iris: add conditional render support
[mesa.git] / src / gallium / drivers / iris / iris_state.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included
12 * in all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
21 */
22
23 /**
24 * @file iris_state.c
25 *
26 * ============================= GENXML CODE =============================
27 * [This file is compiled once per generation.]
28 * =======================================================================
29 *
30 * This is the main state upload code.
31 *
32 * Gallium uses Constant State Objects, or CSOs, for most state. Large,
33 * complex, or highly reusable state can be created once, and bound and
34 * rebound multiple times. This is modeled with the pipe->create_*_state()
35 * and pipe->bind_*_state() hooks. Highly dynamic or inexpensive state is
36 * streamed out on the fly, via pipe->set_*_state() hooks.
37 *
38 * OpenGL involves frequently mutating context state, which is mirrored in
39 * core Mesa by highly mutable data structures. However, most applications
40 * typically draw the same things over and over - from frame to frame, most
41 * of the same objects are still visible and need to be redrawn. So, rather
42 * than inventing new state all the time, applications usually mutate to swap
43 * between known states that we've seen before.
44 *
45 * Gallium isolates us from this mutation by tracking API state, and
46 * distilling it into a set of Constant State Objects, or CSOs. Large,
47 * complex, or typically reusable state can be created once, then reused
48 * multiple times. Drivers can create and store their own associated data.
49 * This create/bind model corresponds to the pipe->create_*_state() and
50 * pipe->bind_*_state() driver hooks.
51 *
52 * Some state is cheap to create, or expected to be highly dynamic. Rather
53 * than creating and caching piles of CSOs for these, Gallium simply streams
54 * them out, via the pipe->set_*_state() driver hooks.
55 *
56 * To reduce draw time overhead, we try to compute as much state at create
57 * time as possible. Wherever possible, we translate the Gallium pipe state
58 * to 3DSTATE commands, and store those commands in the CSO. At draw time,
59 * we can simply memcpy them into a batch buffer.
60 *
61 * No hardware matches the abstraction perfectly, so some commands require
62 * information from multiple CSOs. In this case, we can store two copies
63 * of the packet (one in each CSO), and simply | together their DWords at
64 * draw time. Sometimes the second set is trivial (one or two fields), so
65 * we simply pack it at draw time.
66 *
67 * There are two main components in the file below. First, the CSO hooks
68 * create/bind/track state. The second are the draw-time upload functions,
69 * iris_upload_render_state() and iris_upload_compute_state(), which read
70 * the context state and emit the commands into the actual batch.
71 */
72
73 #include <stdio.h>
74 #include <errno.h>
75
76 #if HAVE_VALGRIND
77 #include <valgrind.h>
78 #include <memcheck.h>
79 #define VG(x) x
80 #ifndef NDEBUG
81 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
82 #endif
83 #else
84 #define VG(x)
85 #endif
86
87 #include "pipe/p_defines.h"
88 #include "pipe/p_state.h"
89 #include "pipe/p_context.h"
90 #include "pipe/p_screen.h"
91 #include "util/u_inlines.h"
92 #include "util/u_format.h"
93 #include "util/u_framebuffer.h"
94 #include "util/u_transfer.h"
95 #include "util/u_upload_mgr.h"
96 #include "util/u_viewport.h"
97 #include "i915_drm.h"
98 #include "nir.h"
99 #include "intel/compiler/brw_compiler.h"
100 #include "intel/common/gen_l3_config.h"
101 #include "intel/common/gen_sample_positions.h"
102 #include "iris_batch.h"
103 #include "iris_context.h"
104 #include "iris_pipe.h"
105 #include "iris_resource.h"
106
107 #define __gen_address_type struct iris_address
108 #define __gen_user_data struct iris_batch
109
110 #define ARRAY_BYTES(x) (sizeof(uint32_t) * ARRAY_SIZE(x))
111
112 static uint64_t
113 __gen_combine_address(struct iris_batch *batch, void *location,
114 struct iris_address addr, uint32_t delta)
115 {
116 uint64_t result = addr.offset + delta;
117
118 if (addr.bo) {
119 iris_use_pinned_bo(batch, addr.bo, addr.write);
120 /* Assume this is a general address, not relative to a base. */
121 result += addr.bo->gtt_offset;
122 }
123
124 return result;
125 }
126
127 #define __genxml_cmd_length(cmd) cmd ## _length
128 #define __genxml_cmd_length_bias(cmd) cmd ## _length_bias
129 #define __genxml_cmd_header(cmd) cmd ## _header
130 #define __genxml_cmd_pack(cmd) cmd ## _pack
131
132 #define _iris_pack_command(batch, cmd, dst, name) \
133 for (struct cmd name = { __genxml_cmd_header(cmd) }, \
134 *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
135 ({ __genxml_cmd_pack(cmd)(batch, (void *)_dst, &name); \
136 _dst = NULL; \
137 }))
138
139 #define iris_pack_command(cmd, dst, name) \
140 _iris_pack_command(NULL, cmd, dst, name)
141
142 #define iris_pack_state(cmd, dst, name) \
143 for (struct cmd name = {}, \
144 *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
145 __genxml_cmd_pack(cmd)(NULL, (void *)_dst, &name), \
146 _dst = NULL)
147
148 #define iris_emit_cmd(batch, cmd, name) \
149 _iris_pack_command(batch, cmd, iris_get_command_space(batch, 4 * __genxml_cmd_length(cmd)), name)
150
151 #define iris_emit_merge(batch, dwords0, dwords1, num_dwords) \
152 do { \
153 uint32_t *dw = iris_get_command_space(batch, 4 * num_dwords); \
154 for (uint32_t i = 0; i < num_dwords; i++) \
155 dw[i] = (dwords0)[i] | (dwords1)[i]; \
156 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, num_dwords)); \
157 } while (0)
158
159 #include "genxml/genX_pack.h"
160 #include "genxml/gen_macros.h"
161 #include "genxml/genX_bits.h"
162
163 #define MOCS_WB (2 << 1)
164
165 /**
166 * Statically assert that PIPE_* enums match the hardware packets.
167 * (As long as they match, we don't need to translate them.)
168 */
169 UNUSED static void pipe_asserts()
170 {
171 #define PIPE_ASSERT(x) STATIC_ASSERT((int)x)
172
173 /* pipe_logicop happens to match the hardware. */
174 PIPE_ASSERT(PIPE_LOGICOP_CLEAR == LOGICOP_CLEAR);
175 PIPE_ASSERT(PIPE_LOGICOP_NOR == LOGICOP_NOR);
176 PIPE_ASSERT(PIPE_LOGICOP_AND_INVERTED == LOGICOP_AND_INVERTED);
177 PIPE_ASSERT(PIPE_LOGICOP_COPY_INVERTED == LOGICOP_COPY_INVERTED);
178 PIPE_ASSERT(PIPE_LOGICOP_AND_REVERSE == LOGICOP_AND_REVERSE);
179 PIPE_ASSERT(PIPE_LOGICOP_INVERT == LOGICOP_INVERT);
180 PIPE_ASSERT(PIPE_LOGICOP_XOR == LOGICOP_XOR);
181 PIPE_ASSERT(PIPE_LOGICOP_NAND == LOGICOP_NAND);
182 PIPE_ASSERT(PIPE_LOGICOP_AND == LOGICOP_AND);
183 PIPE_ASSERT(PIPE_LOGICOP_EQUIV == LOGICOP_EQUIV);
184 PIPE_ASSERT(PIPE_LOGICOP_NOOP == LOGICOP_NOOP);
185 PIPE_ASSERT(PIPE_LOGICOP_OR_INVERTED == LOGICOP_OR_INVERTED);
186 PIPE_ASSERT(PIPE_LOGICOP_COPY == LOGICOP_COPY);
187 PIPE_ASSERT(PIPE_LOGICOP_OR_REVERSE == LOGICOP_OR_REVERSE);
188 PIPE_ASSERT(PIPE_LOGICOP_OR == LOGICOP_OR);
189 PIPE_ASSERT(PIPE_LOGICOP_SET == LOGICOP_SET);
190
191 /* pipe_blend_func happens to match the hardware. */
192 PIPE_ASSERT(PIPE_BLENDFACTOR_ONE == BLENDFACTOR_ONE);
193 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_COLOR == BLENDFACTOR_SRC_COLOR);
194 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA == BLENDFACTOR_SRC_ALPHA);
195 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_ALPHA == BLENDFACTOR_DST_ALPHA);
196 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_COLOR == BLENDFACTOR_DST_COLOR);
197 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE == BLENDFACTOR_SRC_ALPHA_SATURATE);
198 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_COLOR == BLENDFACTOR_CONST_COLOR);
199 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_ALPHA == BLENDFACTOR_CONST_ALPHA);
200 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_COLOR == BLENDFACTOR_SRC1_COLOR);
201 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_ALPHA == BLENDFACTOR_SRC1_ALPHA);
202 PIPE_ASSERT(PIPE_BLENDFACTOR_ZERO == BLENDFACTOR_ZERO);
203 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_COLOR == BLENDFACTOR_INV_SRC_COLOR);
204 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_ALPHA == BLENDFACTOR_INV_SRC_ALPHA);
205 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_ALPHA == BLENDFACTOR_INV_DST_ALPHA);
206 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_COLOR == BLENDFACTOR_INV_DST_COLOR);
207 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_COLOR == BLENDFACTOR_INV_CONST_COLOR);
208 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_ALPHA == BLENDFACTOR_INV_CONST_ALPHA);
209 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_COLOR == BLENDFACTOR_INV_SRC1_COLOR);
210 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_ALPHA == BLENDFACTOR_INV_SRC1_ALPHA);
211
212 /* pipe_blend_func happens to match the hardware. */
213 PIPE_ASSERT(PIPE_BLEND_ADD == BLENDFUNCTION_ADD);
214 PIPE_ASSERT(PIPE_BLEND_SUBTRACT == BLENDFUNCTION_SUBTRACT);
215 PIPE_ASSERT(PIPE_BLEND_REVERSE_SUBTRACT == BLENDFUNCTION_REVERSE_SUBTRACT);
216 PIPE_ASSERT(PIPE_BLEND_MIN == BLENDFUNCTION_MIN);
217 PIPE_ASSERT(PIPE_BLEND_MAX == BLENDFUNCTION_MAX);
218
219 /* pipe_stencil_op happens to match the hardware. */
220 PIPE_ASSERT(PIPE_STENCIL_OP_KEEP == STENCILOP_KEEP);
221 PIPE_ASSERT(PIPE_STENCIL_OP_ZERO == STENCILOP_ZERO);
222 PIPE_ASSERT(PIPE_STENCIL_OP_REPLACE == STENCILOP_REPLACE);
223 PIPE_ASSERT(PIPE_STENCIL_OP_INCR == STENCILOP_INCRSAT);
224 PIPE_ASSERT(PIPE_STENCIL_OP_DECR == STENCILOP_DECRSAT);
225 PIPE_ASSERT(PIPE_STENCIL_OP_INCR_WRAP == STENCILOP_INCR);
226 PIPE_ASSERT(PIPE_STENCIL_OP_DECR_WRAP == STENCILOP_DECR);
227 PIPE_ASSERT(PIPE_STENCIL_OP_INVERT == STENCILOP_INVERT);
228
229 /* pipe_sprite_coord_mode happens to match 3DSTATE_SBE */
230 PIPE_ASSERT(PIPE_SPRITE_COORD_UPPER_LEFT == UPPERLEFT);
231 PIPE_ASSERT(PIPE_SPRITE_COORD_LOWER_LEFT == LOWERLEFT);
232 #undef PIPE_ASSERT
233 }
234
235 static unsigned
236 translate_prim_type(enum pipe_prim_type prim, uint8_t verts_per_patch)
237 {
238 static const unsigned map[] = {
239 [PIPE_PRIM_POINTS] = _3DPRIM_POINTLIST,
240 [PIPE_PRIM_LINES] = _3DPRIM_LINELIST,
241 [PIPE_PRIM_LINE_LOOP] = _3DPRIM_LINELOOP,
242 [PIPE_PRIM_LINE_STRIP] = _3DPRIM_LINESTRIP,
243 [PIPE_PRIM_TRIANGLES] = _3DPRIM_TRILIST,
244 [PIPE_PRIM_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
245 [PIPE_PRIM_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
246 [PIPE_PRIM_QUADS] = _3DPRIM_QUADLIST,
247 [PIPE_PRIM_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
248 [PIPE_PRIM_POLYGON] = _3DPRIM_POLYGON,
249 [PIPE_PRIM_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
250 [PIPE_PRIM_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
251 [PIPE_PRIM_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
252 [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
253 [PIPE_PRIM_PATCHES] = _3DPRIM_PATCHLIST_1 - 1,
254 };
255
256 return map[prim] + (prim == PIPE_PRIM_PATCHES ? verts_per_patch : 0);
257 }
258
259 static unsigned
260 translate_compare_func(enum pipe_compare_func pipe_func)
261 {
262 static const unsigned map[] = {
263 [PIPE_FUNC_NEVER] = COMPAREFUNCTION_NEVER,
264 [PIPE_FUNC_LESS] = COMPAREFUNCTION_LESS,
265 [PIPE_FUNC_EQUAL] = COMPAREFUNCTION_EQUAL,
266 [PIPE_FUNC_LEQUAL] = COMPAREFUNCTION_LEQUAL,
267 [PIPE_FUNC_GREATER] = COMPAREFUNCTION_GREATER,
268 [PIPE_FUNC_NOTEQUAL] = COMPAREFUNCTION_NOTEQUAL,
269 [PIPE_FUNC_GEQUAL] = COMPAREFUNCTION_GEQUAL,
270 [PIPE_FUNC_ALWAYS] = COMPAREFUNCTION_ALWAYS,
271 };
272 return map[pipe_func];
273 }
274
275 static unsigned
276 translate_shadow_func(enum pipe_compare_func pipe_func)
277 {
278 /* Gallium specifies the result of shadow comparisons as:
279 *
280 * 1 if ref <op> texel,
281 * 0 otherwise.
282 *
283 * The hardware does:
284 *
285 * 0 if texel <op> ref,
286 * 1 otherwise.
287 *
288 * So we need to flip the operator and also negate.
289 */
290 static const unsigned map[] = {
291 [PIPE_FUNC_NEVER] = PREFILTEROPALWAYS,
292 [PIPE_FUNC_LESS] = PREFILTEROPLEQUAL,
293 [PIPE_FUNC_EQUAL] = PREFILTEROPNOTEQUAL,
294 [PIPE_FUNC_LEQUAL] = PREFILTEROPLESS,
295 [PIPE_FUNC_GREATER] = PREFILTEROPGEQUAL,
296 [PIPE_FUNC_NOTEQUAL] = PREFILTEROPEQUAL,
297 [PIPE_FUNC_GEQUAL] = PREFILTEROPGREATER,
298 [PIPE_FUNC_ALWAYS] = PREFILTEROPNEVER,
299 };
300 return map[pipe_func];
301 }
302
303 static unsigned
304 translate_cull_mode(unsigned pipe_face)
305 {
306 static const unsigned map[4] = {
307 [PIPE_FACE_NONE] = CULLMODE_NONE,
308 [PIPE_FACE_FRONT] = CULLMODE_FRONT,
309 [PIPE_FACE_BACK] = CULLMODE_BACK,
310 [PIPE_FACE_FRONT_AND_BACK] = CULLMODE_BOTH,
311 };
312 return map[pipe_face];
313 }
314
315 static unsigned
316 translate_fill_mode(unsigned pipe_polymode)
317 {
318 static const unsigned map[4] = {
319 [PIPE_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
320 [PIPE_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
321 [PIPE_POLYGON_MODE_POINT] = FILL_MODE_POINT,
322 [PIPE_POLYGON_MODE_FILL_RECTANGLE] = FILL_MODE_SOLID,
323 };
324 return map[pipe_polymode];
325 }
326
327 static unsigned
328 translate_mip_filter(enum pipe_tex_mipfilter pipe_mip)
329 {
330 static const unsigned map[] = {
331 [PIPE_TEX_MIPFILTER_NEAREST] = MIPFILTER_NEAREST,
332 [PIPE_TEX_MIPFILTER_LINEAR] = MIPFILTER_LINEAR,
333 [PIPE_TEX_MIPFILTER_NONE] = MIPFILTER_NONE,
334 };
335 return map[pipe_mip];
336 }
337
338 static uint32_t
339 translate_wrap(unsigned pipe_wrap)
340 {
341 static const unsigned map[] = {
342 [PIPE_TEX_WRAP_REPEAT] = TCM_WRAP,
343 [PIPE_TEX_WRAP_CLAMP] = TCM_HALF_BORDER,
344 [PIPE_TEX_WRAP_CLAMP_TO_EDGE] = TCM_CLAMP,
345 [PIPE_TEX_WRAP_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER,
346 [PIPE_TEX_WRAP_MIRROR_REPEAT] = TCM_MIRROR,
347 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE,
348
349 /* These are unsupported. */
350 [PIPE_TEX_WRAP_MIRROR_CLAMP] = -1,
351 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER] = -1,
352 };
353 return map[pipe_wrap];
354 }
355
356 static struct iris_address
357 ro_bo(struct iris_bo *bo, uint64_t offset)
358 {
359 /* CSOs must pass NULL for bo! Otherwise it will add the BO to the
360 * validation list at CSO creation time, instead of draw time.
361 */
362 return (struct iris_address) { .bo = bo, .offset = offset };
363 }
364
365 static struct iris_address
366 rw_bo(struct iris_bo *bo, uint64_t offset)
367 {
368 /* CSOs must pass NULL for bo! Otherwise it will add the BO to the
369 * validation list at CSO creation time, instead of draw time.
370 */
371 return (struct iris_address) { .bo = bo, .offset = offset, .write = true };
372 }
373
374 /**
375 * Allocate space for some indirect state.
376 *
377 * Return a pointer to the map (to fill it out) and a state ref (for
378 * referring to the state in GPU commands).
379 */
380 static void *
381 upload_state(struct u_upload_mgr *uploader,
382 struct iris_state_ref *ref,
383 unsigned size,
384 unsigned alignment)
385 {
386 void *p = NULL;
387 u_upload_alloc(uploader, 0, size, alignment, &ref->offset, &ref->res, &p);
388 return p;
389 }
390
391 /**
392 * Stream out temporary/short-lived state.
393 *
394 * This allocates space, pins the BO, and includes the BO address in the
395 * returned offset (which works because all state lives in 32-bit memory
396 * zones).
397 */
398 static uint32_t *
399 stream_state(struct iris_batch *batch,
400 struct u_upload_mgr *uploader,
401 struct pipe_resource **out_res,
402 unsigned size,
403 unsigned alignment,
404 uint32_t *out_offset)
405 {
406 void *ptr = NULL;
407
408 u_upload_alloc(uploader, 0, size, alignment, out_offset, out_res, &ptr);
409
410 struct iris_bo *bo = iris_resource_bo(*out_res);
411 iris_use_pinned_bo(batch, bo, false);
412
413 *out_offset += iris_bo_offset_from_base_address(bo);
414
415 return ptr;
416 }
417
418 /**
419 * stream_state() + memcpy.
420 */
421 static uint32_t
422 emit_state(struct iris_batch *batch,
423 struct u_upload_mgr *uploader,
424 struct pipe_resource **out_res,
425 const void *data,
426 unsigned size,
427 unsigned alignment)
428 {
429 unsigned offset = 0;
430 uint32_t *map =
431 stream_state(batch, uploader, out_res, size, alignment, &offset);
432
433 if (map)
434 memcpy(map, data, size);
435
436 return offset;
437 }
438
439 /**
440 * Did field 'x' change between 'old_cso' and 'new_cso'?
441 *
442 * (If so, we may want to set some dirty flags.)
443 */
444 #define cso_changed(x) (!old_cso || (old_cso->x != new_cso->x))
445 #define cso_changed_memcmp(x) \
446 (!old_cso || memcmp(old_cso->x, new_cso->x, sizeof(old_cso->x)) != 0)
447
448 static void
449 flush_for_state_base_change(struct iris_batch *batch)
450 {
451 /* Flush before emitting STATE_BASE_ADDRESS.
452 *
453 * This isn't documented anywhere in the PRM. However, it seems to be
454 * necessary prior to changing the surface state base adress. We've
455 * seen issues in Vulkan where we get GPU hangs when using multi-level
456 * command buffers which clear depth, reset state base address, and then
457 * go render stuff.
458 *
459 * Normally, in GL, we would trust the kernel to do sufficient stalls
460 * and flushes prior to executing our batch. However, it doesn't seem
461 * as if the kernel's flushing is always sufficient and we don't want to
462 * rely on it.
463 *
464 * We make this an end-of-pipe sync instead of a normal flush because we
465 * do not know the current status of the GPU. On Haswell at least,
466 * having a fast-clear operation in flight at the same time as a normal
467 * rendering operation can cause hangs. Since the kernel's flushing is
468 * insufficient, we need to ensure that any rendering operations from
469 * other processes are definitely complete before we try to do our own
470 * rendering. It's a bit of a big hammer but it appears to work.
471 */
472 iris_emit_end_of_pipe_sync(batch,
473 PIPE_CONTROL_RENDER_TARGET_FLUSH |
474 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
475 PIPE_CONTROL_DATA_CACHE_FLUSH);
476 }
477
478 static void
479 _iris_emit_lri(struct iris_batch *batch, uint32_t reg, uint32_t val)
480 {
481 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
482 lri.RegisterOffset = reg;
483 lri.DataDWord = val;
484 }
485 }
486 #define iris_emit_lri(b, r, v) _iris_emit_lri(b, GENX(r##_num), v)
487
488 static void
489 _iris_emit_lrr(struct iris_batch *batch, uint32_t src, uint32_t dst)
490 {
491 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
492 lrr.SourceRegisterAddress = src;
493 lrr.DestinationRegisterAddress = dst;
494 }
495 }
496
497 static void
498 emit_pipeline_select(struct iris_batch *batch, uint32_t pipeline)
499 {
500 #if GEN_GEN >= 8 && GEN_GEN < 10
501 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
502 *
503 * Software must clear the COLOR_CALC_STATE Valid field in
504 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
505 * with Pipeline Select set to GPGPU.
506 *
507 * The internal hardware docs recommend the same workaround for Gen9
508 * hardware too.
509 */
510 if (pipeline == GPGPU)
511 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
512 #endif
513
514
515 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
516 * PIPELINE_SELECT [DevBWR+]":
517 *
518 * "Project: DEVSNB+
519 *
520 * Software must ensure all the write caches are flushed through a
521 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
522 * command to invalidate read only caches prior to programming
523 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode."
524 */
525 iris_emit_pipe_control_flush(batch,
526 PIPE_CONTROL_RENDER_TARGET_FLUSH |
527 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
528 PIPE_CONTROL_DATA_CACHE_FLUSH |
529 PIPE_CONTROL_CS_STALL);
530
531 iris_emit_pipe_control_flush(batch,
532 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
533 PIPE_CONTROL_CONST_CACHE_INVALIDATE |
534 PIPE_CONTROL_STATE_CACHE_INVALIDATE |
535 PIPE_CONTROL_INSTRUCTION_INVALIDATE);
536
537 iris_emit_cmd(batch, GENX(PIPELINE_SELECT), sel) {
538 #if GEN_GEN >= 9
539 sel.MaskBits = 3;
540 #endif
541 sel.PipelineSelection = pipeline;
542 }
543 }
544
545 UNUSED static void
546 init_glk_barrier_mode(struct iris_batch *batch, uint32_t value)
547 {
548 #if GEN_GEN == 9
549 /* Project: DevGLK
550 *
551 * "This chicken bit works around a hardware issue with barrier
552 * logic encountered when switching between GPGPU and 3D pipelines.
553 * To workaround the issue, this mode bit should be set after a
554 * pipeline is selected."
555 */
556 uint32_t reg_val;
557 iris_pack_state(GENX(SLICE_COMMON_ECO_CHICKEN1), &reg_val, reg) {
558 reg.GLKBarrierMode = value;
559 reg.GLKBarrierModeMask = 1;
560 }
561 iris_emit_lri(batch, SLICE_COMMON_ECO_CHICKEN1, reg_val);
562 #endif
563 }
564
565 static void
566 init_state_base_address(struct iris_batch *batch)
567 {
568 flush_for_state_base_change(batch);
569
570 /* We program most base addresses once at context initialization time.
571 * Each base address points at a 4GB memory zone, and never needs to
572 * change. See iris_bufmgr.h for a description of the memory zones.
573 *
574 * The one exception is Surface State Base Address, which needs to be
575 * updated occasionally. See iris_binder.c for the details there.
576 */
577 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
578 #if 0
579 // XXX: MOCS is stupid for this.
580 sba.GeneralStateMemoryObjectControlState = MOCS_WB;
581 sba.StatelessDataPortAccessMemoryObjectControlState = MOCS_WB;
582 sba.DynamicStateMemoryObjectControlState = MOCS_WB;
583 sba.IndirectObjectMemoryObjectControlState = MOCS_WB;
584 sba.InstructionMemoryObjectControlState = MOCS_WB;
585 sba.BindlessSurfaceStateMemoryObjectControlState = MOCS_WB;
586 #endif
587
588 sba.GeneralStateBaseAddressModifyEnable = true;
589 sba.DynamicStateBaseAddressModifyEnable = true;
590 sba.IndirectObjectBaseAddressModifyEnable = true;
591 sba.InstructionBaseAddressModifyEnable = true;
592 sba.GeneralStateBufferSizeModifyEnable = true;
593 sba.DynamicStateBufferSizeModifyEnable = true;
594 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
595 sba.IndirectObjectBufferSizeModifyEnable = true;
596 sba.InstructionBuffersizeModifyEnable = true;
597
598 sba.InstructionBaseAddress = ro_bo(NULL, IRIS_MEMZONE_SHADER_START);
599 sba.DynamicStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_DYNAMIC_START);
600
601 sba.GeneralStateBufferSize = 0xfffff;
602 sba.IndirectObjectBufferSize = 0xfffff;
603 sba.InstructionBufferSize = 0xfffff;
604 sba.DynamicStateBufferSize = 0xfffff;
605 }
606 }
607
608 /**
609 * Upload the initial GPU state for a render context.
610 *
611 * This sets some invariant state that needs to be programmed a particular
612 * way, but we never actually change.
613 */
614 static void
615 iris_init_render_context(struct iris_screen *screen,
616 struct iris_batch *batch,
617 struct iris_vtable *vtbl,
618 struct pipe_debug_callback *dbg)
619 {
620 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
621 uint32_t reg_val;
622
623 emit_pipeline_select(batch, _3D);
624
625 init_state_base_address(batch);
626
627 // XXX: INSTPM on Gen8
628 iris_pack_state(GENX(CS_DEBUG_MODE2), &reg_val, reg) {
629 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
630 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
631 }
632 iris_emit_lri(batch, CS_DEBUG_MODE2, reg_val);
633
634 #if GEN_GEN == 9
635 iris_pack_state(GENX(CACHE_MODE_1), &reg_val, reg) {
636 reg.FloatBlendOptimizationEnable = true;
637 reg.FloatBlendOptimizationEnableMask = true;
638 reg.PartialResolveDisableInVC = true;
639 reg.PartialResolveDisableInVCMask = true;
640 }
641 iris_emit_lri(batch, CACHE_MODE_1, reg_val);
642
643 if (devinfo->is_geminilake)
644 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_3D_HULL);
645 #endif
646
647 #if GEN_GEN == 11
648 iris_pack_state(GENX(SAMPLER_MODE), &reg_val, reg) {
649 reg.HeaderlessMessageforPreemptableContexts = 1;
650 reg.HeaderlessMessageforPreemptableContextsMask = 1;
651 }
652 iris_emit_lri(batch, SAMPLER_MODE, reg_val);
653
654 // XXX: 3D_MODE?
655 #endif
656
657 /* 3DSTATE_DRAWING_RECTANGLE is non-pipelined, so we want to avoid
658 * changing it dynamically. We set it to the maximum size here, and
659 * instead include the render target dimensions in the viewport, so
660 * viewport extents clipping takes care of pruning stray geometry.
661 */
662 iris_emit_cmd(batch, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
663 rect.ClippedDrawingRectangleXMax = UINT16_MAX;
664 rect.ClippedDrawingRectangleYMax = UINT16_MAX;
665 }
666
667 /* Set the initial MSAA sample positions. */
668 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_PATTERN), pat) {
669 GEN_SAMPLE_POS_1X(pat._1xSample);
670 GEN_SAMPLE_POS_2X(pat._2xSample);
671 GEN_SAMPLE_POS_4X(pat._4xSample);
672 GEN_SAMPLE_POS_8X(pat._8xSample);
673 GEN_SAMPLE_POS_16X(pat._16xSample);
674 }
675
676 /* Use the legacy AA line coverage computation. */
677 iris_emit_cmd(batch, GENX(3DSTATE_AA_LINE_PARAMETERS), foo);
678
679 /* Disable chromakeying (it's for media) */
680 iris_emit_cmd(batch, GENX(3DSTATE_WM_CHROMAKEY), foo);
681
682 /* We want regular rendering, not special HiZ operations. */
683 iris_emit_cmd(batch, GENX(3DSTATE_WM_HZ_OP), foo);
684
685 /* No polygon stippling offsets are necessary. */
686 // XXX: may need to set an offset for origin-UL framebuffers
687 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_OFFSET), foo);
688
689 /* Set a static partitioning of the push constant area. */
690 // XXX: this may be a bad idea...could starve the push ringbuffers...
691 for (int i = 0; i <= MESA_SHADER_FRAGMENT; i++) {
692 iris_emit_cmd(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
693 alloc._3DCommandSubOpcode = 18 + i;
694 alloc.ConstantBufferOffset = 6 * i;
695 alloc.ConstantBufferSize = i == MESA_SHADER_FRAGMENT ? 8 : 6;
696 }
697 }
698 }
699
700 static void
701 iris_init_compute_context(struct iris_screen *screen,
702 struct iris_batch *batch,
703 struct iris_vtable *vtbl,
704 struct pipe_debug_callback *dbg)
705 {
706 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
707
708 emit_pipeline_select(batch, GPGPU);
709
710 const bool has_slm = true;
711 const bool wants_dc_cache = true;
712
713 const struct gen_l3_weights w =
714 gen_get_default_l3_weights(devinfo, wants_dc_cache, has_slm);
715 const struct gen_l3_config *cfg = gen_get_l3_config(devinfo, w);
716
717 uint32_t reg_val;
718 iris_pack_state(GENX(L3CNTLREG), &reg_val, reg) {
719 reg.SLMEnable = has_slm;
720 #if GEN_GEN == 11
721 /* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set
722 * in L3CNTLREG register. The default setting of the bit is not the
723 * desirable behavior.
724 */
725 reg.ErrorDetectionBehaviorControl = true;
726 #endif
727 reg.URBAllocation = cfg->n[GEN_L3P_URB];
728 reg.ROAllocation = cfg->n[GEN_L3P_RO];
729 reg.DCAllocation = cfg->n[GEN_L3P_DC];
730 reg.AllAllocation = cfg->n[GEN_L3P_ALL];
731 }
732 iris_emit_lri(batch, L3CNTLREG, reg_val);
733
734 init_state_base_address(batch);
735
736 #if GEN_GEN == 9
737 if (devinfo->is_geminilake)
738 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_GPGPU);
739 #endif
740 }
741
742 struct iris_vertex_buffer_state {
743 /** The 3DSTATE_VERTEX_BUFFERS hardware packet. */
744 uint32_t vertex_buffers[1 + 33 * GENX(VERTEX_BUFFER_STATE_length)];
745
746 /** The resource to source vertex data from. */
747 struct pipe_resource *resources[33];
748
749 /** The number of bound vertex buffers. */
750 unsigned num_buffers;
751 };
752
753 struct iris_depth_buffer_state {
754 /* Depth/HiZ/Stencil related hardware packets. */
755 uint32_t packets[GENX(3DSTATE_DEPTH_BUFFER_length) +
756 GENX(3DSTATE_STENCIL_BUFFER_length) +
757 GENX(3DSTATE_HIER_DEPTH_BUFFER_length) +
758 GENX(3DSTATE_CLEAR_PARAMS_length)];
759 };
760
761 /**
762 * Generation-specific context state (ice->state.genx->...).
763 *
764 * Most state can go in iris_context directly, but these encode hardware
765 * packets which vary by generation.
766 */
767 struct iris_genx_state {
768 /** SF_CLIP_VIEWPORT */
769 uint32_t sf_cl_vp[GENX(SF_CLIP_VIEWPORT_length) * IRIS_MAX_VIEWPORTS];
770
771 struct iris_vertex_buffer_state vertex_buffers;
772 struct iris_depth_buffer_state depth_buffer;
773
774 uint32_t so_buffers[4 * GENX(3DSTATE_SO_BUFFER_length)];
775 uint32_t streamout[4 * GENX(3DSTATE_STREAMOUT_length)];
776 };
777
778 /**
779 * The pipe->set_blend_color() driver hook.
780 *
781 * This corresponds to our COLOR_CALC_STATE.
782 */
783 static void
784 iris_set_blend_color(struct pipe_context *ctx,
785 const struct pipe_blend_color *state)
786 {
787 struct iris_context *ice = (struct iris_context *) ctx;
788
789 /* Our COLOR_CALC_STATE is exactly pipe_blend_color, so just memcpy */
790 memcpy(&ice->state.blend_color, state, sizeof(struct pipe_blend_color));
791 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
792 }
793
794 /**
795 * Gallium CSO for blend state (see pipe_blend_state).
796 */
797 struct iris_blend_state {
798 /** Partial 3DSTATE_PS_BLEND */
799 uint32_t ps_blend[GENX(3DSTATE_PS_BLEND_length)];
800
801 /** Partial BLEND_STATE */
802 uint32_t blend_state[GENX(BLEND_STATE_length) +
803 BRW_MAX_DRAW_BUFFERS * GENX(BLEND_STATE_ENTRY_length)];
804
805 bool alpha_to_coverage; /* for shader key */
806 };
807
808 /**
809 * The pipe->create_blend_state() driver hook.
810 *
811 * Translates a pipe_blend_state into iris_blend_state.
812 */
813 static void *
814 iris_create_blend_state(struct pipe_context *ctx,
815 const struct pipe_blend_state *state)
816 {
817 struct iris_blend_state *cso = malloc(sizeof(struct iris_blend_state));
818 uint32_t *blend_entry = cso->blend_state + GENX(BLEND_STATE_length);
819
820 cso->alpha_to_coverage = state->alpha_to_coverage;
821
822 bool indep_alpha_blend = false;
823
824 for (int i = 0; i < BRW_MAX_DRAW_BUFFERS; i++) {
825 const struct pipe_rt_blend_state *rt =
826 &state->rt[state->independent_blend_enable ? i : 0];
827
828 if (rt->rgb_func != rt->alpha_func ||
829 rt->rgb_src_factor != rt->alpha_src_factor ||
830 rt->rgb_dst_factor != rt->alpha_dst_factor)
831 indep_alpha_blend = true;
832
833 iris_pack_state(GENX(BLEND_STATE_ENTRY), blend_entry, be) {
834 be.LogicOpEnable = state->logicop_enable;
835 be.LogicOpFunction = state->logicop_func;
836
837 be.PreBlendSourceOnlyClampEnable = false;
838 be.ColorClampRange = COLORCLAMP_RTFORMAT;
839 be.PreBlendColorClampEnable = true;
840 be.PostBlendColorClampEnable = true;
841
842 be.ColorBufferBlendEnable = rt->blend_enable;
843
844 be.ColorBlendFunction = rt->rgb_func;
845 be.AlphaBlendFunction = rt->alpha_func;
846 be.SourceBlendFactor = rt->rgb_src_factor;
847 be.SourceAlphaBlendFactor = rt->alpha_src_factor;
848 be.DestinationBlendFactor = rt->rgb_dst_factor;
849 be.DestinationAlphaBlendFactor = rt->alpha_dst_factor;
850
851 be.WriteDisableRed = !(rt->colormask & PIPE_MASK_R);
852 be.WriteDisableGreen = !(rt->colormask & PIPE_MASK_G);
853 be.WriteDisableBlue = !(rt->colormask & PIPE_MASK_B);
854 be.WriteDisableAlpha = !(rt->colormask & PIPE_MASK_A);
855 }
856 blend_entry += GENX(BLEND_STATE_ENTRY_length);
857 }
858
859 iris_pack_command(GENX(3DSTATE_PS_BLEND), cso->ps_blend, pb) {
860 /* pb.HasWriteableRT is filled in at draw time. */
861 /* pb.AlphaTestEnable is filled in at draw time. */
862 pb.AlphaToCoverageEnable = state->alpha_to_coverage;
863 pb.IndependentAlphaBlendEnable = indep_alpha_blend;
864
865 pb.ColorBufferBlendEnable = state->rt[0].blend_enable;
866
867 pb.SourceBlendFactor = state->rt[0].rgb_src_factor;
868 pb.SourceAlphaBlendFactor = state->rt[0].alpha_src_factor;
869 pb.DestinationBlendFactor = state->rt[0].rgb_dst_factor;
870 pb.DestinationAlphaBlendFactor = state->rt[0].alpha_dst_factor;
871 }
872
873 iris_pack_state(GENX(BLEND_STATE), cso->blend_state, bs) {
874 bs.AlphaToCoverageEnable = state->alpha_to_coverage;
875 bs.IndependentAlphaBlendEnable = indep_alpha_blend;
876 bs.AlphaToOneEnable = state->alpha_to_one;
877 bs.AlphaToCoverageDitherEnable = state->alpha_to_coverage;
878 bs.ColorDitherEnable = state->dither;
879 /* bl.AlphaTestEnable and bs.AlphaTestFunction are filled in later. */
880 }
881
882
883 return cso;
884 }
885
886 /**
887 * The pipe->bind_blend_state() driver hook.
888 *
889 * Bind a blending CSO and flag related dirty bits.
890 */
891 static void
892 iris_bind_blend_state(struct pipe_context *ctx, void *state)
893 {
894 struct iris_context *ice = (struct iris_context *) ctx;
895 ice->state.cso_blend = state;
896 ice->state.dirty |= IRIS_DIRTY_PS_BLEND;
897 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
898 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_BLEND];
899 }
900
901 /**
902 * Gallium CSO for depth, stencil, and alpha testing state.
903 */
904 struct iris_depth_stencil_alpha_state {
905 /** Partial 3DSTATE_WM_DEPTH_STENCIL. */
906 uint32_t wmds[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
907
908 /** Outbound to BLEND_STATE, 3DSTATE_PS_BLEND, COLOR_CALC_STATE. */
909 struct pipe_alpha_state alpha;
910
911 /** Outbound to resolve and cache set tracking. */
912 bool depth_writes_enabled;
913 bool stencil_writes_enabled;
914 };
915
916 /**
917 * The pipe->create_depth_stencil_alpha_state() driver hook.
918 *
919 * We encode most of 3DSTATE_WM_DEPTH_STENCIL, and just save off the alpha
920 * testing state since we need pieces of it in a variety of places.
921 */
922 static void *
923 iris_create_zsa_state(struct pipe_context *ctx,
924 const struct pipe_depth_stencil_alpha_state *state)
925 {
926 struct iris_depth_stencil_alpha_state *cso =
927 malloc(sizeof(struct iris_depth_stencil_alpha_state));
928
929 bool two_sided_stencil = state->stencil[1].enabled;
930
931 cso->alpha = state->alpha;
932 cso->depth_writes_enabled = state->depth.writemask;
933 cso->stencil_writes_enabled =
934 state->stencil[0].writemask != 0 ||
935 (two_sided_stencil && state->stencil[1].writemask != 1);
936
937 /* The state tracker needs to optimize away EQUAL writes for us. */
938 assert(!(state->depth.func == PIPE_FUNC_EQUAL && state->depth.writemask));
939
940 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), cso->wmds, wmds) {
941 wmds.StencilFailOp = state->stencil[0].fail_op;
942 wmds.StencilPassDepthFailOp = state->stencil[0].zfail_op;
943 wmds.StencilPassDepthPassOp = state->stencil[0].zpass_op;
944 wmds.StencilTestFunction =
945 translate_compare_func(state->stencil[0].func);
946 wmds.BackfaceStencilFailOp = state->stencil[1].fail_op;
947 wmds.BackfaceStencilPassDepthFailOp = state->stencil[1].zfail_op;
948 wmds.BackfaceStencilPassDepthPassOp = state->stencil[1].zpass_op;
949 wmds.BackfaceStencilTestFunction =
950 translate_compare_func(state->stencil[1].func);
951 wmds.DepthTestFunction = translate_compare_func(state->depth.func);
952 wmds.DoubleSidedStencilEnable = two_sided_stencil;
953 wmds.StencilTestEnable = state->stencil[0].enabled;
954 wmds.StencilBufferWriteEnable =
955 state->stencil[0].writemask != 0 ||
956 (two_sided_stencil && state->stencil[1].writemask != 0);
957 wmds.DepthTestEnable = state->depth.enabled;
958 wmds.DepthBufferWriteEnable = state->depth.writemask;
959 wmds.StencilTestMask = state->stencil[0].valuemask;
960 wmds.StencilWriteMask = state->stencil[0].writemask;
961 wmds.BackfaceStencilTestMask = state->stencil[1].valuemask;
962 wmds.BackfaceStencilWriteMask = state->stencil[1].writemask;
963 /* wmds.[Backface]StencilReferenceValue are merged later */
964 }
965
966 return cso;
967 }
968
969 /**
970 * The pipe->bind_depth_stencil_alpha_state() driver hook.
971 *
972 * Bind a depth/stencil/alpha CSO and flag related dirty bits.
973 */
974 static void
975 iris_bind_zsa_state(struct pipe_context *ctx, void *state)
976 {
977 struct iris_context *ice = (struct iris_context *) ctx;
978 struct iris_depth_stencil_alpha_state *old_cso = ice->state.cso_zsa;
979 struct iris_depth_stencil_alpha_state *new_cso = state;
980
981 if (new_cso) {
982 if (cso_changed(alpha.ref_value))
983 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
984
985 if (cso_changed(alpha.enabled))
986 ice->state.dirty |= IRIS_DIRTY_PS_BLEND | IRIS_DIRTY_BLEND_STATE;
987
988 if (cso_changed(alpha.func))
989 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
990
991 ice->state.depth_writes_enabled = new_cso->depth_writes_enabled;
992 ice->state.stencil_writes_enabled = new_cso->stencil_writes_enabled;
993 }
994
995 ice->state.cso_zsa = new_cso;
996 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
997 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
998 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_DEPTH_STENCIL_ALPHA];
999 }
1000
1001 /**
1002 * Gallium CSO for rasterizer state.
1003 */
1004 struct iris_rasterizer_state {
1005 uint32_t sf[GENX(3DSTATE_SF_length)];
1006 uint32_t clip[GENX(3DSTATE_CLIP_length)];
1007 uint32_t raster[GENX(3DSTATE_RASTER_length)];
1008 uint32_t wm[GENX(3DSTATE_WM_length)];
1009 uint32_t line_stipple[GENX(3DSTATE_LINE_STIPPLE_length)];
1010
1011 uint8_t num_clip_plane_consts;
1012 bool clip_halfz; /* for CC_VIEWPORT */
1013 bool depth_clip_near; /* for CC_VIEWPORT */
1014 bool depth_clip_far; /* for CC_VIEWPORT */
1015 bool flatshade; /* for shader state */
1016 bool flatshade_first; /* for stream output */
1017 bool clamp_fragment_color; /* for shader state */
1018 bool light_twoside; /* for shader state */
1019 bool rasterizer_discard; /* for 3DSTATE_STREAMOUT */
1020 bool half_pixel_center; /* for 3DSTATE_MULTISAMPLE */
1021 bool line_stipple_enable;
1022 bool poly_stipple_enable;
1023 bool multisample;
1024 bool force_persample_interp;
1025 enum pipe_sprite_coord_mode sprite_coord_mode; /* PIPE_SPRITE_* */
1026 uint16_t sprite_coord_enable;
1027 };
1028
1029 static float
1030 get_line_width(const struct pipe_rasterizer_state *state)
1031 {
1032 float line_width = state->line_width;
1033
1034 /* From the OpenGL 4.4 spec:
1035 *
1036 * "The actual width of non-antialiased lines is determined by rounding
1037 * the supplied width to the nearest integer, then clamping it to the
1038 * implementation-dependent maximum non-antialiased line width."
1039 */
1040 if (!state->multisample && !state->line_smooth)
1041 line_width = roundf(state->line_width);
1042
1043 if (!state->multisample && state->line_smooth && line_width < 1.5f) {
1044 /* For 1 pixel line thickness or less, the general anti-aliasing
1045 * algorithm gives up, and a garbage line is generated. Setting a
1046 * Line Width of 0.0 specifies the rasterization of the "thinnest"
1047 * (one-pixel-wide), non-antialiased lines.
1048 *
1049 * Lines rendered with zero Line Width are rasterized using the
1050 * "Grid Intersection Quantization" rules as specified by the
1051 * "Zero-Width (Cosmetic) Line Rasterization" section of the docs.
1052 */
1053 line_width = 0.0f;
1054 }
1055
1056 return line_width;
1057 }
1058
1059 /**
1060 * The pipe->create_rasterizer_state() driver hook.
1061 */
1062 static void *
1063 iris_create_rasterizer_state(struct pipe_context *ctx,
1064 const struct pipe_rasterizer_state *state)
1065 {
1066 struct iris_rasterizer_state *cso =
1067 malloc(sizeof(struct iris_rasterizer_state));
1068
1069 #if 0
1070 point_quad_rasterization -> SBE?
1071
1072 not necessary?
1073 {
1074 poly_smooth
1075 force_persample_interp - ?
1076 bottom_edge_rule
1077
1078 offset_units_unscaled - cap not exposed
1079 }
1080 #endif
1081
1082 // XXX: it may make more sense just to store the pipe_rasterizer_state,
1083 // we're copying a lot of booleans here. But we don't need all of them...
1084
1085 cso->multisample = state->multisample;
1086 cso->force_persample_interp = state->force_persample_interp;
1087 cso->clip_halfz = state->clip_halfz;
1088 cso->depth_clip_near = state->depth_clip_near;
1089 cso->depth_clip_far = state->depth_clip_far;
1090 cso->flatshade = state->flatshade;
1091 cso->flatshade_first = state->flatshade_first;
1092 cso->clamp_fragment_color = state->clamp_fragment_color;
1093 cso->light_twoside = state->light_twoside;
1094 cso->rasterizer_discard = state->rasterizer_discard;
1095 cso->half_pixel_center = state->half_pixel_center;
1096 cso->sprite_coord_mode = state->sprite_coord_mode;
1097 cso->sprite_coord_enable = state->sprite_coord_enable;
1098 cso->line_stipple_enable = state->line_stipple_enable;
1099 cso->poly_stipple_enable = state->poly_stipple_enable;
1100
1101 if (state->clip_plane_enable != 0)
1102 cso->num_clip_plane_consts = util_logbase2(state->clip_plane_enable) + 1;
1103 else
1104 cso->num_clip_plane_consts = 0;
1105
1106 float line_width = get_line_width(state);
1107
1108 iris_pack_command(GENX(3DSTATE_SF), cso->sf, sf) {
1109 sf.StatisticsEnable = true;
1110 sf.ViewportTransformEnable = true;
1111 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
1112 sf.LineEndCapAntialiasingRegionWidth =
1113 state->line_smooth ? _10pixels : _05pixels;
1114 sf.LastPixelEnable = state->line_last_pixel;
1115 sf.LineWidth = line_width;
1116 sf.SmoothPointEnable = state->point_smooth || state->multisample;
1117 sf.PointWidthSource = state->point_size_per_vertex ? Vertex : State;
1118 sf.PointWidth = state->point_size;
1119
1120 if (state->flatshade_first) {
1121 sf.TriangleFanProvokingVertexSelect = 1;
1122 } else {
1123 sf.TriangleStripListProvokingVertexSelect = 2;
1124 sf.TriangleFanProvokingVertexSelect = 2;
1125 sf.LineStripListProvokingVertexSelect = 1;
1126 }
1127 }
1128
1129 iris_pack_command(GENX(3DSTATE_RASTER), cso->raster, rr) {
1130 rr.FrontWinding = state->front_ccw ? CounterClockwise : Clockwise;
1131 rr.CullMode = translate_cull_mode(state->cull_face);
1132 rr.FrontFaceFillMode = translate_fill_mode(state->fill_front);
1133 rr.BackFaceFillMode = translate_fill_mode(state->fill_back);
1134 rr.DXMultisampleRasterizationEnable = state->multisample;
1135 rr.GlobalDepthOffsetEnableSolid = state->offset_tri;
1136 rr.GlobalDepthOffsetEnableWireframe = state->offset_line;
1137 rr.GlobalDepthOffsetEnablePoint = state->offset_point;
1138 rr.GlobalDepthOffsetConstant = state->offset_units * 2;
1139 rr.GlobalDepthOffsetScale = state->offset_scale;
1140 rr.GlobalDepthOffsetClamp = state->offset_clamp;
1141 rr.SmoothPointEnable = state->point_smooth || state->multisample;
1142 rr.AntialiasingEnable = state->line_smooth;
1143 rr.ScissorRectangleEnable = state->scissor;
1144 rr.ViewportZNearClipTestEnable = state->depth_clip_near;
1145 rr.ViewportZFarClipTestEnable = state->depth_clip_far;
1146 //rr.ConservativeRasterizationEnable = not yet supported by Gallium...
1147 }
1148
1149 iris_pack_command(GENX(3DSTATE_CLIP), cso->clip, cl) {
1150 /* cl.NonPerspectiveBarycentricEnable is filled in at draw time from
1151 * the FS program; cl.ForceZeroRTAIndexEnable is filled in from the FB.
1152 */
1153 cl.StatisticsEnable = true;
1154 cl.EarlyCullEnable = true;
1155 cl.UserClipDistanceClipTestEnableBitmask = state->clip_plane_enable;
1156 cl.ForceUserClipDistanceClipTestEnableBitmask = true;
1157 cl.APIMode = state->clip_halfz ? APIMODE_D3D : APIMODE_OGL;
1158 cl.GuardbandClipTestEnable = true;
1159 cl.ClipMode = CLIPMODE_NORMAL;
1160 cl.ClipEnable = true;
1161 cl.ViewportXYClipTestEnable = state->point_tri_clip;
1162 cl.MinimumPointWidth = 0.125;
1163 cl.MaximumPointWidth = 255.875;
1164
1165 if (state->flatshade_first) {
1166 cl.TriangleFanProvokingVertexSelect = 1;
1167 } else {
1168 cl.TriangleStripListProvokingVertexSelect = 2;
1169 cl.TriangleFanProvokingVertexSelect = 2;
1170 cl.LineStripListProvokingVertexSelect = 1;
1171 }
1172 }
1173
1174 iris_pack_command(GENX(3DSTATE_WM), cso->wm, wm) {
1175 /* wm.BarycentricInterpolationMode and wm.EarlyDepthStencilControl are
1176 * filled in at draw time from the FS program.
1177 */
1178 wm.LineAntialiasingRegionWidth = _10pixels;
1179 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1180 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1181 wm.LineStippleEnable = state->line_stipple_enable;
1182 wm.PolygonStippleEnable = state->poly_stipple_enable;
1183 }
1184
1185 /* Remap from 0..255 back to 1..256 */
1186 const unsigned line_stipple_factor = state->line_stipple_factor + 1;
1187
1188 iris_pack_command(GENX(3DSTATE_LINE_STIPPLE), cso->line_stipple, line) {
1189 line.LineStipplePattern = state->line_stipple_pattern;
1190 line.LineStippleInverseRepeatCount = 1.0f / line_stipple_factor;
1191 line.LineStippleRepeatCount = line_stipple_factor;
1192 }
1193
1194 return cso;
1195 }
1196
1197 /**
1198 * The pipe->bind_rasterizer_state() driver hook.
1199 *
1200 * Bind a rasterizer CSO and flag related dirty bits.
1201 */
1202 static void
1203 iris_bind_rasterizer_state(struct pipe_context *ctx, void *state)
1204 {
1205 struct iris_context *ice = (struct iris_context *) ctx;
1206 struct iris_rasterizer_state *old_cso = ice->state.cso_rast;
1207 struct iris_rasterizer_state *new_cso = state;
1208
1209 if (new_cso) {
1210 /* Try to avoid re-emitting 3DSTATE_LINE_STIPPLE, it's non-pipelined */
1211 if (cso_changed_memcmp(line_stipple))
1212 ice->state.dirty |= IRIS_DIRTY_LINE_STIPPLE;
1213
1214 if (cso_changed(half_pixel_center))
1215 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
1216
1217 if (cso_changed(line_stipple_enable) || cso_changed(poly_stipple_enable))
1218 ice->state.dirty |= IRIS_DIRTY_WM;
1219
1220 if (cso_changed(rasterizer_discard) || cso_changed(flatshade_first))
1221 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
1222
1223 if (cso_changed(depth_clip_near) || cso_changed(depth_clip_far) ||
1224 cso_changed(clip_halfz))
1225 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1226
1227 if (cso_changed(sprite_coord_enable) || cso_changed(light_twoside))
1228 ice->state.dirty |= IRIS_DIRTY_SBE;
1229 }
1230
1231 ice->state.cso_rast = new_cso;
1232 ice->state.dirty |= IRIS_DIRTY_RASTER;
1233 ice->state.dirty |= IRIS_DIRTY_CLIP;
1234 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_RASTERIZER];
1235 }
1236
1237 /**
1238 * Return true if the given wrap mode requires the border color to exist.
1239 *
1240 * (We can skip uploading it if the sampler isn't going to use it.)
1241 */
1242 static bool
1243 wrap_mode_needs_border_color(unsigned wrap_mode)
1244 {
1245 return wrap_mode == TCM_CLAMP_BORDER || wrap_mode == TCM_HALF_BORDER;
1246 }
1247
1248 /**
1249 * Gallium CSO for sampler state.
1250 */
1251 struct iris_sampler_state {
1252 union pipe_color_union border_color;
1253 bool needs_border_color;
1254
1255 uint32_t sampler_state[GENX(SAMPLER_STATE_length)];
1256 };
1257
1258 /**
1259 * The pipe->create_sampler_state() driver hook.
1260 *
1261 * We fill out SAMPLER_STATE (except for the border color pointer), and
1262 * store that on the CPU. It doesn't make sense to upload it to a GPU
1263 * buffer object yet, because 3DSTATE_SAMPLER_STATE_POINTERS requires
1264 * all bound sampler states to be in contiguous memor.
1265 */
1266 static void *
1267 iris_create_sampler_state(struct pipe_context *ctx,
1268 const struct pipe_sampler_state *state)
1269 {
1270 struct iris_sampler_state *cso = CALLOC_STRUCT(iris_sampler_state);
1271
1272 if (!cso)
1273 return NULL;
1274
1275 STATIC_ASSERT(PIPE_TEX_FILTER_NEAREST == MAPFILTER_NEAREST);
1276 STATIC_ASSERT(PIPE_TEX_FILTER_LINEAR == MAPFILTER_LINEAR);
1277
1278 unsigned wrap_s = translate_wrap(state->wrap_s);
1279 unsigned wrap_t = translate_wrap(state->wrap_t);
1280 unsigned wrap_r = translate_wrap(state->wrap_r);
1281
1282 memcpy(&cso->border_color, &state->border_color, sizeof(cso->border_color));
1283
1284 cso->needs_border_color = wrap_mode_needs_border_color(wrap_s) ||
1285 wrap_mode_needs_border_color(wrap_t) ||
1286 wrap_mode_needs_border_color(wrap_r);
1287
1288 float min_lod = state->min_lod;
1289 unsigned mag_img_filter = state->mag_img_filter;
1290
1291 // XXX: explain this code ported from ilo...I don't get it at all...
1292 if (state->min_mip_filter == PIPE_TEX_MIPFILTER_NONE &&
1293 state->min_lod > 0.0f) {
1294 min_lod = 0.0f;
1295 mag_img_filter = state->min_img_filter;
1296 }
1297
1298 iris_pack_state(GENX(SAMPLER_STATE), cso->sampler_state, samp) {
1299 samp.TCXAddressControlMode = wrap_s;
1300 samp.TCYAddressControlMode = wrap_t;
1301 samp.TCZAddressControlMode = wrap_r;
1302 samp.CubeSurfaceControlMode = state->seamless_cube_map;
1303 samp.NonnormalizedCoordinateEnable = !state->normalized_coords;
1304 samp.MinModeFilter = state->min_img_filter;
1305 samp.MagModeFilter = mag_img_filter;
1306 samp.MipModeFilter = translate_mip_filter(state->min_mip_filter);
1307 samp.MaximumAnisotropy = RATIO21;
1308
1309 if (state->max_anisotropy >= 2) {
1310 if (state->min_img_filter == PIPE_TEX_FILTER_LINEAR) {
1311 samp.MinModeFilter = MAPFILTER_ANISOTROPIC;
1312 samp.AnisotropicAlgorithm = EWAApproximation;
1313 }
1314
1315 if (state->mag_img_filter == PIPE_TEX_FILTER_LINEAR)
1316 samp.MagModeFilter = MAPFILTER_ANISOTROPIC;
1317
1318 samp.MaximumAnisotropy =
1319 MIN2((state->max_anisotropy - 2) / 2, RATIO161);
1320 }
1321
1322 /* Set address rounding bits if not using nearest filtering. */
1323 if (state->min_img_filter != PIPE_TEX_FILTER_NEAREST) {
1324 samp.UAddressMinFilterRoundingEnable = true;
1325 samp.VAddressMinFilterRoundingEnable = true;
1326 samp.RAddressMinFilterRoundingEnable = true;
1327 }
1328
1329 if (state->mag_img_filter != PIPE_TEX_FILTER_NEAREST) {
1330 samp.UAddressMagFilterRoundingEnable = true;
1331 samp.VAddressMagFilterRoundingEnable = true;
1332 samp.RAddressMagFilterRoundingEnable = true;
1333 }
1334
1335 if (state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE)
1336 samp.ShadowFunction = translate_shadow_func(state->compare_func);
1337
1338 const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
1339
1340 samp.LODPreClampMode = CLAMP_MODE_OGL;
1341 samp.MinLOD = CLAMP(min_lod, 0, hw_max_lod);
1342 samp.MaxLOD = CLAMP(state->max_lod, 0, hw_max_lod);
1343 samp.TextureLODBias = CLAMP(state->lod_bias, -16, 15);
1344
1345 /* .BorderColorPointer is filled in by iris_bind_sampler_states. */
1346 }
1347
1348 return cso;
1349 }
1350
1351 /**
1352 * The pipe->bind_sampler_states() driver hook.
1353 *
1354 * Now that we know all the sampler states, we upload them all into a
1355 * contiguous area of GPU memory, for 3DSTATE_SAMPLER_STATE_POINTERS_*.
1356 * We also fill out the border color state pointers at this point.
1357 *
1358 * We could defer this work to draw time, but we assume that binding
1359 * will be less frequent than drawing.
1360 */
1361 // XXX: this may be a bad idea, need to make sure that st/mesa calls us
1362 // XXX: with the complete set of shaders. If it makes multiple calls to
1363 // XXX: things one at a time, we could waste a lot of time assembling things.
1364 // XXX: it doesn't even BUY us anything to do it here, because we only flag
1365 // XXX: IRIS_DIRTY_SAMPLER_STATE when this is called...
1366 static void
1367 iris_bind_sampler_states(struct pipe_context *ctx,
1368 enum pipe_shader_type p_stage,
1369 unsigned start, unsigned count,
1370 void **states)
1371 {
1372 struct iris_context *ice = (struct iris_context *) ctx;
1373 gl_shader_stage stage = stage_from_pipe(p_stage);
1374 struct iris_shader_state *shs = &ice->state.shaders[stage];
1375
1376 assert(start + count <= IRIS_MAX_TEXTURE_SAMPLERS);
1377 shs->num_samplers = MAX2(shs->num_samplers, start + count);
1378
1379 for (int i = 0; i < count; i++) {
1380 shs->samplers[start + i] = states[i];
1381 }
1382
1383 // XXX: count may include NULLs
1384
1385 /* Assemble the SAMPLER_STATEs into a contiguous table that lives
1386 * in the dynamic state memory zone, so we can point to it via the
1387 * 3DSTATE_SAMPLER_STATE_POINTERS_* commands.
1388 */
1389 uint32_t *map =
1390 upload_state(ice->state.dynamic_uploader, &shs->sampler_table,
1391 count * 4 * GENX(SAMPLER_STATE_length), 32);
1392 if (unlikely(!map))
1393 return;
1394
1395 struct pipe_resource *res = shs->sampler_table.res;
1396 shs->sampler_table.offset +=
1397 iris_bo_offset_from_base_address(iris_resource_bo(res));
1398
1399 /* Make sure all land in the same BO */
1400 iris_border_color_pool_reserve(ice, IRIS_MAX_TEXTURE_SAMPLERS);
1401
1402 for (int i = 0; i < count; i++) {
1403 struct iris_sampler_state *state = shs->samplers[i];
1404
1405 if (!state) {
1406 memset(map, 0, 4 * GENX(SAMPLER_STATE_length));
1407 } else if (!state->needs_border_color) {
1408 memcpy(map, state->sampler_state, 4 * GENX(SAMPLER_STATE_length));
1409 } else {
1410 ice->state.need_border_colors = true;
1411
1412 /* Stream out the border color and merge the pointer. */
1413 uint32_t offset =
1414 iris_upload_border_color(ice, &state->border_color);
1415
1416 uint32_t dynamic[GENX(SAMPLER_STATE_length)];
1417 iris_pack_state(GENX(SAMPLER_STATE), dynamic, dyns) {
1418 dyns.BorderColorPointer = offset;
1419 }
1420
1421 for (uint32_t j = 0; j < GENX(SAMPLER_STATE_length); j++)
1422 map[j] = state->sampler_state[j] | dynamic[j];
1423 }
1424
1425 map += GENX(SAMPLER_STATE_length);
1426 }
1427
1428 ice->state.dirty |= IRIS_DIRTY_SAMPLER_STATES_VS << stage;
1429 }
1430
1431 static enum isl_channel_select
1432 fmt_swizzle(const struct iris_format_info *fmt, enum pipe_swizzle swz)
1433 {
1434 switch (swz) {
1435 case PIPE_SWIZZLE_X: return fmt->swizzle.r;
1436 case PIPE_SWIZZLE_Y: return fmt->swizzle.g;
1437 case PIPE_SWIZZLE_Z: return fmt->swizzle.b;
1438 case PIPE_SWIZZLE_W: return fmt->swizzle.a;
1439 case PIPE_SWIZZLE_1: return SCS_ONE;
1440 case PIPE_SWIZZLE_0: return SCS_ZERO;
1441 default: unreachable("invalid swizzle");
1442 }
1443 }
1444
1445 static void
1446 fill_buffer_surface_state(struct isl_device *isl_dev,
1447 struct iris_bo *bo,
1448 void *map,
1449 enum isl_format format,
1450 unsigned offset,
1451 unsigned size)
1452 {
1453 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
1454 const unsigned cpp = fmtl->bpb / 8;
1455
1456 /* The ARB_texture_buffer_specification says:
1457 *
1458 * "The number of texels in the buffer texture's texel array is given by
1459 *
1460 * floor(<buffer_size> / (<components> * sizeof(<base_type>)),
1461 *
1462 * where <buffer_size> is the size of the buffer object, in basic
1463 * machine units and <components> and <base_type> are the element count
1464 * and base data type for elements, as specified in Table X.1. The
1465 * number of texels in the texel array is then clamped to the
1466 * implementation-dependent limit MAX_TEXTURE_BUFFER_SIZE_ARB."
1467 *
1468 * We need to clamp the size in bytes to MAX_TEXTURE_BUFFER_SIZE * stride,
1469 * so that when ISL divides by stride to obtain the number of texels, that
1470 * texel count is clamped to MAX_TEXTURE_BUFFER_SIZE.
1471 */
1472 unsigned final_size =
1473 MIN3(size, bo->size - offset, IRIS_MAX_TEXTURE_BUFFER_SIZE * cpp);
1474
1475 isl_buffer_fill_state(isl_dev, map,
1476 .address = bo->gtt_offset + offset,
1477 .size_B = final_size,
1478 .format = format,
1479 .stride_B = cpp,
1480 .mocs = MOCS_WB);
1481 }
1482
1483 /**
1484 * The pipe->create_sampler_view() driver hook.
1485 */
1486 static struct pipe_sampler_view *
1487 iris_create_sampler_view(struct pipe_context *ctx,
1488 struct pipe_resource *tex,
1489 const struct pipe_sampler_view *tmpl)
1490 {
1491 struct iris_context *ice = (struct iris_context *) ctx;
1492 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1493 const struct gen_device_info *devinfo = &screen->devinfo;
1494 struct iris_sampler_view *isv = calloc(1, sizeof(struct iris_sampler_view));
1495
1496 if (!isv)
1497 return NULL;
1498
1499 /* initialize base object */
1500 isv->base = *tmpl;
1501 isv->base.context = ctx;
1502 isv->base.texture = NULL;
1503 pipe_reference_init(&isv->base.reference, 1);
1504 pipe_resource_reference(&isv->base.texture, tex);
1505
1506 void *map = upload_state(ice->state.surface_uploader, &isv->surface_state,
1507 4 * GENX(RENDER_SURFACE_STATE_length), 64);
1508 if (!unlikely(map))
1509 return NULL;
1510
1511 struct iris_bo *state_bo = iris_resource_bo(isv->surface_state.res);
1512 isv->surface_state.offset += iris_bo_offset_from_base_address(state_bo);
1513
1514 if (util_format_is_depth_or_stencil(tmpl->format)) {
1515 struct iris_resource *zres, *sres;
1516 const struct util_format_description *desc =
1517 util_format_description(tmpl->format);
1518
1519 iris_get_depth_stencil_resources(tex, &zres, &sres);
1520
1521 tex = util_format_has_depth(desc) ? &zres->base : &sres->base;
1522 }
1523
1524 isv->res = (struct iris_resource *) tex;
1525
1526 isl_surf_usage_flags_t usage =
1527 ISL_SURF_USAGE_TEXTURE_BIT |
1528 (isv->res->surf.usage & ISL_SURF_USAGE_CUBE_BIT);
1529
1530 if (isv->base.target == PIPE_TEXTURE_CUBE ||
1531 isv->base.target == PIPE_TEXTURE_CUBE_ARRAY)
1532 usage |= ISL_SURF_USAGE_CUBE_BIT;
1533
1534 const struct iris_format_info fmt =
1535 iris_format_for_usage(devinfo, tmpl->format, usage);
1536
1537 isv->view = (struct isl_view) {
1538 .format = fmt.fmt,
1539 .swizzle = (struct isl_swizzle) {
1540 .r = fmt_swizzle(&fmt, tmpl->swizzle_r),
1541 .g = fmt_swizzle(&fmt, tmpl->swizzle_g),
1542 .b = fmt_swizzle(&fmt, tmpl->swizzle_b),
1543 .a = fmt_swizzle(&fmt, tmpl->swizzle_a),
1544 },
1545 .usage = usage,
1546 };
1547
1548 /* Fill out SURFACE_STATE for this view. */
1549 if (tmpl->target != PIPE_BUFFER) {
1550 isv->view.base_level = tmpl->u.tex.first_level;
1551 isv->view.levels = tmpl->u.tex.last_level - tmpl->u.tex.first_level + 1;
1552 // XXX: do I need to port f9fd0cf4790cb2a530e75d1a2206dbb9d8af7cb2?
1553 isv->view.base_array_layer = tmpl->u.tex.first_layer;
1554 isv->view.array_len =
1555 tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
1556
1557 isl_surf_fill_state(&screen->isl_dev, map,
1558 .surf = &isv->res->surf, .view = &isv->view,
1559 .mocs = MOCS_WB,
1560 .address = isv->res->bo->gtt_offset);
1561 // .aux_surf =
1562 // .clear_color = clear_color,
1563 } else {
1564 fill_buffer_surface_state(&screen->isl_dev, isv->res->bo, map,
1565 isv->view.format, tmpl->u.buf.offset,
1566 tmpl->u.buf.size);
1567 }
1568
1569 return &isv->base;
1570 }
1571
1572 static void
1573 iris_sampler_view_destroy(struct pipe_context *ctx,
1574 struct pipe_sampler_view *state)
1575 {
1576 struct iris_sampler_view *isv = (void *) state;
1577 pipe_resource_reference(&state->texture, NULL);
1578 pipe_resource_reference(&isv->surface_state.res, NULL);
1579 free(isv);
1580 }
1581
1582 /**
1583 * The pipe->create_surface() driver hook.
1584 *
1585 * In Gallium nomenclature, "surfaces" are a view of a resource that
1586 * can be bound as a render target or depth/stencil buffer.
1587 */
1588 static struct pipe_surface *
1589 iris_create_surface(struct pipe_context *ctx,
1590 struct pipe_resource *tex,
1591 const struct pipe_surface *tmpl)
1592 {
1593 struct iris_context *ice = (struct iris_context *) ctx;
1594 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1595 const struct gen_device_info *devinfo = &screen->devinfo;
1596 struct iris_surface *surf = calloc(1, sizeof(struct iris_surface));
1597 struct pipe_surface *psurf = &surf->base;
1598 struct iris_resource *res = (struct iris_resource *) tex;
1599
1600 if (!surf)
1601 return NULL;
1602
1603 pipe_reference_init(&psurf->reference, 1);
1604 pipe_resource_reference(&psurf->texture, tex);
1605 psurf->context = ctx;
1606 psurf->format = tmpl->format;
1607 psurf->width = tex->width0;
1608 psurf->height = tex->height0;
1609 psurf->texture = tex;
1610 psurf->u.tex.first_layer = tmpl->u.tex.first_layer;
1611 psurf->u.tex.last_layer = tmpl->u.tex.last_layer;
1612 psurf->u.tex.level = tmpl->u.tex.level;
1613
1614 isl_surf_usage_flags_t usage = 0;
1615 if (tmpl->writable)
1616 usage = ISL_SURF_USAGE_STORAGE_BIT;
1617 else if (util_format_is_depth_or_stencil(tmpl->format))
1618 usage = ISL_SURF_USAGE_DEPTH_BIT;
1619 else
1620 usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
1621
1622 const struct iris_format_info fmt =
1623 iris_format_for_usage(devinfo, psurf->format, usage);
1624
1625 if ((usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) &&
1626 !isl_format_supports_rendering(devinfo, fmt.fmt)) {
1627 /* Framebuffer validation will reject this invalid case, but it
1628 * hasn't had the opportunity yet. In the meantime, we need to
1629 * avoid hitting ISL asserts about unsupported formats below.
1630 */
1631 free(surf);
1632 return NULL;
1633 }
1634
1635 surf->view = (struct isl_view) {
1636 .format = fmt.fmt,
1637 .base_level = tmpl->u.tex.level,
1638 .levels = 1,
1639 .base_array_layer = tmpl->u.tex.first_layer,
1640 .array_len = tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1,
1641 .swizzle = ISL_SWIZZLE_IDENTITY,
1642 .usage = usage,
1643 };
1644
1645 /* Bail early for depth/stencil - we don't want SURFACE_STATE for them. */
1646 if (res->surf.usage & (ISL_SURF_USAGE_DEPTH_BIT |
1647 ISL_SURF_USAGE_STENCIL_BIT))
1648 return psurf;
1649
1650
1651 void *map = upload_state(ice->state.surface_uploader, &surf->surface_state,
1652 4 * GENX(RENDER_SURFACE_STATE_length), 64);
1653 if (!unlikely(map))
1654 return NULL;
1655
1656 struct iris_bo *state_bo = iris_resource_bo(surf->surface_state.res);
1657 surf->surface_state.offset += iris_bo_offset_from_base_address(state_bo);
1658
1659 isl_surf_fill_state(&screen->isl_dev, map,
1660 .surf = &res->surf, .view = &surf->view,
1661 .mocs = MOCS_WB,
1662 .address = res->bo->gtt_offset);
1663 // .aux_surf =
1664 // .clear_color = clear_color,
1665
1666 return psurf;
1667 }
1668
1669 /**
1670 * The pipe->set_shader_images() driver hook.
1671 */
1672 static void
1673 iris_set_shader_images(struct pipe_context *ctx,
1674 enum pipe_shader_type p_stage,
1675 unsigned start_slot, unsigned count,
1676 const struct pipe_image_view *p_images)
1677 {
1678 struct iris_context *ice = (struct iris_context *) ctx;
1679 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1680 const struct gen_device_info *devinfo = &screen->devinfo;
1681 gl_shader_stage stage = stage_from_pipe(p_stage);
1682 struct iris_shader_state *shs = &ice->state.shaders[stage];
1683
1684 shs->num_images = MAX2(shs->num_images, start_slot + count);
1685
1686 for (unsigned i = 0; i < count; i++) {
1687 if (p_images && p_images[i].resource) {
1688 const struct pipe_image_view *img = &p_images[i];
1689 struct iris_resource *res = (void *) img->resource;
1690 pipe_resource_reference(&shs->image[start_slot + i].res, &res->base);
1691
1692 res->bind_history |= PIPE_BIND_SHADER_IMAGE;
1693
1694 // XXX: these are not retained forever, use a separate uploader?
1695 void *map =
1696 upload_state(ice->state.surface_uploader,
1697 &shs->image[start_slot + i].surface_state,
1698 4 * GENX(RENDER_SURFACE_STATE_length), 64);
1699 if (!unlikely(map)) {
1700 pipe_resource_reference(&shs->image[start_slot + i].res, NULL);
1701 return;
1702 }
1703
1704 struct iris_bo *surf_state_bo =
1705 iris_resource_bo(shs->image[start_slot + i].surface_state.res);
1706 shs->image[start_slot + i].surface_state.offset +=
1707 iris_bo_offset_from_base_address(surf_state_bo);
1708
1709 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_STORAGE_BIT;
1710 enum isl_format isl_format =
1711 iris_format_for_usage(devinfo, img->format, usage).fmt;
1712
1713 if (img->shader_access & PIPE_IMAGE_ACCESS_READ)
1714 isl_format = isl_lower_storage_image_format(devinfo, isl_format);
1715
1716 shs->image[start_slot + i].access = img->shader_access;
1717
1718 if (res->base.target != PIPE_BUFFER) {
1719 struct isl_view view = {
1720 .format = isl_format,
1721 .base_level = img->u.tex.level,
1722 .levels = 1,
1723 .base_array_layer = img->u.tex.first_layer,
1724 .array_len = img->u.tex.last_layer - img->u.tex.first_layer + 1,
1725 .swizzle = ISL_SWIZZLE_IDENTITY,
1726 .usage = usage,
1727 };
1728
1729 isl_surf_fill_state(&screen->isl_dev, map,
1730 .surf = &res->surf, .view = &view,
1731 .mocs = MOCS_WB,
1732 .address = res->bo->gtt_offset);
1733 // .aux_surf =
1734 // .clear_color = clear_color,
1735 } else {
1736 fill_buffer_surface_state(&screen->isl_dev, res->bo, map,
1737 isl_format, img->u.buf.offset,
1738 img->u.buf.size);
1739 }
1740 } else {
1741 pipe_resource_reference(&shs->image[start_slot + i].res, NULL);
1742 pipe_resource_reference(&shs->image[start_slot + i].surface_state.res,
1743 NULL);
1744 }
1745 }
1746
1747 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
1748 }
1749
1750
1751 /**
1752 * The pipe->set_sampler_views() driver hook.
1753 */
1754 static void
1755 iris_set_sampler_views(struct pipe_context *ctx,
1756 enum pipe_shader_type p_stage,
1757 unsigned start, unsigned count,
1758 struct pipe_sampler_view **views)
1759 {
1760 struct iris_context *ice = (struct iris_context *) ctx;
1761 gl_shader_stage stage = stage_from_pipe(p_stage);
1762 struct iris_shader_state *shs = &ice->state.shaders[stage];
1763
1764 unsigned i;
1765 for (i = 0; i < count; i++) {
1766 pipe_sampler_view_reference((struct pipe_sampler_view **)
1767 &shs->textures[i], views[i]);
1768 struct iris_sampler_view *view = (void *) views[i];
1769 if (view)
1770 view->res->bind_history |= PIPE_BIND_SAMPLER_VIEW;
1771 }
1772 for (; i < shs->num_textures; i++) {
1773 pipe_sampler_view_reference((struct pipe_sampler_view **)
1774 &shs->textures[i], NULL);
1775 }
1776
1777 shs->num_textures = count;
1778
1779 ice->state.dirty |= (IRIS_DIRTY_BINDINGS_VS << stage);
1780 }
1781
1782 /**
1783 * The pipe->set_tess_state() driver hook.
1784 */
1785 static void
1786 iris_set_tess_state(struct pipe_context *ctx,
1787 const float default_outer_level[4],
1788 const float default_inner_level[2])
1789 {
1790 struct iris_context *ice = (struct iris_context *) ctx;
1791
1792 memcpy(&ice->state.default_outer_level[0], &default_outer_level[0], 4 * sizeof(float));
1793 memcpy(&ice->state.default_inner_level[0], &default_inner_level[0], 2 * sizeof(float));
1794
1795 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_TCS;
1796 }
1797
1798 static void
1799 iris_surface_destroy(struct pipe_context *ctx, struct pipe_surface *p_surf)
1800 {
1801 struct iris_surface *surf = (void *) p_surf;
1802 pipe_resource_reference(&p_surf->texture, NULL);
1803 pipe_resource_reference(&surf->surface_state.res, NULL);
1804 free(surf);
1805 }
1806
1807 static void
1808 iris_set_clip_state(struct pipe_context *ctx,
1809 const struct pipe_clip_state *state)
1810 {
1811 struct iris_context *ice = (struct iris_context *) ctx;
1812 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_VERTEX];
1813
1814 memcpy(&ice->state.clip_planes, state, sizeof(*state));
1815
1816 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS;
1817 shs->cbuf0_needs_upload = true;
1818 }
1819
1820 /**
1821 * The pipe->set_polygon_stipple() driver hook.
1822 */
1823 static void
1824 iris_set_polygon_stipple(struct pipe_context *ctx,
1825 const struct pipe_poly_stipple *state)
1826 {
1827 struct iris_context *ice = (struct iris_context *) ctx;
1828 memcpy(&ice->state.poly_stipple, state, sizeof(*state));
1829 ice->state.dirty |= IRIS_DIRTY_POLYGON_STIPPLE;
1830 }
1831
1832 /**
1833 * The pipe->set_sample_mask() driver hook.
1834 */
1835 static void
1836 iris_set_sample_mask(struct pipe_context *ctx, unsigned sample_mask)
1837 {
1838 struct iris_context *ice = (struct iris_context *) ctx;
1839
1840 /* We only support 16x MSAA, so we have 16 bits of sample maks.
1841 * st/mesa may pass us 0xffffffff though, meaning "enable all samples".
1842 */
1843 ice->state.sample_mask = sample_mask & 0xffff;
1844 ice->state.dirty |= IRIS_DIRTY_SAMPLE_MASK;
1845 }
1846
1847 /**
1848 * The pipe->set_scissor_states() driver hook.
1849 *
1850 * This corresponds to our SCISSOR_RECT state structures. It's an
1851 * exact match, so we just store them, and memcpy them out later.
1852 */
1853 static void
1854 iris_set_scissor_states(struct pipe_context *ctx,
1855 unsigned start_slot,
1856 unsigned num_scissors,
1857 const struct pipe_scissor_state *rects)
1858 {
1859 struct iris_context *ice = (struct iris_context *) ctx;
1860
1861 for (unsigned i = 0; i < num_scissors; i++) {
1862 if (rects[i].minx == rects[i].maxx || rects[i].miny == rects[i].maxy) {
1863 /* If the scissor was out of bounds and got clamped to 0 width/height
1864 * at the bounds, the subtraction of 1 from maximums could produce a
1865 * negative number and thus not clip anything. Instead, just provide
1866 * a min > max scissor inside the bounds, which produces the expected
1867 * no rendering.
1868 */
1869 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
1870 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
1871 };
1872 } else {
1873 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
1874 .minx = rects[i].minx, .miny = rects[i].miny,
1875 .maxx = rects[i].maxx - 1, .maxy = rects[i].maxy - 1,
1876 };
1877 }
1878 }
1879
1880 ice->state.dirty |= IRIS_DIRTY_SCISSOR_RECT;
1881 }
1882
1883 /**
1884 * The pipe->set_stencil_ref() driver hook.
1885 *
1886 * This is added to 3DSTATE_WM_DEPTH_STENCIL dynamically at draw time.
1887 */
1888 static void
1889 iris_set_stencil_ref(struct pipe_context *ctx,
1890 const struct pipe_stencil_ref *state)
1891 {
1892 struct iris_context *ice = (struct iris_context *) ctx;
1893 memcpy(&ice->state.stencil_ref, state, sizeof(*state));
1894 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
1895 }
1896
1897 static float
1898 viewport_extent(const struct pipe_viewport_state *state, int axis, float sign)
1899 {
1900 return copysignf(state->scale[axis], sign) + state->translate[axis];
1901 }
1902
1903 #if 0
1904 static void
1905 calculate_guardband_size(uint32_t fb_width, uint32_t fb_height,
1906 float m00, float m11, float m30, float m31,
1907 float *xmin, float *xmax,
1908 float *ymin, float *ymax)
1909 {
1910 /* According to the "Vertex X,Y Clamping and Quantization" section of the
1911 * Strips and Fans documentation:
1912 *
1913 * "The vertex X and Y screen-space coordinates are also /clamped/ to the
1914 * fixed-point "guardband" range supported by the rasterization hardware"
1915 *
1916 * and
1917 *
1918 * "In almost all circumstances, if an object’s vertices are actually
1919 * modified by this clamping (i.e., had X or Y coordinates outside of
1920 * the guardband extent the rendered object will not match the intended
1921 * result. Therefore software should take steps to ensure that this does
1922 * not happen - e.g., by clipping objects such that they do not exceed
1923 * these limits after the Drawing Rectangle is applied."
1924 *
1925 * I believe the fundamental restriction is that the rasterizer (in
1926 * the SF/WM stages) have a limit on the number of pixels that can be
1927 * rasterized. We need to ensure any coordinates beyond the rasterizer
1928 * limit are handled by the clipper. So effectively that limit becomes
1929 * the clipper's guardband size.
1930 *
1931 * It goes on to say:
1932 *
1933 * "In addition, in order to be correctly rendered, objects must have a
1934 * screenspace bounding box not exceeding 8K in the X or Y direction.
1935 * This additional restriction must also be comprehended by software,
1936 * i.e., enforced by use of clipping."
1937 *
1938 * This makes no sense. Gen7+ hardware supports 16K render targets,
1939 * and you definitely need to be able to draw polygons that fill the
1940 * surface. Our assumption is that the rasterizer was limited to 8K
1941 * on Sandybridge, which only supports 8K surfaces, and it was actually
1942 * increased to 16K on Ivybridge and later.
1943 *
1944 * So, limit the guardband to 16K on Gen7+ and 8K on Sandybridge.
1945 */
1946 const float gb_size = GEN_GEN >= 7 ? 16384.0f : 8192.0f;
1947
1948 if (m00 != 0 && m11 != 0) {
1949 /* First, we compute the screen-space render area */
1950 const float ss_ra_xmin = MIN3( 0, m30 + m00, m30 - m00);
1951 const float ss_ra_xmax = MAX3( fb_width, m30 + m00, m30 - m00);
1952 const float ss_ra_ymin = MIN3( 0, m31 + m11, m31 - m11);
1953 const float ss_ra_ymax = MAX3(fb_height, m31 + m11, m31 - m11);
1954
1955 /* We want the guardband to be centered on that */
1956 const float ss_gb_xmin = (ss_ra_xmin + ss_ra_xmax) / 2 - gb_size;
1957 const float ss_gb_xmax = (ss_ra_xmin + ss_ra_xmax) / 2 + gb_size;
1958 const float ss_gb_ymin = (ss_ra_ymin + ss_ra_ymax) / 2 - gb_size;
1959 const float ss_gb_ymax = (ss_ra_ymin + ss_ra_ymax) / 2 + gb_size;
1960
1961 /* Now we need it in native device coordinates */
1962 const float ndc_gb_xmin = (ss_gb_xmin - m30) / m00;
1963 const float ndc_gb_xmax = (ss_gb_xmax - m30) / m00;
1964 const float ndc_gb_ymin = (ss_gb_ymin - m31) / m11;
1965 const float ndc_gb_ymax = (ss_gb_ymax - m31) / m11;
1966
1967 /* Thanks to Y-flipping and ORIGIN_UPPER_LEFT, the Y coordinates may be
1968 * flipped upside-down. X should be fine though.
1969 */
1970 assert(ndc_gb_xmin <= ndc_gb_xmax);
1971 *xmin = ndc_gb_xmin;
1972 *xmax = ndc_gb_xmax;
1973 *ymin = MIN2(ndc_gb_ymin, ndc_gb_ymax);
1974 *ymax = MAX2(ndc_gb_ymin, ndc_gb_ymax);
1975 } else {
1976 /* The viewport scales to 0, so nothing will be rendered. */
1977 *xmin = 0.0f;
1978 *xmax = 0.0f;
1979 *ymin = 0.0f;
1980 *ymax = 0.0f;
1981 }
1982 }
1983 #endif
1984
1985 /**
1986 * The pipe->set_viewport_states() driver hook.
1987 *
1988 * This corresponds to our SF_CLIP_VIEWPORT states. We can't calculate
1989 * the guardband yet, as we need the framebuffer dimensions, but we can
1990 * at least fill out the rest.
1991 */
1992 static void
1993 iris_set_viewport_states(struct pipe_context *ctx,
1994 unsigned start_slot,
1995 unsigned count,
1996 const struct pipe_viewport_state *states)
1997 {
1998 struct iris_context *ice = (struct iris_context *) ctx;
1999 struct iris_genx_state *genx = ice->state.genx;
2000 uint32_t *vp_map =
2001 &genx->sf_cl_vp[start_slot * GENX(SF_CLIP_VIEWPORT_length)];
2002
2003 for (unsigned i = 0; i < count; i++) {
2004 const struct pipe_viewport_state *state = &states[i];
2005
2006 memcpy(&ice->state.viewports[start_slot + i], state, sizeof(*state));
2007
2008 iris_pack_state(GENX(SF_CLIP_VIEWPORT), vp_map, vp) {
2009 vp.ViewportMatrixElementm00 = state->scale[0];
2010 vp.ViewportMatrixElementm11 = state->scale[1];
2011 vp.ViewportMatrixElementm22 = state->scale[2];
2012 vp.ViewportMatrixElementm30 = state->translate[0];
2013 vp.ViewportMatrixElementm31 = state->translate[1];
2014 vp.ViewportMatrixElementm32 = state->translate[2];
2015 /* XXX: in i965 this is computed based on the drawbuffer size,
2016 * but we don't have that here...
2017 */
2018 vp.XMinClipGuardband = -1.0;
2019 vp.XMaxClipGuardband = 1.0;
2020 vp.YMinClipGuardband = -1.0;
2021 vp.YMaxClipGuardband = 1.0;
2022 vp.XMinViewPort = viewport_extent(state, 0, -1.0f);
2023 vp.XMaxViewPort = viewport_extent(state, 0, 1.0f) - 1;
2024 vp.YMinViewPort = viewport_extent(state, 1, -1.0f);
2025 vp.YMaxViewPort = viewport_extent(state, 1, 1.0f) - 1;
2026 }
2027
2028 vp_map += GENX(SF_CLIP_VIEWPORT_length);
2029 }
2030
2031 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2032
2033 if (ice->state.cso_rast && (!ice->state.cso_rast->depth_clip_near ||
2034 !ice->state.cso_rast->depth_clip_far))
2035 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
2036 }
2037
2038 /**
2039 * The pipe->set_framebuffer_state() driver hook.
2040 *
2041 * Sets the current draw FBO, including color render targets, depth,
2042 * and stencil buffers.
2043 */
2044 static void
2045 iris_set_framebuffer_state(struct pipe_context *ctx,
2046 const struct pipe_framebuffer_state *state)
2047 {
2048 struct iris_context *ice = (struct iris_context *) ctx;
2049 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2050 struct isl_device *isl_dev = &screen->isl_dev;
2051 struct pipe_framebuffer_state *cso = &ice->state.framebuffer;
2052 struct iris_resource *zres;
2053 struct iris_resource *stencil_res;
2054
2055 unsigned samples = util_framebuffer_get_num_samples(state);
2056
2057 if (cso->samples != samples) {
2058 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
2059 }
2060
2061 if (cso->nr_cbufs != state->nr_cbufs) {
2062 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
2063 }
2064
2065 if ((cso->layers == 0) != (state->layers == 0)) {
2066 ice->state.dirty |= IRIS_DIRTY_CLIP;
2067 }
2068
2069 util_copy_framebuffer_state(cso, state);
2070 cso->samples = samples;
2071
2072 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
2073
2074 struct isl_view view = {
2075 .base_level = 0,
2076 .levels = 1,
2077 .base_array_layer = 0,
2078 .array_len = 1,
2079 .swizzle = ISL_SWIZZLE_IDENTITY,
2080 };
2081
2082 struct isl_depth_stencil_hiz_emit_info info = {
2083 .view = &view,
2084 .mocs = MOCS_WB,
2085 };
2086
2087 if (cso->zsbuf) {
2088 iris_get_depth_stencil_resources(cso->zsbuf->texture, &zres,
2089 &stencil_res);
2090
2091 view.base_level = cso->zsbuf->u.tex.level;
2092 view.base_array_layer = cso->zsbuf->u.tex.first_layer;
2093 view.array_len =
2094 cso->zsbuf->u.tex.last_layer - cso->zsbuf->u.tex.first_layer + 1;
2095
2096 if (zres) {
2097 view.usage |= ISL_SURF_USAGE_DEPTH_BIT;
2098
2099 info.depth_surf = &zres->surf;
2100 info.depth_address = zres->bo->gtt_offset;
2101 info.hiz_usage = ISL_AUX_USAGE_NONE;
2102
2103 view.format = zres->surf.format;
2104 }
2105
2106 if (stencil_res) {
2107 view.usage |= ISL_SURF_USAGE_STENCIL_BIT;
2108 info.stencil_surf = &stencil_res->surf;
2109 info.stencil_address = stencil_res->bo->gtt_offset;
2110 if (!zres)
2111 view.format = stencil_res->surf.format;
2112 }
2113 }
2114
2115 isl_emit_depth_stencil_hiz_s(isl_dev, cso_z->packets, &info);
2116
2117 /* Make a null surface for unbound buffers */
2118 void *null_surf_map =
2119 upload_state(ice->state.surface_uploader, &ice->state.null_fb,
2120 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2121 isl_null_fill_state(&screen->isl_dev, null_surf_map,
2122 isl_extent3d(MAX2(cso->width, 1),
2123 MAX2(cso->height, 1),
2124 cso->layers ? cso->layers : 1));
2125 ice->state.null_fb.offset +=
2126 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.null_fb.res));
2127
2128 ice->state.dirty |= IRIS_DIRTY_DEPTH_BUFFER;
2129
2130 /* Render target change */
2131 ice->state.dirty |= IRIS_DIRTY_BINDINGS_FS;
2132
2133 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_FRAMEBUFFER];
2134
2135 #if GEN_GEN == 11
2136 // XXX: we may want to flag IRIS_DIRTY_MULTISAMPLE (or SAMPLE_MASK?)
2137 // XXX: see commit 979fc1bc9bcc64027ff2cfafd285676f31b930a6
2138
2139 /* The PIPE_CONTROL command description says:
2140 *
2141 * "Whenever a Binding Table Index (BTI) used by a Render Target Message
2142 * points to a different RENDER_SURFACE_STATE, SW must issue a Render
2143 * Target Cache Flush by enabling this bit. When render target flush
2144 * is set due to new association of BTI, PS Scoreboard Stall bit must
2145 * be set in this packet."
2146 */
2147 // XXX: does this need to happen at 3DSTATE_BTP_PS time?
2148 iris_emit_pipe_control_flush(&ice->batches[IRIS_BATCH_RENDER],
2149 PIPE_CONTROL_RENDER_TARGET_FLUSH |
2150 PIPE_CONTROL_STALL_AT_SCOREBOARD);
2151 #endif
2152 }
2153
2154 static void
2155 upload_ubo_surf_state(struct iris_context *ice,
2156 struct iris_const_buffer *cbuf,
2157 unsigned buffer_size)
2158 {
2159 struct pipe_context *ctx = &ice->ctx;
2160 struct iris_screen *screen = (struct iris_screen *) ctx->screen;
2161
2162 // XXX: these are not retained forever, use a separate uploader?
2163 void *map =
2164 upload_state(ice->state.surface_uploader, &cbuf->surface_state,
2165 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2166 if (!unlikely(map)) {
2167 pipe_resource_reference(&cbuf->data.res, NULL);
2168 return;
2169 }
2170
2171 struct iris_resource *res = (void *) cbuf->data.res;
2172 struct iris_bo *surf_bo = iris_resource_bo(cbuf->surface_state.res);
2173 cbuf->surface_state.offset += iris_bo_offset_from_base_address(surf_bo);
2174
2175 isl_buffer_fill_state(&screen->isl_dev, map,
2176 .address = res->bo->gtt_offset + cbuf->data.offset,
2177 .size_B = MIN2(buffer_size,
2178 res->bo->size - cbuf->data.offset),
2179 .format = ISL_FORMAT_R32G32B32A32_FLOAT,
2180 .stride_B = 1,
2181 .mocs = MOCS_WB)
2182 }
2183
2184 /**
2185 * The pipe->set_constant_buffer() driver hook.
2186 *
2187 * This uploads any constant data in user buffers, and references
2188 * any UBO resources containing constant data.
2189 */
2190 static void
2191 iris_set_constant_buffer(struct pipe_context *ctx,
2192 enum pipe_shader_type p_stage, unsigned index,
2193 const struct pipe_constant_buffer *input)
2194 {
2195 struct iris_context *ice = (struct iris_context *) ctx;
2196 gl_shader_stage stage = stage_from_pipe(p_stage);
2197 struct iris_shader_state *shs = &ice->state.shaders[stage];
2198 struct iris_const_buffer *cbuf = &shs->constbuf[index];
2199
2200 if (input && input->buffer) {
2201 assert(index > 0);
2202
2203 pipe_resource_reference(&cbuf->data.res, input->buffer);
2204 cbuf->data.offset = input->buffer_offset;
2205
2206 struct iris_resource *res = (void *) cbuf->data.res;
2207 res->bind_history |= PIPE_BIND_CONSTANT_BUFFER;
2208
2209 upload_ubo_surf_state(ice, cbuf, input->buffer_size);
2210 } else {
2211 pipe_resource_reference(&cbuf->data.res, NULL);
2212 pipe_resource_reference(&cbuf->surface_state.res, NULL);
2213 }
2214
2215 if (index == 0) {
2216 if (input)
2217 memcpy(&shs->cbuf0, input, sizeof(shs->cbuf0));
2218 else
2219 memset(&shs->cbuf0, 0, sizeof(shs->cbuf0));
2220
2221 shs->cbuf0_needs_upload = true;
2222 }
2223
2224 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
2225 // XXX: maybe not necessary all the time...?
2226 // XXX: we need 3DS_BTP to commit these changes, and if we fell back to
2227 // XXX: pull model we may need actual new bindings...
2228 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2229 }
2230
2231 static void
2232 upload_uniforms(struct iris_context *ice,
2233 gl_shader_stage stage)
2234 {
2235 struct iris_shader_state *shs = &ice->state.shaders[stage];
2236 struct iris_const_buffer *cbuf = &shs->constbuf[0];
2237 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
2238
2239 unsigned upload_size = shader->num_system_values * sizeof(uint32_t) +
2240 shs->cbuf0.buffer_size;
2241
2242 if (upload_size == 0)
2243 return;
2244
2245 uint32_t *map =
2246 upload_state(ice->ctx.const_uploader, &cbuf->data, upload_size, 64);
2247
2248 for (int i = 0; i < shader->num_system_values; i++) {
2249 uint32_t sysval = shader->system_values[i];
2250 uint32_t value = 0;
2251
2252 if (BRW_PARAM_BUILTIN_IS_CLIP_PLANE(sysval)) {
2253 int plane = BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(sysval);
2254 int comp = BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(sysval);
2255 value = fui(ice->state.clip_planes.ucp[plane][comp]);
2256 } else {
2257 assert(!"unhandled system value");
2258 }
2259
2260 *map++ = value;
2261 }
2262
2263 if (shs->cbuf0.user_buffer) {
2264 memcpy(map, shs->cbuf0.user_buffer, shs->cbuf0.buffer_size);
2265 }
2266
2267 upload_ubo_surf_state(ice, cbuf, upload_size);
2268 }
2269
2270 /**
2271 * The pipe->set_shader_buffers() driver hook.
2272 *
2273 * This binds SSBOs and ABOs. Unfortunately, we need to stream out
2274 * SURFACE_STATE here, as the buffer offset may change each time.
2275 */
2276 static void
2277 iris_set_shader_buffers(struct pipe_context *ctx,
2278 enum pipe_shader_type p_stage,
2279 unsigned start_slot, unsigned count,
2280 const struct pipe_shader_buffer *buffers)
2281 {
2282 struct iris_context *ice = (struct iris_context *) ctx;
2283 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2284 gl_shader_stage stage = stage_from_pipe(p_stage);
2285 struct iris_shader_state *shs = &ice->state.shaders[stage];
2286
2287 for (unsigned i = 0; i < count; i++) {
2288 if (buffers && buffers[i].buffer) {
2289 const struct pipe_shader_buffer *buffer = &buffers[i];
2290 struct iris_resource *res = (void *) buffer->buffer;
2291 pipe_resource_reference(&shs->ssbo[start_slot + i], &res->base);
2292
2293 res->bind_history |= PIPE_BIND_SHADER_BUFFER;
2294
2295 // XXX: these are not retained forever, use a separate uploader?
2296 void *map =
2297 upload_state(ice->state.surface_uploader,
2298 &shs->ssbo_surface_state[start_slot + i],
2299 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2300 if (!unlikely(map)) {
2301 pipe_resource_reference(&shs->ssbo[start_slot + i], NULL);
2302 return;
2303 }
2304
2305 struct iris_bo *surf_state_bo =
2306 iris_resource_bo(shs->ssbo_surface_state[start_slot + i].res);
2307 shs->ssbo_surface_state[start_slot + i].offset +=
2308 iris_bo_offset_from_base_address(surf_state_bo);
2309
2310 isl_buffer_fill_state(&screen->isl_dev, map,
2311 .address =
2312 res->bo->gtt_offset + buffer->buffer_offset,
2313 .size_B =
2314 MIN2(buffer->buffer_size,
2315 res->bo->size - buffer->buffer_offset),
2316 .format = ISL_FORMAT_RAW,
2317 .stride_B = 1,
2318 .mocs = MOCS_WB);
2319 } else {
2320 pipe_resource_reference(&shs->ssbo[start_slot + i], NULL);
2321 pipe_resource_reference(&shs->ssbo_surface_state[start_slot + i].res,
2322 NULL);
2323 }
2324 }
2325
2326 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2327 }
2328
2329 static void
2330 iris_delete_state(struct pipe_context *ctx, void *state)
2331 {
2332 free(state);
2333 }
2334
2335 static void
2336 iris_free_vertex_buffers(struct iris_vertex_buffer_state *cso)
2337 {
2338 for (unsigned i = 0; i < cso->num_buffers; i++)
2339 pipe_resource_reference(&cso->resources[i], NULL);
2340 }
2341
2342 /**
2343 * The pipe->set_vertex_buffers() driver hook.
2344 *
2345 * This translates pipe_vertex_buffer to our 3DSTATE_VERTEX_BUFFERS packet.
2346 */
2347 static void
2348 iris_set_vertex_buffers(struct pipe_context *ctx,
2349 unsigned start_slot, unsigned count,
2350 const struct pipe_vertex_buffer *buffers)
2351 {
2352 struct iris_context *ice = (struct iris_context *) ctx;
2353 struct iris_vertex_buffer_state *cso = &ice->state.genx->vertex_buffers;
2354
2355 iris_free_vertex_buffers(&ice->state.genx->vertex_buffers);
2356
2357 if (!buffers)
2358 count = 0;
2359
2360 cso->num_buffers = count;
2361
2362 iris_pack_command(GENX(3DSTATE_VERTEX_BUFFERS), cso->vertex_buffers, vb) {
2363 vb.DWordLength = 4 * MAX2(cso->num_buffers, 1) - 1;
2364 }
2365
2366 uint32_t *vb_pack_dest = &cso->vertex_buffers[1];
2367
2368 if (count == 0) {
2369 iris_pack_state(GENX(VERTEX_BUFFER_STATE), vb_pack_dest, vb) {
2370 vb.VertexBufferIndex = start_slot;
2371 vb.NullVertexBuffer = true;
2372 vb.AddressModifyEnable = true;
2373 }
2374 }
2375
2376 for (unsigned i = 0; i < count; i++) {
2377 assert(!buffers[i].is_user_buffer);
2378
2379 pipe_resource_reference(&cso->resources[i], buffers[i].buffer.resource);
2380 struct iris_resource *res = (void *) cso->resources[i];
2381
2382 if (res)
2383 res->bind_history |= PIPE_BIND_VERTEX_BUFFER;
2384
2385 iris_pack_state(GENX(VERTEX_BUFFER_STATE), vb_pack_dest, vb) {
2386 vb.VertexBufferIndex = start_slot + i;
2387 vb.MOCS = MOCS_WB;
2388 vb.AddressModifyEnable = true;
2389 vb.BufferPitch = buffers[i].stride;
2390 if (res) {
2391 vb.BufferSize = res->bo->size;
2392 vb.BufferStartingAddress =
2393 ro_bo(NULL, res->bo->gtt_offset + buffers[i].buffer_offset);
2394 } else {
2395 vb.NullVertexBuffer = true;
2396 }
2397 }
2398
2399 vb_pack_dest += GENX(VERTEX_BUFFER_STATE_length);
2400 }
2401
2402 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
2403 }
2404
2405 /**
2406 * Gallium CSO for vertex elements.
2407 */
2408 struct iris_vertex_element_state {
2409 uint32_t vertex_elements[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
2410 uint32_t vf_instancing[33 * GENX(3DSTATE_VF_INSTANCING_length)];
2411 unsigned count;
2412 };
2413
2414 /**
2415 * The pipe->create_vertex_elements() driver hook.
2416 *
2417 * This translates pipe_vertex_element to our 3DSTATE_VERTEX_ELEMENTS
2418 * and 3DSTATE_VF_INSTANCING commands. SGVs are handled at draw time.
2419 */
2420 static void *
2421 iris_create_vertex_elements(struct pipe_context *ctx,
2422 unsigned count,
2423 const struct pipe_vertex_element *state)
2424 {
2425 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2426 const struct gen_device_info *devinfo = &screen->devinfo;
2427 struct iris_vertex_element_state *cso =
2428 malloc(sizeof(struct iris_vertex_element_state));
2429
2430 cso->count = count;
2431
2432 /* TODO:
2433 * - create edge flag one
2434 * - create SGV ones
2435 * - if those are necessary, use count + 1/2/3... OR in the length
2436 */
2437 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS), cso->vertex_elements, ve) {
2438 ve.DWordLength =
2439 1 + GENX(VERTEX_ELEMENT_STATE_length) * MAX2(count, 1) - 2;
2440 }
2441
2442 uint32_t *ve_pack_dest = &cso->vertex_elements[1];
2443 uint32_t *vfi_pack_dest = cso->vf_instancing;
2444
2445 if (count == 0) {
2446 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
2447 ve.Valid = true;
2448 ve.SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT;
2449 ve.Component0Control = VFCOMP_STORE_0;
2450 ve.Component1Control = VFCOMP_STORE_0;
2451 ve.Component2Control = VFCOMP_STORE_0;
2452 ve.Component3Control = VFCOMP_STORE_1_FP;
2453 }
2454
2455 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
2456 }
2457 }
2458
2459 for (int i = 0; i < count; i++) {
2460 const struct iris_format_info fmt =
2461 iris_format_for_usage(devinfo, state[i].src_format, 0);
2462 unsigned comp[4] = { VFCOMP_STORE_SRC, VFCOMP_STORE_SRC,
2463 VFCOMP_STORE_SRC, VFCOMP_STORE_SRC };
2464
2465 switch (isl_format_get_num_channels(fmt.fmt)) {
2466 case 0: comp[0] = VFCOMP_STORE_0;
2467 case 1: comp[1] = VFCOMP_STORE_0;
2468 case 2: comp[2] = VFCOMP_STORE_0;
2469 case 3:
2470 comp[3] = isl_format_has_int_channel(fmt.fmt) ? VFCOMP_STORE_1_INT
2471 : VFCOMP_STORE_1_FP;
2472 break;
2473 }
2474 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
2475 ve.VertexBufferIndex = state[i].vertex_buffer_index;
2476 ve.Valid = true;
2477 ve.SourceElementOffset = state[i].src_offset;
2478 ve.SourceElementFormat = fmt.fmt;
2479 ve.Component0Control = comp[0];
2480 ve.Component1Control = comp[1];
2481 ve.Component2Control = comp[2];
2482 ve.Component3Control = comp[3];
2483 }
2484
2485 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
2486 vi.VertexElementIndex = i;
2487 vi.InstancingEnable = state[i].instance_divisor > 0;
2488 vi.InstanceDataStepRate = state[i].instance_divisor;
2489 }
2490
2491 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
2492 vfi_pack_dest += GENX(3DSTATE_VF_INSTANCING_length);
2493 }
2494
2495 return cso;
2496 }
2497
2498 /**
2499 * The pipe->bind_vertex_elements_state() driver hook.
2500 */
2501 static void
2502 iris_bind_vertex_elements_state(struct pipe_context *ctx, void *state)
2503 {
2504 struct iris_context *ice = (struct iris_context *) ctx;
2505 struct iris_vertex_element_state *old_cso = ice->state.cso_vertex_elements;
2506 struct iris_vertex_element_state *new_cso = state;
2507
2508 /* 3DSTATE_VF_SGVs overrides the last VE, so if the count is changing,
2509 * we need to re-emit it to ensure we're overriding the right one.
2510 */
2511 if (new_cso && cso_changed(count))
2512 ice->state.dirty |= IRIS_DIRTY_VF_SGVS;
2513
2514 ice->state.cso_vertex_elements = state;
2515 ice->state.dirty |= IRIS_DIRTY_VERTEX_ELEMENTS;
2516 }
2517
2518 /**
2519 * Gallium CSO for stream output (transform feedback) targets.
2520 */
2521 struct iris_stream_output_target {
2522 struct pipe_stream_output_target base;
2523
2524 uint32_t so_buffer[GENX(3DSTATE_SO_BUFFER_length)];
2525
2526 /** Storage holding the offset where we're writing in the buffer */
2527 struct iris_state_ref offset;
2528 };
2529
2530 /**
2531 * The pipe->create_stream_output_target() driver hook.
2532 *
2533 * "Target" here refers to a destination buffer. We translate this into
2534 * a 3DSTATE_SO_BUFFER packet. We can handle most fields, but don't yet
2535 * know which buffer this represents, or whether we ought to zero the
2536 * write-offsets, or append. Those are handled in the set() hook.
2537 */
2538 static struct pipe_stream_output_target *
2539 iris_create_stream_output_target(struct pipe_context *ctx,
2540 struct pipe_resource *p_res,
2541 unsigned buffer_offset,
2542 unsigned buffer_size)
2543 {
2544 struct iris_resource *res = (void *) p_res;
2545 struct iris_stream_output_target *cso = calloc(1, sizeof(*cso));
2546 if (!cso)
2547 return NULL;
2548
2549 res->bind_history |= PIPE_BIND_STREAM_OUTPUT;
2550
2551 pipe_reference_init(&cso->base.reference, 1);
2552 pipe_resource_reference(&cso->base.buffer, p_res);
2553 cso->base.buffer_offset = buffer_offset;
2554 cso->base.buffer_size = buffer_size;
2555 cso->base.context = ctx;
2556
2557 upload_state(ctx->stream_uploader, &cso->offset, 4 * sizeof(uint32_t), 4);
2558
2559 iris_pack_command(GENX(3DSTATE_SO_BUFFER), cso->so_buffer, sob) {
2560 sob.SurfaceBaseAddress =
2561 rw_bo(NULL, res->bo->gtt_offset + buffer_offset);
2562 sob.SOBufferEnable = true;
2563 sob.StreamOffsetWriteEnable = true;
2564 sob.StreamOutputBufferOffsetAddressEnable = true;
2565 sob.MOCS = MOCS_WB; // XXX: MOCS
2566
2567 sob.SurfaceSize = MAX2(buffer_size / 4, 1) - 1;
2568
2569 /* .SOBufferIndex, .StreamOffset, and .StreamOutputBufferOffsetAddress
2570 * are filled in later when we have stream IDs.
2571 */
2572 }
2573
2574 return &cso->base;
2575 }
2576
2577 static void
2578 iris_stream_output_target_destroy(struct pipe_context *ctx,
2579 struct pipe_stream_output_target *state)
2580 {
2581 struct iris_stream_output_target *cso = (void *) state;
2582
2583 pipe_resource_reference(&cso->base.buffer, NULL);
2584 pipe_resource_reference(&cso->offset.res, NULL);
2585
2586 free(cso);
2587 }
2588
2589 /**
2590 * The pipe->set_stream_output_targets() driver hook.
2591 *
2592 * At this point, we know which targets are bound to a particular index,
2593 * and also whether we want to append or start over. We can finish the
2594 * 3DSTATE_SO_BUFFER packets we started earlier.
2595 */
2596 static void
2597 iris_set_stream_output_targets(struct pipe_context *ctx,
2598 unsigned num_targets,
2599 struct pipe_stream_output_target **targets,
2600 const unsigned *offsets)
2601 {
2602 struct iris_context *ice = (struct iris_context *) ctx;
2603 struct iris_genx_state *genx = ice->state.genx;
2604 uint32_t *so_buffers = genx->so_buffers;
2605
2606 const bool active = num_targets > 0;
2607 if (ice->state.streamout_active != active) {
2608 ice->state.streamout_active = active;
2609 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
2610
2611 /* We only emit 3DSTATE_SO_DECL_LIST when streamout is active, because
2612 * it's a non-pipelined command. If we're switching streamout on, we
2613 * may have missed emitting it earlier, so do so now. (We're already
2614 * taking a stall to update 3DSTATE_SO_BUFFERS anyway...)
2615 */
2616 if (active)
2617 ice->state.dirty |= IRIS_DIRTY_SO_DECL_LIST;
2618 }
2619
2620 for (int i = 0; i < 4; i++) {
2621 pipe_so_target_reference(&ice->state.so_target[i],
2622 i < num_targets ? targets[i] : NULL);
2623 }
2624
2625 /* No need to update 3DSTATE_SO_BUFFER unless SOL is active. */
2626 if (!active)
2627 return;
2628
2629 for (unsigned i = 0; i < 4; i++,
2630 so_buffers += GENX(3DSTATE_SO_BUFFER_length)) {
2631
2632 if (i >= num_targets || !targets[i]) {
2633 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob)
2634 sob.SOBufferIndex = i;
2635 continue;
2636 }
2637
2638 struct iris_stream_output_target *tgt = (void *) targets[i];
2639
2640 /* Note that offsets[i] will either be 0, causing us to zero
2641 * the value in the buffer, or 0xFFFFFFFF, which happens to mean
2642 * "continue appending at the existing offset."
2643 */
2644 assert(offsets[i] == 0 || offsets[i] == 0xFFFFFFFF);
2645
2646 uint32_t dynamic[GENX(3DSTATE_SO_BUFFER_length)];
2647 iris_pack_state(GENX(3DSTATE_SO_BUFFER), dynamic, dyns) {
2648 dyns.SOBufferIndex = i;
2649 dyns.StreamOffset = offsets[i];
2650 dyns.StreamOutputBufferOffsetAddress =
2651 rw_bo(NULL, iris_resource_bo(tgt->offset.res)->gtt_offset + tgt->offset.offset + i * sizeof(uint32_t));
2652 }
2653
2654 for (uint32_t j = 0; j < GENX(3DSTATE_SO_BUFFER_length); j++) {
2655 so_buffers[j] = tgt->so_buffer[j] | dynamic[j];
2656 }
2657 }
2658
2659 ice->state.dirty |= IRIS_DIRTY_SO_BUFFERS;
2660 }
2661
2662 /**
2663 * An iris-vtable helper for encoding the 3DSTATE_SO_DECL_LIST and
2664 * 3DSTATE_STREAMOUT packets.
2665 *
2666 * 3DSTATE_SO_DECL_LIST is a list of shader outputs we want the streamout
2667 * hardware to record. We can create it entirely based on the shader, with
2668 * no dynamic state dependencies.
2669 *
2670 * 3DSTATE_STREAMOUT is an annoying mix of shader-based information and
2671 * state-based settings. We capture the shader-related ones here, and merge
2672 * the rest in at draw time.
2673 */
2674 static uint32_t *
2675 iris_create_so_decl_list(const struct pipe_stream_output_info *info,
2676 const struct brw_vue_map *vue_map)
2677 {
2678 struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
2679 int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2680 int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2681 int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2682 int max_decls = 0;
2683 STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
2684
2685 memset(so_decl, 0, sizeof(so_decl));
2686
2687 /* Construct the list of SO_DECLs to be emitted. The formatting of the
2688 * command feels strange -- each dword pair contains a SO_DECL per stream.
2689 */
2690 for (unsigned i = 0; i < info->num_outputs; i++) {
2691 const struct pipe_stream_output *output = &info->output[i];
2692 const int buffer = output->output_buffer;
2693 const int varying = output->register_index;
2694 const unsigned stream_id = output->stream;
2695 assert(stream_id < MAX_VERTEX_STREAMS);
2696
2697 buffer_mask[stream_id] |= 1 << buffer;
2698
2699 assert(vue_map->varying_to_slot[varying] >= 0);
2700
2701 /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
2702 * array. Instead, it simply increments DstOffset for the following
2703 * input by the number of components that should be skipped.
2704 *
2705 * Our hardware is unusual in that it requires us to program SO_DECLs
2706 * for fake "hole" components, rather than simply taking the offset
2707 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
2708 * program as many size = 4 holes as we can, then a final hole to
2709 * accommodate the final 1, 2, or 3 remaining.
2710 */
2711 int skip_components = output->dst_offset - next_offset[buffer];
2712
2713 while (skip_components > 0) {
2714 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
2715 .HoleFlag = 1,
2716 .OutputBufferSlot = output->output_buffer,
2717 .ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
2718 };
2719 skip_components -= 4;
2720 }
2721
2722 next_offset[buffer] = output->dst_offset + output->num_components;
2723
2724 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
2725 .OutputBufferSlot = output->output_buffer,
2726 .RegisterIndex = vue_map->varying_to_slot[varying],
2727 .ComponentMask =
2728 ((1 << output->num_components) - 1) << output->start_component,
2729 };
2730
2731 if (decls[stream_id] > max_decls)
2732 max_decls = decls[stream_id];
2733 }
2734
2735 unsigned dwords = GENX(3DSTATE_STREAMOUT_length) + (3 + 2 * max_decls);
2736 uint32_t *map = ralloc_size(NULL, sizeof(uint32_t) * dwords);
2737 uint32_t *so_decl_map = map + GENX(3DSTATE_STREAMOUT_length);
2738
2739 iris_pack_command(GENX(3DSTATE_STREAMOUT), map, sol) {
2740 int urb_entry_read_offset = 0;
2741 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
2742 urb_entry_read_offset;
2743
2744 /* We always read the whole vertex. This could be reduced at some
2745 * point by reading less and offsetting the register index in the
2746 * SO_DECLs.
2747 */
2748 sol.Stream0VertexReadOffset = urb_entry_read_offset;
2749 sol.Stream0VertexReadLength = urb_entry_read_length - 1;
2750 sol.Stream1VertexReadOffset = urb_entry_read_offset;
2751 sol.Stream1VertexReadLength = urb_entry_read_length - 1;
2752 sol.Stream2VertexReadOffset = urb_entry_read_offset;
2753 sol.Stream2VertexReadLength = urb_entry_read_length - 1;
2754 sol.Stream3VertexReadOffset = urb_entry_read_offset;
2755 sol.Stream3VertexReadLength = urb_entry_read_length - 1;
2756
2757 /* Set buffer pitches; 0 means unbound. */
2758 sol.Buffer0SurfacePitch = 4 * info->stride[0];
2759 sol.Buffer1SurfacePitch = 4 * info->stride[1];
2760 sol.Buffer2SurfacePitch = 4 * info->stride[2];
2761 sol.Buffer3SurfacePitch = 4 * info->stride[3];
2762 }
2763
2764 iris_pack_command(GENX(3DSTATE_SO_DECL_LIST), so_decl_map, list) {
2765 list.DWordLength = 3 + 2 * max_decls - 2;
2766 list.StreamtoBufferSelects0 = buffer_mask[0];
2767 list.StreamtoBufferSelects1 = buffer_mask[1];
2768 list.StreamtoBufferSelects2 = buffer_mask[2];
2769 list.StreamtoBufferSelects3 = buffer_mask[3];
2770 list.NumEntries0 = decls[0];
2771 list.NumEntries1 = decls[1];
2772 list.NumEntries2 = decls[2];
2773 list.NumEntries3 = decls[3];
2774 }
2775
2776 for (int i = 0; i < max_decls; i++) {
2777 iris_pack_state(GENX(SO_DECL_ENTRY), so_decl_map + 3 + i * 2, entry) {
2778 entry.Stream0Decl = so_decl[0][i];
2779 entry.Stream1Decl = so_decl[1][i];
2780 entry.Stream2Decl = so_decl[2][i];
2781 entry.Stream3Decl = so_decl[3][i];
2782 }
2783 }
2784
2785 return map;
2786 }
2787
2788 static void
2789 iris_compute_sbe_urb_read_interval(uint64_t fs_input_slots,
2790 const struct brw_vue_map *last_vue_map,
2791 bool two_sided_color,
2792 unsigned *out_offset,
2793 unsigned *out_length)
2794 {
2795 /* The compiler computes the first URB slot without considering COL/BFC
2796 * swizzling (because it doesn't know whether it's enabled), so we need
2797 * to do that here too. This may result in a smaller offset, which
2798 * should be safe.
2799 */
2800 const unsigned first_slot =
2801 brw_compute_first_urb_slot_required(fs_input_slots, last_vue_map);
2802
2803 /* This becomes the URB read offset (counted in pairs of slots). */
2804 assert(first_slot % 2 == 0);
2805 *out_offset = first_slot / 2;
2806
2807 /* We need to adjust the inputs read to account for front/back color
2808 * swizzling, as it can make the URB length longer.
2809 */
2810 for (int c = 0; c <= 1; c++) {
2811 if (fs_input_slots & (VARYING_BIT_COL0 << c)) {
2812 /* If two sided color is enabled, the fragment shader's gl_Color
2813 * (COL0) input comes from either the gl_FrontColor (COL0) or
2814 * gl_BackColor (BFC0) input varyings. Mark BFC as used, too.
2815 */
2816 if (two_sided_color)
2817 fs_input_slots |= (VARYING_BIT_BFC0 << c);
2818
2819 /* If front color isn't written, we opt to give them back color
2820 * instead of an undefined value. Switch from COL to BFC.
2821 */
2822 if (last_vue_map->varying_to_slot[VARYING_SLOT_COL0 + c] == -1) {
2823 fs_input_slots &= ~(VARYING_BIT_COL0 << c);
2824 fs_input_slots |= (VARYING_BIT_BFC0 << c);
2825 }
2826 }
2827 }
2828
2829 /* Compute the minimum URB Read Length necessary for the FS inputs.
2830 *
2831 * From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
2832 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
2833 *
2834 * "This field should be set to the minimum length required to read the
2835 * maximum source attribute. The maximum source attribute is indicated
2836 * by the maximum value of the enabled Attribute # Source Attribute if
2837 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
2838 * enable is not set.
2839 * read_length = ceiling((max_source_attr + 1) / 2)
2840 *
2841 * [errata] Corruption/Hang possible if length programmed larger than
2842 * recommended"
2843 *
2844 * Similar text exists for Ivy Bridge.
2845 *
2846 * We find the last URB slot that's actually read by the FS.
2847 */
2848 unsigned last_read_slot = last_vue_map->num_slots - 1;
2849 while (last_read_slot > first_slot && !(fs_input_slots &
2850 (1ull << last_vue_map->slot_to_varying[last_read_slot])))
2851 --last_read_slot;
2852
2853 /* The URB read length is the difference of the two, counted in pairs. */
2854 *out_length = DIV_ROUND_UP(last_read_slot - first_slot + 1, 2);
2855 }
2856
2857 static void
2858 iris_emit_sbe_swiz(struct iris_batch *batch,
2859 const struct iris_context *ice,
2860 unsigned urb_read_offset,
2861 unsigned sprite_coord_enables)
2862 {
2863 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = {};
2864 const struct brw_wm_prog_data *wm_prog_data = (void *)
2865 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
2866 const struct brw_vue_map *vue_map = ice->shaders.last_vue_map;
2867 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
2868
2869 /* XXX: this should be generated when putting programs in place */
2870
2871 // XXX: raster->sprite_coord_enable
2872
2873 for (int fs_attr = 0; fs_attr < VARYING_SLOT_MAX; fs_attr++) {
2874 const int input_index = wm_prog_data->urb_setup[fs_attr];
2875 if (input_index < 0 || input_index >= 16)
2876 continue;
2877
2878 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr =
2879 &attr_overrides[input_index];
2880 int slot = vue_map->varying_to_slot[fs_attr];
2881
2882 /* Viewport and Layer are stored in the VUE header. We need to override
2883 * them to zero if earlier stages didn't write them, as GL requires that
2884 * they read back as zero when not explicitly set.
2885 */
2886 switch (fs_attr) {
2887 case VARYING_SLOT_VIEWPORT:
2888 case VARYING_SLOT_LAYER:
2889 attr->ComponentOverrideX = true;
2890 attr->ComponentOverrideW = true;
2891 attr->ConstantSource = CONST_0000;
2892
2893 if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
2894 attr->ComponentOverrideY = true;
2895 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
2896 attr->ComponentOverrideZ = true;
2897 continue;
2898
2899 case VARYING_SLOT_PRIMITIVE_ID:
2900 /* Override if the previous shader stage didn't write gl_PrimitiveID. */
2901 if (slot == -1) {
2902 attr->ComponentOverrideX = true;
2903 attr->ComponentOverrideY = true;
2904 attr->ComponentOverrideZ = true;
2905 attr->ComponentOverrideW = true;
2906 attr->ConstantSource = PRIM_ID;
2907 continue;
2908 }
2909
2910 default:
2911 break;
2912 }
2913
2914 if (sprite_coord_enables & (1 << input_index))
2915 continue;
2916
2917 /* If there was only a back color written but not front, use back
2918 * as the color instead of undefined.
2919 */
2920 if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
2921 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
2922 if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
2923 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
2924
2925 /* Not written by the previous stage - undefined. */
2926 if (slot == -1) {
2927 attr->ComponentOverrideX = true;
2928 attr->ComponentOverrideY = true;
2929 attr->ComponentOverrideZ = true;
2930 attr->ComponentOverrideW = true;
2931 attr->ConstantSource = CONST_0001_FLOAT;
2932 continue;
2933 }
2934
2935 /* Compute the location of the attribute relative to the read offset,
2936 * which is counted in 256-bit increments (two 128-bit VUE slots).
2937 */
2938 const int source_attr = slot - 2 * urb_read_offset;
2939 assert(source_attr >= 0 && source_attr <= 32);
2940 attr->SourceAttribute = source_attr;
2941
2942 /* If we are doing two-sided color, and the VUE slot following this one
2943 * represents a back-facing color, then we need to instruct the SF unit
2944 * to do back-facing swizzling.
2945 */
2946 if (cso_rast->light_twoside &&
2947 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
2948 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
2949 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
2950 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1)))
2951 attr->SwizzleSelect = INPUTATTR_FACING;
2952 }
2953
2954 iris_emit_cmd(batch, GENX(3DSTATE_SBE_SWIZ), sbes) {
2955 for (int i = 0; i < 16; i++)
2956 sbes.Attribute[i] = attr_overrides[i];
2957 }
2958 }
2959
2960 static unsigned
2961 iris_calculate_point_sprite_overrides(const struct brw_wm_prog_data *prog_data,
2962 const struct iris_rasterizer_state *cso)
2963 {
2964 unsigned overrides = 0;
2965
2966 if (prog_data->urb_setup[VARYING_SLOT_PNTC] != -1)
2967 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_PNTC];
2968
2969 for (int i = 0; i < 8; i++) {
2970 if ((cso->sprite_coord_enable & (1 << i)) &&
2971 prog_data->urb_setup[VARYING_SLOT_TEX0 + i] != -1)
2972 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_TEX0 + i];
2973 }
2974
2975 return overrides;
2976 }
2977
2978 static void
2979 iris_emit_sbe(struct iris_batch *batch, const struct iris_context *ice)
2980 {
2981 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
2982 const struct brw_wm_prog_data *wm_prog_data = (void *)
2983 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
2984 const struct shader_info *fs_info =
2985 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
2986
2987 unsigned urb_read_offset, urb_read_length;
2988 iris_compute_sbe_urb_read_interval(fs_info->inputs_read,
2989 ice->shaders.last_vue_map,
2990 cso_rast->light_twoside,
2991 &urb_read_offset, &urb_read_length);
2992
2993 unsigned sprite_coord_overrides =
2994 iris_calculate_point_sprite_overrides(wm_prog_data, cso_rast);
2995
2996 iris_emit_cmd(batch, GENX(3DSTATE_SBE), sbe) {
2997 sbe.AttributeSwizzleEnable = true;
2998 sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
2999 sbe.PointSpriteTextureCoordinateOrigin = cso_rast->sprite_coord_mode;
3000 sbe.VertexURBEntryReadOffset = urb_read_offset;
3001 sbe.VertexURBEntryReadLength = urb_read_length;
3002 sbe.ForceVertexURBEntryReadOffset = true;
3003 sbe.ForceVertexURBEntryReadLength = true;
3004 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
3005 sbe.PointSpriteTextureCoordinateEnable = sprite_coord_overrides;
3006
3007 for (int i = 0; i < 32; i++) {
3008 sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW;
3009 }
3010 }
3011
3012 iris_emit_sbe_swiz(batch, ice, urb_read_offset, sprite_coord_overrides);
3013 }
3014
3015 /* ------------------------------------------------------------------- */
3016
3017 /**
3018 * Populate VS program key fields based on the current state.
3019 */
3020 static void
3021 iris_populate_vs_key(const struct iris_context *ice,
3022 const struct shader_info *info,
3023 struct brw_vs_prog_key *key)
3024 {
3025 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3026
3027 if (info->clip_distance_array_size == 0 &&
3028 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)))
3029 key->nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
3030 }
3031
3032 /**
3033 * Populate TCS program key fields based on the current state.
3034 */
3035 static void
3036 iris_populate_tcs_key(const struct iris_context *ice,
3037 struct brw_tcs_prog_key *key)
3038 {
3039 }
3040
3041 /**
3042 * Populate TES program key fields based on the current state.
3043 */
3044 static void
3045 iris_populate_tes_key(const struct iris_context *ice,
3046 struct brw_tes_prog_key *key)
3047 {
3048 }
3049
3050 /**
3051 * Populate GS program key fields based on the current state.
3052 */
3053 static void
3054 iris_populate_gs_key(const struct iris_context *ice,
3055 struct brw_gs_prog_key *key)
3056 {
3057 }
3058
3059 /**
3060 * Populate FS program key fields based on the current state.
3061 */
3062 static void
3063 iris_populate_fs_key(const struct iris_context *ice,
3064 struct brw_wm_prog_key *key)
3065 {
3066 /* XXX: dirty flags? */
3067 const struct pipe_framebuffer_state *fb = &ice->state.framebuffer;
3068 const struct iris_depth_stencil_alpha_state *zsa = ice->state.cso_zsa;
3069 const struct iris_rasterizer_state *rast = ice->state.cso_rast;
3070 const struct iris_blend_state *blend = ice->state.cso_blend;
3071
3072 key->nr_color_regions = fb->nr_cbufs;
3073
3074 key->clamp_fragment_color = rast->clamp_fragment_color;
3075
3076 key->replicate_alpha = fb->nr_cbufs > 1 &&
3077 (zsa->alpha.enabled || blend->alpha_to_coverage);
3078
3079 /* XXX: only bother if COL0/1 are read */
3080 key->flat_shade = rast->flatshade;
3081
3082 key->persample_interp = rast->force_persample_interp;
3083 key->multisample_fbo = rast->multisample && fb->samples > 1;
3084
3085 key->coherent_fb_fetch = true;
3086
3087 // XXX: uint64_t input_slots_valid; - for >16 inputs
3088
3089 // XXX: key->force_dual_color_blend for unigine
3090 // XXX: respect hint for high_quality_derivatives:1;
3091 }
3092
3093 static void
3094 iris_populate_cs_key(const struct iris_context *ice,
3095 struct brw_cs_prog_key *key)
3096 {
3097 }
3098
3099 #if 0
3100 // XXX: these need to go in INIT_THREAD_DISPATCH_FIELDS
3101 pkt.SamplerCount = \
3102 DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4); \
3103
3104 #endif
3105
3106 static uint64_t
3107 KSP(const struct iris_compiled_shader *shader)
3108 {
3109 struct iris_resource *res = (void *) shader->assembly.res;
3110 return iris_bo_offset_from_base_address(res->bo) + shader->assembly.offset;
3111 }
3112
3113 // Gen11 workaround table #2056 WABTPPrefetchDisable suggests to disable
3114 // prefetching of binding tables in A0 and B0 steppings. XXX: Revisit
3115 // this WA on C0 stepping.
3116
3117 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix, stage) \
3118 pkt.KernelStartPointer = KSP(shader); \
3119 pkt.BindingTableEntryCount = GEN_GEN == 11 ? 0 : \
3120 prog_data->binding_table.size_bytes / 4; \
3121 pkt.FloatingPointMode = prog_data->use_alt_mode; \
3122 \
3123 pkt.DispatchGRFStartRegisterForURBData = \
3124 prog_data->dispatch_grf_start_reg; \
3125 pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
3126 pkt.prefix##URBEntryReadOffset = 0; \
3127 \
3128 pkt.StatisticsEnable = true; \
3129 pkt.Enable = true; \
3130 \
3131 if (prog_data->total_scratch) { \
3132 uint32_t scratch_addr = \
3133 iris_get_scratch_space(ice, prog_data->total_scratch, stage); \
3134 pkt.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11; \
3135 pkt.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr); \
3136 }
3137
3138 /**
3139 * Encode most of 3DSTATE_VS based on the compiled shader.
3140 */
3141 static void
3142 iris_store_vs_state(struct iris_context *ice,
3143 const struct gen_device_info *devinfo,
3144 struct iris_compiled_shader *shader)
3145 {
3146 struct brw_stage_prog_data *prog_data = shader->prog_data;
3147 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3148
3149 iris_pack_command(GENX(3DSTATE_VS), shader->derived_data, vs) {
3150 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex, MESA_SHADER_VERTEX);
3151 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
3152 vs.SIMD8DispatchEnable = true;
3153 vs.UserClipDistanceCullTestEnableBitmask =
3154 vue_prog_data->cull_distance_mask;
3155 }
3156 }
3157
3158 /**
3159 * Encode most of 3DSTATE_HS based on the compiled shader.
3160 */
3161 static void
3162 iris_store_tcs_state(struct iris_context *ice,
3163 const struct gen_device_info *devinfo,
3164 struct iris_compiled_shader *shader)
3165 {
3166 struct brw_stage_prog_data *prog_data = shader->prog_data;
3167 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3168 struct brw_tcs_prog_data *tcs_prog_data = (void *) prog_data;
3169
3170 iris_pack_command(GENX(3DSTATE_HS), shader->derived_data, hs) {
3171 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex, MESA_SHADER_TESS_CTRL);
3172
3173 hs.InstanceCount = tcs_prog_data->instances - 1;
3174 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
3175 hs.IncludeVertexHandles = true;
3176 }
3177 }
3178
3179 /**
3180 * Encode 3DSTATE_TE and most of 3DSTATE_DS based on the compiled shader.
3181 */
3182 static void
3183 iris_store_tes_state(struct iris_context *ice,
3184 const struct gen_device_info *devinfo,
3185 struct iris_compiled_shader *shader)
3186 {
3187 struct brw_stage_prog_data *prog_data = shader->prog_data;
3188 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3189 struct brw_tes_prog_data *tes_prog_data = (void *) prog_data;
3190
3191 uint32_t *te_state = (void *) shader->derived_data;
3192 uint32_t *ds_state = te_state + GENX(3DSTATE_TE_length);
3193
3194 iris_pack_command(GENX(3DSTATE_TE), te_state, te) {
3195 te.Partitioning = tes_prog_data->partitioning;
3196 te.OutputTopology = tes_prog_data->output_topology;
3197 te.TEDomain = tes_prog_data->domain;
3198 te.TEEnable = true;
3199 te.MaximumTessellationFactorOdd = 63.0;
3200 te.MaximumTessellationFactorNotOdd = 64.0;
3201 }
3202
3203 iris_pack_command(GENX(3DSTATE_DS), ds_state, ds) {
3204 INIT_THREAD_DISPATCH_FIELDS(ds, Patch, MESA_SHADER_TESS_EVAL);
3205
3206 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
3207 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
3208 ds.ComputeWCoordinateEnable =
3209 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
3210
3211 ds.UserClipDistanceCullTestEnableBitmask =
3212 vue_prog_data->cull_distance_mask;
3213 }
3214
3215 }
3216
3217 /**
3218 * Encode most of 3DSTATE_GS based on the compiled shader.
3219 */
3220 static void
3221 iris_store_gs_state(struct iris_context *ice,
3222 const struct gen_device_info *devinfo,
3223 struct iris_compiled_shader *shader)
3224 {
3225 struct brw_stage_prog_data *prog_data = shader->prog_data;
3226 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3227 struct brw_gs_prog_data *gs_prog_data = (void *) prog_data;
3228
3229 iris_pack_command(GENX(3DSTATE_GS), shader->derived_data, gs) {
3230 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex, MESA_SHADER_GEOMETRY);
3231
3232 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
3233 gs.OutputTopology = gs_prog_data->output_topology;
3234 gs.ControlDataHeaderSize =
3235 gs_prog_data->control_data_header_size_hwords;
3236 gs.InstanceControl = gs_prog_data->invocations - 1;
3237 gs.DispatchMode = DISPATCH_MODE_SIMD8;
3238 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
3239 gs.ControlDataFormat = gs_prog_data->control_data_format;
3240 gs.ReorderMode = TRAILING;
3241 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
3242 gs.MaximumNumberofThreads =
3243 GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
3244 : (devinfo->max_gs_threads - 1);
3245
3246 if (gs_prog_data->static_vertex_count != -1) {
3247 gs.StaticOutput = true;
3248 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
3249 }
3250 gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
3251
3252 gs.UserClipDistanceCullTestEnableBitmask =
3253 vue_prog_data->cull_distance_mask;
3254
3255 const int urb_entry_write_offset = 1;
3256 const uint32_t urb_entry_output_length =
3257 DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
3258 urb_entry_write_offset;
3259
3260 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
3261 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
3262 }
3263 }
3264
3265 /**
3266 * Encode most of 3DSTATE_PS and 3DSTATE_PS_EXTRA based on the shader.
3267 */
3268 static void
3269 iris_store_fs_state(struct iris_context *ice,
3270 const struct gen_device_info *devinfo,
3271 struct iris_compiled_shader *shader)
3272 {
3273 struct brw_stage_prog_data *prog_data = shader->prog_data;
3274 struct brw_wm_prog_data *wm_prog_data = (void *) shader->prog_data;
3275
3276 uint32_t *ps_state = (void *) shader->derived_data;
3277 uint32_t *psx_state = ps_state + GENX(3DSTATE_PS_length);
3278
3279 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
3280 ps.VectorMaskEnable = true;
3281 //ps.SamplerCount = ...
3282 // XXX: WABTPPrefetchDisable, see above, drop at C0
3283 ps.BindingTableEntryCount = GEN_GEN == 11 ? 0 :
3284 prog_data->binding_table.size_bytes / 4;
3285 ps.FloatingPointMode = prog_data->use_alt_mode;
3286 ps.MaximumNumberofThreadsPerPSD = 64 - (GEN_GEN == 8 ? 2 : 1);
3287
3288 ps.PushConstantEnable = shader->num_system_values > 0 ||
3289 prog_data->ubo_ranges[0].length > 0;
3290
3291 /* From the documentation for this packet:
3292 * "If the PS kernel does not need the Position XY Offsets to
3293 * compute a Position Value, then this field should be programmed
3294 * to POSOFFSET_NONE."
3295 *
3296 * "SW Recommendation: If the PS kernel needs the Position Offsets
3297 * to compute a Position XY value, this field should match Position
3298 * ZW Interpolation Mode to ensure a consistent position.xyzw
3299 * computation."
3300 *
3301 * We only require XY sample offsets. So, this recommendation doesn't
3302 * look useful at the moment. We might need this in future.
3303 */
3304 ps.PositionXYOffsetSelect =
3305 wm_prog_data->uses_pos_offset ? POSOFFSET_SAMPLE : POSOFFSET_NONE;
3306 ps._8PixelDispatchEnable = wm_prog_data->dispatch_8;
3307 ps._16PixelDispatchEnable = wm_prog_data->dispatch_16;
3308 ps._32PixelDispatchEnable = wm_prog_data->dispatch_32;
3309
3310 // XXX: Disable SIMD32 with 16x MSAA
3311
3312 ps.DispatchGRFStartRegisterForConstantSetupData0 =
3313 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
3314 ps.DispatchGRFStartRegisterForConstantSetupData1 =
3315 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
3316 ps.DispatchGRFStartRegisterForConstantSetupData2 =
3317 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
3318
3319 ps.KernelStartPointer0 =
3320 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
3321 ps.KernelStartPointer1 =
3322 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
3323 ps.KernelStartPointer2 =
3324 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
3325
3326 if (prog_data->total_scratch) {
3327 uint32_t scratch_addr =
3328 iris_get_scratch_space(ice, prog_data->total_scratch,
3329 MESA_SHADER_FRAGMENT);
3330 ps.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
3331 ps.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr);
3332 }
3333 }
3334
3335 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
3336 psx.PixelShaderValid = true;
3337 psx.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
3338 psx.PixelShaderKillsPixel = wm_prog_data->uses_kill;
3339 psx.AttributeEnable = wm_prog_data->num_varying_inputs != 0;
3340 psx.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
3341 psx.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
3342 psx.PixelShaderIsPerSample = wm_prog_data->persample_dispatch;
3343
3344 if (wm_prog_data->uses_sample_mask) {
3345 /* TODO: conservative rasterization */
3346 if (wm_prog_data->post_depth_coverage)
3347 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
3348 else
3349 psx.InputCoverageMaskState = ICMS_NORMAL;
3350 }
3351
3352 psx.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
3353 psx.PixelShaderPullsBary = wm_prog_data->pulls_bary;
3354 psx.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
3355
3356 // XXX: UAV bit
3357 }
3358 }
3359
3360 /**
3361 * Compute the size of the derived data (shader command packets).
3362 *
3363 * This must match the data written by the iris_store_xs_state() functions.
3364 */
3365 static void
3366 iris_store_cs_state(struct iris_context *ice,
3367 const struct gen_device_info *devinfo,
3368 struct iris_compiled_shader *shader)
3369 {
3370 struct brw_stage_prog_data *prog_data = shader->prog_data;
3371 struct brw_cs_prog_data *cs_prog_data = (void *) shader->prog_data;
3372 void *map = shader->derived_data;
3373
3374 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), map, desc) {
3375 desc.KernelStartPointer = KSP(shader);
3376 desc.ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs;
3377 desc.NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads;
3378 desc.SharedLocalMemorySize =
3379 encode_slm_size(GEN_GEN, prog_data->total_shared);
3380 desc.BarrierEnable = cs_prog_data->uses_barrier;
3381 desc.CrossThreadConstantDataReadLength =
3382 cs_prog_data->push.cross_thread.regs;
3383 }
3384 }
3385
3386 static unsigned
3387 iris_derived_program_state_size(enum iris_program_cache_id cache_id)
3388 {
3389 assert(cache_id <= IRIS_CACHE_BLORP);
3390
3391 static const unsigned dwords[] = {
3392 [IRIS_CACHE_VS] = GENX(3DSTATE_VS_length),
3393 [IRIS_CACHE_TCS] = GENX(3DSTATE_HS_length),
3394 [IRIS_CACHE_TES] = GENX(3DSTATE_TE_length) + GENX(3DSTATE_DS_length),
3395 [IRIS_CACHE_GS] = GENX(3DSTATE_GS_length),
3396 [IRIS_CACHE_FS] =
3397 GENX(3DSTATE_PS_length) + GENX(3DSTATE_PS_EXTRA_length),
3398 [IRIS_CACHE_CS] = GENX(INTERFACE_DESCRIPTOR_DATA_length),
3399 [IRIS_CACHE_BLORP] = 0,
3400 };
3401
3402 return sizeof(uint32_t) * dwords[cache_id];
3403 }
3404
3405 /**
3406 * Create any state packets corresponding to the given shader stage
3407 * (i.e. 3DSTATE_VS) and save them as "derived data" in the shader variant.
3408 * This means that we can look up a program in the in-memory cache and
3409 * get most of the state packet without having to reconstruct it.
3410 */
3411 static void
3412 iris_store_derived_program_state(struct iris_context *ice,
3413 enum iris_program_cache_id cache_id,
3414 struct iris_compiled_shader *shader)
3415 {
3416 struct iris_screen *screen = (void *) ice->ctx.screen;
3417 const struct gen_device_info *devinfo = &screen->devinfo;
3418
3419 switch (cache_id) {
3420 case IRIS_CACHE_VS:
3421 iris_store_vs_state(ice, devinfo, shader);
3422 break;
3423 case IRIS_CACHE_TCS:
3424 iris_store_tcs_state(ice, devinfo, shader);
3425 break;
3426 case IRIS_CACHE_TES:
3427 iris_store_tes_state(ice, devinfo, shader);
3428 break;
3429 case IRIS_CACHE_GS:
3430 iris_store_gs_state(ice, devinfo, shader);
3431 break;
3432 case IRIS_CACHE_FS:
3433 iris_store_fs_state(ice, devinfo, shader);
3434 break;
3435 case IRIS_CACHE_CS:
3436 iris_store_cs_state(ice, devinfo, shader);
3437 case IRIS_CACHE_BLORP:
3438 break;
3439 default:
3440 break;
3441 }
3442 }
3443
3444 /* ------------------------------------------------------------------- */
3445
3446 /**
3447 * Configure the URB.
3448 *
3449 * XXX: write a real comment.
3450 */
3451 static void
3452 iris_upload_urb_config(struct iris_context *ice, struct iris_batch *batch)
3453 {
3454 const struct gen_device_info *devinfo = &batch->screen->devinfo;
3455 const unsigned push_size_kB = 32;
3456 unsigned entries[4];
3457 unsigned start[4];
3458 unsigned size[4];
3459
3460 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
3461 if (!ice->shaders.prog[i]) {
3462 size[i] = 1;
3463 } else {
3464 struct brw_vue_prog_data *vue_prog_data =
3465 (void *) ice->shaders.prog[i]->prog_data;
3466 size[i] = vue_prog_data->urb_entry_size;
3467 }
3468 assert(size[i] != 0);
3469 }
3470
3471 gen_get_urb_config(devinfo, 1024 * push_size_kB,
3472 1024 * ice->shaders.urb_size,
3473 ice->shaders.prog[MESA_SHADER_TESS_EVAL] != NULL,
3474 ice->shaders.prog[MESA_SHADER_GEOMETRY] != NULL,
3475 size, entries, start);
3476
3477 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
3478 iris_emit_cmd(batch, GENX(3DSTATE_URB_VS), urb) {
3479 urb._3DCommandSubOpcode += i;
3480 urb.VSURBStartingAddress = start[i];
3481 urb.VSURBEntryAllocationSize = size[i] - 1;
3482 urb.VSNumberofURBEntries = entries[i];
3483 }
3484 }
3485 }
3486
3487 static const uint32_t push_constant_opcodes[] = {
3488 [MESA_SHADER_VERTEX] = 21,
3489 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
3490 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
3491 [MESA_SHADER_GEOMETRY] = 22,
3492 [MESA_SHADER_FRAGMENT] = 23,
3493 [MESA_SHADER_COMPUTE] = 0,
3494 };
3495
3496 static uint32_t
3497 use_null_surface(struct iris_batch *batch, struct iris_context *ice)
3498 {
3499 struct iris_bo *state_bo = iris_resource_bo(ice->state.unbound_tex.res);
3500
3501 iris_use_pinned_bo(batch, state_bo, false);
3502
3503 return ice->state.unbound_tex.offset;
3504 }
3505
3506 static uint32_t
3507 use_null_fb_surface(struct iris_batch *batch, struct iris_context *ice)
3508 {
3509 /* If set_framebuffer_state() was never called, fall back to 1x1x1 */
3510 if (!ice->state.null_fb.res)
3511 return use_null_surface(batch, ice);
3512
3513 struct iris_bo *state_bo = iris_resource_bo(ice->state.null_fb.res);
3514
3515 iris_use_pinned_bo(batch, state_bo, false);
3516
3517 return ice->state.null_fb.offset;
3518 }
3519
3520 /**
3521 * Add a surface to the validation list, as well as the buffer containing
3522 * the corresponding SURFACE_STATE.
3523 *
3524 * Returns the binding table entry (offset to SURFACE_STATE).
3525 */
3526 static uint32_t
3527 use_surface(struct iris_batch *batch,
3528 struct pipe_surface *p_surf,
3529 bool writeable)
3530 {
3531 struct iris_surface *surf = (void *) p_surf;
3532
3533 iris_use_pinned_bo(batch, iris_resource_bo(p_surf->texture), writeable);
3534 iris_use_pinned_bo(batch, iris_resource_bo(surf->surface_state.res), false);
3535
3536 return surf->surface_state.offset;
3537 }
3538
3539 static uint32_t
3540 use_sampler_view(struct iris_batch *batch, struct iris_sampler_view *isv)
3541 {
3542 iris_use_pinned_bo(batch, isv->res->bo, false);
3543 iris_use_pinned_bo(batch, iris_resource_bo(isv->surface_state.res), false);
3544
3545 return isv->surface_state.offset;
3546 }
3547
3548 static uint32_t
3549 use_const_buffer(struct iris_batch *batch,
3550 struct iris_context *ice,
3551 struct iris_const_buffer *cbuf)
3552 {
3553 if (!cbuf->surface_state.res)
3554 return use_null_surface(batch, ice);
3555
3556 iris_use_pinned_bo(batch, iris_resource_bo(cbuf->data.res), false);
3557 iris_use_pinned_bo(batch, iris_resource_bo(cbuf->surface_state.res), false);
3558
3559 return cbuf->surface_state.offset;
3560 }
3561
3562 static uint32_t
3563 use_ssbo(struct iris_batch *batch, struct iris_context *ice,
3564 struct iris_shader_state *shs, int i)
3565 {
3566 if (!shs->ssbo[i])
3567 return use_null_surface(batch, ice);
3568
3569 struct iris_state_ref *surf_state = &shs->ssbo_surface_state[i];
3570
3571 iris_use_pinned_bo(batch, iris_resource_bo(shs->ssbo[i]), true);
3572 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false);
3573
3574 return surf_state->offset;
3575 }
3576
3577 static uint32_t
3578 use_image(struct iris_batch *batch, struct iris_context *ice,
3579 struct iris_shader_state *shs, int i)
3580 {
3581 if (!shs->image[i].res)
3582 return use_null_surface(batch, ice);
3583
3584 struct iris_state_ref *surf_state = &shs->image[i].surface_state;
3585
3586 iris_use_pinned_bo(batch, iris_resource_bo(shs->image[i].res),
3587 shs->image[i].access & PIPE_IMAGE_ACCESS_WRITE);
3588 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false);
3589
3590 return surf_state->offset;
3591 }
3592
3593 #define push_bt_entry(addr) \
3594 assert(addr >= binder_addr); \
3595 assert(s < prog_data->binding_table.size_bytes / sizeof(uint32_t)); \
3596 if (!pin_only) bt_map[s++] = (addr) - binder_addr;
3597
3598 #define bt_assert(section, exists) \
3599 if (!pin_only) assert(prog_data->binding_table.section == \
3600 (exists) ? s : 0xd0d0d0d0)
3601
3602 /**
3603 * Populate the binding table for a given shader stage.
3604 *
3605 * This fills out the table of pointers to surfaces required by the shader,
3606 * and also adds those buffers to the validation list so the kernel can make
3607 * resident before running our batch.
3608 */
3609 static void
3610 iris_populate_binding_table(struct iris_context *ice,
3611 struct iris_batch *batch,
3612 gl_shader_stage stage,
3613 bool pin_only)
3614 {
3615 const struct iris_binder *binder = &ice->state.binder;
3616 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3617 if (!shader)
3618 return;
3619
3620 UNUSED struct brw_stage_prog_data *prog_data = shader->prog_data;
3621 struct iris_shader_state *shs = &ice->state.shaders[stage];
3622 uint32_t binder_addr = binder->bo->gtt_offset;
3623
3624 //struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
3625 uint32_t *bt_map = binder->map + binder->bt_offset[stage];
3626 int s = 0;
3627
3628 const struct shader_info *info = iris_get_shader_info(ice, stage);
3629 if (!info) {
3630 /* TCS passthrough doesn't need a binding table. */
3631 assert(stage == MESA_SHADER_TESS_CTRL);
3632 return;
3633 }
3634
3635 if (stage == MESA_SHADER_COMPUTE) {
3636 /* surface for gl_NumWorkGroups */
3637 struct iris_state_ref *grid_data = &ice->state.grid_size;
3638 struct iris_state_ref *grid_state = &ice->state.grid_surf_state;
3639 iris_use_pinned_bo(batch, iris_resource_bo(grid_data->res), false);
3640 iris_use_pinned_bo(batch, iris_resource_bo(grid_state->res), false);
3641 push_bt_entry(grid_state->offset);
3642 }
3643
3644 if (stage == MESA_SHADER_FRAGMENT) {
3645 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
3646 /* Note that cso_fb->nr_cbufs == fs_key->nr_color_regions. */
3647 if (cso_fb->nr_cbufs) {
3648 for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
3649 uint32_t addr =
3650 cso_fb->cbufs[i] ? use_surface(batch, cso_fb->cbufs[i], true)
3651 : use_null_fb_surface(batch, ice);
3652 push_bt_entry(addr);
3653 }
3654 } else {
3655 uint32_t addr = use_null_fb_surface(batch, ice);
3656 push_bt_entry(addr);
3657 }
3658 }
3659
3660 bt_assert(texture_start, info->num_textures > 0);
3661
3662 for (int i = 0; i < info->num_textures; i++) {
3663 struct iris_sampler_view *view = shs->textures[i];
3664 uint32_t addr = view ? use_sampler_view(batch, view)
3665 : use_null_surface(batch, ice);
3666 push_bt_entry(addr);
3667 }
3668
3669 bt_assert(image_start, info->num_images > 0);
3670
3671 for (int i = 0; i < info->num_images; i++) {
3672 uint32_t addr = use_image(batch, ice, shs, i);
3673 push_bt_entry(addr);
3674 }
3675
3676 const int num_ubos = iris_get_shader_num_ubos(ice, stage);
3677
3678 bt_assert(ubo_start, num_ubos > 0);
3679
3680 for (int i = 0; i < num_ubos; i++) {
3681 uint32_t addr = use_const_buffer(batch, ice, &shs->constbuf[i]);
3682 push_bt_entry(addr);
3683 }
3684
3685 bt_assert(ssbo_start, info->num_abos + info->num_ssbos > 0);
3686
3687 /* XXX: st is wasting 16 binding table slots for ABOs. Should add a cap
3688 * for changing nir_lower_atomics_to_ssbos setting and buffer_base offset
3689 * in st_atom_storagebuf.c so it'll compact them into one range, with
3690 * SSBOs starting at info->num_abos. Ideally it'd reset num_abos to 0 too
3691 */
3692 if (info->num_abos + info->num_ssbos > 0) {
3693 for (int i = 0; i < IRIS_MAX_ABOS + info->num_ssbos; i++) {
3694 uint32_t addr = use_ssbo(batch, ice, shs, i);
3695 push_bt_entry(addr);
3696 }
3697 }
3698
3699 #if 0
3700 // XXX: not implemented yet
3701 bt_assert(plane_start[1], ...);
3702 bt_assert(plane_start[2], ...);
3703 #endif
3704 }
3705
3706 static void
3707 iris_use_optional_res(struct iris_batch *batch,
3708 struct pipe_resource *res,
3709 bool writeable)
3710 {
3711 if (res) {
3712 struct iris_bo *bo = iris_resource_bo(res);
3713 iris_use_pinned_bo(batch, bo, writeable);
3714 }
3715 }
3716
3717 /* ------------------------------------------------------------------- */
3718
3719 /**
3720 * Pin any BOs which were installed by a previous batch, and restored
3721 * via the hardware logical context mechanism.
3722 *
3723 * We don't need to re-emit all state every batch - the hardware context
3724 * mechanism will save and restore it for us. This includes pointers to
3725 * various BOs...which won't exist unless we ask the kernel to pin them
3726 * by adding them to the validation list.
3727 *
3728 * We can skip buffers if we've re-emitted those packets, as we're
3729 * overwriting those stale pointers with new ones, and don't actually
3730 * refer to the old BOs.
3731 */
3732 static void
3733 iris_restore_render_saved_bos(struct iris_context *ice,
3734 struct iris_batch *batch,
3735 const struct pipe_draw_info *draw)
3736 {
3737 // XXX: whack IRIS_SHADER_DIRTY_BINDING_TABLE on new batch
3738
3739 const uint64_t clean = ~ice->state.dirty;
3740
3741 if (clean & IRIS_DIRTY_CC_VIEWPORT) {
3742 iris_use_optional_res(batch, ice->state.last_res.cc_vp, false);
3743 }
3744
3745 if (clean & IRIS_DIRTY_SF_CL_VIEWPORT) {
3746 iris_use_optional_res(batch, ice->state.last_res.sf_cl_vp, false);
3747 }
3748
3749 if (clean & IRIS_DIRTY_BLEND_STATE) {
3750 iris_use_optional_res(batch, ice->state.last_res.blend, false);
3751 }
3752
3753 if (clean & IRIS_DIRTY_COLOR_CALC_STATE) {
3754 iris_use_optional_res(batch, ice->state.last_res.color_calc, false);
3755 }
3756
3757 if (clean & IRIS_DIRTY_SCISSOR_RECT) {
3758 iris_use_optional_res(batch, ice->state.last_res.scissor, false);
3759 }
3760
3761 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3762 if (!(clean & (IRIS_DIRTY_CONSTANTS_VS << stage)))
3763 continue;
3764
3765 struct iris_shader_state *shs = &ice->state.shaders[stage];
3766 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3767
3768 if (!shader)
3769 continue;
3770
3771 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
3772
3773 for (int i = 0; i < 4; i++) {
3774 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
3775
3776 if (range->length == 0)
3777 continue;
3778
3779 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
3780 struct iris_resource *res = (void *) cbuf->data.res;
3781
3782 if (res)
3783 iris_use_pinned_bo(batch, res->bo, false);
3784 else
3785 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
3786 }
3787 }
3788
3789 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3790 if (clean & (IRIS_DIRTY_BINDINGS_VS << stage)) {
3791 /* Re-pin any buffers referred to by the binding table. */
3792 iris_populate_binding_table(ice, batch, stage, true);
3793 }
3794 }
3795
3796 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3797 struct iris_shader_state *shs = &ice->state.shaders[stage];
3798 struct pipe_resource *res = shs->sampler_table.res;
3799 if (res)
3800 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
3801 }
3802
3803 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3804 if (clean & (IRIS_DIRTY_VS << stage)) {
3805 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3806 if (shader) {
3807 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
3808 iris_use_pinned_bo(batch, bo, false);
3809 }
3810
3811 // XXX: scratch buffer
3812 }
3813 }
3814
3815 if (clean & IRIS_DIRTY_DEPTH_BUFFER) {
3816 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
3817
3818 if (cso_fb->zsbuf) {
3819 struct iris_resource *zres, *sres;
3820 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
3821 &zres, &sres);
3822 // XXX: might not be writable...
3823 if (zres)
3824 iris_use_pinned_bo(batch, zres->bo, true);
3825 if (sres)
3826 iris_use_pinned_bo(batch, sres->bo, true);
3827 }
3828 }
3829
3830 if (draw->index_size == 0 && ice->state.last_res.index_buffer) {
3831 /* This draw didn't emit a new index buffer, so we are inheriting the
3832 * older index buffer. This draw didn't need it, but future ones may.
3833 */
3834 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
3835 iris_use_pinned_bo(batch, bo, false);
3836 }
3837
3838 if (clean & IRIS_DIRTY_VERTEX_BUFFERS) {
3839 struct iris_vertex_buffer_state *cso = &ice->state.genx->vertex_buffers;
3840 for (unsigned i = 0; i < cso->num_buffers; i++) {
3841 struct iris_resource *res = (void *) cso->resources[i];
3842 iris_use_pinned_bo(batch, res->bo, false);
3843 }
3844 }
3845 }
3846
3847 static void
3848 iris_restore_compute_saved_bos(struct iris_context *ice,
3849 struct iris_batch *batch,
3850 const struct pipe_grid_info *grid)
3851 {
3852 const uint64_t clean = ~ice->state.dirty;
3853
3854 const int stage = MESA_SHADER_COMPUTE;
3855 struct iris_shader_state *shs = &ice->state.shaders[stage];
3856
3857 if (clean & IRIS_DIRTY_CONSTANTS_CS) {
3858 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3859
3860 if (shader) {
3861 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
3862 const struct brw_ubo_range *range = &prog_data->ubo_ranges[0];
3863
3864 if (range->length > 0) {
3865 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
3866 struct iris_resource *res = (void *) cbuf->data.res;
3867
3868 if (res)
3869 iris_use_pinned_bo(batch, res->bo, false);
3870 else
3871 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
3872 }
3873 }
3874 }
3875
3876 if (clean & IRIS_DIRTY_BINDINGS_CS) {
3877 /* Re-pin any buffers referred to by the binding table. */
3878 iris_populate_binding_table(ice, batch, stage, true);
3879 }
3880
3881 struct pipe_resource *sampler_res = shs->sampler_table.res;
3882 if (sampler_res)
3883 iris_use_pinned_bo(batch, iris_resource_bo(sampler_res), false);
3884
3885 if (clean & IRIS_DIRTY_CS) {
3886 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3887 if (shader) {
3888 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
3889 iris_use_pinned_bo(batch, bo, false);
3890 }
3891
3892 // XXX: scratch buffer
3893 }
3894 }
3895
3896 /**
3897 * Possibly emit STATE_BASE_ADDRESS to update Surface State Base Address.
3898 */
3899 static void
3900 iris_update_surface_base_address(struct iris_batch *batch,
3901 struct iris_binder *binder)
3902 {
3903 if (batch->last_surface_base_address == binder->bo->gtt_offset)
3904 return;
3905
3906 flush_for_state_base_change(batch);
3907
3908 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
3909 // XXX: sba.SurfaceStateMemoryObjectControlState = MOCS_WB;
3910 sba.SurfaceStateBaseAddressModifyEnable = true;
3911 sba.SurfaceStateBaseAddress = ro_bo(binder->bo, 0);
3912 }
3913
3914 batch->last_surface_base_address = binder->bo->gtt_offset;
3915 }
3916
3917 static void
3918 iris_upload_dirty_render_state(struct iris_context *ice,
3919 struct iris_batch *batch,
3920 const struct pipe_draw_info *draw)
3921 {
3922 const uint64_t dirty = ice->state.dirty;
3923
3924 if (!(dirty & IRIS_ALL_DIRTY_FOR_RENDER))
3925 return;
3926
3927 struct iris_genx_state *genx = ice->state.genx;
3928 struct iris_binder *binder = &ice->state.binder;
3929 struct brw_wm_prog_data *wm_prog_data = (void *)
3930 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3931
3932 if (dirty & IRIS_DIRTY_CC_VIEWPORT) {
3933 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3934 uint32_t cc_vp_address;
3935
3936 /* XXX: could avoid streaming for depth_clip [0,1] case. */
3937 uint32_t *cc_vp_map =
3938 stream_state(batch, ice->state.dynamic_uploader,
3939 &ice->state.last_res.cc_vp,
3940 4 * ice->state.num_viewports *
3941 GENX(CC_VIEWPORT_length), 32, &cc_vp_address);
3942 for (int i = 0; i < ice->state.num_viewports; i++) {
3943 float zmin, zmax;
3944 util_viewport_zmin_zmax(&ice->state.viewports[i],
3945 cso_rast->clip_halfz, &zmin, &zmax);
3946 if (cso_rast->depth_clip_near)
3947 zmin = 0.0;
3948 if (cso_rast->depth_clip_far)
3949 zmax = 1.0;
3950
3951 iris_pack_state(GENX(CC_VIEWPORT), cc_vp_map, ccv) {
3952 ccv.MinimumDepth = zmin;
3953 ccv.MaximumDepth = zmax;
3954 }
3955
3956 cc_vp_map += GENX(CC_VIEWPORT_length);
3957 }
3958
3959 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
3960 ptr.CCViewportPointer = cc_vp_address;
3961 }
3962 }
3963
3964 if (dirty & IRIS_DIRTY_SF_CL_VIEWPORT) {
3965 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
3966 ptr.SFClipViewportPointer =
3967 emit_state(batch, ice->state.dynamic_uploader,
3968 &ice->state.last_res.sf_cl_vp,
3969 genx->sf_cl_vp, 4 * GENX(SF_CLIP_VIEWPORT_length) *
3970 ice->state.num_viewports, 64);
3971 }
3972 }
3973
3974 /* XXX: L3 State */
3975
3976 // XXX: this is only flagged at setup, we assume a static configuration
3977 if (dirty & IRIS_DIRTY_URB) {
3978 iris_upload_urb_config(ice, batch);
3979 }
3980
3981 if (dirty & IRIS_DIRTY_BLEND_STATE) {
3982 struct iris_blend_state *cso_blend = ice->state.cso_blend;
3983 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
3984 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
3985 const int header_dwords = GENX(BLEND_STATE_length);
3986 const int rt_dwords = cso_fb->nr_cbufs * GENX(BLEND_STATE_ENTRY_length);
3987 uint32_t blend_offset;
3988 uint32_t *blend_map =
3989 stream_state(batch, ice->state.dynamic_uploader,
3990 &ice->state.last_res.blend,
3991 4 * (header_dwords + rt_dwords), 64, &blend_offset);
3992
3993 uint32_t blend_state_header;
3994 iris_pack_state(GENX(BLEND_STATE), &blend_state_header, bs) {
3995 bs.AlphaTestEnable = cso_zsa->alpha.enabled;
3996 bs.AlphaTestFunction = translate_compare_func(cso_zsa->alpha.func);
3997 }
3998
3999 blend_map[0] = blend_state_header | cso_blend->blend_state[0];
4000 memcpy(&blend_map[1], &cso_blend->blend_state[1], 4 * rt_dwords);
4001
4002 iris_emit_cmd(batch, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
4003 ptr.BlendStatePointer = blend_offset;
4004 ptr.BlendStatePointerValid = true;
4005 }
4006 }
4007
4008 if (dirty & IRIS_DIRTY_COLOR_CALC_STATE) {
4009 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
4010 uint32_t cc_offset;
4011 void *cc_map =
4012 stream_state(batch, ice->state.dynamic_uploader,
4013 &ice->state.last_res.color_calc,
4014 sizeof(uint32_t) * GENX(COLOR_CALC_STATE_length),
4015 64, &cc_offset);
4016 iris_pack_state(GENX(COLOR_CALC_STATE), cc_map, cc) {
4017 cc.AlphaTestFormat = ALPHATEST_FLOAT32;
4018 cc.AlphaReferenceValueAsFLOAT32 = cso->alpha.ref_value;
4019 cc.BlendConstantColorRed = ice->state.blend_color.color[0];
4020 cc.BlendConstantColorGreen = ice->state.blend_color.color[1];
4021 cc.BlendConstantColorBlue = ice->state.blend_color.color[2];
4022 cc.BlendConstantColorAlpha = ice->state.blend_color.color[3];
4023 }
4024 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
4025 ptr.ColorCalcStatePointer = cc_offset;
4026 ptr.ColorCalcStatePointerValid = true;
4027 }
4028 }
4029
4030 /* Upload constants for TCS passthrough. */
4031 if ((dirty & IRIS_DIRTY_CONSTANTS_TCS) &&
4032 ice->shaders.prog[MESA_SHADER_TESS_CTRL] &&
4033 !ice->shaders.uncompiled[MESA_SHADER_TESS_CTRL]) {
4034 struct iris_compiled_shader *tes_shader = ice->shaders.prog[MESA_SHADER_TESS_EVAL];
4035 assert(tes_shader);
4036
4037 /* Passthrough always copies 2 vec4s, so when uploading data we ensure
4038 * it is in the right layout for TES.
4039 */
4040 float hdr[8] = {};
4041 struct brw_tes_prog_data *tes_prog_data = (void *) tes_shader->prog_data;
4042 switch (tes_prog_data->domain) {
4043 case BRW_TESS_DOMAIN_QUAD:
4044 for (int i = 0; i < 4; i++)
4045 hdr[7 - i] = ice->state.default_outer_level[i];
4046 hdr[3] = ice->state.default_inner_level[0];
4047 hdr[2] = ice->state.default_inner_level[1];
4048 break;
4049 case BRW_TESS_DOMAIN_TRI:
4050 for (int i = 0; i < 3; i++)
4051 hdr[7 - i] = ice->state.default_outer_level[i];
4052 hdr[4] = ice->state.default_inner_level[0];
4053 break;
4054 case BRW_TESS_DOMAIN_ISOLINE:
4055 hdr[7] = ice->state.default_outer_level[1];
4056 hdr[6] = ice->state.default_outer_level[0];
4057 break;
4058 }
4059
4060 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_TESS_CTRL];
4061 struct iris_const_buffer *cbuf = &shs->constbuf[0];
4062 u_upload_data(ice->ctx.const_uploader, 0, sizeof(hdr), 32,
4063 &hdr[0], &cbuf->data.offset,
4064 &cbuf->data.res);
4065 }
4066
4067 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4068 if (!(dirty & (IRIS_DIRTY_CONSTANTS_VS << stage)))
4069 continue;
4070
4071 struct iris_shader_state *shs = &ice->state.shaders[stage];
4072 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4073
4074 if (!shader)
4075 continue;
4076
4077 if (shs->cbuf0_needs_upload)
4078 upload_uniforms(ice, stage);
4079
4080 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4081
4082 iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_VS), pkt) {
4083 pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
4084 if (prog_data) {
4085 /* The Skylake PRM contains the following restriction:
4086 *
4087 * "The driver must ensure The following case does not occur
4088 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
4089 * buffer 3 read length equal to zero committed followed by a
4090 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
4091 * zero committed."
4092 *
4093 * To avoid this, we program the buffers in the highest slots.
4094 * This way, slot 0 is only used if slot 3 is also used.
4095 */
4096 int n = 3;
4097
4098 for (int i = 3; i >= 0; i--) {
4099 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4100
4101 if (range->length == 0)
4102 continue;
4103
4104 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
4105 struct iris_resource *res = (void *) cbuf->data.res;
4106
4107 assert(cbuf->data.offset % 32 == 0);
4108
4109 pkt.ConstantBody.ReadLength[n] = range->length;
4110 pkt.ConstantBody.Buffer[n] =
4111 res ? ro_bo(res->bo, range->start * 32 + cbuf->data.offset)
4112 : ro_bo(batch->screen->workaround_bo, 0);
4113 n--;
4114 }
4115 }
4116 }
4117 }
4118
4119 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4120 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4121 iris_emit_cmd(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), ptr) {
4122 ptr._3DCommandSubOpcode = 38 + stage;
4123 ptr.PointertoVSBindingTable = binder->bt_offset[stage];
4124 }
4125 }
4126 }
4127
4128 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4129 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4130 iris_populate_binding_table(ice, batch, stage, false);
4131 }
4132 }
4133
4134 if (ice->state.need_border_colors)
4135 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
4136
4137 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4138 if (!(dirty & (IRIS_DIRTY_SAMPLER_STATES_VS << stage)) ||
4139 !ice->shaders.prog[stage])
4140 continue;
4141
4142 struct iris_shader_state *shs = &ice->state.shaders[stage];
4143 struct pipe_resource *res = shs->sampler_table.res;
4144 if (res)
4145 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4146
4147 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
4148 ptr._3DCommandSubOpcode = 43 + stage;
4149 ptr.PointertoVSSamplerState = shs->sampler_table.offset;
4150 }
4151 }
4152
4153 if (dirty & IRIS_DIRTY_MULTISAMPLE) {
4154 iris_emit_cmd(batch, GENX(3DSTATE_MULTISAMPLE), ms) {
4155 ms.PixelLocation =
4156 ice->state.cso_rast->half_pixel_center ? CENTER : UL_CORNER;
4157 if (ice->state.framebuffer.samples > 0)
4158 ms.NumberofMultisamples = ffs(ice->state.framebuffer.samples) - 1;
4159 }
4160 }
4161
4162 if (dirty & IRIS_DIRTY_SAMPLE_MASK) {
4163 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_MASK), ms) {
4164 ms.SampleMask = MAX2(ice->state.sample_mask, 1);
4165 }
4166 }
4167
4168 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4169 if (!(dirty & (IRIS_DIRTY_VS << stage)))
4170 continue;
4171
4172 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4173
4174 if (shader) {
4175 struct iris_resource *cache = (void *) shader->assembly.res;
4176 iris_use_pinned_bo(batch, cache->bo, false);
4177 iris_batch_emit(batch, shader->derived_data,
4178 iris_derived_program_state_size(stage));
4179 } else {
4180 if (stage == MESA_SHADER_TESS_EVAL) {
4181 iris_emit_cmd(batch, GENX(3DSTATE_HS), hs);
4182 iris_emit_cmd(batch, GENX(3DSTATE_TE), te);
4183 iris_emit_cmd(batch, GENX(3DSTATE_DS), ds);
4184 } else if (stage == MESA_SHADER_GEOMETRY) {
4185 iris_emit_cmd(batch, GENX(3DSTATE_GS), gs);
4186 }
4187 }
4188 }
4189
4190 if (ice->state.streamout_active) {
4191 if (dirty & IRIS_DIRTY_SO_BUFFERS) {
4192 iris_batch_emit(batch, genx->so_buffers,
4193 4 * 4 * GENX(3DSTATE_SO_BUFFER_length));
4194 for (int i = 0; i < 4; i++) {
4195 struct iris_stream_output_target *tgt =
4196 (void *) ice->state.so_target[i];
4197 if (tgt) {
4198 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
4199 true);
4200 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
4201 true);
4202 }
4203 }
4204 }
4205
4206 if ((dirty & IRIS_DIRTY_SO_DECL_LIST) && ice->state.streamout) {
4207 uint32_t *decl_list =
4208 ice->state.streamout + GENX(3DSTATE_STREAMOUT_length);
4209 iris_batch_emit(batch, decl_list, 4 * ((decl_list[0] & 0xff) + 2));
4210 }
4211
4212 if (dirty & IRIS_DIRTY_STREAMOUT) {
4213 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4214
4215 uint32_t dynamic_sol[GENX(3DSTATE_STREAMOUT_length)];
4216 iris_pack_command(GENX(3DSTATE_STREAMOUT), dynamic_sol, sol) {
4217 sol.SOFunctionEnable = true;
4218 sol.SOStatisticsEnable = true;
4219
4220 sol.RenderingDisable = cso_rast->rasterizer_discard &&
4221 !ice->state.prims_generated_query_active;
4222 sol.ReorderMode = cso_rast->flatshade_first ? LEADING : TRAILING;
4223 }
4224
4225 assert(ice->state.streamout);
4226
4227 iris_emit_merge(batch, ice->state.streamout, dynamic_sol,
4228 GENX(3DSTATE_STREAMOUT_length));
4229 }
4230 } else {
4231 if (dirty & IRIS_DIRTY_STREAMOUT) {
4232 iris_emit_cmd(batch, GENX(3DSTATE_STREAMOUT), sol);
4233 }
4234 }
4235
4236 if (dirty & IRIS_DIRTY_CLIP) {
4237 struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4238 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4239
4240 uint32_t dynamic_clip[GENX(3DSTATE_CLIP_length)];
4241 iris_pack_command(GENX(3DSTATE_CLIP), &dynamic_clip, cl) {
4242 if (wm_prog_data->barycentric_interp_modes &
4243 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
4244 cl.NonPerspectiveBarycentricEnable = true;
4245
4246 cl.ForceZeroRTAIndexEnable = cso_fb->layers == 0;
4247 cl.MaximumVPIndex = ice->state.num_viewports - 1;
4248 }
4249 iris_emit_merge(batch, cso_rast->clip, dynamic_clip,
4250 ARRAY_SIZE(cso_rast->clip));
4251 }
4252
4253 if (dirty & IRIS_DIRTY_RASTER) {
4254 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4255 iris_batch_emit(batch, cso->raster, sizeof(cso->raster));
4256 iris_batch_emit(batch, cso->sf, sizeof(cso->sf));
4257
4258 }
4259
4260 /* XXX: FS program updates needs to flag IRIS_DIRTY_WM */
4261 if (dirty & IRIS_DIRTY_WM) {
4262 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4263 uint32_t dynamic_wm[GENX(3DSTATE_WM_length)];
4264
4265 iris_pack_command(GENX(3DSTATE_WM), &dynamic_wm, wm) {
4266 wm.StatisticsEnable = ice->state.statistics_counters_enabled;
4267
4268 wm.BarycentricInterpolationMode =
4269 wm_prog_data->barycentric_interp_modes;
4270
4271 if (wm_prog_data->early_fragment_tests)
4272 wm.EarlyDepthStencilControl = EDSC_PREPS;
4273 else if (wm_prog_data->has_side_effects)
4274 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
4275 }
4276 iris_emit_merge(batch, cso->wm, dynamic_wm, ARRAY_SIZE(cso->wm));
4277 }
4278
4279 if (dirty & IRIS_DIRTY_SBE) {
4280 iris_emit_sbe(batch, ice);
4281 }
4282
4283 if (dirty & IRIS_DIRTY_PS_BLEND) {
4284 struct iris_blend_state *cso_blend = ice->state.cso_blend;
4285 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
4286 uint32_t dynamic_pb[GENX(3DSTATE_PS_BLEND_length)];
4287 iris_pack_command(GENX(3DSTATE_PS_BLEND), &dynamic_pb, pb) {
4288 pb.HasWriteableRT = true; // XXX: comes from somewhere :(
4289 pb.AlphaTestEnable = cso_zsa->alpha.enabled;
4290 }
4291
4292 iris_emit_merge(batch, cso_blend->ps_blend, dynamic_pb,
4293 ARRAY_SIZE(cso_blend->ps_blend));
4294 }
4295
4296 if (dirty & IRIS_DIRTY_WM_DEPTH_STENCIL) {
4297 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
4298 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
4299
4300 uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
4301 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
4302 wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
4303 wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
4304 }
4305 iris_emit_merge(batch, cso->wmds, stencil_refs, ARRAY_SIZE(cso->wmds));
4306 }
4307
4308 if (dirty & IRIS_DIRTY_SCISSOR_RECT) {
4309 uint32_t scissor_offset =
4310 emit_state(batch, ice->state.dynamic_uploader,
4311 &ice->state.last_res.scissor,
4312 ice->state.scissors,
4313 sizeof(struct pipe_scissor_state) *
4314 ice->state.num_viewports, 32);
4315
4316 iris_emit_cmd(batch, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
4317 ptr.ScissorRectPointer = scissor_offset;
4318 }
4319 }
4320
4321 if (dirty & IRIS_DIRTY_DEPTH_BUFFER) {
4322 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4323 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
4324
4325 iris_batch_emit(batch, cso_z->packets, sizeof(cso_z->packets));
4326
4327 if (cso_fb->zsbuf) {
4328 struct iris_resource *zres, *sres;
4329 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
4330 &zres, &sres);
4331 // XXX: might not be writable...
4332 if (zres)
4333 iris_use_pinned_bo(batch, zres->bo, true);
4334 if (sres)
4335 iris_use_pinned_bo(batch, sres->bo, true);
4336 }
4337 }
4338
4339 if (dirty & IRIS_DIRTY_POLYGON_STIPPLE) {
4340 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
4341 for (int i = 0; i < 32; i++) {
4342 poly.PatternRow[i] = ice->state.poly_stipple.stipple[i];
4343 }
4344 }
4345 }
4346
4347 if (dirty & IRIS_DIRTY_LINE_STIPPLE) {
4348 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4349 iris_batch_emit(batch, cso->line_stipple, sizeof(cso->line_stipple));
4350 }
4351
4352 if (dirty & IRIS_DIRTY_VF_TOPOLOGY) {
4353 iris_emit_cmd(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
4354 topo.PrimitiveTopologyType =
4355 translate_prim_type(draw->mode, draw->vertices_per_patch);
4356 }
4357 }
4358
4359 if (dirty & IRIS_DIRTY_VERTEX_BUFFERS) {
4360 struct iris_vertex_buffer_state *cso = &ice->state.genx->vertex_buffers;
4361 const unsigned vb_dwords = GENX(VERTEX_BUFFER_STATE_length);
4362
4363 if (cso->num_buffers > 0) {
4364 /* The VF cache designers cut corners, and made the cache key's
4365 * <VertexBufferIndex, Memory Address> tuple only consider the bottom
4366 * 32 bits of the address. If you have two vertex buffers which get
4367 * placed exactly 4 GiB apart and use them in back-to-back draw calls,
4368 * you can get collisions (even within a single batch).
4369 *
4370 * So, we need to do a VF cache invalidate if the buffer for a VB
4371 * slot slot changes [48:32] address bits from the previous time.
4372 */
4373 bool need_invalidate = false;
4374
4375 for (unsigned i = 0; i < cso->num_buffers; i++) {
4376 uint16_t high_bits = 0;
4377
4378 struct iris_resource *res = (void *) cso->resources[i];
4379 if (res) {
4380 iris_use_pinned_bo(batch, res->bo, false);
4381
4382 high_bits = res->bo->gtt_offset >> 32ull;
4383 if (high_bits != ice->state.last_vbo_high_bits[i]) {
4384 need_invalidate = true;
4385 ice->state.last_vbo_high_bits[i] = high_bits;
4386 }
4387 }
4388 }
4389
4390 if (need_invalidate) {
4391 iris_emit_pipe_control_flush(batch,
4392 PIPE_CONTROL_VF_CACHE_INVALIDATE);
4393 }
4394
4395 iris_batch_emit(batch, cso->vertex_buffers, sizeof(uint32_t) *
4396 (1 + vb_dwords * cso->num_buffers));
4397 }
4398 }
4399
4400 if (dirty & IRIS_DIRTY_VERTEX_ELEMENTS) {
4401 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
4402 const unsigned entries = MAX2(cso->count, 1);
4403 iris_batch_emit(batch, cso->vertex_elements, sizeof(uint32_t) *
4404 (1 + entries * GENX(VERTEX_ELEMENT_STATE_length)));
4405 iris_batch_emit(batch, cso->vf_instancing, sizeof(uint32_t) *
4406 entries * GENX(3DSTATE_VF_INSTANCING_length));
4407 }
4408
4409 if (dirty & IRIS_DIRTY_VF_SGVS) {
4410 const struct brw_vs_prog_data *vs_prog_data = (void *)
4411 ice->shaders.prog[MESA_SHADER_VERTEX]->prog_data;
4412 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
4413
4414 iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS), sgv) {
4415 if (vs_prog_data->uses_vertexid) {
4416 sgv.VertexIDEnable = true;
4417 sgv.VertexIDComponentNumber = 2;
4418 sgv.VertexIDElementOffset = cso->count;
4419 }
4420
4421 if (vs_prog_data->uses_instanceid) {
4422 sgv.InstanceIDEnable = true;
4423 sgv.InstanceIDComponentNumber = 3;
4424 sgv.InstanceIDElementOffset = cso->count;
4425 }
4426 }
4427 }
4428
4429 if (dirty & IRIS_DIRTY_VF) {
4430 iris_emit_cmd(batch, GENX(3DSTATE_VF), vf) {
4431 if (draw->primitive_restart) {
4432 vf.IndexedDrawCutIndexEnable = true;
4433 vf.CutIndex = draw->restart_index;
4434 }
4435 }
4436 }
4437
4438 // XXX: Gen8 - PMA fix
4439 }
4440
4441 static void
4442 iris_upload_render_state(struct iris_context *ice,
4443 struct iris_batch *batch,
4444 const struct pipe_draw_info *draw)
4445 {
4446 /* Always pin the binder. If we're emitting new binding table pointers,
4447 * we need it. If not, we're probably inheriting old tables via the
4448 * context, and need it anyway. Since true zero-bindings cases are
4449 * practically non-existent, just pin it and avoid last_res tracking.
4450 */
4451 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
4452
4453 if (!batch->contains_draw) {
4454 iris_restore_render_saved_bos(ice, batch, draw);
4455 batch->contains_draw = true;
4456 }
4457
4458 iris_upload_dirty_render_state(ice, batch, draw);
4459
4460 if (draw->index_size > 0) {
4461 unsigned offset;
4462
4463 if (draw->has_user_indices) {
4464 u_upload_data(ice->ctx.stream_uploader, 0,
4465 draw->count * draw->index_size, 4, draw->index.user,
4466 &offset, &ice->state.last_res.index_buffer);
4467 } else {
4468 struct iris_resource *res = (void *) draw->index.resource;
4469 res->bind_history |= PIPE_BIND_INDEX_BUFFER;
4470
4471 pipe_resource_reference(&ice->state.last_res.index_buffer,
4472 draw->index.resource);
4473 offset = 0;
4474 }
4475
4476 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
4477
4478 iris_emit_cmd(batch, GENX(3DSTATE_INDEX_BUFFER), ib) {
4479 ib.IndexFormat = draw->index_size >> 1;
4480 ib.MOCS = MOCS_WB;
4481 ib.BufferSize = bo->size;
4482 ib.BufferStartingAddress = ro_bo(bo, offset);
4483 }
4484
4485 /* The VF cache key only uses 32-bits, see vertex buffer comment above */
4486 uint16_t high_bits = bo->gtt_offset >> 32ull;
4487 if (high_bits != ice->state.last_index_bo_high_bits) {
4488 iris_emit_pipe_control_flush(batch, PIPE_CONTROL_VF_CACHE_INVALIDATE);
4489 ice->state.last_index_bo_high_bits = high_bits;
4490 }
4491 }
4492
4493 #define _3DPRIM_END_OFFSET 0x2420
4494 #define _3DPRIM_START_VERTEX 0x2430
4495 #define _3DPRIM_VERTEX_COUNT 0x2434
4496 #define _3DPRIM_INSTANCE_COUNT 0x2438
4497 #define _3DPRIM_START_INSTANCE 0x243C
4498 #define _3DPRIM_BASE_VERTEX 0x2440
4499
4500 if (draw->indirect) {
4501 /* We don't support this MultidrawIndirect. */
4502 assert(!draw->indirect->indirect_draw_count);
4503
4504 struct iris_bo *bo = iris_resource_bo(draw->indirect->buffer);
4505 assert(bo);
4506
4507 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4508 lrm.RegisterAddress = _3DPRIM_VERTEX_COUNT;
4509 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 0);
4510 }
4511 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4512 lrm.RegisterAddress = _3DPRIM_INSTANCE_COUNT;
4513 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 4);
4514 }
4515 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4516 lrm.RegisterAddress = _3DPRIM_START_VERTEX;
4517 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 8);
4518 }
4519 if (draw->index_size) {
4520 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4521 lrm.RegisterAddress = _3DPRIM_BASE_VERTEX;
4522 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
4523 }
4524 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4525 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
4526 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 16);
4527 }
4528 } else {
4529 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4530 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
4531 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
4532 }
4533 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
4534 lri.RegisterOffset = _3DPRIM_BASE_VERTEX;
4535 lri.DataDWord = 0;
4536 }
4537 }
4538 }
4539
4540 iris_emit_cmd(batch, GENX(3DPRIMITIVE), prim) {
4541 prim.StartInstanceLocation = draw->start_instance;
4542 prim.InstanceCount = draw->instance_count;
4543 prim.VertexCountPerInstance = draw->count;
4544 prim.VertexAccessType = draw->index_size > 0 ? RANDOM : SEQUENTIAL;
4545 prim.PredicateEnable = ice->predicate == IRIS_PREDICATE_STATE_USE_BIT ? 1 : 0;
4546 // XXX: this is probably bonkers.
4547 prim.StartVertexLocation = draw->start;
4548
4549 prim.IndirectParameterEnable = draw->indirect != NULL;
4550
4551 if (draw->index_size) {
4552 prim.BaseVertexLocation += draw->index_bias;
4553 } else {
4554 prim.StartVertexLocation += draw->index_bias;
4555 }
4556
4557 //prim.BaseVertexLocation = ...;
4558 }
4559 }
4560
4561 static void
4562 iris_upload_compute_state(struct iris_context *ice,
4563 struct iris_batch *batch,
4564 const struct pipe_grid_info *grid)
4565 {
4566 const uint64_t dirty = ice->state.dirty;
4567 struct iris_screen *screen = batch->screen;
4568 const struct gen_device_info *devinfo = &screen->devinfo;
4569 struct iris_binder *binder = &ice->state.binder;
4570 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
4571 struct iris_compiled_shader *shader =
4572 ice->shaders.prog[MESA_SHADER_COMPUTE];
4573 struct brw_stage_prog_data *prog_data = shader->prog_data;
4574 struct brw_cs_prog_data *cs_prog_data = (void *) prog_data;
4575
4576 if ((dirty & IRIS_DIRTY_CONSTANTS_CS) && shs->cbuf0_needs_upload)
4577 upload_uniforms(ice, MESA_SHADER_COMPUTE);
4578
4579 if (dirty & IRIS_DIRTY_BINDINGS_CS)
4580 iris_populate_binding_table(ice, batch, MESA_SHADER_COMPUTE, false);
4581
4582 iris_use_optional_res(batch, shs->sampler_table.res, false);
4583 iris_use_pinned_bo(batch, iris_resource_bo(shader->assembly.res), false);
4584
4585 if (ice->state.need_border_colors)
4586 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
4587
4588 if (dirty & IRIS_DIRTY_CS) {
4589 /* The MEDIA_VFE_STATE documentation for Gen8+ says:
4590 *
4591 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
4592 * the only bits that are changed are scoreboard related: Scoreboard
4593 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard Delta. For
4594 * these scoreboard related states, a MEDIA_STATE_FLUSH is
4595 * sufficient."
4596 */
4597 iris_emit_pipe_control_flush(batch, PIPE_CONTROL_CS_STALL);
4598
4599 iris_emit_cmd(batch, GENX(MEDIA_VFE_STATE), vfe) {
4600 if (prog_data->total_scratch) {
4601 uint32_t scratch_addr =
4602 iris_get_scratch_space(ice, prog_data->total_scratch,
4603 MESA_SHADER_COMPUTE);
4604 vfe.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
4605 vfe.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr);
4606 }
4607
4608 vfe.MaximumNumberofThreads =
4609 devinfo->max_cs_threads * screen->subslice_total - 1;
4610 #if GEN_GEN < 11
4611 vfe.ResetGatewayTimer =
4612 Resettingrelativetimerandlatchingtheglobaltimestamp;
4613 #endif
4614
4615 vfe.NumberofURBEntries = 2;
4616 vfe.URBEntryAllocationSize = 2;
4617
4618 // XXX: Use Indirect Payload Storage?
4619 vfe.CURBEAllocationSize =
4620 ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
4621 cs_prog_data->push.cross_thread.regs, 2);
4622 }
4623 }
4624
4625 // XXX: hack iris_set_constant_buffers to upload these thread counts
4626 // XXX: along with regular uniforms for compute shaders, somehow.
4627
4628 uint32_t curbe_data_offset = 0;
4629 // TODO: Move subgroup-id into uniforms ubo so we can push uniforms
4630 assert(cs_prog_data->push.cross_thread.dwords == 0 &&
4631 cs_prog_data->push.per_thread.dwords == 1 &&
4632 cs_prog_data->base.param[0] == BRW_PARAM_BUILTIN_SUBGROUP_ID);
4633 struct pipe_resource *curbe_data_res = NULL;
4634 uint32_t *curbe_data_map =
4635 stream_state(batch, ice->state.dynamic_uploader, &curbe_data_res,
4636 ALIGN(cs_prog_data->push.total.size, 64), 64,
4637 &curbe_data_offset);
4638 assert(curbe_data_map);
4639 memset(curbe_data_map, 0x5a, ALIGN(cs_prog_data->push.total.size, 64));
4640 iris_fill_cs_push_const_buffer(cs_prog_data, curbe_data_map);
4641
4642 if (dirty & IRIS_DIRTY_CONSTANTS_CS) {
4643 iris_emit_cmd(batch, GENX(MEDIA_CURBE_LOAD), curbe) {
4644 curbe.CURBETotalDataLength =
4645 ALIGN(cs_prog_data->push.total.size, 64);
4646 curbe.CURBEDataStartAddress = curbe_data_offset;
4647 }
4648 }
4649
4650 if (dirty & (IRIS_DIRTY_SAMPLER_STATES_CS |
4651 IRIS_DIRTY_BINDINGS_CS |
4652 IRIS_DIRTY_CONSTANTS_CS |
4653 IRIS_DIRTY_CS)) {
4654 struct pipe_resource *desc_res = NULL;
4655 uint32_t desc[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
4656
4657 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), desc, idd) {
4658 idd.SamplerStatePointer = shs->sampler_table.offset;
4659 idd.BindingTablePointer = binder->bt_offset[MESA_SHADER_COMPUTE];
4660 }
4661
4662 for (int i = 0; i < GENX(INTERFACE_DESCRIPTOR_DATA_length); i++)
4663 desc[i] |= ((uint32_t *) shader->derived_data)[i];
4664
4665 iris_emit_cmd(batch, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
4666 load.InterfaceDescriptorTotalLength =
4667 GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
4668 load.InterfaceDescriptorDataStartAddress =
4669 emit_state(batch, ice->state.dynamic_uploader,
4670 &desc_res, desc, sizeof(desc), 32);
4671 }
4672
4673 pipe_resource_reference(&desc_res, NULL);
4674 }
4675
4676 uint32_t group_size = grid->block[0] * grid->block[1] * grid->block[2];
4677 uint32_t remainder = group_size & (cs_prog_data->simd_size - 1);
4678 uint32_t right_mask;
4679
4680 if (remainder > 0)
4681 right_mask = ~0u >> (32 - remainder);
4682 else
4683 right_mask = ~0u >> (32 - cs_prog_data->simd_size);
4684
4685 #define GPGPU_DISPATCHDIMX 0x2500
4686 #define GPGPU_DISPATCHDIMY 0x2504
4687 #define GPGPU_DISPATCHDIMZ 0x2508
4688
4689 if (grid->indirect) {
4690 struct iris_state_ref *grid_size = &ice->state.grid_size;
4691 struct iris_bo *bo = iris_resource_bo(grid_size->res);
4692 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4693 lrm.RegisterAddress = GPGPU_DISPATCHDIMX;
4694 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 0);
4695 }
4696 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4697 lrm.RegisterAddress = GPGPU_DISPATCHDIMY;
4698 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 4);
4699 }
4700 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4701 lrm.RegisterAddress = GPGPU_DISPATCHDIMZ;
4702 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 8);
4703 }
4704 }
4705
4706 iris_emit_cmd(batch, GENX(GPGPU_WALKER), ggw) {
4707 ggw.IndirectParameterEnable = grid->indirect != NULL;
4708 ggw.SIMDSize = cs_prog_data->simd_size / 16;
4709 ggw.ThreadDepthCounterMaximum = 0;
4710 ggw.ThreadHeightCounterMaximum = 0;
4711 ggw.ThreadWidthCounterMaximum = cs_prog_data->threads - 1;
4712 ggw.ThreadGroupIDXDimension = grid->grid[0];
4713 ggw.ThreadGroupIDYDimension = grid->grid[1];
4714 ggw.ThreadGroupIDZDimension = grid->grid[2];
4715 ggw.RightExecutionMask = right_mask;
4716 ggw.BottomExecutionMask = 0xffffffff;
4717 }
4718
4719 iris_emit_cmd(batch, GENX(MEDIA_STATE_FLUSH), msf);
4720
4721 if (!batch->contains_draw) {
4722 iris_restore_compute_saved_bos(ice, batch, grid);
4723 batch->contains_draw = true;
4724 }
4725 }
4726
4727 /**
4728 * State module teardown.
4729 */
4730 static void
4731 iris_destroy_state(struct iris_context *ice)
4732 {
4733 iris_free_vertex_buffers(&ice->state.genx->vertex_buffers);
4734
4735 // XXX: unreference resources/surfaces.
4736 for (unsigned i = 0; i < ice->state.framebuffer.nr_cbufs; i++) {
4737 pipe_surface_reference(&ice->state.framebuffer.cbufs[i], NULL);
4738 }
4739 pipe_surface_reference(&ice->state.framebuffer.zsbuf, NULL);
4740
4741 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4742 struct iris_shader_state *shs = &ice->state.shaders[stage];
4743 pipe_resource_reference(&shs->sampler_table.res, NULL);
4744 }
4745 free(ice->state.genx);
4746
4747 pipe_resource_reference(&ice->state.last_res.cc_vp, NULL);
4748 pipe_resource_reference(&ice->state.last_res.sf_cl_vp, NULL);
4749 pipe_resource_reference(&ice->state.last_res.color_calc, NULL);
4750 pipe_resource_reference(&ice->state.last_res.scissor, NULL);
4751 pipe_resource_reference(&ice->state.last_res.blend, NULL);
4752 pipe_resource_reference(&ice->state.last_res.index_buffer, NULL);
4753 }
4754
4755 /* ------------------------------------------------------------------- */
4756
4757 static void
4758 iris_load_register_reg32(struct iris_batch *batch, uint32_t src,
4759 uint32_t dst)
4760 {
4761 _iris_emit_lrr(batch, src, dst);
4762 }
4763
4764 static void
4765 iris_load_register_reg64(struct iris_batch *batch, uint32_t src,
4766 uint32_t dst)
4767 {
4768 _iris_emit_lrr(batch, src, dst);
4769 _iris_emit_lrr(batch, src + 4, dst + 4);
4770 }
4771
4772 static void
4773 iris_load_register_imm32(struct iris_batch *batch, uint32_t reg,
4774 uint32_t val)
4775 {
4776 _iris_emit_lri(batch, reg, val);
4777 }
4778
4779 static void
4780 iris_load_register_imm64(struct iris_batch *batch, uint32_t reg,
4781 uint64_t val)
4782 {
4783 _iris_emit_lri(batch, reg + 0, val & 0xffffffff);
4784 _iris_emit_lri(batch, reg + 4, val >> 32);
4785 }
4786
4787 /**
4788 * Emit MI_LOAD_REGISTER_MEM to load a 32-bit MMIO register from a buffer.
4789 */
4790 static void
4791 iris_load_register_mem32(struct iris_batch *batch, uint32_t reg,
4792 struct iris_bo *bo, uint32_t offset)
4793 {
4794 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4795 lrm.RegisterAddress = reg;
4796 lrm.MemoryAddress = ro_bo(bo, offset);
4797 }
4798 }
4799
4800 /**
4801 * Load a 64-bit value from a buffer into a MMIO register via
4802 * two MI_LOAD_REGISTER_MEM commands.
4803 */
4804 static void
4805 iris_load_register_mem64(struct iris_batch *batch, uint32_t reg,
4806 struct iris_bo *bo, uint32_t offset)
4807 {
4808 iris_load_register_mem32(batch, reg + 0, bo, offset + 0);
4809 iris_load_register_mem32(batch, reg + 4, bo, offset + 4);
4810 }
4811
4812 static void
4813 iris_store_register_mem32(struct iris_batch *batch, uint32_t reg,
4814 struct iris_bo *bo, uint32_t offset,
4815 bool predicated)
4816 {
4817 iris_emit_cmd(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
4818 srm.RegisterAddress = reg;
4819 srm.MemoryAddress = rw_bo(bo, offset);
4820 srm.PredicateEnable = predicated;
4821 }
4822 }
4823
4824 static void
4825 iris_store_register_mem64(struct iris_batch *batch, uint32_t reg,
4826 struct iris_bo *bo, uint32_t offset,
4827 bool predicated)
4828 {
4829 iris_store_register_mem32(batch, reg + 0, bo, offset + 0, predicated);
4830 iris_store_register_mem32(batch, reg + 4, bo, offset + 4, predicated);
4831 }
4832
4833 static void
4834 iris_store_data_imm32(struct iris_batch *batch,
4835 struct iris_bo *bo, uint32_t offset,
4836 uint32_t imm)
4837 {
4838 iris_emit_cmd(batch, GENX(MI_STORE_DATA_IMM), sdi) {
4839 sdi.Address = rw_bo(bo, offset);
4840 sdi.ImmediateData = imm;
4841 }
4842 }
4843
4844 static void
4845 iris_store_data_imm64(struct iris_batch *batch,
4846 struct iris_bo *bo, uint32_t offset,
4847 uint64_t imm)
4848 {
4849 /* Can't use iris_emit_cmd because MI_STORE_DATA_IMM has a length of
4850 * 2 in genxml but it's actually variable length and we need 5 DWords.
4851 */
4852 void *map = iris_get_command_space(batch, 4 * 5);
4853 _iris_pack_command(batch, GENX(MI_STORE_DATA_IMM), map, sdi) {
4854 sdi.DWordLength = 5 - 2;
4855 sdi.Address = rw_bo(bo, offset);
4856 sdi.ImmediateData = imm;
4857 }
4858 }
4859
4860 static void
4861 iris_copy_mem_mem(struct iris_batch *batch,
4862 struct iris_bo *dst_bo, uint32_t dst_offset,
4863 struct iris_bo *src_bo, uint32_t src_offset,
4864 unsigned bytes)
4865 {
4866 /* MI_COPY_MEM_MEM operates on DWords. */
4867 assert(bytes % 4 == 0);
4868 assert(dst_offset % 4 == 0);
4869 assert(src_offset % 4 == 0);
4870
4871 for (unsigned i = 0; i < bytes; i += 4) {
4872 iris_emit_cmd(batch, GENX(MI_COPY_MEM_MEM), cp) {
4873 cp.DestinationMemoryAddress = rw_bo(dst_bo, dst_offset + i);
4874 cp.SourceMemoryAddress = ro_bo(src_bo, src_offset + i);
4875 }
4876 }
4877 }
4878
4879 /* ------------------------------------------------------------------- */
4880
4881 static unsigned
4882 flags_to_post_sync_op(uint32_t flags)
4883 {
4884 if (flags & PIPE_CONTROL_WRITE_IMMEDIATE)
4885 return WriteImmediateData;
4886
4887 if (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT)
4888 return WritePSDepthCount;
4889
4890 if (flags & PIPE_CONTROL_WRITE_TIMESTAMP)
4891 return WriteTimestamp;
4892
4893 return 0;
4894 }
4895
4896 /**
4897 * Do the given flags have a Post Sync or LRI Post Sync operation?
4898 */
4899 static enum pipe_control_flags
4900 get_post_sync_flags(enum pipe_control_flags flags)
4901 {
4902 flags &= PIPE_CONTROL_WRITE_IMMEDIATE |
4903 PIPE_CONTROL_WRITE_DEPTH_COUNT |
4904 PIPE_CONTROL_WRITE_TIMESTAMP |
4905 PIPE_CONTROL_LRI_POST_SYNC_OP;
4906
4907 /* Only one "Post Sync Op" is allowed, and it's mutually exclusive with
4908 * "LRI Post Sync Operation". So more than one bit set would be illegal.
4909 */
4910 assert(util_bitcount(flags) <= 1);
4911
4912 return flags;
4913 }
4914
4915 #define IS_COMPUTE_PIPELINE(batch) (batch->name == IRIS_BATCH_COMPUTE)
4916
4917 /**
4918 * Emit a series of PIPE_CONTROL commands, taking into account any
4919 * workarounds necessary to actually accomplish the caller's request.
4920 *
4921 * Unless otherwise noted, spec quotations in this function come from:
4922 *
4923 * Synchronization of the 3D Pipeline > PIPE_CONTROL Command > Programming
4924 * Restrictions for PIPE_CONTROL.
4925 *
4926 * You should not use this function directly. Use the helpers in
4927 * iris_pipe_control.c instead, which may split the pipe control further.
4928 */
4929 static void
4930 iris_emit_raw_pipe_control(struct iris_batch *batch, uint32_t flags,
4931 struct iris_bo *bo, uint32_t offset, uint64_t imm)
4932 {
4933 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
4934 enum pipe_control_flags post_sync_flags = get_post_sync_flags(flags);
4935 enum pipe_control_flags non_lri_post_sync_flags =
4936 post_sync_flags & ~PIPE_CONTROL_LRI_POST_SYNC_OP;
4937
4938 /* Recursive PIPE_CONTROL workarounds --------------------------------
4939 * (http://knowyourmeme.com/memes/xzibit-yo-dawg)
4940 *
4941 * We do these first because we want to look at the original operation,
4942 * rather than any workarounds we set.
4943 */
4944 if (GEN_GEN == 9 && (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE)) {
4945 /* The PIPE_CONTROL "VF Cache Invalidation Enable" bit description
4946 * lists several workarounds:
4947 *
4948 * "Project: SKL, KBL, BXT
4949 *
4950 * If the VF Cache Invalidation Enable is set to a 1 in a
4951 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields
4952 * sets to 0, with the VF Cache Invalidation Enable set to 0
4953 * needs to be sent prior to the PIPE_CONTROL with VF Cache
4954 * Invalidation Enable set to a 1."
4955 */
4956 iris_emit_raw_pipe_control(batch, 0, NULL, 0, 0);
4957 }
4958
4959 if (GEN_GEN == 9 && IS_COMPUTE_PIPELINE(batch) && post_sync_flags) {
4960 /* Project: SKL / Argument: LRI Post Sync Operation [23]
4961 *
4962 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
4963 * programmed prior to programming a PIPECONTROL command with "LRI
4964 * Post Sync Operation" in GPGPU mode of operation (i.e when
4965 * PIPELINE_SELECT command is set to GPGPU mode of operation)."
4966 *
4967 * The same text exists a few rows below for Post Sync Op.
4968 */
4969 iris_emit_raw_pipe_control(batch, PIPE_CONTROL_CS_STALL, bo, offset, imm);
4970 }
4971
4972 if (GEN_GEN == 10 && (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH)) {
4973 /* Cannonlake:
4974 * "Before sending a PIPE_CONTROL command with bit 12 set, SW must issue
4975 * another PIPE_CONTROL with Render Target Cache Flush Enable (bit 12)
4976 * = 0 and Pipe Control Flush Enable (bit 7) = 1"
4977 */
4978 iris_emit_raw_pipe_control(batch, PIPE_CONTROL_FLUSH_ENABLE, bo,
4979 offset, imm);
4980 }
4981
4982 /* "Flush Types" workarounds ---------------------------------------------
4983 * We do these now because they may add post-sync operations or CS stalls.
4984 */
4985
4986 if (GEN_GEN < 11 && flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) {
4987 /* Project: BDW, SKL+ (stopping at CNL) / Argument: VF Invalidate
4988 *
4989 * "'Post Sync Operation' must be enabled to 'Write Immediate Data' or
4990 * 'Write PS Depth Count' or 'Write Timestamp'."
4991 */
4992 if (!bo) {
4993 flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
4994 post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
4995 non_lri_post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
4996 bo = batch->screen->workaround_bo;
4997 }
4998 }
4999
5000 /* #1130 from Gen10 workarounds page:
5001 *
5002 * "Enable Depth Stall on every Post Sync Op if Render target Cache
5003 * Flush is not enabled in same PIPE CONTROL and Enable Pixel score
5004 * board stall if Render target cache flush is enabled."
5005 *
5006 * Applicable to CNL B0 and C0 steppings only.
5007 *
5008 * The wording here is unclear, and this workaround doesn't look anything
5009 * like the internal bug report recommendations, but leave it be for now...
5010 */
5011 if (GEN_GEN == 10) {
5012 if (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) {
5013 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
5014 } else if (flags & non_lri_post_sync_flags) {
5015 flags |= PIPE_CONTROL_DEPTH_STALL;
5016 }
5017 }
5018
5019 if (flags & PIPE_CONTROL_DEPTH_STALL) {
5020 /* From the PIPE_CONTROL instruction table, bit 13 (Depth Stall Enable):
5021 *
5022 * "This bit must be DISABLED for operations other than writing
5023 * PS_DEPTH_COUNT."
5024 *
5025 * This seems like nonsense. An Ivybridge workaround requires us to
5026 * emit a PIPE_CONTROL with a depth stall and write immediate post-sync
5027 * operation. Gen8+ requires us to emit depth stalls and depth cache
5028 * flushes together. So, it's hard to imagine this means anything other
5029 * than "we originally intended this to be used for PS_DEPTH_COUNT".
5030 *
5031 * We ignore the supposed restriction and do nothing.
5032 */
5033 }
5034
5035 if (flags & (PIPE_CONTROL_RENDER_TARGET_FLUSH |
5036 PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
5037 /* From the PIPE_CONTROL instruction table, bit 12 and bit 1:
5038 *
5039 * "This bit must be DISABLED for End-of-pipe (Read) fences,
5040 * PS_DEPTH_COUNT or TIMESTAMP queries."
5041 *
5042 * TODO: Implement end-of-pipe checking.
5043 */
5044 assert(!(post_sync_flags & (PIPE_CONTROL_WRITE_DEPTH_COUNT |
5045 PIPE_CONTROL_WRITE_TIMESTAMP)));
5046 }
5047
5048 if (GEN_GEN < 11 && (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
5049 /* From the PIPE_CONTROL instruction table, bit 1:
5050 *
5051 * "This bit is ignored if Depth Stall Enable is set.
5052 * Further, the render cache is not flushed even if Write Cache
5053 * Flush Enable bit is set."
5054 *
5055 * We assert that the caller doesn't do this combination, to try and
5056 * prevent mistakes. It shouldn't hurt the GPU, though.
5057 *
5058 * We skip this check on Gen11+ as the "Stall at Pixel Scoreboard"
5059 * and "Render Target Flush" combo is explicitly required for BTI
5060 * update workarounds.
5061 */
5062 assert(!(flags & (PIPE_CONTROL_DEPTH_STALL |
5063 PIPE_CONTROL_RENDER_TARGET_FLUSH)));
5064 }
5065
5066 /* PIPE_CONTROL page workarounds ------------------------------------- */
5067
5068 if (GEN_GEN <= 8 && (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE)) {
5069 /* From the PIPE_CONTROL page itself:
5070 *
5071 * "IVB, HSW, BDW
5072 * Restriction: Pipe_control with CS-stall bit set must be issued
5073 * before a pipe-control command that has the State Cache
5074 * Invalidate bit set."
5075 */
5076 flags |= PIPE_CONTROL_CS_STALL;
5077 }
5078
5079 if (flags & PIPE_CONTROL_FLUSH_LLC) {
5080 /* From the PIPE_CONTROL instruction table, bit 26 (Flush LLC):
5081 *
5082 * "Project: ALL
5083 * SW must always program Post-Sync Operation to "Write Immediate
5084 * Data" when Flush LLC is set."
5085 *
5086 * For now, we just require the caller to do it.
5087 */
5088 assert(flags & PIPE_CONTROL_WRITE_IMMEDIATE);
5089 }
5090
5091 /* "Post-Sync Operation" workarounds -------------------------------- */
5092
5093 /* Project: All / Argument: Global Snapshot Count Reset [19]
5094 *
5095 * "This bit must not be exercised on any product.
5096 * Requires stall bit ([20] of DW1) set."
5097 *
5098 * We don't use this, so we just assert that it isn't used. The
5099 * PIPE_CONTROL instruction page indicates that they intended this
5100 * as a debug feature and don't think it is useful in production,
5101 * but it may actually be usable, should we ever want to.
5102 */
5103 assert((flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) == 0);
5104
5105 if (flags & (PIPE_CONTROL_MEDIA_STATE_CLEAR |
5106 PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE)) {
5107 /* Project: All / Arguments:
5108 *
5109 * - Generic Media State Clear [16]
5110 * - Indirect State Pointers Disable [16]
5111 *
5112 * "Requires stall bit ([20] of DW1) set."
5113 *
5114 * Also, the PIPE_CONTROL instruction table, bit 16 (Generic Media
5115 * State Clear) says:
5116 *
5117 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
5118 * programmed prior to programming a PIPECONTROL command with "Media
5119 * State Clear" set in GPGPU mode of operation"
5120 *
5121 * This is a subset of the earlier rule, so there's nothing to do.
5122 */
5123 flags |= PIPE_CONTROL_CS_STALL;
5124 }
5125
5126 if (flags & PIPE_CONTROL_STORE_DATA_INDEX) {
5127 /* Project: All / Argument: Store Data Index
5128 *
5129 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
5130 * than '0'."
5131 *
5132 * For now, we just assert that the caller does this. We might want to
5133 * automatically add a write to the workaround BO...
5134 */
5135 assert(non_lri_post_sync_flags != 0);
5136 }
5137
5138 if (flags & PIPE_CONTROL_SYNC_GFDT) {
5139 /* Project: All / Argument: Sync GFDT
5140 *
5141 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
5142 * than '0' or 0x2520[13] must be set."
5143 *
5144 * For now, we just assert that the caller does this.
5145 */
5146 assert(non_lri_post_sync_flags != 0);
5147 }
5148
5149 if (flags & PIPE_CONTROL_TLB_INVALIDATE) {
5150 /* Project: IVB+ / Argument: TLB inv
5151 *
5152 * "Requires stall bit ([20] of DW1) set."
5153 *
5154 * Also, from the PIPE_CONTROL instruction table:
5155 *
5156 * "Project: SKL+
5157 * Post Sync Operation or CS stall must be set to ensure a TLB
5158 * invalidation occurs. Otherwise no cycle will occur to the TLB
5159 * cache to invalidate."
5160 *
5161 * This is not a subset of the earlier rule, so there's nothing to do.
5162 */
5163 flags |= PIPE_CONTROL_CS_STALL;
5164 }
5165
5166 if (GEN_GEN == 9 && devinfo->gt == 4) {
5167 /* TODO: The big Skylake GT4 post sync op workaround */
5168 }
5169
5170 /* "GPGPU specific workarounds" (both post-sync and flush) ------------ */
5171
5172 if (IS_COMPUTE_PIPELINE(batch)) {
5173 if (GEN_GEN >= 9 && (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE)) {
5174 /* Project: SKL+ / Argument: Tex Invalidate
5175 * "Requires stall bit ([20] of DW) set for all GPGPU Workloads."
5176 */
5177 flags |= PIPE_CONTROL_CS_STALL;
5178 }
5179
5180 if (GEN_GEN == 8 && (post_sync_flags ||
5181 (flags & (PIPE_CONTROL_NOTIFY_ENABLE |
5182 PIPE_CONTROL_DEPTH_STALL |
5183 PIPE_CONTROL_RENDER_TARGET_FLUSH |
5184 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
5185 PIPE_CONTROL_DATA_CACHE_FLUSH)))) {
5186 /* Project: BDW / Arguments:
5187 *
5188 * - LRI Post Sync Operation [23]
5189 * - Post Sync Op [15:14]
5190 * - Notify En [8]
5191 * - Depth Stall [13]
5192 * - Render Target Cache Flush [12]
5193 * - Depth Cache Flush [0]
5194 * - DC Flush Enable [5]
5195 *
5196 * "Requires stall bit ([20] of DW) set for all GPGPU and Media
5197 * Workloads."
5198 */
5199 flags |= PIPE_CONTROL_CS_STALL;
5200
5201 /* Also, from the PIPE_CONTROL instruction table, bit 20:
5202 *
5203 * "Project: BDW
5204 * This bit must be always set when PIPE_CONTROL command is
5205 * programmed by GPGPU and MEDIA workloads, except for the cases
5206 * when only Read Only Cache Invalidation bits are set (State
5207 * Cache Invalidation Enable, Instruction cache Invalidation
5208 * Enable, Texture Cache Invalidation Enable, Constant Cache
5209 * Invalidation Enable). This is to WA FFDOP CG issue, this WA
5210 * need not implemented when FF_DOP_CG is disable via "Fixed
5211 * Function DOP Clock Gate Disable" bit in RC_PSMI_CTRL register."
5212 *
5213 * It sounds like we could avoid CS stalls in some cases, but we
5214 * don't currently bother. This list isn't exactly the list above,
5215 * either...
5216 */
5217 }
5218 }
5219
5220 /* "Stall" workarounds ----------------------------------------------
5221 * These have to come after the earlier ones because we may have added
5222 * some additional CS stalls above.
5223 */
5224
5225 if (GEN_GEN < 9 && (flags & PIPE_CONTROL_CS_STALL)) {
5226 /* Project: PRE-SKL, VLV, CHV
5227 *
5228 * "[All Stepping][All SKUs]:
5229 *
5230 * One of the following must also be set:
5231 *
5232 * - Render Target Cache Flush Enable ([12] of DW1)
5233 * - Depth Cache Flush Enable ([0] of DW1)
5234 * - Stall at Pixel Scoreboard ([1] of DW1)
5235 * - Depth Stall ([13] of DW1)
5236 * - Post-Sync Operation ([13] of DW1)
5237 * - DC Flush Enable ([5] of DW1)"
5238 *
5239 * If we don't already have one of those bits set, we choose to add
5240 * "Stall at Pixel Scoreboard". Some of the other bits require a
5241 * CS stall as a workaround (see above), which would send us into
5242 * an infinite recursion of PIPE_CONTROLs. "Stall at Pixel Scoreboard"
5243 * appears to be safe, so we choose that.
5244 */
5245 const uint32_t wa_bits = PIPE_CONTROL_RENDER_TARGET_FLUSH |
5246 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
5247 PIPE_CONTROL_WRITE_IMMEDIATE |
5248 PIPE_CONTROL_WRITE_DEPTH_COUNT |
5249 PIPE_CONTROL_WRITE_TIMESTAMP |
5250 PIPE_CONTROL_STALL_AT_SCOREBOARD |
5251 PIPE_CONTROL_DEPTH_STALL |
5252 PIPE_CONTROL_DATA_CACHE_FLUSH;
5253 if (!(flags & wa_bits))
5254 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
5255 }
5256
5257 /* Emit --------------------------------------------------------------- */
5258
5259 iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
5260 pc.LRIPostSyncOperation = NoLRIOperation;
5261 pc.PipeControlFlushEnable = flags & PIPE_CONTROL_FLUSH_ENABLE;
5262 pc.DCFlushEnable = flags & PIPE_CONTROL_DATA_CACHE_FLUSH;
5263 pc.StoreDataIndex = 0;
5264 pc.CommandStreamerStallEnable = flags & PIPE_CONTROL_CS_STALL;
5265 pc.GlobalSnapshotCountReset =
5266 flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET;
5267 pc.TLBInvalidate = flags & PIPE_CONTROL_TLB_INVALIDATE;
5268 pc.GenericMediaStateClear = flags & PIPE_CONTROL_MEDIA_STATE_CLEAR;
5269 pc.StallAtPixelScoreboard = flags & PIPE_CONTROL_STALL_AT_SCOREBOARD;
5270 pc.RenderTargetCacheFlushEnable =
5271 flags & PIPE_CONTROL_RENDER_TARGET_FLUSH;
5272 pc.DepthCacheFlushEnable = flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH;
5273 pc.StateCacheInvalidationEnable =
5274 flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE;
5275 pc.VFCacheInvalidationEnable = flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
5276 pc.ConstantCacheInvalidationEnable =
5277 flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE;
5278 pc.PostSyncOperation = flags_to_post_sync_op(flags);
5279 pc.DepthStallEnable = flags & PIPE_CONTROL_DEPTH_STALL;
5280 pc.InstructionCacheInvalidateEnable =
5281 flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE;
5282 pc.NotifyEnable = flags & PIPE_CONTROL_NOTIFY_ENABLE;
5283 pc.IndirectStatePointersDisable =
5284 flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE;
5285 pc.TextureCacheInvalidationEnable =
5286 flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
5287 pc.Address = rw_bo(bo, offset);
5288 pc.ImmediateData = imm;
5289 }
5290 }
5291
5292 void
5293 genX(init_state)(struct iris_context *ice)
5294 {
5295 struct pipe_context *ctx = &ice->ctx;
5296 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
5297
5298 ctx->create_blend_state = iris_create_blend_state;
5299 ctx->create_depth_stencil_alpha_state = iris_create_zsa_state;
5300 ctx->create_rasterizer_state = iris_create_rasterizer_state;
5301 ctx->create_sampler_state = iris_create_sampler_state;
5302 ctx->create_sampler_view = iris_create_sampler_view;
5303 ctx->create_surface = iris_create_surface;
5304 ctx->create_vertex_elements_state = iris_create_vertex_elements;
5305 ctx->bind_blend_state = iris_bind_blend_state;
5306 ctx->bind_depth_stencil_alpha_state = iris_bind_zsa_state;
5307 ctx->bind_sampler_states = iris_bind_sampler_states;
5308 ctx->bind_rasterizer_state = iris_bind_rasterizer_state;
5309 ctx->bind_vertex_elements_state = iris_bind_vertex_elements_state;
5310 ctx->delete_blend_state = iris_delete_state;
5311 ctx->delete_depth_stencil_alpha_state = iris_delete_state;
5312 ctx->delete_fs_state = iris_delete_state;
5313 ctx->delete_rasterizer_state = iris_delete_state;
5314 ctx->delete_sampler_state = iris_delete_state;
5315 ctx->delete_vertex_elements_state = iris_delete_state;
5316 ctx->delete_tcs_state = iris_delete_state;
5317 ctx->delete_tes_state = iris_delete_state;
5318 ctx->delete_gs_state = iris_delete_state;
5319 ctx->delete_vs_state = iris_delete_state;
5320 ctx->set_blend_color = iris_set_blend_color;
5321 ctx->set_clip_state = iris_set_clip_state;
5322 ctx->set_constant_buffer = iris_set_constant_buffer;
5323 ctx->set_shader_buffers = iris_set_shader_buffers;
5324 ctx->set_shader_images = iris_set_shader_images;
5325 ctx->set_sampler_views = iris_set_sampler_views;
5326 ctx->set_tess_state = iris_set_tess_state;
5327 ctx->set_framebuffer_state = iris_set_framebuffer_state;
5328 ctx->set_polygon_stipple = iris_set_polygon_stipple;
5329 ctx->set_sample_mask = iris_set_sample_mask;
5330 ctx->set_scissor_states = iris_set_scissor_states;
5331 ctx->set_stencil_ref = iris_set_stencil_ref;
5332 ctx->set_vertex_buffers = iris_set_vertex_buffers;
5333 ctx->set_viewport_states = iris_set_viewport_states;
5334 ctx->sampler_view_destroy = iris_sampler_view_destroy;
5335 ctx->surface_destroy = iris_surface_destroy;
5336 ctx->draw_vbo = iris_draw_vbo;
5337 ctx->launch_grid = iris_launch_grid;
5338 ctx->create_stream_output_target = iris_create_stream_output_target;
5339 ctx->stream_output_target_destroy = iris_stream_output_target_destroy;
5340 ctx->set_stream_output_targets = iris_set_stream_output_targets;
5341
5342 ice->vtbl.destroy_state = iris_destroy_state;
5343 ice->vtbl.init_render_context = iris_init_render_context;
5344 ice->vtbl.init_compute_context = iris_init_compute_context;
5345 ice->vtbl.upload_render_state = iris_upload_render_state;
5346 ice->vtbl.update_surface_base_address = iris_update_surface_base_address;
5347 ice->vtbl.upload_compute_state = iris_upload_compute_state;
5348 ice->vtbl.emit_raw_pipe_control = iris_emit_raw_pipe_control;
5349 ice->vtbl.load_register_reg32 = iris_load_register_reg32;
5350 ice->vtbl.load_register_reg64 = iris_load_register_reg64;
5351 ice->vtbl.load_register_imm32 = iris_load_register_imm32;
5352 ice->vtbl.load_register_imm64 = iris_load_register_imm64;
5353 ice->vtbl.load_register_mem32 = iris_load_register_mem32;
5354 ice->vtbl.load_register_mem64 = iris_load_register_mem64;
5355 ice->vtbl.store_register_mem32 = iris_store_register_mem32;
5356 ice->vtbl.store_register_mem64 = iris_store_register_mem64;
5357 ice->vtbl.store_data_imm32 = iris_store_data_imm32;
5358 ice->vtbl.store_data_imm64 = iris_store_data_imm64;
5359 ice->vtbl.copy_mem_mem = iris_copy_mem_mem;
5360 ice->vtbl.derived_program_state_size = iris_derived_program_state_size;
5361 ice->vtbl.store_derived_program_state = iris_store_derived_program_state;
5362 ice->vtbl.create_so_decl_list = iris_create_so_decl_list;
5363 ice->vtbl.populate_vs_key = iris_populate_vs_key;
5364 ice->vtbl.populate_tcs_key = iris_populate_tcs_key;
5365 ice->vtbl.populate_tes_key = iris_populate_tes_key;
5366 ice->vtbl.populate_gs_key = iris_populate_gs_key;
5367 ice->vtbl.populate_fs_key = iris_populate_fs_key;
5368 ice->vtbl.populate_cs_key = iris_populate_cs_key;
5369
5370 ice->state.dirty = ~0ull;
5371
5372 ice->state.statistics_counters_enabled = true;
5373
5374 ice->state.sample_mask = 0xffff;
5375 ice->state.num_viewports = 1;
5376 ice->state.genx = calloc(1, sizeof(struct iris_genx_state));
5377
5378 /* Make a 1x1x1 null surface for unbound textures */
5379 void *null_surf_map =
5380 upload_state(ice->state.surface_uploader, &ice->state.unbound_tex,
5381 4 * GENX(RENDER_SURFACE_STATE_length), 64);
5382 isl_null_fill_state(&screen->isl_dev, null_surf_map, isl_extent3d(1, 1, 1));
5383 ice->state.unbound_tex.offset +=
5384 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.unbound_tex.res));
5385
5386 /* Default all scissor rectangles to be empty regions. */
5387 for (int i = 0; i < IRIS_MAX_VIEWPORTS; i++) {
5388 ice->state.scissors[i] = (struct pipe_scissor_state) {
5389 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
5390 };
5391 }
5392 }