = target_to_isl_surf_dim(target);
2268
2269 if (surf->dim_layout == dim_layout)
2270 return;
2271
2272 /* The layout of the specified texture target is not compatible with the
2273 * actual layout of the miptree structure in memory -- You're entering
2274 * dangerous territory, this can only possibly work if you only intended
2275 * to access a single level and slice of the texture, and the hardware
2276 * supports the tile offset feature in order to allow non-tile-aligned
2277 * base offsets, since we'll have to point the hardware to the first
2278 * texel of the level instead of relying on the usual base level/layer
2279 * controls.
2280 */
2281 assert(view->levels == 1 && view->array_len == 1);
2282 assert(*tile_x_sa == 0 && *tile_y_sa == 0);
2283
2284 *offset_to_tile = iris_resource_get_tile_offsets(res, view->base_level,
2285 view->base_array_layer,
2286 tile_x_sa, tile_y_sa);
2287 const unsigned l = view->base_level;
2288
2289 surf->logical_level0_px.width = minify(surf->logical_level0_px.width, l);
2290 surf->logical_level0_px.height = surf->dim <= ISL_SURF_DIM_1D ? 1 :
2291 minify(surf->logical_level0_px.height, l);
2292 surf->logical_level0_px.depth = surf->dim <= ISL_SURF_DIM_2D ? 1 :
2293 minify(surf->logical_level0_px.depth, l);
2294
2295 surf->logical_level0_px.array_len = 1;
2296 surf->levels = 1;
2297 surf->dim_layout = dim_layout;
2298
2299 view->base_level = 0;
2300 view->base_array_layer = 0;
2301 }
2302 #endif
2303
2304 static void
2305 fill_surface_state(struct isl_device *isl_dev,
2306 void *map,
2307 struct iris_resource *res,
2308 struct isl_surf *surf,
2309 struct isl_view *view,
2310 unsigned aux_usage,
2311 uint32_t extra_main_offset,
2312 uint32_t tile_x_sa,
2313 uint32_t tile_y_sa)
2314 {
2315 struct isl_surf_fill_state_info f = {
2316 .surf = surf,
2317 .view = view,
2318 .mocs = iris_mocs(res->bo, isl_dev),
2319 .address = res->bo->gtt_offset + res->offset + extra_main_offset,
2320 .x_offset_sa = tile_x_sa,
2321 .y_offset_sa = tile_y_sa,
2322 };
2323
2324 assert(!iris_resource_unfinished_aux_import(res));
2325
2326 if (aux_usage != ISL_AUX_USAGE_NONE) {
2327 f.aux_surf = &res->aux.surf;
2328 f.aux_usage = aux_usage;
2329 f.aux_address = res->aux.bo->gtt_offset + res->aux.offset;
2330
2331 struct iris_bo *clear_bo = NULL;
2332 uint64_t clear_offset = 0;
2333 f.clear_color =
2334 iris_resource_get_clear_color(res, &clear_bo, &clear_offset);
2335 if (clear_bo) {
2336 f.clear_address = clear_bo->gtt_offset + clear_offset;
2337 f.use_clear_address = isl_dev->info->gen > 9;
2338 }
2339 }
2340
2341 isl_surf_fill_state_s(isl_dev, map, &f);
2342 }
2343
2344 /**
2345 * The pipe->create_sampler_view() driver hook.
2346 */
2347 static struct pipe_sampler_view *
2348 iris_create_sampler_view(struct pipe_context *ctx,
2349 struct pipe_resource *tex,
2350 const struct pipe_sampler_view *tmpl)
2351 {
2352 struct iris_context *ice = (struct iris_context *) ctx;
2353 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2354 const struct gen_device_info *devinfo = &screen->devinfo;
2355 struct iris_sampler_view *isv = calloc(1, sizeof(struct iris_sampler_view));
2356
2357 if (!isv)
2358 return NULL;
2359
2360 /* initialize base object */
2361 isv->base = *tmpl;
2362 isv->base.context = ctx;
2363 isv->base.texture = NULL;
2364 pipe_reference_init(&isv->base.reference, 1);
2365 pipe_resource_reference(&isv->base.texture, tex);
2366
2367 if (util_format_is_depth_or_stencil(tmpl->format)) {
2368 struct iris_resource *zres, *sres;
2369 const struct util_format_description *desc =
2370 util_format_description(tmpl->format);
2371
2372 iris_get_depth_stencil_resources(tex, &zres, &sres);
2373
2374 tex = util_format_has_depth(desc) ? &zres->base : &sres->base;
2375 }
2376
2377 isv->res = (struct iris_resource *) tex;
2378
2379 alloc_surface_states(&isv->surface_state, isv->res->aux.sampler_usages);
2380
2381 isv->surface_state.bo_address = isv->res->bo->gtt_offset;
2382
2383 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_TEXTURE_BIT;
2384
2385 if (isv->base.target == PIPE_TEXTURE_CUBE ||
2386 isv->base.target == PIPE_TEXTURE_CUBE_ARRAY)
2387 usage |= ISL_SURF_USAGE_CUBE_BIT;
2388
2389 const struct iris_format_info fmt =
2390 iris_format_for_usage(devinfo, tmpl->format, usage);
2391
2392 isv->clear_color = isv->res->aux.clear_color;
2393
2394 isv->view = (struct isl_view) {
2395 .format = fmt.fmt,
2396 .swizzle = (struct isl_swizzle) {
2397 .r = fmt_swizzle(&fmt, tmpl->swizzle_r),
2398 .g = fmt_swizzle(&fmt, tmpl->swizzle_g),
2399 .b = fmt_swizzle(&fmt, tmpl->swizzle_b),
2400 .a = fmt_swizzle(&fmt, tmpl->swizzle_a),
2401 },
2402 .usage = usage,
2403 };
2404
2405 void *map = isv->surface_state.cpu;
2406
2407 /* Fill out SURFACE_STATE for this view. */
2408 if (tmpl->target != PIPE_BUFFER) {
2409 isv->view.base_level = tmpl->u.tex.first_level;
2410 isv->view.levels = tmpl->u.tex.last_level - tmpl->u.tex.first_level + 1;
2411 // XXX: do I need to port f9fd0cf4790cb2a530e75d1a2206dbb9d8af7cb2?
2412 isv->view.base_array_layer = tmpl->u.tex.first_layer;
2413 isv->view.array_len =
2414 tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
2415
2416 if (iris_resource_unfinished_aux_import(isv->res))
2417 iris_resource_finish_aux_import(&screen->base, isv->res);
2418
2419 unsigned aux_modes = isv->res->aux.sampler_usages;
2420 while (aux_modes) {
2421 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
2422
2423 /* If we have a multisampled depth buffer, do not create a sampler
2424 * surface state with HiZ.
2425 */
2426 fill_surface_state(&screen->isl_dev, map, isv->res, &isv->res->surf,
2427 &isv->view, aux_usage, 0, 0, 0);
2428
2429 map += SURFACE_STATE_ALIGNMENT;
2430 }
2431 } else {
2432 fill_buffer_surface_state(&screen->isl_dev, isv->res, map,
2433 isv->view.format, isv->view.swizzle,
2434 tmpl->u.buf.offset, tmpl->u.buf.size);
2435 }
2436
2437 upload_surface_states(ice->state.surface_uploader, &isv->surface_state);
2438
2439 return &isv->base;
2440 }
2441
2442 static void
2443 iris_sampler_view_destroy(struct pipe_context *ctx,
2444 struct pipe_sampler_view *state)
2445 {
2446 struct iris_sampler_view *isv = (void *) state;
2447 pipe_resource_reference(&state->texture, NULL);
2448 pipe_resource_reference(&isv->surface_state.ref.res, NULL);
2449 free(isv->surface_state.cpu);
2450 free(isv);
2451 }
2452
2453 /**
2454 * The pipe->create_surface() driver hook.
2455 *
2456 * In Gallium nomenclature, "surfaces" are a view of a resource that
2457 * can be bound as a render target or depth/stencil buffer.
2458 */
2459 static struct pipe_surface *
2460 iris_create_surface(struct pipe_context *ctx,
2461 struct pipe_resource *tex,
2462 const struct pipe_surface *tmpl)
2463 {
2464 struct iris_context *ice = (struct iris_context *) ctx;
2465 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2466 const struct gen_device_info *devinfo = &screen->devinfo;
2467
2468 isl_surf_usage_flags_t usage = 0;
2469 if (tmpl->writable)
2470 usage = ISL_SURF_USAGE_STORAGE_BIT;
2471 else if (util_format_is_depth_or_stencil(tmpl->format))
2472 usage = ISL_SURF_USAGE_DEPTH_BIT;
2473 else
2474 usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
2475
2476 const struct iris_format_info fmt =
2477 iris_format_for_usage(devinfo, tmpl->format, usage);
2478
2479 if ((usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) &&
2480 !isl_format_supports_rendering(devinfo, fmt.fmt)) {
2481 /* Framebuffer validation will reject this invalid case, but it
2482 * hasn't had the opportunity yet. In the meantime, we need to
2483 * avoid hitting ISL asserts about unsupported formats below.
2484 */
2485 return NULL;
2486 }
2487
2488 struct iris_surface *surf = calloc(1, sizeof(struct iris_surface));
2489 struct pipe_surface *psurf = &surf->base;
2490 struct iris_resource *res = (struct iris_resource *) tex;
2491
2492 if (!surf)
2493 return NULL;
2494
2495 pipe_reference_init(&psurf->reference, 1);
2496 pipe_resource_reference(&psurf->texture, tex);
2497 psurf->context = ctx;
2498 psurf->format = tmpl->format;
2499 psurf->width = tex->width0;
2500 psurf->height = tex->height0;
2501 psurf->texture = tex;
2502 psurf->u.tex.first_layer = tmpl->u.tex.first_layer;
2503 psurf->u.tex.last_layer = tmpl->u.tex.last_layer;
2504 psurf->u.tex.level = tmpl->u.tex.level;
2505
2506 uint32_t array_len = tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
2507
2508 struct isl_view *view = &surf->view;
2509 *view = (struct isl_view) {
2510 .format = fmt.fmt,
2511 .base_level = tmpl->u.tex.level,
2512 .levels = 1,
2513 .base_array_layer = tmpl->u.tex.first_layer,
2514 .array_len = array_len,
2515 .swizzle = ISL_SWIZZLE_IDENTITY,
2516 .usage = usage,
2517 };
2518
2519 #if GEN_GEN == 8
2520 enum pipe_texture_target target = (tex->target == PIPE_TEXTURE_3D &&
2521 array_len == 1) ? PIPE_TEXTURE_2D :
2522 tex->target == PIPE_TEXTURE_1D_ARRAY ?
2523 PIPE_TEXTURE_2D_ARRAY : tex->target;
2524
2525 struct isl_view *read_view = &surf->read_view;
2526 *read_view = (struct isl_view) {
2527 .format = fmt.fmt,
2528 .base_level = tmpl->u.tex.level,
2529 .levels = 1,
2530 .base_array_layer = tmpl->u.tex.first_layer,
2531 .array_len = array_len,
2532 .swizzle = ISL_SWIZZLE_IDENTITY,
2533 .usage = ISL_SURF_USAGE_TEXTURE_BIT,
2534 };
2535 #endif
2536
2537 surf->clear_color = res->aux.clear_color;
2538
2539 /* Bail early for depth/stencil - we don't want SURFACE_STATE for them. */
2540 if (res->surf.usage & (ISL_SURF_USAGE_DEPTH_BIT |
2541 ISL_SURF_USAGE_STENCIL_BIT))
2542 return psurf;
2543
2544
2545 alloc_surface_states(&surf->surface_state, res->aux.possible_usages);
2546 surf->surface_state.bo_address = res->bo->gtt_offset;
2547
2548 #if GEN_GEN == 8
2549 alloc_surface_states(&surf->surface_state_read, res->aux.possible_usages);
2550 surf->surface_state_read.bo_address = res->bo->gtt_offset;
2551 #endif
2552
2553 if (!isl_format_is_compressed(res->surf.format)) {
2554 if (iris_resource_unfinished_aux_import(res))
2555 iris_resource_finish_aux_import(&screen->base, res);
2556
2557 void *map = surf->surface_state.cpu;
2558 UNUSED void *map_read = surf->surface_state_read.cpu;
2559
2560 /* This is a normal surface. Fill out a SURFACE_STATE for each possible
2561 * auxiliary surface mode and return the pipe_surface.
2562 */
2563 unsigned aux_modes = res->aux.possible_usages;
2564 while (aux_modes) {
2565 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
2566 fill_surface_state(&screen->isl_dev, map, res, &res->surf,
2567 view, aux_usage, 0, 0, 0);
2568 map += SURFACE_STATE_ALIGNMENT;
2569
2570 #if GEN_GEN == 8
2571 struct isl_surf surf;
2572 uint32_t offset_to_tile = 0, tile_x_sa = 0, tile_y_sa = 0;
2573 get_rt_read_isl_surf(devinfo, res, target, read_view,
2574 &offset_to_tile, &tile_x_sa, &tile_y_sa, &surf);
2575 fill_surface_state(&screen->isl_dev, map_read, res, &surf, read_view,
2576 aux_usage, offset_to_tile, tile_x_sa, tile_y_sa);
2577 map_read += SURFACE_STATE_ALIGNMENT;
2578 #endif
2579 }
2580
2581 upload_surface_states(ice->state.surface_uploader, &surf->surface_state);
2582
2583 #if GEN_GEN == 8
2584 upload_surface_states(ice->state.surface_uploader,
2585 &surf->surface_state_read);
2586 #endif
2587
2588 return psurf;
2589 }
2590
2591 /* The resource has a compressed format, which is not renderable, but we
2592 * have a renderable view format. We must be attempting to upload blocks
2593 * of compressed data via an uncompressed view.
2594 *
2595 * In this case, we can assume there are no auxiliary buffers, a single
2596 * miplevel, and that the resource is single-sampled. Gallium may try
2597 * and create an uncompressed view with multiple layers, however.
2598 */
2599 assert(!isl_format_is_compressed(fmt.fmt));
2600 assert(res->aux.possible_usages == 1 << ISL_AUX_USAGE_NONE);
2601 assert(res->surf.samples == 1);
2602 assert(view->levels == 1);
2603
2604 struct isl_surf isl_surf;
2605 uint32_t offset_B = 0, tile_x_sa = 0, tile_y_sa = 0;
2606
2607 if (view->base_level > 0) {
2608 /* We can't rely on the hardware's miplevel selection with such
2609 * a substantial lie about the format, so we select a single image
2610 * using the Tile X/Y Offset fields. In this case, we can't handle
2611 * multiple array slices.
2612 *
2613 * On Broadwell, HALIGN and VALIGN are specified in pixels and are
2614 * hard-coded to align to exactly the block size of the compressed
2615 * texture. This means that, when reinterpreted as a non-compressed
2616 * texture, the tile offsets may be anything and we can't rely on
2617 * X/Y Offset.
2618 *
2619 * Return NULL to force gallium frontends to take fallback paths.
2620 */
2621 if (view->array_len > 1 || GEN_GEN == 8)
2622 return NULL;
2623
2624 const bool is_3d = res->surf.dim == ISL_SURF_DIM_3D;
2625 isl_surf_get_image_surf(&screen->isl_dev, &res->surf,
2626 view->base_level,
2627 is_3d ? 0 : view->base_array_layer,
2628 is_3d ? view->base_array_layer : 0,
2629 &isl_surf,
2630 &offset_B, &tile_x_sa, &tile_y_sa);
2631
2632 /* We use address and tile offsets to access a single level/layer
2633 * as a subimage, so reset level/layer so it doesn't offset again.
2634 */
2635 view->base_array_layer = 0;
2636 view->base_level = 0;
2637 } else {
2638 /* Level 0 doesn't require tile offsets, and the hardware can find
2639 * array slices using QPitch even with the format override, so we
2640 * can allow layers in this case. Copy the original ISL surface.
2641 */
2642 memcpy(&isl_surf, &res->surf, sizeof(isl_surf));
2643 }
2644
2645 /* Scale down the image dimensions by the block size. */
2646 const struct isl_format_layout *fmtl =
2647 isl_format_get_layout(res->surf.format);
2648 isl_surf.format = fmt.fmt;
2649 isl_surf.logical_level0_px = isl_surf_get_logical_level0_el(&isl_surf);
2650 isl_surf.phys_level0_sa = isl_surf_get_phys_level0_el(&isl_surf);
2651 tile_x_sa /= fmtl->bw;
2652 tile_y_sa /= fmtl->bh;
2653
2654 psurf->width = isl_surf.logical_level0_px.width;
2655 psurf->height = isl_surf.logical_level0_px.height;
2656
2657 struct isl_surf_fill_state_info f = {
2658 .surf = &isl_surf,
2659 .view = view,
2660 .mocs = iris_mocs(res->bo, &screen->isl_dev),
2661 .address = res->bo->gtt_offset + offset_B,
2662 .x_offset_sa = tile_x_sa,
2663 .y_offset_sa = tile_y_sa,
2664 };
2665
2666 isl_surf_fill_state_s(&screen->isl_dev, surf->surface_state.cpu, &f);
2667
2668 upload_surface_states(ice->state.surface_uploader, &surf->surface_state);
2669
2670 return psurf;
2671 }
2672
2673 #if GEN_GEN < 9
2674 static void
2675 fill_default_image_param(struct brw_image_param *param)
2676 {
2677 memset(param, 0, sizeof(*param));
2678 /* Set the swizzling shifts to all-ones to effectively disable swizzling --
2679 * See emit_address_calculation() in brw_fs_surface_builder.cpp for a more
2680 * detailed explanation of these parameters.
2681 */
2682 param->swizzling[0] = 0xff;
2683 param->swizzling[1] = 0xff;
2684 }
2685
2686 static void
2687 fill_buffer_image_param(struct brw_image_param *param,
2688 enum pipe_format pfmt,
2689 unsigned size)
2690 {
2691 const unsigned cpp = util_format_get_blocksize(pfmt);
2692
2693 fill_default_image_param(param);
2694 param->size[0] = size / cpp;
2695 param->stride[0] = cpp;
2696 }
2697 #else
2698 #define isl_surf_fill_image_param(x, ...)
2699 #define fill_default_image_param(x, ...)
2700 #define fill_buffer_image_param(x, ...)
2701 #endif
2702
2703 /**
2704 * The pipe->set_shader_images() driver hook.
2705 */
2706 static void
2707 iris_set_shader_images(struct pipe_context *ctx,
2708 enum pipe_shader_type p_stage,
2709 unsigned start_slot, unsigned count,
2710 const struct pipe_image_view *p_images)
2711 {
2712 struct iris_context *ice = (struct iris_context *) ctx;
2713 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2714 gl_shader_stage stage = stage_from_pipe(p_stage);
2715 struct iris_shader_state *shs = &ice->state.shaders[stage];
2716 #if GEN_GEN == 8
2717 struct iris_genx_state *genx = ice->state.genx;
2718 struct brw_image_param *image_params = genx->shaders[stage].image_param;
2719 #endif
2720
2721 shs->bound_image_views &= ~u_bit_consecutive(start_slot, count);
2722
2723 for (unsigned i = 0; i < count; i++) {
2724 struct iris_image_view *iv = &shs->image[start_slot + i];
2725
2726 if (p_images && p_images[i].resource) {
2727 const struct pipe_image_view *img = &p_images[i];
2728 struct iris_resource *res = (void *) img->resource;
2729
2730 util_copy_image_view(&iv->base, img);
2731
2732 shs->bound_image_views |= 1 << (start_slot + i);
2733
2734 res->bind_history |= PIPE_BIND_SHADER_IMAGE;
2735 res->bind_stages |= 1 << stage;
2736
2737 enum isl_format isl_fmt = iris_image_view_get_format(ice, img);
2738
2739 /* Render compression with images supported on gen12+ only. */
2740 unsigned aux_usages = GEN_GEN >= 12 ? res->aux.possible_usages :
2741 1 << ISL_AUX_USAGE_NONE;
2742
2743 alloc_surface_states(&iv->surface_state, aux_usages);
2744 iv->surface_state.bo_address = res->bo->gtt_offset;
2745
2746 void *map = iv->surface_state.cpu;
2747
2748 if (res->base.target != PIPE_BUFFER) {
2749 struct isl_view view = {
2750 .format = isl_fmt,
2751 .base_level = img->u.tex.level,
2752 .levels = 1,
2753 .base_array_layer = img->u.tex.first_layer,
2754 .array_len = img->u.tex.last_layer - img->u.tex.first_layer + 1,
2755 .swizzle = ISL_SWIZZLE_IDENTITY,
2756 .usage = ISL_SURF_USAGE_STORAGE_BIT,
2757 };
2758
2759 /* If using untyped fallback. */
2760 if (isl_fmt == ISL_FORMAT_RAW) {
2761 fill_buffer_surface_state(&screen->isl_dev, res, map,
2762 isl_fmt, ISL_SWIZZLE_IDENTITY,
2763 0, res->bo->size);
2764 } else {
2765 unsigned aux_modes = aux_usages;
2766 while (aux_modes) {
2767 enum isl_aux_usage usage = u_bit_scan(&aux_modes);
2768
2769 fill_surface_state(&screen->isl_dev, map, res, &res->surf,
2770 &view, usage, 0, 0, 0);
2771
2772 map += SURFACE_STATE_ALIGNMENT;
2773 }
2774 }
2775
2776 isl_surf_fill_image_param(&screen->isl_dev,
2777 &image_params[start_slot + i],
2778 &res->surf, &view);
2779 } else {
2780 util_range_add(&res->base, &res->valid_buffer_range, img->u.buf.offset,
2781 img->u.buf.offset + img->u.buf.size);
2782
2783 fill_buffer_surface_state(&screen->isl_dev, res, map,
2784 isl_fmt, ISL_SWIZZLE_IDENTITY,
2785 img->u.buf.offset, img->u.buf.size);
2786 fill_buffer_image_param(&image_params[start_slot + i],
2787 img->format, img->u.buf.size);
2788 }
2789
2790 upload_surface_states(ice->state.surface_uploader, &iv->surface_state);
2791 } else {
2792 pipe_resource_reference(&iv->base.resource, NULL);
2793 pipe_resource_reference(&iv->surface_state.ref.res, NULL);
2794 fill_default_image_param(&image_params[start_slot + i]);
2795 }
2796 }
2797
2798 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_VS << stage;
2799 ice->state.dirty |=
2800 stage == MESA_SHADER_COMPUTE ? IRIS_DIRTY_COMPUTE_RESOLVES_AND_FLUSHES
2801 : IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
2802
2803 /* Broadwell also needs brw_image_params re-uploaded */
2804 if (GEN_GEN < 9) {
2805 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_CONSTANTS_VS << stage;
2806 shs->sysvals_need_upload = true;
2807 }
2808 }
2809
2810
2811 /**
2812 * The pipe->set_sampler_views() driver hook.
2813 */
2814 static void
2815 iris_set_sampler_views(struct pipe_context *ctx,
2816 enum pipe_shader_type p_stage,
2817 unsigned start, unsigned count,
2818 struct pipe_sampler_view **views)
2819 {
2820 struct iris_context *ice = (struct iris_context *) ctx;
2821 gl_shader_stage stage = stage_from_pipe(p_stage);
2822 struct iris_shader_state *shs = &ice->state.shaders[stage];
2823
2824 shs->bound_sampler_views &= ~u_bit_consecutive(start, count);
2825
2826 for (unsigned i = 0; i < count; i++) {
2827 struct pipe_sampler_view *pview = views ? views[i] : NULL;
2828 pipe_sampler_view_reference((struct pipe_sampler_view **)
2829 &shs->textures[start + i], pview);
2830 struct iris_sampler_view *view = (void *) pview;
2831 if (view) {
2832 view->res->bind_history |= PIPE_BIND_SAMPLER_VIEW;
2833 view->res->bind_stages |= 1 << stage;
2834
2835 shs->bound_sampler_views |= 1 << (start + i);
2836
2837 update_surface_state_addrs(ice->state.surface_uploader,
2838 &view->surface_state, view->res->bo);
2839 }
2840 }
2841
2842 ice->state.stage_dirty |= (IRIS_STAGE_DIRTY_BINDINGS_VS << stage);
2843 ice->state.dirty |=
2844 stage == MESA_SHADER_COMPUTE ? IRIS_DIRTY_COMPUTE_RESOLVES_AND_FLUSHES
2845 : IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
2846 }
2847
2848 static void
2849 iris_set_compute_resources(struct pipe_context *ctx,
2850 unsigned start, unsigned count,
2851 struct pipe_surface **resources)
2852 {
2853 assert(count == 0);
2854 }
2855
2856 static void
2857 iris_set_global_binding(struct pipe_context *ctx,
2858 unsigned start_slot, unsigned count,
2859 struct pipe_resource **resources,
2860 uint32_t **handles)
2861 {
2862 struct iris_context *ice = (struct iris_context *) ctx;
2863
2864 assert(start_slot + count <= IRIS_MAX_GLOBAL_BINDINGS);
2865 for (unsigned i = 0; i < count; i++) {
2866 if (resources && resources[i]) {
2867 pipe_resource_reference(&ice->state.global_bindings[start_slot + i],
2868 resources[i]);
2869 struct iris_resource *res = (void *) resources[i];
2870 uint64_t addr = res->bo->gtt_offset;
2871 memcpy(handles[i], &addr, sizeof(addr));
2872 } else {
2873 pipe_resource_reference(&ice->state.global_bindings[start_slot + i],
2874 NULL);
2875 }
2876 }
2877
2878 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_CS;
2879 }
2880
2881 /**
2882 * The pipe->set_tess_state() driver hook.
2883 */
2884 static void
2885 iris_set_tess_state(struct pipe_context *ctx,
2886 const float default_outer_level[4],
2887 const float default_inner_level[2])
2888 {
2889 struct iris_context *ice = (struct iris_context *) ctx;
2890 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_TESS_CTRL];
2891
2892 memcpy(&ice->state.default_outer_level[0], &default_outer_level[0], 4 * sizeof(float));
2893 memcpy(&ice->state.default_inner_level[0], &default_inner_level[0], 2 * sizeof(float));
2894
2895 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_CONSTANTS_TCS;
2896 shs->sysvals_need_upload = true;
2897 }
2898
2899 static void
2900 iris_surface_destroy(struct pipe_context *ctx, struct pipe_surface *p_surf)
2901 {
2902 struct iris_surface *surf = (void *) p_surf;
2903 pipe_resource_reference(&p_surf->texture, NULL);
2904 pipe_resource_reference(&surf->surface_state.ref.res, NULL);
2905 pipe_resource_reference(&surf->surface_state_read.ref.res, NULL);
2906 free(surf->surface_state.cpu);
2907 free(surf);
2908 }
2909
2910 static void
2911 iris_set_clip_state(struct pipe_context *ctx,
2912 const struct pipe_clip_state *state)
2913 {
2914 struct iris_context *ice = (struct iris_context *) ctx;
2915 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_VERTEX];
2916 struct iris_shader_state *gshs = &ice->state.shaders[MESA_SHADER_GEOMETRY];
2917 struct iris_shader_state *tshs = &ice->state.shaders[MESA_SHADER_TESS_EVAL];
2918
2919 memcpy(&ice->state.clip_planes, state, sizeof(*state));
2920
2921 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_CONSTANTS_VS |
2922 IRIS_STAGE_DIRTY_CONSTANTS_GS |
2923 IRIS_STAGE_DIRTY_CONSTANTS_TES;
2924 shs->sysvals_need_upload = true;
2925 gshs->sysvals_need_upload = true;
2926 tshs->sysvals_need_upload = true;
2927 }
2928
2929 /**
2930 * The pipe->set_polygon_stipple() driver hook.
2931 */
2932 static void
2933 iris_set_polygon_stipple(struct pipe_context *ctx,
2934 const struct pipe_poly_stipple *state)
2935 {
2936 struct iris_context *ice = (struct iris_context *) ctx;
2937 memcpy(&ice->state.poly_stipple, state, sizeof(*state));
2938 ice->state.dirty |= IRIS_DIRTY_POLYGON_STIPPLE;
2939 }
2940
2941 /**
2942 * The pipe->set_sample_mask() driver hook.
2943 */
2944 static void
2945 iris_set_sample_mask(struct pipe_context *ctx, unsigned sample_mask)
2946 {
2947 struct iris_context *ice = (struct iris_context *) ctx;
2948
2949 /* We only support 16x MSAA, so we have 16 bits of sample maks.
2950 * st/mesa may pass us 0xffffffff though, meaning "enable all samples".
2951 */
2952 ice->state.sample_mask = sample_mask & 0xffff;
2953 ice->state.dirty |= IRIS_DIRTY_SAMPLE_MASK;
2954 }
2955
2956 /**
2957 * The pipe->set_scissor_states() driver hook.
2958 *
2959 * This corresponds to our SCISSOR_RECT state structures. It's an
2960 * exact match, so we just store them, and memcpy them out later.
2961 */
2962 static void
2963 iris_set_scissor_states(struct pipe_context *ctx,
2964 unsigned start_slot,
2965 unsigned num_scissors,
2966 const struct pipe_scissor_state *rects)
2967 {
2968 struct iris_context *ice = (struct iris_context *) ctx;
2969
2970 for (unsigned i = 0; i < num_scissors; i++) {
2971 if (rects[i].minx == rects[i].maxx || rects[i].miny == rects[i].maxy) {
2972 /* If the scissor was out of bounds and got clamped to 0 width/height
2973 * at the bounds, the subtraction of 1 from maximums could produce a
2974 * negative number and thus not clip anything. Instead, just provide
2975 * a min > max scissor inside the bounds, which produces the expected
2976 * no rendering.
2977 */
2978 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
2979 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
2980 };
2981 } else {
2982 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
2983 .minx = rects[i].minx, .miny = rects[i].miny,
2984 .maxx = rects[i].maxx - 1, .maxy = rects[i].maxy - 1,
2985 };
2986 }
2987 }
2988
2989 ice->state.dirty |= IRIS_DIRTY_SCISSOR_RECT;
2990 }
2991
2992 /**
2993 * The pipe->set_stencil_ref() driver hook.
2994 *
2995 * This is added to 3DSTATE_WM_DEPTH_STENCIL dynamically at draw time.
2996 */
2997 static void
2998 iris_set_stencil_ref(struct pipe_context *ctx,
2999 const struct pipe_stencil_ref *state)
3000 {
3001 struct iris_context *ice = (struct iris_context *) ctx;
3002 memcpy(&ice->state.stencil_ref, state, sizeof(*state));
3003 if (GEN_GEN >= 12)
3004 ice->state.dirty |= IRIS_DIRTY_STENCIL_REF;
3005 else if (GEN_GEN >= 9)
3006 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
3007 else
3008 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
3009 }
3010
3011 static float
3012 viewport_extent(const struct pipe_viewport_state *state, int axis, float sign)
3013 {
3014 return copysignf(state->scale[axis], sign) + state->translate[axis];
3015 }
3016
3017 /**
3018 * The pipe->set_viewport_states() driver hook.
3019 *
3020 * This corresponds to our SF_CLIP_VIEWPORT states. We can't calculate
3021 * the guardband yet, as we need the framebuffer dimensions, but we can
3022 * at least fill out the rest.
3023 */
3024 static void
3025 iris_set_viewport_states(struct pipe_context *ctx,
3026 unsigned start_slot,
3027 unsigned count,
3028 const struct pipe_viewport_state *states)
3029 {
3030 struct iris_context *ice = (struct iris_context *) ctx;
3031
3032 memcpy(&ice->state.viewports[start_slot], states, sizeof(*states) * count);
3033
3034 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
3035
3036 if (ice->state.cso_rast && (!ice->state.cso_rast->depth_clip_near ||
3037 !ice->state.cso_rast->depth_clip_far))
3038 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
3039 }
3040
3041 /**
3042 * The pipe->set_framebuffer_state() driver hook.
3043 *
3044 * Sets the current draw FBO, including color render targets, depth,
3045 * and stencil buffers.
3046 */
3047 static void
3048 iris_set_framebuffer_state(struct pipe_context *ctx,
3049 const struct pipe_framebuffer_state *state)
3050 {
3051 struct iris_context *ice = (struct iris_context *) ctx;
3052 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
3053 struct isl_device *isl_dev = &screen->isl_dev;
3054 struct pipe_framebuffer_state *cso = &ice->state.framebuffer;
3055 struct iris_resource *zres;
3056 struct iris_resource *stencil_res;
3057
3058 unsigned samples = util_framebuffer_get_num_samples(state);
3059 unsigned layers = util_framebuffer_get_num_layers(state);
3060
3061 if (cso->samples != samples) {
3062 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
3063
3064 /* We need to toggle 3DSTATE_PS::32 Pixel Dispatch Enable */
3065 if (GEN_GEN >= 9 && (cso->samples == 16 || samples == 16))
3066 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_FS;
3067 }
3068
3069 if (cso->nr_cbufs != state->nr_cbufs) {
3070 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
3071 }
3072
3073 if ((cso->layers == 0) != (layers == 0)) {
3074 ice->state.dirty |= IRIS_DIRTY_CLIP;
3075 }
3076
3077 if (cso->width != state->width || cso->height != state->height) {
3078 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
3079 }
3080
3081 if (cso->zsbuf || state->zsbuf) {
3082 ice->state.dirty |= IRIS_DIRTY_DEPTH_BUFFER;
3083 }
3084
3085 util_copy_framebuffer_state(cso, state);
3086 cso->samples = samples;
3087 cso->layers = layers;
3088
3089 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
3090
3091 struct isl_view view = {
3092 .base_level = 0,
3093 .levels = 1,
3094 .base_array_layer = 0,
3095 .array_len = 1,
3096 .swizzle = ISL_SWIZZLE_IDENTITY,
3097 };
3098
3099 struct isl_depth_stencil_hiz_emit_info info = { .view = &view };
3100
3101 if (cso->zsbuf) {
3102 iris_get_depth_stencil_resources(cso->zsbuf->texture, &zres,
3103 &stencil_res);
3104
3105 view.base_level = cso->zsbuf->u.tex.level;
3106 view.base_array_layer = cso->zsbuf->u.tex.first_layer;
3107 view.array_len =
3108 cso->zsbuf->u.tex.last_layer - cso->zsbuf->u.tex.first_layer + 1;
3109
3110 if (zres) {
3111 view.usage |= ISL_SURF_USAGE_DEPTH_BIT;
3112
3113 info.depth_surf = &zres->surf;
3114 info.depth_address = zres->bo->gtt_offset + zres->offset;
3115 info.mocs = iris_mocs(zres->bo, isl_dev);
3116
3117 view.format = zres->surf.format;
3118
3119 if (iris_resource_level_has_hiz(zres, view.base_level)) {
3120 info.hiz_usage = zres->aux.usage;
3121 info.hiz_surf = &zres->aux.surf;
3122 info.hiz_address = zres->aux.bo->gtt_offset + zres->aux.offset;
3123 }
3124 }
3125
3126 if (stencil_res) {
3127 view.usage |= ISL_SURF_USAGE_STENCIL_BIT;
3128 info.stencil_aux_usage = stencil_res->aux.usage;
3129 info.stencil_surf = &stencil_res->surf;
3130 info.stencil_address = stencil_res->bo->gtt_offset + stencil_res->offset;
3131 if (!zres) {
3132 view.format = stencil_res->surf.format;
3133 info.mocs = iris_mocs(stencil_res->bo, isl_dev);
3134 }
3135 }
3136 }
3137
3138 isl_emit_depth_stencil_hiz_s(isl_dev, cso_z->packets, &info);
3139
3140 /* Make a null surface for unbound buffers */
3141 void *null_surf_map =
3142 upload_state(ice->state.surface_uploader, &ice->state.null_fb,
3143 4 * GENX(RENDER_SURFACE_STATE_length), 64);
3144 isl_null_fill_state(&screen->isl_dev, null_surf_map,
3145 isl_extent3d(MAX2(cso->width, 1),
3146 MAX2(cso->height, 1),
3147 cso->layers ? cso->layers : 1));
3148 ice->state.null_fb.offset +=
3149 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.null_fb.res));
3150
3151 /* Render target change */
3152 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_FS;
3153
3154 ice->state.dirty |= IRIS_DIRTY_RENDER_BUFFER;
3155
3156 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
3157
3158 ice->state.stage_dirty |=
3159 ice->state.stage_dirty_for_nos[IRIS_NOS_FRAMEBUFFER];
3160
3161 if (GEN_GEN == 8)
3162 ice->state.dirty |= IRIS_DIRTY_PMA_FIX;
3163 }
3164
3165 /**
3166 * The pipe->set_constant_buffer() driver hook.
3167 *
3168 * This uploads any constant data in user buffers, and references
3169 * any UBO resources containing constant data.
3170 */
3171 static void
3172 iris_set_constant_buffer(struct pipe_context *ctx,
3173 enum pipe_shader_type p_stage, unsigned index,
3174 const struct pipe_constant_buffer *input)
3175 {
3176 struct iris_context *ice = (struct iris_context *) ctx;
3177 gl_shader_stage stage = stage_from_pipe(p_stage);
3178 struct iris_shader_state *shs = &ice->state.shaders[stage];
3179 struct pipe_shader_buffer *cbuf = &shs->constbuf[index];
3180
3181 /* TODO: Only do this if the buffer changes? */
3182 pipe_resource_reference(&shs->constbuf_surf_state[index].res, NULL);
3183
3184 if (input && input->buffer_size && (input->buffer || input->user_buffer)) {
3185 shs->bound_cbufs |= 1u << index;
3186
3187 if (input->user_buffer) {
3188 void *map = NULL;
3189 pipe_resource_reference(&cbuf->buffer, NULL);
3190 u_upload_alloc(ice->ctx.const_uploader, 0, input->buffer_size, 64,
3191 &cbuf->buffer_offset, &cbuf->buffer, (void **) &map);
3192
3193 if (!cbuf->buffer) {
3194 /* Allocation was unsuccessful - just unbind */
3195 iris_set_constant_buffer(ctx, p_stage, index, NULL);
3196 return;
3197 }
3198
3199 assert(map);
3200 memcpy(map, input->user_buffer, input->buffer_size);
3201 } else if (input->buffer) {
3202 pipe_resource_reference(&cbuf->buffer, input->buffer);
3203
3204 cbuf->buffer_offset = input->buffer_offset;
3205 }
3206
3207 cbuf->buffer_size =
3208 MIN2(input->buffer_size,
3209 iris_resource_bo(cbuf->buffer)->size - cbuf->buffer_offset);
3210
3211 struct iris_resource *res = (void *) cbuf->buffer;
3212 res->bind_history |= PIPE_BIND_CONSTANT_BUFFER;
3213 res->bind_stages |= 1 << stage;
3214 } else {
3215 shs->bound_cbufs &= ~(1u << index);
3216 pipe_resource_reference(&cbuf->buffer, NULL);
3217 }
3218
3219 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_CONSTANTS_VS << stage;
3220 }
3221
3222 static void
3223 upload_sysvals(struct iris_context *ice,
3224 gl_shader_stage stage,
3225 const struct pipe_grid_info *grid)
3226 {
3227 UNUSED struct iris_genx_state *genx = ice->state.genx;
3228 struct iris_shader_state *shs = &ice->state.shaders[stage];
3229
3230 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3231 if (!shader || (shader->num_system_values == 0 &&
3232 shader->kernel_input_size == 0))
3233 return;
3234
3235 assert(shader->num_cbufs > 0);
3236
3237 unsigned sysval_cbuf_index = shader->num_cbufs - 1;
3238 struct pipe_shader_buffer *cbuf = &shs->constbuf[sysval_cbuf_index];
3239 unsigned system_values_start =
3240 ALIGN(shader->kernel_input_size, sizeof(uint32_t));
3241 unsigned upload_size = system_values_start +
3242 shader->num_system_values * sizeof(uint32_t);
3243 void *map = NULL;
3244
3245 assert(sysval_cbuf_index < PIPE_MAX_CONSTANT_BUFFERS);
3246 u_upload_alloc(ice->ctx.const_uploader, 0, upload_size, 64,
3247 &cbuf->buffer_offset, &cbuf->buffer, &map);
3248
3249 if (shader->kernel_input_size > 0)
3250 memcpy(map, grid->input, shader->kernel_input_size);
3251
3252 uint32_t *sysval_map = map + system_values_start;
3253 for (int i = 0; i < shader->num_system_values; i++) {
3254 uint32_t sysval = shader->system_values[i];
3255 uint32_t value = 0;
3256
3257 if (BRW_PARAM_DOMAIN(sysval) == BRW_PARAM_DOMAIN_IMAGE) {
3258 #if GEN_GEN == 8
3259 unsigned img = BRW_PARAM_IMAGE_IDX(sysval);
3260 unsigned offset = BRW_PARAM_IMAGE_OFFSET(sysval);
3261 struct brw_image_param *param =
3262 &genx->shaders[stage].image_param[img];
3263
3264 assert(offset < sizeof(struct brw_image_param));
3265 value = ((uint32_t *) param)[offset];
3266 #endif
3267 } else if (sysval == BRW_PARAM_BUILTIN_ZERO) {
3268 value = 0;
3269 } else if (BRW_PARAM_BUILTIN_IS_CLIP_PLANE(sysval)) {
3270 int plane = BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(sysval);
3271 int comp = BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(sysval);
3272 value = fui(ice->state.clip_planes.ucp[plane][comp]);
3273 } else if (sysval == BRW_PARAM_BUILTIN_PATCH_VERTICES_IN) {
3274 if (stage == MESA_SHADER_TESS_CTRL) {
3275 value = ice->state.vertices_per_patch;
3276 } else {
3277 assert(stage == MESA_SHADER_TESS_EVAL);
3278 const struct shader_info *tcs_info =
3279 iris_get_shader_info(ice, MESA_SHADER_TESS_CTRL);
3280 if (tcs_info)
3281 value = tcs_info->tess.tcs_vertices_out;
3282 else
3283 value = ice->state.vertices_per_patch;
3284 }
3285 } else if (sysval >= BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X &&
3286 sysval <= BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W) {
3287 unsigned i = sysval - BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X;
3288 value = fui(ice->state.default_outer_level[i]);
3289 } else if (sysval == BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X) {
3290 value = fui(ice->state.default_inner_level[0]);
3291 } else if (sysval == BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y) {
3292 value = fui(ice->state.default_inner_level[1]);
3293 } else if (sysval >= BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_X &&
3294 sysval <= BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_Z) {
3295 unsigned i = sysval - BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_X;
3296 value = ice->state.last_block[i];
3297 } else {
3298 assert(!"unhandled system value");
3299 }
3300
3301 *sysval_map++ = value;
3302 }
3303
3304 cbuf->buffer_size = upload_size;
3305 iris_upload_ubo_ssbo_surf_state(ice, cbuf,
3306 &shs->constbuf_surf_state[sysval_cbuf_index], false);
3307
3308 shs->sysvals_need_upload = false;
3309 }
3310
3311 /**
3312 * The pipe->set_shader_buffers() driver hook.
3313 *
3314 * This binds SSBOs and ABOs. Unfortunately, we need to stream out
3315 * SURFACE_STATE here, as the buffer offset may change each time.
3316 */
3317 static void
3318 iris_set_shader_buffers(struct pipe_context *ctx,
3319 enum pipe_shader_type p_stage,
3320 unsigned start_slot, unsigned count,
3321 const struct pipe_shader_buffer *buffers,
3322 unsigned writable_bitmask)
3323 {
3324 struct iris_context *ice = (struct iris_context *) ctx;
3325 gl_shader_stage stage = stage_from_pipe(p_stage);
3326 struct iris_shader_state *shs = &ice->state.shaders[stage];
3327
3328 unsigned modified_bits = u_bit_consecutive(start_slot, count);
3329
3330 shs->bound_ssbos &= ~modified_bits;
3331 shs->writable_ssbos &= ~modified_bits;
3332 shs->writable_ssbos |= writable_bitmask << start_slot;
3333
3334 for (unsigned i = 0; i < count; i++) {
3335 if (buffers && buffers[i].buffer) {
3336 struct iris_resource *res = (void *) buffers[i].buffer;
3337 struct pipe_shader_buffer *ssbo = &shs->ssbo[start_slot + i];
3338 struct iris_state_ref *surf_state =
3339 &shs->ssbo_surf_state[start_slot + i];
3340 pipe_resource_reference(&ssbo->buffer, &res->base);
3341 ssbo->buffer_offset = buffers[i].buffer_offset;
3342 ssbo->buffer_size =
3343 MIN2(buffers[i].buffer_size, res->bo->size - ssbo->buffer_offset);
3344
3345 shs->bound_ssbos |= 1 << (start_slot + i);
3346
3347 iris_upload_ubo_ssbo_surf_state(ice, ssbo, surf_state, true);
3348
3349 res->bind_history |= PIPE_BIND_SHADER_BUFFER;
3350 res->bind_stages |= 1 << stage;
3351
3352 util_range_add(&res->base, &res->valid_buffer_range, ssbo->buffer_offset,
3353 ssbo->buffer_offset + ssbo->buffer_size);
3354 } else {
3355 pipe_resource_reference(&shs->ssbo[start_slot + i].buffer, NULL);
3356 pipe_resource_reference(&shs->ssbo_surf_state[start_slot + i].res,
3357 NULL);
3358 }
3359 }
3360
3361 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_VS << stage;
3362 }
3363
3364 static void
3365 iris_delete_state(struct pipe_context *ctx, void *state)
3366 {
3367 free(state);
3368 }
3369
3370 /**
3371 * The pipe->set_vertex_buffers() driver hook.
3372 *
3373 * This translates pipe_vertex_buffer to our 3DSTATE_VERTEX_BUFFERS packet.
3374 */
3375 static void
3376 iris_set_vertex_buffers(struct pipe_context *ctx,
3377 unsigned start_slot, unsigned count,
3378 const struct pipe_vertex_buffer *buffers)
3379 {
3380 struct iris_context *ice = (struct iris_context *) ctx;
3381 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
3382 struct iris_genx_state *genx = ice->state.genx;
3383
3384 ice->state.bound_vertex_buffers &= ~u_bit_consecutive64(start_slot, count);
3385
3386 for (unsigned i = 0; i < count; i++) {
3387 const struct pipe_vertex_buffer *buffer = buffers ? &buffers[i] : NULL;
3388 struct iris_vertex_buffer_state *state =
3389 &genx->vertex_buffers[start_slot + i];
3390
3391 if (!buffer) {
3392 pipe_resource_reference(&state->resource, NULL);
3393 continue;
3394 }
3395
3396 /* We may see user buffers that are NULL bindings. */
3397 assert(!(buffer->is_user_buffer && buffer->buffer.user != NULL));
3398
3399 pipe_resource_reference(&state->resource, buffer->buffer.resource);
3400 struct iris_resource *res = (void *) state->resource;
3401
3402 state->offset = (int) buffer->buffer_offset;
3403
3404 if (res) {
3405 ice->state.bound_vertex_buffers |= 1ull << (start_slot + i);
3406 res->bind_history |= PIPE_BIND_VERTEX_BUFFER;
3407 }
3408
3409 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
3410 vb.VertexBufferIndex = start_slot + i;
3411 vb.AddressModifyEnable = true;
3412 vb.BufferPitch = buffer->stride;
3413 if (res) {
3414 vb.BufferSize = res->base.width0 - (int) buffer->buffer_offset;
3415 vb.BufferStartingAddress =
3416 ro_bo(NULL, res->bo->gtt_offset + (int) buffer->buffer_offset);
3417 vb.MOCS = iris_mocs(res->bo, &screen->isl_dev);
3418 } else {
3419 vb.NullVertexBuffer = true;
3420 }
3421 }
3422 }
3423
3424 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
3425 }
3426
3427 /**
3428 * Gallium CSO for vertex elements.
3429 */
3430 struct iris_vertex_element_state {
3431 uint32_t vertex_elements[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
3432 uint32_t vf_instancing[33 * GENX(3DSTATE_VF_INSTANCING_length)];
3433 uint32_t edgeflag_ve[GENX(VERTEX_ELEMENT_STATE_length)];
3434 uint32_t edgeflag_vfi[GENX(3DSTATE_VF_INSTANCING_length)];
3435 unsigned count;
3436 };
3437
3438 /**
3439 * The pipe->create_vertex_elements() driver hook.
3440 *
3441 * This translates pipe_vertex_element to our 3DSTATE_VERTEX_ELEMENTS
3442 * and 3DSTATE_VF_INSTANCING commands. The vertex_elements and vf_instancing
3443 * arrays are ready to be emitted at draw time if no EdgeFlag or SGVs are
3444 * needed. In these cases we will need information available at draw time.
3445 * We setup edgeflag_ve and edgeflag_vfi as alternatives last
3446 * 3DSTATE_VERTEX_ELEMENT and 3DSTATE_VF_INSTANCING that can be used at
3447 * draw time if we detect that EdgeFlag is needed by the Vertex Shader.
3448 */
3449 static void *
3450 iris_create_vertex_elements(struct pipe_context *ctx,
3451 unsigned count,
3452 const struct pipe_vertex_element *state)
3453 {
3454 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
3455 const struct gen_device_info *devinfo = &screen->devinfo;
3456 struct iris_vertex_element_state *cso =
3457 malloc(sizeof(struct iris_vertex_element_state));
3458
3459 cso->count = count;
3460
3461 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS), cso->vertex_elements, ve) {
3462 ve.DWordLength =
3463 1 + GENX(VERTEX_ELEMENT_STATE_length) * MAX2(count, 1) - 2;
3464 }
3465
3466 uint32_t *ve_pack_dest = &cso->vertex_elements[1];
3467 uint32_t *vfi_pack_dest = cso->vf_instancing;
3468
3469 if (count == 0) {
3470 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
3471 ve.Valid = true;
3472 ve.SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT;
3473 ve.Component0Control = VFCOMP_STORE_0;
3474 ve.Component1Control = VFCOMP_STORE_0;
3475 ve.Component2Control = VFCOMP_STORE_0;
3476 ve.Component3Control = VFCOMP_STORE_1_FP;
3477 }
3478
3479 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
3480 }
3481 }
3482
3483 for (int i = 0; i < count; i++) {
3484 const struct iris_format_info fmt =
3485 iris_format_for_usage(devinfo, state[i].src_format, 0);
3486 unsigned comp[4] = { VFCOMP_STORE_SRC, VFCOMP_STORE_SRC,
3487 VFCOMP_STORE_SRC, VFCOMP_STORE_SRC };
3488
3489 switch (isl_format_get_num_channels(fmt.fmt)) {
3490 case 0: comp[0] = VFCOMP_STORE_0; /* fallthrough */
3491 case 1: comp[1] = VFCOMP_STORE_0; /* fallthrough */
3492 case 2: comp[2] = VFCOMP_STORE_0; /* fallthrough */
3493 case 3:
3494 comp[3] = isl_format_has_int_channel(fmt.fmt) ? VFCOMP_STORE_1_INT
3495 : VFCOMP_STORE_1_FP;
3496 break;
3497 }
3498 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
3499 ve.EdgeFlagEnable = false;
3500 ve.VertexBufferIndex = state[i].vertex_buffer_index;
3501 ve.Valid = true;
3502 ve.SourceElementOffset = state[i].src_offset;
3503 ve.SourceElementFormat = fmt.fmt;
3504 ve.Component0Control = comp[0];
3505 ve.Component1Control = comp[1];
3506 ve.Component2Control = comp[2];
3507 ve.Component3Control = comp[3];
3508 }
3509
3510 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
3511 vi.VertexElementIndex = i;
3512 vi.InstancingEnable = state[i].instance_divisor > 0;
3513 vi.InstanceDataStepRate = state[i].instance_divisor;
3514 }
3515
3516 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
3517 vfi_pack_dest += GENX(3DSTATE_VF_INSTANCING_length);
3518 }
3519
3520 /* An alternative version of the last VE and VFI is stored so it
3521 * can be used at draw time in case Vertex Shader uses EdgeFlag
3522 */
3523 if (count) {
3524 const unsigned edgeflag_index = count - 1;
3525 const struct iris_format_info fmt =
3526 iris_format_for_usage(devinfo, state[edgeflag_index].src_format, 0);
3527 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), cso->edgeflag_ve, ve) {
3528 ve.EdgeFlagEnable = true ;
3529 ve.VertexBufferIndex = state[edgeflag_index].vertex_buffer_index;
3530 ve.Valid = true;
3531 ve.SourceElementOffset = state[edgeflag_index].src_offset;
3532 ve.SourceElementFormat = fmt.fmt;
3533 ve.Component0Control = VFCOMP_STORE_SRC;
3534 ve.Component1Control = VFCOMP_STORE_0;
3535 ve.Component2Control = VFCOMP_STORE_0;
3536 ve.Component3Control = VFCOMP_STORE_0;
3537 }
3538 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), cso->edgeflag_vfi, vi) {
3539 /* The vi.VertexElementIndex of the EdgeFlag Vertex Element is filled
3540 * at draw time, as it should change if SGVs are emitted.
3541 */
3542 vi.InstancingEnable = state[edgeflag_index].instance_divisor > 0;
3543 vi.InstanceDataStepRate = state[edgeflag_index].instance_divisor;
3544 }
3545 }
3546
3547 return cso;
3548 }
3549
3550 /**
3551 * The pipe->bind_vertex_elements_state() driver hook.
3552 */
3553 static void
3554 iris_bind_vertex_elements_state(struct pipe_context *ctx, void *state)
3555 {
3556 struct iris_context *ice = (struct iris_context *) ctx;
3557 struct iris_vertex_element_state *old_cso = ice->state.cso_vertex_elements;
3558 struct iris_vertex_element_state *new_cso = state;
3559
3560 /* 3DSTATE_VF_SGVs overrides the last VE, so if the count is changing,
3561 * we need to re-emit it to ensure we're overriding the right one.
3562 */
3563 if (new_cso && cso_changed(count))
3564 ice->state.dirty |= IRIS_DIRTY_VF_SGVS;
3565
3566 ice->state.cso_vertex_elements = state;
3567 ice->state.dirty |= IRIS_DIRTY_VERTEX_ELEMENTS;
3568 }
3569
3570 /**
3571 * The pipe->create_stream_output_target() driver hook.
3572 *
3573 * "Target" here refers to a destination buffer. We translate this into
3574 * a 3DSTATE_SO_BUFFER packet. We can handle most fields, but don't yet
3575 * know which buffer this represents, or whether we ought to zero the
3576 * write-offsets, or append. Those are handled in the set() hook.
3577 */
3578 static struct pipe_stream_output_target *
3579 iris_create_stream_output_target(struct pipe_context *ctx,
3580 struct pipe_resource *p_res,
3581 unsigned buffer_offset,
3582 unsigned buffer_size)
3583 {
3584 struct iris_resource *res = (void *) p_res;
3585 struct iris_stream_output_target *cso = calloc(1, sizeof(*cso));
3586 if (!cso)
3587 return NULL;
3588
3589 res->bind_history |= PIPE_BIND_STREAM_OUTPUT;
3590
3591 pipe_reference_init(&cso->base.reference, 1);
3592 pipe_resource_reference(&cso->base.buffer, p_res);
3593 cso->base.buffer_offset = buffer_offset;
3594 cso->base.buffer_size = buffer_size;
3595 cso->base.context = ctx;
3596
3597 util_range_add(&res->base, &res->valid_buffer_range, buffer_offset,
3598 buffer_offset + buffer_size);
3599
3600 upload_state(ctx->stream_uploader, &cso->offset, sizeof(uint32_t), 4);
3601
3602 return &cso->base;
3603 }
3604
3605 static void
3606 iris_stream_output_target_destroy(struct pipe_context *ctx,
3607 struct pipe_stream_output_target *state)
3608 {
3609 struct iris_stream_output_target *cso = (void *) state;
3610
3611 pipe_resource_reference(&cso->base.buffer, NULL);
3612 pipe_resource_reference(&cso->offset.res, NULL);
3613
3614 free(cso);
3615 }
3616
3617 /**
3618 * The pipe->set_stream_output_targets() driver hook.
3619 *
3620 * At this point, we know which targets are bound to a particular index,
3621 * and also whether we want to append or start over. We can finish the
3622 * 3DSTATE_SO_BUFFER packets we started earlier.
3623 */
3624 static void
3625 iris_set_stream_output_targets(struct pipe_context *ctx,
3626 unsigned num_targets,
3627 struct pipe_stream_output_target **targets,
3628 const unsigned *offsets)
3629 {
3630 struct iris_context *ice = (struct iris_context *) ctx;
3631 struct iris_genx_state *genx = ice->state.genx;
3632 uint32_t *so_buffers = genx->so_buffers;
3633 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
3634
3635 const bool active = num_targets > 0;
3636 if (ice->state.streamout_active != active) {
3637 ice->state.streamout_active = active;
3638 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
3639
3640 /* We only emit 3DSTATE_SO_DECL_LIST when streamout is active, because
3641 * it's a non-pipelined command. If we're switching streamout on, we
3642 * may have missed emitting it earlier, so do so now. (We're already
3643 * taking a stall to update 3DSTATE_SO_BUFFERS anyway...)
3644 */
3645 if (active) {
3646 ice->state.dirty |= IRIS_DIRTY_SO_DECL_LIST;
3647 } else {
3648 uint32_t flush = 0;
3649 for (int i = 0; i < PIPE_MAX_SO_BUFFERS; i++) {
3650 struct iris_stream_output_target *tgt =
3651 (void *) ice->state.so_target[i];
3652 if (tgt) {
3653 struct iris_resource *res = (void *) tgt->base.buffer;
3654
3655 flush |= iris_flush_bits_for_history(res);
3656 iris_dirty_for_history(ice, res);
3657 }
3658 }
3659 iris_emit_pipe_control_flush(&ice->batches[IRIS_BATCH_RENDER],
3660 "make streamout results visible", flush);
3661 }
3662 }
3663
3664 for (int i = 0; i < 4; i++) {
3665 pipe_so_target_reference(&ice->state.so_target[i],
3666 i < num_targets ? targets[i] : NULL);
3667 }
3668
3669 /* No need to update 3DSTATE_SO_BUFFER unless SOL is active. */
3670 if (!active)
3671 return;
3672
3673 for (unsigned i = 0; i < 4; i++,
3674 so_buffers += GENX(3DSTATE_SO_BUFFER_length)) {
3675
3676 struct iris_stream_output_target *tgt = (void *) ice->state.so_target[i];
3677 unsigned offset = offsets[i];
3678
3679 if (!tgt) {
3680 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob) {
3681 #if GEN_GEN < 12
3682 sob.SOBufferIndex = i;
3683 #else
3684 sob._3DCommandOpcode = 0;
3685 sob._3DCommandSubOpcode = SO_BUFFER_INDEX_0_CMD + i;
3686 #endif
3687 }
3688 continue;
3689 }
3690
3691 struct iris_resource *res = (void *) tgt->base.buffer;
3692
3693 /* Note that offsets[i] will either be 0, causing us to zero
3694 * the value in the buffer, or 0xFFFFFFFF, which happens to mean
3695 * "continue appending at the existing offset."
3696 */
3697 assert(offset == 0 || offset == 0xFFFFFFFF);
3698
3699 /* We might be called by Begin (offset = 0), Pause, then Resume
3700 * (offset = 0xFFFFFFFF) before ever drawing (where these commands
3701 * will actually be sent to the GPU). In this case, we don't want
3702 * to append - we still want to do our initial zeroing.
3703 */
3704 if (!tgt->zeroed)
3705 offset = 0;
3706
3707 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob) {
3708 #if GEN_GEN < 12
3709 sob.SOBufferIndex = i;
3710 #else
3711 sob._3DCommandOpcode = 0;
3712 sob._3DCommandSubOpcode = SO_BUFFER_INDEX_0_CMD + i;
3713 #endif
3714 sob.SurfaceBaseAddress =
3715 rw_bo(NULL, res->bo->gtt_offset + tgt->base.buffer_offset,
3716 IRIS_DOMAIN_OTHER_WRITE);
3717 sob.SOBufferEnable = true;
3718 sob.StreamOffsetWriteEnable = true;
3719 sob.StreamOutputBufferOffsetAddressEnable = true;
3720 sob.MOCS = iris_mocs(res->bo, &screen->isl_dev);
3721
3722 sob.SurfaceSize = MAX2(tgt->base.buffer_size / 4, 1) - 1;
3723 sob.StreamOffset = offset;
3724 sob.StreamOutputBufferOffsetAddress =
3725 rw_bo(NULL, iris_resource_bo(tgt->offset.res)->gtt_offset +
3726 tgt->offset.offset, IRIS_DOMAIN_OTHER_WRITE);
3727 }
3728 }
3729
3730 ice->state.dirty |= IRIS_DIRTY_SO_BUFFERS;
3731 }
3732
3733 /**
3734 * An iris-vtable helper for encoding the 3DSTATE_SO_DECL_LIST and
3735 * 3DSTATE_STREAMOUT packets.
3736 *
3737 * 3DSTATE_SO_DECL_LIST is a list of shader outputs we want the streamout
3738 * hardware to record. We can create it entirely based on the shader, with
3739 * no dynamic state dependencies.
3740 *
3741 * 3DSTATE_STREAMOUT is an annoying mix of shader-based information and
3742 * state-based settings. We capture the shader-related ones here, and merge
3743 * the rest in at draw time.
3744 */
3745 static uint32_t *
3746 iris_create_so_decl_list(const struct pipe_stream_output_info *info,
3747 const struct brw_vue_map *vue_map)
3748 {
3749 struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
3750 int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3751 int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3752 int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3753 int max_decls = 0;
3754 STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
3755
3756 memset(so_decl, 0, sizeof(so_decl));
3757
3758 /* Construct the list of SO_DECLs to be emitted. The formatting of the
3759 * command feels strange -- each dword pair contains a SO_DECL per stream.
3760 */
3761 for (unsigned i = 0; i < info->num_outputs; i++) {
3762 const struct pipe_stream_output *output = &info->output[i];
3763 const int buffer = output->output_buffer;
3764 const int varying = output->register_index;
3765 const unsigned stream_id = output->stream;
3766 assert(stream_id < MAX_VERTEX_STREAMS);
3767
3768 buffer_mask[stream_id] |= 1 << buffer;
3769
3770 assert(vue_map->varying_to_slot[varying] >= 0);
3771
3772 /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
3773 * array. Instead, it simply increments DstOffset for the following
3774 * input by the number of components that should be skipped.
3775 *
3776 * Our hardware is unusual in that it requires us to program SO_DECLs
3777 * for fake "hole" components, rather than simply taking the offset
3778 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
3779 * program as many size = 4 holes as we can, then a final hole to
3780 * accommodate the final 1, 2, or 3 remaining.
3781 */
3782 int skip_components = output->dst_offset - next_offset[buffer];
3783
3784 while (skip_components > 0) {
3785 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3786 .HoleFlag = 1,
3787 .OutputBufferSlot = output->output_buffer,
3788 .ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
3789 };
3790 skip_components -= 4;
3791 }
3792
3793 next_offset[buffer] = output->dst_offset + output->num_components;
3794
3795 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3796 .OutputBufferSlot = output->output_buffer,
3797 .RegisterIndex = vue_map->varying_to_slot[varying],
3798 .ComponentMask =
3799 ((1 << output->num_components) - 1) << output->start_component,
3800 };
3801
3802 if (decls[stream_id] > max_decls)
3803 max_decls = decls[stream_id];
3804 }
3805
3806 unsigned dwords = GENX(3DSTATE_STREAMOUT_length) + (3 + 2 * max_decls);
3807 uint32_t *map = ralloc_size(NULL, sizeof(uint32_t) * dwords);
3808 uint32_t *so_decl_map = map + GENX(3DSTATE_STREAMOUT_length);
3809
3810 iris_pack_command(GENX(3DSTATE_STREAMOUT), map, sol) {
3811 int urb_entry_read_offset = 0;
3812 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
3813 urb_entry_read_offset;
3814
3815 /* We always read the whole vertex. This could be reduced at some
3816 * point by reading less and offsetting the register index in the
3817 * SO_DECLs.
3818 */
3819 sol.Stream0VertexReadOffset = urb_entry_read_offset;
3820 sol.Stream0VertexReadLength = urb_entry_read_length - 1;
3821 sol.Stream1VertexReadOffset = urb_entry_read_offset;
3822 sol.Stream1VertexReadLength = urb_entry_read_length - 1;
3823 sol.Stream2VertexReadOffset = urb_entry_read_offset;
3824 sol.Stream2VertexReadLength = urb_entry_read_length - 1;
3825 sol.Stream3VertexReadOffset = urb_entry_read_offset;
3826 sol.Stream3VertexReadLength = urb_entry_read_length - 1;
3827
3828 /* Set buffer pitches; 0 means unbound. */
3829 sol.Buffer0SurfacePitch = 4 * info->stride[0];
3830 sol.Buffer1SurfacePitch = 4 * info->stride[1];
3831 sol.Buffer2SurfacePitch = 4 * info->stride[2];
3832 sol.Buffer3SurfacePitch = 4 * info->stride[3];
3833 }
3834
3835 iris_pack_command(GENX(3DSTATE_SO_DECL_LIST), so_decl_map, list) {
3836 list.DWordLength = 3 + 2 * max_decls - 2;
3837 list.StreamtoBufferSelects0 = buffer_mask[0];
3838 list.StreamtoBufferSelects1 = buffer_mask[1];
3839 list.StreamtoBufferSelects2 = buffer_mask[2];
3840 list.StreamtoBufferSelects3 = buffer_mask[3];
3841 list.NumEntries0 = decls[0];
3842 list.NumEntries1 = decls[1];
3843 list.NumEntries2 = decls[2];
3844 list.NumEntries3 = decls[3];
3845 }
3846
3847 for (int i = 0; i < max_decls; i++) {
3848 iris_pack_state(GENX(SO_DECL_ENTRY), so_decl_map + 3 + i * 2, entry) {
3849 entry.Stream0Decl = so_decl[0][i];
3850 entry.Stream1Decl = so_decl[1][i];
3851 entry.Stream2Decl = so_decl[2][i];
3852 entry.Stream3Decl = so_decl[3][i];
3853 }
3854 }
3855
3856 return map;
3857 }
3858
3859 static void
3860 iris_compute_sbe_urb_read_interval(uint64_t fs_input_slots,
3861 const struct brw_vue_map *last_vue_map,
3862 bool two_sided_color,
3863 unsigned *out_offset,
3864 unsigned *out_length)
3865 {
3866 /* The compiler computes the first URB slot without considering COL/BFC
3867 * swizzling (because it doesn't know whether it's enabled), so we need
3868 * to do that here too. This may result in a smaller offset, which
3869 * should be safe.
3870 */
3871 const unsigned first_slot =
3872 brw_compute_first_urb_slot_required(fs_input_slots, last_vue_map);
3873
3874 /* This becomes the URB read offset (counted in pairs of slots). */
3875 assert(first_slot % 2 == 0);
3876 *out_offset = first_slot / 2;
3877
3878 /* We need to adjust the inputs read to account for front/back color
3879 * swizzling, as it can make the URB length longer.
3880 */
3881 for (int c = 0; c <= 1; c++) {
3882 if (fs_input_slots & (VARYING_BIT_COL0 << c)) {
3883 /* If two sided color is enabled, the fragment shader's gl_Color
3884 * (COL0) input comes from either the gl_FrontColor (COL0) or
3885 * gl_BackColor (BFC0) input varyings. Mark BFC as used, too.
3886 */
3887 if (two_sided_color)
3888 fs_input_slots |= (VARYING_BIT_BFC0 << c);
3889
3890 /* If front color isn't written, we opt to give them back color
3891 * instead of an undefined value. Switch from COL to BFC.
3892 */
3893 if (last_vue_map->varying_to_slot[VARYING_SLOT_COL0 + c] == -1) {
3894 fs_input_slots &= ~(VARYING_BIT_COL0 << c);
3895 fs_input_slots |= (VARYING_BIT_BFC0 << c);
3896 }
3897 }
3898 }
3899
3900 /* Compute the minimum URB Read Length necessary for the FS inputs.
3901 *
3902 * From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
3903 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
3904 *
3905 * "This field should be set to the minimum length required to read the
3906 * maximum source attribute. The maximum source attribute is indicated
3907 * by the maximum value of the enabled Attribute # Source Attribute if
3908 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
3909 * enable is not set.
3910 * read_length = ceiling((max_source_attr + 1) / 2)
3911 *
3912 * [errata] Corruption/Hang possible if length programmed larger than
3913 * recommended"
3914 *
3915 * Similar text exists for Ivy Bridge.
3916 *
3917 * We find the last URB slot that's actually read by the FS.
3918 */
3919 unsigned last_read_slot = last_vue_map->num_slots - 1;
3920 while (last_read_slot > first_slot && !(fs_input_slots &
3921 (1ull << last_vue_map->slot_to_varying[last_read_slot])))
3922 --last_read_slot;
3923
3924 /* The URB read length is the difference of the two, counted in pairs. */
3925 *out_length = DIV_ROUND_UP(last_read_slot - first_slot + 1, 2);
3926 }
3927
3928 static void
3929 iris_emit_sbe_swiz(struct iris_batch *batch,
3930 const struct iris_context *ice,
3931 unsigned urb_read_offset,
3932 unsigned sprite_coord_enables)
3933 {
3934 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = {};
3935 const struct brw_wm_prog_data *wm_prog_data = (void *)
3936 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3937 const struct brw_vue_map *vue_map = ice->shaders.last_vue_map;
3938 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3939
3940 /* XXX: this should be generated when putting programs in place */
3941
3942 for (uint8_t idx = 0; idx < wm_prog_data->urb_setup_attribs_count; idx++) {
3943 const uint8_t fs_attr = wm_prog_data->urb_setup_attribs[idx];
3944 const int input_index = wm_prog_data->urb_setup[fs_attr];
3945 if (input_index < 0 || input_index >= 16)
3946 continue;
3947
3948 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr =
3949 &attr_overrides[input_index];
3950 int slot = vue_map->varying_to_slot[fs_attr];
3951
3952 /* Viewport and Layer are stored in the VUE header. We need to override
3953 * them to zero if earlier stages didn't write them, as GL requires that
3954 * they read back as zero when not explicitly set.
3955 */
3956 switch (fs_attr) {
3957 case VARYING_SLOT_VIEWPORT:
3958 case VARYING_SLOT_LAYER:
3959 attr->ComponentOverrideX = true;
3960 attr->ComponentOverrideW = true;
3961 attr->ConstantSource = CONST_0000;
3962
3963 if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
3964 attr->ComponentOverrideY = true;
3965 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
3966 attr->ComponentOverrideZ = true;
3967 continue;
3968
3969 case VARYING_SLOT_PRIMITIVE_ID:
3970 /* Override if the previous shader stage didn't write gl_PrimitiveID. */
3971 if (slot == -1) {
3972 attr->ComponentOverrideX = true;
3973 attr->ComponentOverrideY = true;
3974 attr->ComponentOverrideZ = true;
3975 attr->ComponentOverrideW = true;
3976 attr->ConstantSource = PRIM_ID;
3977 continue;
3978 }
3979
3980 default:
3981 break;
3982 }
3983
3984 if (sprite_coord_enables & (1 << input_index))
3985 continue;
3986
3987 /* If there was only a back color written but not front, use back
3988 * as the color instead of undefined.
3989 */
3990 if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
3991 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
3992 if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
3993 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
3994
3995 /* Not written by the previous stage - undefined. */
3996 if (slot == -1) {
3997 attr->ComponentOverrideX = true;
3998 attr->ComponentOverrideY = true;
3999 attr->ComponentOverrideZ = true;
4000 attr->ComponentOverrideW = true;
4001 attr->ConstantSource = CONST_0001_FLOAT;
4002 continue;
4003 }
4004
4005 /* Compute the location of the attribute relative to the read offset,
4006 * which is counted in 256-bit increments (two 128-bit VUE slots).
4007 */
4008 const int source_attr = slot - 2 * urb_read_offset;
4009 assert(source_attr >= 0 && source_attr <= 32);
4010 attr->SourceAttribute = source_attr;
4011
4012 /* If we are doing two-sided color, and the VUE slot following this one
4013 * represents a back-facing color, then we need to instruct the SF unit
4014 * to do back-facing swizzling.
4015 */
4016 if (cso_rast->light_twoside &&
4017 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
4018 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
4019 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
4020 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1)))
4021 attr->SwizzleSelect = INPUTATTR_FACING;
4022 }
4023
4024 iris_emit_cmd(batch, GENX(3DSTATE_SBE_SWIZ), sbes) {
4025 for (int i = 0; i < 16; i++)
4026 sbes.Attribute[i] = attr_overrides[i];
4027 }
4028 }
4029
4030 static unsigned
4031 iris_calculate_point_sprite_overrides(const struct brw_wm_prog_data *prog_data,
4032 const struct iris_rasterizer_state *cso)
4033 {
4034 unsigned overrides = 0;
4035
4036 if (prog_data->urb_setup[VARYING_SLOT_PNTC] != -1)
4037 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_PNTC];
4038
4039 for (int i = 0; i < 8; i++) {
4040 if ((cso->sprite_coord_enable & (1 << i)) &&
4041 prog_data->urb_setup[VARYING_SLOT_TEX0 + i] != -1)
4042 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_TEX0 + i];
4043 }
4044
4045 return overrides;
4046 }
4047
4048 static void
4049 iris_emit_sbe(struct iris_batch *batch, const struct iris_context *ice)
4050 {
4051 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4052 const struct brw_wm_prog_data *wm_prog_data = (void *)
4053 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
4054 const struct shader_info *fs_info =
4055 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
4056
4057 unsigned urb_read_offset, urb_read_length;
4058 iris_compute_sbe_urb_read_interval(fs_info->inputs_read,
4059 ice->shaders.last_vue_map,
4060 cso_rast->light_twoside,
4061 &urb_read_offset, &urb_read_length);
4062
4063 unsigned sprite_coord_overrides =
4064 iris_calculate_point_sprite_overrides(wm_prog_data, cso_rast);
4065
4066 iris_emit_cmd(batch, GENX(3DSTATE_SBE), sbe) {
4067 sbe.AttributeSwizzleEnable = true;
4068 sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
4069 sbe.PointSpriteTextureCoordinateOrigin = cso_rast->sprite_coord_mode;
4070 sbe.VertexURBEntryReadOffset = urb_read_offset;
4071 sbe.VertexURBEntryReadLength = urb_read_length;
4072 sbe.ForceVertexURBEntryReadOffset = true;
4073 sbe.ForceVertexURBEntryReadLength = true;
4074 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
4075 sbe.PointSpriteTextureCoordinateEnable = sprite_coord_overrides;
4076 #if GEN_GEN >= 9
4077 for (int i = 0; i < 32; i++) {
4078 sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW;
4079 }
4080 #endif
4081 }
4082
4083 iris_emit_sbe_swiz(batch, ice, urb_read_offset, sprite_coord_overrides);
4084 }
4085
4086 /* ------------------------------------------------------------------- */
4087
4088 /**
4089 * Populate VS program key fields based on the current state.
4090 */
4091 static void
4092 iris_populate_vs_key(const struct iris_context *ice,
4093 const struct shader_info *info,
4094 gl_shader_stage last_stage,
4095 struct iris_vs_prog_key *key)
4096 {
4097 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4098
4099 if (info->clip_distance_array_size == 0 &&
4100 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
4101 last_stage == MESA_SHADER_VERTEX)
4102 key->vue.nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
4103 }
4104
4105 /**
4106 * Populate TCS program key fields based on the current state.
4107 */
4108 static void
4109 iris_populate_tcs_key(const struct iris_context *ice,
4110 struct iris_tcs_prog_key *key)
4111 {
4112 }
4113
4114 /**
4115 * Populate TES program key fields based on the current state.
4116 */
4117 static void
4118 iris_populate_tes_key(const struct iris_context *ice,
4119 const struct shader_info *info,
4120 gl_shader_stage last_stage,
4121 struct iris_tes_prog_key *key)
4122 {
4123 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4124
4125 if (info->clip_distance_array_size == 0 &&
4126 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
4127 last_stage == MESA_SHADER_TESS_EVAL)
4128 key->vue.nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
4129 }
4130
4131 /**
4132 * Populate GS program key fields based on the current state.
4133 */
4134 static void
4135 iris_populate_gs_key(const struct iris_context *ice,
4136 const struct shader_info *info,
4137 gl_shader_stage last_stage,
4138 struct iris_gs_prog_key *key)
4139 {
4140 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4141
4142 if (info->clip_distance_array_size == 0 &&
4143 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
4144 last_stage == MESA_SHADER_GEOMETRY)
4145 key->vue.nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
4146 }
4147
4148 /**
4149 * Populate FS program key fields based on the current state.
4150 */
4151 static void
4152 iris_populate_fs_key(const struct iris_context *ice,
4153 const struct shader_info *info,
4154 struct iris_fs_prog_key *key)
4155 {
4156 struct iris_screen *screen = (void *) ice->ctx.screen;
4157 const struct pipe_framebuffer_state *fb = &ice->state.framebuffer;
4158 const struct iris_depth_stencil_alpha_state *zsa = ice->state.cso_zsa;
4159 const struct iris_rasterizer_state *rast = ice->state.cso_rast;
4160 const struct iris_blend_state *blend = ice->state.cso_blend;
4161
4162 key->nr_color_regions = fb->nr_cbufs;
4163
4164 key->clamp_fragment_color = rast->clamp_fragment_color;
4165
4166 key->alpha_to_coverage = blend->alpha_to_coverage;
4167
4168 key->alpha_test_replicate_alpha = fb->nr_cbufs > 1 && zsa->alpha.enabled;
4169
4170 key->flat_shade = rast->flatshade &&
4171 (info->inputs_read & (VARYING_BIT_COL0 | VARYING_BIT_COL1));
4172
4173 key->persample_interp = rast->force_persample_interp;
4174 key->multisample_fbo = rast->multisample && fb->samples > 1;
4175
4176 key->coherent_fb_fetch = GEN_GEN >= 9;
4177
4178 key->force_dual_color_blend =
4179 screen->driconf.dual_color_blend_by_location &&
4180 (blend->blend_enables & 1) && blend->dual_color_blending;
4181
4182 /* TODO: Respect glHint for key->high_quality_derivatives */
4183 }
4184
4185 static void
4186 iris_populate_cs_key(const struct iris_context *ice,
4187 struct iris_cs_prog_key *key)
4188 {
4189 }
4190
4191 static uint64_t
4192 KSP(const struct iris_compiled_shader *shader)
4193 {
4194 struct iris_resource *res = (void *) shader->assembly.res;
4195 return iris_bo_offset_from_base_address(res->bo) + shader->assembly.offset;
4196 }
4197
4198 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix, stage) \
4199 pkt.KernelStartPointer = KSP(shader); \
4200 pkt.BindingTableEntryCount = shader->bt.size_bytes / 4; \
4201 pkt.FloatingPointMode = prog_data->use_alt_mode; \
4202 \
4203 pkt.DispatchGRFStartRegisterForURBData = \
4204 prog_data->dispatch_grf_start_reg; \
4205 pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
4206 pkt.prefix##URBEntryReadOffset = 0; \
4207 \
4208 pkt.StatisticsEnable = true; \
4209 pkt.Enable = true; \
4210 \
4211 if (prog_data->total_scratch) { \
4212 struct iris_bo *bo = \
4213 iris_get_scratch_space(ice, prog_data->total_scratch, stage); \
4214 uint32_t scratch_addr = bo->gtt_offset; \
4215 pkt.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11; \
4216 pkt.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr, \
4217 IRIS_DOMAIN_NONE); \
4218 }
4219
4220 /**
4221 * Encode most of 3DSTATE_VS based on the compiled shader.
4222 */
4223 static void
4224 iris_store_vs_state(struct iris_context *ice,
4225 const struct gen_device_info *devinfo,
4226 struct iris_compiled_shader *shader)
4227 {
4228 struct brw_stage_prog_data *prog_data = shader->prog_data;
4229 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
4230
4231 iris_pack_command(GENX(3DSTATE_VS), shader->derived_data, vs) {
4232 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex, MESA_SHADER_VERTEX);
4233 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
4234 vs.SIMD8DispatchEnable = true;
4235 vs.UserClipDistanceCullTestEnableBitmask =
4236 vue_prog_data->cull_distance_mask;
4237 }
4238 }
4239
4240 /**
4241 * Encode most of 3DSTATE_HS based on the compiled shader.
4242 */
4243 static void
4244 iris_store_tcs_state(struct iris_context *ice,
4245 const struct gen_device_info *devinfo,
4246 struct iris_compiled_shader *shader)
4247 {
4248 struct brw_stage_prog_data *prog_data = shader->prog_data;
4249 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
4250 struct brw_tcs_prog_data *tcs_prog_data = (void *) prog_data;
4251
4252 iris_pack_command(GENX(3DSTATE_HS), shader->derived_data, hs) {
4253 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex, MESA_SHADER_TESS_CTRL);
4254
4255 #if GEN_GEN >= 12
4256 /* GEN:BUG:1604578095:
4257 *
4258 * Hang occurs when the number of max threads is less than 2 times
4259 * the number of instance count. The number of max threads must be
4260 * more than 2 times the number of instance count.
4261 */
4262 assert((devinfo->max_tcs_threads / 2) > tcs_prog_data->instances);
4263 hs.DispatchGRFStartRegisterForURBData = prog_data->dispatch_grf_start_reg & 0x1f;
4264 hs.DispatchGRFStartRegisterForURBData5 = prog_data->dispatch_grf_start_reg >> 5;
4265 #endif
4266
4267 hs.InstanceCount = tcs_prog_data->instances - 1;
4268 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
4269 hs.IncludeVertexHandles = true;
4270
4271 #if GEN_GEN == 12
4272 /* Patch Count threshold specifies the maximum number of patches that
4273 * will be accumulated before a thread dispatch is forced.
4274 */
4275 hs.PatchCountThreshold = tcs_prog_data->patch_count_threshold;
4276 #endif
4277
4278 #if GEN_GEN >= 9
4279 hs.DispatchMode = vue_prog_data->dispatch_mode;
4280 hs.IncludePrimitiveID = tcs_prog_data->include_primitive_id;
4281 #endif
4282 }
4283 }
4284
4285 /**
4286 * Encode 3DSTATE_TE and most of 3DSTATE_DS based on the compiled shader.
4287 */
4288 static void
4289 iris_store_tes_state(struct iris_context *ice,
4290 const struct gen_device_info *devinfo,
4291 struct iris_compiled_shader *shader)
4292 {
4293 struct brw_stage_prog_data *prog_data = shader->prog_data;
4294 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
4295 struct brw_tes_prog_data *tes_prog_data = (void *) prog_data;
4296
4297 uint32_t *te_state = (void *) shader->derived_data;
4298 uint32_t *ds_state = te_state + GENX(3DSTATE_TE_length);
4299
4300 iris_pack_command(GENX(3DSTATE_TE), te_state, te) {
4301 te.Partitioning = tes_prog_data->partitioning;
4302 te.OutputTopology = tes_prog_data->output_topology;
4303 te.TEDomain = tes_prog_data->domain;
4304 te.TEEnable = true;
4305 te.MaximumTessellationFactorOdd = 63.0;
4306 te.MaximumTessellationFactorNotOdd = 64.0;
4307 }
4308
4309 iris_pack_command(GENX(3DSTATE_DS), ds_state, ds) {
4310 INIT_THREAD_DISPATCH_FIELDS(ds, Patch, MESA_SHADER_TESS_EVAL);
4311
4312 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
4313 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
4314 ds.ComputeWCoordinateEnable =
4315 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
4316
4317 ds.UserClipDistanceCullTestEnableBitmask =
4318 vue_prog_data->cull_distance_mask;
4319 }
4320
4321 }
4322
4323 /**
4324 * Encode most of 3DSTATE_GS based on the compiled shader.
4325 */
4326 static void
4327 iris_store_gs_state(struct iris_context *ice,
4328 const struct gen_device_info *devinfo,
4329 struct iris_compiled_shader *shader)
4330 {
4331 struct brw_stage_prog_data *prog_data = shader->prog_data;
4332 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
4333 struct brw_gs_prog_data *gs_prog_data = (void *) prog_data;
4334
4335 iris_pack_command(GENX(3DSTATE_GS), shader->derived_data, gs) {
4336 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex, MESA_SHADER_GEOMETRY);
4337
4338 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
4339 gs.OutputTopology = gs_prog_data->output_topology;
4340 gs.ControlDataHeaderSize =
4341 gs_prog_data->control_data_header_size_hwords;
4342 gs.InstanceControl = gs_prog_data->invocations - 1;
4343 gs.DispatchMode = DISPATCH_MODE_SIMD8;
4344 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
4345 gs.ControlDataFormat = gs_prog_data->control_data_format;
4346 gs.ReorderMode = TRAILING;
4347 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
4348 gs.MaximumNumberofThreads =
4349 GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
4350 : (devinfo->max_gs_threads - 1);
4351
4352 if (gs_prog_data->static_vertex_count != -1) {
4353 gs.StaticOutput = true;
4354 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
4355 }
4356 gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
4357
4358 gs.UserClipDistanceCullTestEnableBitmask =
4359 vue_prog_data->cull_distance_mask;
4360
4361 const int urb_entry_write_offset = 1;
4362 const uint32_t urb_entry_output_length =
4363 DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
4364 urb_entry_write_offset;
4365
4366 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
4367 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
4368 }
4369 }
4370
4371 /**
4372 * Encode most of 3DSTATE_PS and 3DSTATE_PS_EXTRA based on the shader.
4373 */
4374 static void
4375 iris_store_fs_state(struct iris_context *ice,
4376 const struct gen_device_info *devinfo,
4377 struct iris_compiled_shader *shader)
4378 {
4379 struct brw_stage_prog_data *prog_data = shader->prog_data;
4380 struct brw_wm_prog_data *wm_prog_data = (void *) shader->prog_data;
4381
4382 uint32_t *ps_state = (void *) shader->derived_data;
4383 uint32_t *psx_state = ps_state + GENX(3DSTATE_PS_length);
4384
4385 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
4386 ps.VectorMaskEnable = true;
4387 ps.BindingTableEntryCount = shader->bt.size_bytes / 4;
4388 ps.FloatingPointMode = prog_data->use_alt_mode;
4389 ps.MaximumNumberofThreadsPerPSD = 64 - (GEN_GEN == 8 ? 2 : 1);
4390
4391 ps.PushConstantEnable = prog_data->ubo_ranges[0].length > 0;
4392
4393 /* From the documentation for this packet:
4394 * "If the PS kernel does not need the Position XY Offsets to
4395 * compute a Position Value, then this field should be programmed
4396 * to POSOFFSET_NONE."
4397 *
4398 * "SW Recommendation: If the PS kernel needs the Position Offsets
4399 * to compute a Position XY value, this field should match Position
4400 * ZW Interpolation Mode to ensure a consistent position.xyzw
4401 * computation."
4402 *
4403 * We only require XY sample offsets. So, this recommendation doesn't
4404 * look useful at the moment. We might need this in future.
4405 */
4406 ps.PositionXYOffsetSelect =
4407 wm_prog_data->uses_pos_offset ? POSOFFSET_SAMPLE : POSOFFSET_NONE;
4408
4409 if (prog_data->total_scratch) {
4410 struct iris_bo *bo =
4411 iris_get_scratch_space(ice, prog_data->total_scratch,
4412 MESA_SHADER_FRAGMENT);
4413 uint32_t scratch_addr = bo->gtt_offset;
4414 ps.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
4415 ps.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr,
4416 IRIS_DOMAIN_NONE);
4417 }
4418 }
4419
4420 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
4421 psx.PixelShaderValid = true;
4422 psx.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
4423 psx.PixelShaderKillsPixel = wm_prog_data->uses_kill;
4424 psx.AttributeEnable = wm_prog_data->num_varying_inputs != 0;
4425 psx.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
4426 psx.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
4427 psx.PixelShaderIsPerSample = wm_prog_data->persample_dispatch;
4428 psx.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
4429
4430 #if GEN_GEN >= 9
4431 psx.PixelShaderPullsBary = wm_prog_data->pulls_bary;
4432 psx.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
4433 #endif
4434 }
4435 }
4436
4437 /**
4438 * Compute the size of the derived data (shader command packets).
4439 *
4440 * This must match the data written by the iris_store_xs_state() functions.
4441 */
4442 static void
4443 iris_store_cs_state(struct iris_context *ice,
4444 const struct gen_device_info *devinfo,
4445 struct iris_compiled_shader *shader)
4446 {
4447 struct brw_stage_prog_data *prog_data = shader->prog_data;
4448 struct brw_cs_prog_data *cs_prog_data = (void *) shader->prog_data;
4449 void *map = shader->derived_data;
4450
4451 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), map, desc) {
4452 desc.ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs;
4453 desc.SharedLocalMemorySize =
4454 encode_slm_size(GEN_GEN, prog_data->total_shared);
4455 desc.BarrierEnable = cs_prog_data->uses_barrier;
4456 desc.CrossThreadConstantDataReadLength =
4457 cs_prog_data->push.cross_thread.regs;
4458 #if GEN_GEN >= 12
4459 /* TODO: Check if we are missing workarounds and enable mid-thread
4460 * preemption.
4461 *
4462 * We still have issues with mid-thread preemption (it was already
4463 * disabled by the kernel on gen11, due to missing workarounds). It's
4464 * possible that we are just missing some workarounds, and could enable
4465 * it later, but for now let's disable it to fix a GPU in compute in Car
4466 * Chase (and possibly more).
4467 */
4468 desc.ThreadPreemptionDisable = true;
4469 #endif
4470 }
4471 }
4472
4473 static unsigned
4474 iris_derived_program_state_size(enum iris_program_cache_id cache_id)
4475 {
4476 assert(cache_id <= IRIS_CACHE_BLORP);
4477
4478 static const unsigned dwords[] = {
4479 [IRIS_CACHE_VS] = GENX(3DSTATE_VS_length),
4480 [IRIS_CACHE_TCS] = GENX(3DSTATE_HS_length),
4481 [IRIS_CACHE_TES] = GENX(3DSTATE_TE_length) + GENX(3DSTATE_DS_length),
4482 [IRIS_CACHE_GS] = GENX(3DSTATE_GS_length),
4483 [IRIS_CACHE_FS] =
4484 GENX(3DSTATE_PS_length) + GENX(3DSTATE_PS_EXTRA_length),
4485 [IRIS_CACHE_CS] = GENX(INTERFACE_DESCRIPTOR_DATA_length),
4486 [IRIS_CACHE_BLORP] = 0,
4487 };
4488
4489 return sizeof(uint32_t) * dwords[cache_id];
4490 }
4491
4492 /**
4493 * Create any state packets corresponding to the given shader stage
4494 * (i.e. 3DSTATE_VS) and save them as "derived data" in the shader variant.
4495 * This means that we can look up a program in the in-memory cache and
4496 * get most of the state packet without having to reconstruct it.
4497 */
4498 static void
4499 iris_store_derived_program_state(struct iris_context *ice,
4500 enum iris_program_cache_id cache_id,
4501 struct iris_compiled_shader *shader)
4502 {
4503 struct iris_screen *screen = (void *) ice->ctx.screen;
4504 const struct gen_device_info *devinfo = &screen->devinfo;
4505
4506 switch (cache_id) {
4507 case IRIS_CACHE_VS:
4508 iris_store_vs_state(ice, devinfo, shader);
4509 break;
4510 case IRIS_CACHE_TCS:
4511 iris_store_tcs_state(ice, devinfo, shader);
4512 break;
4513 case IRIS_CACHE_TES:
4514 iris_store_tes_state(ice, devinfo, shader);
4515 break;
4516 case IRIS_CACHE_GS:
4517 iris_store_gs_state(ice, devinfo, shader);
4518 break;
4519 case IRIS_CACHE_FS:
4520 iris_store_fs_state(ice, devinfo, shader);
4521 break;
4522 case IRIS_CACHE_CS:
4523 iris_store_cs_state(ice, devinfo, shader);
4524 case IRIS_CACHE_BLORP:
4525 break;
4526 default:
4527 break;
4528 }
4529 }
4530
4531 /* ------------------------------------------------------------------- */
4532
4533 static const uint32_t push_constant_opcodes[] = {
4534 [MESA_SHADER_VERTEX] = 21,
4535 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
4536 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
4537 [MESA_SHADER_GEOMETRY] = 22,
4538 [MESA_SHADER_FRAGMENT] = 23,
4539 [MESA_SHADER_COMPUTE] = 0,
4540 };
4541
4542 static uint32_t
4543 use_null_surface(struct iris_batch *batch, struct iris_context *ice)
4544 {
4545 struct iris_bo *state_bo = iris_resource_bo(ice->state.unbound_tex.res);
4546
4547 iris_use_pinned_bo(batch, state_bo, false, IRIS_DOMAIN_NONE);
4548
4549 return ice->state.unbound_tex.offset;
4550 }
4551
4552 static uint32_t
4553 use_null_fb_surface(struct iris_batch *batch, struct iris_context *ice)
4554 {
4555 /* If set_framebuffer_state() was never called, fall back to 1x1x1 */
4556 if (!ice->state.null_fb.res)
4557 return use_null_surface(batch, ice);
4558
4559 struct iris_bo *state_bo = iris_resource_bo(ice->state.null_fb.res);
4560
4561 iris_use_pinned_bo(batch, state_bo, false, IRIS_DOMAIN_NONE);
4562
4563 return ice->state.null_fb.offset;
4564 }
4565
4566 static uint32_t
4567 surf_state_offset_for_aux(struct iris_resource *res,
4568 unsigned aux_modes,
4569 enum isl_aux_usage aux_usage)
4570 {
4571 assert(aux_modes & (1 << aux_usage));
4572 return SURFACE_STATE_ALIGNMENT *
4573 util_bitcount(aux_modes & ((1 << aux_usage) - 1));
4574 }
4575
4576 #if GEN_GEN == 9
4577 static void
4578 surf_state_update_clear_value(struct iris_batch *batch,
4579 struct iris_resource *res,
4580 struct iris_state_ref *state,
4581 unsigned aux_modes,
4582 enum isl_aux_usage aux_usage)
4583 {
4584 struct isl_device *isl_dev = &batch->screen->isl_dev;
4585 struct iris_bo *state_bo = iris_resource_bo(state->res);
4586 uint64_t real_offset = state->offset + IRIS_MEMZONE_BINDER_START;
4587 uint32_t offset_into_bo = real_offset - state_bo->gtt_offset;
4588 uint32_t clear_offset = offset_into_bo +
4589 isl_dev->ss.clear_value_offset +
4590 surf_state_offset_for_aux(res, aux_modes, aux_usage);
4591 uint32_t *color = res->aux.clear_color.u32;
4592
4593 assert(isl_dev->ss.clear_value_size == 16);
4594
4595 if (aux_usage == ISL_AUX_USAGE_HIZ) {
4596 iris_emit_pipe_control_write(batch, "update fast clear value (Z)",
4597 PIPE_CONTROL_WRITE_IMMEDIATE,
4598 state_bo, clear_offset, color[0]);
4599 } else {
4600 iris_emit_pipe_control_write(batch, "update fast clear color (RG__)",
4601 PIPE_CONTROL_WRITE_IMMEDIATE,
4602 state_bo, clear_offset,
4603 (uint64_t) color[0] |
4604 (uint64_t) color[1] << 32);
4605 iris_emit_pipe_control_write(batch, "update fast clear color (__BA)",
4606 PIPE_CONTROL_WRITE_IMMEDIATE,
4607 state_bo, clear_offset + 8,
4608 (uint64_t) color[2] |
4609 (uint64_t) color[3] << 32);
4610 }
4611
4612 iris_emit_pipe_control_flush(batch,
4613 "update fast clear: state cache invalidate",
4614 PIPE_CONTROL_FLUSH_ENABLE |
4615 PIPE_CONTROL_STATE_CACHE_INVALIDATE);
4616 }
4617 #endif
4618
4619 static void
4620 update_clear_value(struct iris_context *ice,
4621 struct iris_batch *batch,
4622 struct iris_resource *res,
4623 struct iris_surface_state *surf_state,
4624 unsigned all_aux_modes,
4625 struct isl_view *view)
4626 {
4627 UNUSED struct isl_device *isl_dev = &batch->screen->isl_dev;
4628 UNUSED unsigned aux_modes = all_aux_modes;
4629
4630 /* We only need to update the clear color in the surface state for gen8 and
4631 * gen9. Newer gens can read it directly from the clear color state buffer.
4632 */
4633 #if GEN_GEN == 9
4634 /* Skip updating the ISL_AUX_USAGE_NONE surface state */
4635 aux_modes &= ~(1 << ISL_AUX_USAGE_NONE);
4636
4637 while (aux_modes) {
4638 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
4639
4640 surf_state_update_clear_value(batch, res, &surf_state->ref,
4641 all_aux_modes, aux_usage);
4642 }
4643 #elif GEN_GEN == 8
4644 /* TODO: Could update rather than re-filling */
4645 alloc_surface_states(surf_state, all_aux_modes);
4646
4647 void *map = surf_state->cpu;
4648
4649 while (aux_modes) {
4650 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
4651 fill_surface_state(isl_dev, map, res, &res->surf, view, aux_usage,
4652 0, 0, 0);
4653 map += SURFACE_STATE_ALIGNMENT;
4654 }
4655
4656 upload_surface_states(ice->state.surface_uploader, surf_state);
4657 #endif
4658 }
4659
4660 /**
4661 * Add a surface to the validation list, as well as the buffer containing
4662 * the corresponding SURFACE_STATE.
4663 *
4664 * Returns the binding table entry (offset to SURFACE_STATE).
4665 */
4666 static uint32_t
4667 use_surface(struct iris_context *ice,
4668 struct iris_batch *batch,
4669 struct pipe_surface *p_surf,
4670 bool writeable,
4671 enum isl_aux_usage aux_usage,
4672 bool is_read_surface,
4673 enum iris_domain access)
4674 {
4675 struct iris_surface *surf = (void *) p_surf;
4676 struct iris_resource *res = (void *) p_surf->texture;
4677 uint32_t offset = 0;
4678
4679 iris_use_pinned_bo(batch, iris_resource_bo(p_surf->texture),
4680 writeable, access);
4681 if (GEN_GEN == 8 && is_read_surface) {
4682 iris_use_pinned_bo(batch, iris_resource_bo(surf->surface_state_read.ref.res), false,
4683 IRIS_DOMAIN_NONE);
4684 } else {
4685 iris_use_pinned_bo(batch, iris_resource_bo(surf->surface_state.ref.res), false,
4686 IRIS_DOMAIN_NONE);
4687 }
4688
4689 if (res->aux.bo) {
4690 iris_use_pinned_bo(batch, res->aux.bo, writeable, access);
4691 if (res->aux.clear_color_bo)
4692 iris_use_pinned_bo(batch, res->aux.clear_color_bo, false, access);
4693
4694 if (memcmp(&res->aux.clear_color, &surf->clear_color,
4695 sizeof(surf->clear_color)) != 0) {
4696 update_clear_value(ice, batch, res, &surf->surface_state,
4697 res->aux.possible_usages, &surf->view);
4698 if (GEN_GEN == 8) {
4699 update_clear_value(ice, batch, res, &surf->surface_state_read,
4700 res->aux.possible_usages, &surf->read_view);
4701 }
4702 surf->clear_color = res->aux.clear_color;
4703 }
4704 }
4705
4706 offset = (GEN_GEN == 8 && is_read_surface)
4707 ? surf->surface_state_read.ref.offset
4708 : surf->surface_state.ref.offset;
4709
4710 return offset +
4711 surf_state_offset_for_aux(res, res->aux.possible_usages, aux_usage);
4712 }
4713
4714 static uint32_t
4715 use_sampler_view(struct iris_context *ice,
4716 struct iris_batch *batch,
4717 struct iris_sampler_view *isv)
4718 {
4719 enum isl_aux_usage aux_usage =
4720 iris_resource_texture_aux_usage(ice, isv->res, isv->view.format);
4721
4722 iris_use_pinned_bo(batch, isv->res->bo, false, IRIS_DOMAIN_OTHER_READ);
4723 iris_use_pinned_bo(batch, iris_resource_bo(isv->surface_state.ref.res), false,
4724 IRIS_DOMAIN_NONE);
4725
4726 if (isv->res->aux.bo) {
4727 iris_use_pinned_bo(batch, isv->res->aux.bo,
4728 false, IRIS_DOMAIN_OTHER_READ);
4729 if (isv->res->aux.clear_color_bo)
4730 iris_use_pinned_bo(batch, isv->res->aux.clear_color_bo,
4731 false, IRIS_DOMAIN_OTHER_READ);
4732 if (memcmp(&isv->res->aux.clear_color, &isv->clear_color,
4733 sizeof(isv->clear_color)) != 0) {
4734 update_clear_value(ice, batch, isv->res, &isv->surface_state,
4735 isv->res->aux.sampler_usages, &isv->view);
4736 isv->clear_color = isv->res->aux.clear_color;
4737 }
4738 }
4739
4740 return isv->surface_state.ref.offset +
4741 surf_state_offset_for_aux(isv->res, isv->res->aux.sampler_usages,
4742 aux_usage);
4743 }
4744
4745 static uint32_t
4746 use_ubo_ssbo(struct iris_batch *batch,
4747 struct iris_context *ice,
4748 struct pipe_shader_buffer *buf,
4749 struct iris_state_ref *surf_state,
4750 bool writable, enum iris_domain access)
4751 {
4752 if (!buf->buffer || !surf_state->res)
4753 return use_null_surface(batch, ice);
4754
4755 iris_use_pinned_bo(batch, iris_resource_bo(buf->buffer), writable, access);
4756 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false,
4757 IRIS_DOMAIN_NONE);
4758
4759 return surf_state->offset;
4760 }
4761
4762 static uint32_t
4763 use_image(struct iris_batch *batch, struct iris_context *ice,
4764 struct iris_shader_state *shs, const struct shader_info *info,
4765 int i)
4766 {
4767 struct iris_image_view *iv = &shs->image[i];
4768 struct iris_resource *res = (void *) iv->base.resource;
4769
4770 if (!res)
4771 return use_null_surface(batch, ice);
4772
4773 bool write = iv->base.shader_access & PIPE_IMAGE_ACCESS_WRITE;
4774
4775 iris_use_pinned_bo(batch, res->bo, write, IRIS_DOMAIN_NONE);
4776 iris_use_pinned_bo(batch, iris_resource_bo(iv->surface_state.ref.res),
4777 false, IRIS_DOMAIN_NONE);
4778
4779 if (res->aux.bo)
4780 iris_use_pinned_bo(batch, res->aux.bo, write, IRIS_DOMAIN_NONE);
4781
4782 enum isl_aux_usage aux_usage =
4783 iris_image_view_aux_usage(ice, &iv->base, info);
4784
4785 return iv->surface_state.ref.offset +
4786 surf_state_offset_for_aux(res, res->aux.possible_usages, aux_usage);
4787 }
4788
4789 #define push_bt_entry(addr) \
4790 assert(addr >= binder_addr); \
4791 assert(s < shader->bt.size_bytes / sizeof(uint32_t)); \
4792 if (!pin_only) bt_map[s++] = (addr) - binder_addr;
4793
4794 #define bt_assert(section) \
4795 if (!pin_only && shader->bt.used_mask[section] != 0) \
4796 assert(shader->bt.offsets[section] == s);
4797
4798 /**
4799 * Populate the binding table for a given shader stage.
4800 *
4801 * This fills out the table of pointers to surfaces required by the shader,
4802 * and also adds those buffers to the validation list so the kernel can make
4803 * resident before running our batch.
4804 */
4805 static void
4806 iris_populate_binding_table(struct iris_context *ice,
4807 struct iris_batch *batch,
4808 gl_shader_stage stage,
4809 bool pin_only)
4810 {
4811 const struct iris_binder *binder = &ice->state.binder;
4812 struct iris_uncompiled_shader *ish = ice->shaders.uncompiled[stage];
4813 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4814 if (!shader)
4815 return;
4816
4817 struct iris_binding_table *bt = &shader->bt;
4818 UNUSED struct brw_stage_prog_data *prog_data = shader->prog_data;
4819 struct iris_shader_state *shs = &ice->state.shaders[stage];
4820 uint32_t binder_addr = binder->bo->gtt_offset;
4821
4822 uint32_t *bt_map = binder->map + binder->bt_offset[stage];
4823 int s = 0;
4824
4825 const struct shader_info *info = iris_get_shader_info(ice, stage);
4826 if (!info) {
4827 /* TCS passthrough doesn't need a binding table. */
4828 assert(stage == MESA_SHADER_TESS_CTRL);
4829 return;
4830 }
4831
4832 if (stage == MESA_SHADER_COMPUTE &&
4833 shader->bt.used_mask[IRIS_SURFACE_GROUP_CS_WORK_GROUPS]) {
4834 /* surface for gl_NumWorkGroups */
4835 struct iris_state_ref *grid_data = &ice->state.grid_size;
4836 struct iris_state_ref *grid_state = &ice->state.grid_surf_state;
4837 iris_use_pinned_bo(batch, iris_resource_bo(grid_data->res), false,
4838 IRIS_DOMAIN_OTHER_READ);
4839 iris_use_pinned_bo(batch, iris_resource_bo(grid_state->res), false,
4840 IRIS_DOMAIN_NONE);
4841 push_bt_entry(grid_state->offset);
4842 }
4843
4844 if (stage == MESA_SHADER_FRAGMENT) {
4845 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4846 /* Note that cso_fb->nr_cbufs == fs_key->nr_color_regions. */
4847 if (cso_fb->nr_cbufs) {
4848 for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
4849 uint32_t addr;
4850 if (cso_fb->cbufs[i]) {
4851 addr = use_surface(ice, batch, cso_fb->cbufs[i], true,
4852 ice->state.draw_aux_usage[i], false,
4853 IRIS_DOMAIN_RENDER_WRITE);
4854 } else {
4855 addr = use_null_fb_surface(batch, ice);
4856 }
4857 push_bt_entry(addr);
4858 }
4859 } else if (GEN_GEN < 11) {
4860 uint32_t addr = use_null_fb_surface(batch, ice);
4861 push_bt_entry(addr);
4862 }
4863 }
4864
4865 #define foreach_surface_used(index, group) \
4866 bt_assert(group); \
4867 for (int index = 0; index < bt->sizes[group]; index++) \
4868 if (iris_group_index_to_bti(bt, group, index) != \
4869 IRIS_SURFACE_NOT_USED)
4870
4871 foreach_surface_used(i, IRIS_SURFACE_GROUP_RENDER_TARGET_READ) {
4872 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4873 uint32_t addr;
4874 if (cso_fb->cbufs[i]) {
4875 addr = use_surface(ice, batch, cso_fb->cbufs[i],
4876 false, ice->state.draw_aux_usage[i], true,
4877 IRIS_DOMAIN_OTHER_READ);
4878 push_bt_entry(addr);
4879 }
4880 }
4881
4882 foreach_surface_used(i, IRIS_SURFACE_GROUP_TEXTURE) {
4883 struct iris_sampler_view *view = shs->textures[i];
4884 uint32_t addr = view ? use_sampler_view(ice, batch, view)
4885 : use_null_surface(batch, ice);
4886 push_bt_entry(addr);
4887 }
4888
4889 foreach_surface_used(i, IRIS_SURFACE_GROUP_IMAGE) {
4890 uint32_t addr = use_image(batch, ice, shs, info, i);
4891 push_bt_entry(addr);
4892 }
4893
4894 foreach_surface_used(i, IRIS_SURFACE_GROUP_UBO) {
4895 uint32_t addr;
4896
4897 if (i == bt->sizes[IRIS_SURFACE_GROUP_UBO] - 1) {
4898 if (ish->const_data) {
4899 iris_use_pinned_bo(batch, iris_resource_bo(ish->const_data), false,
4900 IRIS_DOMAIN_OTHER_READ);
4901 iris_use_pinned_bo(batch, iris_resource_bo(ish->const_data_state.res),
4902 false, IRIS_DOMAIN_NONE);
4903 addr = ish->const_data_state.offset;
4904 } else {
4905 /* This can only happen with INTEL_DISABLE_COMPACT_BINDING_TABLE=1. */
4906 addr = use_null_surface(batch, ice);
4907 }
4908 } else {
4909 addr = use_ubo_ssbo(batch, ice, &shs->constbuf[i],
4910 &shs->constbuf_surf_state[i], false,
4911 IRIS_DOMAIN_OTHER_READ);
4912 }
4913
4914 push_bt_entry(addr);
4915 }
4916
4917 foreach_surface_used(i, IRIS_SURFACE_GROUP_SSBO) {
4918 uint32_t addr =
4919 use_ubo_ssbo(batch, ice, &shs->ssbo[i], &shs->ssbo_surf_state[i],
4920 shs->writable_ssbos & (1u << i), IRIS_DOMAIN_NONE);
4921 push_bt_entry(addr);
4922 }
4923
4924 #if 0
4925 /* XXX: YUV surfaces not implemented yet */
4926 bt_assert(plane_start[1], ...);
4927 bt_assert(plane_start[2], ...);
4928 #endif
4929 }
4930
4931 static void
4932 iris_use_optional_res(struct iris_batch *batch,
4933 struct pipe_resource *res,
4934 bool writeable,
4935 enum iris_domain access)
4936 {
4937 if (res) {
4938 struct iris_bo *bo = iris_resource_bo(res);
4939 iris_use_pinned_bo(batch, bo, writeable, access);
4940 }
4941 }
4942
4943 static void
4944 pin_depth_and_stencil_buffers(struct iris_batch *batch,
4945 struct pipe_surface *zsbuf,
4946 struct iris_depth_stencil_alpha_state *cso_zsa)
4947 {
4948 if (!zsbuf)
4949 return;
4950
4951 struct iris_resource *zres, *sres;
4952 iris_get_depth_stencil_resources(zsbuf->texture, &zres, &sres);
4953
4954 if (zres) {
4955 const enum iris_domain access = cso_zsa->depth_writes_enabled ?
4956 IRIS_DOMAIN_DEPTH_WRITE : IRIS_DOMAIN_OTHER_READ;
4957 iris_use_pinned_bo(batch, zres->bo, cso_zsa->depth_writes_enabled,
4958 access);
4959 if (zres->aux.bo) {
4960 iris_use_pinned_bo(batch, zres->aux.bo,
4961 cso_zsa->depth_writes_enabled, access);
4962 }
4963 }
4964
4965 if (sres) {
4966 const enum iris_domain access = cso_zsa->stencil_writes_enabled ?
4967 IRIS_DOMAIN_DEPTH_WRITE : IRIS_DOMAIN_OTHER_READ;
4968 iris_use_pinned_bo(batch, sres->bo, cso_zsa->stencil_writes_enabled,
4969 access);
4970 }
4971 }
4972
4973 /* ------------------------------------------------------------------- */
4974
4975 /**
4976 * Pin any BOs which were installed by a previous batch, and restored
4977 * via the hardware logical context mechanism.
4978 *
4979 * We don't need to re-emit all state every batch - the hardware context
4980 * mechanism will save and restore it for us. This includes pointers to
4981 * various BOs...which won't exist unless we ask the kernel to pin them
4982 * by adding them to the validation list.
4983 *
4984 * We can skip buffers if we've re-emitted those packets, as we're
4985 * overwriting those stale pointers with new ones, and don't actually
4986 * refer to the old BOs.
4987 */
4988 static void
4989 iris_restore_render_saved_bos(struct iris_context *ice,
4990 struct iris_batch *batch,
4991 const struct pipe_draw_info *draw)
4992 {
4993 struct iris_genx_state *genx = ice->state.genx;
4994
4995 const uint64_t clean = ~ice->state.dirty;
4996 const uint64_t stage_clean = ~ice->state.stage_dirty;
4997
4998 if (clean & IRIS_DIRTY_CC_VIEWPORT) {
4999 iris_use_optional_res(batch, ice->state.last_res.cc_vp, false,
5000 IRIS_DOMAIN_NONE);
5001 }
5002
5003 if (clean & IRIS_DIRTY_SF_CL_VIEWPORT) {
5004 iris_use_optional_res(batch, ice->state.last_res.sf_cl_vp, false,
5005 IRIS_DOMAIN_NONE);
5006 }
5007
5008 if (clean & IRIS_DIRTY_BLEND_STATE) {
5009 iris_use_optional_res(batch, ice->state.last_res.blend, false,
5010 IRIS_DOMAIN_NONE);
5011 }
5012
5013 if (clean & IRIS_DIRTY_COLOR_CALC_STATE) {
5014 iris_use_optional_res(batch, ice->state.last_res.color_calc, false,
5015 IRIS_DOMAIN_NONE);
5016 }
5017
5018 if (clean & IRIS_DIRTY_SCISSOR_RECT) {
5019 iris_use_optional_res(batch, ice->state.last_res.scissor, false,
5020 IRIS_DOMAIN_NONE);
5021 }
5022
5023 if (ice->state.streamout_active && (clean & IRIS_DIRTY_SO_BUFFERS)) {
5024 for (int i = 0; i < 4; i++) {
5025 struct iris_stream_output_target *tgt =
5026 (void *) ice->state.so_target[i];
5027 if (tgt) {
5028 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
5029 true, IRIS_DOMAIN_OTHER_WRITE);
5030 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
5031 true, IRIS_DOMAIN_OTHER_WRITE);
5032 }
5033 }
5034 }
5035
5036 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
5037 if (!(stage_clean & (IRIS_STAGE_DIRTY_CONSTANTS_VS << stage)))
5038 continue;
5039
5040 struct iris_shader_state *shs = &ice->state.shaders[stage];
5041 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
5042
5043 if (!shader)
5044 continue;
5045
5046 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
5047
5048 for (int i = 0; i < 4; i++) {
5049 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
5050
5051 if (range->length == 0)
5052 continue;
5053
5054 /* Range block is a binding table index, map back to UBO index. */
5055 unsigned block_index = iris_bti_to_group_index(
5056 &shader->bt, IRIS_SURFACE_GROUP_UBO, range->block);
5057 assert(block_index != IRIS_SURFACE_NOT_USED);
5058
5059 struct pipe_shader_buffer *cbuf = &shs->constbuf[block_index];
5060 struct iris_resource *res = (void *) cbuf->buffer;
5061
5062 if (res)
5063 iris_use_pinned_bo(batch, res->bo, false, IRIS_DOMAIN_OTHER_READ);
5064 else
5065 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false,
5066 IRIS_DOMAIN_OTHER_READ);
5067 }
5068 }
5069
5070 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
5071 if (stage_clean & (IRIS_STAGE_DIRTY_BINDINGS_VS << stage)) {
5072 /* Re-pin any buffers referred to by the binding table. */
5073 iris_populate_binding_table(ice, batch, stage, true);
5074 }
5075 }
5076
5077 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
5078 struct iris_shader_state *shs = &ice->state.shaders[stage];
5079 struct pipe_resource *res = shs->sampler_table.res;
5080 if (res)
5081 iris_use_pinned_bo(batch, iris_resource_bo(res), false,
5082 IRIS_DOMAIN_NONE);
5083 }
5084
5085 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
5086 if (stage_clean & (IRIS_STAGE_DIRTY_VS << stage)) {
5087 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
5088
5089 if (shader) {
5090 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
5091 iris_use_pinned_bo(batch, bo, false, IRIS_DOMAIN_NONE);
5092
5093 struct brw_stage_prog_data *prog_data = shader->prog_data;
5094
5095 if (prog_data->total_scratch > 0) {
5096 struct iris_bo *bo =
5097 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
5098 iris_use_pinned_bo(batch, bo, true, IRIS_DOMAIN_NONE);
5099 }
5100 }
5101 }
5102 }
5103
5104 if ((clean & IRIS_DIRTY_DEPTH_BUFFER) &&
5105 (clean & IRIS_DIRTY_WM_DEPTH_STENCIL)) {
5106 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5107 pin_depth_and_stencil_buffers(batch, cso_fb->zsbuf, ice->state.cso_zsa);
5108 }
5109
5110 iris_use_optional_res(batch, ice->state.last_res.index_buffer, false,
5111 IRIS_DOMAIN_OTHER_READ);
5112
5113 if (clean & IRIS_DIRTY_VERTEX_BUFFERS) {
5114 uint64_t bound = ice->state.bound_vertex_buffers;
5115 while (bound) {
5116 const int i = u_bit_scan64(&bound);
5117 struct pipe_resource *res = genx->vertex_buffers[i].resource;
5118 iris_use_pinned_bo(batch, iris_resource_bo(res), false,
5119 IRIS_DOMAIN_OTHER_READ);
5120 }
5121 }
5122 }
5123
5124 static void
5125 iris_restore_compute_saved_bos(struct iris_context *ice,
5126 struct iris_batch *batch,
5127 const struct pipe_grid_info *grid)
5128 {
5129 const uint64_t stage_clean = ~ice->state.stage_dirty;
5130
5131 const int stage = MESA_SHADER_COMPUTE;
5132 struct iris_shader_state *shs = &ice->state.shaders[stage];
5133
5134 if (stage_clean & IRIS_STAGE_DIRTY_BINDINGS_CS) {
5135 /* Re-pin any buffers referred to by the binding table. */
5136 iris_populate_binding_table(ice, batch, stage, true);
5137 }
5138
5139 struct pipe_resource *sampler_res = shs->sampler_table.res;
5140 if (sampler_res)
5141 iris_use_pinned_bo(batch, iris_resource_bo(sampler_res), false,
5142 IRIS_DOMAIN_NONE);
5143
5144 if ((stage_clean & IRIS_STAGE_DIRTY_SAMPLER_STATES_CS) &&
5145 (stage_clean & IRIS_STAGE_DIRTY_BINDINGS_CS) &&
5146 (stage_clean & IRIS_STAGE_DIRTY_CONSTANTS_CS) &&
5147 (stage_clean & IRIS_STAGE_DIRTY_CS)) {
5148 iris_use_optional_res(batch, ice->state.last_res.cs_desc, false,
5149 IRIS_DOMAIN_NONE);
5150 }
5151
5152 if (stage_clean & IRIS_STAGE_DIRTY_CS) {
5153 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
5154
5155 if (shader) {
5156 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
5157 iris_use_pinned_bo(batch, bo, false, IRIS_DOMAIN_NONE);
5158
5159 struct iris_bo *curbe_bo =
5160 iris_resource_bo(ice->state.last_res.cs_thread_ids);
5161 iris_use_pinned_bo(batch, curbe_bo, false, IRIS_DOMAIN_NONE);
5162
5163 struct brw_stage_prog_data *prog_data = shader->prog_data;
5164
5165 if (prog_data->total_scratch > 0) {
5166 struct iris_bo *bo =
5167 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
5168 iris_use_pinned_bo(batch, bo, true, IRIS_DOMAIN_NONE);
5169 }
5170 }
5171 }
5172 }
5173
5174 /**
5175 * Possibly emit STATE_BASE_ADDRESS to update Surface State Base Address.
5176 */
5177 static void
5178 iris_update_surface_base_address(struct iris_batch *batch,
5179 struct iris_binder *binder)
5180 {
5181 if (batch->last_surface_base_address == binder->bo->gtt_offset)
5182 return;
5183
5184 uint32_t mocs = batch->screen->isl_dev.mocs.internal;
5185
5186 iris_batch_sync_region_start(batch);
5187
5188 flush_before_state_base_change(batch);
5189
5190 #if GEN_GEN == 12
5191 /* GEN:BUG:1607854226:
5192 *
5193 * Workaround the non pipelined state not applying in MEDIA/GPGPU pipeline
5194 * mode by putting the pipeline temporarily in 3D mode..
5195 */
5196 if (batch->name == IRIS_BATCH_COMPUTE)
5197 emit_pipeline_select(batch, _3D);
5198 #endif
5199
5200 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
5201 sba.SurfaceStateBaseAddressModifyEnable = true;
5202 sba.SurfaceStateBaseAddress = ro_bo(binder->bo, 0);
5203
5204 /* The hardware appears to pay attention to the MOCS fields even
5205 * if you don't set the "Address Modify Enable" bit for the base.
5206 */
5207 sba.GeneralStateMOCS = mocs;
5208 sba.StatelessDataPortAccessMOCS = mocs;
5209 sba.DynamicStateMOCS = mocs;
5210 sba.IndirectObjectMOCS = mocs;
5211 sba.InstructionMOCS = mocs;
5212 sba.SurfaceStateMOCS = mocs;
5213 #if GEN_GEN >= 9
5214 sba.BindlessSurfaceStateMOCS = mocs;
5215 #endif
5216 }
5217
5218 #if GEN_GEN == 12
5219 /* GEN:BUG:1607854226:
5220 *
5221 * Put the pipeline back into compute mode.
5222 */
5223 if (batch->name == IRIS_BATCH_COMPUTE)
5224 emit_pipeline_select(batch, GPGPU);
5225 #endif
5226
5227 flush_after_state_base_change(batch);
5228 iris_batch_sync_region_end(batch);
5229
5230 batch->last_surface_base_address = binder->bo->gtt_offset;
5231 }
5232
5233 static inline void
5234 iris_viewport_zmin_zmax(const struct pipe_viewport_state *vp, bool halfz,
5235 bool window_space_position, float *zmin, float *zmax)
5236 {
5237 if (window_space_position) {
5238 *zmin = 0.f;
5239 *zmax = 1.f;
5240 return;
5241 }
5242 util_viewport_zmin_zmax(vp, halfz, zmin, zmax);
5243 }
5244
5245 #if GEN_GEN >= 12
5246 void
5247 genX(invalidate_aux_map_state)(struct iris_batch *batch)
5248 {
5249 struct iris_screen *screen = batch->screen;
5250 void *aux_map_ctx = iris_bufmgr_get_aux_map_context(screen->bufmgr);
5251 if (!aux_map_ctx)
5252 return;
5253 uint32_t aux_map_state_num = gen_aux_map_get_state_num(aux_map_ctx);
5254 if (batch->last_aux_map_state != aux_map_state_num) {
5255 /* HSD 1209978178: docs say that before programming the aux table:
5256 *
5257 * "Driver must ensure that the engine is IDLE but ensure it doesn't
5258 * add extra flushes in the case it knows that the engine is already
5259 * IDLE."
5260 *
5261 * An end of pipe sync is needed here, otherwise we see GPU hangs in
5262 * dEQP-GLES31.functional.copy_image.* tests.
5263 */
5264 iris_emit_end_of_pipe_sync(batch, "Invalidate aux map table",
5265 PIPE_CONTROL_CS_STALL);
5266
5267 /* If the aux-map state number increased, then we need to rewrite the
5268 * register. Rewriting the register is used to both set the aux-map
5269 * translation table address, and also to invalidate any previously
5270 * cached translations.
5271 */
5272 iris_load_register_imm32(batch, GENX(GFX_CCS_AUX_INV_num), 1);
5273 batch->last_aux_map_state = aux_map_state_num;
5274 }
5275 }
5276
5277 static void
5278 init_aux_map_state(struct iris_batch *batch)
5279 {
5280 struct iris_screen *screen = batch->screen;
5281 void *aux_map_ctx = iris_bufmgr_get_aux_map_context(screen->bufmgr);
5282 if (!aux_map_ctx)
5283 return;
5284
5285 uint64_t base_addr = gen_aux_map_get_base(aux_map_ctx);
5286 assert(base_addr != 0 && align64(base_addr, 32 * 1024) == base_addr);
5287 iris_load_register_imm64(batch, GENX(GFX_AUX_TABLE_BASE_ADDR_num),
5288 base_addr);
5289 }
5290 #endif
5291
5292 struct push_bos {
5293 struct {
5294 struct iris_address addr;
5295 uint32_t length;
5296 } buffers[4];
5297 int buffer_count;
5298 uint32_t max_length;
5299 };
5300
5301 static void
5302 setup_constant_buffers(struct iris_context *ice,
5303 struct iris_batch *batch,
5304 int stage,
5305 struct push_bos *push_bos)
5306 {
5307 struct iris_shader_state *shs = &ice->state.shaders[stage];
5308 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
5309 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
5310
5311 uint32_t push_range_sum = 0;
5312
5313 int n = 0;
5314 for (int i = 0; i < 4; i++) {
5315 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
5316
5317 if (range->length == 0)
5318 continue;
5319
5320 push_range_sum += range->length;
5321
5322 if (range->length > push_bos->max_length)
5323 push_bos->max_length = range->length;
5324
5325 /* Range block is a binding table index, map back to UBO index. */
5326 unsigned block_index = iris_bti_to_group_index(
5327 &shader->bt, IRIS_SURFACE_GROUP_UBO, range->block);
5328 assert(block_index != IRIS_SURFACE_NOT_USED);
5329
5330 struct pipe_shader_buffer *cbuf = &shs->constbuf[block_index];
5331 struct iris_resource *res = (void *) cbuf->buffer;
5332
5333 assert(cbuf->buffer_offset % 32 == 0);
5334
5335 push_bos->buffers[n].length = range->length;
5336 push_bos->buffers[n].addr =
5337 res ? ro_bo(res->bo, range->start * 32 + cbuf->buffer_offset)
5338 : batch->screen->workaround_address;
5339 n++;
5340 }
5341
5342 /* From the 3DSTATE_CONSTANT_XS and 3DSTATE_CONSTANT_ALL programming notes:
5343 *
5344 * "The sum of all four read length fields must be less than or
5345 * equal to the size of 64."
5346 */
5347 assert(push_range_sum <= 64);
5348
5349 push_bos->buffer_count = n;
5350 }
5351
5352 static void
5353 emit_push_constant_packets(struct iris_context *ice,
5354 struct iris_batch *batch,
5355 int stage,
5356 const struct push_bos *push_bos)
5357 {
5358 UNUSED struct isl_device *isl_dev = &batch->screen->isl_dev;
5359 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
5360 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
5361
5362 iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_VS), pkt) {
5363 pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
5364 #if GEN_GEN >= 12
5365 pkt.MOCS = isl_dev->mocs.internal;
5366 #endif
5367 if (prog_data) {
5368 /* The Skylake PRM contains the following restriction:
5369 *
5370 * "The driver must ensure The following case does not occur
5371 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
5372 * buffer 3 read length equal to zero committed followed by a
5373 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
5374 * zero committed."
5375 *
5376 * To avoid this, we program the buffers in the highest slots.
5377 * This way, slot 0 is only used if slot 3 is also used.
5378 */
5379 int n = push_bos->buffer_count;
5380 assert(n <= 4);
5381 const unsigned shift = 4 - n;
5382 for (int i = 0; i < n; i++) {
5383 pkt.ConstantBody.ReadLength[i + shift] =
5384 push_bos->buffers[i].length;
5385 pkt.ConstantBody.Buffer[i + shift] = push_bos->buffers[i].addr;
5386 }
5387 }
5388 }
5389 }
5390
5391 #if GEN_GEN >= 12
5392 static void
5393 emit_push_constant_packet_all(struct iris_context *ice,
5394 struct iris_batch *batch,
5395 uint32_t shader_mask,
5396 const struct push_bos *push_bos)
5397 {
5398 struct isl_device *isl_dev = &batch->screen->isl_dev;
5399
5400 if (!push_bos) {
5401 iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_ALL), pc) {
5402 pc.ShaderUpdateEnable = shader_mask;
5403 }
5404 return;
5405 }
5406
5407 const uint32_t n = push_bos->buffer_count;
5408 const uint32_t max_pointers = 4;
5409 const uint32_t num_dwords = 2 + 2 * n;
5410 uint32_t const_all[2 + 2 * max_pointers];
5411 uint32_t *dw = &const_all[0];
5412
5413 assert(n <= max_pointers);
5414 iris_pack_command(GENX(3DSTATE_CONSTANT_ALL), dw, all) {
5415 all.DWordLength = num_dwords - 2;
5416 all.MOCS = isl_dev->mocs.internal;
5417 all.ShaderUpdateEnable = shader_mask;
5418 all.PointerBufferMask = (1 << n) - 1;
5419 }
5420 dw += 2;
5421
5422 for (int i = 0; i < n; i++) {
5423 _iris_pack_state(batch, GENX(3DSTATE_CONSTANT_ALL_DATA),
5424 dw + i * 2, data) {
5425 data.PointerToConstantBuffer = push_bos->buffers[i].addr;
5426 data.ConstantBufferReadLength = push_bos->buffers[i].length;
5427 }
5428 }
5429 iris_batch_emit(batch, const_all, sizeof(uint32_t) * num_dwords);
5430 }
5431 #endif
5432
5433 static void
5434 iris_upload_dirty_render_state(struct iris_context *ice,
5435 struct iris_batch *batch,
5436 const struct pipe_draw_info *draw)
5437 {
5438 const uint64_t dirty = ice->state.dirty;
5439 const uint64_t stage_dirty = ice->state.stage_dirty;
5440
5441 if (!(dirty & IRIS_ALL_DIRTY_FOR_RENDER) &&
5442 !(stage_dirty & IRIS_ALL_STAGE_DIRTY_FOR_RENDER))
5443 return;
5444
5445 struct iris_genx_state *genx = ice->state.genx;
5446 struct iris_binder *binder = &ice->state.binder;
5447 struct brw_wm_prog_data *wm_prog_data = (void *)
5448 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
5449
5450 if (dirty & IRIS_DIRTY_CC_VIEWPORT) {
5451 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
5452 uint32_t cc_vp_address;
5453
5454 /* XXX: could avoid streaming for depth_clip [0,1] case. */
5455 uint32_t *cc_vp_map =
5456 stream_state(batch, ice->state.dynamic_uploader,
5457 &ice->state.last_res.cc_vp,
5458 4 * ice->state.num_viewports *
5459 GENX(CC_VIEWPORT_length), 32, &cc_vp_address);
5460 for (int i = 0; i < ice->state.num_viewports; i++) {
5461 float zmin, zmax;
5462 iris_viewport_zmin_zmax(&ice->state.viewports[i], cso_rast->clip_halfz,
5463 ice->state.window_space_position,
5464 &zmin, &zmax);
5465 if (cso_rast->depth_clip_near)
5466 zmin = 0.0;
5467 if (cso_rast->depth_clip_far)
5468 zmax = 1.0;
5469
5470 iris_pack_state(GENX(CC_VIEWPORT), cc_vp_map, ccv) {
5471 ccv.MinimumDepth = zmin;
5472 ccv.MaximumDepth = zmax;
5473 }
5474
5475 cc_vp_map += GENX(CC_VIEWPORT_length);
5476 }
5477
5478 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
5479 ptr.CCViewportPointer = cc_vp_address;
5480 }
5481 }
5482
5483 if (dirty & IRIS_DIRTY_SF_CL_VIEWPORT) {
5484 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5485 uint32_t sf_cl_vp_address;
5486 uint32_t *vp_map =
5487 stream_state(batch, ice->state.dynamic_uploader,
5488 &ice->state.last_res.sf_cl_vp,
5489 4 * ice->state.num_viewports *
5490 GENX(SF_CLIP_VIEWPORT_length), 64, &sf_cl_vp_address);
5491
5492 for (unsigned i = 0; i < ice->state.num_viewports; i++) {
5493 const struct pipe_viewport_state *state = &ice->state.viewports[i];
5494 float gb_xmin, gb_xmax, gb_ymin, gb_ymax;
5495
5496 float vp_xmin = viewport_extent(state, 0, -1.0f);
5497 float vp_xmax = viewport_extent(state, 0, 1.0f);
5498 float vp_ymin = viewport_extent(state, 1, -1.0f);
5499 float vp_ymax = viewport_extent(state, 1, 1.0f);
5500
5501 gen_calculate_guardband_size(cso_fb->width, cso_fb->height,
5502 state->scale[0], state->scale[1],
5503 state->translate[0], state->translate[1],
5504 &gb_xmin, &gb_xmax, &gb_ymin, &gb_ymax);
5505
5506 iris_pack_state(GENX(SF_CLIP_VIEWPORT), vp_map, vp) {
5507 vp.ViewportMatrixElementm00 = state->scale[0];
5508 vp.ViewportMatrixElementm11 = state->scale[1];
5509 vp.ViewportMatrixElementm22 = state->scale[2];
5510 vp.ViewportMatrixElementm30 = state->translate[0];
5511 vp.ViewportMatrixElementm31 = state->translate[1];
5512 vp.ViewportMatrixElementm32 = state->translate[2];
5513 vp.XMinClipGuardband = gb_xmin;
5514 vp.XMaxClipGuardband = gb_xmax;
5515 vp.YMinClipGuardband = gb_ymin;
5516 vp.YMaxClipGuardband = gb_ymax;
5517 vp.XMinViewPort = MAX2(vp_xmin, 0);
5518 vp.XMaxViewPort = MIN2(vp_xmax, cso_fb->width) - 1;
5519 vp.YMinViewPort = MAX2(vp_ymin, 0);
5520 vp.YMaxViewPort = MIN2(vp_ymax, cso_fb->height) - 1;
5521 }
5522
5523 vp_map += GENX(SF_CLIP_VIEWPORT_length);
5524 }
5525
5526 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
5527 ptr.SFClipViewportPointer = sf_cl_vp_address;
5528 }
5529 }
5530
5531 if (dirty & IRIS_DIRTY_URB) {
5532 unsigned size[4];
5533
5534 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
5535 if (!ice->shaders.prog[i]) {
5536 size[i] = 1;
5537 } else {
5538 struct brw_vue_prog_data *vue_prog_data =
5539 (void *) ice->shaders.prog[i]->prog_data;
5540 size[i] = vue_prog_data->urb_entry_size;
5541 }
5542 assert(size[i] != 0);
5543 }
5544
5545 unsigned entries[4], start[4];
5546 gen_get_urb_config(&batch->screen->devinfo,
5547 batch->screen->l3_config_3d,
5548 ice->shaders.prog[MESA_SHADER_TESS_EVAL] != NULL,
5549 ice->shaders.prog[MESA_SHADER_GEOMETRY] != NULL,
5550 size, entries, start,
5551 &ice->state.urb_deref_block_size);
5552
5553 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
5554 iris_emit_cmd(batch, GENX(3DSTATE_URB_VS), urb) {
5555 urb._3DCommandSubOpcode += i;
5556 urb.VSURBStartingAddress = start[i];
5557 urb.VSURBEntryAllocationSize = size[i] - 1;
5558 urb.VSNumberofURBEntries = entries[i];
5559 }
5560 }
5561 }
5562
5563 if (dirty & IRIS_DIRTY_BLEND_STATE) {
5564 struct iris_blend_state *cso_blend = ice->state.cso_blend;
5565 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5566 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
5567 const int header_dwords = GENX(BLEND_STATE_length);
5568
5569 /* Always write at least one BLEND_STATE - the final RT message will
5570 * reference BLEND_STATE[0] even if there aren't color writes. There
5571 * may still be alpha testing, computed depth, and so on.
5572 */
5573 const int rt_dwords =
5574 MAX2(cso_fb->nr_cbufs, 1) * GENX(BLEND_STATE_ENTRY_length);
5575
5576 uint32_t blend_offset;
5577 uint32_t *blend_map =
5578 stream_state(batch, ice->state.dynamic_uploader,
5579 &ice->state.last_res.blend,
5580 4 * (header_dwords + rt_dwords), 64, &blend_offset);
5581
5582 uint32_t blend_state_header;
5583 iris_pack_state(GENX(BLEND_STATE), &blend_state_header, bs) {
5584 bs.AlphaTestEnable = cso_zsa->alpha.enabled;
5585 bs.AlphaTestFunction = translate_compare_func(cso_zsa->alpha.func);
5586 }
5587
5588 blend_map[0] = blend_state_header | cso_blend->blend_state[0];
5589 memcpy(&blend_map[1], &cso_blend->blend_state[1], 4 * rt_dwords);
5590
5591 iris_emit_cmd(batch, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
5592 ptr.BlendStatePointer = blend_offset;
5593 ptr.BlendStatePointerValid = true;
5594 }
5595 }
5596
5597 if (dirty & IRIS_DIRTY_COLOR_CALC_STATE) {
5598 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
5599 #if GEN_GEN == 8
5600 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
5601 #endif
5602 uint32_t cc_offset;
5603 void *cc_map =
5604 stream_state(batch, ice->state.dynamic_uploader,
5605 &ice->state.last_res.color_calc,
5606 sizeof(uint32_t) * GENX(COLOR_CALC_STATE_length),
5607 64, &cc_offset);
5608 iris_pack_state(GENX(COLOR_CALC_STATE), cc_map, cc) {
5609 cc.AlphaTestFormat = ALPHATEST_FLOAT32;
5610 cc.AlphaReferenceValueAsFLOAT32 = cso->alpha.ref_value;
5611 cc.BlendConstantColorRed = ice->state.blend_color.color[0];
5612 cc.BlendConstantColorGreen = ice->state.blend_color.color[1];
5613 cc.BlendConstantColorBlue = ice->state.blend_color.color[2];
5614 cc.BlendConstantColorAlpha = ice->state.blend_color.color[3];
5615 #if GEN_GEN == 8
5616 cc.StencilReferenceValue = p_stencil_refs->ref_value[0];
5617 cc.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
5618 #endif
5619 }
5620 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
5621 ptr.ColorCalcStatePointer = cc_offset;
5622 ptr.ColorCalcStatePointerValid = true;
5623 }
5624 }
5625
5626 /* GEN:BUG:1604061319
5627 *
5628 * 3DSTATE_CONSTANT_* needs to be programmed before BTP_*
5629 *
5630 * Testing shows that all the 3DSTATE_CONSTANT_XS need to be emitted if
5631 * any stage has a dirty binding table.
5632 */
5633 const bool emit_const_wa = GEN_GEN >= 11 &&
5634 ((dirty & IRIS_DIRTY_RENDER_BUFFER) ||
5635 (stage_dirty & IRIS_ALL_STAGE_DIRTY_BINDINGS));
5636
5637 #if GEN_GEN >= 12
5638 uint32_t nobuffer_stages = 0;
5639 #endif
5640
5641 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
5642 if (!(stage_dirty & (IRIS_STAGE_DIRTY_CONSTANTS_VS << stage)) &&
5643 !emit_const_wa)
5644 continue;
5645
5646 struct iris_shader_state *shs = &ice->state.shaders[stage];
5647 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
5648
5649 if (!shader)
5650 continue;
5651
5652 if (shs->sysvals_need_upload)
5653 upload_sysvals(ice, stage, NULL);
5654
5655 struct push_bos push_bos = {};
5656 setup_constant_buffers(ice, batch, stage, &push_bos);
5657
5658 #if GEN_GEN >= 12
5659 /* If this stage doesn't have any push constants, emit it later in a
5660 * single CONSTANT_ALL packet with all the other stages.
5661 */
5662 if (push_bos.buffer_count == 0) {
5663 nobuffer_stages |= 1 << stage;
5664 continue;
5665 }
5666
5667 /* The Constant Buffer Read Length field from 3DSTATE_CONSTANT_ALL
5668 * contains only 5 bits, so we can only use it for buffers smaller than
5669 * 32.
5670 */
5671 if (push_bos.max_length < 32) {
5672 emit_push_constant_packet_all(ice, batch, 1 << stage, &push_bos);
5673 continue;
5674 }
5675 #endif
5676 emit_push_constant_packets(ice, batch, stage, &push_bos);
5677 }
5678
5679 #if GEN_GEN >= 12
5680 if (nobuffer_stages)
5681 emit_push_constant_packet_all(ice, batch, nobuffer_stages, NULL);
5682 #endif
5683
5684 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
5685 /* Gen9 requires 3DSTATE_BINDING_TABLE_POINTERS_XS to be re-emitted
5686 * in order to commit constants. TODO: Investigate "Disable Gather
5687 * at Set Shader" to go back to legacy mode...
5688 */
5689 if (stage_dirty & ((IRIS_STAGE_DIRTY_BINDINGS_VS |
5690 (GEN_GEN == 9 ? IRIS_STAGE_DIRTY_CONSTANTS_VS : 0))
5691 << stage)) {
5692 iris_emit_cmd(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), ptr) {
5693 ptr._3DCommandSubOpcode = 38 + stage;
5694 ptr.PointertoVSBindingTable = binder->bt_offset[stage];
5695 }
5696 }
5697 }
5698
5699 if (GEN_GEN >= 11 && (dirty & IRIS_DIRTY_RENDER_BUFFER)) {
5700 // XXX: we may want to flag IRIS_DIRTY_MULTISAMPLE (or SAMPLE_MASK?)
5701 // XXX: see commit 979fc1bc9bcc64027ff2cfafd285676f31b930a6
5702
5703 /* The PIPE_CONTROL command description says:
5704 *
5705 * "Whenever a Binding Table Index (BTI) used by a Render Target
5706 * Message points to a different RENDER_SURFACE_STATE, SW must issue a
5707 * Render Target Cache Flush by enabling this bit. When render target
5708 * flush is set due to new association of BTI, PS Scoreboard Stall bit
5709 * must be set in this packet."
5710 */
5711 // XXX: does this need to happen at 3DSTATE_BTP_PS time?
5712 iris_emit_pipe_control_flush(batch, "workaround: RT BTI change [draw]",
5713 PIPE_CONTROL_RENDER_TARGET_FLUSH |
5714 PIPE_CONTROL_STALL_AT_SCOREBOARD);
5715 }
5716
5717 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
5718 if (stage_dirty & (IRIS_STAGE_DIRTY_BINDINGS_VS << stage)) {
5719 iris_populate_binding_table(ice, batch, stage, false);
5720 }
5721 }
5722
5723 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
5724 if (!(stage_dirty & (IRIS_STAGE_DIRTY_SAMPLER_STATES_VS << stage)) ||
5725 !ice->shaders.prog[stage])
5726 continue;
5727
5728 iris_upload_sampler_states(ice, stage);
5729
5730 struct iris_shader_state *shs = &ice->state.shaders[stage];
5731 struct pipe_resource *res = shs->sampler_table.res;
5732 if (res)
5733 iris_use_pinned_bo(batch, iris_resource_bo(res), false,
5734 IRIS_DOMAIN_NONE);
5735
5736 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
5737 ptr._3DCommandSubOpcode = 43 + stage;
5738 ptr.PointertoVSSamplerState = shs->sampler_table.offset;
5739 }
5740 }
5741
5742 if (ice->state.need_border_colors)
5743 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false,
5744 IRIS_DOMAIN_NONE);
5745
5746 if (dirty & IRIS_DIRTY_MULTISAMPLE) {
5747 iris_emit_cmd(batch, GENX(3DSTATE_MULTISAMPLE), ms) {
5748 ms.PixelLocation =
5749 ice->state.cso_rast->half_pixel_center ? CENTER : UL_CORNER;
5750 if (ice->state.framebuffer.samples > 0)
5751 ms.NumberofMultisamples = ffs(ice->state.framebuffer.samples) - 1;
5752 }
5753 }
5754
5755 if (dirty & IRIS_DIRTY_SAMPLE_MASK) {
5756 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_MASK), ms) {
5757 ms.SampleMask = ice->state.sample_mask;
5758 }
5759 }
5760
5761 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
5762 if (!(stage_dirty & (IRIS_STAGE_DIRTY_VS << stage)))
5763 continue;
5764
5765 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
5766
5767 if (shader) {
5768 struct brw_stage_prog_data *prog_data = shader->prog_data;
5769 struct iris_resource *cache = (void *) shader->assembly.res;
5770 iris_use_pinned_bo(batch, cache->bo, false, IRIS_DOMAIN_NONE);
5771
5772 if (prog_data->total_scratch > 0) {
5773 struct iris_bo *bo =
5774 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
5775 iris_use_pinned_bo(batch, bo, true, IRIS_DOMAIN_NONE);
5776 }
5777
5778 if (stage == MESA_SHADER_FRAGMENT) {
5779 UNUSED struct iris_rasterizer_state *cso = ice->state.cso_rast;
5780 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5781
5782 uint32_t ps_state[GENX(3DSTATE_PS_length)] = {0};
5783 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
5784 ps._8PixelDispatchEnable = wm_prog_data->dispatch_8;
5785 ps._16PixelDispatchEnable = wm_prog_data->dispatch_16;
5786 ps._32PixelDispatchEnable = wm_prog_data->dispatch_32;
5787
5788 /* The docs for 3DSTATE_PS::32 Pixel Dispatch Enable say:
5789 *
5790 * "When NUM_MULTISAMPLES = 16 or FORCE_SAMPLE_COUNT = 16,
5791 * SIMD32 Dispatch must not be enabled for PER_PIXEL dispatch
5792 * mode."
5793 *
5794 * 16x MSAA only exists on Gen9+, so we can skip this on Gen8.
5795 */
5796 if (GEN_GEN >= 9 && cso_fb->samples == 16 &&
5797 !wm_prog_data->persample_dispatch) {
5798 assert(ps._8PixelDispatchEnable || ps._16PixelDispatchEnable);
5799 ps._32PixelDispatchEnable = false;
5800 }
5801
5802 ps.DispatchGRFStartRegisterForConstantSetupData0 =
5803 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
5804 ps.DispatchGRFStartRegisterForConstantSetupData1 =
5805 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
5806 ps.DispatchGRFStartRegisterForConstantSetupData2 =
5807 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
5808
5809 ps.KernelStartPointer0 = KSP(shader) +
5810 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
5811 ps.KernelStartPointer1 = KSP(shader) +
5812 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
5813 ps.KernelStartPointer2 = KSP(shader) +
5814 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
5815 }
5816
5817 uint32_t psx_state[GENX(3DSTATE_PS_EXTRA_length)] = {0};
5818 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
5819 #if GEN_GEN >= 9
5820 if (!wm_prog_data->uses_sample_mask)
5821 psx.InputCoverageMaskState = ICMS_NONE;
5822 else if (wm_prog_data->post_depth_coverage)
5823 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
5824 else if (wm_prog_data->inner_coverage &&
5825 cso->conservative_rasterization)
5826 psx.InputCoverageMaskState = ICMS_INNER_CONSERVATIVE;
5827 else
5828 psx.InputCoverageMaskState = ICMS_NORMAL;
5829 #else
5830 psx.PixelShaderUsesInputCoverageMask =
5831 wm_prog_data->uses_sample_mask;
5832 #endif
5833 }
5834
5835 uint32_t *shader_ps = (uint32_t *) shader->derived_data;
5836 uint32_t *shader_psx = shader_ps + GENX(3DSTATE_PS_length);
5837 iris_emit_merge(batch, shader_ps, ps_state,
5838 GENX(3DSTATE_PS_length));
5839 iris_emit_merge(batch, shader_psx, psx_state,
5840 GENX(3DSTATE_PS_EXTRA_length));
5841 } else {
5842 iris_batch_emit(batch, shader->derived_data,
5843 iris_derived_program_state_size(stage));
5844 }
5845 } else {
5846 if (stage == MESA_SHADER_TESS_EVAL) {
5847 iris_emit_cmd(batch, GENX(3DSTATE_HS), hs);
5848 iris_emit_cmd(batch, GENX(3DSTATE_TE), te);
5849 iris_emit_cmd(batch, GENX(3DSTATE_DS), ds);
5850 } else if (stage == MESA_SHADER_GEOMETRY) {
5851 iris_emit_cmd(batch, GENX(3DSTATE_GS), gs);
5852 }
5853 }
5854 }
5855
5856 if (ice->state.streamout_active) {
5857 if (dirty & IRIS_DIRTY_SO_BUFFERS) {
5858 iris_batch_emit(batch, genx->so_buffers,
5859 4 * 4 * GENX(3DSTATE_SO_BUFFER_length));
5860 for (int i = 0; i < 4; i++) {
5861 struct iris_stream_output_target *tgt =
5862 (void *) ice->state.so_target[i];
5863 if (tgt) {
5864 tgt->zeroed = true;
5865 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
5866 true, IRIS_DOMAIN_OTHER_WRITE);
5867 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
5868 true, IRIS_DOMAIN_OTHER_WRITE);
5869 }
5870 }
5871 }
5872
5873 if ((dirty & IRIS_DIRTY_SO_DECL_LIST) && ice->state.streamout) {
5874 uint32_t *decl_list =
5875 ice->state.streamout + GENX(3DSTATE_STREAMOUT_length);
5876 iris_batch_emit(batch, decl_list, 4 * ((decl_list[0] & 0xff) + 2));
5877 }
5878
5879 if (dirty & IRIS_DIRTY_STREAMOUT) {
5880 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
5881
5882 uint32_t dynamic_sol[GENX(3DSTATE_STREAMOUT_length)];
5883 iris_pack_command(GENX(3DSTATE_STREAMOUT), dynamic_sol, sol) {
5884 sol.SOFunctionEnable = true;
5885 sol.SOStatisticsEnable = true;
5886
5887 sol.RenderingDisable = cso_rast->rasterizer_discard &&
5888 !ice->state.prims_generated_query_active;
5889 sol.ReorderMode = cso_rast->flatshade_first ? LEADING : TRAILING;
5890 }
5891
5892 assert(ice->state.streamout);
5893
5894 iris_emit_merge(batch, ice->state.streamout, dynamic_sol,
5895 GENX(3DSTATE_STREAMOUT_length));
5896 }
5897 } else {
5898 if (dirty & IRIS_DIRTY_STREAMOUT) {
5899 iris_emit_cmd(batch, GENX(3DSTATE_STREAMOUT), sol);
5900 }
5901 }
5902
5903 if (dirty & IRIS_DIRTY_CLIP) {
5904 struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
5905 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5906
5907 bool gs_or_tes = ice->shaders.prog[MESA_SHADER_GEOMETRY] ||
5908 ice->shaders.prog[MESA_SHADER_TESS_EVAL];
5909 bool points_or_lines = cso_rast->fill_mode_point_or_line ||
5910 (gs_or_tes ? ice->shaders.output_topology_is_points_or_lines
5911 : ice->state.prim_is_points_or_lines);
5912
5913 uint32_t dynamic_clip[GENX(3DSTATE_CLIP_length)];
5914 iris_pack_command(GENX(3DSTATE_CLIP), &dynamic_clip, cl) {
5915 cl.StatisticsEnable = ice->state.statistics_counters_enabled;
5916 if (cso_rast->rasterizer_discard)
5917 cl.ClipMode = CLIPMODE_REJECT_ALL;
5918 else if (ice->state.window_space_position)
5919 cl.ClipMode = CLIPMODE_ACCEPT_ALL;
5920 else
5921 cl.ClipMode = CLIPMODE_NORMAL;
5922
5923 cl.PerspectiveDivideDisable = ice->state.window_space_position;
5924 cl.ViewportXYClipTestEnable = !points_or_lines;
5925
5926 if (wm_prog_data->barycentric_interp_modes &
5927 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
5928 cl.NonPerspectiveBarycentricEnable = true;
5929
5930 cl.ForceZeroRTAIndexEnable = cso_fb->layers <= 1;
5931 cl.MaximumVPIndex = ice->state.num_viewports - 1;
5932 }
5933 iris_emit_merge(batch, cso_rast->clip, dynamic_clip,
5934 ARRAY_SIZE(cso_rast->clip));
5935 }
5936
5937 if (dirty & (IRIS_DIRTY_RASTER | IRIS_DIRTY_URB)) {
5938 struct iris_rasterizer_state *cso = ice->state.cso_rast;
5939 iris_batch_emit(batch, cso->raster, sizeof(cso->raster));
5940
5941 uint32_t dynamic_sf[GENX(3DSTATE_SF_length)];
5942 iris_pack_command(GENX(3DSTATE_SF), &dynamic_sf, sf) {
5943 sf.ViewportTransformEnable = !ice->state.window_space_position;
5944
5945 #if GEN_GEN >= 12
5946 sf.DerefBlockSize = ice->state.urb_deref_block_size;
5947 #endif
5948 }
5949 iris_emit_merge(batch, cso->sf, dynamic_sf,
5950 ARRAY_SIZE(dynamic_sf));
5951 }
5952
5953 if (dirty & IRIS_DIRTY_WM) {
5954 struct iris_rasterizer_state *cso = ice->state.cso_rast;
5955 uint32_t dynamic_wm[GENX(3DSTATE_WM_length)];
5956
5957 iris_pack_command(GENX(3DSTATE_WM), &dynamic_wm, wm) {
5958 wm.StatisticsEnable = ice->state.statistics_counters_enabled;
5959
5960 wm.BarycentricInterpolationMode =
5961 wm_prog_data->barycentric_interp_modes;
5962
5963 if (wm_prog_data->early_fragment_tests)
5964 wm.EarlyDepthStencilControl = EDSC_PREPS;
5965 else if (wm_prog_data->has_side_effects)
5966 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
5967
5968 /* We could skip this bit if color writes are enabled. */
5969 if (wm_prog_data->has_side_effects || wm_prog_data->uses_kill)
5970 wm.ForceThreadDispatchEnable = ForceON;
5971 }
5972 iris_emit_merge(batch, cso->wm, dynamic_wm, ARRAY_SIZE(cso->wm));
5973 }
5974
5975 if (dirty & IRIS_DIRTY_SBE) {
5976 iris_emit_sbe(batch, ice);
5977 }
5978
5979 if (dirty & IRIS_DIRTY_PS_BLEND) {
5980 struct iris_blend_state *cso_blend = ice->state.cso_blend;
5981 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
5982 const struct shader_info *fs_info =
5983 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
5984
5985 uint32_t dynamic_pb[GENX(3DSTATE_PS_BLEND_length)];
5986 iris_pack_command(GENX(3DSTATE_PS_BLEND), &dynamic_pb, pb) {
5987 pb.HasWriteableRT = has_writeable_rt(cso_blend, fs_info);
5988 pb.AlphaTestEnable = cso_zsa->alpha.enabled;
5989
5990 /* The dual source blending docs caution against using SRC1 factors
5991 * when the shader doesn't use a dual source render target write.
5992 * Empirically, this can lead to GPU hangs, and the results are
5993 * undefined anyway, so simply disable blending to avoid the hang.
5994 */
5995 pb.ColorBufferBlendEnable = (cso_blend->blend_enables & 1) &&
5996 (!cso_blend->dual_color_blending || wm_prog_data->dual_src_blend);
5997 }
5998
5999 iris_emit_merge(batch, cso_blend->ps_blend, dynamic_pb,
6000 ARRAY_SIZE(cso_blend->ps_blend));
6001 }
6002
6003 if (dirty & IRIS_DIRTY_WM_DEPTH_STENCIL) {
6004 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
6005 #if GEN_GEN >= 9 && GEN_GEN < 12
6006 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
6007 uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
6008 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
6009 wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
6010 wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
6011 }
6012 iris_emit_merge(batch, cso->wmds, stencil_refs, ARRAY_SIZE(cso->wmds));
6013 #else
6014 /* Use modify disable fields which allow us to emit packets
6015 * directly instead of merging them later.
6016 */
6017 iris_batch_emit(batch, cso->wmds, sizeof(cso->wmds));
6018 #endif
6019
6020 #if GEN_GEN >= 12
6021 iris_batch_emit(batch, cso->depth_bounds, sizeof(cso->depth_bounds));
6022 #endif
6023 }
6024
6025 if (dirty & IRIS_DIRTY_STENCIL_REF) {
6026 #if GEN_GEN >= 12
6027 /* Use modify disable fields which allow us to emit packets
6028 * directly instead of merging them later.
6029 */
6030 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
6031 uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
6032 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
6033 wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
6034 wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
6035 wmds.StencilTestMaskModifyDisable = true;
6036 wmds.StencilWriteMaskModifyDisable = true;
6037 wmds.StencilStateModifyDisable = true;
6038 wmds.DepthStateModifyDisable = true;
6039 }
6040 iris_batch_emit(batch, stencil_refs, sizeof(stencil_refs));
6041 #endif
6042 }
6043
6044 if (dirty & IRIS_DIRTY_SCISSOR_RECT) {
6045 uint32_t scissor_offset =
6046 emit_state(batch, ice->state.dynamic_uploader,
6047 &ice->state.last_res.scissor,
6048 ice->state.scissors,
6049 sizeof(struct pipe_scissor_state) *
6050 ice->state.num_viewports, 32);
6051
6052 iris_emit_cmd(batch, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
6053 ptr.ScissorRectPointer = scissor_offset;
6054 }
6055 }
6056
6057 if (dirty & IRIS_DIRTY_DEPTH_BUFFER) {
6058 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
6059
6060 /* Do not emit the clear params yets. We need to update the clear value
6061 * first.
6062 */
6063 uint32_t clear_length = GENX(3DSTATE_CLEAR_PARAMS_length) * 4;
6064 uint32_t cso_z_size = batch->screen->isl_dev.ds.size - clear_length;;
6065
6066 #if GEN_GEN == 12
6067 /* GEN:BUG:14010455700
6068 *
6069 * ISL will change some CHICKEN registers depending on the depth surface
6070 * format, along with emitting the depth and stencil packets. In that
6071 * case, we want to do a depth flush and stall, so the pipeline is not
6072 * using these settings while we change the registers.
6073 */
6074 iris_emit_end_of_pipe_sync(batch,
6075 "Workaround: Stop pipeline for 14010455700",
6076 PIPE_CONTROL_DEPTH_STALL |
6077 PIPE_CONTROL_DEPTH_CACHE_FLUSH);
6078 #endif
6079
6080 iris_batch_emit(batch, cso_z->packets, cso_z_size);
6081 if (GEN_GEN >= 12) {
6082 /* GEN:BUG:1408224581
6083 *
6084 * Workaround: Gen12LP Astep only An additional pipe control with
6085 * post-sync = store dword operation would be required.( w/a is to
6086 * have an additional pipe control after the stencil state whenever
6087 * the surface state bits of this state is changing).
6088 */
6089 iris_emit_pipe_control_write(batch, "WA for stencil state",
6090 PIPE_CONTROL_WRITE_IMMEDIATE,
6091 batch->screen->workaround_address.bo,
6092 batch->screen->workaround_address.offset, 0);
6093 }
6094
6095 union isl_color_value clear_value = { .f32 = { 0, } };
6096
6097 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
6098 if (cso_fb->zsbuf) {
6099 struct iris_resource *zres, *sres;
6100 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
6101 &zres, &sres);
6102 if (zres && zres->aux.bo)
6103 clear_value = iris_resource_get_clear_color(zres, NULL, NULL);
6104 }
6105
6106 uint32_t clear_params[GENX(3DSTATE_CLEAR_PARAMS_length)];
6107 iris_pack_command(GENX(3DSTATE_CLEAR_PARAMS), clear_params, clear) {
6108 clear.DepthClearValueValid = true;
6109 clear.DepthClearValue = clear_value.f32[0];
6110 }
6111 iris_batch_emit(batch, clear_params, clear_length);
6112 }
6113
6114 if (dirty & (IRIS_DIRTY_DEPTH_BUFFER | IRIS_DIRTY_WM_DEPTH_STENCIL)) {
6115 /* Listen for buffer changes, and also write enable changes. */
6116 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
6117 pin_depth_and_stencil_buffers(batch, cso_fb->zsbuf, ice->state.cso_zsa);
6118 }
6119
6120 if (dirty & IRIS_DIRTY_POLYGON_STIPPLE) {
6121 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
6122 for (int i = 0; i < 32; i++) {
6123 poly.PatternRow[i] = ice->state.poly_stipple.stipple[i];
6124 }
6125 }
6126 }
6127
6128 if (dirty & IRIS_DIRTY_LINE_STIPPLE) {
6129 struct iris_rasterizer_state *cso = ice->state.cso_rast;
6130 iris_batch_emit(batch, cso->line_stipple, sizeof(cso->line_stipple));
6131 }
6132
6133 if (dirty & IRIS_DIRTY_VF_TOPOLOGY) {
6134 iris_emit_cmd(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
6135 topo.PrimitiveTopologyType =
6136 translate_prim_type(draw->mode, draw->vertices_per_patch);
6137 }
6138 }
6139
6140 if (dirty & IRIS_DIRTY_VERTEX_BUFFERS) {
6141 int count = util_bitcount64(ice->state.bound_vertex_buffers);
6142 uint64_t dynamic_bound = ice->state.bound_vertex_buffers;
6143
6144 if (ice->state.vs_uses_draw_params) {
6145 assert(ice->draw.draw_params.res);
6146
6147 struct iris_vertex_buffer_state *state =
6148 &(ice->state.genx->vertex_buffers[count]);
6149 pipe_resource_reference(&state->resource, ice->draw.draw_params.res);
6150 struct iris_resource *res = (void *) state->resource;
6151
6152 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
6153 vb.VertexBufferIndex = count;
6154 vb.AddressModifyEnable = true;
6155 vb.BufferPitch = 0;
6156 vb.BufferSize = res->bo->size - ice->draw.draw_params.offset;
6157 vb.BufferStartingAddress =
6158 ro_bo(NULL, res->bo->gtt_offset +
6159 (int) ice->draw.draw_params.offset);
6160 vb.MOCS = iris_mocs(res->bo, &batch->screen->isl_dev);
6161 }
6162 dynamic_bound |= 1ull << count;
6163 count++;
6164 }
6165
6166 if (ice->state.vs_uses_derived_draw_params) {
6167 struct iris_vertex_buffer_state *state =
6168 &(ice->state.genx->vertex_buffers[count]);
6169 pipe_resource_reference(&state->resource,
6170 ice->draw.derived_draw_params.res);
6171 struct iris_resource *res = (void *) ice->draw.derived_draw_params.res;
6172
6173 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
6174 vb.VertexBufferIndex = count;
6175 vb.AddressModifyEnable = true;
6176 vb.BufferPitch = 0;
6177 vb.BufferSize =
6178 res->bo->size - ice->draw.derived_draw_params.offset;
6179 vb.BufferStartingAddress =
6180 ro_bo(NULL, res->bo->gtt_offset +
6181 (int) ice->draw.derived_draw_params.offset);
6182 vb.MOCS = iris_mocs(res->bo, &batch->screen->isl_dev);
6183 }
6184 dynamic_bound |= 1ull << count;
6185 count++;
6186 }
6187
6188 if (count) {
6189 #if GEN_GEN >= 11
6190 /* Gen11+ doesn't need the cache workaround below */
6191 uint64_t bound = dynamic_bound;
6192 while (bound) {
6193 const int i = u_bit_scan64(&bound);
6194 iris_use_optional_res(batch, genx->vertex_buffers[i].resource,
6195 false, IRIS_DOMAIN_OTHER_READ);
6196 }
6197 #else
6198 /* The VF cache designers cut corners, and made the cache key's
6199 * <VertexBufferIndex, Memory Address> tuple only consider the bottom
6200 * 32 bits of the address. If you have two vertex buffers which get
6201 * placed exactly 4 GiB apart and use them in back-to-back draw calls,
6202 * you can get collisions (even within a single batch).
6203 *
6204 * So, we need to do a VF cache invalidate if the buffer for a VB
6205 * slot slot changes [48:32] address bits from the previous time.
6206 */
6207 unsigned flush_flags = 0;
6208
6209 uint64_t bound = dynamic_bound;
6210 while (bound) {
6211 const int i = u_bit_scan64(&bound);
6212 uint16_t high_bits = 0;
6213
6214 struct iris_resource *res =
6215 (void *) genx->vertex_buffers[i].resource;
6216 if (res) {
6217 iris_use_pinned_bo(batch, res->bo, false, IRIS_DOMAIN_OTHER_READ);
6218
6219 high_bits = res->bo->gtt_offset >> 32ull;
6220 if (high_bits != ice->state.last_vbo_high_bits[i]) {
6221 flush_flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE |
6222 PIPE_CONTROL_CS_STALL;
6223 ice->state.last_vbo_high_bits[i] = high_bits;
6224 }
6225 }
6226 }
6227
6228 if (flush_flags) {
6229 iris_emit_pipe_control_flush(batch,
6230 "workaround: VF cache 32-bit key [VB]",
6231 flush_flags);
6232 }
6233 #endif
6234
6235 const unsigned vb_dwords = GENX(VERTEX_BUFFER_STATE_length);
6236
6237 uint32_t *map =
6238 iris_get_command_space(batch, 4 * (1 + vb_dwords * count));
6239 _iris_pack_command(batch, GENX(3DSTATE_VERTEX_BUFFERS), map, vb) {
6240 vb.DWordLength = (vb_dwords * count + 1) - 2;
6241 }
6242 map += 1;
6243
6244 bound = dynamic_bound;
6245 while (bound) {
6246 const int i = u_bit_scan64(&bound);
6247 memcpy(map, genx->vertex_buffers[i].state,
6248 sizeof(uint32_t) * vb_dwords);
6249 map += vb_dwords;
6250 }
6251 }
6252 }
6253
6254 if (dirty & IRIS_DIRTY_VERTEX_ELEMENTS) {
6255 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
6256 const unsigned entries = MAX2(cso->count, 1);
6257 if (!(ice->state.vs_needs_sgvs_element ||
6258 ice->state.vs_uses_derived_draw_params ||
6259 ice->state.vs_needs_edge_flag)) {
6260 iris_batch_emit(batch, cso->vertex_elements, sizeof(uint32_t) *
6261 (1 + entries * GENX(VERTEX_ELEMENT_STATE_length)));
6262 } else {
6263 uint32_t dynamic_ves[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
6264 const unsigned dyn_count = cso->count +
6265 ice->state.vs_needs_sgvs_element +
6266 ice->state.vs_uses_derived_draw_params;
6267
6268 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS),
6269 &dynamic_ves, ve) {
6270 ve.DWordLength =
6271 1 + GENX(VERTEX_ELEMENT_STATE_length) * dyn_count - 2;
6272 }
6273 memcpy(&dynamic_ves[1], &cso->vertex_elements[1],
6274 (cso->count - ice->state.vs_needs_edge_flag) *
6275 GENX(VERTEX_ELEMENT_STATE_length) * sizeof(uint32_t));
6276 uint32_t *ve_pack_dest =
6277 &dynamic_ves[1 + (cso->count - ice->state.vs_needs_edge_flag) *
6278 GENX(VERTEX_ELEMENT_STATE_length)];
6279
6280 if (ice->state.vs_needs_sgvs_element) {
6281 uint32_t base_ctrl = ice->state.vs_uses_draw_params ?
6282 VFCOMP_STORE_SRC : VFCOMP_STORE_0;
6283 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
6284 ve.Valid = true;
6285 ve.VertexBufferIndex =
6286 util_bitcount64(ice->state.bound_vertex_buffers);
6287 ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
6288 ve.Component0Control = base_ctrl;
6289 ve.Component1Control = base_ctrl;
6290 ve.Component2Control = VFCOMP_STORE_0;
6291 ve.Component3Control = VFCOMP_STORE_0;
6292 }
6293 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
6294 }
6295 if (ice->state.vs_uses_derived_draw_params) {
6296 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
6297 ve.Valid = true;
6298 ve.VertexBufferIndex =
6299 util_bitcount64(ice->state.bound_vertex_buffers) +
6300 ice->state.vs_uses_draw_params;
6301 ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
6302 ve.Component0Control = VFCOMP_STORE_SRC;
6303 ve.Component1Control = VFCOMP_STORE_SRC;
6304 ve.Component2Control = VFCOMP_STORE_0;
6305 ve.Component3Control = VFCOMP_STORE_0;
6306 }
6307 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
6308 }
6309 if (ice->state.vs_needs_edge_flag) {
6310 for (int i = 0; i < GENX(VERTEX_ELEMENT_STATE_length); i++)
6311 ve_pack_dest[i] = cso->edgeflag_ve[i];
6312 }
6313
6314 iris_batch_emit(batch, &dynamic_ves, sizeof(uint32_t) *
6315 (1 + dyn_count * GENX(VERTEX_ELEMENT_STATE_length)));
6316 }
6317
6318 if (!ice->state.vs_needs_edge_flag) {
6319 iris_batch_emit(batch, cso->vf_instancing, sizeof(uint32_t) *
6320 entries * GENX(3DSTATE_VF_INSTANCING_length));
6321 } else {
6322 assert(cso->count > 0);
6323 const unsigned edgeflag_index = cso->count - 1;
6324 uint32_t dynamic_vfi[33 * GENX(3DSTATE_VF_INSTANCING_length)];
6325 memcpy(&dynamic_vfi[0], cso->vf_instancing, edgeflag_index *
6326 GENX(3DSTATE_VF_INSTANCING_length) * sizeof(uint32_t));
6327
6328 uint32_t *vfi_pack_dest = &dynamic_vfi[0] +
6329 edgeflag_index * GENX(3DSTATE_VF_INSTANCING_length);
6330 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
6331 vi.VertexElementIndex = edgeflag_index +
6332 ice->state.vs_needs_sgvs_element +
6333 ice->state.vs_uses_derived_draw_params;
6334 }
6335 for (int i = 0; i < GENX(3DSTATE_VF_INSTANCING_length); i++)
6336 vfi_pack_dest[i] |= cso->edgeflag_vfi[i];
6337
6338 iris_batch_emit(batch, &dynamic_vfi[0], sizeof(uint32_t) *
6339 entries * GENX(3DSTATE_VF_INSTANCING_length));
6340 }
6341 }
6342
6343 if (dirty & IRIS_DIRTY_VF_SGVS) {
6344 const struct brw_vs_prog_data *vs_prog_data = (void *)
6345 ice->shaders.prog[MESA_SHADER_VERTEX]->prog_data;
6346 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
6347
6348 iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS), sgv) {
6349 if (vs_prog_data->uses_vertexid) {
6350 sgv.VertexIDEnable = true;
6351 sgv.VertexIDComponentNumber = 2;
6352 sgv.VertexIDElementOffset =
6353 cso->count - ice->state.vs_needs_edge_flag;
6354 }
6355
6356 if (vs_prog_data->uses_instanceid) {
6357 sgv.InstanceIDEnable = true;
6358 sgv.InstanceIDComponentNumber = 3;
6359 sgv.InstanceIDElementOffset =
6360 cso->count - ice->state.vs_needs_edge_flag;
6361 }
6362 }
6363 }
6364
6365 if (dirty & IRIS_DIRTY_VF) {
6366 iris_emit_cmd(batch, GENX(3DSTATE_VF), vf) {
6367 if (draw->primitive_restart) {
6368 vf.IndexedDrawCutIndexEnable = true;
6369 vf.CutIndex = draw->restart_index;
6370 }
6371 }
6372 }
6373
6374 if (dirty & IRIS_DIRTY_VF_STATISTICS) {
6375 iris_emit_cmd(batch, GENX(3DSTATE_VF_STATISTICS), vf) {
6376 vf.StatisticsEnable = true;
6377 }
6378 }
6379
6380 #if GEN_GEN == 8
6381 if (dirty & IRIS_DIRTY_PMA_FIX) {
6382 bool enable = want_pma_fix(ice);
6383 genX(update_pma_fix)(ice, batch, enable);
6384 }
6385 #endif
6386
6387 if (ice->state.current_hash_scale != 1)
6388 genX(emit_hashing_mode)(ice, batch, UINT_MAX, UINT_MAX, 1);
6389
6390 #if GEN_GEN >= 12
6391 genX(invalidate_aux_map_state)(batch);
6392 #endif
6393 }
6394
6395 static void
6396 iris_upload_render_state(struct iris_context *ice,
6397 struct iris_batch *batch,
6398 const struct pipe_draw_info *draw)
6399 {
6400 bool use_predicate = ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT;
6401
6402 iris_batch_sync_region_start(batch);
6403
6404 /* Always pin the binder. If we're emitting new binding table pointers,
6405 * we need it. If not, we're probably inheriting old tables via the
6406 * context, and need it anyway. Since true zero-bindings cases are
6407 * practically non-existent, just pin it and avoid last_res tracking.
6408 */
6409 iris_use_pinned_bo(batch, ice->state.binder.bo, false,
6410 IRIS_DOMAIN_NONE);
6411
6412 if (!batch->contains_draw_with_next_seqno) {
6413 iris_restore_render_saved_bos(ice, batch, draw);
6414 batch->contains_draw_with_next_seqno = batch->contains_draw = true;
6415 }
6416
6417 iris_upload_dirty_render_state(ice, batch, draw);
6418
6419 if (draw->index_size > 0) {
6420 unsigned offset;
6421
6422 if (draw->has_user_indices) {
6423 u_upload_data(ice->ctx.stream_uploader, 0,
6424 draw->count * draw->index_size, 4, draw->index.user,
6425 &offset, &ice->state.last_res.index_buffer);
6426 } else {
6427 struct iris_resource *res = (void *) draw->index.resource;
6428 res->bind_history |= PIPE_BIND_INDEX_BUFFER;
6429
6430 pipe_resource_reference(&ice->state.last_res.index_buffer,
6431 draw->index.resource);
6432 offset = 0;
6433 }
6434
6435 struct iris_genx_state *genx = ice->state.genx;
6436 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
6437
6438 uint32_t ib_packet[GENX(3DSTATE_INDEX_BUFFER_length)];
6439 iris_pack_command(GENX(3DSTATE_INDEX_BUFFER), ib_packet, ib) {
6440 ib.IndexFormat = draw->index_size >> 1;
6441 ib.MOCS = iris_mocs(bo, &batch->screen->isl_dev);
6442 ib.BufferSize = bo->size - offset;
6443 ib.BufferStartingAddress = ro_bo(NULL, bo->gtt_offset + offset);
6444 }
6445
6446 if (memcmp(genx->last_index_buffer, ib_packet, sizeof(ib_packet)) != 0) {
6447 memcpy(genx->last_index_buffer, ib_packet, sizeof(ib_packet));
6448 iris_batch_emit(batch, ib_packet, sizeof(ib_packet));
6449 iris_use_pinned_bo(batch, bo, false, IRIS_DOMAIN_OTHER_READ);
6450 }
6451
6452 #if GEN_GEN < 11
6453 /* The VF cache key only uses 32-bits, see vertex buffer comment above */
6454 uint16_t high_bits = bo->gtt_offset >> 32ull;
6455 if (high_bits != ice->state.last_index_bo_high_bits) {
6456 iris_emit_pipe_control_flush(batch,
6457 "workaround: VF cache 32-bit key [IB]",
6458 PIPE_CONTROL_VF_CACHE_INVALIDATE |
6459 PIPE_CONTROL_CS_STALL);
6460 ice->state.last_index_bo_high_bits = high_bits;
6461 }
6462 #endif
6463 }
6464
6465 #define _3DPRIM_END_OFFSET 0x2420
6466 #define _3DPRIM_START_VERTEX 0x2430
6467 #define _3DPRIM_VERTEX_COUNT 0x2434
6468 #define _3DPRIM_INSTANCE_COUNT 0x2438
6469 #define _3DPRIM_START_INSTANCE 0x243C
6470 #define _3DPRIM_BASE_VERTEX 0x2440
6471
6472 if (draw->indirect) {
6473 if (draw->indirect->indirect_draw_count) {
6474 use_predicate = true;
6475
6476 struct iris_bo *draw_count_bo =
6477 iris_resource_bo(draw->indirect->indirect_draw_count);
6478 unsigned draw_count_offset =
6479 draw->indirect->indirect_draw_count_offset;
6480
6481 iris_emit_pipe_control_flush(batch,
6482 "ensure indirect draw buffer is flushed",
6483 PIPE_CONTROL_FLUSH_ENABLE);
6484
6485 if (ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT) {
6486 struct gen_mi_builder b;
6487 gen_mi_builder_init(&b, batch);
6488
6489 /* comparison = draw id < draw count */
6490 struct gen_mi_value comparison =
6491 gen_mi_ult(&b, gen_mi_imm(draw->drawid),
6492 gen_mi_mem32(ro_bo(draw_count_bo,
6493 draw_count_offset)));
6494
6495 /* predicate = comparison & conditional rendering predicate */
6496 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_RESULT),
6497 gen_mi_iand(&b, comparison,
6498 gen_mi_reg32(CS_GPR(15))));
6499 } else {
6500 uint32_t mi_predicate;
6501
6502 /* Upload the id of the current primitive to MI_PREDICATE_SRC1. */
6503 iris_load_register_imm64(batch, MI_PREDICATE_SRC1, draw->drawid);
6504 /* Upload the current draw count from the draw parameters buffer
6505 * to MI_PREDICATE_SRC0.
6506 */
6507 iris_load_register_mem32(batch, MI_PREDICATE_SRC0,
6508 draw_count_bo, draw_count_offset);
6509 /* Zero the top 32-bits of MI_PREDICATE_SRC0 */
6510 iris_load_register_imm32(batch, MI_PREDICATE_SRC0 + 4, 0);
6511
6512 if (draw->drawid == 0) {
6513 mi_predicate = MI_PREDICATE | MI_PREDICATE_LOADOP_LOADINV |
6514 MI_PREDICATE_COMBINEOP_SET |
6515 MI_PREDICATE_COMPAREOP_SRCS_EQUAL;
6516 } else {
6517 /* While draw_index < draw_count the predicate's result will be
6518 * (draw_index == draw_count) ^ TRUE = TRUE
6519 * When draw_index == draw_count the result is
6520 * (TRUE) ^ TRUE = FALSE
6521 * After this all results will be:
6522 * (FALSE) ^ FALSE = FALSE
6523 */
6524 mi_predicate = MI_PREDICATE | MI_PREDICATE_LOADOP_LOAD |
6525 MI_PREDICATE_COMBINEOP_XOR |
6526 MI_PREDICATE_COMPAREOP_SRCS_EQUAL;
6527 }
6528 iris_batch_emit(batch, &mi_predicate, sizeof(uint32_t));
6529 }
6530 }
6531 struct iris_bo *bo = iris_resource_bo(draw->indirect->buffer);
6532 assert(bo);
6533
6534 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6535 lrm.RegisterAddress = _3DPRIM_VERTEX_COUNT;
6536 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 0);
6537 }
6538 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6539 lrm.RegisterAddress = _3DPRIM_INSTANCE_COUNT;
6540 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 4);
6541 }
6542 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6543 lrm.RegisterAddress = _3DPRIM_START_VERTEX;
6544 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 8);
6545 }
6546 if (draw->index_size) {
6547 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6548 lrm.RegisterAddress = _3DPRIM_BASE_VERTEX;
6549 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
6550 }
6551 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6552 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
6553 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 16);
6554 }
6555 } else {
6556 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6557 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
6558 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
6559 }
6560 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
6561 lri.RegisterOffset = _3DPRIM_BASE_VERTEX;
6562 lri.DataDWord = 0;
6563 }
6564 }
6565 } else if (draw->count_from_stream_output) {
6566 struct iris_stream_output_target *so =
6567 (void *) draw->count_from_stream_output;
6568
6569 /* XXX: Replace with actual cache tracking */
6570 iris_emit_pipe_control_flush(batch,
6571 "draw count from stream output stall",
6572 PIPE_CONTROL_CS_STALL);
6573
6574 struct gen_mi_builder b;
6575 gen_mi_builder_init(&b, batch);
6576
6577 struct iris_address addr =
6578 ro_bo(iris_resource_bo(so->offset.res), so->offset.offset);
6579 struct gen_mi_value offset =
6580 gen_mi_iadd_imm(&b, gen_mi_mem32(addr), -so->base.buffer_offset);
6581
6582 gen_mi_store(&b, gen_mi_reg32(_3DPRIM_VERTEX_COUNT),
6583 gen_mi_udiv32_imm(&b, offset, so->stride));
6584
6585 _iris_emit_lri(batch, _3DPRIM_START_VERTEX, 0);
6586 _iris_emit_lri(batch, _3DPRIM_BASE_VERTEX, 0);
6587 _iris_emit_lri(batch, _3DPRIM_START_INSTANCE, 0);
6588 _iris_emit_lri(batch, _3DPRIM_INSTANCE_COUNT, draw->instance_count);
6589 }
6590
6591 iris_emit_cmd(batch, GENX(3DPRIMITIVE), prim) {
6592 prim.VertexAccessType = draw->index_size > 0 ? RANDOM : SEQUENTIAL;
6593 prim.PredicateEnable = use_predicate;
6594
6595 if (draw->indirect || draw->count_from_stream_output) {
6596 prim.IndirectParameterEnable = true;
6597 } else {
6598 prim.StartInstanceLocation = draw->start_instance;
6599 prim.InstanceCount = draw->instance_count;
6600 prim.VertexCountPerInstance = draw->count;
6601
6602 prim.StartVertexLocation = draw->start;
6603
6604 if (draw->index_size) {
6605 prim.BaseVertexLocation += draw->index_bias;
6606 } else {
6607 prim.StartVertexLocation += draw->index_bias;
6608 }
6609 }
6610 }
6611
6612 iris_batch_sync_region_end(batch);
6613 }
6614
6615 static void
6616 iris_load_indirect_location(struct iris_context *ice,
6617 struct iris_batch *batch,
6618 const struct pipe_grid_info *grid)
6619 {
6620 #define GPGPU_DISPATCHDIMX 0x2500
6621 #define GPGPU_DISPATCHDIMY 0x2504
6622 #define GPGPU_DISPATCHDIMZ 0x2508
6623
6624 assert(grid->indirect);
6625
6626 struct iris_state_ref *grid_size = &ice->state.grid_size;
6627 struct iris_bo *bo = iris_resource_bo(grid_size->res);
6628 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6629 lrm.RegisterAddress = GPGPU_DISPATCHDIMX;
6630 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 0);
6631 }
6632 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6633 lrm.RegisterAddress = GPGPU_DISPATCHDIMY;
6634 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 4);
6635 }
6636 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6637 lrm.RegisterAddress = GPGPU_DISPATCHDIMZ;
6638 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 8);
6639 }
6640 }
6641
6642 static void
6643 iris_upload_gpgpu_walker(struct iris_context *ice,
6644 struct iris_batch *batch,
6645 const struct pipe_grid_info *grid)
6646 {
6647 const uint64_t stage_dirty = ice->state.stage_dirty;
6648 struct iris_screen *screen = batch->screen;
6649 const struct gen_device_info *devinfo = &screen->devinfo;
6650 struct iris_binder *binder = &ice->state.binder;
6651 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
6652 struct iris_compiled_shader *shader =
6653 ice->shaders.prog[MESA_SHADER_COMPUTE];
6654 struct brw_stage_prog_data *prog_data = shader->prog_data;
6655 struct brw_cs_prog_data *cs_prog_data = (void *) prog_data;
6656 const uint32_t group_size = grid->block[0] * grid->block[1] * grid->block[2];
6657 const unsigned simd_size =
6658 brw_cs_simd_size_for_group_size(devinfo, cs_prog_data, group_size);
6659 const unsigned threads = DIV_ROUND_UP(group_size, simd_size);
6660
6661
6662 if (stage_dirty & IRIS_STAGE_DIRTY_CS) {
6663 /* The MEDIA_VFE_STATE documentation for Gen8+ says:
6664 *
6665 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
6666 * the only bits that are changed are scoreboard related: Scoreboard
6667 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard Delta. For
6668 * these scoreboard related states, a MEDIA_STATE_FLUSH is
6669 * sufficient."
6670 */
6671 iris_emit_pipe_control_flush(batch,
6672 "workaround: stall before MEDIA_VFE_STATE",
6673 PIPE_CONTROL_CS_STALL);
6674
6675 iris_emit_cmd(batch, GENX(MEDIA_VFE_STATE), vfe) {
6676 if (prog_data->total_scratch) {
6677 struct iris_bo *bo =
6678 iris_get_scratch_space(ice, prog_data->total_scratch,
6679 MESA_SHADER_COMPUTE);
6680 vfe.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
6681 vfe.ScratchSpaceBasePointer = rw_bo(bo, 0, IRIS_DOMAIN_NONE);
6682 }
6683
6684 vfe.MaximumNumberofThreads =
6685 devinfo->max_cs_threads * screen->subslice_total - 1;
6686 #if GEN_GEN < 11
6687 vfe.ResetGatewayTimer =
6688 Resettingrelativetimerandlatchingtheglobaltimestamp;
6689 #endif
6690 #if GEN_GEN == 8
6691 vfe.BypassGatewayControl = true;
6692 #endif
6693 vfe.NumberofURBEntries = 2;
6694 vfe.URBEntryAllocationSize = 2;
6695
6696 vfe.CURBEAllocationSize =
6697 ALIGN(cs_prog_data->push.per_thread.regs * threads +
6698 cs_prog_data->push.cross_thread.regs, 2);
6699 }
6700 }
6701
6702 /* TODO: Combine subgroup-id with cbuf0 so we can push regular uniforms */
6703 if (stage_dirty & IRIS_STAGE_DIRTY_CS) {
6704 uint32_t curbe_data_offset = 0;
6705 assert(cs_prog_data->push.cross_thread.dwords == 0 &&
6706 cs_prog_data->push.per_thread.dwords == 1 &&
6707 cs_prog_data->base.param[0] == BRW_PARAM_BUILTIN_SUBGROUP_ID);
6708 const unsigned push_const_size =
6709 brw_cs_push_const_total_size(cs_prog_data, threads);
6710 uint32_t *curbe_data_map =
6711 stream_state(batch, ice->state.dynamic_uploader,
6712 &ice->state.last_res.cs_thread_ids,
6713 ALIGN(push_const_size, 64), 64,
6714 &curbe_data_offset);
6715 assert(curbe_data_map);
6716 memset(curbe_data_map, 0x5a, ALIGN(push_const_size, 64));
6717 iris_fill_cs_push_const_buffer(cs_prog_data, threads, curbe_data_map);
6718
6719 iris_emit_cmd(batch, GENX(MEDIA_CURBE_LOAD), curbe) {
6720 curbe.CURBETotalDataLength = ALIGN(push_const_size, 64);
6721 curbe.CURBEDataStartAddress = curbe_data_offset;
6722 }
6723 }
6724
6725 for (unsigned i = 0; i < IRIS_MAX_GLOBAL_BINDINGS; i++) {
6726 struct pipe_resource *res = ice->state.global_bindings[i];
6727 if (!res)
6728 continue;
6729
6730 iris_use_pinned_bo(batch, iris_resource_bo(res),
6731 true, IRIS_DOMAIN_NONE);
6732 }
6733
6734 if (stage_dirty & (IRIS_STAGE_DIRTY_SAMPLER_STATES_CS |
6735 IRIS_STAGE_DIRTY_BINDINGS_CS |
6736 IRIS_STAGE_DIRTY_CONSTANTS_CS |
6737 IRIS_STAGE_DIRTY_CS)) {
6738 uint32_t desc[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
6739
6740 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), desc, idd) {
6741 idd.KernelStartPointer =
6742 KSP(shader) + brw_cs_prog_data_prog_offset(cs_prog_data, simd_size);
6743 idd.SamplerStatePointer = shs->sampler_table.offset;
6744 idd.BindingTablePointer = binder->bt_offset[MESA_SHADER_COMPUTE];
6745 idd.NumberofThreadsinGPGPUThreadGroup = threads;
6746 }
6747
6748 for (int i = 0; i < GENX(INTERFACE_DESCRIPTOR_DATA_length); i++)
6749 desc[i] |= ((uint32_t *) shader->derived_data)[i];
6750
6751 iris_emit_cmd(batch, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
6752 load.InterfaceDescriptorTotalLength =
6753 GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
6754 load.InterfaceDescriptorDataStartAddress =
6755 emit_state(batch, ice->state.dynamic_uploader,
6756 &ice->state.last_res.cs_desc, desc, sizeof(desc), 64);
6757 }
6758 }
6759
6760 if (grid->indirect)
6761 iris_load_indirect_location(ice, batch, grid);
6762
6763 const uint32_t right_mask = brw_cs_right_mask(group_size, simd_size);
6764
6765 iris_emit_cmd(batch, GENX(GPGPU_WALKER), ggw) {
6766 ggw.IndirectParameterEnable = grid->indirect != NULL;
6767 ggw.SIMDSize = simd_size / 16;
6768 ggw.ThreadDepthCounterMaximum = 0;
6769 ggw.ThreadHeightCounterMaximum = 0;
6770 ggw.ThreadWidthCounterMaximum = threads - 1;
6771 ggw.ThreadGroupIDXDimension = grid->grid[0];
6772 ggw.ThreadGroupIDYDimension = grid->grid[1];
6773 ggw.ThreadGroupIDZDimension = grid->grid[2];
6774 ggw.RightExecutionMask = right_mask;
6775 ggw.BottomExecutionMask = 0xffffffff;
6776 }
6777
6778 iris_emit_cmd(batch, GENX(MEDIA_STATE_FLUSH), msf);
6779 }
6780
6781 static void
6782 iris_upload_compute_state(struct iris_context *ice,
6783 struct iris_batch *batch,
6784 const struct pipe_grid_info *grid)
6785 {
6786 const uint64_t stage_dirty = ice->state.stage_dirty;
6787 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
6788 struct iris_compiled_shader *shader =
6789 ice->shaders.prog[MESA_SHADER_COMPUTE];
6790
6791 iris_batch_sync_region_start(batch);
6792
6793 /* Always pin the binder. If we're emitting new binding table pointers,
6794 * we need it. If not, we're probably inheriting old tables via the
6795 * context, and need it anyway. Since true zero-bindings cases are
6796 * practically non-existent, just pin it and avoid last_res tracking.
6797 */
6798 iris_use_pinned_bo(batch, ice->state.binder.bo, false, IRIS_DOMAIN_NONE);
6799
6800 if ((stage_dirty & IRIS_STAGE_DIRTY_CONSTANTS_CS) &&
6801 shs->sysvals_need_upload)
6802 upload_sysvals(ice, MESA_SHADER_COMPUTE, grid);
6803
6804 if (stage_dirty & IRIS_STAGE_DIRTY_BINDINGS_CS)
6805 iris_populate_binding_table(ice, batch, MESA_SHADER_COMPUTE, false);
6806
6807 if (stage_dirty & IRIS_STAGE_DIRTY_SAMPLER_STATES_CS)
6808 iris_upload_sampler_states(ice, MESA_SHADER_COMPUTE);
6809
6810 iris_use_optional_res(batch, shs->sampler_table.res, false,
6811 IRIS_DOMAIN_NONE);
6812 iris_use_pinned_bo(batch, iris_resource_bo(shader->assembly.res), false,
6813 IRIS_DOMAIN_NONE);
6814
6815 if (ice->state.need_border_colors)
6816 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false,
6817 IRIS_DOMAIN_NONE);
6818
6819 #if GEN_GEN >= 12
6820 genX(invalidate_aux_map_state)(batch);
6821 #endif
6822
6823 iris_upload_gpgpu_walker(ice, batch, grid);
6824
6825 if (!batch->contains_draw_with_next_seqno) {
6826 iris_restore_compute_saved_bos(ice, batch, grid);
6827 batch->contains_draw_with_next_seqno = batch->contains_draw = true;
6828 }
6829
6830 iris_batch_sync_region_end(batch);
6831 }
6832
6833 /**
6834 * State module teardown.
6835 */
6836 static void
6837 iris_destroy_state(struct iris_context *ice)
6838 {
6839 struct iris_genx_state *genx = ice->state.genx;
6840
6841 pipe_resource_reference(&ice->draw.draw_params.res, NULL);
6842 pipe_resource_reference(&ice->draw.derived_draw_params.res, NULL);
6843
6844 /* Loop over all VBOs, including ones for draw parameters */
6845 for (unsigned i = 0; i < ARRAY_SIZE(genx->vertex_buffers); i++) {
6846 pipe_resource_reference(&genx->vertex_buffers[i].resource, NULL);
6847 }
6848
6849 free(ice->state.genx);
6850
6851 for (int i = 0; i < 4; i++) {
6852 pipe_so_target_reference(&ice->state.so_target[i], NULL);
6853 }
6854
6855 for (unsigned i = 0; i < ice->state.framebuffer.nr_cbufs; i++) {
6856 pipe_surface_reference(&ice->state.framebuffer.cbufs[i], NULL);
6857 }
6858 pipe_surface_reference(&ice->state.framebuffer.zsbuf, NULL);
6859
6860 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
6861 struct iris_shader_state *shs = &ice->state.shaders[stage];
6862 pipe_resource_reference(&shs->sampler_table.res, NULL);
6863 for (int i = 0; i < PIPE_MAX_CONSTANT_BUFFERS; i++) {
6864 pipe_resource_reference(&shs->constbuf[i].buffer, NULL);
6865 pipe_resource_reference(&shs->constbuf_surf_state[i].res, NULL);
6866 }
6867 for (int i = 0; i < PIPE_MAX_SHADER_IMAGES; i++) {
6868 pipe_resource_reference(&shs->image[i].base.resource, NULL);
6869 pipe_resource_reference(&shs->image[i].surface_state.ref.res, NULL);
6870 free(shs->image[i].surface_state.cpu);
6871 }
6872 for (int i = 0; i < PIPE_MAX_SHADER_BUFFERS; i++) {
6873 pipe_resource_reference(&shs->ssbo[i].buffer, NULL);
6874 pipe_resource_reference(&shs->ssbo_surf_state[i].res, NULL);
6875 }
6876 for (int i = 0; i < IRIS_MAX_TEXTURE_SAMPLERS; i++) {
6877 pipe_sampler_view_reference((struct pipe_sampler_view **)
6878 &shs->textures[i], NULL);
6879 }
6880 }
6881
6882 pipe_resource_reference(&ice->state.grid_size.res, NULL);
6883 pipe_resource_reference(&ice->state.grid_surf_state.res, NULL);
6884
6885 pipe_resource_reference(&ice->state.null_fb.res, NULL);
6886 pipe_resource_reference(&ice->state.unbound_tex.res, NULL);
6887
6888 pipe_resource_reference(&ice->state.last_res.cc_vp, NULL);
6889 pipe_resource_reference(&ice->state.last_res.sf_cl_vp, NULL);
6890 pipe_resource_reference(&ice->state.last_res.color_calc, NULL);
6891 pipe_resource_reference(&ice->state.last_res.scissor, NULL);
6892 pipe_resource_reference(&ice->state.last_res.blend, NULL);
6893 pipe_resource_reference(&ice->state.last_res.index_buffer, NULL);
6894 pipe_resource_reference(&ice->state.last_res.cs_thread_ids, NULL);
6895 pipe_resource_reference(&ice->state.last_res.cs_desc, NULL);
6896 }
6897
6898 /* ------------------------------------------------------------------- */
6899
6900 static void
6901 iris_rebind_buffer(struct iris_context *ice,
6902 struct iris_resource *res)
6903 {
6904 struct pipe_context *ctx = &ice->ctx;
6905 struct iris_genx_state *genx = ice->state.genx;
6906
6907 assert(res->base.target == PIPE_BUFFER);
6908
6909 /* Buffers can't be framebuffer attachments, nor display related,
6910 * and we don't have upstream Clover support.
6911 */
6912 assert(!(res->bind_history & (PIPE_BIND_DEPTH_STENCIL |
6913 PIPE_BIND_RENDER_TARGET |
6914 PIPE_BIND_BLENDABLE |
6915 PIPE_BIND_DISPLAY_TARGET |
6916 PIPE_BIND_CURSOR |
6917 PIPE_BIND_COMPUTE_RESOURCE |
6918 PIPE_BIND_GLOBAL)));
6919
6920 if (res->bind_history & PIPE_BIND_VERTEX_BUFFER) {
6921 uint64_t bound_vbs = ice->state.bound_vertex_buffers;
6922 while (bound_vbs) {
6923 const int i = u_bit_scan64(&bound_vbs);
6924 struct iris_vertex_buffer_state *state = &genx->vertex_buffers[i];
6925
6926 /* Update the CPU struct */
6927 STATIC_ASSERT(GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_start) == 32);
6928 STATIC_ASSERT(GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_bits) == 64);
6929 uint64_t *addr = (uint64_t *) &state->state[1];
6930 struct iris_bo *bo = iris_resource_bo(state->resource);
6931
6932 if (*addr != bo->gtt_offset + state->offset) {
6933 *addr = bo->gtt_offset + state->offset;
6934 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
6935 }
6936 }
6937 }
6938
6939 /* We don't need to handle PIPE_BIND_INDEX_BUFFER here: we re-emit
6940 * the 3DSTATE_INDEX_BUFFER packet whenever the address changes.
6941 *
6942 * There is also no need to handle these:
6943 * - PIPE_BIND_COMMAND_ARGS_BUFFER (emitted for every indirect draw)
6944 * - PIPE_BIND_QUERY_BUFFER (no persistent state references)
6945 */
6946
6947 if (res->bind_history & PIPE_BIND_STREAM_OUTPUT) {
6948 /* XXX: be careful about resetting vs appending... */
6949 assert(false);
6950 }
6951
6952 for (int s = MESA_SHADER_VERTEX; s < MESA_SHADER_STAGES; s++) {
6953 struct iris_shader_state *shs = &ice->state.shaders[s];
6954 enum pipe_shader_type p_stage = stage_to_pipe(s);
6955
6956 if (!(res->bind_stages & (1 << s)))
6957 continue;
6958
6959 if (res->bind_history & PIPE_BIND_CONSTANT_BUFFER) {
6960 /* Skip constant buffer 0, it's for regular uniforms, not UBOs */
6961 uint32_t bound_cbufs = shs->bound_cbufs & ~1u;
6962 while (bound_cbufs) {
6963 const int i = u_bit_scan(&bound_cbufs);
6964 struct pipe_shader_buffer *cbuf = &shs->constbuf[i];
6965 struct iris_state_ref *surf_state = &shs->constbuf_surf_state[i];
6966
6967 if (res->bo == iris_resource_bo(cbuf->buffer)) {
6968 pipe_resource_reference(&surf_state->res, NULL);
6969 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_CONSTANTS_VS << s;
6970 }
6971 }
6972 }
6973
6974 if (res->bind_history & PIPE_BIND_SHADER_BUFFER) {
6975 uint32_t bound_ssbos = shs->bound_ssbos;
6976 while (bound_ssbos) {
6977 const int i = u_bit_scan(&bound_ssbos);
6978 struct pipe_shader_buffer *ssbo = &shs->ssbo[i];
6979
6980 if (res->bo == iris_resource_bo(ssbo->buffer)) {
6981 struct pipe_shader_buffer buf = {
6982 .buffer = &res->base,
6983 .buffer_offset = ssbo->buffer_offset,
6984 .buffer_size = ssbo->buffer_size,
6985 };
6986 iris_set_shader_buffers(ctx, p_stage, i, 1, &buf,
6987 (shs->writable_ssbos >> i) & 1);
6988 }
6989 }
6990 }
6991
6992 if (res->bind_history & PIPE_BIND_SAMPLER_VIEW) {
6993 uint32_t bound_sampler_views = shs->bound_sampler_views;
6994 while (bound_sampler_views) {
6995 const int i = u_bit_scan(&bound_sampler_views);
6996 struct iris_sampler_view *isv = shs->textures[i];
6997 struct iris_bo *bo = isv->res->bo;
6998
6999 if (update_surface_state_addrs(ice->state.surface_uploader,
7000 &isv->surface_state, bo)) {
7001 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_VS << s;
7002 }
7003 }
7004 }
7005
7006 if (res->bind_history & PIPE_BIND_SHADER_IMAGE) {
7007 uint32_t bound_image_views = shs->bound_image_views;
7008 while (bound_image_views) {
7009 const int i = u_bit_scan(&bound_image_views);
7010 struct iris_image_view *iv = &shs->image[i];
7011 struct iris_bo *bo = iris_resource_bo(iv->base.resource);
7012
7013 if (update_surface_state_addrs(ice->state.surface_uploader,
7014 &iv->surface_state, bo)) {
7015 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_VS << s;
7016 }
7017 }
7018 }
7019 }
7020 }
7021
7022 /* ------------------------------------------------------------------- */
7023
7024 /**
7025 * Introduce a batch synchronization boundary, and update its cache coherency
7026 * status to reflect the execution of a PIPE_CONTROL command with the
7027 * specified flags.
7028 */
7029 static void
7030 batch_mark_sync_for_pipe_control(struct iris_batch *batch, uint32_t flags)
7031 {
7032 iris_batch_sync_boundary(batch);
7033
7034 if ((flags & PIPE_CONTROL_CS_STALL)) {
7035 if ((flags & PIPE_CONTROL_RENDER_TARGET_FLUSH))
7036 iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_RENDER_WRITE);
7037
7038 if ((flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH))
7039 iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_DEPTH_WRITE);
7040
7041 if ((flags & PIPE_CONTROL_FLUSH_ENABLE))
7042 iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_OTHER_WRITE);
7043
7044 if ((flags & (PIPE_CONTROL_CACHE_FLUSH_BITS |
7045 PIPE_CONTROL_STALL_AT_SCOREBOARD)))
7046 iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_OTHER_READ);
7047 }
7048
7049 if ((flags & PIPE_CONTROL_RENDER_TARGET_FLUSH))
7050 iris_batch_mark_invalidate_sync(batch, IRIS_DOMAIN_RENDER_WRITE);
7051
7052 if ((flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH))
7053 iris_batch_mark_invalidate_sync(batch, IRIS_DOMAIN_DEPTH_WRITE);
7054
7055 if ((flags & PIPE_CONTROL_FLUSH_ENABLE))
7056 iris_batch_mark_invalidate_sync(batch, IRIS_DOMAIN_OTHER_WRITE);
7057
7058 if ((flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE) &&
7059 (flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE))
7060 iris_batch_mark_invalidate_sync(batch, IRIS_DOMAIN_OTHER_READ);
7061 }
7062
7063 static unsigned
7064 flags_to_post_sync_op(uint32_t flags)
7065 {
7066 if (flags & PIPE_CONTROL_WRITE_IMMEDIATE)
7067 return WriteImmediateData;
7068
7069 if (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT)
7070 return WritePSDepthCount;
7071
7072 if (flags & PIPE_CONTROL_WRITE_TIMESTAMP)
7073 return WriteTimestamp;
7074
7075 return 0;
7076 }
7077
7078 /**
7079 * Do the given flags have a Post Sync or LRI Post Sync operation?
7080 */
7081 static enum pipe_control_flags
7082 get_post_sync_flags(enum pipe_control_flags flags)
7083 {
7084 flags &= PIPE_CONTROL_WRITE_IMMEDIATE |
7085 PIPE_CONTROL_WRITE_DEPTH_COUNT |
7086 PIPE_CONTROL_WRITE_TIMESTAMP |
7087 PIPE_CONTROL_LRI_POST_SYNC_OP;
7088
7089 /* Only one "Post Sync Op" is allowed, and it's mutually exclusive with
7090 * "LRI Post Sync Operation". So more than one bit set would be illegal.
7091 */
7092 assert(util_bitcount(flags) <= 1);
7093
7094 return flags;
7095 }
7096
7097 #define IS_COMPUTE_PIPELINE(batch) (batch->name == IRIS_BATCH_COMPUTE)
7098
7099 /**
7100 * Emit a series of PIPE_CONTROL commands, taking into account any
7101 * workarounds necessary to actually accomplish the caller's request.
7102 *
7103 * Unless otherwise noted, spec quotations in this function come from:
7104 *
7105 * Synchronization of the 3D Pipeline > PIPE_CONTROL Command > Programming
7106 * Restrictions for PIPE_CONTROL.
7107 *
7108 * You should not use this function directly. Use the helpers in
7109 * iris_pipe_control.c instead, which may split the pipe control further.
7110 */
7111 static void
7112 iris_emit_raw_pipe_control(struct iris_batch *batch,
7113 const char *reason,
7114 uint32_t flags,
7115 struct iris_bo *bo,
7116 uint32_t offset,
7117 uint64_t imm)
7118 {
7119 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
7120 enum pipe_control_flags post_sync_flags = get_post_sync_flags(flags);
7121 enum pipe_control_flags non_lri_post_sync_flags =
7122 post_sync_flags & ~PIPE_CONTROL_LRI_POST_SYNC_OP;
7123
7124 /* Recursive PIPE_CONTROL workarounds --------------------------------
7125 * (http://knowyourmeme.com/memes/xzibit-yo-dawg)
7126 *
7127 * We do these first because we want to look at the original operation,
7128 * rather than any workarounds we set.
7129 */
7130 if (GEN_GEN == 9 && (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE)) {
7131 /* The PIPE_CONTROL "VF Cache Invalidation Enable" bit description
7132 * lists several workarounds:
7133 *
7134 * "Project: SKL, KBL, BXT
7135 *
7136 * If the VF Cache Invalidation Enable is set to a 1 in a
7137 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields
7138 * sets to 0, with the VF Cache Invalidation Enable set to 0
7139 * needs to be sent prior to the PIPE_CONTROL with VF Cache
7140 * Invalidation Enable set to a 1."
7141 */
7142 iris_emit_raw_pipe_control(batch,
7143 "workaround: recursive VF cache invalidate",
7144 0, NULL, 0, 0);
7145 }
7146
7147 /* GEN:BUG:1409226450, Wait for EU to be idle before pipe control which
7148 * invalidates the instruction cache
7149 */
7150 if (GEN_GEN == 12 && (flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE)) {
7151 iris_emit_raw_pipe_control(batch,
7152 "workaround: CS stall before instruction "
7153 "cache invalidate",
7154 PIPE_CONTROL_CS_STALL |
7155 PIPE_CONTROL_STALL_AT_SCOREBOARD, bo, offset,
7156 imm);
7157 }
7158
7159 if ((GEN_GEN == 9 || (GEN_GEN == 12 && devinfo->revision == 0 /* A0*/)) &&
7160 IS_COMPUTE_PIPELINE(batch) && post_sync_flags) {
7161 /* Project: SKL / Argument: LRI Post Sync Operation [23]
7162 *
7163 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
7164 * programmed prior to programming a PIPECONTROL command with "LRI
7165 * Post Sync Operation" in GPGPU mode of operation (i.e when
7166 * PIPELINE_SELECT command is set to GPGPU mode of operation)."
7167 *
7168 * The same text exists a few rows below for Post Sync Op.
7169 *
7170 * On Gen12 this is GEN:BUG:1607156449.
7171 */
7172 iris_emit_raw_pipe_control(batch,
7173 "workaround: CS stall before gpgpu post-sync",
7174 PIPE_CONTROL_CS_STALL, bo, offset, imm);
7175 }
7176
7177 /* "Flush Types" workarounds ---------------------------------------------
7178 * We do these now because they may add post-sync operations or CS stalls.
7179 */
7180
7181 if (GEN_GEN < 11 && flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) {
7182 /* Project: BDW, SKL+ (stopping at CNL) / Argument: VF Invalidate
7183 *
7184 * "'Post Sync Operation' must be enabled to 'Write Immediate Data' or
7185 * 'Write PS Depth Count' or 'Write Timestamp'."
7186 */
7187 if (!bo) {
7188 flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
7189 post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
7190 non_lri_post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
7191 bo = batch->screen->workaround_address.bo;
7192 offset = batch->screen->workaround_address.offset;
7193 }
7194 }
7195
7196 if (flags & PIPE_CONTROL_DEPTH_STALL) {
7197 /* From the PIPE_CONTROL instruction table, bit 13 (Depth Stall Enable):
7198 *
7199 * "This bit must be DISABLED for operations other than writing
7200 * PS_DEPTH_COUNT."
7201 *
7202 * This seems like nonsense. An Ivybridge workaround requires us to
7203 * emit a PIPE_CONTROL with a depth stall and write immediate post-sync
7204 * operation. Gen8+ requires us to emit depth stalls and depth cache
7205 * flushes together. So, it's hard to imagine this means anything other
7206 * than "we originally intended this to be used for PS_DEPTH_COUNT".
7207 *
7208 * We ignore the supposed restriction and do nothing.
7209 */
7210 }
7211
7212 if (flags & (PIPE_CONTROL_RENDER_TARGET_FLUSH |
7213 PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
7214 /* From the PIPE_CONTROL instruction table, bit 12 and bit 1:
7215 *
7216 * "This bit must be DISABLED for End-of-pipe (Read) fences,
7217 * PS_DEPTH_COUNT or TIMESTAMP queries."
7218 *
7219 * TODO: Implement end-of-pipe checking.
7220 */
7221 assert(!(post_sync_flags & (PIPE_CONTROL_WRITE_DEPTH_COUNT |
7222 PIPE_CONTROL_WRITE_TIMESTAMP)));
7223 }
7224
7225 if (GEN_GEN < 11 && (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
7226 /* From the PIPE_CONTROL instruction table, bit 1:
7227 *
7228 * "This bit is ignored if Depth Stall Enable is set.
7229 * Further, the render cache is not flushed even if Write Cache
7230 * Flush Enable bit is set."
7231 *
7232 * We assert that the caller doesn't do this combination, to try and
7233 * prevent mistakes. It shouldn't hurt the GPU, though.
7234 *
7235 * We skip this check on Gen11+ as the "Stall at Pixel Scoreboard"
7236 * and "Render Target Flush" combo is explicitly required for BTI
7237 * update workarounds.
7238 */
7239 assert(!(flags & (PIPE_CONTROL_DEPTH_STALL |
7240 PIPE_CONTROL_RENDER_TARGET_FLUSH)));
7241 }
7242
7243 /* PIPE_CONTROL page workarounds ------------------------------------- */
7244
7245 if (GEN_GEN <= 8 && (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE)) {
7246 /* From the PIPE_CONTROL page itself:
7247 *
7248 * "IVB, HSW, BDW
7249 * Restriction: Pipe_control with CS-stall bit set must be issued
7250 * before a pipe-control command that has the State Cache
7251 * Invalidate bit set."
7252 */
7253 flags |= PIPE_CONTROL_CS_STALL;
7254 }
7255
7256 if (flags & PIPE_CONTROL_FLUSH_LLC) {
7257 /* From the PIPE_CONTROL instruction table, bit 26 (Flush LLC):
7258 *
7259 * "Project: ALL
7260 * SW must always program Post-Sync Operation to "Write Immediate
7261 * Data" when Flush LLC is set."
7262 *
7263 * For now, we just require the caller to do it.
7264 */
7265 assert(flags & PIPE_CONTROL_WRITE_IMMEDIATE);
7266 }
7267
7268 /* "Post-Sync Operation" workarounds -------------------------------- */
7269
7270 /* Project: All / Argument: Global Snapshot Count Reset [19]
7271 *
7272 * "This bit must not be exercised on any product.
7273 * Requires stall bit ([20] of DW1) set."
7274 *
7275 * We don't use this, so we just assert that it isn't used. The
7276 * PIPE_CONTROL instruction page indicates that they intended this
7277 * as a debug feature and don't think it is useful in production,
7278 * but it may actually be usable, should we ever want to.
7279 */
7280 assert((flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) == 0);
7281
7282 if (flags & (PIPE_CONTROL_MEDIA_STATE_CLEAR |
7283 PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE)) {
7284 /* Project: All / Arguments:
7285 *
7286 * - Generic Media State Clear [16]
7287 * - Indirect State Pointers Disable [16]
7288 *
7289 * "Requires stall bit ([20] of DW1) set."
7290 *
7291 * Also, the PIPE_CONTROL instruction table, bit 16 (Generic Media
7292 * State Clear) says:
7293 *
7294 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
7295 * programmed prior to programming a PIPECONTROL command with "Media
7296 * State Clear" set in GPGPU mode of operation"
7297 *
7298 * This is a subset of the earlier rule, so there's nothing to do.
7299 */
7300 flags |= PIPE_CONTROL_CS_STALL;
7301 }
7302
7303 if (flags & PIPE_CONTROL_STORE_DATA_INDEX) {
7304 /* Project: All / Argument: Store Data Index
7305 *
7306 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
7307 * than '0'."
7308 *
7309 * For now, we just assert that the caller does this. We might want to
7310 * automatically add a write to the workaround BO...
7311 */
7312 assert(non_lri_post_sync_flags != 0);
7313 }
7314
7315 if (flags & PIPE_CONTROL_SYNC_GFDT) {
7316 /* Project: All / Argument: Sync GFDT
7317 *
7318 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
7319 * than '0' or 0x2520[13] must be set."
7320 *
7321 * For now, we just assert that the caller does this.
7322 */
7323 assert(non_lri_post_sync_flags != 0);
7324 }
7325
7326 if (flags & PIPE_CONTROL_TLB_INVALIDATE) {
7327 /* Project: IVB+ / Argument: TLB inv
7328 *
7329 * "Requires stall bit ([20] of DW1) set."
7330 *
7331 * Also, from the PIPE_CONTROL instruction table:
7332 *
7333 * "Project: SKL+
7334 * Post Sync Operation or CS stall must be set to ensure a TLB
7335 * invalidation occurs. Otherwise no cycle will occur to the TLB
7336 * cache to invalidate."
7337 *
7338 * This is not a subset of the earlier rule, so there's nothing to do.
7339 */
7340 flags |= PIPE_CONTROL_CS_STALL;
7341 }
7342
7343 if (GEN_GEN >= 12 && ((flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) ||
7344 (flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH))) {
7345 /* From the PIPE_CONTROL instruction table, bit 28 (Tile Cache Flush
7346 * Enable):
7347 *
7348 * Unified Cache (Tile Cache Disabled):
7349 *
7350 * When the Color and Depth (Z) streams are enabled to be cached in
7351 * the DC space of L2, Software must use "Render Target Cache Flush
7352 * Enable" and "Depth Cache Flush Enable" along with "Tile Cache
7353 * Flush" for getting the color and depth (Z) write data to be
7354 * globally observable. In this mode of operation it is not required
7355 * to set "CS Stall" upon setting "Tile Cache Flush" bit.
7356 */
7357 flags |= PIPE_CONTROL_TILE_CACHE_FLUSH;
7358 }
7359
7360 if (GEN_GEN == 9 && devinfo->gt == 4) {
7361 /* TODO: The big Skylake GT4 post sync op workaround */
7362 }
7363
7364 /* "GPGPU specific workarounds" (both post-sync and flush) ------------ */
7365
7366 if (IS_COMPUTE_PIPELINE(batch)) {
7367 if (GEN_GEN >= 9 && (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE)) {
7368 /* Project: SKL+ / Argument: Tex Invalidate
7369 * "Requires stall bit ([20] of DW) set for all GPGPU Workloads."
7370 */
7371 flags |= PIPE_CONTROL_CS_STALL;
7372 }
7373
7374 if (GEN_GEN == 8 && (post_sync_flags ||
7375 (flags & (PIPE_CONTROL_NOTIFY_ENABLE |
7376 PIPE_CONTROL_DEPTH_STALL |
7377 PIPE_CONTROL_RENDER_TARGET_FLUSH |
7378 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
7379 PIPE_CONTROL_DATA_CACHE_FLUSH)))) {
7380 /* Project: BDW / Arguments:
7381 *
7382 * - LRI Post Sync Operation [23]
7383 * - Post Sync Op [15:14]
7384 * - Notify En [8]
7385 * - Depth Stall [13]
7386 * - Render Target Cache Flush [12]
7387 * - Depth Cache Flush [0]
7388 * - DC Flush Enable [5]
7389 *
7390 * "Requires stall bit ([20] of DW) set for all GPGPU and Media
7391 * Workloads."
7392 */
7393 flags |= PIPE_CONTROL_CS_STALL;
7394
7395 /* Also, from the PIPE_CONTROL instruction table, bit 20:
7396 *
7397 * "Project: BDW
7398 * This bit must be always set when PIPE_CONTROL command is
7399 * programmed by GPGPU and MEDIA workloads, except for the cases
7400 * when only Read Only Cache Invalidation bits are set (State
7401 * Cache Invalidation Enable, Instruction cache Invalidation
7402 * Enable, Texture Cache Invalidation Enable, Constant Cache
7403 * Invalidation Enable). This is to WA FFDOP CG issue, this WA
7404 * need not implemented when FF_DOP_CG is disable via "Fixed
7405 * Function DOP Clock Gate Disable" bit in RC_PSMI_CTRL register."
7406 *
7407 * It sounds like we could avoid CS stalls in some cases, but we
7408 * don't currently bother. This list isn't exactly the list above,
7409 * either...
7410 */
7411 }
7412 }
7413
7414 /* "Stall" workarounds ----------------------------------------------
7415 * These have to come after the earlier ones because we may have added
7416 * some additional CS stalls above.
7417 */
7418
7419 if (GEN_GEN < 9 && (flags & PIPE_CONTROL_CS_STALL)) {
7420 /* Project: PRE-SKL, VLV, CHV
7421 *
7422 * "[All Stepping][All SKUs]:
7423 *
7424 * One of the following must also be set:
7425 *
7426 * - Render Target Cache Flush Enable ([12] of DW1)
7427 * - Depth Cache Flush Enable ([0] of DW1)
7428 * - Stall at Pixel Scoreboard ([1] of DW1)
7429 * - Depth Stall ([13] of DW1)
7430 * - Post-Sync Operation ([13] of DW1)
7431 * - DC Flush Enable ([5] of DW1)"
7432 *
7433 * If we don't already have one of those bits set, we choose to add
7434 * "Stall at Pixel Scoreboard". Some of the other bits require a
7435 * CS stall as a workaround (see above), which would send us into
7436 * an infinite recursion of PIPE_CONTROLs. "Stall at Pixel Scoreboard"
7437 * appears to be safe, so we choose that.
7438 */
7439 const uint32_t wa_bits = PIPE_CONTROL_RENDER_TARGET_FLUSH |
7440 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
7441 PIPE_CONTROL_WRITE_IMMEDIATE |
7442 PIPE_CONTROL_WRITE_DEPTH_COUNT |
7443 PIPE_CONTROL_WRITE_TIMESTAMP |
7444 PIPE_CONTROL_STALL_AT_SCOREBOARD |
7445 PIPE_CONTROL_DEPTH_STALL |
7446 PIPE_CONTROL_DATA_CACHE_FLUSH;
7447 if (!(flags & wa_bits))
7448 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
7449 }
7450
7451 if (GEN_GEN >= 12 && (flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH)) {
7452 /* GEN:BUG:1409600907:
7453 *
7454 * "PIPE_CONTROL with Depth Stall Enable bit must be set
7455 * with any PIPE_CONTROL with Depth Flush Enable bit set.
7456 */
7457 flags |= PIPE_CONTROL_DEPTH_STALL;
7458 }
7459
7460 /* Emit --------------------------------------------------------------- */
7461
7462 if (INTEL_DEBUG & DEBUG_PIPE_CONTROL) {
7463 fprintf(stderr,
7464 " PC [%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%"PRIx64"]: %s\n",
7465 (flags & PIPE_CONTROL_FLUSH_ENABLE) ? "PipeCon " : "",
7466 (flags & PIPE_CONTROL_CS_STALL) ? "CS " : "",
7467 (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD) ? "Scoreboard " : "",
7468 (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) ? "VF " : "",
7469 (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) ? "RT " : "",
7470 (flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE) ? "Const " : "",
7471 (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE) ? "TC " : "",
7472 (flags & PIPE_CONTROL_DATA_CACHE_FLUSH) ? "DC " : "",
7473 (flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH) ? "ZFlush " : "",
7474 (flags & PIPE_CONTROL_DEPTH_STALL) ? "ZStall " : "",
7475 (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE) ? "State " : "",
7476 (flags & PIPE_CONTROL_TLB_INVALIDATE) ? "TLB " : "",
7477 (flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE) ? "Inst " : "",
7478 (flags & PIPE_CONTROL_MEDIA_STATE_CLEAR) ? "MediaClear " : "",
7479 (flags & PIPE_CONTROL_NOTIFY_ENABLE) ? "Notify " : "",
7480 (flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) ?
7481 "SnapRes" : "",
7482 (flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE) ?
7483 "ISPDis" : "",
7484 (flags & PIPE_CONTROL_WRITE_IMMEDIATE) ? "WriteImm " : "",
7485 (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT) ? "WriteZCount " : "",
7486 (flags & PIPE_CONTROL_WRITE_TIMESTAMP) ? "WriteTimestamp " : "",
7487 (flags & PIPE_CONTROL_FLUSH_HDC) ? "HDC " : "",
7488 imm, reason);
7489 }
7490
7491 batch_mark_sync_for_pipe_control(batch, flags);
7492 iris_batch_sync_region_start(batch);
7493
7494 iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
7495 #if GEN_GEN >= 12
7496 pc.TileCacheFlushEnable = flags & PIPE_CONTROL_TILE_CACHE_FLUSH;
7497 #endif
7498 #if GEN_GEN >= 11
7499 pc.HDCPipelineFlushEnable = flags & PIPE_CONTROL_FLUSH_HDC;
7500 #endif
7501 pc.LRIPostSyncOperation = NoLRIOperation;
7502 pc.PipeControlFlushEnable = flags & PIPE_CONTROL_FLUSH_ENABLE;
7503 pc.DCFlushEnable = flags & PIPE_CONTROL_DATA_CACHE_FLUSH;
7504 pc.StoreDataIndex = 0;
7505 pc.CommandStreamerStallEnable = flags & PIPE_CONTROL_CS_STALL;
7506 pc.GlobalSnapshotCountReset =
7507 flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET;
7508 pc.TLBInvalidate = flags & PIPE_CONTROL_TLB_INVALIDATE;
7509 pc.GenericMediaStateClear = flags & PIPE_CONTROL_MEDIA_STATE_CLEAR;
7510 pc.StallAtPixelScoreboard = flags & PIPE_CONTROL_STALL_AT_SCOREBOARD;
7511 pc.RenderTargetCacheFlushEnable =
7512 flags & PIPE_CONTROL_RENDER_TARGET_FLUSH;
7513 pc.DepthCacheFlushEnable = flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH;
7514 pc.StateCacheInvalidationEnable =
7515 flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE;
7516 pc.VFCacheInvalidationEnable = flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
7517 pc.ConstantCacheInvalidationEnable =
7518 flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE;
7519 pc.PostSyncOperation = flags_to_post_sync_op(flags);
7520 pc.DepthStallEnable = flags & PIPE_CONTROL_DEPTH_STALL;
7521 pc.InstructionCacheInvalidateEnable =
7522 flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE;
7523 pc.NotifyEnable = flags & PIPE_CONTROL_NOTIFY_ENABLE;
7524 pc.IndirectStatePointersDisable =
7525 flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE;
7526 pc.TextureCacheInvalidationEnable =
7527 flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
7528 pc.Address = rw_bo(bo, offset, IRIS_DOMAIN_OTHER_WRITE);
7529 pc.ImmediateData = imm;
7530 }
7531
7532 iris_batch_sync_region_end(batch);
7533 }
7534
7535 #if GEN_GEN == 9
7536 /**
7537 * Preemption on Gen9 has to be enabled or disabled in various cases.
7538 *
7539 * See these workarounds for preemption:
7540 * - WaDisableMidObjectPreemptionForGSLineStripAdj
7541 * - WaDisableMidObjectPreemptionForTrifanOrPolygon
7542 * - WaDisableMidObjectPreemptionForLineLoop
7543 * - WA#0798
7544 *
7545 * We don't put this in the vtable because it's only used on Gen9.
7546 */
7547 void
7548 gen9_toggle_preemption(struct iris_context *ice,
7549 struct iris_batch *batch,
7550 const struct pipe_draw_info *draw)
7551 {
7552 struct iris_genx_state *genx = ice->state.genx;
7553 bool object_preemption = true;
7554
7555 /* WaDisableMidObjectPreemptionForGSLineStripAdj
7556 *
7557 * "WA: Disable mid-draw preemption when draw-call is a linestrip_adj
7558 * and GS is enabled."
7559 */
7560 if (draw->mode == PIPE_PRIM_LINE_STRIP_ADJACENCY &&
7561 ice->shaders.prog[MESA_SHADER_GEOMETRY])
7562 object_preemption = false;
7563
7564 /* WaDisableMidObjectPreemptionForTrifanOrPolygon
7565 *
7566 * "TriFan miscompare in Execlist Preemption test. Cut index that is
7567 * on a previous context. End the previous, the resume another context
7568 * with a tri-fan or polygon, and the vertex count is corrupted. If we
7569 * prempt again we will cause corruption.
7570 *
7571 * WA: Disable mid-draw preemption when draw-call has a tri-fan."
7572 */
7573 if (draw->mode == PIPE_PRIM_TRIANGLE_FAN)
7574 object_preemption = false;
7575
7576 /* WaDisableMidObjectPreemptionForLineLoop
7577 *
7578 * "VF Stats Counters Missing a vertex when preemption enabled.
7579 *
7580 * WA: Disable mid-draw preemption when the draw uses a lineloop
7581 * topology."
7582 */
7583 if (draw->mode == PIPE_PRIM_LINE_LOOP)
7584 object_preemption = false;
7585
7586 /* WA#0798
7587 *
7588 * "VF is corrupting GAFS data when preempted on an instance boundary
7589 * and replayed with instancing enabled.
7590 *
7591 * WA: Disable preemption when using instanceing."
7592 */
7593 if (draw->instance_count > 1)
7594 object_preemption = false;
7595
7596 if (genx->object_preemption != object_preemption) {
7597 iris_enable_obj_preemption(batch, object_preemption);
7598 genx->object_preemption = object_preemption;
7599 }
7600 }
7601 #endif
7602
7603 static void
7604 iris_lost_genx_state(struct iris_context *ice, struct iris_batch *batch)
7605 {
7606 struct iris_genx_state *genx = ice->state.genx;
7607
7608 memset(genx->last_index_buffer, 0, sizeof(genx->last_index_buffer));
7609 }
7610
7611 static void
7612 iris_emit_mi_report_perf_count(struct iris_batch *batch,
7613 struct iris_bo *bo,
7614 uint32_t offset_in_bytes,
7615 uint32_t report_id)
7616 {
7617 iris_batch_sync_region_start(batch);
7618 iris_emit_cmd(batch, GENX(MI_REPORT_PERF_COUNT), mi_rpc) {
7619 mi_rpc.MemoryAddress = rw_bo(bo, offset_in_bytes,
7620 IRIS_DOMAIN_OTHER_WRITE);
7621 mi_rpc.ReportID = report_id;
7622 }
7623 iris_batch_sync_region_end(batch);
7624 }
7625
7626 /**
7627 * Update the pixel hashing modes that determine the balancing of PS threads
7628 * across subslices and slices.
7629 *
7630 * \param width Width bound of the rendering area (already scaled down if \p
7631 * scale is greater than 1).
7632 * \param height Height bound of the rendering area (already scaled down if \p
7633 * scale is greater than 1).
7634 * \param scale The number of framebuffer samples that could potentially be
7635 * affected by an individual channel of the PS thread. This is
7636 * typically one for single-sampled rendering, but for operations
7637 * like CCS resolves and fast clears a single PS invocation may
7638 * update a huge number of pixels, in which case a finer
7639 * balancing is desirable in order to maximally utilize the
7640 * bandwidth available. UINT_MAX can be used as shorthand for
7641 * "finest hashing mode available".
7642 */
7643 void
7644 genX(emit_hashing_mode)(struct iris_context *ice, struct iris_batch *batch,
7645 unsigned width, unsigned height, unsigned scale)
7646 {
7647 #if GEN_GEN == 9
7648 const struct gen_device_info *devinfo = &batch->screen->devinfo;
7649 const unsigned slice_hashing[] = {
7650 /* Because all Gen9 platforms with more than one slice require
7651 * three-way subslice hashing, a single "normal" 16x16 slice hashing
7652 * block is guaranteed to suffer from substantial imbalance, with one
7653 * subslice receiving twice as much work as the other two in the
7654 * slice.
7655 *
7656 * The performance impact of that would be particularly severe when
7657 * three-way hashing is also in use for slice balancing (which is the
7658 * case for all Gen9 GT4 platforms), because one of the slices
7659 * receives one every three 16x16 blocks in either direction, which
7660 * is roughly the periodicity of the underlying subslice imbalance
7661 * pattern ("roughly" because in reality the hardware's
7662 * implementation of three-way hashing doesn't do exact modulo 3
7663 * arithmetic, which somewhat decreases the magnitude of this effect
7664 * in practice). This leads to a systematic subslice imbalance
7665 * within that slice regardless of the size of the primitive. The
7666 * 32x32 hashing mode guarantees that the subslice imbalance within a
7667 * single slice hashing block is minimal, largely eliminating this
7668 * effect.
7669 */
7670 _32x32,
7671 /* Finest slice hashing mode available. */
7672 NORMAL
7673 };
7674 const unsigned subslice_hashing[] = {
7675 /* 16x16 would provide a slight cache locality benefit especially
7676 * visible in the sampler L1 cache efficiency of low-bandwidth
7677 * non-LLC platforms, but it comes at the cost of greater subslice
7678 * imbalance for primitives of dimensions approximately intermediate
7679 * between 16x4 and 16x16.
7680 */
7681 _16x4,
7682 /* Finest subslice hashing mode available. */
7683 _8x4
7684 };
7685 /* Dimensions of the smallest hashing block of a given hashing mode. If
7686 * the rendering area is smaller than this there can't possibly be any
7687 * benefit from switching to this mode, so we optimize out the
7688 * transition.
7689 */
7690 const unsigned min_size[][2] = {
7691 { 16, 4 },
7692 { 8, 4 }
7693 };
7694 const unsigned idx = scale > 1;
7695
7696 if (width > min_size[idx][0] || height > min_size[idx][1]) {
7697 uint32_t gt_mode;
7698
7699 iris_pack_state(GENX(GT_MODE), &gt_mode, reg) {
7700 reg.SliceHashing = (devinfo->num_slices > 1 ? slice_hashing[idx] : 0);
7701 reg.SliceHashingMask = (devinfo->num_slices > 1 ? -1 : 0);
7702 reg.SubsliceHashing = subslice_hashing[idx];
7703 reg.SubsliceHashingMask = -1;
7704 };
7705
7706 iris_emit_raw_pipe_control(batch,
7707 "workaround: CS stall before GT_MODE LRI",
7708 PIPE_CONTROL_STALL_AT_SCOREBOARD |
7709 PIPE_CONTROL_CS_STALL,
7710 NULL, 0, 0);
7711
7712 iris_emit_lri(batch, GT_MODE, gt_mode);
7713
7714 ice->state.current_hash_scale = scale;
7715 }
7716 #endif
7717 }
7718
7719 static void
7720 iris_set_frontend_noop(struct pipe_context *ctx, bool enable)
7721 {
7722 struct iris_context *ice = (struct iris_context *) ctx;
7723
7724 if (iris_batch_prepare_noop(&ice->batches[IRIS_BATCH_RENDER], enable)) {
7725 ice->state.dirty |= IRIS_ALL_DIRTY_FOR_RENDER;
7726 ice->state.stage_dirty |= IRIS_ALL_STAGE_DIRTY_FOR_RENDER;
7727 }
7728
7729 if (iris_batch_prepare_noop(&ice->batches[IRIS_BATCH_COMPUTE], enable)) {
7730 ice->state.dirty |= IRIS_ALL_DIRTY_FOR_COMPUTE;
7731 ice->state.stage_dirty |= IRIS_ALL_STAGE_DIRTY_FOR_COMPUTE;
7732 }
7733 }
7734
7735 void
7736 genX(init_state)(struct iris_context *ice)
7737 {
7738 struct pipe_context *ctx = &ice->ctx;
7739 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
7740
7741 ctx->create_blend_state = iris_create_blend_state;
7742 ctx->create_depth_stencil_alpha_state = iris_create_zsa_state;
7743 ctx->create_rasterizer_state = iris_create_rasterizer_state;
7744 ctx->create_sampler_state = iris_create_sampler_state;
7745 ctx->create_sampler_view = iris_create_sampler_view;
7746 ctx->create_surface = iris_create_surface;
7747 ctx->create_vertex_elements_state = iris_create_vertex_elements;
7748 ctx->bind_blend_state = iris_bind_blend_state;
7749 ctx->bind_depth_stencil_alpha_state = iris_bind_zsa_state;
7750 ctx->bind_sampler_states = iris_bind_sampler_states;
7751 ctx->bind_rasterizer_state = iris_bind_rasterizer_state;
7752 ctx->bind_vertex_elements_state = iris_bind_vertex_elements_state;
7753 ctx->delete_blend_state = iris_delete_state;
7754 ctx->delete_depth_stencil_alpha_state = iris_delete_state;
7755 ctx->delete_rasterizer_state = iris_delete_state;
7756 ctx->delete_sampler_state = iris_delete_state;
7757 ctx->delete_vertex_elements_state = iris_delete_state;
7758 ctx->set_blend_color = iris_set_blend_color;
7759 ctx->set_clip_state = iris_set_clip_state;
7760 ctx->set_constant_buffer = iris_set_constant_buffer;
7761 ctx->set_shader_buffers = iris_set_shader_buffers;
7762 ctx->set_shader_images = iris_set_shader_images;
7763 ctx->set_sampler_views = iris_set_sampler_views;
7764 ctx->set_compute_resources = iris_set_compute_resources;
7765 ctx->set_global_binding = iris_set_global_binding;
7766 ctx->set_tess_state = iris_set_tess_state;
7767 ctx->set_framebuffer_state = iris_set_framebuffer_state;
7768 ctx->set_polygon_stipple = iris_set_polygon_stipple;
7769 ctx->set_sample_mask = iris_set_sample_mask;
7770 ctx->set_scissor_states = iris_set_scissor_states;
7771 ctx->set_stencil_ref = iris_set_stencil_ref;
7772 ctx->set_vertex_buffers = iris_set_vertex_buffers;
7773 ctx->set_viewport_states = iris_set_viewport_states;
7774 ctx->sampler_view_destroy = iris_sampler_view_destroy;
7775 ctx->surface_destroy = iris_surface_destroy;
7776 ctx->draw_vbo = iris_draw_vbo;
7777 ctx->launch_grid = iris_launch_grid;
7778 ctx->create_stream_output_target = iris_create_stream_output_target;
7779 ctx->stream_output_target_destroy = iris_stream_output_target_destroy;
7780 ctx->set_stream_output_targets = iris_set_stream_output_targets;
7781 ctx->set_frontend_noop = iris_set_frontend_noop;
7782
7783 screen->vtbl.destroy_state = iris_destroy_state;
7784 screen->vtbl.init_render_context = iris_init_render_context;
7785 screen->vtbl.init_compute_context = iris_init_compute_context;
7786 screen->vtbl.upload_render_state = iris_upload_render_state;
7787 screen->vtbl.update_surface_base_address = iris_update_surface_base_address;
7788 screen->vtbl.upload_compute_state = iris_upload_compute_state;
7789 screen->vtbl.emit_raw_pipe_control = iris_emit_raw_pipe_control;
7790 screen->vtbl.emit_mi_report_perf_count = iris_emit_mi_report_perf_count;
7791 screen->vtbl.rebind_buffer = iris_rebind_buffer;
7792 screen->vtbl.load_register_reg32 = iris_load_register_reg32;
7793 screen->vtbl.load_register_reg64 = iris_load_register_reg64;
7794 screen->vtbl.load_register_imm32 = iris_load_register_imm32;
7795 screen->vtbl.load_register_imm64 = iris_load_register_imm64;
7796 screen->vtbl.load_register_mem32 = iris_load_register_mem32;
7797 screen->vtbl.load_register_mem64 = iris_load_register_mem64;
7798 screen->vtbl.store_register_mem32 = iris_store_register_mem32;
7799 screen->vtbl.store_register_mem64 = iris_store_register_mem64;
7800 screen->vtbl.store_data_imm32 = iris_store_data_imm32;
7801 screen->vtbl.store_data_imm64 = iris_store_data_imm64;
7802 screen->vtbl.copy_mem_mem = iris_copy_mem_mem;
7803 screen->vtbl.derived_program_state_size = iris_derived_program_state_size;
7804 screen->vtbl.store_derived_program_state = iris_store_derived_program_state;
7805 screen->vtbl.create_so_decl_list = iris_create_so_decl_list;
7806 screen->vtbl.populate_vs_key = iris_populate_vs_key;
7807 screen->vtbl.populate_tcs_key = iris_populate_tcs_key;
7808 screen->vtbl.populate_tes_key = iris_populate_tes_key;
7809 screen->vtbl.populate_gs_key = iris_populate_gs_key;
7810 screen->vtbl.populate_fs_key = iris_populate_fs_key;
7811 screen->vtbl.populate_cs_key = iris_populate_cs_key;
7812 screen->vtbl.lost_genx_state = iris_lost_genx_state;
7813
7814 ice->state.dirty = ~0ull;
7815 ice->state.stage_dirty = ~0ull;
7816
7817 ice->state.statistics_counters_enabled = true;
7818
7819 ice->state.sample_mask = 0xffff;
7820 ice->state.num_viewports = 1;
7821 ice->state.prim_mode = PIPE_PRIM_MAX;
7822 ice->state.genx = calloc(1, sizeof(struct iris_genx_state));
7823 ice->draw.derived_params.drawid = -1;
7824
7825 /* Make a 1x1x1 null surface for unbound textures */
7826 void *null_surf_map =
7827 upload_state(ice->state.surface_uploader, &ice->state.unbound_tex,
7828 4 * GENX(RENDER_SURFACE_STATE_length), 64);
7829 isl_null_fill_state(&screen->isl_dev, null_surf_map, isl_extent3d(1, 1, 1));
7830 ice->state.unbound_tex.offset +=
7831 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.unbound_tex.res));
7832
7833 /* Default all scissor rectangles to be empty regions. */
7834 for (int i = 0; i < IRIS_MAX_VIEWPORTS; i++) {
7835 ice->state.scissors[i] = (struct pipe_scissor_state) {
7836 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
7837 };
7838 }
7839 }