iris: Delete genx->bound_vertex_buffers
[mesa.git] / src / gallium / drivers / iris / iris_state.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included
12 * in all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
21 */
22
23 /**
24 * @file iris_state.c
25 *
26 * ============================= GENXML CODE =============================
27 * [This file is compiled once per generation.]
28 * =======================================================================
29 *
30 * This is the main state upload code.
31 *
32 * Gallium uses Constant State Objects, or CSOs, for most state. Large,
33 * complex, or highly reusable state can be created once, and bound and
34 * rebound multiple times. This is modeled with the pipe->create_*_state()
35 * and pipe->bind_*_state() hooks. Highly dynamic or inexpensive state is
36 * streamed out on the fly, via pipe->set_*_state() hooks.
37 *
38 * OpenGL involves frequently mutating context state, which is mirrored in
39 * core Mesa by highly mutable data structures. However, most applications
40 * typically draw the same things over and over - from frame to frame, most
41 * of the same objects are still visible and need to be redrawn. So, rather
42 * than inventing new state all the time, applications usually mutate to swap
43 * between known states that we've seen before.
44 *
45 * Gallium isolates us from this mutation by tracking API state, and
46 * distilling it into a set of Constant State Objects, or CSOs. Large,
47 * complex, or typically reusable state can be created once, then reused
48 * multiple times. Drivers can create and store their own associated data.
49 * This create/bind model corresponds to the pipe->create_*_state() and
50 * pipe->bind_*_state() driver hooks.
51 *
52 * Some state is cheap to create, or expected to be highly dynamic. Rather
53 * than creating and caching piles of CSOs for these, Gallium simply streams
54 * them out, via the pipe->set_*_state() driver hooks.
55 *
56 * To reduce draw time overhead, we try to compute as much state at create
57 * time as possible. Wherever possible, we translate the Gallium pipe state
58 * to 3DSTATE commands, and store those commands in the CSO. At draw time,
59 * we can simply memcpy them into a batch buffer.
60 *
61 * No hardware matches the abstraction perfectly, so some commands require
62 * information from multiple CSOs. In this case, we can store two copies
63 * of the packet (one in each CSO), and simply | together their DWords at
64 * draw time. Sometimes the second set is trivial (one or two fields), so
65 * we simply pack it at draw time.
66 *
67 * There are two main components in the file below. First, the CSO hooks
68 * create/bind/track state. The second are the draw-time upload functions,
69 * iris_upload_render_state() and iris_upload_compute_state(), which read
70 * the context state and emit the commands into the actual batch.
71 */
72
73 #include <stdio.h>
74 #include <errno.h>
75
76 #if HAVE_VALGRIND
77 #include <valgrind.h>
78 #include <memcheck.h>
79 #define VG(x) x
80 #ifndef NDEBUG
81 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
82 #endif
83 #else
84 #define VG(x)
85 #endif
86
87 #include "pipe/p_defines.h"
88 #include "pipe/p_state.h"
89 #include "pipe/p_context.h"
90 #include "pipe/p_screen.h"
91 #include "util/u_inlines.h"
92 #include "util/u_format.h"
93 #include "util/u_framebuffer.h"
94 #include "util/u_transfer.h"
95 #include "util/u_upload_mgr.h"
96 #include "util/u_viewport.h"
97 #include "i915_drm.h"
98 #include "nir.h"
99 #include "intel/compiler/brw_compiler.h"
100 #include "intel/common/gen_l3_config.h"
101 #include "intel/common/gen_sample_positions.h"
102 #include "iris_batch.h"
103 #include "iris_context.h"
104 #include "iris_defines.h"
105 #include "iris_pipe.h"
106 #include "iris_resource.h"
107
108 #define __gen_address_type struct iris_address
109 #define __gen_user_data struct iris_batch
110
111 #define ARRAY_BYTES(x) (sizeof(uint32_t) * ARRAY_SIZE(x))
112
113 static uint64_t
114 __gen_combine_address(struct iris_batch *batch, void *location,
115 struct iris_address addr, uint32_t delta)
116 {
117 uint64_t result = addr.offset + delta;
118
119 if (addr.bo) {
120 iris_use_pinned_bo(batch, addr.bo, addr.write);
121 /* Assume this is a general address, not relative to a base. */
122 result += addr.bo->gtt_offset;
123 }
124
125 return result;
126 }
127
128 #define __genxml_cmd_length(cmd) cmd ## _length
129 #define __genxml_cmd_length_bias(cmd) cmd ## _length_bias
130 #define __genxml_cmd_header(cmd) cmd ## _header
131 #define __genxml_cmd_pack(cmd) cmd ## _pack
132
133 #define _iris_pack_command(batch, cmd, dst, name) \
134 for (struct cmd name = { __genxml_cmd_header(cmd) }, \
135 *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
136 ({ __genxml_cmd_pack(cmd)(batch, (void *)_dst, &name); \
137 _dst = NULL; \
138 }))
139
140 #define iris_pack_command(cmd, dst, name) \
141 _iris_pack_command(NULL, cmd, dst, name)
142
143 #define iris_pack_state(cmd, dst, name) \
144 for (struct cmd name = {}, \
145 *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
146 __genxml_cmd_pack(cmd)(NULL, (void *)_dst, &name), \
147 _dst = NULL)
148
149 #define iris_emit_cmd(batch, cmd, name) \
150 _iris_pack_command(batch, cmd, iris_get_command_space(batch, 4 * __genxml_cmd_length(cmd)), name)
151
152 #define iris_emit_merge(batch, dwords0, dwords1, num_dwords) \
153 do { \
154 uint32_t *dw = iris_get_command_space(batch, 4 * num_dwords); \
155 for (uint32_t i = 0; i < num_dwords; i++) \
156 dw[i] = (dwords0)[i] | (dwords1)[i]; \
157 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, num_dwords)); \
158 } while (0)
159
160 #include "genxml/genX_pack.h"
161 #include "genxml/gen_macros.h"
162 #include "genxml/genX_bits.h"
163
164 #if GEN_GEN == 8
165 #define MOCS_PTE 0x18
166 #define MOCS_WB 0x78
167 #else
168 #define MOCS_PTE (1 << 1)
169 #define MOCS_WB (2 << 1)
170 #endif
171
172 static uint32_t
173 mocs(struct iris_bo *bo)
174 {
175 return bo && bo->external ? MOCS_PTE : MOCS_WB;
176 }
177
178 /**
179 * Statically assert that PIPE_* enums match the hardware packets.
180 * (As long as they match, we don't need to translate them.)
181 */
182 UNUSED static void pipe_asserts()
183 {
184 #define PIPE_ASSERT(x) STATIC_ASSERT((int)x)
185
186 /* pipe_logicop happens to match the hardware. */
187 PIPE_ASSERT(PIPE_LOGICOP_CLEAR == LOGICOP_CLEAR);
188 PIPE_ASSERT(PIPE_LOGICOP_NOR == LOGICOP_NOR);
189 PIPE_ASSERT(PIPE_LOGICOP_AND_INVERTED == LOGICOP_AND_INVERTED);
190 PIPE_ASSERT(PIPE_LOGICOP_COPY_INVERTED == LOGICOP_COPY_INVERTED);
191 PIPE_ASSERT(PIPE_LOGICOP_AND_REVERSE == LOGICOP_AND_REVERSE);
192 PIPE_ASSERT(PIPE_LOGICOP_INVERT == LOGICOP_INVERT);
193 PIPE_ASSERT(PIPE_LOGICOP_XOR == LOGICOP_XOR);
194 PIPE_ASSERT(PIPE_LOGICOP_NAND == LOGICOP_NAND);
195 PIPE_ASSERT(PIPE_LOGICOP_AND == LOGICOP_AND);
196 PIPE_ASSERT(PIPE_LOGICOP_EQUIV == LOGICOP_EQUIV);
197 PIPE_ASSERT(PIPE_LOGICOP_NOOP == LOGICOP_NOOP);
198 PIPE_ASSERT(PIPE_LOGICOP_OR_INVERTED == LOGICOP_OR_INVERTED);
199 PIPE_ASSERT(PIPE_LOGICOP_COPY == LOGICOP_COPY);
200 PIPE_ASSERT(PIPE_LOGICOP_OR_REVERSE == LOGICOP_OR_REVERSE);
201 PIPE_ASSERT(PIPE_LOGICOP_OR == LOGICOP_OR);
202 PIPE_ASSERT(PIPE_LOGICOP_SET == LOGICOP_SET);
203
204 /* pipe_blend_func happens to match the hardware. */
205 PIPE_ASSERT(PIPE_BLENDFACTOR_ONE == BLENDFACTOR_ONE);
206 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_COLOR == BLENDFACTOR_SRC_COLOR);
207 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA == BLENDFACTOR_SRC_ALPHA);
208 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_ALPHA == BLENDFACTOR_DST_ALPHA);
209 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_COLOR == BLENDFACTOR_DST_COLOR);
210 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE == BLENDFACTOR_SRC_ALPHA_SATURATE);
211 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_COLOR == BLENDFACTOR_CONST_COLOR);
212 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_ALPHA == BLENDFACTOR_CONST_ALPHA);
213 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_COLOR == BLENDFACTOR_SRC1_COLOR);
214 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_ALPHA == BLENDFACTOR_SRC1_ALPHA);
215 PIPE_ASSERT(PIPE_BLENDFACTOR_ZERO == BLENDFACTOR_ZERO);
216 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_COLOR == BLENDFACTOR_INV_SRC_COLOR);
217 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_ALPHA == BLENDFACTOR_INV_SRC_ALPHA);
218 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_ALPHA == BLENDFACTOR_INV_DST_ALPHA);
219 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_COLOR == BLENDFACTOR_INV_DST_COLOR);
220 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_COLOR == BLENDFACTOR_INV_CONST_COLOR);
221 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_ALPHA == BLENDFACTOR_INV_CONST_ALPHA);
222 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_COLOR == BLENDFACTOR_INV_SRC1_COLOR);
223 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_ALPHA == BLENDFACTOR_INV_SRC1_ALPHA);
224
225 /* pipe_blend_func happens to match the hardware. */
226 PIPE_ASSERT(PIPE_BLEND_ADD == BLENDFUNCTION_ADD);
227 PIPE_ASSERT(PIPE_BLEND_SUBTRACT == BLENDFUNCTION_SUBTRACT);
228 PIPE_ASSERT(PIPE_BLEND_REVERSE_SUBTRACT == BLENDFUNCTION_REVERSE_SUBTRACT);
229 PIPE_ASSERT(PIPE_BLEND_MIN == BLENDFUNCTION_MIN);
230 PIPE_ASSERT(PIPE_BLEND_MAX == BLENDFUNCTION_MAX);
231
232 /* pipe_stencil_op happens to match the hardware. */
233 PIPE_ASSERT(PIPE_STENCIL_OP_KEEP == STENCILOP_KEEP);
234 PIPE_ASSERT(PIPE_STENCIL_OP_ZERO == STENCILOP_ZERO);
235 PIPE_ASSERT(PIPE_STENCIL_OP_REPLACE == STENCILOP_REPLACE);
236 PIPE_ASSERT(PIPE_STENCIL_OP_INCR == STENCILOP_INCRSAT);
237 PIPE_ASSERT(PIPE_STENCIL_OP_DECR == STENCILOP_DECRSAT);
238 PIPE_ASSERT(PIPE_STENCIL_OP_INCR_WRAP == STENCILOP_INCR);
239 PIPE_ASSERT(PIPE_STENCIL_OP_DECR_WRAP == STENCILOP_DECR);
240 PIPE_ASSERT(PIPE_STENCIL_OP_INVERT == STENCILOP_INVERT);
241
242 /* pipe_sprite_coord_mode happens to match 3DSTATE_SBE */
243 PIPE_ASSERT(PIPE_SPRITE_COORD_UPPER_LEFT == UPPERLEFT);
244 PIPE_ASSERT(PIPE_SPRITE_COORD_LOWER_LEFT == LOWERLEFT);
245 #undef PIPE_ASSERT
246 }
247
248 static unsigned
249 translate_prim_type(enum pipe_prim_type prim, uint8_t verts_per_patch)
250 {
251 static const unsigned map[] = {
252 [PIPE_PRIM_POINTS] = _3DPRIM_POINTLIST,
253 [PIPE_PRIM_LINES] = _3DPRIM_LINELIST,
254 [PIPE_PRIM_LINE_LOOP] = _3DPRIM_LINELOOP,
255 [PIPE_PRIM_LINE_STRIP] = _3DPRIM_LINESTRIP,
256 [PIPE_PRIM_TRIANGLES] = _3DPRIM_TRILIST,
257 [PIPE_PRIM_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
258 [PIPE_PRIM_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
259 [PIPE_PRIM_QUADS] = _3DPRIM_QUADLIST,
260 [PIPE_PRIM_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
261 [PIPE_PRIM_POLYGON] = _3DPRIM_POLYGON,
262 [PIPE_PRIM_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
263 [PIPE_PRIM_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
264 [PIPE_PRIM_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
265 [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
266 [PIPE_PRIM_PATCHES] = _3DPRIM_PATCHLIST_1 - 1,
267 };
268
269 return map[prim] + (prim == PIPE_PRIM_PATCHES ? verts_per_patch : 0);
270 }
271
272 static unsigned
273 translate_compare_func(enum pipe_compare_func pipe_func)
274 {
275 static const unsigned map[] = {
276 [PIPE_FUNC_NEVER] = COMPAREFUNCTION_NEVER,
277 [PIPE_FUNC_LESS] = COMPAREFUNCTION_LESS,
278 [PIPE_FUNC_EQUAL] = COMPAREFUNCTION_EQUAL,
279 [PIPE_FUNC_LEQUAL] = COMPAREFUNCTION_LEQUAL,
280 [PIPE_FUNC_GREATER] = COMPAREFUNCTION_GREATER,
281 [PIPE_FUNC_NOTEQUAL] = COMPAREFUNCTION_NOTEQUAL,
282 [PIPE_FUNC_GEQUAL] = COMPAREFUNCTION_GEQUAL,
283 [PIPE_FUNC_ALWAYS] = COMPAREFUNCTION_ALWAYS,
284 };
285 return map[pipe_func];
286 }
287
288 static unsigned
289 translate_shadow_func(enum pipe_compare_func pipe_func)
290 {
291 /* Gallium specifies the result of shadow comparisons as:
292 *
293 * 1 if ref <op> texel,
294 * 0 otherwise.
295 *
296 * The hardware does:
297 *
298 * 0 if texel <op> ref,
299 * 1 otherwise.
300 *
301 * So we need to flip the operator and also negate.
302 */
303 static const unsigned map[] = {
304 [PIPE_FUNC_NEVER] = PREFILTEROPALWAYS,
305 [PIPE_FUNC_LESS] = PREFILTEROPLEQUAL,
306 [PIPE_FUNC_EQUAL] = PREFILTEROPNOTEQUAL,
307 [PIPE_FUNC_LEQUAL] = PREFILTEROPLESS,
308 [PIPE_FUNC_GREATER] = PREFILTEROPGEQUAL,
309 [PIPE_FUNC_NOTEQUAL] = PREFILTEROPEQUAL,
310 [PIPE_FUNC_GEQUAL] = PREFILTEROPGREATER,
311 [PIPE_FUNC_ALWAYS] = PREFILTEROPNEVER,
312 };
313 return map[pipe_func];
314 }
315
316 static unsigned
317 translate_cull_mode(unsigned pipe_face)
318 {
319 static const unsigned map[4] = {
320 [PIPE_FACE_NONE] = CULLMODE_NONE,
321 [PIPE_FACE_FRONT] = CULLMODE_FRONT,
322 [PIPE_FACE_BACK] = CULLMODE_BACK,
323 [PIPE_FACE_FRONT_AND_BACK] = CULLMODE_BOTH,
324 };
325 return map[pipe_face];
326 }
327
328 static unsigned
329 translate_fill_mode(unsigned pipe_polymode)
330 {
331 static const unsigned map[4] = {
332 [PIPE_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
333 [PIPE_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
334 [PIPE_POLYGON_MODE_POINT] = FILL_MODE_POINT,
335 [PIPE_POLYGON_MODE_FILL_RECTANGLE] = FILL_MODE_SOLID,
336 };
337 return map[pipe_polymode];
338 }
339
340 static unsigned
341 translate_mip_filter(enum pipe_tex_mipfilter pipe_mip)
342 {
343 static const unsigned map[] = {
344 [PIPE_TEX_MIPFILTER_NEAREST] = MIPFILTER_NEAREST,
345 [PIPE_TEX_MIPFILTER_LINEAR] = MIPFILTER_LINEAR,
346 [PIPE_TEX_MIPFILTER_NONE] = MIPFILTER_NONE,
347 };
348 return map[pipe_mip];
349 }
350
351 static uint32_t
352 translate_wrap(unsigned pipe_wrap)
353 {
354 static const unsigned map[] = {
355 [PIPE_TEX_WRAP_REPEAT] = TCM_WRAP,
356 [PIPE_TEX_WRAP_CLAMP] = TCM_HALF_BORDER,
357 [PIPE_TEX_WRAP_CLAMP_TO_EDGE] = TCM_CLAMP,
358 [PIPE_TEX_WRAP_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER,
359 [PIPE_TEX_WRAP_MIRROR_REPEAT] = TCM_MIRROR,
360 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE,
361
362 /* These are unsupported. */
363 [PIPE_TEX_WRAP_MIRROR_CLAMP] = -1,
364 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER] = -1,
365 };
366 return map[pipe_wrap];
367 }
368
369 static struct iris_address
370 ro_bo(struct iris_bo *bo, uint64_t offset)
371 {
372 /* CSOs must pass NULL for bo! Otherwise it will add the BO to the
373 * validation list at CSO creation time, instead of draw time.
374 */
375 return (struct iris_address) { .bo = bo, .offset = offset };
376 }
377
378 static struct iris_address
379 rw_bo(struct iris_bo *bo, uint64_t offset)
380 {
381 /* CSOs must pass NULL for bo! Otherwise it will add the BO to the
382 * validation list at CSO creation time, instead of draw time.
383 */
384 return (struct iris_address) { .bo = bo, .offset = offset, .write = true };
385 }
386
387 /**
388 * Allocate space for some indirect state.
389 *
390 * Return a pointer to the map (to fill it out) and a state ref (for
391 * referring to the state in GPU commands).
392 */
393 static void *
394 upload_state(struct u_upload_mgr *uploader,
395 struct iris_state_ref *ref,
396 unsigned size,
397 unsigned alignment)
398 {
399 void *p = NULL;
400 u_upload_alloc(uploader, 0, size, alignment, &ref->offset, &ref->res, &p);
401 return p;
402 }
403
404 /**
405 * Stream out temporary/short-lived state.
406 *
407 * This allocates space, pins the BO, and includes the BO address in the
408 * returned offset (which works because all state lives in 32-bit memory
409 * zones).
410 */
411 static uint32_t *
412 stream_state(struct iris_batch *batch,
413 struct u_upload_mgr *uploader,
414 struct pipe_resource **out_res,
415 unsigned size,
416 unsigned alignment,
417 uint32_t *out_offset)
418 {
419 void *ptr = NULL;
420
421 u_upload_alloc(uploader, 0, size, alignment, out_offset, out_res, &ptr);
422
423 struct iris_bo *bo = iris_resource_bo(*out_res);
424 iris_use_pinned_bo(batch, bo, false);
425
426 *out_offset += iris_bo_offset_from_base_address(bo);
427
428 return ptr;
429 }
430
431 /**
432 * stream_state() + memcpy.
433 */
434 static uint32_t
435 emit_state(struct iris_batch *batch,
436 struct u_upload_mgr *uploader,
437 struct pipe_resource **out_res,
438 const void *data,
439 unsigned size,
440 unsigned alignment)
441 {
442 unsigned offset = 0;
443 uint32_t *map =
444 stream_state(batch, uploader, out_res, size, alignment, &offset);
445
446 if (map)
447 memcpy(map, data, size);
448
449 return offset;
450 }
451
452 /**
453 * Did field 'x' change between 'old_cso' and 'new_cso'?
454 *
455 * (If so, we may want to set some dirty flags.)
456 */
457 #define cso_changed(x) (!old_cso || (old_cso->x != new_cso->x))
458 #define cso_changed_memcmp(x) \
459 (!old_cso || memcmp(old_cso->x, new_cso->x, sizeof(old_cso->x)) != 0)
460
461 static void
462 flush_for_state_base_change(struct iris_batch *batch)
463 {
464 /* Flush before emitting STATE_BASE_ADDRESS.
465 *
466 * This isn't documented anywhere in the PRM. However, it seems to be
467 * necessary prior to changing the surface state base adress. We've
468 * seen issues in Vulkan where we get GPU hangs when using multi-level
469 * command buffers which clear depth, reset state base address, and then
470 * go render stuff.
471 *
472 * Normally, in GL, we would trust the kernel to do sufficient stalls
473 * and flushes prior to executing our batch. However, it doesn't seem
474 * as if the kernel's flushing is always sufficient and we don't want to
475 * rely on it.
476 *
477 * We make this an end-of-pipe sync instead of a normal flush because we
478 * do not know the current status of the GPU. On Haswell at least,
479 * having a fast-clear operation in flight at the same time as a normal
480 * rendering operation can cause hangs. Since the kernel's flushing is
481 * insufficient, we need to ensure that any rendering operations from
482 * other processes are definitely complete before we try to do our own
483 * rendering. It's a bit of a big hammer but it appears to work.
484 */
485 iris_emit_end_of_pipe_sync(batch,
486 PIPE_CONTROL_RENDER_TARGET_FLUSH |
487 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
488 PIPE_CONTROL_DATA_CACHE_FLUSH);
489 }
490
491 static void
492 _iris_emit_lri(struct iris_batch *batch, uint32_t reg, uint32_t val)
493 {
494 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
495 lri.RegisterOffset = reg;
496 lri.DataDWord = val;
497 }
498 }
499 #define iris_emit_lri(b, r, v) _iris_emit_lri(b, GENX(r##_num), v)
500
501 static void
502 _iris_emit_lrr(struct iris_batch *batch, uint32_t dst, uint32_t src)
503 {
504 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
505 lrr.SourceRegisterAddress = src;
506 lrr.DestinationRegisterAddress = dst;
507 }
508 }
509
510 static void
511 emit_pipeline_select(struct iris_batch *batch, uint32_t pipeline)
512 {
513 #if GEN_GEN >= 8 && GEN_GEN < 10
514 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
515 *
516 * Software must clear the COLOR_CALC_STATE Valid field in
517 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
518 * with Pipeline Select set to GPGPU.
519 *
520 * The internal hardware docs recommend the same workaround for Gen9
521 * hardware too.
522 */
523 if (pipeline == GPGPU)
524 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
525 #endif
526
527
528 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
529 * PIPELINE_SELECT [DevBWR+]":
530 *
531 * "Project: DEVSNB+
532 *
533 * Software must ensure all the write caches are flushed through a
534 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
535 * command to invalidate read only caches prior to programming
536 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode."
537 */
538 iris_emit_pipe_control_flush(batch,
539 PIPE_CONTROL_RENDER_TARGET_FLUSH |
540 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
541 PIPE_CONTROL_DATA_CACHE_FLUSH |
542 PIPE_CONTROL_CS_STALL);
543
544 iris_emit_pipe_control_flush(batch,
545 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
546 PIPE_CONTROL_CONST_CACHE_INVALIDATE |
547 PIPE_CONTROL_STATE_CACHE_INVALIDATE |
548 PIPE_CONTROL_INSTRUCTION_INVALIDATE);
549
550 iris_emit_cmd(batch, GENX(PIPELINE_SELECT), sel) {
551 #if GEN_GEN >= 9
552 sel.MaskBits = 3;
553 #endif
554 sel.PipelineSelection = pipeline;
555 }
556 }
557
558 UNUSED static void
559 init_glk_barrier_mode(struct iris_batch *batch, uint32_t value)
560 {
561 #if GEN_GEN == 9
562 /* Project: DevGLK
563 *
564 * "This chicken bit works around a hardware issue with barrier
565 * logic encountered when switching between GPGPU and 3D pipelines.
566 * To workaround the issue, this mode bit should be set after a
567 * pipeline is selected."
568 */
569 uint32_t reg_val;
570 iris_pack_state(GENX(SLICE_COMMON_ECO_CHICKEN1), &reg_val, reg) {
571 reg.GLKBarrierMode = value;
572 reg.GLKBarrierModeMask = 1;
573 }
574 iris_emit_lri(batch, SLICE_COMMON_ECO_CHICKEN1, reg_val);
575 #endif
576 }
577
578 static void
579 init_state_base_address(struct iris_batch *batch)
580 {
581 flush_for_state_base_change(batch);
582
583 /* We program most base addresses once at context initialization time.
584 * Each base address points at a 4GB memory zone, and never needs to
585 * change. See iris_bufmgr.h for a description of the memory zones.
586 *
587 * The one exception is Surface State Base Address, which needs to be
588 * updated occasionally. See iris_binder.c for the details there.
589 */
590 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
591 sba.GeneralStateMOCS = MOCS_WB;
592 sba.StatelessDataPortAccessMOCS = MOCS_WB;
593 sba.DynamicStateMOCS = MOCS_WB;
594 sba.IndirectObjectMOCS = MOCS_WB;
595 sba.InstructionMOCS = MOCS_WB;
596
597 sba.GeneralStateBaseAddressModifyEnable = true;
598 sba.DynamicStateBaseAddressModifyEnable = true;
599 sba.IndirectObjectBaseAddressModifyEnable = true;
600 sba.InstructionBaseAddressModifyEnable = true;
601 sba.GeneralStateBufferSizeModifyEnable = true;
602 sba.DynamicStateBufferSizeModifyEnable = true;
603 #if (GEN_GEN >= 9)
604 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
605 sba.BindlessSurfaceStateMOCS = MOCS_WB;
606 #endif
607 sba.IndirectObjectBufferSizeModifyEnable = true;
608 sba.InstructionBuffersizeModifyEnable = true;
609
610 sba.InstructionBaseAddress = ro_bo(NULL, IRIS_MEMZONE_SHADER_START);
611 sba.DynamicStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_DYNAMIC_START);
612
613 sba.GeneralStateBufferSize = 0xfffff;
614 sba.IndirectObjectBufferSize = 0xfffff;
615 sba.InstructionBufferSize = 0xfffff;
616 sba.DynamicStateBufferSize = 0xfffff;
617 }
618 }
619
620 /**
621 * Upload the initial GPU state for a render context.
622 *
623 * This sets some invariant state that needs to be programmed a particular
624 * way, but we never actually change.
625 */
626 static void
627 iris_init_render_context(struct iris_screen *screen,
628 struct iris_batch *batch,
629 struct iris_vtable *vtbl,
630 struct pipe_debug_callback *dbg)
631 {
632 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
633 uint32_t reg_val;
634
635 emit_pipeline_select(batch, _3D);
636
637 init_state_base_address(batch);
638
639 #if GEN_GEN >= 9
640 // XXX: INSTPM on Gen8
641 iris_pack_state(GENX(CS_DEBUG_MODE2), &reg_val, reg) {
642 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
643 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
644 }
645 iris_emit_lri(batch, CS_DEBUG_MODE2, reg_val);
646 #else
647 iris_pack_state(GENX(INSTPM), &reg_val, reg) {
648 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
649 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
650 }
651 iris_emit_lri(batch, INSTPM, reg_val);
652 #endif
653
654 #if GEN_GEN == 9
655 iris_pack_state(GENX(CACHE_MODE_1), &reg_val, reg) {
656 reg.FloatBlendOptimizationEnable = true;
657 reg.FloatBlendOptimizationEnableMask = true;
658 reg.PartialResolveDisableInVC = true;
659 reg.PartialResolveDisableInVCMask = true;
660 }
661 iris_emit_lri(batch, CACHE_MODE_1, reg_val);
662
663 if (devinfo->is_geminilake)
664 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_3D_HULL);
665 #endif
666
667 #if GEN_GEN == 11
668 iris_pack_state(GENX(SAMPLER_MODE), &reg_val, reg) {
669 reg.HeaderlessMessageforPreemptableContexts = 1;
670 reg.HeaderlessMessageforPreemptableContextsMask = 1;
671 }
672 iris_emit_lri(batch, SAMPLER_MODE, reg_val);
673
674 // XXX: 3D_MODE?
675 #endif
676
677 /* 3DSTATE_DRAWING_RECTANGLE is non-pipelined, so we want to avoid
678 * changing it dynamically. We set it to the maximum size here, and
679 * instead include the render target dimensions in the viewport, so
680 * viewport extents clipping takes care of pruning stray geometry.
681 */
682 iris_emit_cmd(batch, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
683 rect.ClippedDrawingRectangleXMax = UINT16_MAX;
684 rect.ClippedDrawingRectangleYMax = UINT16_MAX;
685 }
686
687 /* Set the initial MSAA sample positions. */
688 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_PATTERN), pat) {
689 GEN_SAMPLE_POS_1X(pat._1xSample);
690 GEN_SAMPLE_POS_2X(pat._2xSample);
691 GEN_SAMPLE_POS_4X(pat._4xSample);
692 GEN_SAMPLE_POS_8X(pat._8xSample);
693 #if GEN_GEN >= 9
694 GEN_SAMPLE_POS_16X(pat._16xSample);
695 #endif
696 }
697
698 /* Use the legacy AA line coverage computation. */
699 iris_emit_cmd(batch, GENX(3DSTATE_AA_LINE_PARAMETERS), foo);
700
701 /* Disable chromakeying (it's for media) */
702 iris_emit_cmd(batch, GENX(3DSTATE_WM_CHROMAKEY), foo);
703
704 /* We want regular rendering, not special HiZ operations. */
705 iris_emit_cmd(batch, GENX(3DSTATE_WM_HZ_OP), foo);
706
707 /* No polygon stippling offsets are necessary. */
708 // XXX: may need to set an offset for origin-UL framebuffers
709 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_OFFSET), foo);
710
711 /* Set a static partitioning of the push constant area. */
712 // XXX: this may be a bad idea...could starve the push ringbuffers...
713 for (int i = 0; i <= MESA_SHADER_FRAGMENT; i++) {
714 iris_emit_cmd(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
715 alloc._3DCommandSubOpcode = 18 + i;
716 alloc.ConstantBufferOffset = 6 * i;
717 alloc.ConstantBufferSize = i == MESA_SHADER_FRAGMENT ? 8 : 6;
718 }
719 }
720 }
721
722 static void
723 iris_init_compute_context(struct iris_screen *screen,
724 struct iris_batch *batch,
725 struct iris_vtable *vtbl,
726 struct pipe_debug_callback *dbg)
727 {
728 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
729
730 emit_pipeline_select(batch, GPGPU);
731
732 const bool has_slm = true;
733 const bool wants_dc_cache = true;
734
735 const struct gen_l3_weights w =
736 gen_get_default_l3_weights(devinfo, wants_dc_cache, has_slm);
737 const struct gen_l3_config *cfg = gen_get_l3_config(devinfo, w);
738
739 uint32_t reg_val;
740 iris_pack_state(GENX(L3CNTLREG), &reg_val, reg) {
741 reg.SLMEnable = has_slm;
742 #if GEN_GEN == 11
743 /* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set
744 * in L3CNTLREG register. The default setting of the bit is not the
745 * desirable behavior.
746 */
747 reg.ErrorDetectionBehaviorControl = true;
748 #endif
749 reg.URBAllocation = cfg->n[GEN_L3P_URB];
750 reg.ROAllocation = cfg->n[GEN_L3P_RO];
751 reg.DCAllocation = cfg->n[GEN_L3P_DC];
752 reg.AllAllocation = cfg->n[GEN_L3P_ALL];
753 }
754 iris_emit_lri(batch, L3CNTLREG, reg_val);
755
756 init_state_base_address(batch);
757
758 #if GEN_GEN == 9
759 if (devinfo->is_geminilake)
760 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_GPGPU);
761 #endif
762 }
763
764 struct iris_vertex_buffer_state {
765 /** The VERTEX_BUFFER_STATE hardware structure. */
766 uint32_t state[GENX(VERTEX_BUFFER_STATE_length)];
767
768 /** The resource to source vertex data from. */
769 struct pipe_resource *resource;
770 };
771
772 struct iris_depth_buffer_state {
773 /* Depth/HiZ/Stencil related hardware packets. */
774 uint32_t packets[GENX(3DSTATE_DEPTH_BUFFER_length) +
775 GENX(3DSTATE_STENCIL_BUFFER_length) +
776 GENX(3DSTATE_HIER_DEPTH_BUFFER_length) +
777 GENX(3DSTATE_CLEAR_PARAMS_length)];
778 };
779
780 /**
781 * Generation-specific context state (ice->state.genx->...).
782 *
783 * Most state can go in iris_context directly, but these encode hardware
784 * packets which vary by generation.
785 */
786 struct iris_genx_state {
787 struct iris_vertex_buffer_state vertex_buffers[33];
788
789 struct iris_depth_buffer_state depth_buffer;
790
791 uint32_t so_buffers[4 * GENX(3DSTATE_SO_BUFFER_length)];
792 };
793
794 /**
795 * The pipe->set_blend_color() driver hook.
796 *
797 * This corresponds to our COLOR_CALC_STATE.
798 */
799 static void
800 iris_set_blend_color(struct pipe_context *ctx,
801 const struct pipe_blend_color *state)
802 {
803 struct iris_context *ice = (struct iris_context *) ctx;
804
805 /* Our COLOR_CALC_STATE is exactly pipe_blend_color, so just memcpy */
806 memcpy(&ice->state.blend_color, state, sizeof(struct pipe_blend_color));
807 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
808 }
809
810 /**
811 * Gallium CSO for blend state (see pipe_blend_state).
812 */
813 struct iris_blend_state {
814 /** Partial 3DSTATE_PS_BLEND */
815 uint32_t ps_blend[GENX(3DSTATE_PS_BLEND_length)];
816
817 /** Partial BLEND_STATE */
818 uint32_t blend_state[GENX(BLEND_STATE_length) +
819 BRW_MAX_DRAW_BUFFERS * GENX(BLEND_STATE_ENTRY_length)];
820
821 bool alpha_to_coverage; /* for shader key */
822
823 /** Bitfield of whether blending is enabled for RT[i] - for aux resolves */
824 uint8_t blend_enables;
825 };
826
827 static enum pipe_blendfactor
828 fix_blendfactor(enum pipe_blendfactor f, bool alpha_to_one)
829 {
830 if (alpha_to_one) {
831 if (f == PIPE_BLENDFACTOR_SRC1_ALPHA)
832 return PIPE_BLENDFACTOR_ONE;
833
834 if (f == PIPE_BLENDFACTOR_INV_SRC1_ALPHA)
835 return PIPE_BLENDFACTOR_ZERO;
836 }
837
838 return f;
839 }
840
841 /**
842 * The pipe->create_blend_state() driver hook.
843 *
844 * Translates a pipe_blend_state into iris_blend_state.
845 */
846 static void *
847 iris_create_blend_state(struct pipe_context *ctx,
848 const struct pipe_blend_state *state)
849 {
850 struct iris_blend_state *cso = malloc(sizeof(struct iris_blend_state));
851 uint32_t *blend_entry = cso->blend_state + GENX(BLEND_STATE_length);
852
853 cso->blend_enables = 0;
854 STATIC_ASSERT(BRW_MAX_DRAW_BUFFERS <= 8);
855
856 cso->alpha_to_coverage = state->alpha_to_coverage;
857
858 bool indep_alpha_blend = false;
859
860 for (int i = 0; i < BRW_MAX_DRAW_BUFFERS; i++) {
861 const struct pipe_rt_blend_state *rt =
862 &state->rt[state->independent_blend_enable ? i : 0];
863
864 enum pipe_blendfactor src_rgb =
865 fix_blendfactor(rt->rgb_src_factor, state->alpha_to_one);
866 enum pipe_blendfactor src_alpha =
867 fix_blendfactor(rt->alpha_src_factor, state->alpha_to_one);
868 enum pipe_blendfactor dst_rgb =
869 fix_blendfactor(rt->rgb_dst_factor, state->alpha_to_one);
870 enum pipe_blendfactor dst_alpha =
871 fix_blendfactor(rt->alpha_dst_factor, state->alpha_to_one);
872
873 if (rt->rgb_func != rt->alpha_func ||
874 src_rgb != src_alpha || dst_rgb != dst_alpha)
875 indep_alpha_blend = true;
876
877 if (rt->blend_enable)
878 cso->blend_enables |= 1u << i;
879
880 iris_pack_state(GENX(BLEND_STATE_ENTRY), blend_entry, be) {
881 be.LogicOpEnable = state->logicop_enable;
882 be.LogicOpFunction = state->logicop_func;
883
884 be.PreBlendSourceOnlyClampEnable = false;
885 be.ColorClampRange = COLORCLAMP_RTFORMAT;
886 be.PreBlendColorClampEnable = true;
887 be.PostBlendColorClampEnable = true;
888
889 be.ColorBufferBlendEnable = rt->blend_enable;
890
891 be.ColorBlendFunction = rt->rgb_func;
892 be.AlphaBlendFunction = rt->alpha_func;
893 be.SourceBlendFactor = src_rgb;
894 be.SourceAlphaBlendFactor = src_alpha;
895 be.DestinationBlendFactor = dst_rgb;
896 be.DestinationAlphaBlendFactor = dst_alpha;
897
898 be.WriteDisableRed = !(rt->colormask & PIPE_MASK_R);
899 be.WriteDisableGreen = !(rt->colormask & PIPE_MASK_G);
900 be.WriteDisableBlue = !(rt->colormask & PIPE_MASK_B);
901 be.WriteDisableAlpha = !(rt->colormask & PIPE_MASK_A);
902 }
903 blend_entry += GENX(BLEND_STATE_ENTRY_length);
904 }
905
906 iris_pack_command(GENX(3DSTATE_PS_BLEND), cso->ps_blend, pb) {
907 /* pb.HasWriteableRT is filled in at draw time. */
908 /* pb.AlphaTestEnable is filled in at draw time. */
909 pb.AlphaToCoverageEnable = state->alpha_to_coverage;
910 pb.IndependentAlphaBlendEnable = indep_alpha_blend;
911
912 pb.ColorBufferBlendEnable = state->rt[0].blend_enable;
913
914 pb.SourceBlendFactor =
915 fix_blendfactor(state->rt[0].rgb_src_factor, state->alpha_to_one);
916 pb.SourceAlphaBlendFactor =
917 fix_blendfactor(state->rt[0].alpha_src_factor, state->alpha_to_one);
918 pb.DestinationBlendFactor =
919 fix_blendfactor(state->rt[0].rgb_dst_factor, state->alpha_to_one);
920 pb.DestinationAlphaBlendFactor =
921 fix_blendfactor(state->rt[0].alpha_dst_factor, state->alpha_to_one);
922 }
923
924 iris_pack_state(GENX(BLEND_STATE), cso->blend_state, bs) {
925 bs.AlphaToCoverageEnable = state->alpha_to_coverage;
926 bs.IndependentAlphaBlendEnable = indep_alpha_blend;
927 bs.AlphaToOneEnable = state->alpha_to_one;
928 bs.AlphaToCoverageDitherEnable = state->alpha_to_coverage;
929 bs.ColorDitherEnable = state->dither;
930 /* bl.AlphaTestEnable and bs.AlphaTestFunction are filled in later. */
931 }
932
933
934 return cso;
935 }
936
937 /**
938 * The pipe->bind_blend_state() driver hook.
939 *
940 * Bind a blending CSO and flag related dirty bits.
941 */
942 static void
943 iris_bind_blend_state(struct pipe_context *ctx, void *state)
944 {
945 struct iris_context *ice = (struct iris_context *) ctx;
946 struct iris_blend_state *cso = state;
947
948 ice->state.cso_blend = cso;
949 ice->state.blend_enables = cso ? cso->blend_enables : 0;
950
951 ice->state.dirty |= IRIS_DIRTY_PS_BLEND;
952 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
953 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_BLEND];
954 }
955
956 /**
957 * Gallium CSO for depth, stencil, and alpha testing state.
958 */
959 struct iris_depth_stencil_alpha_state {
960 /** Partial 3DSTATE_WM_DEPTH_STENCIL. */
961 uint32_t wmds[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
962
963 /** Outbound to BLEND_STATE, 3DSTATE_PS_BLEND, COLOR_CALC_STATE. */
964 struct pipe_alpha_state alpha;
965
966 /** Outbound to resolve and cache set tracking. */
967 bool depth_writes_enabled;
968 bool stencil_writes_enabled;
969 };
970
971 /**
972 * The pipe->create_depth_stencil_alpha_state() driver hook.
973 *
974 * We encode most of 3DSTATE_WM_DEPTH_STENCIL, and just save off the alpha
975 * testing state since we need pieces of it in a variety of places.
976 */
977 static void *
978 iris_create_zsa_state(struct pipe_context *ctx,
979 const struct pipe_depth_stencil_alpha_state *state)
980 {
981 struct iris_depth_stencil_alpha_state *cso =
982 malloc(sizeof(struct iris_depth_stencil_alpha_state));
983
984 bool two_sided_stencil = state->stencil[1].enabled;
985
986 cso->alpha = state->alpha;
987 cso->depth_writes_enabled = state->depth.writemask;
988 cso->stencil_writes_enabled =
989 state->stencil[0].writemask != 0 ||
990 (two_sided_stencil && state->stencil[1].writemask != 1);
991
992 /* The state tracker needs to optimize away EQUAL writes for us. */
993 assert(!(state->depth.func == PIPE_FUNC_EQUAL && state->depth.writemask));
994
995 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), cso->wmds, wmds) {
996 wmds.StencilFailOp = state->stencil[0].fail_op;
997 wmds.StencilPassDepthFailOp = state->stencil[0].zfail_op;
998 wmds.StencilPassDepthPassOp = state->stencil[0].zpass_op;
999 wmds.StencilTestFunction =
1000 translate_compare_func(state->stencil[0].func);
1001 wmds.BackfaceStencilFailOp = state->stencil[1].fail_op;
1002 wmds.BackfaceStencilPassDepthFailOp = state->stencil[1].zfail_op;
1003 wmds.BackfaceStencilPassDepthPassOp = state->stencil[1].zpass_op;
1004 wmds.BackfaceStencilTestFunction =
1005 translate_compare_func(state->stencil[1].func);
1006 wmds.DepthTestFunction = translate_compare_func(state->depth.func);
1007 wmds.DoubleSidedStencilEnable = two_sided_stencil;
1008 wmds.StencilTestEnable = state->stencil[0].enabled;
1009 wmds.StencilBufferWriteEnable =
1010 state->stencil[0].writemask != 0 ||
1011 (two_sided_stencil && state->stencil[1].writemask != 0);
1012 wmds.DepthTestEnable = state->depth.enabled;
1013 wmds.DepthBufferWriteEnable = state->depth.writemask;
1014 wmds.StencilTestMask = state->stencil[0].valuemask;
1015 wmds.StencilWriteMask = state->stencil[0].writemask;
1016 wmds.BackfaceStencilTestMask = state->stencil[1].valuemask;
1017 wmds.BackfaceStencilWriteMask = state->stencil[1].writemask;
1018 /* wmds.[Backface]StencilReferenceValue are merged later */
1019 }
1020
1021 return cso;
1022 }
1023
1024 /**
1025 * The pipe->bind_depth_stencil_alpha_state() driver hook.
1026 *
1027 * Bind a depth/stencil/alpha CSO and flag related dirty bits.
1028 */
1029 static void
1030 iris_bind_zsa_state(struct pipe_context *ctx, void *state)
1031 {
1032 struct iris_context *ice = (struct iris_context *) ctx;
1033 struct iris_depth_stencil_alpha_state *old_cso = ice->state.cso_zsa;
1034 struct iris_depth_stencil_alpha_state *new_cso = state;
1035
1036 if (new_cso) {
1037 if (cso_changed(alpha.ref_value))
1038 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
1039
1040 if (cso_changed(alpha.enabled))
1041 ice->state.dirty |= IRIS_DIRTY_PS_BLEND | IRIS_DIRTY_BLEND_STATE;
1042
1043 if (cso_changed(alpha.func))
1044 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1045
1046 ice->state.depth_writes_enabled = new_cso->depth_writes_enabled;
1047 ice->state.stencil_writes_enabled = new_cso->stencil_writes_enabled;
1048 }
1049
1050 ice->state.cso_zsa = new_cso;
1051 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1052 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
1053 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_DEPTH_STENCIL_ALPHA];
1054 }
1055
1056 /**
1057 * Gallium CSO for rasterizer state.
1058 */
1059 struct iris_rasterizer_state {
1060 uint32_t sf[GENX(3DSTATE_SF_length)];
1061 uint32_t clip[GENX(3DSTATE_CLIP_length)];
1062 uint32_t raster[GENX(3DSTATE_RASTER_length)];
1063 uint32_t wm[GENX(3DSTATE_WM_length)];
1064 uint32_t line_stipple[GENX(3DSTATE_LINE_STIPPLE_length)];
1065
1066 uint8_t num_clip_plane_consts;
1067 bool clip_halfz; /* for CC_VIEWPORT */
1068 bool depth_clip_near; /* for CC_VIEWPORT */
1069 bool depth_clip_far; /* for CC_VIEWPORT */
1070 bool flatshade; /* for shader state */
1071 bool flatshade_first; /* for stream output */
1072 bool clamp_fragment_color; /* for shader state */
1073 bool light_twoside; /* for shader state */
1074 bool rasterizer_discard; /* for 3DSTATE_STREAMOUT and 3DSTATE_CLIP */
1075 bool half_pixel_center; /* for 3DSTATE_MULTISAMPLE */
1076 bool line_stipple_enable;
1077 bool poly_stipple_enable;
1078 bool multisample;
1079 bool force_persample_interp;
1080 enum pipe_sprite_coord_mode sprite_coord_mode; /* PIPE_SPRITE_* */
1081 uint16_t sprite_coord_enable;
1082 };
1083
1084 static float
1085 get_line_width(const struct pipe_rasterizer_state *state)
1086 {
1087 float line_width = state->line_width;
1088
1089 /* From the OpenGL 4.4 spec:
1090 *
1091 * "The actual width of non-antialiased lines is determined by rounding
1092 * the supplied width to the nearest integer, then clamping it to the
1093 * implementation-dependent maximum non-antialiased line width."
1094 */
1095 if (!state->multisample && !state->line_smooth)
1096 line_width = roundf(state->line_width);
1097
1098 if (!state->multisample && state->line_smooth && line_width < 1.5f) {
1099 /* For 1 pixel line thickness or less, the general anti-aliasing
1100 * algorithm gives up, and a garbage line is generated. Setting a
1101 * Line Width of 0.0 specifies the rasterization of the "thinnest"
1102 * (one-pixel-wide), non-antialiased lines.
1103 *
1104 * Lines rendered with zero Line Width are rasterized using the
1105 * "Grid Intersection Quantization" rules as specified by the
1106 * "Zero-Width (Cosmetic) Line Rasterization" section of the docs.
1107 */
1108 line_width = 0.0f;
1109 }
1110
1111 return line_width;
1112 }
1113
1114 /**
1115 * The pipe->create_rasterizer_state() driver hook.
1116 */
1117 static void *
1118 iris_create_rasterizer_state(struct pipe_context *ctx,
1119 const struct pipe_rasterizer_state *state)
1120 {
1121 struct iris_rasterizer_state *cso =
1122 malloc(sizeof(struct iris_rasterizer_state));
1123
1124 #if 0
1125 point_quad_rasterization -> SBE?
1126
1127 not necessary?
1128 {
1129 poly_smooth
1130 bottom_edge_rule
1131
1132 offset_units_unscaled - cap not exposed
1133 }
1134 #endif
1135
1136 // XXX: it may make more sense just to store the pipe_rasterizer_state,
1137 // we're copying a lot of booleans here. But we don't need all of them...
1138
1139 cso->multisample = state->multisample;
1140 cso->force_persample_interp = state->force_persample_interp;
1141 cso->clip_halfz = state->clip_halfz;
1142 cso->depth_clip_near = state->depth_clip_near;
1143 cso->depth_clip_far = state->depth_clip_far;
1144 cso->flatshade = state->flatshade;
1145 cso->flatshade_first = state->flatshade_first;
1146 cso->clamp_fragment_color = state->clamp_fragment_color;
1147 cso->light_twoside = state->light_twoside;
1148 cso->rasterizer_discard = state->rasterizer_discard;
1149 cso->half_pixel_center = state->half_pixel_center;
1150 cso->sprite_coord_mode = state->sprite_coord_mode;
1151 cso->sprite_coord_enable = state->sprite_coord_enable;
1152 cso->line_stipple_enable = state->line_stipple_enable;
1153 cso->poly_stipple_enable = state->poly_stipple_enable;
1154
1155 if (state->clip_plane_enable != 0)
1156 cso->num_clip_plane_consts = util_logbase2(state->clip_plane_enable) + 1;
1157 else
1158 cso->num_clip_plane_consts = 0;
1159
1160 float line_width = get_line_width(state);
1161
1162 iris_pack_command(GENX(3DSTATE_SF), cso->sf, sf) {
1163 sf.StatisticsEnable = true;
1164 sf.ViewportTransformEnable = true;
1165 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
1166 sf.LineEndCapAntialiasingRegionWidth =
1167 state->line_smooth ? _10pixels : _05pixels;
1168 sf.LastPixelEnable = state->line_last_pixel;
1169 sf.LineWidth = line_width;
1170 sf.SmoothPointEnable = state->point_smooth || state->multisample;
1171 sf.PointWidthSource = state->point_size_per_vertex ? Vertex : State;
1172 sf.PointWidth = state->point_size;
1173
1174 if (state->flatshade_first) {
1175 sf.TriangleFanProvokingVertexSelect = 1;
1176 } else {
1177 sf.TriangleStripListProvokingVertexSelect = 2;
1178 sf.TriangleFanProvokingVertexSelect = 2;
1179 sf.LineStripListProvokingVertexSelect = 1;
1180 }
1181 }
1182
1183 iris_pack_command(GENX(3DSTATE_RASTER), cso->raster, rr) {
1184 rr.FrontWinding = state->front_ccw ? CounterClockwise : Clockwise;
1185 rr.CullMode = translate_cull_mode(state->cull_face);
1186 rr.FrontFaceFillMode = translate_fill_mode(state->fill_front);
1187 rr.BackFaceFillMode = translate_fill_mode(state->fill_back);
1188 rr.DXMultisampleRasterizationEnable = state->multisample;
1189 rr.GlobalDepthOffsetEnableSolid = state->offset_tri;
1190 rr.GlobalDepthOffsetEnableWireframe = state->offset_line;
1191 rr.GlobalDepthOffsetEnablePoint = state->offset_point;
1192 rr.GlobalDepthOffsetConstant = state->offset_units * 2;
1193 rr.GlobalDepthOffsetScale = state->offset_scale;
1194 rr.GlobalDepthOffsetClamp = state->offset_clamp;
1195 rr.SmoothPointEnable = state->point_smooth || state->multisample;
1196 rr.AntialiasingEnable = state->line_smooth;
1197 rr.ScissorRectangleEnable = state->scissor;
1198 #if GEN_GEN >= 9
1199 rr.ViewportZNearClipTestEnable = state->depth_clip_near;
1200 rr.ViewportZFarClipTestEnable = state->depth_clip_far;
1201 #else
1202 rr.ViewportZClipTestEnable = (state->depth_clip_near || state->depth_clip_far);
1203 #endif
1204 //rr.ConservativeRasterizationEnable = not yet supported by Gallium...
1205 }
1206
1207 iris_pack_command(GENX(3DSTATE_CLIP), cso->clip, cl) {
1208 /* cl.NonPerspectiveBarycentricEnable is filled in at draw time from
1209 * the FS program; cl.ForceZeroRTAIndexEnable is filled in from the FB.
1210 */
1211 cl.EarlyCullEnable = true;
1212 cl.UserClipDistanceClipTestEnableBitmask = state->clip_plane_enable;
1213 cl.ForceUserClipDistanceClipTestEnableBitmask = true;
1214 cl.APIMode = state->clip_halfz ? APIMODE_D3D : APIMODE_OGL;
1215 cl.GuardbandClipTestEnable = true;
1216 cl.ClipEnable = true;
1217 cl.ViewportXYClipTestEnable = state->point_tri_clip;
1218 cl.MinimumPointWidth = 0.125;
1219 cl.MaximumPointWidth = 255.875;
1220
1221 if (state->flatshade_first) {
1222 cl.TriangleFanProvokingVertexSelect = 1;
1223 } else {
1224 cl.TriangleStripListProvokingVertexSelect = 2;
1225 cl.TriangleFanProvokingVertexSelect = 2;
1226 cl.LineStripListProvokingVertexSelect = 1;
1227 }
1228 }
1229
1230 iris_pack_command(GENX(3DSTATE_WM), cso->wm, wm) {
1231 /* wm.BarycentricInterpolationMode and wm.EarlyDepthStencilControl are
1232 * filled in at draw time from the FS program.
1233 */
1234 wm.LineAntialiasingRegionWidth = _10pixels;
1235 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1236 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1237 wm.LineStippleEnable = state->line_stipple_enable;
1238 wm.PolygonStippleEnable = state->poly_stipple_enable;
1239 }
1240
1241 /* Remap from 0..255 back to 1..256 */
1242 const unsigned line_stipple_factor = state->line_stipple_factor + 1;
1243
1244 iris_pack_command(GENX(3DSTATE_LINE_STIPPLE), cso->line_stipple, line) {
1245 line.LineStipplePattern = state->line_stipple_pattern;
1246 line.LineStippleInverseRepeatCount = 1.0f / line_stipple_factor;
1247 line.LineStippleRepeatCount = line_stipple_factor;
1248 }
1249
1250 return cso;
1251 }
1252
1253 /**
1254 * The pipe->bind_rasterizer_state() driver hook.
1255 *
1256 * Bind a rasterizer CSO and flag related dirty bits.
1257 */
1258 static void
1259 iris_bind_rasterizer_state(struct pipe_context *ctx, void *state)
1260 {
1261 struct iris_context *ice = (struct iris_context *) ctx;
1262 struct iris_rasterizer_state *old_cso = ice->state.cso_rast;
1263 struct iris_rasterizer_state *new_cso = state;
1264
1265 if (new_cso) {
1266 /* Try to avoid re-emitting 3DSTATE_LINE_STIPPLE, it's non-pipelined */
1267 if (cso_changed_memcmp(line_stipple))
1268 ice->state.dirty |= IRIS_DIRTY_LINE_STIPPLE;
1269
1270 if (cso_changed(half_pixel_center))
1271 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
1272
1273 if (cso_changed(line_stipple_enable) || cso_changed(poly_stipple_enable))
1274 ice->state.dirty |= IRIS_DIRTY_WM;
1275
1276 if (cso_changed(rasterizer_discard))
1277 ice->state.dirty |= IRIS_DIRTY_STREAMOUT | IRIS_DIRTY_CLIP;
1278
1279 if (cso_changed(flatshade_first))
1280 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
1281
1282 if (cso_changed(depth_clip_near) || cso_changed(depth_clip_far) ||
1283 cso_changed(clip_halfz))
1284 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1285
1286 if (cso_changed(sprite_coord_enable) ||
1287 cso_changed(sprite_coord_mode) ||
1288 cso_changed(light_twoside))
1289 ice->state.dirty |= IRIS_DIRTY_SBE;
1290 }
1291
1292 ice->state.cso_rast = new_cso;
1293 ice->state.dirty |= IRIS_DIRTY_RASTER;
1294 ice->state.dirty |= IRIS_DIRTY_CLIP;
1295 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_RASTERIZER];
1296 }
1297
1298 /**
1299 * Return true if the given wrap mode requires the border color to exist.
1300 *
1301 * (We can skip uploading it if the sampler isn't going to use it.)
1302 */
1303 static bool
1304 wrap_mode_needs_border_color(unsigned wrap_mode)
1305 {
1306 return wrap_mode == TCM_CLAMP_BORDER || wrap_mode == TCM_HALF_BORDER;
1307 }
1308
1309 /**
1310 * Gallium CSO for sampler state.
1311 */
1312 struct iris_sampler_state {
1313 union pipe_color_union border_color;
1314 bool needs_border_color;
1315
1316 uint32_t sampler_state[GENX(SAMPLER_STATE_length)];
1317 };
1318
1319 /**
1320 * The pipe->create_sampler_state() driver hook.
1321 *
1322 * We fill out SAMPLER_STATE (except for the border color pointer), and
1323 * store that on the CPU. It doesn't make sense to upload it to a GPU
1324 * buffer object yet, because 3DSTATE_SAMPLER_STATE_POINTERS requires
1325 * all bound sampler states to be in contiguous memor.
1326 */
1327 static void *
1328 iris_create_sampler_state(struct pipe_context *ctx,
1329 const struct pipe_sampler_state *state)
1330 {
1331 struct iris_sampler_state *cso = CALLOC_STRUCT(iris_sampler_state);
1332
1333 if (!cso)
1334 return NULL;
1335
1336 STATIC_ASSERT(PIPE_TEX_FILTER_NEAREST == MAPFILTER_NEAREST);
1337 STATIC_ASSERT(PIPE_TEX_FILTER_LINEAR == MAPFILTER_LINEAR);
1338
1339 unsigned wrap_s = translate_wrap(state->wrap_s);
1340 unsigned wrap_t = translate_wrap(state->wrap_t);
1341 unsigned wrap_r = translate_wrap(state->wrap_r);
1342
1343 memcpy(&cso->border_color, &state->border_color, sizeof(cso->border_color));
1344
1345 cso->needs_border_color = wrap_mode_needs_border_color(wrap_s) ||
1346 wrap_mode_needs_border_color(wrap_t) ||
1347 wrap_mode_needs_border_color(wrap_r);
1348
1349 float min_lod = state->min_lod;
1350 unsigned mag_img_filter = state->mag_img_filter;
1351
1352 // XXX: explain this code ported from ilo...I don't get it at all...
1353 if (state->min_mip_filter == PIPE_TEX_MIPFILTER_NONE &&
1354 state->min_lod > 0.0f) {
1355 min_lod = 0.0f;
1356 mag_img_filter = state->min_img_filter;
1357 }
1358
1359 iris_pack_state(GENX(SAMPLER_STATE), cso->sampler_state, samp) {
1360 samp.TCXAddressControlMode = wrap_s;
1361 samp.TCYAddressControlMode = wrap_t;
1362 samp.TCZAddressControlMode = wrap_r;
1363 samp.CubeSurfaceControlMode = state->seamless_cube_map;
1364 samp.NonnormalizedCoordinateEnable = !state->normalized_coords;
1365 samp.MinModeFilter = state->min_img_filter;
1366 samp.MagModeFilter = mag_img_filter;
1367 samp.MipModeFilter = translate_mip_filter(state->min_mip_filter);
1368 samp.MaximumAnisotropy = RATIO21;
1369
1370 if (state->max_anisotropy >= 2) {
1371 if (state->min_img_filter == PIPE_TEX_FILTER_LINEAR) {
1372 samp.MinModeFilter = MAPFILTER_ANISOTROPIC;
1373 samp.AnisotropicAlgorithm = EWAApproximation;
1374 }
1375
1376 if (state->mag_img_filter == PIPE_TEX_FILTER_LINEAR)
1377 samp.MagModeFilter = MAPFILTER_ANISOTROPIC;
1378
1379 samp.MaximumAnisotropy =
1380 MIN2((state->max_anisotropy - 2) / 2, RATIO161);
1381 }
1382
1383 /* Set address rounding bits if not using nearest filtering. */
1384 if (state->min_img_filter != PIPE_TEX_FILTER_NEAREST) {
1385 samp.UAddressMinFilterRoundingEnable = true;
1386 samp.VAddressMinFilterRoundingEnable = true;
1387 samp.RAddressMinFilterRoundingEnable = true;
1388 }
1389
1390 if (state->mag_img_filter != PIPE_TEX_FILTER_NEAREST) {
1391 samp.UAddressMagFilterRoundingEnable = true;
1392 samp.VAddressMagFilterRoundingEnable = true;
1393 samp.RAddressMagFilterRoundingEnable = true;
1394 }
1395
1396 if (state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE)
1397 samp.ShadowFunction = translate_shadow_func(state->compare_func);
1398
1399 const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
1400
1401 samp.LODPreClampMode = CLAMP_MODE_OGL;
1402 samp.MinLOD = CLAMP(min_lod, 0, hw_max_lod);
1403 samp.MaxLOD = CLAMP(state->max_lod, 0, hw_max_lod);
1404 samp.TextureLODBias = CLAMP(state->lod_bias, -16, 15);
1405
1406 /* .BorderColorPointer is filled in by iris_bind_sampler_states. */
1407 }
1408
1409 return cso;
1410 }
1411
1412 /**
1413 * The pipe->bind_sampler_states() driver hook.
1414 *
1415 * Now that we know all the sampler states, we upload them all into a
1416 * contiguous area of GPU memory, for 3DSTATE_SAMPLER_STATE_POINTERS_*.
1417 * We also fill out the border color state pointers at this point.
1418 *
1419 * We could defer this work to draw time, but we assume that binding
1420 * will be less frequent than drawing.
1421 */
1422 // XXX: this may be a bad idea, need to make sure that st/mesa calls us
1423 // XXX: with the complete set of shaders. If it makes multiple calls to
1424 // XXX: things one at a time, we could waste a lot of time assembling things.
1425 // XXX: it doesn't even BUY us anything to do it here, because we only flag
1426 // XXX: IRIS_DIRTY_SAMPLER_STATE when this is called...
1427 static void
1428 iris_bind_sampler_states(struct pipe_context *ctx,
1429 enum pipe_shader_type p_stage,
1430 unsigned start, unsigned count,
1431 void **states)
1432 {
1433 struct iris_context *ice = (struct iris_context *) ctx;
1434 gl_shader_stage stage = stage_from_pipe(p_stage);
1435 struct iris_shader_state *shs = &ice->state.shaders[stage];
1436
1437 assert(start + count <= IRIS_MAX_TEXTURE_SAMPLERS);
1438
1439 for (int i = 0; i < count; i++) {
1440 shs->samplers[start + i] = states[i];
1441 }
1442
1443 /* Assemble the SAMPLER_STATEs into a contiguous table that lives
1444 * in the dynamic state memory zone, so we can point to it via the
1445 * 3DSTATE_SAMPLER_STATE_POINTERS_* commands.
1446 */
1447 uint32_t *map =
1448 upload_state(ice->state.dynamic_uploader, &shs->sampler_table,
1449 count * 4 * GENX(SAMPLER_STATE_length), 32);
1450 if (unlikely(!map))
1451 return;
1452
1453 struct pipe_resource *res = shs->sampler_table.res;
1454 shs->sampler_table.offset +=
1455 iris_bo_offset_from_base_address(iris_resource_bo(res));
1456
1457 /* Make sure all land in the same BO */
1458 iris_border_color_pool_reserve(ice, IRIS_MAX_TEXTURE_SAMPLERS);
1459
1460 for (int i = 0; i < count; i++) {
1461 struct iris_sampler_state *state = shs->samplers[i];
1462
1463 if (!state) {
1464 memset(map, 0, 4 * GENX(SAMPLER_STATE_length));
1465 } else if (!state->needs_border_color) {
1466 memcpy(map, state->sampler_state, 4 * GENX(SAMPLER_STATE_length));
1467 } else {
1468 ice->state.need_border_colors = true;
1469
1470 /* Stream out the border color and merge the pointer. */
1471 uint32_t offset =
1472 iris_upload_border_color(ice, &state->border_color);
1473
1474 uint32_t dynamic[GENX(SAMPLER_STATE_length)];
1475 iris_pack_state(GENX(SAMPLER_STATE), dynamic, dyns) {
1476 dyns.BorderColorPointer = offset;
1477 }
1478
1479 for (uint32_t j = 0; j < GENX(SAMPLER_STATE_length); j++)
1480 map[j] = state->sampler_state[j] | dynamic[j];
1481 }
1482
1483 map += GENX(SAMPLER_STATE_length);
1484 }
1485
1486 ice->state.dirty |= IRIS_DIRTY_SAMPLER_STATES_VS << stage;
1487 }
1488
1489 static enum isl_channel_select
1490 fmt_swizzle(const struct iris_format_info *fmt, enum pipe_swizzle swz)
1491 {
1492 switch (swz) {
1493 case PIPE_SWIZZLE_X: return fmt->swizzle.r;
1494 case PIPE_SWIZZLE_Y: return fmt->swizzle.g;
1495 case PIPE_SWIZZLE_Z: return fmt->swizzle.b;
1496 case PIPE_SWIZZLE_W: return fmt->swizzle.a;
1497 case PIPE_SWIZZLE_1: return SCS_ONE;
1498 case PIPE_SWIZZLE_0: return SCS_ZERO;
1499 default: unreachable("invalid swizzle");
1500 }
1501 }
1502
1503 static void
1504 fill_buffer_surface_state(struct isl_device *isl_dev,
1505 struct iris_bo *bo,
1506 void *map,
1507 enum isl_format format,
1508 unsigned offset,
1509 unsigned size)
1510 {
1511 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
1512 const unsigned cpp = format == ISL_FORMAT_RAW ? 1 : fmtl->bpb / 8;
1513
1514 /* The ARB_texture_buffer_specification says:
1515 *
1516 * "The number of texels in the buffer texture's texel array is given by
1517 *
1518 * floor(<buffer_size> / (<components> * sizeof(<base_type>)),
1519 *
1520 * where <buffer_size> is the size of the buffer object, in basic
1521 * machine units and <components> and <base_type> are the element count
1522 * and base data type for elements, as specified in Table X.1. The
1523 * number of texels in the texel array is then clamped to the
1524 * implementation-dependent limit MAX_TEXTURE_BUFFER_SIZE_ARB."
1525 *
1526 * We need to clamp the size in bytes to MAX_TEXTURE_BUFFER_SIZE * stride,
1527 * so that when ISL divides by stride to obtain the number of texels, that
1528 * texel count is clamped to MAX_TEXTURE_BUFFER_SIZE.
1529 */
1530 unsigned final_size =
1531 MIN3(size, bo->size - offset, IRIS_MAX_TEXTURE_BUFFER_SIZE * cpp);
1532
1533 isl_buffer_fill_state(isl_dev, map,
1534 .address = bo->gtt_offset + offset,
1535 .size_B = final_size,
1536 .format = format,
1537 .stride_B = cpp,
1538 .mocs = mocs(bo));
1539 }
1540
1541 /**
1542 * Allocate a SURFACE_STATE structure.
1543 */
1544 static void *
1545 alloc_surface_states(struct u_upload_mgr *mgr,
1546 struct iris_state_ref *ref)
1547 {
1548 const unsigned surf_size = 4 * GENX(RENDER_SURFACE_STATE_length);
1549
1550 void *map = upload_state(mgr, ref, surf_size, 64);
1551
1552 ref->offset += iris_bo_offset_from_base_address(iris_resource_bo(ref->res));
1553
1554 return map;
1555 }
1556
1557 static void
1558 fill_surface_state(struct isl_device *isl_dev,
1559 void *map,
1560 struct iris_resource *res,
1561 struct isl_view *view)
1562 {
1563 struct isl_surf_fill_state_info f = {
1564 .surf = &res->surf,
1565 .view = view,
1566 .mocs = mocs(res->bo),
1567 .address = res->bo->gtt_offset,
1568 };
1569
1570 isl_surf_fill_state_s(isl_dev, map, &f);
1571 }
1572
1573 /**
1574 * The pipe->create_sampler_view() driver hook.
1575 */
1576 static struct pipe_sampler_view *
1577 iris_create_sampler_view(struct pipe_context *ctx,
1578 struct pipe_resource *tex,
1579 const struct pipe_sampler_view *tmpl)
1580 {
1581 struct iris_context *ice = (struct iris_context *) ctx;
1582 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1583 const struct gen_device_info *devinfo = &screen->devinfo;
1584 struct iris_sampler_view *isv = calloc(1, sizeof(struct iris_sampler_view));
1585
1586 if (!isv)
1587 return NULL;
1588
1589 /* initialize base object */
1590 isv->base = *tmpl;
1591 isv->base.context = ctx;
1592 isv->base.texture = NULL;
1593 pipe_reference_init(&isv->base.reference, 1);
1594 pipe_resource_reference(&isv->base.texture, tex);
1595
1596 void *map = alloc_surface_states(ice->state.surface_uploader,
1597 &isv->surface_state);
1598 if (!unlikely(map))
1599 return NULL;
1600
1601 if (util_format_is_depth_or_stencil(tmpl->format)) {
1602 struct iris_resource *zres, *sres;
1603 const struct util_format_description *desc =
1604 util_format_description(tmpl->format);
1605
1606 iris_get_depth_stencil_resources(tex, &zres, &sres);
1607
1608 tex = util_format_has_depth(desc) ? &zres->base : &sres->base;
1609 }
1610
1611 isv->res = (struct iris_resource *) tex;
1612
1613 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_TEXTURE_BIT;
1614
1615 if (isv->base.target == PIPE_TEXTURE_CUBE ||
1616 isv->base.target == PIPE_TEXTURE_CUBE_ARRAY)
1617 usage |= ISL_SURF_USAGE_CUBE_BIT;
1618
1619 const struct iris_format_info fmt =
1620 iris_format_for_usage(devinfo, tmpl->format, usage);
1621
1622 isv->view = (struct isl_view) {
1623 .format = fmt.fmt,
1624 .swizzle = (struct isl_swizzle) {
1625 .r = fmt_swizzle(&fmt, tmpl->swizzle_r),
1626 .g = fmt_swizzle(&fmt, tmpl->swizzle_g),
1627 .b = fmt_swizzle(&fmt, tmpl->swizzle_b),
1628 .a = fmt_swizzle(&fmt, tmpl->swizzle_a),
1629 },
1630 .usage = usage,
1631 };
1632
1633 /* Fill out SURFACE_STATE for this view. */
1634 if (tmpl->target != PIPE_BUFFER) {
1635 isv->view.base_level = tmpl->u.tex.first_level;
1636 isv->view.levels = tmpl->u.tex.last_level - tmpl->u.tex.first_level + 1;
1637 // XXX: do I need to port f9fd0cf4790cb2a530e75d1a2206dbb9d8af7cb2?
1638 isv->view.base_array_layer = tmpl->u.tex.first_layer;
1639 isv->view.array_len =
1640 tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
1641
1642 fill_surface_state(&screen->isl_dev, map, isv->res, &isv->view);
1643 } else {
1644 fill_buffer_surface_state(&screen->isl_dev, isv->res->bo, map,
1645 isv->view.format, tmpl->u.buf.offset,
1646 tmpl->u.buf.size);
1647 }
1648
1649 return &isv->base;
1650 }
1651
1652 static void
1653 iris_sampler_view_destroy(struct pipe_context *ctx,
1654 struct pipe_sampler_view *state)
1655 {
1656 struct iris_sampler_view *isv = (void *) state;
1657 pipe_resource_reference(&state->texture, NULL);
1658 pipe_resource_reference(&isv->surface_state.res, NULL);
1659 free(isv);
1660 }
1661
1662 /**
1663 * The pipe->create_surface() driver hook.
1664 *
1665 * In Gallium nomenclature, "surfaces" are a view of a resource that
1666 * can be bound as a render target or depth/stencil buffer.
1667 */
1668 static struct pipe_surface *
1669 iris_create_surface(struct pipe_context *ctx,
1670 struct pipe_resource *tex,
1671 const struct pipe_surface *tmpl)
1672 {
1673 struct iris_context *ice = (struct iris_context *) ctx;
1674 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1675 const struct gen_device_info *devinfo = &screen->devinfo;
1676 struct iris_surface *surf = calloc(1, sizeof(struct iris_surface));
1677 struct pipe_surface *psurf = &surf->base;
1678 struct iris_resource *res = (struct iris_resource *) tex;
1679
1680 if (!surf)
1681 return NULL;
1682
1683 pipe_reference_init(&psurf->reference, 1);
1684 pipe_resource_reference(&psurf->texture, tex);
1685 psurf->context = ctx;
1686 psurf->format = tmpl->format;
1687 psurf->width = tex->width0;
1688 psurf->height = tex->height0;
1689 psurf->texture = tex;
1690 psurf->u.tex.first_layer = tmpl->u.tex.first_layer;
1691 psurf->u.tex.last_layer = tmpl->u.tex.last_layer;
1692 psurf->u.tex.level = tmpl->u.tex.level;
1693
1694 isl_surf_usage_flags_t usage = 0;
1695 if (tmpl->writable)
1696 usage = ISL_SURF_USAGE_STORAGE_BIT;
1697 else if (util_format_is_depth_or_stencil(tmpl->format))
1698 usage = ISL_SURF_USAGE_DEPTH_BIT;
1699 else
1700 usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
1701
1702 const struct iris_format_info fmt =
1703 iris_format_for_usage(devinfo, psurf->format, usage);
1704
1705 if ((usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) &&
1706 !isl_format_supports_rendering(devinfo, fmt.fmt)) {
1707 /* Framebuffer validation will reject this invalid case, but it
1708 * hasn't had the opportunity yet. In the meantime, we need to
1709 * avoid hitting ISL asserts about unsupported formats below.
1710 */
1711 free(surf);
1712 return NULL;
1713 }
1714
1715 surf->view = (struct isl_view) {
1716 .format = fmt.fmt,
1717 .base_level = tmpl->u.tex.level,
1718 .levels = 1,
1719 .base_array_layer = tmpl->u.tex.first_layer,
1720 .array_len = tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1,
1721 .swizzle = ISL_SWIZZLE_IDENTITY,
1722 .usage = usage,
1723 };
1724
1725 /* Bail early for depth/stencil - we don't want SURFACE_STATE for them. */
1726 if (res->surf.usage & (ISL_SURF_USAGE_DEPTH_BIT |
1727 ISL_SURF_USAGE_STENCIL_BIT))
1728 return psurf;
1729
1730
1731 void *map = alloc_surface_states(ice->state.surface_uploader,
1732 &surf->surface_state);
1733 if (!unlikely(map))
1734 return NULL;
1735
1736 fill_surface_state(&screen->isl_dev, map, res, &surf->view);
1737
1738 return psurf;
1739 }
1740
1741 #if GEN_GEN < 9
1742 static void
1743 fill_default_image_param(struct brw_image_param *param)
1744 {
1745 memset(param, 0, sizeof(*param));
1746 /* Set the swizzling shifts to all-ones to effectively disable swizzling --
1747 * See emit_address_calculation() in brw_fs_surface_builder.cpp for a more
1748 * detailed explanation of these parameters.
1749 */
1750 param->swizzling[0] = 0xff;
1751 param->swizzling[1] = 0xff;
1752 }
1753
1754 static void
1755 fill_buffer_image_param(struct brw_image_param *param,
1756 enum pipe_format pfmt,
1757 unsigned size)
1758 {
1759 const unsigned cpp = util_format_get_blocksize(pfmt);
1760
1761 fill_default_image_param(param);
1762 param->size[0] = size / cpp;
1763 param->stride[0] = cpp;
1764 }
1765 #else
1766 #define isl_surf_fill_image_param(x, ...)
1767 #define fill_default_image_param(x, ...)
1768 #define fill_buffer_image_param(x, ...)
1769 #endif
1770
1771 /**
1772 * The pipe->set_shader_images() driver hook.
1773 */
1774 static void
1775 iris_set_shader_images(struct pipe_context *ctx,
1776 enum pipe_shader_type p_stage,
1777 unsigned start_slot, unsigned count,
1778 const struct pipe_image_view *p_images)
1779 {
1780 struct iris_context *ice = (struct iris_context *) ctx;
1781 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1782 const struct gen_device_info *devinfo = &screen->devinfo;
1783 gl_shader_stage stage = stage_from_pipe(p_stage);
1784 struct iris_shader_state *shs = &ice->state.shaders[stage];
1785
1786 shs->bound_image_views &= ~u_bit_consecutive(start_slot, count);
1787
1788 for (unsigned i = 0; i < count; i++) {
1789 if (p_images && p_images[i].resource) {
1790 const struct pipe_image_view *img = &p_images[i];
1791 struct iris_resource *res = (void *) img->resource;
1792 pipe_resource_reference(&shs->image[start_slot + i].res, &res->base);
1793
1794 shs->bound_image_views |= 1 << (start_slot + i);
1795
1796 res->bind_history |= PIPE_BIND_SHADER_IMAGE;
1797
1798 // XXX: these are not retained forever, use a separate uploader?
1799 void *map =
1800 alloc_surface_states(ice->state.surface_uploader,
1801 &shs->image[start_slot + i].surface_state);
1802 if (!unlikely(map)) {
1803 pipe_resource_reference(&shs->image[start_slot + i].res, NULL);
1804 return;
1805 }
1806
1807 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_STORAGE_BIT;
1808 enum isl_format isl_fmt =
1809 iris_format_for_usage(devinfo, img->format, usage).fmt;
1810
1811 bool untyped_fallback = false;
1812
1813 if (img->shader_access & PIPE_IMAGE_ACCESS_READ) {
1814 /* On Gen8, try to use typed surfaces reads (which support a
1815 * limited number of formats), and if not possible, fall back
1816 * to untyped reads.
1817 */
1818 untyped_fallback = GEN_GEN == 8 &&
1819 !isl_has_matching_typed_storage_image_format(devinfo, isl_fmt);
1820
1821 if (untyped_fallback)
1822 isl_fmt = ISL_FORMAT_RAW;
1823 else
1824 isl_fmt = isl_lower_storage_image_format(devinfo, isl_fmt);
1825 }
1826
1827 shs->image[start_slot + i].access = img->shader_access;
1828
1829 if (res->base.target != PIPE_BUFFER) {
1830 struct isl_view view = {
1831 .format = isl_fmt,
1832 .base_level = img->u.tex.level,
1833 .levels = 1,
1834 .base_array_layer = img->u.tex.first_layer,
1835 .array_len = img->u.tex.last_layer - img->u.tex.first_layer + 1,
1836 .swizzle = ISL_SWIZZLE_IDENTITY,
1837 .usage = usage,
1838 };
1839
1840 if (untyped_fallback) {
1841 fill_buffer_surface_state(&screen->isl_dev, res->bo, map,
1842 isl_fmt, 0, res->bo->size);
1843 } else {
1844 fill_surface_state(&screen->isl_dev, map, res, &view);
1845 }
1846
1847 isl_surf_fill_image_param(&screen->isl_dev,
1848 &shs->image[start_slot + i].param,
1849 &res->surf, &view);
1850 } else {
1851 fill_buffer_surface_state(&screen->isl_dev, res->bo, map,
1852 isl_fmt, img->u.buf.offset,
1853 img->u.buf.size);
1854 fill_buffer_image_param(&shs->image[start_slot + i].param,
1855 img->format, img->u.buf.size);
1856 }
1857 } else {
1858 pipe_resource_reference(&shs->image[start_slot + i].res, NULL);
1859 pipe_resource_reference(&shs->image[start_slot + i].surface_state.res,
1860 NULL);
1861 fill_default_image_param(&shs->image[start_slot + i].param);
1862 }
1863 }
1864
1865 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
1866
1867 /* Broadwell also needs brw_image_params re-uploaded */
1868 if (GEN_GEN < 9) {
1869 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
1870 shs->cbuf0_needs_upload = true;
1871 }
1872 }
1873
1874
1875 /**
1876 * The pipe->set_sampler_views() driver hook.
1877 */
1878 static void
1879 iris_set_sampler_views(struct pipe_context *ctx,
1880 enum pipe_shader_type p_stage,
1881 unsigned start, unsigned count,
1882 struct pipe_sampler_view **views)
1883 {
1884 struct iris_context *ice = (struct iris_context *) ctx;
1885 gl_shader_stage stage = stage_from_pipe(p_stage);
1886 struct iris_shader_state *shs = &ice->state.shaders[stage];
1887
1888 shs->bound_sampler_views &= ~u_bit_consecutive(start, count);
1889
1890 for (unsigned i = 0; i < count; i++) {
1891 pipe_sampler_view_reference((struct pipe_sampler_view **)
1892 &shs->textures[start + i], views[i]);
1893 struct iris_sampler_view *view = (void *) views[i];
1894 if (view) {
1895 view->res->bind_history |= PIPE_BIND_SAMPLER_VIEW;
1896 shs->bound_sampler_views |= 1 << (start + i);
1897 }
1898 }
1899
1900 ice->state.dirty |= (IRIS_DIRTY_BINDINGS_VS << stage);
1901 }
1902
1903 /**
1904 * The pipe->set_tess_state() driver hook.
1905 */
1906 static void
1907 iris_set_tess_state(struct pipe_context *ctx,
1908 const float default_outer_level[4],
1909 const float default_inner_level[2])
1910 {
1911 struct iris_context *ice = (struct iris_context *) ctx;
1912
1913 memcpy(&ice->state.default_outer_level[0], &default_outer_level[0], 4 * sizeof(float));
1914 memcpy(&ice->state.default_inner_level[0], &default_inner_level[0], 2 * sizeof(float));
1915
1916 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_TCS;
1917 }
1918
1919 static void
1920 iris_surface_destroy(struct pipe_context *ctx, struct pipe_surface *p_surf)
1921 {
1922 struct iris_surface *surf = (void *) p_surf;
1923 pipe_resource_reference(&p_surf->texture, NULL);
1924 pipe_resource_reference(&surf->surface_state.res, NULL);
1925 free(surf);
1926 }
1927
1928 static void
1929 iris_set_clip_state(struct pipe_context *ctx,
1930 const struct pipe_clip_state *state)
1931 {
1932 struct iris_context *ice = (struct iris_context *) ctx;
1933 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_VERTEX];
1934
1935 memcpy(&ice->state.clip_planes, state, sizeof(*state));
1936
1937 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS;
1938 shs->cbuf0_needs_upload = true;
1939 }
1940
1941 /**
1942 * The pipe->set_polygon_stipple() driver hook.
1943 */
1944 static void
1945 iris_set_polygon_stipple(struct pipe_context *ctx,
1946 const struct pipe_poly_stipple *state)
1947 {
1948 struct iris_context *ice = (struct iris_context *) ctx;
1949 memcpy(&ice->state.poly_stipple, state, sizeof(*state));
1950 ice->state.dirty |= IRIS_DIRTY_POLYGON_STIPPLE;
1951 }
1952
1953 /**
1954 * The pipe->set_sample_mask() driver hook.
1955 */
1956 static void
1957 iris_set_sample_mask(struct pipe_context *ctx, unsigned sample_mask)
1958 {
1959 struct iris_context *ice = (struct iris_context *) ctx;
1960
1961 /* We only support 16x MSAA, so we have 16 bits of sample maks.
1962 * st/mesa may pass us 0xffffffff though, meaning "enable all samples".
1963 */
1964 ice->state.sample_mask = sample_mask & 0xffff;
1965 ice->state.dirty |= IRIS_DIRTY_SAMPLE_MASK;
1966 }
1967
1968 /**
1969 * The pipe->set_scissor_states() driver hook.
1970 *
1971 * This corresponds to our SCISSOR_RECT state structures. It's an
1972 * exact match, so we just store them, and memcpy them out later.
1973 */
1974 static void
1975 iris_set_scissor_states(struct pipe_context *ctx,
1976 unsigned start_slot,
1977 unsigned num_scissors,
1978 const struct pipe_scissor_state *rects)
1979 {
1980 struct iris_context *ice = (struct iris_context *) ctx;
1981
1982 for (unsigned i = 0; i < num_scissors; i++) {
1983 if (rects[i].minx == rects[i].maxx || rects[i].miny == rects[i].maxy) {
1984 /* If the scissor was out of bounds and got clamped to 0 width/height
1985 * at the bounds, the subtraction of 1 from maximums could produce a
1986 * negative number and thus not clip anything. Instead, just provide
1987 * a min > max scissor inside the bounds, which produces the expected
1988 * no rendering.
1989 */
1990 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
1991 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
1992 };
1993 } else {
1994 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
1995 .minx = rects[i].minx, .miny = rects[i].miny,
1996 .maxx = rects[i].maxx - 1, .maxy = rects[i].maxy - 1,
1997 };
1998 }
1999 }
2000
2001 ice->state.dirty |= IRIS_DIRTY_SCISSOR_RECT;
2002 }
2003
2004 /**
2005 * The pipe->set_stencil_ref() driver hook.
2006 *
2007 * This is added to 3DSTATE_WM_DEPTH_STENCIL dynamically at draw time.
2008 */
2009 static void
2010 iris_set_stencil_ref(struct pipe_context *ctx,
2011 const struct pipe_stencil_ref *state)
2012 {
2013 struct iris_context *ice = (struct iris_context *) ctx;
2014 memcpy(&ice->state.stencil_ref, state, sizeof(*state));
2015 if (GEN_GEN == 8)
2016 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
2017 else
2018 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
2019 }
2020
2021 static float
2022 viewport_extent(const struct pipe_viewport_state *state, int axis, float sign)
2023 {
2024 return copysignf(state->scale[axis], sign) + state->translate[axis];
2025 }
2026
2027 static void
2028 calculate_guardband_size(uint32_t fb_width, uint32_t fb_height,
2029 float m00, float m11, float m30, float m31,
2030 float *xmin, float *xmax,
2031 float *ymin, float *ymax)
2032 {
2033 /* According to the "Vertex X,Y Clamping and Quantization" section of the
2034 * Strips and Fans documentation:
2035 *
2036 * "The vertex X and Y screen-space coordinates are also /clamped/ to the
2037 * fixed-point "guardband" range supported by the rasterization hardware"
2038 *
2039 * and
2040 *
2041 * "In almost all circumstances, if an object’s vertices are actually
2042 * modified by this clamping (i.e., had X or Y coordinates outside of
2043 * the guardband extent the rendered object will not match the intended
2044 * result. Therefore software should take steps to ensure that this does
2045 * not happen - e.g., by clipping objects such that they do not exceed
2046 * these limits after the Drawing Rectangle is applied."
2047 *
2048 * I believe the fundamental restriction is that the rasterizer (in
2049 * the SF/WM stages) have a limit on the number of pixels that can be
2050 * rasterized. We need to ensure any coordinates beyond the rasterizer
2051 * limit are handled by the clipper. So effectively that limit becomes
2052 * the clipper's guardband size.
2053 *
2054 * It goes on to say:
2055 *
2056 * "In addition, in order to be correctly rendered, objects must have a
2057 * screenspace bounding box not exceeding 8K in the X or Y direction.
2058 * This additional restriction must also be comprehended by software,
2059 * i.e., enforced by use of clipping."
2060 *
2061 * This makes no sense. Gen7+ hardware supports 16K render targets,
2062 * and you definitely need to be able to draw polygons that fill the
2063 * surface. Our assumption is that the rasterizer was limited to 8K
2064 * on Sandybridge, which only supports 8K surfaces, and it was actually
2065 * increased to 16K on Ivybridge and later.
2066 *
2067 * So, limit the guardband to 16K on Gen7+ and 8K on Sandybridge.
2068 */
2069 const float gb_size = GEN_GEN >= 7 ? 16384.0f : 8192.0f;
2070
2071 if (m00 != 0 && m11 != 0) {
2072 /* First, we compute the screen-space render area */
2073 const float ss_ra_xmin = MIN3( 0, m30 + m00, m30 - m00);
2074 const float ss_ra_xmax = MAX3( fb_width, m30 + m00, m30 - m00);
2075 const float ss_ra_ymin = MIN3( 0, m31 + m11, m31 - m11);
2076 const float ss_ra_ymax = MAX3(fb_height, m31 + m11, m31 - m11);
2077
2078 /* We want the guardband to be centered on that */
2079 const float ss_gb_xmin = (ss_ra_xmin + ss_ra_xmax) / 2 - gb_size;
2080 const float ss_gb_xmax = (ss_ra_xmin + ss_ra_xmax) / 2 + gb_size;
2081 const float ss_gb_ymin = (ss_ra_ymin + ss_ra_ymax) / 2 - gb_size;
2082 const float ss_gb_ymax = (ss_ra_ymin + ss_ra_ymax) / 2 + gb_size;
2083
2084 /* Now we need it in native device coordinates */
2085 const float ndc_gb_xmin = (ss_gb_xmin - m30) / m00;
2086 const float ndc_gb_xmax = (ss_gb_xmax - m30) / m00;
2087 const float ndc_gb_ymin = (ss_gb_ymin - m31) / m11;
2088 const float ndc_gb_ymax = (ss_gb_ymax - m31) / m11;
2089
2090 /* Thanks to Y-flipping and ORIGIN_UPPER_LEFT, the Y coordinates may be
2091 * flipped upside-down. X should be fine though.
2092 */
2093 assert(ndc_gb_xmin <= ndc_gb_xmax);
2094 *xmin = ndc_gb_xmin;
2095 *xmax = ndc_gb_xmax;
2096 *ymin = MIN2(ndc_gb_ymin, ndc_gb_ymax);
2097 *ymax = MAX2(ndc_gb_ymin, ndc_gb_ymax);
2098 } else {
2099 /* The viewport scales to 0, so nothing will be rendered. */
2100 *xmin = 0.0f;
2101 *xmax = 0.0f;
2102 *ymin = 0.0f;
2103 *ymax = 0.0f;
2104 }
2105 }
2106
2107 /**
2108 * The pipe->set_viewport_states() driver hook.
2109 *
2110 * This corresponds to our SF_CLIP_VIEWPORT states. We can't calculate
2111 * the guardband yet, as we need the framebuffer dimensions, but we can
2112 * at least fill out the rest.
2113 */
2114 static void
2115 iris_set_viewport_states(struct pipe_context *ctx,
2116 unsigned start_slot,
2117 unsigned count,
2118 const struct pipe_viewport_state *states)
2119 {
2120 struct iris_context *ice = (struct iris_context *) ctx;
2121
2122 memcpy(&ice->state.viewports[start_slot], states, sizeof(*states) * count);
2123
2124 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2125
2126 if (ice->state.cso_rast && (!ice->state.cso_rast->depth_clip_near ||
2127 !ice->state.cso_rast->depth_clip_far))
2128 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
2129 }
2130
2131 /**
2132 * The pipe->set_framebuffer_state() driver hook.
2133 *
2134 * Sets the current draw FBO, including color render targets, depth,
2135 * and stencil buffers.
2136 */
2137 static void
2138 iris_set_framebuffer_state(struct pipe_context *ctx,
2139 const struct pipe_framebuffer_state *state)
2140 {
2141 struct iris_context *ice = (struct iris_context *) ctx;
2142 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2143 struct isl_device *isl_dev = &screen->isl_dev;
2144 struct pipe_framebuffer_state *cso = &ice->state.framebuffer;
2145 struct iris_resource *zres;
2146 struct iris_resource *stencil_res;
2147
2148 unsigned samples = util_framebuffer_get_num_samples(state);
2149 unsigned layers = util_framebuffer_get_num_layers(state);
2150
2151 if (cso->samples != samples) {
2152 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
2153 }
2154
2155 if (cso->nr_cbufs != state->nr_cbufs) {
2156 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
2157 }
2158
2159 if ((cso->layers == 0) != (layers == 0)) {
2160 ice->state.dirty |= IRIS_DIRTY_CLIP;
2161 }
2162
2163 if (cso->width != state->width || cso->height != state->height) {
2164 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2165 }
2166
2167 util_copy_framebuffer_state(cso, state);
2168 cso->samples = samples;
2169 cso->layers = layers;
2170
2171 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
2172
2173 struct isl_view view = {
2174 .base_level = 0,
2175 .levels = 1,
2176 .base_array_layer = 0,
2177 .array_len = 1,
2178 .swizzle = ISL_SWIZZLE_IDENTITY,
2179 };
2180
2181 struct isl_depth_stencil_hiz_emit_info info = { .view = &view };
2182
2183 if (cso->zsbuf) {
2184 iris_get_depth_stencil_resources(cso->zsbuf->texture, &zres,
2185 &stencil_res);
2186
2187 view.base_level = cso->zsbuf->u.tex.level;
2188 view.base_array_layer = cso->zsbuf->u.tex.first_layer;
2189 view.array_len =
2190 cso->zsbuf->u.tex.last_layer - cso->zsbuf->u.tex.first_layer + 1;
2191
2192 if (zres) {
2193 view.usage |= ISL_SURF_USAGE_DEPTH_BIT;
2194
2195 info.depth_surf = &zres->surf;
2196 info.depth_address = zres->bo->gtt_offset;
2197 info.mocs = mocs(zres->bo);
2198
2199 view.format = zres->surf.format;
2200 }
2201
2202 if (stencil_res) {
2203 view.usage |= ISL_SURF_USAGE_STENCIL_BIT;
2204 info.stencil_surf = &stencil_res->surf;
2205 info.stencil_address = stencil_res->bo->gtt_offset;
2206 if (!zres) {
2207 view.format = stencil_res->surf.format;
2208 info.mocs = mocs(stencil_res->bo);
2209 }
2210 }
2211 }
2212
2213 isl_emit_depth_stencil_hiz_s(isl_dev, cso_z->packets, &info);
2214
2215 /* Make a null surface for unbound buffers */
2216 void *null_surf_map =
2217 upload_state(ice->state.surface_uploader, &ice->state.null_fb,
2218 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2219 isl_null_fill_state(&screen->isl_dev, null_surf_map,
2220 isl_extent3d(MAX2(cso->width, 1),
2221 MAX2(cso->height, 1),
2222 cso->layers ? cso->layers : 1));
2223 ice->state.null_fb.offset +=
2224 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.null_fb.res));
2225
2226 ice->state.dirty |= IRIS_DIRTY_DEPTH_BUFFER;
2227
2228 /* Render target change */
2229 ice->state.dirty |= IRIS_DIRTY_BINDINGS_FS;
2230
2231 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_FRAMEBUFFER];
2232
2233 #if GEN_GEN == 11
2234 // XXX: we may want to flag IRIS_DIRTY_MULTISAMPLE (or SAMPLE_MASK?)
2235 // XXX: see commit 979fc1bc9bcc64027ff2cfafd285676f31b930a6
2236
2237 /* The PIPE_CONTROL command description says:
2238 *
2239 * "Whenever a Binding Table Index (BTI) used by a Render Target Message
2240 * points to a different RENDER_SURFACE_STATE, SW must issue a Render
2241 * Target Cache Flush by enabling this bit. When render target flush
2242 * is set due to new association of BTI, PS Scoreboard Stall bit must
2243 * be set in this packet."
2244 */
2245 // XXX: does this need to happen at 3DSTATE_BTP_PS time?
2246 iris_emit_pipe_control_flush(&ice->batches[IRIS_BATCH_RENDER],
2247 PIPE_CONTROL_RENDER_TARGET_FLUSH |
2248 PIPE_CONTROL_STALL_AT_SCOREBOARD);
2249 #endif
2250 }
2251
2252 static void
2253 upload_ubo_surf_state(struct iris_context *ice,
2254 struct iris_const_buffer *cbuf,
2255 unsigned buffer_size)
2256 {
2257 struct pipe_context *ctx = &ice->ctx;
2258 struct iris_screen *screen = (struct iris_screen *) ctx->screen;
2259
2260 // XXX: these are not retained forever, use a separate uploader?
2261 void *map =
2262 upload_state(ice->state.surface_uploader, &cbuf->surface_state,
2263 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2264 if (!unlikely(map)) {
2265 pipe_resource_reference(&cbuf->data.res, NULL);
2266 return;
2267 }
2268
2269 struct iris_resource *res = (void *) cbuf->data.res;
2270 struct iris_bo *surf_bo = iris_resource_bo(cbuf->surface_state.res);
2271 cbuf->surface_state.offset += iris_bo_offset_from_base_address(surf_bo);
2272
2273 isl_buffer_fill_state(&screen->isl_dev, map,
2274 .address = res->bo->gtt_offset + cbuf->data.offset,
2275 .size_B = MIN2(buffer_size,
2276 res->bo->size - cbuf->data.offset),
2277 .format = ISL_FORMAT_R32G32B32A32_FLOAT,
2278 .stride_B = 1,
2279 .mocs = mocs(res->bo))
2280 }
2281
2282 /**
2283 * The pipe->set_constant_buffer() driver hook.
2284 *
2285 * This uploads any constant data in user buffers, and references
2286 * any UBO resources containing constant data.
2287 */
2288 static void
2289 iris_set_constant_buffer(struct pipe_context *ctx,
2290 enum pipe_shader_type p_stage, unsigned index,
2291 const struct pipe_constant_buffer *input)
2292 {
2293 struct iris_context *ice = (struct iris_context *) ctx;
2294 gl_shader_stage stage = stage_from_pipe(p_stage);
2295 struct iris_shader_state *shs = &ice->state.shaders[stage];
2296 struct iris_const_buffer *cbuf = &shs->constbuf[index];
2297
2298 if (input && input->buffer) {
2299 assert(index > 0);
2300
2301 pipe_resource_reference(&cbuf->data.res, input->buffer);
2302 cbuf->data.offset = input->buffer_offset;
2303
2304 struct iris_resource *res = (void *) cbuf->data.res;
2305 res->bind_history |= PIPE_BIND_CONSTANT_BUFFER;
2306
2307 upload_ubo_surf_state(ice, cbuf, input->buffer_size);
2308 } else {
2309 pipe_resource_reference(&cbuf->data.res, NULL);
2310 pipe_resource_reference(&cbuf->surface_state.res, NULL);
2311 }
2312
2313 if (index == 0) {
2314 if (input)
2315 memcpy(&shs->cbuf0, input, sizeof(shs->cbuf0));
2316 else
2317 memset(&shs->cbuf0, 0, sizeof(shs->cbuf0));
2318
2319 shs->cbuf0_needs_upload = true;
2320 }
2321
2322 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
2323 // XXX: maybe not necessary all the time...?
2324 // XXX: we need 3DS_BTP to commit these changes, and if we fell back to
2325 // XXX: pull model we may need actual new bindings...
2326 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2327 }
2328
2329 static void
2330 upload_uniforms(struct iris_context *ice,
2331 gl_shader_stage stage)
2332 {
2333 struct iris_shader_state *shs = &ice->state.shaders[stage];
2334 struct iris_const_buffer *cbuf = &shs->constbuf[0];
2335 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
2336
2337 unsigned upload_size = shader->num_system_values * sizeof(uint32_t) +
2338 shs->cbuf0.buffer_size;
2339
2340 if (upload_size == 0)
2341 return;
2342
2343 uint32_t *map =
2344 upload_state(ice->ctx.const_uploader, &cbuf->data, upload_size, 64);
2345
2346 for (int i = 0; i < shader->num_system_values; i++) {
2347 uint32_t sysval = shader->system_values[i];
2348 uint32_t value = 0;
2349
2350 if (BRW_PARAM_DOMAIN(sysval) == BRW_PARAM_DOMAIN_IMAGE) {
2351 unsigned img = BRW_PARAM_IMAGE_IDX(sysval);
2352 unsigned offset = BRW_PARAM_IMAGE_OFFSET(sysval);
2353 struct brw_image_param *param = &shs->image[img].param;
2354
2355 assert(offset < sizeof(struct brw_image_param));
2356 value = ((uint32_t *) param)[offset];
2357 } else if (sysval == BRW_PARAM_BUILTIN_ZERO) {
2358 value = 0;
2359 } else if (BRW_PARAM_BUILTIN_IS_CLIP_PLANE(sysval)) {
2360 int plane = BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(sysval);
2361 int comp = BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(sysval);
2362 value = fui(ice->state.clip_planes.ucp[plane][comp]);
2363 } else if (sysval == BRW_PARAM_BUILTIN_PATCH_VERTICES_IN) {
2364 if (stage == MESA_SHADER_TESS_CTRL) {
2365 value = ice->state.vertices_per_patch;
2366 } else {
2367 assert(stage == MESA_SHADER_TESS_EVAL);
2368 const struct shader_info *tcs_info =
2369 iris_get_shader_info(ice, MESA_SHADER_TESS_CTRL);
2370 assert(tcs_info);
2371
2372 value = tcs_info->tess.tcs_vertices_out;
2373 }
2374 } else {
2375 assert(!"unhandled system value");
2376 }
2377
2378 *map++ = value;
2379 }
2380
2381 if (shs->cbuf0.user_buffer) {
2382 memcpy(map, shs->cbuf0.user_buffer, shs->cbuf0.buffer_size);
2383 }
2384
2385 upload_ubo_surf_state(ice, cbuf, upload_size);
2386 }
2387
2388 /**
2389 * The pipe->set_shader_buffers() driver hook.
2390 *
2391 * This binds SSBOs and ABOs. Unfortunately, we need to stream out
2392 * SURFACE_STATE here, as the buffer offset may change each time.
2393 */
2394 static void
2395 iris_set_shader_buffers(struct pipe_context *ctx,
2396 enum pipe_shader_type p_stage,
2397 unsigned start_slot, unsigned count,
2398 const struct pipe_shader_buffer *buffers)
2399 {
2400 struct iris_context *ice = (struct iris_context *) ctx;
2401 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2402 gl_shader_stage stage = stage_from_pipe(p_stage);
2403 struct iris_shader_state *shs = &ice->state.shaders[stage];
2404
2405 for (unsigned i = 0; i < count; i++) {
2406 if (buffers && buffers[i].buffer) {
2407 const struct pipe_shader_buffer *buffer = &buffers[i];
2408 struct iris_resource *res = (void *) buffer->buffer;
2409 pipe_resource_reference(&shs->ssbo[start_slot + i], &res->base);
2410
2411 res->bind_history |= PIPE_BIND_SHADER_BUFFER;
2412
2413 // XXX: these are not retained forever, use a separate uploader?
2414 void *map =
2415 upload_state(ice->state.surface_uploader,
2416 &shs->ssbo_surface_state[start_slot + i],
2417 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2418 if (!unlikely(map)) {
2419 pipe_resource_reference(&shs->ssbo[start_slot + i], NULL);
2420 return;
2421 }
2422
2423 struct iris_bo *surf_state_bo =
2424 iris_resource_bo(shs->ssbo_surface_state[start_slot + i].res);
2425 shs->ssbo_surface_state[start_slot + i].offset +=
2426 iris_bo_offset_from_base_address(surf_state_bo);
2427
2428 isl_buffer_fill_state(&screen->isl_dev, map,
2429 .address =
2430 res->bo->gtt_offset + buffer->buffer_offset,
2431 .size_B =
2432 MIN2(buffer->buffer_size,
2433 res->bo->size - buffer->buffer_offset),
2434 .format = ISL_FORMAT_RAW,
2435 .stride_B = 1,
2436 .mocs = mocs(res->bo));
2437 } else {
2438 pipe_resource_reference(&shs->ssbo[start_slot + i], NULL);
2439 pipe_resource_reference(&shs->ssbo_surface_state[start_slot + i].res,
2440 NULL);
2441 }
2442 }
2443
2444 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2445 }
2446
2447 static void
2448 iris_delete_state(struct pipe_context *ctx, void *state)
2449 {
2450 free(state);
2451 }
2452
2453 /**
2454 * The pipe->set_vertex_buffers() driver hook.
2455 *
2456 * This translates pipe_vertex_buffer to our 3DSTATE_VERTEX_BUFFERS packet.
2457 */
2458 static void
2459 iris_set_vertex_buffers(struct pipe_context *ctx,
2460 unsigned start_slot, unsigned count,
2461 const struct pipe_vertex_buffer *buffers)
2462 {
2463 struct iris_context *ice = (struct iris_context *) ctx;
2464 struct iris_genx_state *genx = ice->state.genx;
2465
2466 ice->state.bound_vertex_buffers &= ~u_bit_consecutive64(start_slot, count);
2467
2468 for (unsigned i = 0; i < count; i++) {
2469 const struct pipe_vertex_buffer *buffer = buffers ? &buffers[i] : NULL;
2470 struct iris_vertex_buffer_state *state =
2471 &genx->vertex_buffers[start_slot + i];
2472
2473 if (!buffer) {
2474 pipe_resource_reference(&state->resource, NULL);
2475 continue;
2476 }
2477
2478 assert(!buffer->is_user_buffer);
2479
2480 ice->state.bound_vertex_buffers |= 1ull << (start_slot + i);
2481
2482 pipe_resource_reference(&state->resource, buffer->buffer.resource);
2483 struct iris_resource *res = (void *) state->resource;
2484
2485 if (res)
2486 res->bind_history |= PIPE_BIND_VERTEX_BUFFER;
2487
2488 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
2489 vb.VertexBufferIndex = start_slot + i;
2490 vb.AddressModifyEnable = true;
2491 vb.BufferPitch = buffer->stride;
2492 if (res) {
2493 vb.BufferSize = res->bo->size;
2494 vb.BufferStartingAddress =
2495 ro_bo(NULL, res->bo->gtt_offset + (int) buffer->buffer_offset);
2496 vb.MOCS = mocs(res->bo);
2497 } else {
2498 vb.NullVertexBuffer = true;
2499 }
2500 }
2501 }
2502
2503 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
2504 }
2505
2506 /**
2507 * Gallium CSO for vertex elements.
2508 */
2509 struct iris_vertex_element_state {
2510 uint32_t vertex_elements[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
2511 uint32_t vf_instancing[33 * GENX(3DSTATE_VF_INSTANCING_length)];
2512 unsigned count;
2513 };
2514
2515 /**
2516 * The pipe->create_vertex_elements() driver hook.
2517 *
2518 * This translates pipe_vertex_element to our 3DSTATE_VERTEX_ELEMENTS
2519 * and 3DSTATE_VF_INSTANCING commands. SGVs are handled at draw time.
2520 */
2521 static void *
2522 iris_create_vertex_elements(struct pipe_context *ctx,
2523 unsigned count,
2524 const struct pipe_vertex_element *state)
2525 {
2526 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2527 const struct gen_device_info *devinfo = &screen->devinfo;
2528 struct iris_vertex_element_state *cso =
2529 malloc(sizeof(struct iris_vertex_element_state));
2530
2531 cso->count = count;
2532
2533 /* TODO:
2534 * - create edge flag one
2535 * - create SGV ones
2536 * - if those are necessary, use count + 1/2/3... OR in the length
2537 */
2538 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS), cso->vertex_elements, ve) {
2539 ve.DWordLength =
2540 1 + GENX(VERTEX_ELEMENT_STATE_length) * MAX2(count, 1) - 2;
2541 }
2542
2543 uint32_t *ve_pack_dest = &cso->vertex_elements[1];
2544 uint32_t *vfi_pack_dest = cso->vf_instancing;
2545
2546 if (count == 0) {
2547 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
2548 ve.Valid = true;
2549 ve.SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT;
2550 ve.Component0Control = VFCOMP_STORE_0;
2551 ve.Component1Control = VFCOMP_STORE_0;
2552 ve.Component2Control = VFCOMP_STORE_0;
2553 ve.Component3Control = VFCOMP_STORE_1_FP;
2554 }
2555
2556 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
2557 }
2558 }
2559
2560 for (int i = 0; i < count; i++) {
2561 const struct iris_format_info fmt =
2562 iris_format_for_usage(devinfo, state[i].src_format, 0);
2563 unsigned comp[4] = { VFCOMP_STORE_SRC, VFCOMP_STORE_SRC,
2564 VFCOMP_STORE_SRC, VFCOMP_STORE_SRC };
2565
2566 switch (isl_format_get_num_channels(fmt.fmt)) {
2567 case 0: comp[0] = VFCOMP_STORE_0;
2568 case 1: comp[1] = VFCOMP_STORE_0;
2569 case 2: comp[2] = VFCOMP_STORE_0;
2570 case 3:
2571 comp[3] = isl_format_has_int_channel(fmt.fmt) ? VFCOMP_STORE_1_INT
2572 : VFCOMP_STORE_1_FP;
2573 break;
2574 }
2575 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
2576 ve.VertexBufferIndex = state[i].vertex_buffer_index;
2577 ve.Valid = true;
2578 ve.SourceElementOffset = state[i].src_offset;
2579 ve.SourceElementFormat = fmt.fmt;
2580 ve.Component0Control = comp[0];
2581 ve.Component1Control = comp[1];
2582 ve.Component2Control = comp[2];
2583 ve.Component3Control = comp[3];
2584 }
2585
2586 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
2587 vi.VertexElementIndex = i;
2588 vi.InstancingEnable = state[i].instance_divisor > 0;
2589 vi.InstanceDataStepRate = state[i].instance_divisor;
2590 }
2591
2592 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
2593 vfi_pack_dest += GENX(3DSTATE_VF_INSTANCING_length);
2594 }
2595
2596 return cso;
2597 }
2598
2599 /**
2600 * The pipe->bind_vertex_elements_state() driver hook.
2601 */
2602 static void
2603 iris_bind_vertex_elements_state(struct pipe_context *ctx, void *state)
2604 {
2605 struct iris_context *ice = (struct iris_context *) ctx;
2606 struct iris_vertex_element_state *old_cso = ice->state.cso_vertex_elements;
2607 struct iris_vertex_element_state *new_cso = state;
2608
2609 /* 3DSTATE_VF_SGVs overrides the last VE, so if the count is changing,
2610 * we need to re-emit it to ensure we're overriding the right one.
2611 */
2612 if (new_cso && cso_changed(count))
2613 ice->state.dirty |= IRIS_DIRTY_VF_SGVS;
2614
2615 ice->state.cso_vertex_elements = state;
2616 ice->state.dirty |= IRIS_DIRTY_VERTEX_ELEMENTS;
2617 }
2618
2619 /**
2620 * The pipe->create_stream_output_target() driver hook.
2621 *
2622 * "Target" here refers to a destination buffer. We translate this into
2623 * a 3DSTATE_SO_BUFFER packet. We can handle most fields, but don't yet
2624 * know which buffer this represents, or whether we ought to zero the
2625 * write-offsets, or append. Those are handled in the set() hook.
2626 */
2627 static struct pipe_stream_output_target *
2628 iris_create_stream_output_target(struct pipe_context *ctx,
2629 struct pipe_resource *p_res,
2630 unsigned buffer_offset,
2631 unsigned buffer_size)
2632 {
2633 struct iris_resource *res = (void *) p_res;
2634 struct iris_stream_output_target *cso = calloc(1, sizeof(*cso));
2635 if (!cso)
2636 return NULL;
2637
2638 res->bind_history |= PIPE_BIND_STREAM_OUTPUT;
2639
2640 pipe_reference_init(&cso->base.reference, 1);
2641 pipe_resource_reference(&cso->base.buffer, p_res);
2642 cso->base.buffer_offset = buffer_offset;
2643 cso->base.buffer_size = buffer_size;
2644 cso->base.context = ctx;
2645
2646 upload_state(ctx->stream_uploader, &cso->offset, sizeof(uint32_t), 4);
2647
2648 return &cso->base;
2649 }
2650
2651 static void
2652 iris_stream_output_target_destroy(struct pipe_context *ctx,
2653 struct pipe_stream_output_target *state)
2654 {
2655 struct iris_stream_output_target *cso = (void *) state;
2656
2657 pipe_resource_reference(&cso->base.buffer, NULL);
2658 pipe_resource_reference(&cso->offset.res, NULL);
2659
2660 free(cso);
2661 }
2662
2663 /**
2664 * The pipe->set_stream_output_targets() driver hook.
2665 *
2666 * At this point, we know which targets are bound to a particular index,
2667 * and also whether we want to append or start over. We can finish the
2668 * 3DSTATE_SO_BUFFER packets we started earlier.
2669 */
2670 static void
2671 iris_set_stream_output_targets(struct pipe_context *ctx,
2672 unsigned num_targets,
2673 struct pipe_stream_output_target **targets,
2674 const unsigned *offsets)
2675 {
2676 struct iris_context *ice = (struct iris_context *) ctx;
2677 struct iris_genx_state *genx = ice->state.genx;
2678 uint32_t *so_buffers = genx->so_buffers;
2679
2680 const bool active = num_targets > 0;
2681 if (ice->state.streamout_active != active) {
2682 ice->state.streamout_active = active;
2683 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
2684
2685 /* We only emit 3DSTATE_SO_DECL_LIST when streamout is active, because
2686 * it's a non-pipelined command. If we're switching streamout on, we
2687 * may have missed emitting it earlier, so do so now. (We're already
2688 * taking a stall to update 3DSTATE_SO_BUFFERS anyway...)
2689 */
2690 if (active)
2691 ice->state.dirty |= IRIS_DIRTY_SO_DECL_LIST;
2692 }
2693
2694 for (int i = 0; i < 4; i++) {
2695 pipe_so_target_reference(&ice->state.so_target[i],
2696 i < num_targets ? targets[i] : NULL);
2697 }
2698
2699 /* No need to update 3DSTATE_SO_BUFFER unless SOL is active. */
2700 if (!active)
2701 return;
2702
2703 for (unsigned i = 0; i < 4; i++,
2704 so_buffers += GENX(3DSTATE_SO_BUFFER_length)) {
2705
2706 if (i >= num_targets || !targets[i]) {
2707 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob)
2708 sob.SOBufferIndex = i;
2709 continue;
2710 }
2711
2712 struct iris_stream_output_target *tgt = (void *) targets[i];
2713 struct iris_resource *res = (void *) tgt->base.buffer;
2714
2715 /* Note that offsets[i] will either be 0, causing us to zero
2716 * the value in the buffer, or 0xFFFFFFFF, which happens to mean
2717 * "continue appending at the existing offset."
2718 */
2719 assert(offsets[i] == 0 || offsets[i] == 0xFFFFFFFF);
2720
2721 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob) {
2722 sob.SurfaceBaseAddress =
2723 rw_bo(NULL, res->bo->gtt_offset + tgt->base.buffer_offset);
2724 sob.SOBufferEnable = true;
2725 sob.StreamOffsetWriteEnable = true;
2726 sob.StreamOutputBufferOffsetAddressEnable = true;
2727 sob.MOCS = mocs(res->bo);
2728
2729 sob.SurfaceSize = MAX2(tgt->base.buffer_size / 4, 1) - 1;
2730
2731 sob.SOBufferIndex = i;
2732 sob.StreamOffset = offsets[i];
2733 sob.StreamOutputBufferOffsetAddress =
2734 rw_bo(NULL, iris_resource_bo(tgt->offset.res)->gtt_offset +
2735 tgt->offset.offset);
2736 }
2737 }
2738
2739 ice->state.dirty |= IRIS_DIRTY_SO_BUFFERS;
2740 }
2741
2742 /**
2743 * An iris-vtable helper for encoding the 3DSTATE_SO_DECL_LIST and
2744 * 3DSTATE_STREAMOUT packets.
2745 *
2746 * 3DSTATE_SO_DECL_LIST is a list of shader outputs we want the streamout
2747 * hardware to record. We can create it entirely based on the shader, with
2748 * no dynamic state dependencies.
2749 *
2750 * 3DSTATE_STREAMOUT is an annoying mix of shader-based information and
2751 * state-based settings. We capture the shader-related ones here, and merge
2752 * the rest in at draw time.
2753 */
2754 static uint32_t *
2755 iris_create_so_decl_list(const struct pipe_stream_output_info *info,
2756 const struct brw_vue_map *vue_map)
2757 {
2758 struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
2759 int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2760 int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2761 int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2762 int max_decls = 0;
2763 STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
2764
2765 memset(so_decl, 0, sizeof(so_decl));
2766
2767 /* Construct the list of SO_DECLs to be emitted. The formatting of the
2768 * command feels strange -- each dword pair contains a SO_DECL per stream.
2769 */
2770 for (unsigned i = 0; i < info->num_outputs; i++) {
2771 const struct pipe_stream_output *output = &info->output[i];
2772 const int buffer = output->output_buffer;
2773 const int varying = output->register_index;
2774 const unsigned stream_id = output->stream;
2775 assert(stream_id < MAX_VERTEX_STREAMS);
2776
2777 buffer_mask[stream_id] |= 1 << buffer;
2778
2779 assert(vue_map->varying_to_slot[varying] >= 0);
2780
2781 /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
2782 * array. Instead, it simply increments DstOffset for the following
2783 * input by the number of components that should be skipped.
2784 *
2785 * Our hardware is unusual in that it requires us to program SO_DECLs
2786 * for fake "hole" components, rather than simply taking the offset
2787 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
2788 * program as many size = 4 holes as we can, then a final hole to
2789 * accommodate the final 1, 2, or 3 remaining.
2790 */
2791 int skip_components = output->dst_offset - next_offset[buffer];
2792
2793 while (skip_components > 0) {
2794 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
2795 .HoleFlag = 1,
2796 .OutputBufferSlot = output->output_buffer,
2797 .ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
2798 };
2799 skip_components -= 4;
2800 }
2801
2802 next_offset[buffer] = output->dst_offset + output->num_components;
2803
2804 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
2805 .OutputBufferSlot = output->output_buffer,
2806 .RegisterIndex = vue_map->varying_to_slot[varying],
2807 .ComponentMask =
2808 ((1 << output->num_components) - 1) << output->start_component,
2809 };
2810
2811 if (decls[stream_id] > max_decls)
2812 max_decls = decls[stream_id];
2813 }
2814
2815 unsigned dwords = GENX(3DSTATE_STREAMOUT_length) + (3 + 2 * max_decls);
2816 uint32_t *map = ralloc_size(NULL, sizeof(uint32_t) * dwords);
2817 uint32_t *so_decl_map = map + GENX(3DSTATE_STREAMOUT_length);
2818
2819 iris_pack_command(GENX(3DSTATE_STREAMOUT), map, sol) {
2820 int urb_entry_read_offset = 0;
2821 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
2822 urb_entry_read_offset;
2823
2824 /* We always read the whole vertex. This could be reduced at some
2825 * point by reading less and offsetting the register index in the
2826 * SO_DECLs.
2827 */
2828 sol.Stream0VertexReadOffset = urb_entry_read_offset;
2829 sol.Stream0VertexReadLength = urb_entry_read_length - 1;
2830 sol.Stream1VertexReadOffset = urb_entry_read_offset;
2831 sol.Stream1VertexReadLength = urb_entry_read_length - 1;
2832 sol.Stream2VertexReadOffset = urb_entry_read_offset;
2833 sol.Stream2VertexReadLength = urb_entry_read_length - 1;
2834 sol.Stream3VertexReadOffset = urb_entry_read_offset;
2835 sol.Stream3VertexReadLength = urb_entry_read_length - 1;
2836
2837 /* Set buffer pitches; 0 means unbound. */
2838 sol.Buffer0SurfacePitch = 4 * info->stride[0];
2839 sol.Buffer1SurfacePitch = 4 * info->stride[1];
2840 sol.Buffer2SurfacePitch = 4 * info->stride[2];
2841 sol.Buffer3SurfacePitch = 4 * info->stride[3];
2842 }
2843
2844 iris_pack_command(GENX(3DSTATE_SO_DECL_LIST), so_decl_map, list) {
2845 list.DWordLength = 3 + 2 * max_decls - 2;
2846 list.StreamtoBufferSelects0 = buffer_mask[0];
2847 list.StreamtoBufferSelects1 = buffer_mask[1];
2848 list.StreamtoBufferSelects2 = buffer_mask[2];
2849 list.StreamtoBufferSelects3 = buffer_mask[3];
2850 list.NumEntries0 = decls[0];
2851 list.NumEntries1 = decls[1];
2852 list.NumEntries2 = decls[2];
2853 list.NumEntries3 = decls[3];
2854 }
2855
2856 for (int i = 0; i < max_decls; i++) {
2857 iris_pack_state(GENX(SO_DECL_ENTRY), so_decl_map + 3 + i * 2, entry) {
2858 entry.Stream0Decl = so_decl[0][i];
2859 entry.Stream1Decl = so_decl[1][i];
2860 entry.Stream2Decl = so_decl[2][i];
2861 entry.Stream3Decl = so_decl[3][i];
2862 }
2863 }
2864
2865 return map;
2866 }
2867
2868 static void
2869 iris_compute_sbe_urb_read_interval(uint64_t fs_input_slots,
2870 const struct brw_vue_map *last_vue_map,
2871 bool two_sided_color,
2872 unsigned *out_offset,
2873 unsigned *out_length)
2874 {
2875 /* The compiler computes the first URB slot without considering COL/BFC
2876 * swizzling (because it doesn't know whether it's enabled), so we need
2877 * to do that here too. This may result in a smaller offset, which
2878 * should be safe.
2879 */
2880 const unsigned first_slot =
2881 brw_compute_first_urb_slot_required(fs_input_slots, last_vue_map);
2882
2883 /* This becomes the URB read offset (counted in pairs of slots). */
2884 assert(first_slot % 2 == 0);
2885 *out_offset = first_slot / 2;
2886
2887 /* We need to adjust the inputs read to account for front/back color
2888 * swizzling, as it can make the URB length longer.
2889 */
2890 for (int c = 0; c <= 1; c++) {
2891 if (fs_input_slots & (VARYING_BIT_COL0 << c)) {
2892 /* If two sided color is enabled, the fragment shader's gl_Color
2893 * (COL0) input comes from either the gl_FrontColor (COL0) or
2894 * gl_BackColor (BFC0) input varyings. Mark BFC as used, too.
2895 */
2896 if (two_sided_color)
2897 fs_input_slots |= (VARYING_BIT_BFC0 << c);
2898
2899 /* If front color isn't written, we opt to give them back color
2900 * instead of an undefined value. Switch from COL to BFC.
2901 */
2902 if (last_vue_map->varying_to_slot[VARYING_SLOT_COL0 + c] == -1) {
2903 fs_input_slots &= ~(VARYING_BIT_COL0 << c);
2904 fs_input_slots |= (VARYING_BIT_BFC0 << c);
2905 }
2906 }
2907 }
2908
2909 /* Compute the minimum URB Read Length necessary for the FS inputs.
2910 *
2911 * From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
2912 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
2913 *
2914 * "This field should be set to the minimum length required to read the
2915 * maximum source attribute. The maximum source attribute is indicated
2916 * by the maximum value of the enabled Attribute # Source Attribute if
2917 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
2918 * enable is not set.
2919 * read_length = ceiling((max_source_attr + 1) / 2)
2920 *
2921 * [errata] Corruption/Hang possible if length programmed larger than
2922 * recommended"
2923 *
2924 * Similar text exists for Ivy Bridge.
2925 *
2926 * We find the last URB slot that's actually read by the FS.
2927 */
2928 unsigned last_read_slot = last_vue_map->num_slots - 1;
2929 while (last_read_slot > first_slot && !(fs_input_slots &
2930 (1ull << last_vue_map->slot_to_varying[last_read_slot])))
2931 --last_read_slot;
2932
2933 /* The URB read length is the difference of the two, counted in pairs. */
2934 *out_length = DIV_ROUND_UP(last_read_slot - first_slot + 1, 2);
2935 }
2936
2937 static void
2938 iris_emit_sbe_swiz(struct iris_batch *batch,
2939 const struct iris_context *ice,
2940 unsigned urb_read_offset,
2941 unsigned sprite_coord_enables)
2942 {
2943 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = {};
2944 const struct brw_wm_prog_data *wm_prog_data = (void *)
2945 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
2946 const struct brw_vue_map *vue_map = ice->shaders.last_vue_map;
2947 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
2948
2949 /* XXX: this should be generated when putting programs in place */
2950
2951 for (int fs_attr = 0; fs_attr < VARYING_SLOT_MAX; fs_attr++) {
2952 const int input_index = wm_prog_data->urb_setup[fs_attr];
2953 if (input_index < 0 || input_index >= 16)
2954 continue;
2955
2956 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr =
2957 &attr_overrides[input_index];
2958 int slot = vue_map->varying_to_slot[fs_attr];
2959
2960 /* Viewport and Layer are stored in the VUE header. We need to override
2961 * them to zero if earlier stages didn't write them, as GL requires that
2962 * they read back as zero when not explicitly set.
2963 */
2964 switch (fs_attr) {
2965 case VARYING_SLOT_VIEWPORT:
2966 case VARYING_SLOT_LAYER:
2967 attr->ComponentOverrideX = true;
2968 attr->ComponentOverrideW = true;
2969 attr->ConstantSource = CONST_0000;
2970
2971 if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
2972 attr->ComponentOverrideY = true;
2973 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
2974 attr->ComponentOverrideZ = true;
2975 continue;
2976
2977 case VARYING_SLOT_PRIMITIVE_ID:
2978 /* Override if the previous shader stage didn't write gl_PrimitiveID. */
2979 if (slot == -1) {
2980 attr->ComponentOverrideX = true;
2981 attr->ComponentOverrideY = true;
2982 attr->ComponentOverrideZ = true;
2983 attr->ComponentOverrideW = true;
2984 attr->ConstantSource = PRIM_ID;
2985 continue;
2986 }
2987
2988 default:
2989 break;
2990 }
2991
2992 if (sprite_coord_enables & (1 << input_index))
2993 continue;
2994
2995 /* If there was only a back color written but not front, use back
2996 * as the color instead of undefined.
2997 */
2998 if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
2999 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
3000 if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
3001 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
3002
3003 /* Not written by the previous stage - undefined. */
3004 if (slot == -1) {
3005 attr->ComponentOverrideX = true;
3006 attr->ComponentOverrideY = true;
3007 attr->ComponentOverrideZ = true;
3008 attr->ComponentOverrideW = true;
3009 attr->ConstantSource = CONST_0001_FLOAT;
3010 continue;
3011 }
3012
3013 /* Compute the location of the attribute relative to the read offset,
3014 * which is counted in 256-bit increments (two 128-bit VUE slots).
3015 */
3016 const int source_attr = slot - 2 * urb_read_offset;
3017 assert(source_attr >= 0 && source_attr <= 32);
3018 attr->SourceAttribute = source_attr;
3019
3020 /* If we are doing two-sided color, and the VUE slot following this one
3021 * represents a back-facing color, then we need to instruct the SF unit
3022 * to do back-facing swizzling.
3023 */
3024 if (cso_rast->light_twoside &&
3025 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
3026 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
3027 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
3028 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1)))
3029 attr->SwizzleSelect = INPUTATTR_FACING;
3030 }
3031
3032 iris_emit_cmd(batch, GENX(3DSTATE_SBE_SWIZ), sbes) {
3033 for (int i = 0; i < 16; i++)
3034 sbes.Attribute[i] = attr_overrides[i];
3035 }
3036 }
3037
3038 static unsigned
3039 iris_calculate_point_sprite_overrides(const struct brw_wm_prog_data *prog_data,
3040 const struct iris_rasterizer_state *cso)
3041 {
3042 unsigned overrides = 0;
3043
3044 if (prog_data->urb_setup[VARYING_SLOT_PNTC] != -1)
3045 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_PNTC];
3046
3047 for (int i = 0; i < 8; i++) {
3048 if ((cso->sprite_coord_enable & (1 << i)) &&
3049 prog_data->urb_setup[VARYING_SLOT_TEX0 + i] != -1)
3050 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_TEX0 + i];
3051 }
3052
3053 return overrides;
3054 }
3055
3056 static void
3057 iris_emit_sbe(struct iris_batch *batch, const struct iris_context *ice)
3058 {
3059 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3060 const struct brw_wm_prog_data *wm_prog_data = (void *)
3061 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3062 const struct shader_info *fs_info =
3063 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
3064
3065 unsigned urb_read_offset, urb_read_length;
3066 iris_compute_sbe_urb_read_interval(fs_info->inputs_read,
3067 ice->shaders.last_vue_map,
3068 cso_rast->light_twoside,
3069 &urb_read_offset, &urb_read_length);
3070
3071 unsigned sprite_coord_overrides =
3072 iris_calculate_point_sprite_overrides(wm_prog_data, cso_rast);
3073
3074 iris_emit_cmd(batch, GENX(3DSTATE_SBE), sbe) {
3075 sbe.AttributeSwizzleEnable = true;
3076 sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
3077 sbe.PointSpriteTextureCoordinateOrigin = cso_rast->sprite_coord_mode;
3078 sbe.VertexURBEntryReadOffset = urb_read_offset;
3079 sbe.VertexURBEntryReadLength = urb_read_length;
3080 sbe.ForceVertexURBEntryReadOffset = true;
3081 sbe.ForceVertexURBEntryReadLength = true;
3082 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
3083 sbe.PointSpriteTextureCoordinateEnable = sprite_coord_overrides;
3084 #if GEN_GEN >= 9
3085 for (int i = 0; i < 32; i++) {
3086 sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW;
3087 }
3088 #endif
3089 }
3090
3091 iris_emit_sbe_swiz(batch, ice, urb_read_offset, sprite_coord_overrides);
3092 }
3093
3094 /* ------------------------------------------------------------------- */
3095
3096 /**
3097 * Populate VS program key fields based on the current state.
3098 */
3099 static void
3100 iris_populate_vs_key(const struct iris_context *ice,
3101 const struct shader_info *info,
3102 struct brw_vs_prog_key *key)
3103 {
3104 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3105
3106 if (info->clip_distance_array_size == 0 &&
3107 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)))
3108 key->nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
3109 }
3110
3111 /**
3112 * Populate TCS program key fields based on the current state.
3113 */
3114 static void
3115 iris_populate_tcs_key(const struct iris_context *ice,
3116 struct brw_tcs_prog_key *key)
3117 {
3118 }
3119
3120 /**
3121 * Populate TES program key fields based on the current state.
3122 */
3123 static void
3124 iris_populate_tes_key(const struct iris_context *ice,
3125 struct brw_tes_prog_key *key)
3126 {
3127 }
3128
3129 /**
3130 * Populate GS program key fields based on the current state.
3131 */
3132 static void
3133 iris_populate_gs_key(const struct iris_context *ice,
3134 struct brw_gs_prog_key *key)
3135 {
3136 }
3137
3138 /**
3139 * Populate FS program key fields based on the current state.
3140 */
3141 static void
3142 iris_populate_fs_key(const struct iris_context *ice,
3143 struct brw_wm_prog_key *key)
3144 {
3145 const struct pipe_framebuffer_state *fb = &ice->state.framebuffer;
3146 const struct iris_depth_stencil_alpha_state *zsa = ice->state.cso_zsa;
3147 const struct iris_rasterizer_state *rast = ice->state.cso_rast;
3148 const struct iris_blend_state *blend = ice->state.cso_blend;
3149
3150 key->nr_color_regions = fb->nr_cbufs;
3151
3152 key->clamp_fragment_color = rast->clamp_fragment_color;
3153
3154 key->replicate_alpha = fb->nr_cbufs > 1 &&
3155 (zsa->alpha.enabled || blend->alpha_to_coverage);
3156
3157 /* XXX: only bother if COL0/1 are read */
3158 key->flat_shade = rast->flatshade;
3159
3160 key->persample_interp = rast->force_persample_interp;
3161 key->multisample_fbo = rast->multisample && fb->samples > 1;
3162
3163 key->coherent_fb_fetch = true;
3164
3165 // XXX: key->force_dual_color_blend for unigine
3166 // XXX: respect hint for high_quality_derivatives:1;
3167 }
3168
3169 static void
3170 iris_populate_cs_key(const struct iris_context *ice,
3171 struct brw_cs_prog_key *key)
3172 {
3173 }
3174
3175 #if 0
3176 // XXX: these need to go in INIT_THREAD_DISPATCH_FIELDS
3177 pkt.SamplerCount = \
3178 DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4); \
3179
3180 #endif
3181
3182 static uint64_t
3183 KSP(const struct iris_compiled_shader *shader)
3184 {
3185 struct iris_resource *res = (void *) shader->assembly.res;
3186 return iris_bo_offset_from_base_address(res->bo) + shader->assembly.offset;
3187 }
3188
3189 // Gen11 workaround table #2056 WABTPPrefetchDisable suggests to disable
3190 // prefetching of binding tables in A0 and B0 steppings. XXX: Revisit
3191 // this WA on C0 stepping.
3192
3193 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix, stage) \
3194 pkt.KernelStartPointer = KSP(shader); \
3195 pkt.BindingTableEntryCount = GEN_GEN == 11 ? 0 : \
3196 prog_data->binding_table.size_bytes / 4; \
3197 pkt.FloatingPointMode = prog_data->use_alt_mode; \
3198 \
3199 pkt.DispatchGRFStartRegisterForURBData = \
3200 prog_data->dispatch_grf_start_reg; \
3201 pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
3202 pkt.prefix##URBEntryReadOffset = 0; \
3203 \
3204 pkt.StatisticsEnable = true; \
3205 pkt.Enable = true; \
3206 \
3207 if (prog_data->total_scratch) { \
3208 struct iris_bo *bo = \
3209 iris_get_scratch_space(ice, prog_data->total_scratch, stage); \
3210 uint32_t scratch_addr = bo->gtt_offset; \
3211 pkt.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11; \
3212 pkt.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr); \
3213 }
3214
3215 /**
3216 * Encode most of 3DSTATE_VS based on the compiled shader.
3217 */
3218 static void
3219 iris_store_vs_state(struct iris_context *ice,
3220 const struct gen_device_info *devinfo,
3221 struct iris_compiled_shader *shader)
3222 {
3223 struct brw_stage_prog_data *prog_data = shader->prog_data;
3224 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3225
3226 iris_pack_command(GENX(3DSTATE_VS), shader->derived_data, vs) {
3227 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex, MESA_SHADER_VERTEX);
3228 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
3229 vs.SIMD8DispatchEnable = true;
3230 vs.UserClipDistanceCullTestEnableBitmask =
3231 vue_prog_data->cull_distance_mask;
3232 }
3233 }
3234
3235 /**
3236 * Encode most of 3DSTATE_HS based on the compiled shader.
3237 */
3238 static void
3239 iris_store_tcs_state(struct iris_context *ice,
3240 const struct gen_device_info *devinfo,
3241 struct iris_compiled_shader *shader)
3242 {
3243 struct brw_stage_prog_data *prog_data = shader->prog_data;
3244 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3245 struct brw_tcs_prog_data *tcs_prog_data = (void *) prog_data;
3246
3247 iris_pack_command(GENX(3DSTATE_HS), shader->derived_data, hs) {
3248 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex, MESA_SHADER_TESS_CTRL);
3249
3250 hs.InstanceCount = tcs_prog_data->instances - 1;
3251 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
3252 hs.IncludeVertexHandles = true;
3253 }
3254 }
3255
3256 /**
3257 * Encode 3DSTATE_TE and most of 3DSTATE_DS based on the compiled shader.
3258 */
3259 static void
3260 iris_store_tes_state(struct iris_context *ice,
3261 const struct gen_device_info *devinfo,
3262 struct iris_compiled_shader *shader)
3263 {
3264 struct brw_stage_prog_data *prog_data = shader->prog_data;
3265 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3266 struct brw_tes_prog_data *tes_prog_data = (void *) prog_data;
3267
3268 uint32_t *te_state = (void *) shader->derived_data;
3269 uint32_t *ds_state = te_state + GENX(3DSTATE_TE_length);
3270
3271 iris_pack_command(GENX(3DSTATE_TE), te_state, te) {
3272 te.Partitioning = tes_prog_data->partitioning;
3273 te.OutputTopology = tes_prog_data->output_topology;
3274 te.TEDomain = tes_prog_data->domain;
3275 te.TEEnable = true;
3276 te.MaximumTessellationFactorOdd = 63.0;
3277 te.MaximumTessellationFactorNotOdd = 64.0;
3278 }
3279
3280 iris_pack_command(GENX(3DSTATE_DS), ds_state, ds) {
3281 INIT_THREAD_DISPATCH_FIELDS(ds, Patch, MESA_SHADER_TESS_EVAL);
3282
3283 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
3284 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
3285 ds.ComputeWCoordinateEnable =
3286 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
3287
3288 ds.UserClipDistanceCullTestEnableBitmask =
3289 vue_prog_data->cull_distance_mask;
3290 }
3291
3292 }
3293
3294 /**
3295 * Encode most of 3DSTATE_GS based on the compiled shader.
3296 */
3297 static void
3298 iris_store_gs_state(struct iris_context *ice,
3299 const struct gen_device_info *devinfo,
3300 struct iris_compiled_shader *shader)
3301 {
3302 struct brw_stage_prog_data *prog_data = shader->prog_data;
3303 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3304 struct brw_gs_prog_data *gs_prog_data = (void *) prog_data;
3305
3306 iris_pack_command(GENX(3DSTATE_GS), shader->derived_data, gs) {
3307 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex, MESA_SHADER_GEOMETRY);
3308
3309 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
3310 gs.OutputTopology = gs_prog_data->output_topology;
3311 gs.ControlDataHeaderSize =
3312 gs_prog_data->control_data_header_size_hwords;
3313 gs.InstanceControl = gs_prog_data->invocations - 1;
3314 gs.DispatchMode = DISPATCH_MODE_SIMD8;
3315 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
3316 gs.ControlDataFormat = gs_prog_data->control_data_format;
3317 gs.ReorderMode = TRAILING;
3318 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
3319 gs.MaximumNumberofThreads =
3320 GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
3321 : (devinfo->max_gs_threads - 1);
3322
3323 if (gs_prog_data->static_vertex_count != -1) {
3324 gs.StaticOutput = true;
3325 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
3326 }
3327 gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
3328
3329 gs.UserClipDistanceCullTestEnableBitmask =
3330 vue_prog_data->cull_distance_mask;
3331
3332 const int urb_entry_write_offset = 1;
3333 const uint32_t urb_entry_output_length =
3334 DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
3335 urb_entry_write_offset;
3336
3337 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
3338 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
3339 }
3340 }
3341
3342 /**
3343 * Encode most of 3DSTATE_PS and 3DSTATE_PS_EXTRA based on the shader.
3344 */
3345 static void
3346 iris_store_fs_state(struct iris_context *ice,
3347 const struct gen_device_info *devinfo,
3348 struct iris_compiled_shader *shader)
3349 {
3350 struct brw_stage_prog_data *prog_data = shader->prog_data;
3351 struct brw_wm_prog_data *wm_prog_data = (void *) shader->prog_data;
3352
3353 uint32_t *ps_state = (void *) shader->derived_data;
3354 uint32_t *psx_state = ps_state + GENX(3DSTATE_PS_length);
3355
3356 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
3357 ps.VectorMaskEnable = true;
3358 //ps.SamplerCount = ...
3359 // XXX: WABTPPrefetchDisable, see above, drop at C0
3360 ps.BindingTableEntryCount = GEN_GEN == 11 ? 0 :
3361 prog_data->binding_table.size_bytes / 4;
3362 ps.FloatingPointMode = prog_data->use_alt_mode;
3363 ps.MaximumNumberofThreadsPerPSD = 64 - (GEN_GEN == 8 ? 2 : 1);
3364
3365 ps.PushConstantEnable = prog_data->ubo_ranges[0].length > 0;
3366
3367 /* From the documentation for this packet:
3368 * "If the PS kernel does not need the Position XY Offsets to
3369 * compute a Position Value, then this field should be programmed
3370 * to POSOFFSET_NONE."
3371 *
3372 * "SW Recommendation: If the PS kernel needs the Position Offsets
3373 * to compute a Position XY value, this field should match Position
3374 * ZW Interpolation Mode to ensure a consistent position.xyzw
3375 * computation."
3376 *
3377 * We only require XY sample offsets. So, this recommendation doesn't
3378 * look useful at the moment. We might need this in future.
3379 */
3380 ps.PositionXYOffsetSelect =
3381 wm_prog_data->uses_pos_offset ? POSOFFSET_SAMPLE : POSOFFSET_NONE;
3382 ps._8PixelDispatchEnable = wm_prog_data->dispatch_8;
3383 ps._16PixelDispatchEnable = wm_prog_data->dispatch_16;
3384 ps._32PixelDispatchEnable = wm_prog_data->dispatch_32;
3385
3386 // XXX: Disable SIMD32 with 16x MSAA
3387
3388 ps.DispatchGRFStartRegisterForConstantSetupData0 =
3389 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
3390 ps.DispatchGRFStartRegisterForConstantSetupData1 =
3391 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
3392 ps.DispatchGRFStartRegisterForConstantSetupData2 =
3393 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
3394
3395 ps.KernelStartPointer0 =
3396 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
3397 ps.KernelStartPointer1 =
3398 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
3399 ps.KernelStartPointer2 =
3400 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
3401
3402 if (prog_data->total_scratch) {
3403 struct iris_bo *bo =
3404 iris_get_scratch_space(ice, prog_data->total_scratch,
3405 MESA_SHADER_FRAGMENT);
3406 uint32_t scratch_addr = bo->gtt_offset;
3407 ps.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
3408 ps.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr);
3409 }
3410 }
3411
3412 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
3413 psx.PixelShaderValid = true;
3414 psx.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
3415 // XXX: alpha test / alpha to coverage :/
3416 psx.PixelShaderKillsPixel = wm_prog_data->uses_kill ||
3417 wm_prog_data->uses_omask;
3418 psx.AttributeEnable = wm_prog_data->num_varying_inputs != 0;
3419 psx.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
3420 psx.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
3421 psx.PixelShaderIsPerSample = wm_prog_data->persample_dispatch;
3422 psx.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
3423
3424 #if GEN_GEN >= 9
3425 if (wm_prog_data->uses_sample_mask) {
3426 /* TODO: conservative rasterization */
3427 if (wm_prog_data->post_depth_coverage)
3428 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
3429 else
3430 psx.InputCoverageMaskState = ICMS_NORMAL;
3431 }
3432
3433 psx.PixelShaderPullsBary = wm_prog_data->pulls_bary;
3434 psx.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
3435 #else
3436 psx.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
3437 #endif
3438 // XXX: UAV bit
3439 }
3440 }
3441
3442 /**
3443 * Compute the size of the derived data (shader command packets).
3444 *
3445 * This must match the data written by the iris_store_xs_state() functions.
3446 */
3447 static void
3448 iris_store_cs_state(struct iris_context *ice,
3449 const struct gen_device_info *devinfo,
3450 struct iris_compiled_shader *shader)
3451 {
3452 struct brw_stage_prog_data *prog_data = shader->prog_data;
3453 struct brw_cs_prog_data *cs_prog_data = (void *) shader->prog_data;
3454 void *map = shader->derived_data;
3455
3456 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), map, desc) {
3457 desc.KernelStartPointer = KSP(shader);
3458 desc.ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs;
3459 desc.NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads;
3460 desc.SharedLocalMemorySize =
3461 encode_slm_size(GEN_GEN, prog_data->total_shared);
3462 desc.BarrierEnable = cs_prog_data->uses_barrier;
3463 desc.CrossThreadConstantDataReadLength =
3464 cs_prog_data->push.cross_thread.regs;
3465 }
3466 }
3467
3468 static unsigned
3469 iris_derived_program_state_size(enum iris_program_cache_id cache_id)
3470 {
3471 assert(cache_id <= IRIS_CACHE_BLORP);
3472
3473 static const unsigned dwords[] = {
3474 [IRIS_CACHE_VS] = GENX(3DSTATE_VS_length),
3475 [IRIS_CACHE_TCS] = GENX(3DSTATE_HS_length),
3476 [IRIS_CACHE_TES] = GENX(3DSTATE_TE_length) + GENX(3DSTATE_DS_length),
3477 [IRIS_CACHE_GS] = GENX(3DSTATE_GS_length),
3478 [IRIS_CACHE_FS] =
3479 GENX(3DSTATE_PS_length) + GENX(3DSTATE_PS_EXTRA_length),
3480 [IRIS_CACHE_CS] = GENX(INTERFACE_DESCRIPTOR_DATA_length),
3481 [IRIS_CACHE_BLORP] = 0,
3482 };
3483
3484 return sizeof(uint32_t) * dwords[cache_id];
3485 }
3486
3487 /**
3488 * Create any state packets corresponding to the given shader stage
3489 * (i.e. 3DSTATE_VS) and save them as "derived data" in the shader variant.
3490 * This means that we can look up a program in the in-memory cache and
3491 * get most of the state packet without having to reconstruct it.
3492 */
3493 static void
3494 iris_store_derived_program_state(struct iris_context *ice,
3495 enum iris_program_cache_id cache_id,
3496 struct iris_compiled_shader *shader)
3497 {
3498 struct iris_screen *screen = (void *) ice->ctx.screen;
3499 const struct gen_device_info *devinfo = &screen->devinfo;
3500
3501 switch (cache_id) {
3502 case IRIS_CACHE_VS:
3503 iris_store_vs_state(ice, devinfo, shader);
3504 break;
3505 case IRIS_CACHE_TCS:
3506 iris_store_tcs_state(ice, devinfo, shader);
3507 break;
3508 case IRIS_CACHE_TES:
3509 iris_store_tes_state(ice, devinfo, shader);
3510 break;
3511 case IRIS_CACHE_GS:
3512 iris_store_gs_state(ice, devinfo, shader);
3513 break;
3514 case IRIS_CACHE_FS:
3515 iris_store_fs_state(ice, devinfo, shader);
3516 break;
3517 case IRIS_CACHE_CS:
3518 iris_store_cs_state(ice, devinfo, shader);
3519 case IRIS_CACHE_BLORP:
3520 break;
3521 default:
3522 break;
3523 }
3524 }
3525
3526 /* ------------------------------------------------------------------- */
3527
3528 /**
3529 * Configure the URB.
3530 *
3531 * XXX: write a real comment.
3532 */
3533 static void
3534 iris_upload_urb_config(struct iris_context *ice, struct iris_batch *batch)
3535 {
3536 const struct gen_device_info *devinfo = &batch->screen->devinfo;
3537 const unsigned push_size_kB = 32;
3538 unsigned entries[4];
3539 unsigned start[4];
3540 unsigned size[4];
3541
3542 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
3543 if (!ice->shaders.prog[i]) {
3544 size[i] = 1;
3545 } else {
3546 struct brw_vue_prog_data *vue_prog_data =
3547 (void *) ice->shaders.prog[i]->prog_data;
3548 size[i] = vue_prog_data->urb_entry_size;
3549 }
3550 assert(size[i] != 0);
3551 }
3552
3553 gen_get_urb_config(devinfo, 1024 * push_size_kB,
3554 1024 * ice->shaders.urb_size,
3555 ice->shaders.prog[MESA_SHADER_TESS_EVAL] != NULL,
3556 ice->shaders.prog[MESA_SHADER_GEOMETRY] != NULL,
3557 size, entries, start);
3558
3559 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
3560 iris_emit_cmd(batch, GENX(3DSTATE_URB_VS), urb) {
3561 urb._3DCommandSubOpcode += i;
3562 urb.VSURBStartingAddress = start[i];
3563 urb.VSURBEntryAllocationSize = size[i] - 1;
3564 urb.VSNumberofURBEntries = entries[i];
3565 }
3566 }
3567 }
3568
3569 static const uint32_t push_constant_opcodes[] = {
3570 [MESA_SHADER_VERTEX] = 21,
3571 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
3572 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
3573 [MESA_SHADER_GEOMETRY] = 22,
3574 [MESA_SHADER_FRAGMENT] = 23,
3575 [MESA_SHADER_COMPUTE] = 0,
3576 };
3577
3578 static uint32_t
3579 use_null_surface(struct iris_batch *batch, struct iris_context *ice)
3580 {
3581 struct iris_bo *state_bo = iris_resource_bo(ice->state.unbound_tex.res);
3582
3583 iris_use_pinned_bo(batch, state_bo, false);
3584
3585 return ice->state.unbound_tex.offset;
3586 }
3587
3588 static uint32_t
3589 use_null_fb_surface(struct iris_batch *batch, struct iris_context *ice)
3590 {
3591 /* If set_framebuffer_state() was never called, fall back to 1x1x1 */
3592 if (!ice->state.null_fb.res)
3593 return use_null_surface(batch, ice);
3594
3595 struct iris_bo *state_bo = iris_resource_bo(ice->state.null_fb.res);
3596
3597 iris_use_pinned_bo(batch, state_bo, false);
3598
3599 return ice->state.null_fb.offset;
3600 }
3601
3602 /**
3603 * Add a surface to the validation list, as well as the buffer containing
3604 * the corresponding SURFACE_STATE.
3605 *
3606 * Returns the binding table entry (offset to SURFACE_STATE).
3607 */
3608 static uint32_t
3609 use_surface(struct iris_batch *batch,
3610 struct pipe_surface *p_surf,
3611 bool writeable)
3612 {
3613 struct iris_surface *surf = (void *) p_surf;
3614
3615 iris_use_pinned_bo(batch, iris_resource_bo(p_surf->texture), writeable);
3616 iris_use_pinned_bo(batch, iris_resource_bo(surf->surface_state.res), false);
3617
3618 return surf->surface_state.offset;
3619 }
3620
3621 static uint32_t
3622 use_sampler_view(struct iris_batch *batch, struct iris_sampler_view *isv)
3623 {
3624 iris_use_pinned_bo(batch, isv->res->bo, false);
3625 iris_use_pinned_bo(batch, iris_resource_bo(isv->surface_state.res), false);
3626
3627 return isv->surface_state.offset;
3628 }
3629
3630 static uint32_t
3631 use_const_buffer(struct iris_batch *batch,
3632 struct iris_context *ice,
3633 struct iris_const_buffer *cbuf)
3634 {
3635 if (!cbuf->surface_state.res)
3636 return use_null_surface(batch, ice);
3637
3638 iris_use_pinned_bo(batch, iris_resource_bo(cbuf->data.res), false);
3639 iris_use_pinned_bo(batch, iris_resource_bo(cbuf->surface_state.res), false);
3640
3641 return cbuf->surface_state.offset;
3642 }
3643
3644 static uint32_t
3645 use_ssbo(struct iris_batch *batch, struct iris_context *ice,
3646 struct iris_shader_state *shs, int i)
3647 {
3648 if (!shs->ssbo[i])
3649 return use_null_surface(batch, ice);
3650
3651 struct iris_state_ref *surf_state = &shs->ssbo_surface_state[i];
3652
3653 iris_use_pinned_bo(batch, iris_resource_bo(shs->ssbo[i]), true);
3654 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false);
3655
3656 return surf_state->offset;
3657 }
3658
3659 static uint32_t
3660 use_image(struct iris_batch *batch, struct iris_context *ice,
3661 struct iris_shader_state *shs, int i)
3662 {
3663 if (!shs->image[i].res)
3664 return use_null_surface(batch, ice);
3665
3666 struct iris_state_ref *surf_state = &shs->image[i].surface_state;
3667
3668 iris_use_pinned_bo(batch, iris_resource_bo(shs->image[i].res),
3669 shs->image[i].access & PIPE_IMAGE_ACCESS_WRITE);
3670 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false);
3671
3672 return surf_state->offset;
3673 }
3674
3675 #define push_bt_entry(addr) \
3676 assert(addr >= binder_addr); \
3677 assert(s < prog_data->binding_table.size_bytes / sizeof(uint32_t)); \
3678 if (!pin_only) bt_map[s++] = (addr) - binder_addr;
3679
3680 #define bt_assert(section, exists) \
3681 if (!pin_only) assert(prog_data->binding_table.section == \
3682 (exists) ? s : 0xd0d0d0d0)
3683
3684 /**
3685 * Populate the binding table for a given shader stage.
3686 *
3687 * This fills out the table of pointers to surfaces required by the shader,
3688 * and also adds those buffers to the validation list so the kernel can make
3689 * resident before running our batch.
3690 */
3691 static void
3692 iris_populate_binding_table(struct iris_context *ice,
3693 struct iris_batch *batch,
3694 gl_shader_stage stage,
3695 bool pin_only)
3696 {
3697 const struct iris_binder *binder = &ice->state.binder;
3698 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3699 if (!shader)
3700 return;
3701
3702 UNUSED struct brw_stage_prog_data *prog_data = shader->prog_data;
3703 struct iris_shader_state *shs = &ice->state.shaders[stage];
3704 uint32_t binder_addr = binder->bo->gtt_offset;
3705
3706 //struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
3707 uint32_t *bt_map = binder->map + binder->bt_offset[stage];
3708 int s = 0;
3709
3710 const struct shader_info *info = iris_get_shader_info(ice, stage);
3711 if (!info) {
3712 /* TCS passthrough doesn't need a binding table. */
3713 assert(stage == MESA_SHADER_TESS_CTRL);
3714 return;
3715 }
3716
3717 if (stage == MESA_SHADER_COMPUTE) {
3718 /* surface for gl_NumWorkGroups */
3719 struct iris_state_ref *grid_data = &ice->state.grid_size;
3720 struct iris_state_ref *grid_state = &ice->state.grid_surf_state;
3721 iris_use_pinned_bo(batch, iris_resource_bo(grid_data->res), false);
3722 iris_use_pinned_bo(batch, iris_resource_bo(grid_state->res), false);
3723 push_bt_entry(grid_state->offset);
3724 }
3725
3726 if (stage == MESA_SHADER_FRAGMENT) {
3727 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
3728 /* Note that cso_fb->nr_cbufs == fs_key->nr_color_regions. */
3729 if (cso_fb->nr_cbufs) {
3730 for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
3731 uint32_t addr =
3732 cso_fb->cbufs[i] ? use_surface(batch, cso_fb->cbufs[i], true)
3733 : use_null_fb_surface(batch, ice);
3734 push_bt_entry(addr);
3735 }
3736 } else {
3737 uint32_t addr = use_null_fb_surface(batch, ice);
3738 push_bt_entry(addr);
3739 }
3740 }
3741
3742 bt_assert(texture_start, info->num_textures > 0);
3743
3744 for (int i = 0; i < info->num_textures; i++) {
3745 struct iris_sampler_view *view = shs->textures[i];
3746 uint32_t addr = view ? use_sampler_view(batch, view)
3747 : use_null_surface(batch, ice);
3748 push_bt_entry(addr);
3749 }
3750
3751 bt_assert(image_start, info->num_images > 0);
3752
3753 for (int i = 0; i < info->num_images; i++) {
3754 uint32_t addr = use_image(batch, ice, shs, i);
3755 push_bt_entry(addr);
3756 }
3757
3758 const int num_ubos = iris_get_shader_num_ubos(ice, stage);
3759
3760 bt_assert(ubo_start, num_ubos > 0);
3761
3762 for (int i = 0; i < num_ubos; i++) {
3763 uint32_t addr = use_const_buffer(batch, ice, &shs->constbuf[i]);
3764 push_bt_entry(addr);
3765 }
3766
3767 bt_assert(ssbo_start, info->num_abos + info->num_ssbos > 0);
3768
3769 /* XXX: st is wasting 16 binding table slots for ABOs. Should add a cap
3770 * for changing nir_lower_atomics_to_ssbos setting and buffer_base offset
3771 * in st_atom_storagebuf.c so it'll compact them into one range, with
3772 * SSBOs starting at info->num_abos. Ideally it'd reset num_abos to 0 too
3773 */
3774 if (info->num_abos + info->num_ssbos > 0) {
3775 for (int i = 0; i < IRIS_MAX_ABOS + info->num_ssbos; i++) {
3776 uint32_t addr = use_ssbo(batch, ice, shs, i);
3777 push_bt_entry(addr);
3778 }
3779 }
3780
3781 #if 0
3782 // XXX: not implemented yet
3783 bt_assert(plane_start[1], ...);
3784 bt_assert(plane_start[2], ...);
3785 #endif
3786 }
3787
3788 static void
3789 iris_use_optional_res(struct iris_batch *batch,
3790 struct pipe_resource *res,
3791 bool writeable)
3792 {
3793 if (res) {
3794 struct iris_bo *bo = iris_resource_bo(res);
3795 iris_use_pinned_bo(batch, bo, writeable);
3796 }
3797 }
3798
3799 /* ------------------------------------------------------------------- */
3800
3801 /**
3802 * Pin any BOs which were installed by a previous batch, and restored
3803 * via the hardware logical context mechanism.
3804 *
3805 * We don't need to re-emit all state every batch - the hardware context
3806 * mechanism will save and restore it for us. This includes pointers to
3807 * various BOs...which won't exist unless we ask the kernel to pin them
3808 * by adding them to the validation list.
3809 *
3810 * We can skip buffers if we've re-emitted those packets, as we're
3811 * overwriting those stale pointers with new ones, and don't actually
3812 * refer to the old BOs.
3813 */
3814 static void
3815 iris_restore_render_saved_bos(struct iris_context *ice,
3816 struct iris_batch *batch,
3817 const struct pipe_draw_info *draw)
3818 {
3819 struct iris_genx_state *genx = ice->state.genx;
3820
3821 const uint64_t clean = ~ice->state.dirty;
3822
3823 if (clean & IRIS_DIRTY_CC_VIEWPORT) {
3824 iris_use_optional_res(batch, ice->state.last_res.cc_vp, false);
3825 }
3826
3827 if (clean & IRIS_DIRTY_SF_CL_VIEWPORT) {
3828 iris_use_optional_res(batch, ice->state.last_res.sf_cl_vp, false);
3829 }
3830
3831 if (clean & IRIS_DIRTY_BLEND_STATE) {
3832 iris_use_optional_res(batch, ice->state.last_res.blend, false);
3833 }
3834
3835 if (clean & IRIS_DIRTY_COLOR_CALC_STATE) {
3836 iris_use_optional_res(batch, ice->state.last_res.color_calc, false);
3837 }
3838
3839 if (clean & IRIS_DIRTY_SCISSOR_RECT) {
3840 iris_use_optional_res(batch, ice->state.last_res.scissor, false);
3841 }
3842
3843 if (ice->state.streamout_active && (clean & IRIS_DIRTY_SO_BUFFERS)) {
3844 for (int i = 0; i < 4; i++) {
3845 struct iris_stream_output_target *tgt =
3846 (void *) ice->state.so_target[i];
3847 if (tgt) {
3848 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
3849 true);
3850 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
3851 true);
3852 }
3853 }
3854 }
3855
3856 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3857 if (!(clean & (IRIS_DIRTY_CONSTANTS_VS << stage)))
3858 continue;
3859
3860 struct iris_shader_state *shs = &ice->state.shaders[stage];
3861 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3862
3863 if (!shader)
3864 continue;
3865
3866 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
3867
3868 for (int i = 0; i < 4; i++) {
3869 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
3870
3871 if (range->length == 0)
3872 continue;
3873
3874 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
3875 struct iris_resource *res = (void *) cbuf->data.res;
3876
3877 if (res)
3878 iris_use_pinned_bo(batch, res->bo, false);
3879 else
3880 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
3881 }
3882 }
3883
3884 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3885 if (clean & (IRIS_DIRTY_BINDINGS_VS << stage)) {
3886 /* Re-pin any buffers referred to by the binding table. */
3887 iris_populate_binding_table(ice, batch, stage, true);
3888 }
3889 }
3890
3891 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3892 struct iris_shader_state *shs = &ice->state.shaders[stage];
3893 struct pipe_resource *res = shs->sampler_table.res;
3894 if (res)
3895 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
3896 }
3897
3898 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3899 if (clean & (IRIS_DIRTY_VS << stage)) {
3900 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3901
3902 if (shader) {
3903 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
3904 iris_use_pinned_bo(batch, bo, false);
3905
3906 struct brw_stage_prog_data *prog_data = shader->prog_data;
3907
3908 if (prog_data->total_scratch > 0) {
3909 struct iris_bo *bo =
3910 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
3911 iris_use_pinned_bo(batch, bo, true);
3912 }
3913 }
3914 }
3915 }
3916
3917 if (clean & IRIS_DIRTY_DEPTH_BUFFER) {
3918 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
3919
3920 if (cso_fb->zsbuf) {
3921 struct iris_resource *zres, *sres;
3922 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
3923 &zres, &sres);
3924 if (zres) {
3925 iris_use_pinned_bo(batch, zres->bo,
3926 ice->state.depth_writes_enabled);
3927 }
3928 if (sres) {
3929 iris_use_pinned_bo(batch, sres->bo,
3930 ice->state.stencil_writes_enabled);
3931 }
3932 }
3933 }
3934
3935 if (draw->index_size == 0 && ice->state.last_res.index_buffer) {
3936 /* This draw didn't emit a new index buffer, so we are inheriting the
3937 * older index buffer. This draw didn't need it, but future ones may.
3938 */
3939 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
3940 iris_use_pinned_bo(batch, bo, false);
3941 }
3942
3943 if (clean & IRIS_DIRTY_VERTEX_BUFFERS) {
3944 uint64_t bound = ice->state.bound_vertex_buffers;
3945 while (bound) {
3946 const int i = u_bit_scan64(&bound);
3947 struct pipe_resource *res = genx->vertex_buffers[i].resource;
3948 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
3949 }
3950 }
3951 }
3952
3953 static void
3954 iris_restore_compute_saved_bos(struct iris_context *ice,
3955 struct iris_batch *batch,
3956 const struct pipe_grid_info *grid)
3957 {
3958 const uint64_t clean = ~ice->state.dirty;
3959
3960 const int stage = MESA_SHADER_COMPUTE;
3961 struct iris_shader_state *shs = &ice->state.shaders[stage];
3962
3963 if (clean & IRIS_DIRTY_CONSTANTS_CS) {
3964 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3965
3966 if (shader) {
3967 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
3968 const struct brw_ubo_range *range = &prog_data->ubo_ranges[0];
3969
3970 if (range->length > 0) {
3971 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
3972 struct iris_resource *res = (void *) cbuf->data.res;
3973
3974 if (res)
3975 iris_use_pinned_bo(batch, res->bo, false);
3976 else
3977 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
3978 }
3979 }
3980 }
3981
3982 if (clean & IRIS_DIRTY_BINDINGS_CS) {
3983 /* Re-pin any buffers referred to by the binding table. */
3984 iris_populate_binding_table(ice, batch, stage, true);
3985 }
3986
3987 struct pipe_resource *sampler_res = shs->sampler_table.res;
3988 if (sampler_res)
3989 iris_use_pinned_bo(batch, iris_resource_bo(sampler_res), false);
3990
3991 if (clean & IRIS_DIRTY_CS) {
3992 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3993
3994 if (shader) {
3995 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
3996 iris_use_pinned_bo(batch, bo, false);
3997
3998 struct brw_stage_prog_data *prog_data = shader->prog_data;
3999
4000 if (prog_data->total_scratch > 0) {
4001 struct iris_bo *bo =
4002 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4003 iris_use_pinned_bo(batch, bo, true);
4004 }
4005 }
4006 }
4007 }
4008
4009 /**
4010 * Possibly emit STATE_BASE_ADDRESS to update Surface State Base Address.
4011 */
4012 static void
4013 iris_update_surface_base_address(struct iris_batch *batch,
4014 struct iris_binder *binder)
4015 {
4016 if (batch->last_surface_base_address == binder->bo->gtt_offset)
4017 return;
4018
4019 flush_for_state_base_change(batch);
4020
4021 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
4022 sba.SurfaceStateMOCS = MOCS_WB;
4023 sba.SurfaceStateBaseAddressModifyEnable = true;
4024 sba.SurfaceStateBaseAddress = ro_bo(binder->bo, 0);
4025 }
4026
4027 batch->last_surface_base_address = binder->bo->gtt_offset;
4028 }
4029
4030 static void
4031 iris_upload_dirty_render_state(struct iris_context *ice,
4032 struct iris_batch *batch,
4033 const struct pipe_draw_info *draw)
4034 {
4035 const uint64_t dirty = ice->state.dirty;
4036
4037 if (!(dirty & IRIS_ALL_DIRTY_FOR_RENDER))
4038 return;
4039
4040 struct iris_genx_state *genx = ice->state.genx;
4041 struct iris_binder *binder = &ice->state.binder;
4042 struct brw_wm_prog_data *wm_prog_data = (void *)
4043 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
4044
4045 if (dirty & IRIS_DIRTY_CC_VIEWPORT) {
4046 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4047 uint32_t cc_vp_address;
4048
4049 /* XXX: could avoid streaming for depth_clip [0,1] case. */
4050 uint32_t *cc_vp_map =
4051 stream_state(batch, ice->state.dynamic_uploader,
4052 &ice->state.last_res.cc_vp,
4053 4 * ice->state.num_viewports *
4054 GENX(CC_VIEWPORT_length), 32, &cc_vp_address);
4055 for (int i = 0; i < ice->state.num_viewports; i++) {
4056 float zmin, zmax;
4057 util_viewport_zmin_zmax(&ice->state.viewports[i],
4058 cso_rast->clip_halfz, &zmin, &zmax);
4059 if (cso_rast->depth_clip_near)
4060 zmin = 0.0;
4061 if (cso_rast->depth_clip_far)
4062 zmax = 1.0;
4063
4064 iris_pack_state(GENX(CC_VIEWPORT), cc_vp_map, ccv) {
4065 ccv.MinimumDepth = zmin;
4066 ccv.MaximumDepth = zmax;
4067 }
4068
4069 cc_vp_map += GENX(CC_VIEWPORT_length);
4070 }
4071
4072 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
4073 ptr.CCViewportPointer = cc_vp_address;
4074 }
4075 }
4076
4077 if (dirty & IRIS_DIRTY_SF_CL_VIEWPORT) {
4078 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4079 uint32_t sf_cl_vp_address;
4080 uint32_t *vp_map =
4081 stream_state(batch, ice->state.dynamic_uploader,
4082 &ice->state.last_res.sf_cl_vp,
4083 4 * ice->state.num_viewports *
4084 GENX(SF_CLIP_VIEWPORT_length), 64, &sf_cl_vp_address);
4085
4086 for (unsigned i = 0; i < ice->state.num_viewports; i++) {
4087 const struct pipe_viewport_state *state = &ice->state.viewports[i];
4088 float gb_xmin, gb_xmax, gb_ymin, gb_ymax;
4089
4090 float vp_xmin = viewport_extent(state, 0, -1.0f);
4091 float vp_xmax = viewport_extent(state, 0, 1.0f);
4092 float vp_ymin = viewport_extent(state, 1, -1.0f);
4093 float vp_ymax = viewport_extent(state, 1, 1.0f);
4094
4095 calculate_guardband_size(cso_fb->width, cso_fb->height,
4096 state->scale[0], state->scale[1],
4097 state->translate[0], state->translate[1],
4098 &gb_xmin, &gb_xmax, &gb_ymin, &gb_ymax);
4099
4100 iris_pack_state(GENX(SF_CLIP_VIEWPORT), vp_map, vp) {
4101 vp.ViewportMatrixElementm00 = state->scale[0];
4102 vp.ViewportMatrixElementm11 = state->scale[1];
4103 vp.ViewportMatrixElementm22 = state->scale[2];
4104 vp.ViewportMatrixElementm30 = state->translate[0];
4105 vp.ViewportMatrixElementm31 = state->translate[1];
4106 vp.ViewportMatrixElementm32 = state->translate[2];
4107 vp.XMinClipGuardband = gb_xmin;
4108 vp.XMaxClipGuardband = gb_xmax;
4109 vp.YMinClipGuardband = gb_ymin;
4110 vp.YMaxClipGuardband = gb_ymax;
4111 vp.XMinViewPort = MAX2(vp_xmin, 0);
4112 vp.XMaxViewPort = MIN2(vp_xmax, cso_fb->width) - 1;
4113 vp.YMinViewPort = MAX2(vp_ymin, 0);
4114 vp.YMaxViewPort = MIN2(vp_ymax, cso_fb->height) - 1;
4115 }
4116
4117 vp_map += GENX(SF_CLIP_VIEWPORT_length);
4118 }
4119
4120 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
4121 ptr.SFClipViewportPointer = sf_cl_vp_address;
4122 }
4123 }
4124
4125 if (dirty & IRIS_DIRTY_URB) {
4126 iris_upload_urb_config(ice, batch);
4127 }
4128
4129 if (dirty & IRIS_DIRTY_BLEND_STATE) {
4130 struct iris_blend_state *cso_blend = ice->state.cso_blend;
4131 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4132 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
4133 const int header_dwords = GENX(BLEND_STATE_length);
4134 const int rt_dwords = cso_fb->nr_cbufs * GENX(BLEND_STATE_ENTRY_length);
4135 uint32_t blend_offset;
4136 uint32_t *blend_map =
4137 stream_state(batch, ice->state.dynamic_uploader,
4138 &ice->state.last_res.blend,
4139 4 * (header_dwords + rt_dwords), 64, &blend_offset);
4140
4141 uint32_t blend_state_header;
4142 iris_pack_state(GENX(BLEND_STATE), &blend_state_header, bs) {
4143 bs.AlphaTestEnable = cso_zsa->alpha.enabled;
4144 bs.AlphaTestFunction = translate_compare_func(cso_zsa->alpha.func);
4145 }
4146
4147 blend_map[0] = blend_state_header | cso_blend->blend_state[0];
4148 memcpy(&blend_map[1], &cso_blend->blend_state[1], 4 * rt_dwords);
4149
4150 iris_emit_cmd(batch, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
4151 ptr.BlendStatePointer = blend_offset;
4152 ptr.BlendStatePointerValid = true;
4153 }
4154 }
4155
4156 if (dirty & IRIS_DIRTY_COLOR_CALC_STATE) {
4157 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
4158 #if GEN_GEN == 8
4159 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
4160 #endif
4161 uint32_t cc_offset;
4162 void *cc_map =
4163 stream_state(batch, ice->state.dynamic_uploader,
4164 &ice->state.last_res.color_calc,
4165 sizeof(uint32_t) * GENX(COLOR_CALC_STATE_length),
4166 64, &cc_offset);
4167 iris_pack_state(GENX(COLOR_CALC_STATE), cc_map, cc) {
4168 cc.AlphaTestFormat = ALPHATEST_FLOAT32;
4169 cc.AlphaReferenceValueAsFLOAT32 = cso->alpha.ref_value;
4170 cc.BlendConstantColorRed = ice->state.blend_color.color[0];
4171 cc.BlendConstantColorGreen = ice->state.blend_color.color[1];
4172 cc.BlendConstantColorBlue = ice->state.blend_color.color[2];
4173 cc.BlendConstantColorAlpha = ice->state.blend_color.color[3];
4174 #if GEN_GEN == 8
4175 cc.StencilReferenceValue = p_stencil_refs->ref_value[0];
4176 cc.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
4177 #endif
4178 }
4179 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
4180 ptr.ColorCalcStatePointer = cc_offset;
4181 ptr.ColorCalcStatePointerValid = true;
4182 }
4183 }
4184
4185 /* Upload constants for TCS passthrough. */
4186 if ((dirty & IRIS_DIRTY_CONSTANTS_TCS) &&
4187 ice->shaders.prog[MESA_SHADER_TESS_CTRL] &&
4188 !ice->shaders.uncompiled[MESA_SHADER_TESS_CTRL]) {
4189 struct iris_compiled_shader *tes_shader = ice->shaders.prog[MESA_SHADER_TESS_EVAL];
4190 assert(tes_shader);
4191
4192 /* Passthrough always copies 2 vec4s, so when uploading data we ensure
4193 * it is in the right layout for TES.
4194 */
4195 float hdr[8] = {};
4196 struct brw_tes_prog_data *tes_prog_data = (void *) tes_shader->prog_data;
4197 switch (tes_prog_data->domain) {
4198 case BRW_TESS_DOMAIN_QUAD:
4199 for (int i = 0; i < 4; i++)
4200 hdr[7 - i] = ice->state.default_outer_level[i];
4201 hdr[3] = ice->state.default_inner_level[0];
4202 hdr[2] = ice->state.default_inner_level[1];
4203 break;
4204 case BRW_TESS_DOMAIN_TRI:
4205 for (int i = 0; i < 3; i++)
4206 hdr[7 - i] = ice->state.default_outer_level[i];
4207 hdr[4] = ice->state.default_inner_level[0];
4208 break;
4209 case BRW_TESS_DOMAIN_ISOLINE:
4210 hdr[7] = ice->state.default_outer_level[1];
4211 hdr[6] = ice->state.default_outer_level[0];
4212 break;
4213 }
4214
4215 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_TESS_CTRL];
4216 struct iris_const_buffer *cbuf = &shs->constbuf[0];
4217 u_upload_data(ice->ctx.const_uploader, 0, sizeof(hdr), 32,
4218 &hdr[0], &cbuf->data.offset,
4219 &cbuf->data.res);
4220 }
4221
4222 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4223 if (!(dirty & (IRIS_DIRTY_CONSTANTS_VS << stage)))
4224 continue;
4225
4226 struct iris_shader_state *shs = &ice->state.shaders[stage];
4227 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4228
4229 if (!shader)
4230 continue;
4231
4232 if (shs->cbuf0_needs_upload)
4233 upload_uniforms(ice, stage);
4234
4235 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4236
4237 iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_VS), pkt) {
4238 pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
4239 if (prog_data) {
4240 /* The Skylake PRM contains the following restriction:
4241 *
4242 * "The driver must ensure The following case does not occur
4243 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
4244 * buffer 3 read length equal to zero committed followed by a
4245 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
4246 * zero committed."
4247 *
4248 * To avoid this, we program the buffers in the highest slots.
4249 * This way, slot 0 is only used if slot 3 is also used.
4250 */
4251 int n = 3;
4252
4253 for (int i = 3; i >= 0; i--) {
4254 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4255
4256 if (range->length == 0)
4257 continue;
4258
4259 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
4260 struct iris_resource *res = (void *) cbuf->data.res;
4261
4262 assert(cbuf->data.offset % 32 == 0);
4263
4264 pkt.ConstantBody.ReadLength[n] = range->length;
4265 pkt.ConstantBody.Buffer[n] =
4266 res ? ro_bo(res->bo, range->start * 32 + cbuf->data.offset)
4267 : ro_bo(batch->screen->workaround_bo, 0);
4268 n--;
4269 }
4270 }
4271 }
4272 }
4273
4274 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4275 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4276 iris_emit_cmd(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), ptr) {
4277 ptr._3DCommandSubOpcode = 38 + stage;
4278 ptr.PointertoVSBindingTable = binder->bt_offset[stage];
4279 }
4280 }
4281 }
4282
4283 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4284 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4285 iris_populate_binding_table(ice, batch, stage, false);
4286 }
4287 }
4288
4289 if (ice->state.need_border_colors)
4290 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
4291
4292 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4293 if (!(dirty & (IRIS_DIRTY_SAMPLER_STATES_VS << stage)) ||
4294 !ice->shaders.prog[stage])
4295 continue;
4296
4297 struct iris_shader_state *shs = &ice->state.shaders[stage];
4298 struct pipe_resource *res = shs->sampler_table.res;
4299 if (res)
4300 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4301
4302 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
4303 ptr._3DCommandSubOpcode = 43 + stage;
4304 ptr.PointertoVSSamplerState = shs->sampler_table.offset;
4305 }
4306 }
4307
4308 if (dirty & IRIS_DIRTY_MULTISAMPLE) {
4309 iris_emit_cmd(batch, GENX(3DSTATE_MULTISAMPLE), ms) {
4310 ms.PixelLocation =
4311 ice->state.cso_rast->half_pixel_center ? CENTER : UL_CORNER;
4312 if (ice->state.framebuffer.samples > 0)
4313 ms.NumberofMultisamples = ffs(ice->state.framebuffer.samples) - 1;
4314 }
4315 }
4316
4317 if (dirty & IRIS_DIRTY_SAMPLE_MASK) {
4318 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_MASK), ms) {
4319 ms.SampleMask = MAX2(ice->state.sample_mask, 1);
4320 }
4321 }
4322
4323 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4324 if (!(dirty & (IRIS_DIRTY_VS << stage)))
4325 continue;
4326
4327 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4328
4329 if (shader) {
4330 struct iris_resource *cache = (void *) shader->assembly.res;
4331 iris_use_pinned_bo(batch, cache->bo, false);
4332 iris_batch_emit(batch, shader->derived_data,
4333 iris_derived_program_state_size(stage));
4334 } else {
4335 if (stage == MESA_SHADER_TESS_EVAL) {
4336 iris_emit_cmd(batch, GENX(3DSTATE_HS), hs);
4337 iris_emit_cmd(batch, GENX(3DSTATE_TE), te);
4338 iris_emit_cmd(batch, GENX(3DSTATE_DS), ds);
4339 } else if (stage == MESA_SHADER_GEOMETRY) {
4340 iris_emit_cmd(batch, GENX(3DSTATE_GS), gs);
4341 }
4342 }
4343 }
4344
4345 if (ice->state.streamout_active) {
4346 if (dirty & IRIS_DIRTY_SO_BUFFERS) {
4347 iris_batch_emit(batch, genx->so_buffers,
4348 4 * 4 * GENX(3DSTATE_SO_BUFFER_length));
4349 for (int i = 0; i < 4; i++) {
4350 struct iris_stream_output_target *tgt =
4351 (void *) ice->state.so_target[i];
4352 if (tgt) {
4353 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
4354 true);
4355 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
4356 true);
4357 }
4358 }
4359 }
4360
4361 if ((dirty & IRIS_DIRTY_SO_DECL_LIST) && ice->state.streamout) {
4362 uint32_t *decl_list =
4363 ice->state.streamout + GENX(3DSTATE_STREAMOUT_length);
4364 iris_batch_emit(batch, decl_list, 4 * ((decl_list[0] & 0xff) + 2));
4365 }
4366
4367 if (dirty & IRIS_DIRTY_STREAMOUT) {
4368 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4369
4370 uint32_t dynamic_sol[GENX(3DSTATE_STREAMOUT_length)];
4371 iris_pack_command(GENX(3DSTATE_STREAMOUT), dynamic_sol, sol) {
4372 sol.SOFunctionEnable = true;
4373 sol.SOStatisticsEnable = true;
4374
4375 sol.RenderingDisable = cso_rast->rasterizer_discard &&
4376 !ice->state.prims_generated_query_active;
4377 sol.ReorderMode = cso_rast->flatshade_first ? LEADING : TRAILING;
4378 }
4379
4380 assert(ice->state.streamout);
4381
4382 iris_emit_merge(batch, ice->state.streamout, dynamic_sol,
4383 GENX(3DSTATE_STREAMOUT_length));
4384 }
4385 } else {
4386 if (dirty & IRIS_DIRTY_STREAMOUT) {
4387 iris_emit_cmd(batch, GENX(3DSTATE_STREAMOUT), sol);
4388 }
4389 }
4390
4391 if (dirty & IRIS_DIRTY_CLIP) {
4392 struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4393 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4394
4395 uint32_t dynamic_clip[GENX(3DSTATE_CLIP_length)];
4396 iris_pack_command(GENX(3DSTATE_CLIP), &dynamic_clip, cl) {
4397 cl.StatisticsEnable = ice->state.statistics_counters_enabled;
4398 cl.ClipMode = cso_rast->rasterizer_discard ? CLIPMODE_REJECT_ALL
4399 : CLIPMODE_NORMAL;
4400 if (wm_prog_data->barycentric_interp_modes &
4401 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
4402 cl.NonPerspectiveBarycentricEnable = true;
4403
4404 cl.ForceZeroRTAIndexEnable = cso_fb->layers == 0;
4405 cl.MaximumVPIndex = ice->state.num_viewports - 1;
4406 }
4407 iris_emit_merge(batch, cso_rast->clip, dynamic_clip,
4408 ARRAY_SIZE(cso_rast->clip));
4409 }
4410
4411 if (dirty & IRIS_DIRTY_RASTER) {
4412 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4413 iris_batch_emit(batch, cso->raster, sizeof(cso->raster));
4414 iris_batch_emit(batch, cso->sf, sizeof(cso->sf));
4415
4416 }
4417
4418 if (dirty & IRIS_DIRTY_WM) {
4419 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4420 uint32_t dynamic_wm[GENX(3DSTATE_WM_length)];
4421
4422 iris_pack_command(GENX(3DSTATE_WM), &dynamic_wm, wm) {
4423 wm.StatisticsEnable = ice->state.statistics_counters_enabled;
4424
4425 wm.BarycentricInterpolationMode =
4426 wm_prog_data->barycentric_interp_modes;
4427
4428 if (wm_prog_data->early_fragment_tests)
4429 wm.EarlyDepthStencilControl = EDSC_PREPS;
4430 else if (wm_prog_data->has_side_effects)
4431 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
4432 }
4433 iris_emit_merge(batch, cso->wm, dynamic_wm, ARRAY_SIZE(cso->wm));
4434 }
4435
4436 if (dirty & IRIS_DIRTY_SBE) {
4437 iris_emit_sbe(batch, ice);
4438 }
4439
4440 if (dirty & IRIS_DIRTY_PS_BLEND) {
4441 struct iris_blend_state *cso_blend = ice->state.cso_blend;
4442 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
4443 uint32_t dynamic_pb[GENX(3DSTATE_PS_BLEND_length)];
4444 iris_pack_command(GENX(3DSTATE_PS_BLEND), &dynamic_pb, pb) {
4445 pb.HasWriteableRT = true; // XXX: comes from somewhere :(
4446 pb.AlphaTestEnable = cso_zsa->alpha.enabled;
4447 }
4448
4449 iris_emit_merge(batch, cso_blend->ps_blend, dynamic_pb,
4450 ARRAY_SIZE(cso_blend->ps_blend));
4451 }
4452
4453 if (dirty & IRIS_DIRTY_WM_DEPTH_STENCIL) {
4454 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
4455 #if GEN_GEN >= 9
4456 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
4457 uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
4458 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
4459 wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
4460 wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
4461 }
4462 iris_emit_merge(batch, cso->wmds, stencil_refs, ARRAY_SIZE(cso->wmds));
4463 #else
4464 iris_batch_emit(batch, cso->wmds, sizeof(cso->wmds));
4465 #endif
4466 }
4467
4468 if (dirty & IRIS_DIRTY_SCISSOR_RECT) {
4469 uint32_t scissor_offset =
4470 emit_state(batch, ice->state.dynamic_uploader,
4471 &ice->state.last_res.scissor,
4472 ice->state.scissors,
4473 sizeof(struct pipe_scissor_state) *
4474 ice->state.num_viewports, 32);
4475
4476 iris_emit_cmd(batch, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
4477 ptr.ScissorRectPointer = scissor_offset;
4478 }
4479 }
4480
4481 if (dirty & IRIS_DIRTY_DEPTH_BUFFER) {
4482 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4483 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
4484
4485 iris_batch_emit(batch, cso_z->packets, sizeof(cso_z->packets));
4486
4487 if (cso_fb->zsbuf) {
4488 struct iris_resource *zres, *sres;
4489 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
4490 &zres, &sres);
4491 if (zres) {
4492 iris_use_pinned_bo(batch, zres->bo,
4493 ice->state.depth_writes_enabled);
4494 }
4495
4496 if (sres) {
4497 iris_use_pinned_bo(batch, sres->bo,
4498 ice->state.stencil_writes_enabled);
4499 }
4500 }
4501 }
4502
4503 if (dirty & IRIS_DIRTY_POLYGON_STIPPLE) {
4504 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
4505 for (int i = 0; i < 32; i++) {
4506 poly.PatternRow[i] = ice->state.poly_stipple.stipple[i];
4507 }
4508 }
4509 }
4510
4511 if (dirty & IRIS_DIRTY_LINE_STIPPLE) {
4512 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4513 iris_batch_emit(batch, cso->line_stipple, sizeof(cso->line_stipple));
4514 }
4515
4516 if (dirty & IRIS_DIRTY_VF_TOPOLOGY) {
4517 iris_emit_cmd(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
4518 topo.PrimitiveTopologyType =
4519 translate_prim_type(draw->mode, draw->vertices_per_patch);
4520 }
4521 }
4522
4523 if (dirty & IRIS_DIRTY_VERTEX_BUFFERS) {
4524 int count = util_bitcount64(ice->state.bound_vertex_buffers);
4525
4526 if (count) {
4527 /* The VF cache designers cut corners, and made the cache key's
4528 * <VertexBufferIndex, Memory Address> tuple only consider the bottom
4529 * 32 bits of the address. If you have two vertex buffers which get
4530 * placed exactly 4 GiB apart and use them in back-to-back draw calls,
4531 * you can get collisions (even within a single batch).
4532 *
4533 * So, we need to do a VF cache invalidate if the buffer for a VB
4534 * slot slot changes [48:32] address bits from the previous time.
4535 */
4536 unsigned flush_flags = 0;
4537
4538 uint64_t bound = ice->state.bound_vertex_buffers;
4539 while (bound) {
4540 const int i = u_bit_scan64(&bound);
4541 uint16_t high_bits = 0;
4542
4543 struct iris_resource *res =
4544 (void *) genx->vertex_buffers[i].resource;
4545 if (res) {
4546 iris_use_pinned_bo(batch, res->bo, false);
4547
4548 high_bits = res->bo->gtt_offset >> 32ull;
4549 if (high_bits != ice->state.last_vbo_high_bits[i]) {
4550 flush_flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
4551 ice->state.last_vbo_high_bits[i] = high_bits;
4552 }
4553
4554 /* If the buffer was written to by streamout, we may need
4555 * to stall so those writes land and become visible to the
4556 * vertex fetcher.
4557 *
4558 * TODO: This may stall more than necessary.
4559 */
4560 if (res->bind_history & PIPE_BIND_STREAM_OUTPUT)
4561 flush_flags |= PIPE_CONTROL_CS_STALL;
4562 }
4563 }
4564
4565 if (flush_flags)
4566 iris_emit_pipe_control_flush(batch, flush_flags);
4567
4568 const unsigned vb_dwords = GENX(VERTEX_BUFFER_STATE_length);
4569
4570 uint32_t *map =
4571 iris_get_command_space(batch, 4 * (1 + vb_dwords * count));
4572 _iris_pack_command(batch, GENX(3DSTATE_VERTEX_BUFFERS), map, vb) {
4573 vb.DWordLength = (vb_dwords * count + 1) - 2;
4574 }
4575 map += 1;
4576
4577 bound = ice->state.bound_vertex_buffers;
4578 while (bound) {
4579 const int i = u_bit_scan64(&bound);
4580 memcpy(map, genx->vertex_buffers[i].state,
4581 sizeof(uint32_t) * vb_dwords);
4582 map += vb_dwords;
4583 }
4584 }
4585 }
4586
4587 if (dirty & IRIS_DIRTY_VERTEX_ELEMENTS) {
4588 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
4589 const unsigned entries = MAX2(cso->count, 1);
4590 iris_batch_emit(batch, cso->vertex_elements, sizeof(uint32_t) *
4591 (1 + entries * GENX(VERTEX_ELEMENT_STATE_length)));
4592 iris_batch_emit(batch, cso->vf_instancing, sizeof(uint32_t) *
4593 entries * GENX(3DSTATE_VF_INSTANCING_length));
4594 }
4595
4596 if (dirty & IRIS_DIRTY_VF_SGVS) {
4597 const struct brw_vs_prog_data *vs_prog_data = (void *)
4598 ice->shaders.prog[MESA_SHADER_VERTEX]->prog_data;
4599 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
4600
4601 iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS), sgv) {
4602 if (vs_prog_data->uses_vertexid) {
4603 sgv.VertexIDEnable = true;
4604 sgv.VertexIDComponentNumber = 2;
4605 sgv.VertexIDElementOffset = cso->count;
4606 }
4607
4608 if (vs_prog_data->uses_instanceid) {
4609 sgv.InstanceIDEnable = true;
4610 sgv.InstanceIDComponentNumber = 3;
4611 sgv.InstanceIDElementOffset = cso->count;
4612 }
4613 }
4614 }
4615
4616 if (dirty & IRIS_DIRTY_VF) {
4617 iris_emit_cmd(batch, GENX(3DSTATE_VF), vf) {
4618 if (draw->primitive_restart) {
4619 vf.IndexedDrawCutIndexEnable = true;
4620 vf.CutIndex = draw->restart_index;
4621 }
4622 }
4623 }
4624
4625 // XXX: Gen8 - PMA fix
4626 }
4627
4628 static void
4629 iris_upload_render_state(struct iris_context *ice,
4630 struct iris_batch *batch,
4631 const struct pipe_draw_info *draw)
4632 {
4633 /* Always pin the binder. If we're emitting new binding table pointers,
4634 * we need it. If not, we're probably inheriting old tables via the
4635 * context, and need it anyway. Since true zero-bindings cases are
4636 * practically non-existent, just pin it and avoid last_res tracking.
4637 */
4638 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
4639
4640 if (!batch->contains_draw) {
4641 iris_restore_render_saved_bos(ice, batch, draw);
4642 batch->contains_draw = true;
4643 }
4644
4645 iris_upload_dirty_render_state(ice, batch, draw);
4646
4647 if (draw->index_size > 0) {
4648 unsigned offset;
4649
4650 if (draw->has_user_indices) {
4651 u_upload_data(ice->ctx.stream_uploader, 0,
4652 draw->count * draw->index_size, 4, draw->index.user,
4653 &offset, &ice->state.last_res.index_buffer);
4654 } else {
4655 struct iris_resource *res = (void *) draw->index.resource;
4656 res->bind_history |= PIPE_BIND_INDEX_BUFFER;
4657
4658 pipe_resource_reference(&ice->state.last_res.index_buffer,
4659 draw->index.resource);
4660 offset = 0;
4661 }
4662
4663 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
4664
4665 iris_emit_cmd(batch, GENX(3DSTATE_INDEX_BUFFER), ib) {
4666 ib.IndexFormat = draw->index_size >> 1;
4667 ib.MOCS = mocs(bo);
4668 ib.BufferSize = bo->size;
4669 ib.BufferStartingAddress = ro_bo(bo, offset);
4670 }
4671
4672 /* The VF cache key only uses 32-bits, see vertex buffer comment above */
4673 uint16_t high_bits = bo->gtt_offset >> 32ull;
4674 if (high_bits != ice->state.last_index_bo_high_bits) {
4675 iris_emit_pipe_control_flush(batch, PIPE_CONTROL_VF_CACHE_INVALIDATE);
4676 ice->state.last_index_bo_high_bits = high_bits;
4677 }
4678 }
4679
4680 #define _3DPRIM_END_OFFSET 0x2420
4681 #define _3DPRIM_START_VERTEX 0x2430
4682 #define _3DPRIM_VERTEX_COUNT 0x2434
4683 #define _3DPRIM_INSTANCE_COUNT 0x2438
4684 #define _3DPRIM_START_INSTANCE 0x243C
4685 #define _3DPRIM_BASE_VERTEX 0x2440
4686
4687 if (draw->indirect) {
4688 /* We don't support this MultidrawIndirect. */
4689 assert(!draw->indirect->indirect_draw_count);
4690
4691 struct iris_bo *bo = iris_resource_bo(draw->indirect->buffer);
4692 assert(bo);
4693
4694 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4695 lrm.RegisterAddress = _3DPRIM_VERTEX_COUNT;
4696 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 0);
4697 }
4698 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4699 lrm.RegisterAddress = _3DPRIM_INSTANCE_COUNT;
4700 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 4);
4701 }
4702 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4703 lrm.RegisterAddress = _3DPRIM_START_VERTEX;
4704 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 8);
4705 }
4706 if (draw->index_size) {
4707 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4708 lrm.RegisterAddress = _3DPRIM_BASE_VERTEX;
4709 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
4710 }
4711 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4712 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
4713 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 16);
4714 }
4715 } else {
4716 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4717 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
4718 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
4719 }
4720 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
4721 lri.RegisterOffset = _3DPRIM_BASE_VERTEX;
4722 lri.DataDWord = 0;
4723 }
4724 }
4725 } else if (draw->count_from_stream_output) {
4726 struct iris_stream_output_target *so =
4727 (void *) draw->count_from_stream_output;
4728
4729 // XXX: avoid if possible
4730 iris_emit_pipe_control_flush(batch, PIPE_CONTROL_CS_STALL);
4731
4732 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4733 lrm.RegisterAddress = CS_GPR(0);
4734 lrm.MemoryAddress =
4735 ro_bo(iris_resource_bo(so->offset.res), so->offset.offset);
4736 }
4737 iris_math_div32_gpr0(ice, batch, so->stride);
4738 _iris_emit_lrr(batch, _3DPRIM_VERTEX_COUNT, CS_GPR(0));
4739
4740 _iris_emit_lri(batch, _3DPRIM_START_VERTEX, 0);
4741 _iris_emit_lri(batch, _3DPRIM_BASE_VERTEX, 0);
4742 _iris_emit_lri(batch, _3DPRIM_START_INSTANCE, 0);
4743 _iris_emit_lri(batch, _3DPRIM_INSTANCE_COUNT, draw->instance_count);
4744 }
4745
4746 iris_emit_cmd(batch, GENX(3DPRIMITIVE), prim) {
4747 prim.VertexAccessType = draw->index_size > 0 ? RANDOM : SEQUENTIAL;
4748 prim.PredicateEnable =
4749 ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT;
4750
4751 if (draw->indirect || draw->count_from_stream_output) {
4752 prim.IndirectParameterEnable = true;
4753 } else {
4754 prim.StartInstanceLocation = draw->start_instance;
4755 prim.InstanceCount = draw->instance_count;
4756 prim.VertexCountPerInstance = draw->count;
4757
4758 // XXX: this is probably bonkers.
4759 prim.StartVertexLocation = draw->start;
4760
4761 if (draw->index_size) {
4762 prim.BaseVertexLocation += draw->index_bias;
4763 } else {
4764 prim.StartVertexLocation += draw->index_bias;
4765 }
4766
4767 //prim.BaseVertexLocation = ...;
4768 }
4769 }
4770 }
4771
4772 static void
4773 iris_upload_compute_state(struct iris_context *ice,
4774 struct iris_batch *batch,
4775 const struct pipe_grid_info *grid)
4776 {
4777 const uint64_t dirty = ice->state.dirty;
4778 struct iris_screen *screen = batch->screen;
4779 const struct gen_device_info *devinfo = &screen->devinfo;
4780 struct iris_binder *binder = &ice->state.binder;
4781 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
4782 struct iris_compiled_shader *shader =
4783 ice->shaders.prog[MESA_SHADER_COMPUTE];
4784 struct brw_stage_prog_data *prog_data = shader->prog_data;
4785 struct brw_cs_prog_data *cs_prog_data = (void *) prog_data;
4786
4787 /* Always pin the binder. If we're emitting new binding table pointers,
4788 * we need it. If not, we're probably inheriting old tables via the
4789 * context, and need it anyway. Since true zero-bindings cases are
4790 * practically non-existent, just pin it and avoid last_res tracking.
4791 */
4792 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
4793
4794 if ((dirty & IRIS_DIRTY_CONSTANTS_CS) && shs->cbuf0_needs_upload)
4795 upload_uniforms(ice, MESA_SHADER_COMPUTE);
4796
4797 if (dirty & IRIS_DIRTY_BINDINGS_CS)
4798 iris_populate_binding_table(ice, batch, MESA_SHADER_COMPUTE, false);
4799
4800 iris_use_optional_res(batch, shs->sampler_table.res, false);
4801 iris_use_pinned_bo(batch, iris_resource_bo(shader->assembly.res), false);
4802
4803 if (ice->state.need_border_colors)
4804 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
4805
4806 if (dirty & IRIS_DIRTY_CS) {
4807 /* The MEDIA_VFE_STATE documentation for Gen8+ says:
4808 *
4809 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
4810 * the only bits that are changed are scoreboard related: Scoreboard
4811 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard Delta. For
4812 * these scoreboard related states, a MEDIA_STATE_FLUSH is
4813 * sufficient."
4814 */
4815 iris_emit_pipe_control_flush(batch, PIPE_CONTROL_CS_STALL);
4816
4817 iris_emit_cmd(batch, GENX(MEDIA_VFE_STATE), vfe) {
4818 if (prog_data->total_scratch) {
4819 struct iris_bo *bo =
4820 iris_get_scratch_space(ice, prog_data->total_scratch,
4821 MESA_SHADER_COMPUTE);
4822 vfe.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
4823 vfe.ScratchSpaceBasePointer = rw_bo(bo, 0);
4824 }
4825
4826 vfe.MaximumNumberofThreads =
4827 devinfo->max_cs_threads * screen->subslice_total - 1;
4828 #if GEN_GEN < 11
4829 vfe.ResetGatewayTimer =
4830 Resettingrelativetimerandlatchingtheglobaltimestamp;
4831 #endif
4832 #if GEN_GEN == 8
4833 vfe.BypassGatewayControl = true;
4834 #endif
4835 vfe.NumberofURBEntries = 2;
4836 vfe.URBEntryAllocationSize = 2;
4837
4838 // XXX: Use Indirect Payload Storage?
4839 vfe.CURBEAllocationSize =
4840 ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
4841 cs_prog_data->push.cross_thread.regs, 2);
4842 }
4843 }
4844
4845 // XXX: hack iris_set_constant_buffers to upload these thread counts
4846 // XXX: along with regular uniforms for compute shaders, somehow.
4847
4848 uint32_t curbe_data_offset = 0;
4849 // TODO: Move subgroup-id into uniforms ubo so we can push uniforms
4850 assert(cs_prog_data->push.cross_thread.dwords == 0 &&
4851 cs_prog_data->push.per_thread.dwords == 1 &&
4852 cs_prog_data->base.param[0] == BRW_PARAM_BUILTIN_SUBGROUP_ID);
4853 struct pipe_resource *curbe_data_res = NULL;
4854 uint32_t *curbe_data_map =
4855 stream_state(batch, ice->state.dynamic_uploader, &curbe_data_res,
4856 ALIGN(cs_prog_data->push.total.size, 64), 64,
4857 &curbe_data_offset);
4858 assert(curbe_data_map);
4859 memset(curbe_data_map, 0x5a, ALIGN(cs_prog_data->push.total.size, 64));
4860 iris_fill_cs_push_const_buffer(cs_prog_data, curbe_data_map);
4861
4862 if (dirty & IRIS_DIRTY_CONSTANTS_CS) {
4863 iris_emit_cmd(batch, GENX(MEDIA_CURBE_LOAD), curbe) {
4864 curbe.CURBETotalDataLength =
4865 ALIGN(cs_prog_data->push.total.size, 64);
4866 curbe.CURBEDataStartAddress = curbe_data_offset;
4867 }
4868 }
4869
4870 if (dirty & (IRIS_DIRTY_SAMPLER_STATES_CS |
4871 IRIS_DIRTY_BINDINGS_CS |
4872 IRIS_DIRTY_CONSTANTS_CS |
4873 IRIS_DIRTY_CS)) {
4874 struct pipe_resource *desc_res = NULL;
4875 uint32_t desc[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
4876
4877 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), desc, idd) {
4878 idd.SamplerStatePointer = shs->sampler_table.offset;
4879 idd.BindingTablePointer = binder->bt_offset[MESA_SHADER_COMPUTE];
4880 }
4881
4882 for (int i = 0; i < GENX(INTERFACE_DESCRIPTOR_DATA_length); i++)
4883 desc[i] |= ((uint32_t *) shader->derived_data)[i];
4884
4885 iris_emit_cmd(batch, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
4886 load.InterfaceDescriptorTotalLength =
4887 GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
4888 load.InterfaceDescriptorDataStartAddress =
4889 emit_state(batch, ice->state.dynamic_uploader,
4890 &desc_res, desc, sizeof(desc), 32);
4891 }
4892
4893 pipe_resource_reference(&desc_res, NULL);
4894 }
4895
4896 uint32_t group_size = grid->block[0] * grid->block[1] * grid->block[2];
4897 uint32_t remainder = group_size & (cs_prog_data->simd_size - 1);
4898 uint32_t right_mask;
4899
4900 if (remainder > 0)
4901 right_mask = ~0u >> (32 - remainder);
4902 else
4903 right_mask = ~0u >> (32 - cs_prog_data->simd_size);
4904
4905 #define GPGPU_DISPATCHDIMX 0x2500
4906 #define GPGPU_DISPATCHDIMY 0x2504
4907 #define GPGPU_DISPATCHDIMZ 0x2508
4908
4909 if (grid->indirect) {
4910 struct iris_state_ref *grid_size = &ice->state.grid_size;
4911 struct iris_bo *bo = iris_resource_bo(grid_size->res);
4912 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4913 lrm.RegisterAddress = GPGPU_DISPATCHDIMX;
4914 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 0);
4915 }
4916 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4917 lrm.RegisterAddress = GPGPU_DISPATCHDIMY;
4918 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 4);
4919 }
4920 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4921 lrm.RegisterAddress = GPGPU_DISPATCHDIMZ;
4922 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 8);
4923 }
4924 }
4925
4926 iris_emit_cmd(batch, GENX(GPGPU_WALKER), ggw) {
4927 ggw.IndirectParameterEnable = grid->indirect != NULL;
4928 ggw.SIMDSize = cs_prog_data->simd_size / 16;
4929 ggw.ThreadDepthCounterMaximum = 0;
4930 ggw.ThreadHeightCounterMaximum = 0;
4931 ggw.ThreadWidthCounterMaximum = cs_prog_data->threads - 1;
4932 ggw.ThreadGroupIDXDimension = grid->grid[0];
4933 ggw.ThreadGroupIDYDimension = grid->grid[1];
4934 ggw.ThreadGroupIDZDimension = grid->grid[2];
4935 ggw.RightExecutionMask = right_mask;
4936 ggw.BottomExecutionMask = 0xffffffff;
4937 }
4938
4939 iris_emit_cmd(batch, GENX(MEDIA_STATE_FLUSH), msf);
4940
4941 if (!batch->contains_draw) {
4942 iris_restore_compute_saved_bos(ice, batch, grid);
4943 batch->contains_draw = true;
4944 }
4945 }
4946
4947 /**
4948 * State module teardown.
4949 */
4950 static void
4951 iris_destroy_state(struct iris_context *ice)
4952 {
4953 struct iris_genx_state *genx = ice->state.genx;
4954
4955 uint64_t bound_vbs = ice->state.bound_vertex_buffers;
4956 while (bound_vbs) {
4957 const int i = u_bit_scan64(&bound_vbs);
4958 pipe_resource_reference(&genx->vertex_buffers[i].resource, NULL);
4959 }
4960
4961 // XXX: unreference resources/surfaces.
4962 for (unsigned i = 0; i < ice->state.framebuffer.nr_cbufs; i++) {
4963 pipe_surface_reference(&ice->state.framebuffer.cbufs[i], NULL);
4964 }
4965 pipe_surface_reference(&ice->state.framebuffer.zsbuf, NULL);
4966
4967 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4968 struct iris_shader_state *shs = &ice->state.shaders[stage];
4969 pipe_resource_reference(&shs->sampler_table.res, NULL);
4970 }
4971 free(ice->state.genx);
4972
4973 pipe_resource_reference(&ice->state.unbound_tex.res, NULL);
4974
4975 pipe_resource_reference(&ice->state.last_res.cc_vp, NULL);
4976 pipe_resource_reference(&ice->state.last_res.sf_cl_vp, NULL);
4977 pipe_resource_reference(&ice->state.last_res.color_calc, NULL);
4978 pipe_resource_reference(&ice->state.last_res.scissor, NULL);
4979 pipe_resource_reference(&ice->state.last_res.blend, NULL);
4980 pipe_resource_reference(&ice->state.last_res.index_buffer, NULL);
4981 }
4982
4983 /* ------------------------------------------------------------------- */
4984
4985 static void
4986 iris_load_register_reg32(struct iris_batch *batch, uint32_t dst,
4987 uint32_t src)
4988 {
4989 _iris_emit_lrr(batch, dst, src);
4990 }
4991
4992 static void
4993 iris_load_register_reg64(struct iris_batch *batch, uint32_t dst,
4994 uint32_t src)
4995 {
4996 _iris_emit_lrr(batch, dst, src);
4997 _iris_emit_lrr(batch, dst + 4, src + 4);
4998 }
4999
5000 static void
5001 iris_load_register_imm32(struct iris_batch *batch, uint32_t reg,
5002 uint32_t val)
5003 {
5004 _iris_emit_lri(batch, reg, val);
5005 }
5006
5007 static void
5008 iris_load_register_imm64(struct iris_batch *batch, uint32_t reg,
5009 uint64_t val)
5010 {
5011 _iris_emit_lri(batch, reg + 0, val & 0xffffffff);
5012 _iris_emit_lri(batch, reg + 4, val >> 32);
5013 }
5014
5015 /**
5016 * Emit MI_LOAD_REGISTER_MEM to load a 32-bit MMIO register from a buffer.
5017 */
5018 static void
5019 iris_load_register_mem32(struct iris_batch *batch, uint32_t reg,
5020 struct iris_bo *bo, uint32_t offset)
5021 {
5022 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5023 lrm.RegisterAddress = reg;
5024 lrm.MemoryAddress = ro_bo(bo, offset);
5025 }
5026 }
5027
5028 /**
5029 * Load a 64-bit value from a buffer into a MMIO register via
5030 * two MI_LOAD_REGISTER_MEM commands.
5031 */
5032 static void
5033 iris_load_register_mem64(struct iris_batch *batch, uint32_t reg,
5034 struct iris_bo *bo, uint32_t offset)
5035 {
5036 iris_load_register_mem32(batch, reg + 0, bo, offset + 0);
5037 iris_load_register_mem32(batch, reg + 4, bo, offset + 4);
5038 }
5039
5040 static void
5041 iris_store_register_mem32(struct iris_batch *batch, uint32_t reg,
5042 struct iris_bo *bo, uint32_t offset,
5043 bool predicated)
5044 {
5045 iris_emit_cmd(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
5046 srm.RegisterAddress = reg;
5047 srm.MemoryAddress = rw_bo(bo, offset);
5048 srm.PredicateEnable = predicated;
5049 }
5050 }
5051
5052 static void
5053 iris_store_register_mem64(struct iris_batch *batch, uint32_t reg,
5054 struct iris_bo *bo, uint32_t offset,
5055 bool predicated)
5056 {
5057 iris_store_register_mem32(batch, reg + 0, bo, offset + 0, predicated);
5058 iris_store_register_mem32(batch, reg + 4, bo, offset + 4, predicated);
5059 }
5060
5061 static void
5062 iris_store_data_imm32(struct iris_batch *batch,
5063 struct iris_bo *bo, uint32_t offset,
5064 uint32_t imm)
5065 {
5066 iris_emit_cmd(batch, GENX(MI_STORE_DATA_IMM), sdi) {
5067 sdi.Address = rw_bo(bo, offset);
5068 sdi.ImmediateData = imm;
5069 }
5070 }
5071
5072 static void
5073 iris_store_data_imm64(struct iris_batch *batch,
5074 struct iris_bo *bo, uint32_t offset,
5075 uint64_t imm)
5076 {
5077 /* Can't use iris_emit_cmd because MI_STORE_DATA_IMM has a length of
5078 * 2 in genxml but it's actually variable length and we need 5 DWords.
5079 */
5080 void *map = iris_get_command_space(batch, 4 * 5);
5081 _iris_pack_command(batch, GENX(MI_STORE_DATA_IMM), map, sdi) {
5082 sdi.DWordLength = 5 - 2;
5083 sdi.Address = rw_bo(bo, offset);
5084 sdi.ImmediateData = imm;
5085 }
5086 }
5087
5088 static void
5089 iris_copy_mem_mem(struct iris_batch *batch,
5090 struct iris_bo *dst_bo, uint32_t dst_offset,
5091 struct iris_bo *src_bo, uint32_t src_offset,
5092 unsigned bytes)
5093 {
5094 /* MI_COPY_MEM_MEM operates on DWords. */
5095 assert(bytes % 4 == 0);
5096 assert(dst_offset % 4 == 0);
5097 assert(src_offset % 4 == 0);
5098
5099 for (unsigned i = 0; i < bytes; i += 4) {
5100 iris_emit_cmd(batch, GENX(MI_COPY_MEM_MEM), cp) {
5101 cp.DestinationMemoryAddress = rw_bo(dst_bo, dst_offset + i);
5102 cp.SourceMemoryAddress = ro_bo(src_bo, src_offset + i);
5103 }
5104 }
5105 }
5106
5107 /* ------------------------------------------------------------------- */
5108
5109 static unsigned
5110 flags_to_post_sync_op(uint32_t flags)
5111 {
5112 if (flags & PIPE_CONTROL_WRITE_IMMEDIATE)
5113 return WriteImmediateData;
5114
5115 if (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT)
5116 return WritePSDepthCount;
5117
5118 if (flags & PIPE_CONTROL_WRITE_TIMESTAMP)
5119 return WriteTimestamp;
5120
5121 return 0;
5122 }
5123
5124 /**
5125 * Do the given flags have a Post Sync or LRI Post Sync operation?
5126 */
5127 static enum pipe_control_flags
5128 get_post_sync_flags(enum pipe_control_flags flags)
5129 {
5130 flags &= PIPE_CONTROL_WRITE_IMMEDIATE |
5131 PIPE_CONTROL_WRITE_DEPTH_COUNT |
5132 PIPE_CONTROL_WRITE_TIMESTAMP |
5133 PIPE_CONTROL_LRI_POST_SYNC_OP;
5134
5135 /* Only one "Post Sync Op" is allowed, and it's mutually exclusive with
5136 * "LRI Post Sync Operation". So more than one bit set would be illegal.
5137 */
5138 assert(util_bitcount(flags) <= 1);
5139
5140 return flags;
5141 }
5142
5143 #define IS_COMPUTE_PIPELINE(batch) (batch->name == IRIS_BATCH_COMPUTE)
5144
5145 /**
5146 * Emit a series of PIPE_CONTROL commands, taking into account any
5147 * workarounds necessary to actually accomplish the caller's request.
5148 *
5149 * Unless otherwise noted, spec quotations in this function come from:
5150 *
5151 * Synchronization of the 3D Pipeline > PIPE_CONTROL Command > Programming
5152 * Restrictions for PIPE_CONTROL.
5153 *
5154 * You should not use this function directly. Use the helpers in
5155 * iris_pipe_control.c instead, which may split the pipe control further.
5156 */
5157 static void
5158 iris_emit_raw_pipe_control(struct iris_batch *batch, uint32_t flags,
5159 struct iris_bo *bo, uint32_t offset, uint64_t imm)
5160 {
5161 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
5162 enum pipe_control_flags post_sync_flags = get_post_sync_flags(flags);
5163 enum pipe_control_flags non_lri_post_sync_flags =
5164 post_sync_flags & ~PIPE_CONTROL_LRI_POST_SYNC_OP;
5165
5166 /* Recursive PIPE_CONTROL workarounds --------------------------------
5167 * (http://knowyourmeme.com/memes/xzibit-yo-dawg)
5168 *
5169 * We do these first because we want to look at the original operation,
5170 * rather than any workarounds we set.
5171 */
5172 if (GEN_GEN == 9 && (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE)) {
5173 /* The PIPE_CONTROL "VF Cache Invalidation Enable" bit description
5174 * lists several workarounds:
5175 *
5176 * "Project: SKL, KBL, BXT
5177 *
5178 * If the VF Cache Invalidation Enable is set to a 1 in a
5179 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields
5180 * sets to 0, with the VF Cache Invalidation Enable set to 0
5181 * needs to be sent prior to the PIPE_CONTROL with VF Cache
5182 * Invalidation Enable set to a 1."
5183 */
5184 iris_emit_raw_pipe_control(batch, 0, NULL, 0, 0);
5185 }
5186
5187 if (GEN_GEN == 9 && IS_COMPUTE_PIPELINE(batch) && post_sync_flags) {
5188 /* Project: SKL / Argument: LRI Post Sync Operation [23]
5189 *
5190 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
5191 * programmed prior to programming a PIPECONTROL command with "LRI
5192 * Post Sync Operation" in GPGPU mode of operation (i.e when
5193 * PIPELINE_SELECT command is set to GPGPU mode of operation)."
5194 *
5195 * The same text exists a few rows below for Post Sync Op.
5196 */
5197 iris_emit_raw_pipe_control(batch, PIPE_CONTROL_CS_STALL, bo, offset, imm);
5198 }
5199
5200 if (GEN_GEN == 10 && (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH)) {
5201 /* Cannonlake:
5202 * "Before sending a PIPE_CONTROL command with bit 12 set, SW must issue
5203 * another PIPE_CONTROL with Render Target Cache Flush Enable (bit 12)
5204 * = 0 and Pipe Control Flush Enable (bit 7) = 1"
5205 */
5206 iris_emit_raw_pipe_control(batch, PIPE_CONTROL_FLUSH_ENABLE, bo,
5207 offset, imm);
5208 }
5209
5210 /* "Flush Types" workarounds ---------------------------------------------
5211 * We do these now because they may add post-sync operations or CS stalls.
5212 */
5213
5214 if (GEN_GEN < 11 && flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) {
5215 /* Project: BDW, SKL+ (stopping at CNL) / Argument: VF Invalidate
5216 *
5217 * "'Post Sync Operation' must be enabled to 'Write Immediate Data' or
5218 * 'Write PS Depth Count' or 'Write Timestamp'."
5219 */
5220 if (!bo) {
5221 flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
5222 post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
5223 non_lri_post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
5224 bo = batch->screen->workaround_bo;
5225 }
5226 }
5227
5228 /* #1130 from Gen10 workarounds page:
5229 *
5230 * "Enable Depth Stall on every Post Sync Op if Render target Cache
5231 * Flush is not enabled in same PIPE CONTROL and Enable Pixel score
5232 * board stall if Render target cache flush is enabled."
5233 *
5234 * Applicable to CNL B0 and C0 steppings only.
5235 *
5236 * The wording here is unclear, and this workaround doesn't look anything
5237 * like the internal bug report recommendations, but leave it be for now...
5238 */
5239 if (GEN_GEN == 10) {
5240 if (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) {
5241 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
5242 } else if (flags & non_lri_post_sync_flags) {
5243 flags |= PIPE_CONTROL_DEPTH_STALL;
5244 }
5245 }
5246
5247 if (flags & PIPE_CONTROL_DEPTH_STALL) {
5248 /* From the PIPE_CONTROL instruction table, bit 13 (Depth Stall Enable):
5249 *
5250 * "This bit must be DISABLED for operations other than writing
5251 * PS_DEPTH_COUNT."
5252 *
5253 * This seems like nonsense. An Ivybridge workaround requires us to
5254 * emit a PIPE_CONTROL with a depth stall and write immediate post-sync
5255 * operation. Gen8+ requires us to emit depth stalls and depth cache
5256 * flushes together. So, it's hard to imagine this means anything other
5257 * than "we originally intended this to be used for PS_DEPTH_COUNT".
5258 *
5259 * We ignore the supposed restriction and do nothing.
5260 */
5261 }
5262
5263 if (flags & (PIPE_CONTROL_RENDER_TARGET_FLUSH |
5264 PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
5265 /* From the PIPE_CONTROL instruction table, bit 12 and bit 1:
5266 *
5267 * "This bit must be DISABLED for End-of-pipe (Read) fences,
5268 * PS_DEPTH_COUNT or TIMESTAMP queries."
5269 *
5270 * TODO: Implement end-of-pipe checking.
5271 */
5272 assert(!(post_sync_flags & (PIPE_CONTROL_WRITE_DEPTH_COUNT |
5273 PIPE_CONTROL_WRITE_TIMESTAMP)));
5274 }
5275
5276 if (GEN_GEN < 11 && (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
5277 /* From the PIPE_CONTROL instruction table, bit 1:
5278 *
5279 * "This bit is ignored if Depth Stall Enable is set.
5280 * Further, the render cache is not flushed even if Write Cache
5281 * Flush Enable bit is set."
5282 *
5283 * We assert that the caller doesn't do this combination, to try and
5284 * prevent mistakes. It shouldn't hurt the GPU, though.
5285 *
5286 * We skip this check on Gen11+ as the "Stall at Pixel Scoreboard"
5287 * and "Render Target Flush" combo is explicitly required for BTI
5288 * update workarounds.
5289 */
5290 assert(!(flags & (PIPE_CONTROL_DEPTH_STALL |
5291 PIPE_CONTROL_RENDER_TARGET_FLUSH)));
5292 }
5293
5294 /* PIPE_CONTROL page workarounds ------------------------------------- */
5295
5296 if (GEN_GEN <= 8 && (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE)) {
5297 /* From the PIPE_CONTROL page itself:
5298 *
5299 * "IVB, HSW, BDW
5300 * Restriction: Pipe_control with CS-stall bit set must be issued
5301 * before a pipe-control command that has the State Cache
5302 * Invalidate bit set."
5303 */
5304 flags |= PIPE_CONTROL_CS_STALL;
5305 }
5306
5307 if (flags & PIPE_CONTROL_FLUSH_LLC) {
5308 /* From the PIPE_CONTROL instruction table, bit 26 (Flush LLC):
5309 *
5310 * "Project: ALL
5311 * SW must always program Post-Sync Operation to "Write Immediate
5312 * Data" when Flush LLC is set."
5313 *
5314 * For now, we just require the caller to do it.
5315 */
5316 assert(flags & PIPE_CONTROL_WRITE_IMMEDIATE);
5317 }
5318
5319 /* "Post-Sync Operation" workarounds -------------------------------- */
5320
5321 /* Project: All / Argument: Global Snapshot Count Reset [19]
5322 *
5323 * "This bit must not be exercised on any product.
5324 * Requires stall bit ([20] of DW1) set."
5325 *
5326 * We don't use this, so we just assert that it isn't used. The
5327 * PIPE_CONTROL instruction page indicates that they intended this
5328 * as a debug feature and don't think it is useful in production,
5329 * but it may actually be usable, should we ever want to.
5330 */
5331 assert((flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) == 0);
5332
5333 if (flags & (PIPE_CONTROL_MEDIA_STATE_CLEAR |
5334 PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE)) {
5335 /* Project: All / Arguments:
5336 *
5337 * - Generic Media State Clear [16]
5338 * - Indirect State Pointers Disable [16]
5339 *
5340 * "Requires stall bit ([20] of DW1) set."
5341 *
5342 * Also, the PIPE_CONTROL instruction table, bit 16 (Generic Media
5343 * State Clear) says:
5344 *
5345 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
5346 * programmed prior to programming a PIPECONTROL command with "Media
5347 * State Clear" set in GPGPU mode of operation"
5348 *
5349 * This is a subset of the earlier rule, so there's nothing to do.
5350 */
5351 flags |= PIPE_CONTROL_CS_STALL;
5352 }
5353
5354 if (flags & PIPE_CONTROL_STORE_DATA_INDEX) {
5355 /* Project: All / Argument: Store Data Index
5356 *
5357 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
5358 * than '0'."
5359 *
5360 * For now, we just assert that the caller does this. We might want to
5361 * automatically add a write to the workaround BO...
5362 */
5363 assert(non_lri_post_sync_flags != 0);
5364 }
5365
5366 if (flags & PIPE_CONTROL_SYNC_GFDT) {
5367 /* Project: All / Argument: Sync GFDT
5368 *
5369 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
5370 * than '0' or 0x2520[13] must be set."
5371 *
5372 * For now, we just assert that the caller does this.
5373 */
5374 assert(non_lri_post_sync_flags != 0);
5375 }
5376
5377 if (flags & PIPE_CONTROL_TLB_INVALIDATE) {
5378 /* Project: IVB+ / Argument: TLB inv
5379 *
5380 * "Requires stall bit ([20] of DW1) set."
5381 *
5382 * Also, from the PIPE_CONTROL instruction table:
5383 *
5384 * "Project: SKL+
5385 * Post Sync Operation or CS stall must be set to ensure a TLB
5386 * invalidation occurs. Otherwise no cycle will occur to the TLB
5387 * cache to invalidate."
5388 *
5389 * This is not a subset of the earlier rule, so there's nothing to do.
5390 */
5391 flags |= PIPE_CONTROL_CS_STALL;
5392 }
5393
5394 if (GEN_GEN == 9 && devinfo->gt == 4) {
5395 /* TODO: The big Skylake GT4 post sync op workaround */
5396 }
5397
5398 /* "GPGPU specific workarounds" (both post-sync and flush) ------------ */
5399
5400 if (IS_COMPUTE_PIPELINE(batch)) {
5401 if (GEN_GEN >= 9 && (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE)) {
5402 /* Project: SKL+ / Argument: Tex Invalidate
5403 * "Requires stall bit ([20] of DW) set for all GPGPU Workloads."
5404 */
5405 flags |= PIPE_CONTROL_CS_STALL;
5406 }
5407
5408 if (GEN_GEN == 8 && (post_sync_flags ||
5409 (flags & (PIPE_CONTROL_NOTIFY_ENABLE |
5410 PIPE_CONTROL_DEPTH_STALL |
5411 PIPE_CONTROL_RENDER_TARGET_FLUSH |
5412 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
5413 PIPE_CONTROL_DATA_CACHE_FLUSH)))) {
5414 /* Project: BDW / Arguments:
5415 *
5416 * - LRI Post Sync Operation [23]
5417 * - Post Sync Op [15:14]
5418 * - Notify En [8]
5419 * - Depth Stall [13]
5420 * - Render Target Cache Flush [12]
5421 * - Depth Cache Flush [0]
5422 * - DC Flush Enable [5]
5423 *
5424 * "Requires stall bit ([20] of DW) set for all GPGPU and Media
5425 * Workloads."
5426 */
5427 flags |= PIPE_CONTROL_CS_STALL;
5428
5429 /* Also, from the PIPE_CONTROL instruction table, bit 20:
5430 *
5431 * "Project: BDW
5432 * This bit must be always set when PIPE_CONTROL command is
5433 * programmed by GPGPU and MEDIA workloads, except for the cases
5434 * when only Read Only Cache Invalidation bits are set (State
5435 * Cache Invalidation Enable, Instruction cache Invalidation
5436 * Enable, Texture Cache Invalidation Enable, Constant Cache
5437 * Invalidation Enable). This is to WA FFDOP CG issue, this WA
5438 * need not implemented when FF_DOP_CG is disable via "Fixed
5439 * Function DOP Clock Gate Disable" bit in RC_PSMI_CTRL register."
5440 *
5441 * It sounds like we could avoid CS stalls in some cases, but we
5442 * don't currently bother. This list isn't exactly the list above,
5443 * either...
5444 */
5445 }
5446 }
5447
5448 /* "Stall" workarounds ----------------------------------------------
5449 * These have to come after the earlier ones because we may have added
5450 * some additional CS stalls above.
5451 */
5452
5453 if (GEN_GEN < 9 && (flags & PIPE_CONTROL_CS_STALL)) {
5454 /* Project: PRE-SKL, VLV, CHV
5455 *
5456 * "[All Stepping][All SKUs]:
5457 *
5458 * One of the following must also be set:
5459 *
5460 * - Render Target Cache Flush Enable ([12] of DW1)
5461 * - Depth Cache Flush Enable ([0] of DW1)
5462 * - Stall at Pixel Scoreboard ([1] of DW1)
5463 * - Depth Stall ([13] of DW1)
5464 * - Post-Sync Operation ([13] of DW1)
5465 * - DC Flush Enable ([5] of DW1)"
5466 *
5467 * If we don't already have one of those bits set, we choose to add
5468 * "Stall at Pixel Scoreboard". Some of the other bits require a
5469 * CS stall as a workaround (see above), which would send us into
5470 * an infinite recursion of PIPE_CONTROLs. "Stall at Pixel Scoreboard"
5471 * appears to be safe, so we choose that.
5472 */
5473 const uint32_t wa_bits = PIPE_CONTROL_RENDER_TARGET_FLUSH |
5474 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
5475 PIPE_CONTROL_WRITE_IMMEDIATE |
5476 PIPE_CONTROL_WRITE_DEPTH_COUNT |
5477 PIPE_CONTROL_WRITE_TIMESTAMP |
5478 PIPE_CONTROL_STALL_AT_SCOREBOARD |
5479 PIPE_CONTROL_DEPTH_STALL |
5480 PIPE_CONTROL_DATA_CACHE_FLUSH;
5481 if (!(flags & wa_bits))
5482 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
5483 }
5484
5485 /* Emit --------------------------------------------------------------- */
5486
5487 iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
5488 pc.LRIPostSyncOperation = NoLRIOperation;
5489 pc.PipeControlFlushEnable = flags & PIPE_CONTROL_FLUSH_ENABLE;
5490 pc.DCFlushEnable = flags & PIPE_CONTROL_DATA_CACHE_FLUSH;
5491 pc.StoreDataIndex = 0;
5492 pc.CommandStreamerStallEnable = flags & PIPE_CONTROL_CS_STALL;
5493 pc.GlobalSnapshotCountReset =
5494 flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET;
5495 pc.TLBInvalidate = flags & PIPE_CONTROL_TLB_INVALIDATE;
5496 pc.GenericMediaStateClear = flags & PIPE_CONTROL_MEDIA_STATE_CLEAR;
5497 pc.StallAtPixelScoreboard = flags & PIPE_CONTROL_STALL_AT_SCOREBOARD;
5498 pc.RenderTargetCacheFlushEnable =
5499 flags & PIPE_CONTROL_RENDER_TARGET_FLUSH;
5500 pc.DepthCacheFlushEnable = flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH;
5501 pc.StateCacheInvalidationEnable =
5502 flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE;
5503 pc.VFCacheInvalidationEnable = flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
5504 pc.ConstantCacheInvalidationEnable =
5505 flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE;
5506 pc.PostSyncOperation = flags_to_post_sync_op(flags);
5507 pc.DepthStallEnable = flags & PIPE_CONTROL_DEPTH_STALL;
5508 pc.InstructionCacheInvalidateEnable =
5509 flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE;
5510 pc.NotifyEnable = flags & PIPE_CONTROL_NOTIFY_ENABLE;
5511 pc.IndirectStatePointersDisable =
5512 flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE;
5513 pc.TextureCacheInvalidationEnable =
5514 flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
5515 pc.Address = rw_bo(bo, offset);
5516 pc.ImmediateData = imm;
5517 }
5518 }
5519
5520 void
5521 genX(init_state)(struct iris_context *ice)
5522 {
5523 struct pipe_context *ctx = &ice->ctx;
5524 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
5525
5526 ctx->create_blend_state = iris_create_blend_state;
5527 ctx->create_depth_stencil_alpha_state = iris_create_zsa_state;
5528 ctx->create_rasterizer_state = iris_create_rasterizer_state;
5529 ctx->create_sampler_state = iris_create_sampler_state;
5530 ctx->create_sampler_view = iris_create_sampler_view;
5531 ctx->create_surface = iris_create_surface;
5532 ctx->create_vertex_elements_state = iris_create_vertex_elements;
5533 ctx->bind_blend_state = iris_bind_blend_state;
5534 ctx->bind_depth_stencil_alpha_state = iris_bind_zsa_state;
5535 ctx->bind_sampler_states = iris_bind_sampler_states;
5536 ctx->bind_rasterizer_state = iris_bind_rasterizer_state;
5537 ctx->bind_vertex_elements_state = iris_bind_vertex_elements_state;
5538 ctx->delete_blend_state = iris_delete_state;
5539 ctx->delete_depth_stencil_alpha_state = iris_delete_state;
5540 ctx->delete_rasterizer_state = iris_delete_state;
5541 ctx->delete_sampler_state = iris_delete_state;
5542 ctx->delete_vertex_elements_state = iris_delete_state;
5543 ctx->set_blend_color = iris_set_blend_color;
5544 ctx->set_clip_state = iris_set_clip_state;
5545 ctx->set_constant_buffer = iris_set_constant_buffer;
5546 ctx->set_shader_buffers = iris_set_shader_buffers;
5547 ctx->set_shader_images = iris_set_shader_images;
5548 ctx->set_sampler_views = iris_set_sampler_views;
5549 ctx->set_tess_state = iris_set_tess_state;
5550 ctx->set_framebuffer_state = iris_set_framebuffer_state;
5551 ctx->set_polygon_stipple = iris_set_polygon_stipple;
5552 ctx->set_sample_mask = iris_set_sample_mask;
5553 ctx->set_scissor_states = iris_set_scissor_states;
5554 ctx->set_stencil_ref = iris_set_stencil_ref;
5555 ctx->set_vertex_buffers = iris_set_vertex_buffers;
5556 ctx->set_viewport_states = iris_set_viewport_states;
5557 ctx->sampler_view_destroy = iris_sampler_view_destroy;
5558 ctx->surface_destroy = iris_surface_destroy;
5559 ctx->draw_vbo = iris_draw_vbo;
5560 ctx->launch_grid = iris_launch_grid;
5561 ctx->create_stream_output_target = iris_create_stream_output_target;
5562 ctx->stream_output_target_destroy = iris_stream_output_target_destroy;
5563 ctx->set_stream_output_targets = iris_set_stream_output_targets;
5564
5565 ice->vtbl.destroy_state = iris_destroy_state;
5566 ice->vtbl.init_render_context = iris_init_render_context;
5567 ice->vtbl.init_compute_context = iris_init_compute_context;
5568 ice->vtbl.upload_render_state = iris_upload_render_state;
5569 ice->vtbl.update_surface_base_address = iris_update_surface_base_address;
5570 ice->vtbl.upload_compute_state = iris_upload_compute_state;
5571 ice->vtbl.emit_raw_pipe_control = iris_emit_raw_pipe_control;
5572 ice->vtbl.load_register_reg32 = iris_load_register_reg32;
5573 ice->vtbl.load_register_reg64 = iris_load_register_reg64;
5574 ice->vtbl.load_register_imm32 = iris_load_register_imm32;
5575 ice->vtbl.load_register_imm64 = iris_load_register_imm64;
5576 ice->vtbl.load_register_mem32 = iris_load_register_mem32;
5577 ice->vtbl.load_register_mem64 = iris_load_register_mem64;
5578 ice->vtbl.store_register_mem32 = iris_store_register_mem32;
5579 ice->vtbl.store_register_mem64 = iris_store_register_mem64;
5580 ice->vtbl.store_data_imm32 = iris_store_data_imm32;
5581 ice->vtbl.store_data_imm64 = iris_store_data_imm64;
5582 ice->vtbl.copy_mem_mem = iris_copy_mem_mem;
5583 ice->vtbl.derived_program_state_size = iris_derived_program_state_size;
5584 ice->vtbl.store_derived_program_state = iris_store_derived_program_state;
5585 ice->vtbl.create_so_decl_list = iris_create_so_decl_list;
5586 ice->vtbl.populate_vs_key = iris_populate_vs_key;
5587 ice->vtbl.populate_tcs_key = iris_populate_tcs_key;
5588 ice->vtbl.populate_tes_key = iris_populate_tes_key;
5589 ice->vtbl.populate_gs_key = iris_populate_gs_key;
5590 ice->vtbl.populate_fs_key = iris_populate_fs_key;
5591 ice->vtbl.populate_cs_key = iris_populate_cs_key;
5592
5593 ice->state.dirty = ~0ull;
5594
5595 ice->state.statistics_counters_enabled = true;
5596
5597 ice->state.sample_mask = 0xffff;
5598 ice->state.num_viewports = 1;
5599 ice->state.genx = calloc(1, sizeof(struct iris_genx_state));
5600
5601 /* Make a 1x1x1 null surface for unbound textures */
5602 void *null_surf_map =
5603 upload_state(ice->state.surface_uploader, &ice->state.unbound_tex,
5604 4 * GENX(RENDER_SURFACE_STATE_length), 64);
5605 isl_null_fill_state(&screen->isl_dev, null_surf_map, isl_extent3d(1, 1, 1));
5606 ice->state.unbound_tex.offset +=
5607 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.unbound_tex.res));
5608
5609 /* Default all scissor rectangles to be empty regions. */
5610 for (int i = 0; i < IRIS_MAX_VIEWPORTS; i++) {
5611 ice->state.scissors[i] = (struct pipe_scissor_state) {
5612 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
5613 };
5614 }
5615 }