iris: only bother with params if there are any...
[mesa.git] / src / gallium / drivers / iris / iris_state.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included
12 * in all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
21 */
22
23 /**
24 * @file iris_state.c
25 *
26 * ============================= GENXML CODE =============================
27 * [This file is compiled once per generation.]
28 * =======================================================================
29 *
30 * This is the main state upload code.
31 *
32 * Gallium uses Constant State Objects, or CSOs, for most state. Large,
33 * complex, or highly reusable state can be created once, and bound and
34 * rebound multiple times. This is modeled with the pipe->create_*_state()
35 * and pipe->bind_*_state() hooks. Highly dynamic or inexpensive state is
36 * streamed out on the fly, via pipe->set_*_state() hooks.
37 *
38 * OpenGL involves frequently mutating context state, which is mirrored in
39 * core Mesa by highly mutable data structures. However, most applications
40 * typically draw the same things over and over - from frame to frame, most
41 * of the same objects are still visible and need to be redrawn. So, rather
42 * than inventing new state all the time, applications usually mutate to swap
43 * between known states that we've seen before.
44 *
45 * Gallium isolates us from this mutation by tracking API state, and
46 * distilling it into a set of Constant State Objects, or CSOs. Large,
47 * complex, or typically reusable state can be created once, then reused
48 * multiple times. Drivers can create and store their own associated data.
49 * This create/bind model corresponds to the pipe->create_*_state() and
50 * pipe->bind_*_state() driver hooks.
51 *
52 * Some state is cheap to create, or expected to be highly dynamic. Rather
53 * than creating and caching piles of CSOs for these, Gallium simply streams
54 * them out, via the pipe->set_*_state() driver hooks.
55 *
56 * To reduce draw time overhead, we try to compute as much state at create
57 * time as possible. Wherever possible, we translate the Gallium pipe state
58 * to 3DSTATE commands, and store those commands in the CSO. At draw time,
59 * we can simply memcpy them into a batch buffer.
60 *
61 * No hardware matches the abstraction perfectly, so some commands require
62 * information from multiple CSOs. In this case, we can store two copies
63 * of the packet (one in each CSO), and simply | together their DWords at
64 * draw time. Sometimes the second set is trivial (one or two fields), so
65 * we simply pack it at draw time.
66 *
67 * There are two main components in the file below. First, the CSO hooks
68 * create/bind/track state. The second are the draw-time upload functions,
69 * iris_upload_render_state() and iris_upload_compute_state(), which read
70 * the context state and emit the commands into the actual batch.
71 */
72
73 #include <stdio.h>
74 #include <errno.h>
75
76 #if HAVE_VALGRIND
77 #include <valgrind.h>
78 #include <memcheck.h>
79 #define VG(x) x
80 #ifndef NDEBUG
81 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
82 #endif
83 #else
84 #define VG(x)
85 #endif
86
87 #include "pipe/p_defines.h"
88 #include "pipe/p_state.h"
89 #include "pipe/p_context.h"
90 #include "pipe/p_screen.h"
91 #include "util/u_inlines.h"
92 #include "util/u_format.h"
93 #include "util/u_framebuffer.h"
94 #include "util/u_transfer.h"
95 #include "util/u_upload_mgr.h"
96 #include "util/u_viewport.h"
97 #include "i915_drm.h"
98 #include "nir.h"
99 #include "intel/compiler/brw_compiler.h"
100 #include "intel/common/gen_l3_config.h"
101 #include "intel/common/gen_sample_positions.h"
102 #include "iris_batch.h"
103 #include "iris_context.h"
104 #include "iris_pipe.h"
105 #include "iris_resource.h"
106
107 #define __gen_address_type struct iris_address
108 #define __gen_user_data struct iris_batch
109
110 #define ARRAY_BYTES(x) (sizeof(uint32_t) * ARRAY_SIZE(x))
111
112 static uint64_t
113 __gen_combine_address(struct iris_batch *batch, void *location,
114 struct iris_address addr, uint32_t delta)
115 {
116 uint64_t result = addr.offset + delta;
117
118 if (addr.bo) {
119 iris_use_pinned_bo(batch, addr.bo, addr.write);
120 /* Assume this is a general address, not relative to a base. */
121 result += addr.bo->gtt_offset;
122 }
123
124 return result;
125 }
126
127 #define __genxml_cmd_length(cmd) cmd ## _length
128 #define __genxml_cmd_length_bias(cmd) cmd ## _length_bias
129 #define __genxml_cmd_header(cmd) cmd ## _header
130 #define __genxml_cmd_pack(cmd) cmd ## _pack
131
132 #define _iris_pack_command(batch, cmd, dst, name) \
133 for (struct cmd name = { __genxml_cmd_header(cmd) }, \
134 *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
135 ({ __genxml_cmd_pack(cmd)(batch, (void *)_dst, &name); \
136 _dst = NULL; \
137 }))
138
139 #define iris_pack_command(cmd, dst, name) \
140 _iris_pack_command(NULL, cmd, dst, name)
141
142 #define iris_pack_state(cmd, dst, name) \
143 for (struct cmd name = {}, \
144 *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
145 __genxml_cmd_pack(cmd)(NULL, (void *)_dst, &name), \
146 _dst = NULL)
147
148 #define iris_emit_cmd(batch, cmd, name) \
149 _iris_pack_command(batch, cmd, iris_get_command_space(batch, 4 * __genxml_cmd_length(cmd)), name)
150
151 #define iris_emit_merge(batch, dwords0, dwords1, num_dwords) \
152 do { \
153 uint32_t *dw = iris_get_command_space(batch, 4 * num_dwords); \
154 for (uint32_t i = 0; i < num_dwords; i++) \
155 dw[i] = (dwords0)[i] | (dwords1)[i]; \
156 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, num_dwords)); \
157 } while (0)
158
159 #include "genxml/genX_pack.h"
160 #include "genxml/gen_macros.h"
161 #include "genxml/genX_bits.h"
162
163 #define MOCS_WB (2 << 1)
164
165 /**
166 * Statically assert that PIPE_* enums match the hardware packets.
167 * (As long as they match, we don't need to translate them.)
168 */
169 UNUSED static void pipe_asserts()
170 {
171 #define PIPE_ASSERT(x) STATIC_ASSERT((int)x)
172
173 /* pipe_logicop happens to match the hardware. */
174 PIPE_ASSERT(PIPE_LOGICOP_CLEAR == LOGICOP_CLEAR);
175 PIPE_ASSERT(PIPE_LOGICOP_NOR == LOGICOP_NOR);
176 PIPE_ASSERT(PIPE_LOGICOP_AND_INVERTED == LOGICOP_AND_INVERTED);
177 PIPE_ASSERT(PIPE_LOGICOP_COPY_INVERTED == LOGICOP_COPY_INVERTED);
178 PIPE_ASSERT(PIPE_LOGICOP_AND_REVERSE == LOGICOP_AND_REVERSE);
179 PIPE_ASSERT(PIPE_LOGICOP_INVERT == LOGICOP_INVERT);
180 PIPE_ASSERT(PIPE_LOGICOP_XOR == LOGICOP_XOR);
181 PIPE_ASSERT(PIPE_LOGICOP_NAND == LOGICOP_NAND);
182 PIPE_ASSERT(PIPE_LOGICOP_AND == LOGICOP_AND);
183 PIPE_ASSERT(PIPE_LOGICOP_EQUIV == LOGICOP_EQUIV);
184 PIPE_ASSERT(PIPE_LOGICOP_NOOP == LOGICOP_NOOP);
185 PIPE_ASSERT(PIPE_LOGICOP_OR_INVERTED == LOGICOP_OR_INVERTED);
186 PIPE_ASSERT(PIPE_LOGICOP_COPY == LOGICOP_COPY);
187 PIPE_ASSERT(PIPE_LOGICOP_OR_REVERSE == LOGICOP_OR_REVERSE);
188 PIPE_ASSERT(PIPE_LOGICOP_OR == LOGICOP_OR);
189 PIPE_ASSERT(PIPE_LOGICOP_SET == LOGICOP_SET);
190
191 /* pipe_blend_func happens to match the hardware. */
192 PIPE_ASSERT(PIPE_BLENDFACTOR_ONE == BLENDFACTOR_ONE);
193 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_COLOR == BLENDFACTOR_SRC_COLOR);
194 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA == BLENDFACTOR_SRC_ALPHA);
195 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_ALPHA == BLENDFACTOR_DST_ALPHA);
196 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_COLOR == BLENDFACTOR_DST_COLOR);
197 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE == BLENDFACTOR_SRC_ALPHA_SATURATE);
198 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_COLOR == BLENDFACTOR_CONST_COLOR);
199 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_ALPHA == BLENDFACTOR_CONST_ALPHA);
200 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_COLOR == BLENDFACTOR_SRC1_COLOR);
201 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_ALPHA == BLENDFACTOR_SRC1_ALPHA);
202 PIPE_ASSERT(PIPE_BLENDFACTOR_ZERO == BLENDFACTOR_ZERO);
203 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_COLOR == BLENDFACTOR_INV_SRC_COLOR);
204 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_ALPHA == BLENDFACTOR_INV_SRC_ALPHA);
205 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_ALPHA == BLENDFACTOR_INV_DST_ALPHA);
206 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_COLOR == BLENDFACTOR_INV_DST_COLOR);
207 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_COLOR == BLENDFACTOR_INV_CONST_COLOR);
208 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_ALPHA == BLENDFACTOR_INV_CONST_ALPHA);
209 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_COLOR == BLENDFACTOR_INV_SRC1_COLOR);
210 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_ALPHA == BLENDFACTOR_INV_SRC1_ALPHA);
211
212 /* pipe_blend_func happens to match the hardware. */
213 PIPE_ASSERT(PIPE_BLEND_ADD == BLENDFUNCTION_ADD);
214 PIPE_ASSERT(PIPE_BLEND_SUBTRACT == BLENDFUNCTION_SUBTRACT);
215 PIPE_ASSERT(PIPE_BLEND_REVERSE_SUBTRACT == BLENDFUNCTION_REVERSE_SUBTRACT);
216 PIPE_ASSERT(PIPE_BLEND_MIN == BLENDFUNCTION_MIN);
217 PIPE_ASSERT(PIPE_BLEND_MAX == BLENDFUNCTION_MAX);
218
219 /* pipe_stencil_op happens to match the hardware. */
220 PIPE_ASSERT(PIPE_STENCIL_OP_KEEP == STENCILOP_KEEP);
221 PIPE_ASSERT(PIPE_STENCIL_OP_ZERO == STENCILOP_ZERO);
222 PIPE_ASSERT(PIPE_STENCIL_OP_REPLACE == STENCILOP_REPLACE);
223 PIPE_ASSERT(PIPE_STENCIL_OP_INCR == STENCILOP_INCRSAT);
224 PIPE_ASSERT(PIPE_STENCIL_OP_DECR == STENCILOP_DECRSAT);
225 PIPE_ASSERT(PIPE_STENCIL_OP_INCR_WRAP == STENCILOP_INCR);
226 PIPE_ASSERT(PIPE_STENCIL_OP_DECR_WRAP == STENCILOP_DECR);
227 PIPE_ASSERT(PIPE_STENCIL_OP_INVERT == STENCILOP_INVERT);
228
229 /* pipe_sprite_coord_mode happens to match 3DSTATE_SBE */
230 PIPE_ASSERT(PIPE_SPRITE_COORD_UPPER_LEFT == UPPERLEFT);
231 PIPE_ASSERT(PIPE_SPRITE_COORD_LOWER_LEFT == LOWERLEFT);
232 #undef PIPE_ASSERT
233 }
234
235 static unsigned
236 translate_prim_type(enum pipe_prim_type prim, uint8_t verts_per_patch)
237 {
238 static const unsigned map[] = {
239 [PIPE_PRIM_POINTS] = _3DPRIM_POINTLIST,
240 [PIPE_PRIM_LINES] = _3DPRIM_LINELIST,
241 [PIPE_PRIM_LINE_LOOP] = _3DPRIM_LINELOOP,
242 [PIPE_PRIM_LINE_STRIP] = _3DPRIM_LINESTRIP,
243 [PIPE_PRIM_TRIANGLES] = _3DPRIM_TRILIST,
244 [PIPE_PRIM_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
245 [PIPE_PRIM_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
246 [PIPE_PRIM_QUADS] = _3DPRIM_QUADLIST,
247 [PIPE_PRIM_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
248 [PIPE_PRIM_POLYGON] = _3DPRIM_POLYGON,
249 [PIPE_PRIM_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
250 [PIPE_PRIM_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
251 [PIPE_PRIM_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
252 [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
253 [PIPE_PRIM_PATCHES] = _3DPRIM_PATCHLIST_1 - 1,
254 };
255
256 return map[prim] + (prim == PIPE_PRIM_PATCHES ? verts_per_patch : 0);
257 }
258
259 static unsigned
260 translate_compare_func(enum pipe_compare_func pipe_func)
261 {
262 static const unsigned map[] = {
263 [PIPE_FUNC_NEVER] = COMPAREFUNCTION_NEVER,
264 [PIPE_FUNC_LESS] = COMPAREFUNCTION_LESS,
265 [PIPE_FUNC_EQUAL] = COMPAREFUNCTION_EQUAL,
266 [PIPE_FUNC_LEQUAL] = COMPAREFUNCTION_LEQUAL,
267 [PIPE_FUNC_GREATER] = COMPAREFUNCTION_GREATER,
268 [PIPE_FUNC_NOTEQUAL] = COMPAREFUNCTION_NOTEQUAL,
269 [PIPE_FUNC_GEQUAL] = COMPAREFUNCTION_GEQUAL,
270 [PIPE_FUNC_ALWAYS] = COMPAREFUNCTION_ALWAYS,
271 };
272 return map[pipe_func];
273 }
274
275 static unsigned
276 translate_shadow_func(enum pipe_compare_func pipe_func)
277 {
278 /* Gallium specifies the result of shadow comparisons as:
279 *
280 * 1 if ref <op> texel,
281 * 0 otherwise.
282 *
283 * The hardware does:
284 *
285 * 0 if texel <op> ref,
286 * 1 otherwise.
287 *
288 * So we need to flip the operator and also negate.
289 */
290 static const unsigned map[] = {
291 [PIPE_FUNC_NEVER] = PREFILTEROPALWAYS,
292 [PIPE_FUNC_LESS] = PREFILTEROPLEQUAL,
293 [PIPE_FUNC_EQUAL] = PREFILTEROPNOTEQUAL,
294 [PIPE_FUNC_LEQUAL] = PREFILTEROPLESS,
295 [PIPE_FUNC_GREATER] = PREFILTEROPGEQUAL,
296 [PIPE_FUNC_NOTEQUAL] = PREFILTEROPEQUAL,
297 [PIPE_FUNC_GEQUAL] = PREFILTEROPGREATER,
298 [PIPE_FUNC_ALWAYS] = PREFILTEROPNEVER,
299 };
300 return map[pipe_func];
301 }
302
303 static unsigned
304 translate_cull_mode(unsigned pipe_face)
305 {
306 static const unsigned map[4] = {
307 [PIPE_FACE_NONE] = CULLMODE_NONE,
308 [PIPE_FACE_FRONT] = CULLMODE_FRONT,
309 [PIPE_FACE_BACK] = CULLMODE_BACK,
310 [PIPE_FACE_FRONT_AND_BACK] = CULLMODE_BOTH,
311 };
312 return map[pipe_face];
313 }
314
315 static unsigned
316 translate_fill_mode(unsigned pipe_polymode)
317 {
318 static const unsigned map[4] = {
319 [PIPE_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
320 [PIPE_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
321 [PIPE_POLYGON_MODE_POINT] = FILL_MODE_POINT,
322 [PIPE_POLYGON_MODE_FILL_RECTANGLE] = FILL_MODE_SOLID,
323 };
324 return map[pipe_polymode];
325 }
326
327 static unsigned
328 translate_mip_filter(enum pipe_tex_mipfilter pipe_mip)
329 {
330 static const unsigned map[] = {
331 [PIPE_TEX_MIPFILTER_NEAREST] = MIPFILTER_NEAREST,
332 [PIPE_TEX_MIPFILTER_LINEAR] = MIPFILTER_LINEAR,
333 [PIPE_TEX_MIPFILTER_NONE] = MIPFILTER_NONE,
334 };
335 return map[pipe_mip];
336 }
337
338 static uint32_t
339 translate_wrap(unsigned pipe_wrap)
340 {
341 static const unsigned map[] = {
342 [PIPE_TEX_WRAP_REPEAT] = TCM_WRAP,
343 [PIPE_TEX_WRAP_CLAMP] = TCM_HALF_BORDER,
344 [PIPE_TEX_WRAP_CLAMP_TO_EDGE] = TCM_CLAMP,
345 [PIPE_TEX_WRAP_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER,
346 [PIPE_TEX_WRAP_MIRROR_REPEAT] = TCM_MIRROR,
347 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE,
348
349 /* These are unsupported. */
350 [PIPE_TEX_WRAP_MIRROR_CLAMP] = -1,
351 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER] = -1,
352 };
353 return map[pipe_wrap];
354 }
355
356 static struct iris_address
357 ro_bo(struct iris_bo *bo, uint64_t offset)
358 {
359 /* CSOs must pass NULL for bo! Otherwise it will add the BO to the
360 * validation list at CSO creation time, instead of draw time.
361 */
362 return (struct iris_address) { .bo = bo, .offset = offset };
363 }
364
365 static struct iris_address
366 rw_bo(struct iris_bo *bo, uint64_t offset)
367 {
368 /* CSOs must pass NULL for bo! Otherwise it will add the BO to the
369 * validation list at CSO creation time, instead of draw time.
370 */
371 return (struct iris_address) { .bo = bo, .offset = offset, .write = true };
372 }
373
374 /**
375 * Allocate space for some indirect state.
376 *
377 * Return a pointer to the map (to fill it out) and a state ref (for
378 * referring to the state in GPU commands).
379 */
380 static void *
381 upload_state(struct u_upload_mgr *uploader,
382 struct iris_state_ref *ref,
383 unsigned size,
384 unsigned alignment)
385 {
386 void *p = NULL;
387 u_upload_alloc(uploader, 0, size, alignment, &ref->offset, &ref->res, &p);
388 return p;
389 }
390
391 /**
392 * Stream out temporary/short-lived state.
393 *
394 * This allocates space, pins the BO, and includes the BO address in the
395 * returned offset (which works because all state lives in 32-bit memory
396 * zones).
397 */
398 static uint32_t *
399 stream_state(struct iris_batch *batch,
400 struct u_upload_mgr *uploader,
401 struct pipe_resource **out_res,
402 unsigned size,
403 unsigned alignment,
404 uint32_t *out_offset)
405 {
406 void *ptr = NULL;
407
408 u_upload_alloc(uploader, 0, size, alignment, out_offset, out_res, &ptr);
409
410 struct iris_bo *bo = iris_resource_bo(*out_res);
411 iris_use_pinned_bo(batch, bo, false);
412
413 *out_offset += iris_bo_offset_from_base_address(bo);
414
415 return ptr;
416 }
417
418 /**
419 * stream_state() + memcpy.
420 */
421 static uint32_t
422 emit_state(struct iris_batch *batch,
423 struct u_upload_mgr *uploader,
424 struct pipe_resource **out_res,
425 const void *data,
426 unsigned size,
427 unsigned alignment)
428 {
429 unsigned offset = 0;
430 uint32_t *map =
431 stream_state(batch, uploader, out_res, size, alignment, &offset);
432
433 if (map)
434 memcpy(map, data, size);
435
436 return offset;
437 }
438
439 /**
440 * Did field 'x' change between 'old_cso' and 'new_cso'?
441 *
442 * (If so, we may want to set some dirty flags.)
443 */
444 #define cso_changed(x) (!old_cso || (old_cso->x != new_cso->x))
445 #define cso_changed_memcmp(x) \
446 (!old_cso || memcmp(old_cso->x, new_cso->x, sizeof(old_cso->x)) != 0)
447
448 static void
449 flush_for_state_base_change(struct iris_batch *batch)
450 {
451 /* Flush before emitting STATE_BASE_ADDRESS.
452 *
453 * This isn't documented anywhere in the PRM. However, it seems to be
454 * necessary prior to changing the surface state base adress. We've
455 * seen issues in Vulkan where we get GPU hangs when using multi-level
456 * command buffers which clear depth, reset state base address, and then
457 * go render stuff.
458 *
459 * Normally, in GL, we would trust the kernel to do sufficient stalls
460 * and flushes prior to executing our batch. However, it doesn't seem
461 * as if the kernel's flushing is always sufficient and we don't want to
462 * rely on it.
463 *
464 * We make this an end-of-pipe sync instead of a normal flush because we
465 * do not know the current status of the GPU. On Haswell at least,
466 * having a fast-clear operation in flight at the same time as a normal
467 * rendering operation can cause hangs. Since the kernel's flushing is
468 * insufficient, we need to ensure that any rendering operations from
469 * other processes are definitely complete before we try to do our own
470 * rendering. It's a bit of a big hammer but it appears to work.
471 */
472 iris_emit_end_of_pipe_sync(batch,
473 PIPE_CONTROL_RENDER_TARGET_FLUSH |
474 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
475 PIPE_CONTROL_DATA_CACHE_FLUSH);
476 }
477
478 static void
479 _iris_emit_lri(struct iris_batch *batch, uint32_t reg, uint32_t val)
480 {
481 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
482 lri.RegisterOffset = reg;
483 lri.DataDWord = val;
484 }
485 }
486 #define iris_emit_lri(b, r, v) _iris_emit_lri(b, GENX(r##_num), v)
487
488 static void
489 emit_pipeline_select(struct iris_batch *batch, uint32_t pipeline)
490 {
491 #if GEN_GEN >= 8 && GEN_GEN < 10
492 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
493 *
494 * Software must clear the COLOR_CALC_STATE Valid field in
495 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
496 * with Pipeline Select set to GPGPU.
497 *
498 * The internal hardware docs recommend the same workaround for Gen9
499 * hardware too.
500 */
501 if (pipeline == GPGPU)
502 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
503 #endif
504
505
506 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
507 * PIPELINE_SELECT [DevBWR+]":
508 *
509 * "Project: DEVSNB+
510 *
511 * Software must ensure all the write caches are flushed through a
512 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
513 * command to invalidate read only caches prior to programming
514 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode."
515 */
516 iris_emit_pipe_control_flush(batch,
517 PIPE_CONTROL_RENDER_TARGET_FLUSH |
518 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
519 PIPE_CONTROL_DATA_CACHE_FLUSH |
520 PIPE_CONTROL_CS_STALL);
521
522 iris_emit_pipe_control_flush(batch,
523 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
524 PIPE_CONTROL_CONST_CACHE_INVALIDATE |
525 PIPE_CONTROL_STATE_CACHE_INVALIDATE |
526 PIPE_CONTROL_INSTRUCTION_INVALIDATE);
527
528 iris_emit_cmd(batch, GENX(PIPELINE_SELECT), sel) {
529 #if GEN_GEN >= 9
530 sel.MaskBits = 3;
531 #endif
532 sel.PipelineSelection = pipeline;
533 }
534 }
535
536 UNUSED static void
537 init_glk_barrier_mode(struct iris_batch *batch, uint32_t value)
538 {
539 #if GEN_GEN == 9
540 /* Project: DevGLK
541 *
542 * "This chicken bit works around a hardware issue with barrier
543 * logic encountered when switching between GPGPU and 3D pipelines.
544 * To workaround the issue, this mode bit should be set after a
545 * pipeline is selected."
546 */
547 uint32_t reg_val;
548 iris_pack_state(GENX(SLICE_COMMON_ECO_CHICKEN1), &reg_val, reg) {
549 reg.GLKBarrierMode = value;
550 reg.GLKBarrierModeMask = 1;
551 }
552 iris_emit_lri(batch, SLICE_COMMON_ECO_CHICKEN1, reg_val);
553 #endif
554 }
555
556 static void
557 init_state_base_address(struct iris_batch *batch)
558 {
559 flush_for_state_base_change(batch);
560
561 /* We program most base addresses once at context initialization time.
562 * Each base address points at a 4GB memory zone, and never needs to
563 * change. See iris_bufmgr.h for a description of the memory zones.
564 *
565 * The one exception is Surface State Base Address, which needs to be
566 * updated occasionally. See iris_binder.c for the details there.
567 */
568 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
569 #if 0
570 // XXX: MOCS is stupid for this.
571 sba.GeneralStateMemoryObjectControlState = MOCS_WB;
572 sba.StatelessDataPortAccessMemoryObjectControlState = MOCS_WB;
573 sba.DynamicStateMemoryObjectControlState = MOCS_WB;
574 sba.IndirectObjectMemoryObjectControlState = MOCS_WB;
575 sba.InstructionMemoryObjectControlState = MOCS_WB;
576 sba.BindlessSurfaceStateMemoryObjectControlState = MOCS_WB;
577 #endif
578
579 sba.GeneralStateBaseAddressModifyEnable = true;
580 sba.DynamicStateBaseAddressModifyEnable = true;
581 sba.IndirectObjectBaseAddressModifyEnable = true;
582 sba.InstructionBaseAddressModifyEnable = true;
583 sba.GeneralStateBufferSizeModifyEnable = true;
584 sba.DynamicStateBufferSizeModifyEnable = true;
585 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
586 sba.IndirectObjectBufferSizeModifyEnable = true;
587 sba.InstructionBuffersizeModifyEnable = true;
588
589 sba.InstructionBaseAddress = ro_bo(NULL, IRIS_MEMZONE_SHADER_START);
590 sba.DynamicStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_DYNAMIC_START);
591
592 sba.GeneralStateBufferSize = 0xfffff;
593 sba.IndirectObjectBufferSize = 0xfffff;
594 sba.InstructionBufferSize = 0xfffff;
595 sba.DynamicStateBufferSize = 0xfffff;
596 }
597 }
598
599 /**
600 * Upload the initial GPU state for a render context.
601 *
602 * This sets some invariant state that needs to be programmed a particular
603 * way, but we never actually change.
604 */
605 static void
606 iris_init_render_context(struct iris_screen *screen,
607 struct iris_batch *batch,
608 struct iris_vtable *vtbl,
609 struct pipe_debug_callback *dbg)
610 {
611 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
612 uint32_t reg_val;
613
614 emit_pipeline_select(batch, _3D);
615
616 init_state_base_address(batch);
617
618 // XXX: INSTPM on Gen8
619 iris_pack_state(GENX(CS_DEBUG_MODE2), &reg_val, reg) {
620 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
621 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
622 }
623 iris_emit_lri(batch, CS_DEBUG_MODE2, reg_val);
624
625 #if GEN_GEN == 9
626 iris_pack_state(GENX(CACHE_MODE_1), &reg_val, reg) {
627 reg.FloatBlendOptimizationEnable = true;
628 reg.FloatBlendOptimizationEnableMask = true;
629 reg.PartialResolveDisableInVC = true;
630 reg.PartialResolveDisableInVCMask = true;
631 }
632 iris_emit_lri(batch, CACHE_MODE_1, reg_val);
633
634 if (devinfo->is_geminilake)
635 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_3D_HULL);
636 #endif
637
638 #if GEN_GEN == 11
639 iris_pack_state(GENX(SAMPLER_MODE), &reg_val, reg) {
640 reg.HeaderlessMessageforPreemptableContexts = 1;
641 reg.HeaderlessMessageforPreemptableContextsMask = 1;
642 }
643 iris_emit_lri(batch, SAMPLER_MODE, reg_val);
644
645 // XXX: 3D_MODE?
646 #endif
647
648 /* 3DSTATE_DRAWING_RECTANGLE is non-pipelined, so we want to avoid
649 * changing it dynamically. We set it to the maximum size here, and
650 * instead include the render target dimensions in the viewport, so
651 * viewport extents clipping takes care of pruning stray geometry.
652 */
653 iris_emit_cmd(batch, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
654 rect.ClippedDrawingRectangleXMax = UINT16_MAX;
655 rect.ClippedDrawingRectangleYMax = UINT16_MAX;
656 }
657
658 /* Set the initial MSAA sample positions. */
659 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_PATTERN), pat) {
660 GEN_SAMPLE_POS_1X(pat._1xSample);
661 GEN_SAMPLE_POS_2X(pat._2xSample);
662 GEN_SAMPLE_POS_4X(pat._4xSample);
663 GEN_SAMPLE_POS_8X(pat._8xSample);
664 GEN_SAMPLE_POS_16X(pat._16xSample);
665 }
666
667 /* Use the legacy AA line coverage computation. */
668 iris_emit_cmd(batch, GENX(3DSTATE_AA_LINE_PARAMETERS), foo);
669
670 /* Disable chromakeying (it's for media) */
671 iris_emit_cmd(batch, GENX(3DSTATE_WM_CHROMAKEY), foo);
672
673 /* We want regular rendering, not special HiZ operations. */
674 iris_emit_cmd(batch, GENX(3DSTATE_WM_HZ_OP), foo);
675
676 /* No polygon stippling offsets are necessary. */
677 // XXX: may need to set an offset for origin-UL framebuffers
678 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_OFFSET), foo);
679
680 /* Set a static partitioning of the push constant area. */
681 // XXX: this may be a bad idea...could starve the push ringbuffers...
682 for (int i = 0; i <= MESA_SHADER_FRAGMENT; i++) {
683 iris_emit_cmd(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
684 alloc._3DCommandSubOpcode = 18 + i;
685 alloc.ConstantBufferOffset = 6 * i;
686 alloc.ConstantBufferSize = i == MESA_SHADER_FRAGMENT ? 8 : 6;
687 }
688 }
689 }
690
691 static void
692 iris_init_compute_context(struct iris_screen *screen,
693 struct iris_batch *batch,
694 struct iris_vtable *vtbl,
695 struct pipe_debug_callback *dbg)
696 {
697 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
698
699 emit_pipeline_select(batch, GPGPU);
700
701 init_state_base_address(batch);
702
703 #if GEN_GEN == 9
704 if (devinfo->is_geminilake)
705 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_GPGPU);
706 #endif
707 }
708
709 struct iris_vertex_buffer_state {
710 /** The 3DSTATE_VERTEX_BUFFERS hardware packet. */
711 uint32_t vertex_buffers[1 + 33 * GENX(VERTEX_BUFFER_STATE_length)];
712
713 /** The resource to source vertex data from. */
714 struct pipe_resource *resources[33];
715
716 /** The number of bound vertex buffers. */
717 unsigned num_buffers;
718 };
719
720 struct iris_depth_buffer_state {
721 /* Depth/HiZ/Stencil related hardware packets. */
722 uint32_t packets[GENX(3DSTATE_DEPTH_BUFFER_length) +
723 GENX(3DSTATE_STENCIL_BUFFER_length) +
724 GENX(3DSTATE_HIER_DEPTH_BUFFER_length) +
725 GENX(3DSTATE_CLEAR_PARAMS_length)];
726 };
727
728 /**
729 * Generation-specific context state (ice->state.genx->...).
730 *
731 * Most state can go in iris_context directly, but these encode hardware
732 * packets which vary by generation.
733 */
734 struct iris_genx_state {
735 /** SF_CLIP_VIEWPORT */
736 uint32_t sf_cl_vp[GENX(SF_CLIP_VIEWPORT_length) * IRIS_MAX_VIEWPORTS];
737
738 struct iris_vertex_buffer_state vertex_buffers;
739 struct iris_depth_buffer_state depth_buffer;
740
741 uint32_t so_buffers[4 * GENX(3DSTATE_SO_BUFFER_length)];
742 uint32_t streamout[4 * GENX(3DSTATE_STREAMOUT_length)];
743 };
744
745 /**
746 * The pipe->set_blend_color() driver hook.
747 *
748 * This corresponds to our COLOR_CALC_STATE.
749 */
750 static void
751 iris_set_blend_color(struct pipe_context *ctx,
752 const struct pipe_blend_color *state)
753 {
754 struct iris_context *ice = (struct iris_context *) ctx;
755
756 /* Our COLOR_CALC_STATE is exactly pipe_blend_color, so just memcpy */
757 memcpy(&ice->state.blend_color, state, sizeof(struct pipe_blend_color));
758 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
759 }
760
761 /**
762 * Gallium CSO for blend state (see pipe_blend_state).
763 */
764 struct iris_blend_state {
765 /** Partial 3DSTATE_PS_BLEND */
766 uint32_t ps_blend[GENX(3DSTATE_PS_BLEND_length)];
767
768 /** Partial BLEND_STATE */
769 uint32_t blend_state[GENX(BLEND_STATE_length) +
770 BRW_MAX_DRAW_BUFFERS * GENX(BLEND_STATE_ENTRY_length)];
771
772 bool alpha_to_coverage; /* for shader key */
773 };
774
775 /**
776 * The pipe->create_blend_state() driver hook.
777 *
778 * Translates a pipe_blend_state into iris_blend_state.
779 */
780 static void *
781 iris_create_blend_state(struct pipe_context *ctx,
782 const struct pipe_blend_state *state)
783 {
784 struct iris_blend_state *cso = malloc(sizeof(struct iris_blend_state));
785 uint32_t *blend_state = cso->blend_state;
786
787 cso->alpha_to_coverage = state->alpha_to_coverage;
788
789 iris_pack_command(GENX(3DSTATE_PS_BLEND), cso->ps_blend, pb) {
790 /* pb.HasWriteableRT is filled in at draw time. */
791 /* pb.AlphaTestEnable is filled in at draw time. */
792 pb.AlphaToCoverageEnable = state->alpha_to_coverage;
793 pb.IndependentAlphaBlendEnable = state->independent_blend_enable;
794
795 pb.ColorBufferBlendEnable = state->rt[0].blend_enable;
796
797 pb.SourceBlendFactor = state->rt[0].rgb_src_factor;
798 pb.SourceAlphaBlendFactor = state->rt[0].alpha_func;
799 pb.DestinationBlendFactor = state->rt[0].rgb_dst_factor;
800 pb.DestinationAlphaBlendFactor = state->rt[0].alpha_dst_factor;
801 }
802
803 iris_pack_state(GENX(BLEND_STATE), blend_state, bs) {
804 bs.AlphaToCoverageEnable = state->alpha_to_coverage;
805 bs.IndependentAlphaBlendEnable = state->independent_blend_enable;
806 bs.AlphaToOneEnable = state->alpha_to_one;
807 bs.AlphaToCoverageDitherEnable = state->alpha_to_coverage;
808 bs.ColorDitherEnable = state->dither;
809 /* bl.AlphaTestEnable and bs.AlphaTestFunction are filled in later. */
810 }
811
812 blend_state += GENX(BLEND_STATE_length);
813
814 for (int i = 0; i < BRW_MAX_DRAW_BUFFERS; i++) {
815 const struct pipe_rt_blend_state *rt =
816 &state->rt[state->independent_blend_enable ? i : 0];
817 iris_pack_state(GENX(BLEND_STATE_ENTRY), blend_state, be) {
818 be.LogicOpEnable = state->logicop_enable;
819 be.LogicOpFunction = state->logicop_func;
820
821 be.PreBlendSourceOnlyClampEnable = false;
822 be.ColorClampRange = COLORCLAMP_RTFORMAT;
823 be.PreBlendColorClampEnable = true;
824 be.PostBlendColorClampEnable = true;
825
826 be.ColorBufferBlendEnable = rt->blend_enable;
827
828 be.ColorBlendFunction = rt->rgb_func;
829 be.AlphaBlendFunction = rt->alpha_func;
830 be.SourceBlendFactor = rt->rgb_src_factor;
831 be.SourceAlphaBlendFactor = rt->alpha_func;
832 be.DestinationBlendFactor = rt->rgb_dst_factor;
833 be.DestinationAlphaBlendFactor = rt->alpha_dst_factor;
834
835 be.WriteDisableRed = !(rt->colormask & PIPE_MASK_R);
836 be.WriteDisableGreen = !(rt->colormask & PIPE_MASK_G);
837 be.WriteDisableBlue = !(rt->colormask & PIPE_MASK_B);
838 be.WriteDisableAlpha = !(rt->colormask & PIPE_MASK_A);
839 }
840 blend_state += GENX(BLEND_STATE_ENTRY_length);
841 }
842
843 return cso;
844 }
845
846 /**
847 * The pipe->bind_blend_state() driver hook.
848 *
849 * Bind a blending CSO and flag related dirty bits.
850 */
851 static void
852 iris_bind_blend_state(struct pipe_context *ctx, void *state)
853 {
854 struct iris_context *ice = (struct iris_context *) ctx;
855 ice->state.cso_blend = state;
856 ice->state.dirty |= IRIS_DIRTY_PS_BLEND;
857 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
858 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_BLEND];
859 }
860
861 /**
862 * Gallium CSO for depth, stencil, and alpha testing state.
863 */
864 struct iris_depth_stencil_alpha_state {
865 /** Partial 3DSTATE_WM_DEPTH_STENCIL. */
866 uint32_t wmds[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
867
868 /** Outbound to BLEND_STATE, 3DSTATE_PS_BLEND, COLOR_CALC_STATE. */
869 struct pipe_alpha_state alpha;
870
871 /** Outbound to resolve and cache set tracking. */
872 bool depth_writes_enabled;
873 bool stencil_writes_enabled;
874 };
875
876 /**
877 * The pipe->create_depth_stencil_alpha_state() driver hook.
878 *
879 * We encode most of 3DSTATE_WM_DEPTH_STENCIL, and just save off the alpha
880 * testing state since we need pieces of it in a variety of places.
881 */
882 static void *
883 iris_create_zsa_state(struct pipe_context *ctx,
884 const struct pipe_depth_stencil_alpha_state *state)
885 {
886 struct iris_depth_stencil_alpha_state *cso =
887 malloc(sizeof(struct iris_depth_stencil_alpha_state));
888
889 bool two_sided_stencil = state->stencil[1].enabled;
890
891 cso->alpha = state->alpha;
892 cso->depth_writes_enabled = state->depth.writemask;
893 cso->stencil_writes_enabled =
894 state->stencil[0].writemask != 0 ||
895 (two_sided_stencil && state->stencil[1].writemask != 1);
896
897 /* The state tracker needs to optimize away EQUAL writes for us. */
898 assert(!(state->depth.func == PIPE_FUNC_EQUAL && state->depth.writemask));
899
900 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), cso->wmds, wmds) {
901 wmds.StencilFailOp = state->stencil[0].fail_op;
902 wmds.StencilPassDepthFailOp = state->stencil[0].zfail_op;
903 wmds.StencilPassDepthPassOp = state->stencil[0].zpass_op;
904 wmds.StencilTestFunction =
905 translate_compare_func(state->stencil[0].func);
906 wmds.BackfaceStencilFailOp = state->stencil[1].fail_op;
907 wmds.BackfaceStencilPassDepthFailOp = state->stencil[1].zfail_op;
908 wmds.BackfaceStencilPassDepthPassOp = state->stencil[1].zpass_op;
909 wmds.BackfaceStencilTestFunction =
910 translate_compare_func(state->stencil[1].func);
911 wmds.DepthTestFunction = translate_compare_func(state->depth.func);
912 wmds.DoubleSidedStencilEnable = two_sided_stencil;
913 wmds.StencilTestEnable = state->stencil[0].enabled;
914 wmds.StencilBufferWriteEnable =
915 state->stencil[0].writemask != 0 ||
916 (two_sided_stencil && state->stencil[1].writemask != 0);
917 wmds.DepthTestEnable = state->depth.enabled;
918 wmds.DepthBufferWriteEnable = state->depth.writemask;
919 wmds.StencilTestMask = state->stencil[0].valuemask;
920 wmds.StencilWriteMask = state->stencil[0].writemask;
921 wmds.BackfaceStencilTestMask = state->stencil[1].valuemask;
922 wmds.BackfaceStencilWriteMask = state->stencil[1].writemask;
923 /* wmds.[Backface]StencilReferenceValue are merged later */
924 }
925
926 return cso;
927 }
928
929 /**
930 * The pipe->bind_depth_stencil_alpha_state() driver hook.
931 *
932 * Bind a depth/stencil/alpha CSO and flag related dirty bits.
933 */
934 static void
935 iris_bind_zsa_state(struct pipe_context *ctx, void *state)
936 {
937 struct iris_context *ice = (struct iris_context *) ctx;
938 struct iris_depth_stencil_alpha_state *old_cso = ice->state.cso_zsa;
939 struct iris_depth_stencil_alpha_state *new_cso = state;
940
941 if (new_cso) {
942 if (cso_changed(alpha.ref_value))
943 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
944
945 if (cso_changed(alpha.enabled))
946 ice->state.dirty |= IRIS_DIRTY_PS_BLEND | IRIS_DIRTY_BLEND_STATE;
947
948 if (cso_changed(alpha.func))
949 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
950
951 ice->state.depth_writes_enabled = new_cso->depth_writes_enabled;
952 ice->state.stencil_writes_enabled = new_cso->stencil_writes_enabled;
953 }
954
955 ice->state.cso_zsa = new_cso;
956 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
957 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
958 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_DEPTH_STENCIL_ALPHA];
959 }
960
961 /**
962 * Gallium CSO for rasterizer state.
963 */
964 struct iris_rasterizer_state {
965 uint32_t sf[GENX(3DSTATE_SF_length)];
966 uint32_t clip[GENX(3DSTATE_CLIP_length)];
967 uint32_t raster[GENX(3DSTATE_RASTER_length)];
968 uint32_t wm[GENX(3DSTATE_WM_length)];
969 uint32_t line_stipple[GENX(3DSTATE_LINE_STIPPLE_length)];
970
971 bool clip_halfz; /* for CC_VIEWPORT */
972 bool depth_clip_near; /* for CC_VIEWPORT */
973 bool depth_clip_far; /* for CC_VIEWPORT */
974 bool flatshade; /* for shader state */
975 bool flatshade_first; /* for stream output */
976 bool clamp_fragment_color; /* for shader state */
977 bool light_twoside; /* for shader state */
978 bool rasterizer_discard; /* for 3DSTATE_STREAMOUT */
979 bool half_pixel_center; /* for 3DSTATE_MULTISAMPLE */
980 bool line_stipple_enable;
981 bool poly_stipple_enable;
982 bool multisample;
983 bool force_persample_interp;
984 enum pipe_sprite_coord_mode sprite_coord_mode; /* PIPE_SPRITE_* */
985 uint16_t sprite_coord_enable;
986 };
987
988 static float
989 get_line_width(const struct pipe_rasterizer_state *state)
990 {
991 float line_width = state->line_width;
992
993 /* From the OpenGL 4.4 spec:
994 *
995 * "The actual width of non-antialiased lines is determined by rounding
996 * the supplied width to the nearest integer, then clamping it to the
997 * implementation-dependent maximum non-antialiased line width."
998 */
999 if (!state->multisample && !state->line_smooth)
1000 line_width = roundf(state->line_width);
1001
1002 if (!state->multisample && state->line_smooth && line_width < 1.5f) {
1003 /* For 1 pixel line thickness or less, the general anti-aliasing
1004 * algorithm gives up, and a garbage line is generated. Setting a
1005 * Line Width of 0.0 specifies the rasterization of the "thinnest"
1006 * (one-pixel-wide), non-antialiased lines.
1007 *
1008 * Lines rendered with zero Line Width are rasterized using the
1009 * "Grid Intersection Quantization" rules as specified by the
1010 * "Zero-Width (Cosmetic) Line Rasterization" section of the docs.
1011 */
1012 line_width = 0.0f;
1013 }
1014
1015 return line_width;
1016 }
1017
1018 /**
1019 * The pipe->create_rasterizer_state() driver hook.
1020 */
1021 static void *
1022 iris_create_rasterizer_state(struct pipe_context *ctx,
1023 const struct pipe_rasterizer_state *state)
1024 {
1025 struct iris_rasterizer_state *cso =
1026 malloc(sizeof(struct iris_rasterizer_state));
1027
1028 #if 0
1029 point_quad_rasterization -> SBE?
1030
1031 not necessary?
1032 {
1033 poly_smooth
1034 force_persample_interp - ?
1035 bottom_edge_rule
1036
1037 offset_units_unscaled - cap not exposed
1038 }
1039 #endif
1040
1041 // XXX: it may make more sense just to store the pipe_rasterizer_state,
1042 // we're copying a lot of booleans here. But we don't need all of them...
1043
1044 cso->multisample = state->multisample;
1045 cso->force_persample_interp = state->force_persample_interp;
1046 cso->clip_halfz = state->clip_halfz;
1047 cso->depth_clip_near = state->depth_clip_near;
1048 cso->depth_clip_far = state->depth_clip_far;
1049 cso->flatshade = state->flatshade;
1050 cso->flatshade_first = state->flatshade_first;
1051 cso->clamp_fragment_color = state->clamp_fragment_color;
1052 cso->light_twoside = state->light_twoside;
1053 cso->rasterizer_discard = state->rasterizer_discard;
1054 cso->half_pixel_center = state->half_pixel_center;
1055 cso->sprite_coord_mode = state->sprite_coord_mode;
1056 cso->sprite_coord_enable = state->sprite_coord_enable;
1057 cso->line_stipple_enable = state->line_stipple_enable;
1058 cso->poly_stipple_enable = state->poly_stipple_enable;
1059
1060 float line_width = get_line_width(state);
1061
1062 iris_pack_command(GENX(3DSTATE_SF), cso->sf, sf) {
1063 sf.StatisticsEnable = true;
1064 sf.ViewportTransformEnable = true;
1065 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
1066 sf.LineEndCapAntialiasingRegionWidth =
1067 state->line_smooth ? _10pixels : _05pixels;
1068 sf.LastPixelEnable = state->line_last_pixel;
1069 sf.LineWidth = line_width;
1070 sf.SmoothPointEnable = state->point_smooth || state->multisample;
1071 sf.PointWidthSource = state->point_size_per_vertex ? Vertex : State;
1072 sf.PointWidth = state->point_size;
1073
1074 if (state->flatshade_first) {
1075 sf.TriangleFanProvokingVertexSelect = 1;
1076 } else {
1077 sf.TriangleStripListProvokingVertexSelect = 2;
1078 sf.TriangleFanProvokingVertexSelect = 2;
1079 sf.LineStripListProvokingVertexSelect = 1;
1080 }
1081 }
1082
1083 iris_pack_command(GENX(3DSTATE_RASTER), cso->raster, rr) {
1084 rr.FrontWinding = state->front_ccw ? CounterClockwise : Clockwise;
1085 rr.CullMode = translate_cull_mode(state->cull_face);
1086 rr.FrontFaceFillMode = translate_fill_mode(state->fill_front);
1087 rr.BackFaceFillMode = translate_fill_mode(state->fill_back);
1088 rr.DXMultisampleRasterizationEnable = state->multisample;
1089 rr.GlobalDepthOffsetEnableSolid = state->offset_tri;
1090 rr.GlobalDepthOffsetEnableWireframe = state->offset_line;
1091 rr.GlobalDepthOffsetEnablePoint = state->offset_point;
1092 rr.GlobalDepthOffsetConstant = state->offset_units * 2;
1093 rr.GlobalDepthOffsetScale = state->offset_scale;
1094 rr.GlobalDepthOffsetClamp = state->offset_clamp;
1095 rr.SmoothPointEnable = state->point_smooth || state->multisample;
1096 rr.AntialiasingEnable = state->line_smooth;
1097 rr.ScissorRectangleEnable = state->scissor;
1098 rr.ViewportZNearClipTestEnable = state->depth_clip_near;
1099 rr.ViewportZFarClipTestEnable = state->depth_clip_far;
1100 //rr.ConservativeRasterizationEnable = not yet supported by Gallium...
1101 }
1102
1103 iris_pack_command(GENX(3DSTATE_CLIP), cso->clip, cl) {
1104 /* cl.NonPerspectiveBarycentricEnable is filled in at draw time from
1105 * the FS program; cl.ForceZeroRTAIndexEnable is filled in from the FB.
1106 */
1107 cl.StatisticsEnable = true;
1108 cl.EarlyCullEnable = true;
1109 cl.UserClipDistanceClipTestEnableBitmask = state->clip_plane_enable;
1110 cl.ForceUserClipDistanceClipTestEnableBitmask = true;
1111 cl.APIMode = state->clip_halfz ? APIMODE_D3D : APIMODE_OGL;
1112 cl.GuardbandClipTestEnable = true;
1113 cl.ClipMode = CLIPMODE_NORMAL;
1114 cl.ClipEnable = true;
1115 cl.ViewportXYClipTestEnable = state->point_tri_clip;
1116 cl.MinimumPointWidth = 0.125;
1117 cl.MaximumPointWidth = 255.875;
1118
1119 if (state->flatshade_first) {
1120 cl.TriangleFanProvokingVertexSelect = 1;
1121 } else {
1122 cl.TriangleStripListProvokingVertexSelect = 2;
1123 cl.TriangleFanProvokingVertexSelect = 2;
1124 cl.LineStripListProvokingVertexSelect = 1;
1125 }
1126 }
1127
1128 iris_pack_command(GENX(3DSTATE_WM), cso->wm, wm) {
1129 /* wm.BarycentricInterpolationMode and wm.EarlyDepthStencilControl are
1130 * filled in at draw time from the FS program.
1131 */
1132 wm.LineAntialiasingRegionWidth = _10pixels;
1133 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1134 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1135 wm.LineStippleEnable = state->line_stipple_enable;
1136 wm.PolygonStippleEnable = state->poly_stipple_enable;
1137 }
1138
1139 /* Remap from 0..255 back to 1..256 */
1140 const unsigned line_stipple_factor = state->line_stipple_factor + 1;
1141
1142 iris_pack_command(GENX(3DSTATE_LINE_STIPPLE), cso->line_stipple, line) {
1143 line.LineStipplePattern = state->line_stipple_pattern;
1144 line.LineStippleInverseRepeatCount = 1.0f / line_stipple_factor;
1145 line.LineStippleRepeatCount = line_stipple_factor;
1146 }
1147
1148 return cso;
1149 }
1150
1151 /**
1152 * The pipe->bind_rasterizer_state() driver hook.
1153 *
1154 * Bind a rasterizer CSO and flag related dirty bits.
1155 */
1156 static void
1157 iris_bind_rasterizer_state(struct pipe_context *ctx, void *state)
1158 {
1159 struct iris_context *ice = (struct iris_context *) ctx;
1160 struct iris_rasterizer_state *old_cso = ice->state.cso_rast;
1161 struct iris_rasterizer_state *new_cso = state;
1162
1163 if (new_cso) {
1164 /* Try to avoid re-emitting 3DSTATE_LINE_STIPPLE, it's non-pipelined */
1165 if (cso_changed_memcmp(line_stipple))
1166 ice->state.dirty |= IRIS_DIRTY_LINE_STIPPLE;
1167
1168 if (cso_changed(half_pixel_center))
1169 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
1170
1171 if (cso_changed(line_stipple_enable) || cso_changed(poly_stipple_enable))
1172 ice->state.dirty |= IRIS_DIRTY_WM;
1173
1174 if (cso_changed(rasterizer_discard) || cso_changed(flatshade_first))
1175 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
1176
1177 if (cso_changed(depth_clip_near) || cso_changed(depth_clip_far) ||
1178 cso_changed(clip_halfz))
1179 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1180
1181 if (cso_changed(sprite_coord_enable) || cso_changed(light_twoside))
1182 ice->state.dirty |= IRIS_DIRTY_SBE;
1183 }
1184
1185 ice->state.cso_rast = new_cso;
1186 ice->state.dirty |= IRIS_DIRTY_RASTER;
1187 ice->state.dirty |= IRIS_DIRTY_CLIP;
1188 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_RASTERIZER];
1189 }
1190
1191 /**
1192 * Return true if the given wrap mode requires the border color to exist.
1193 *
1194 * (We can skip uploading it if the sampler isn't going to use it.)
1195 */
1196 static bool
1197 wrap_mode_needs_border_color(unsigned wrap_mode)
1198 {
1199 return wrap_mode == TCM_CLAMP_BORDER || wrap_mode == TCM_HALF_BORDER;
1200 }
1201
1202 /**
1203 * Gallium CSO for sampler state.
1204 */
1205 struct iris_sampler_state {
1206 union pipe_color_union border_color;
1207 bool needs_border_color;
1208
1209 uint32_t sampler_state[GENX(SAMPLER_STATE_length)];
1210 };
1211
1212 /**
1213 * The pipe->create_sampler_state() driver hook.
1214 *
1215 * We fill out SAMPLER_STATE (except for the border color pointer), and
1216 * store that on the CPU. It doesn't make sense to upload it to a GPU
1217 * buffer object yet, because 3DSTATE_SAMPLER_STATE_POINTERS requires
1218 * all bound sampler states to be in contiguous memor.
1219 */
1220 static void *
1221 iris_create_sampler_state(struct pipe_context *ctx,
1222 const struct pipe_sampler_state *state)
1223 {
1224 struct iris_sampler_state *cso = CALLOC_STRUCT(iris_sampler_state);
1225
1226 if (!cso)
1227 return NULL;
1228
1229 STATIC_ASSERT(PIPE_TEX_FILTER_NEAREST == MAPFILTER_NEAREST);
1230 STATIC_ASSERT(PIPE_TEX_FILTER_LINEAR == MAPFILTER_LINEAR);
1231
1232 unsigned wrap_s = translate_wrap(state->wrap_s);
1233 unsigned wrap_t = translate_wrap(state->wrap_t);
1234 unsigned wrap_r = translate_wrap(state->wrap_r);
1235
1236 memcpy(&cso->border_color, &state->border_color, sizeof(cso->border_color));
1237
1238 cso->needs_border_color = wrap_mode_needs_border_color(wrap_s) ||
1239 wrap_mode_needs_border_color(wrap_t) ||
1240 wrap_mode_needs_border_color(wrap_r);
1241
1242 float min_lod = state->min_lod;
1243 unsigned mag_img_filter = state->mag_img_filter;
1244
1245 // XXX: explain this code ported from ilo...I don't get it at all...
1246 if (state->min_mip_filter == PIPE_TEX_MIPFILTER_NONE &&
1247 state->min_lod > 0.0f) {
1248 min_lod = 0.0f;
1249 mag_img_filter = state->min_img_filter;
1250 }
1251
1252 iris_pack_state(GENX(SAMPLER_STATE), cso->sampler_state, samp) {
1253 samp.TCXAddressControlMode = wrap_s;
1254 samp.TCYAddressControlMode = wrap_t;
1255 samp.TCZAddressControlMode = wrap_r;
1256 samp.CubeSurfaceControlMode = state->seamless_cube_map;
1257 samp.NonnormalizedCoordinateEnable = !state->normalized_coords;
1258 samp.MinModeFilter = state->min_img_filter;
1259 samp.MagModeFilter = mag_img_filter;
1260 samp.MipModeFilter = translate_mip_filter(state->min_mip_filter);
1261 samp.MaximumAnisotropy = RATIO21;
1262
1263 if (state->max_anisotropy >= 2) {
1264 if (state->min_img_filter == PIPE_TEX_FILTER_LINEAR) {
1265 samp.MinModeFilter = MAPFILTER_ANISOTROPIC;
1266 samp.AnisotropicAlgorithm = EWAApproximation;
1267 }
1268
1269 if (state->mag_img_filter == PIPE_TEX_FILTER_LINEAR)
1270 samp.MagModeFilter = MAPFILTER_ANISOTROPIC;
1271
1272 samp.MaximumAnisotropy =
1273 MIN2((state->max_anisotropy - 2) / 2, RATIO161);
1274 }
1275
1276 /* Set address rounding bits if not using nearest filtering. */
1277 if (state->min_img_filter != PIPE_TEX_FILTER_NEAREST) {
1278 samp.UAddressMinFilterRoundingEnable = true;
1279 samp.VAddressMinFilterRoundingEnable = true;
1280 samp.RAddressMinFilterRoundingEnable = true;
1281 }
1282
1283 if (state->mag_img_filter != PIPE_TEX_FILTER_NEAREST) {
1284 samp.UAddressMagFilterRoundingEnable = true;
1285 samp.VAddressMagFilterRoundingEnable = true;
1286 samp.RAddressMagFilterRoundingEnable = true;
1287 }
1288
1289 if (state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE)
1290 samp.ShadowFunction = translate_shadow_func(state->compare_func);
1291
1292 const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
1293
1294 samp.LODPreClampMode = CLAMP_MODE_OGL;
1295 samp.MinLOD = CLAMP(min_lod, 0, hw_max_lod);
1296 samp.MaxLOD = CLAMP(state->max_lod, 0, hw_max_lod);
1297 samp.TextureLODBias = CLAMP(state->lod_bias, -16, 15);
1298
1299 /* .BorderColorPointer is filled in by iris_bind_sampler_states. */
1300 }
1301
1302 return cso;
1303 }
1304
1305 /**
1306 * The pipe->bind_sampler_states() driver hook.
1307 *
1308 * Now that we know all the sampler states, we upload them all into a
1309 * contiguous area of GPU memory, for 3DSTATE_SAMPLER_STATE_POINTERS_*.
1310 * We also fill out the border color state pointers at this point.
1311 *
1312 * We could defer this work to draw time, but we assume that binding
1313 * will be less frequent than drawing.
1314 */
1315 // XXX: this may be a bad idea, need to make sure that st/mesa calls us
1316 // XXX: with the complete set of shaders. If it makes multiple calls to
1317 // XXX: things one at a time, we could waste a lot of time assembling things.
1318 // XXX: it doesn't even BUY us anything to do it here, because we only flag
1319 // XXX: IRIS_DIRTY_SAMPLER_STATE when this is called...
1320 static void
1321 iris_bind_sampler_states(struct pipe_context *ctx,
1322 enum pipe_shader_type p_stage,
1323 unsigned start, unsigned count,
1324 void **states)
1325 {
1326 struct iris_context *ice = (struct iris_context *) ctx;
1327 gl_shader_stage stage = stage_from_pipe(p_stage);
1328 struct iris_shader_state *shs = &ice->state.shaders[stage];
1329
1330 assert(start + count <= IRIS_MAX_TEXTURE_SAMPLERS);
1331 shs->num_samplers = MAX2(shs->num_samplers, start + count);
1332
1333 for (int i = 0; i < count; i++) {
1334 shs->samplers[start + i] = states[i];
1335 }
1336
1337 /* Assemble the SAMPLER_STATEs into a contiguous table that lives
1338 * in the dynamic state memory zone, so we can point to it via the
1339 * 3DSTATE_SAMPLER_STATE_POINTERS_* commands.
1340 */
1341 uint32_t *map =
1342 upload_state(ice->state.dynamic_uploader, &shs->sampler_table,
1343 count * 4 * GENX(SAMPLER_STATE_length), 32);
1344 if (unlikely(!map))
1345 return;
1346
1347 struct pipe_resource *res = shs->sampler_table.res;
1348 shs->sampler_table.offset +=
1349 iris_bo_offset_from_base_address(iris_resource_bo(res));
1350
1351 /* Make sure all land in the same BO */
1352 iris_border_color_pool_reserve(ice, IRIS_MAX_TEXTURE_SAMPLERS);
1353
1354 for (int i = 0; i < count; i++) {
1355 struct iris_sampler_state *state = shs->samplers[i];
1356
1357 if (!state) {
1358 memset(map, 0, 4 * GENX(SAMPLER_STATE_length));
1359 } else if (!state->needs_border_color) {
1360 memcpy(map, state->sampler_state, 4 * GENX(SAMPLER_STATE_length));
1361 } else {
1362 ice->state.need_border_colors = true;
1363
1364 /* Stream out the border color and merge the pointer. */
1365 uint32_t offset =
1366 iris_upload_border_color(ice, &state->border_color);
1367
1368 uint32_t dynamic[GENX(SAMPLER_STATE_length)];
1369 iris_pack_state(GENX(SAMPLER_STATE), dynamic, dyns) {
1370 dyns.BorderColorPointer = offset;
1371 }
1372
1373 for (uint32_t j = 0; j < GENX(SAMPLER_STATE_length); j++)
1374 map[j] = state->sampler_state[j] | dynamic[j];
1375 }
1376
1377 map += GENX(SAMPLER_STATE_length);
1378 }
1379
1380 ice->state.dirty |= IRIS_DIRTY_SAMPLER_STATES_VS << stage;
1381 }
1382
1383 static enum isl_channel_select
1384 fmt_swizzle(const struct iris_format_info *fmt, enum pipe_swizzle swz)
1385 {
1386 switch (swz) {
1387 case PIPE_SWIZZLE_X: return fmt->swizzle.r;
1388 case PIPE_SWIZZLE_Y: return fmt->swizzle.g;
1389 case PIPE_SWIZZLE_Z: return fmt->swizzle.b;
1390 case PIPE_SWIZZLE_W: return fmt->swizzle.a;
1391 case PIPE_SWIZZLE_1: return SCS_ONE;
1392 case PIPE_SWIZZLE_0: return SCS_ZERO;
1393 default: unreachable("invalid swizzle");
1394 }
1395 }
1396
1397 static void
1398 fill_buffer_surface_state(struct isl_device *isl_dev,
1399 struct iris_bo *bo,
1400 void *map,
1401 enum isl_format format,
1402 unsigned offset,
1403 unsigned size)
1404 {
1405 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
1406 const unsigned cpp = fmtl->bpb / 8;
1407
1408 /* The ARB_texture_buffer_specification says:
1409 *
1410 * "The number of texels in the buffer texture's texel array is given by
1411 *
1412 * floor(<buffer_size> / (<components> * sizeof(<base_type>)),
1413 *
1414 * where <buffer_size> is the size of the buffer object, in basic
1415 * machine units and <components> and <base_type> are the element count
1416 * and base data type for elements, as specified in Table X.1. The
1417 * number of texels in the texel array is then clamped to the
1418 * implementation-dependent limit MAX_TEXTURE_BUFFER_SIZE_ARB."
1419 *
1420 * We need to clamp the size in bytes to MAX_TEXTURE_BUFFER_SIZE * stride,
1421 * so that when ISL divides by stride to obtain the number of texels, that
1422 * texel count is clamped to MAX_TEXTURE_BUFFER_SIZE.
1423 */
1424 unsigned final_size =
1425 MIN3(size, bo->size - offset, IRIS_MAX_TEXTURE_BUFFER_SIZE * cpp);
1426
1427 isl_buffer_fill_state(isl_dev, map,
1428 .address = bo->gtt_offset + offset,
1429 .size_B = final_size,
1430 .format = format,
1431 .stride_B = cpp,
1432 .mocs = MOCS_WB);
1433 }
1434
1435 /**
1436 * The pipe->create_sampler_view() driver hook.
1437 */
1438 static struct pipe_sampler_view *
1439 iris_create_sampler_view(struct pipe_context *ctx,
1440 struct pipe_resource *tex,
1441 const struct pipe_sampler_view *tmpl)
1442 {
1443 struct iris_context *ice = (struct iris_context *) ctx;
1444 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1445 const struct gen_device_info *devinfo = &screen->devinfo;
1446 struct iris_sampler_view *isv = calloc(1, sizeof(struct iris_sampler_view));
1447
1448 if (!isv)
1449 return NULL;
1450
1451 /* initialize base object */
1452 isv->base = *tmpl;
1453 isv->base.context = ctx;
1454 isv->base.texture = NULL;
1455 pipe_reference_init(&isv->base.reference, 1);
1456 pipe_resource_reference(&isv->base.texture, tex);
1457
1458 void *map = upload_state(ice->state.surface_uploader, &isv->surface_state,
1459 4 * GENX(RENDER_SURFACE_STATE_length), 64);
1460 if (!unlikely(map))
1461 return NULL;
1462
1463 struct iris_bo *state_bo = iris_resource_bo(isv->surface_state.res);
1464 isv->surface_state.offset += iris_bo_offset_from_base_address(state_bo);
1465
1466 if (util_format_is_depth_or_stencil(tmpl->format)) {
1467 struct iris_resource *zres, *sres;
1468 const struct util_format_description *desc =
1469 util_format_description(tmpl->format);
1470
1471 iris_get_depth_stencil_resources(tex, &zres, &sres);
1472
1473 tex = util_format_has_depth(desc) ? &zres->base : &sres->base;
1474 }
1475
1476 isv->res = (struct iris_resource *) tex;
1477
1478 isl_surf_usage_flags_t usage =
1479 ISL_SURF_USAGE_TEXTURE_BIT |
1480 (isv->res->surf.usage & ISL_SURF_USAGE_CUBE_BIT);
1481
1482 const struct iris_format_info fmt =
1483 iris_format_for_usage(devinfo, tmpl->format, usage);
1484
1485 isv->view = (struct isl_view) {
1486 .format = fmt.fmt,
1487 .swizzle = (struct isl_swizzle) {
1488 .r = fmt_swizzle(&fmt, tmpl->swizzle_r),
1489 .g = fmt_swizzle(&fmt, tmpl->swizzle_g),
1490 .b = fmt_swizzle(&fmt, tmpl->swizzle_b),
1491 .a = fmt_swizzle(&fmt, tmpl->swizzle_a),
1492 },
1493 .usage = usage,
1494 };
1495
1496 /* Fill out SURFACE_STATE for this view. */
1497 if (tmpl->target != PIPE_BUFFER) {
1498 isv->view.base_level = tmpl->u.tex.first_level;
1499 isv->view.levels = tmpl->u.tex.last_level - tmpl->u.tex.first_level + 1;
1500 isv->view.base_array_layer = tmpl->u.tex.first_layer;
1501 isv->view.array_len =
1502 tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
1503
1504 isl_surf_fill_state(&screen->isl_dev, map,
1505 .surf = &isv->res->surf, .view = &isv->view,
1506 .mocs = MOCS_WB,
1507 .address = isv->res->bo->gtt_offset);
1508 // .aux_surf =
1509 // .clear_color = clear_color,
1510 } else {
1511 fill_buffer_surface_state(&screen->isl_dev, isv->res->bo, map,
1512 isv->view.format, tmpl->u.buf.offset,
1513 tmpl->u.buf.size);
1514 }
1515
1516 return &isv->base;
1517 }
1518
1519 static void
1520 iris_sampler_view_destroy(struct pipe_context *ctx,
1521 struct pipe_sampler_view *state)
1522 {
1523 struct iris_sampler_view *isv = (void *) state;
1524 pipe_resource_reference(&state->texture, NULL);
1525 pipe_resource_reference(&isv->surface_state.res, NULL);
1526 free(isv);
1527 }
1528
1529 /**
1530 * The pipe->create_surface() driver hook.
1531 *
1532 * In Gallium nomenclature, "surfaces" are a view of a resource that
1533 * can be bound as a render target or depth/stencil buffer.
1534 */
1535 static struct pipe_surface *
1536 iris_create_surface(struct pipe_context *ctx,
1537 struct pipe_resource *tex,
1538 const struct pipe_surface *tmpl)
1539 {
1540 struct iris_context *ice = (struct iris_context *) ctx;
1541 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1542 const struct gen_device_info *devinfo = &screen->devinfo;
1543 struct iris_surface *surf = calloc(1, sizeof(struct iris_surface));
1544 struct pipe_surface *psurf = &surf->base;
1545 struct iris_resource *res = (struct iris_resource *) tex;
1546
1547 if (!surf)
1548 return NULL;
1549
1550 pipe_reference_init(&psurf->reference, 1);
1551 pipe_resource_reference(&psurf->texture, tex);
1552 psurf->context = ctx;
1553 psurf->format = tmpl->format;
1554 psurf->width = tex->width0;
1555 psurf->height = tex->height0;
1556 psurf->texture = tex;
1557 psurf->u.tex.first_layer = tmpl->u.tex.first_layer;
1558 psurf->u.tex.last_layer = tmpl->u.tex.last_layer;
1559 psurf->u.tex.level = tmpl->u.tex.level;
1560
1561 isl_surf_usage_flags_t usage = 0;
1562 if (tmpl->writable)
1563 usage = ISL_SURF_USAGE_STORAGE_BIT;
1564 else if (util_format_is_depth_or_stencil(tmpl->format))
1565 usage = ISL_SURF_USAGE_DEPTH_BIT;
1566 else
1567 usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
1568
1569 const struct iris_format_info fmt =
1570 iris_format_for_usage(devinfo, psurf->format, usage);
1571
1572 if ((usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) &&
1573 !isl_format_supports_rendering(devinfo, fmt.fmt)) {
1574 /* Framebuffer validation will reject this invalid case, but it
1575 * hasn't had the opportunity yet. In the meantime, we need to
1576 * avoid hitting ISL asserts about unsupported formats below.
1577 */
1578 free(surf);
1579 return NULL;
1580 }
1581
1582 surf->view = (struct isl_view) {
1583 .format = fmt.fmt,
1584 .base_level = tmpl->u.tex.level,
1585 .levels = 1,
1586 .base_array_layer = tmpl->u.tex.first_layer,
1587 .array_len = tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1,
1588 .swizzle = ISL_SWIZZLE_IDENTITY,
1589 .usage = usage,
1590 };
1591
1592 /* Bail early for depth/stencil - we don't want SURFACE_STATE for them. */
1593 if (res->surf.usage & (ISL_SURF_USAGE_DEPTH_BIT |
1594 ISL_SURF_USAGE_STENCIL_BIT))
1595 return psurf;
1596
1597
1598 void *map = upload_state(ice->state.surface_uploader, &surf->surface_state,
1599 4 * GENX(RENDER_SURFACE_STATE_length), 64);
1600 if (!unlikely(map))
1601 return NULL;
1602
1603 struct iris_bo *state_bo = iris_resource_bo(surf->surface_state.res);
1604 surf->surface_state.offset += iris_bo_offset_from_base_address(state_bo);
1605
1606 isl_surf_fill_state(&screen->isl_dev, map,
1607 .surf = &res->surf, .view = &surf->view,
1608 .mocs = MOCS_WB,
1609 .address = res->bo->gtt_offset);
1610 // .aux_surf =
1611 // .clear_color = clear_color,
1612
1613 return psurf;
1614 }
1615
1616 /**
1617 * The pipe->set_shader_images() driver hook.
1618 */
1619 static void
1620 iris_set_shader_images(struct pipe_context *ctx,
1621 enum pipe_shader_type p_stage,
1622 unsigned start_slot, unsigned count,
1623 const struct pipe_image_view *p_images)
1624 {
1625 struct iris_context *ice = (struct iris_context *) ctx;
1626 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1627 const struct gen_device_info *devinfo = &screen->devinfo;
1628 gl_shader_stage stage = stage_from_pipe(p_stage);
1629 struct iris_shader_state *shs = &ice->state.shaders[stage];
1630
1631 for (unsigned i = 0; i < count; i++) {
1632 if (p_images && p_images[i].resource) {
1633 const struct pipe_image_view *img = &p_images[i];
1634 struct iris_resource *res = (void *) img->resource;
1635 pipe_resource_reference(&shs->image[start_slot + i].res, &res->base);
1636
1637 // XXX: these are not retained forever, use a separate uploader?
1638 void *map =
1639 upload_state(ice->state.surface_uploader,
1640 &shs->image[start_slot + i].surface_state,
1641 4 * GENX(RENDER_SURFACE_STATE_length), 64);
1642 if (!unlikely(map)) {
1643 pipe_resource_reference(&shs->image[start_slot + i].res, NULL);
1644 return;
1645 }
1646
1647 struct iris_bo *surf_state_bo =
1648 iris_resource_bo(shs->image[start_slot + i].surface_state.res);
1649 shs->image[start_slot + i].surface_state.offset +=
1650 iris_bo_offset_from_base_address(surf_state_bo);
1651
1652 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_STORAGE_BIT;
1653 enum isl_format isl_format =
1654 iris_format_for_usage(devinfo, img->format, usage).fmt;
1655
1656 if (img->shader_access & PIPE_IMAGE_ACCESS_READ)
1657 isl_format = isl_lower_storage_image_format(devinfo, isl_format);
1658
1659 shs->image[start_slot + i].access = img->shader_access;
1660
1661 if (res->base.target != PIPE_BUFFER) {
1662 struct isl_view view = {
1663 .format = isl_format,
1664 .base_level = img->u.tex.level,
1665 .levels = 1,
1666 .base_array_layer = img->u.tex.first_layer,
1667 .array_len = img->u.tex.last_layer - img->u.tex.first_layer + 1,
1668 .swizzle = ISL_SWIZZLE_IDENTITY,
1669 .usage = usage,
1670 };
1671
1672 isl_surf_fill_state(&screen->isl_dev, map,
1673 .surf = &res->surf, .view = &view,
1674 .mocs = MOCS_WB,
1675 .address = res->bo->gtt_offset);
1676 // .aux_surf =
1677 // .clear_color = clear_color,
1678 } else {
1679 fill_buffer_surface_state(&screen->isl_dev, res->bo, map,
1680 isl_format, img->u.buf.offset,
1681 img->u.buf.size);
1682 }
1683 } else {
1684 pipe_resource_reference(&shs->image[start_slot + i].res, NULL);
1685 pipe_resource_reference(&shs->image[start_slot + i].surface_state.res,
1686 NULL);
1687 }
1688 }
1689
1690 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
1691 }
1692
1693
1694 /**
1695 * The pipe->set_sampler_views() driver hook.
1696 */
1697 static void
1698 iris_set_sampler_views(struct pipe_context *ctx,
1699 enum pipe_shader_type p_stage,
1700 unsigned start, unsigned count,
1701 struct pipe_sampler_view **views)
1702 {
1703 struct iris_context *ice = (struct iris_context *) ctx;
1704 gl_shader_stage stage = stage_from_pipe(p_stage);
1705 struct iris_shader_state *shs = &ice->state.shaders[stage];
1706
1707 unsigned i;
1708 for (i = 0; i < count; i++) {
1709 pipe_sampler_view_reference((struct pipe_sampler_view **)
1710 &shs->textures[i], views[i]);
1711 }
1712 for (; i < shs->num_textures; i++) {
1713 pipe_sampler_view_reference((struct pipe_sampler_view **)
1714 &shs->textures[i], NULL);
1715 }
1716
1717 shs->num_textures = count;
1718
1719 ice->state.dirty |= (IRIS_DIRTY_BINDINGS_VS << stage);
1720 }
1721
1722 /**
1723 * The pipe->set_tess_state() driver hook.
1724 */
1725 static void
1726 iris_set_tess_state(struct pipe_context *ctx,
1727 const float default_outer_level[4],
1728 const float default_inner_level[2])
1729 {
1730 struct iris_context *ice = (struct iris_context *) ctx;
1731
1732 memcpy(&ice->state.default_outer_level[0], &default_outer_level[0], 4 * sizeof(float));
1733 memcpy(&ice->state.default_inner_level[0], &default_inner_level[0], 2 * sizeof(float));
1734
1735 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_TCS;
1736 }
1737
1738 static void
1739 iris_surface_destroy(struct pipe_context *ctx, struct pipe_surface *p_surf)
1740 {
1741 struct iris_surface *surf = (void *) p_surf;
1742 pipe_resource_reference(&p_surf->texture, NULL);
1743 pipe_resource_reference(&surf->surface_state.res, NULL);
1744 free(surf);
1745 }
1746
1747 // XXX: actually implement user clip planes
1748 static void
1749 iris_set_clip_state(struct pipe_context *ctx,
1750 const struct pipe_clip_state *state)
1751 {
1752 }
1753
1754 /**
1755 * The pipe->set_polygon_stipple() driver hook.
1756 */
1757 static void
1758 iris_set_polygon_stipple(struct pipe_context *ctx,
1759 const struct pipe_poly_stipple *state)
1760 {
1761 struct iris_context *ice = (struct iris_context *) ctx;
1762 memcpy(&ice->state.poly_stipple, state, sizeof(*state));
1763 ice->state.dirty |= IRIS_DIRTY_POLYGON_STIPPLE;
1764 }
1765
1766 /**
1767 * The pipe->set_sample_mask() driver hook.
1768 */
1769 static void
1770 iris_set_sample_mask(struct pipe_context *ctx, unsigned sample_mask)
1771 {
1772 struct iris_context *ice = (struct iris_context *) ctx;
1773
1774 /* We only support 16x MSAA, so we have 16 bits of sample maks.
1775 * st/mesa may pass us 0xffffffff though, meaning "enable all samples".
1776 */
1777 ice->state.sample_mask = sample_mask & 0xffff;
1778 ice->state.dirty |= IRIS_DIRTY_SAMPLE_MASK;
1779 }
1780
1781 /**
1782 * The pipe->set_scissor_states() driver hook.
1783 *
1784 * This corresponds to our SCISSOR_RECT state structures. It's an
1785 * exact match, so we just store them, and memcpy them out later.
1786 */
1787 static void
1788 iris_set_scissor_states(struct pipe_context *ctx,
1789 unsigned start_slot,
1790 unsigned num_scissors,
1791 const struct pipe_scissor_state *rects)
1792 {
1793 struct iris_context *ice = (struct iris_context *) ctx;
1794
1795 for (unsigned i = 0; i < num_scissors; i++) {
1796 if (rects[i].minx == rects[i].maxx || rects[i].miny == rects[i].maxy) {
1797 /* If the scissor was out of bounds and got clamped to 0 width/height
1798 * at the bounds, the subtraction of 1 from maximums could produce a
1799 * negative number and thus not clip anything. Instead, just provide
1800 * a min > max scissor inside the bounds, which produces the expected
1801 * no rendering.
1802 */
1803 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
1804 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
1805 };
1806 } else {
1807 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
1808 .minx = rects[i].minx, .miny = rects[i].miny,
1809 .maxx = rects[i].maxx - 1, .maxy = rects[i].maxy - 1,
1810 };
1811 }
1812 }
1813
1814 ice->state.dirty |= IRIS_DIRTY_SCISSOR_RECT;
1815 }
1816
1817 /**
1818 * The pipe->set_stencil_ref() driver hook.
1819 *
1820 * This is added to 3DSTATE_WM_DEPTH_STENCIL dynamically at draw time.
1821 */
1822 static void
1823 iris_set_stencil_ref(struct pipe_context *ctx,
1824 const struct pipe_stencil_ref *state)
1825 {
1826 struct iris_context *ice = (struct iris_context *) ctx;
1827 memcpy(&ice->state.stencil_ref, state, sizeof(*state));
1828 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
1829 }
1830
1831 static float
1832 viewport_extent(const struct pipe_viewport_state *state, int axis, float sign)
1833 {
1834 return copysignf(state->scale[axis], sign) + state->translate[axis];
1835 }
1836
1837 #if 0
1838 static void
1839 calculate_guardband_size(uint32_t fb_width, uint32_t fb_height,
1840 float m00, float m11, float m30, float m31,
1841 float *xmin, float *xmax,
1842 float *ymin, float *ymax)
1843 {
1844 /* According to the "Vertex X,Y Clamping and Quantization" section of the
1845 * Strips and Fans documentation:
1846 *
1847 * "The vertex X and Y screen-space coordinates are also /clamped/ to the
1848 * fixed-point "guardband" range supported by the rasterization hardware"
1849 *
1850 * and
1851 *
1852 * "In almost all circumstances, if an object’s vertices are actually
1853 * modified by this clamping (i.e., had X or Y coordinates outside of
1854 * the guardband extent the rendered object will not match the intended
1855 * result. Therefore software should take steps to ensure that this does
1856 * not happen - e.g., by clipping objects such that they do not exceed
1857 * these limits after the Drawing Rectangle is applied."
1858 *
1859 * I believe the fundamental restriction is that the rasterizer (in
1860 * the SF/WM stages) have a limit on the number of pixels that can be
1861 * rasterized. We need to ensure any coordinates beyond the rasterizer
1862 * limit are handled by the clipper. So effectively that limit becomes
1863 * the clipper's guardband size.
1864 *
1865 * It goes on to say:
1866 *
1867 * "In addition, in order to be correctly rendered, objects must have a
1868 * screenspace bounding box not exceeding 8K in the X or Y direction.
1869 * This additional restriction must also be comprehended by software,
1870 * i.e., enforced by use of clipping."
1871 *
1872 * This makes no sense. Gen7+ hardware supports 16K render targets,
1873 * and you definitely need to be able to draw polygons that fill the
1874 * surface. Our assumption is that the rasterizer was limited to 8K
1875 * on Sandybridge, which only supports 8K surfaces, and it was actually
1876 * increased to 16K on Ivybridge and later.
1877 *
1878 * So, limit the guardband to 16K on Gen7+ and 8K on Sandybridge.
1879 */
1880 const float gb_size = GEN_GEN >= 7 ? 16384.0f : 8192.0f;
1881
1882 if (m00 != 0 && m11 != 0) {
1883 /* First, we compute the screen-space render area */
1884 const float ss_ra_xmin = MIN3( 0, m30 + m00, m30 - m00);
1885 const float ss_ra_xmax = MAX3( fb_width, m30 + m00, m30 - m00);
1886 const float ss_ra_ymin = MIN3( 0, m31 + m11, m31 - m11);
1887 const float ss_ra_ymax = MAX3(fb_height, m31 + m11, m31 - m11);
1888
1889 /* We want the guardband to be centered on that */
1890 const float ss_gb_xmin = (ss_ra_xmin + ss_ra_xmax) / 2 - gb_size;
1891 const float ss_gb_xmax = (ss_ra_xmin + ss_ra_xmax) / 2 + gb_size;
1892 const float ss_gb_ymin = (ss_ra_ymin + ss_ra_ymax) / 2 - gb_size;
1893 const float ss_gb_ymax = (ss_ra_ymin + ss_ra_ymax) / 2 + gb_size;
1894
1895 /* Now we need it in native device coordinates */
1896 const float ndc_gb_xmin = (ss_gb_xmin - m30) / m00;
1897 const float ndc_gb_xmax = (ss_gb_xmax - m30) / m00;
1898 const float ndc_gb_ymin = (ss_gb_ymin - m31) / m11;
1899 const float ndc_gb_ymax = (ss_gb_ymax - m31) / m11;
1900
1901 /* Thanks to Y-flipping and ORIGIN_UPPER_LEFT, the Y coordinates may be
1902 * flipped upside-down. X should be fine though.
1903 */
1904 assert(ndc_gb_xmin <= ndc_gb_xmax);
1905 *xmin = ndc_gb_xmin;
1906 *xmax = ndc_gb_xmax;
1907 *ymin = MIN2(ndc_gb_ymin, ndc_gb_ymax);
1908 *ymax = MAX2(ndc_gb_ymin, ndc_gb_ymax);
1909 } else {
1910 /* The viewport scales to 0, so nothing will be rendered. */
1911 *xmin = 0.0f;
1912 *xmax = 0.0f;
1913 *ymin = 0.0f;
1914 *ymax = 0.0f;
1915 }
1916 }
1917 #endif
1918
1919 /**
1920 * The pipe->set_viewport_states() driver hook.
1921 *
1922 * This corresponds to our SF_CLIP_VIEWPORT states. We can't calculate
1923 * the guardband yet, as we need the framebuffer dimensions, but we can
1924 * at least fill out the rest.
1925 */
1926 static void
1927 iris_set_viewport_states(struct pipe_context *ctx,
1928 unsigned start_slot,
1929 unsigned count,
1930 const struct pipe_viewport_state *states)
1931 {
1932 struct iris_context *ice = (struct iris_context *) ctx;
1933 struct iris_genx_state *genx = ice->state.genx;
1934 uint32_t *vp_map =
1935 &genx->sf_cl_vp[start_slot * GENX(SF_CLIP_VIEWPORT_length)];
1936
1937 for (unsigned i = 0; i < count; i++) {
1938 const struct pipe_viewport_state *state = &states[i];
1939
1940 memcpy(&ice->state.viewports[start_slot + i], state, sizeof(*state));
1941
1942 iris_pack_state(GENX(SF_CLIP_VIEWPORT), vp_map, vp) {
1943 vp.ViewportMatrixElementm00 = state->scale[0];
1944 vp.ViewportMatrixElementm11 = state->scale[1];
1945 vp.ViewportMatrixElementm22 = state->scale[2];
1946 vp.ViewportMatrixElementm30 = state->translate[0];
1947 vp.ViewportMatrixElementm31 = state->translate[1];
1948 vp.ViewportMatrixElementm32 = state->translate[2];
1949 /* XXX: in i965 this is computed based on the drawbuffer size,
1950 * but we don't have that here...
1951 */
1952 vp.XMinClipGuardband = -1.0;
1953 vp.XMaxClipGuardband = 1.0;
1954 vp.YMinClipGuardband = -1.0;
1955 vp.YMaxClipGuardband = 1.0;
1956 vp.XMinViewPort = viewport_extent(state, 0, -1.0f);
1957 vp.XMaxViewPort = viewport_extent(state, 0, 1.0f) - 1;
1958 vp.YMinViewPort = viewport_extent(state, 1, -1.0f);
1959 vp.YMaxViewPort = viewport_extent(state, 1, 1.0f) - 1;
1960 }
1961
1962 vp_map += GENX(SF_CLIP_VIEWPORT_length);
1963 }
1964
1965 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
1966
1967 if (ice->state.cso_rast && (!ice->state.cso_rast->depth_clip_near ||
1968 !ice->state.cso_rast->depth_clip_far))
1969 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1970 }
1971
1972 /**
1973 * The pipe->set_framebuffer_state() driver hook.
1974 *
1975 * Sets the current draw FBO, including color render targets, depth,
1976 * and stencil buffers.
1977 */
1978 static void
1979 iris_set_framebuffer_state(struct pipe_context *ctx,
1980 const struct pipe_framebuffer_state *state)
1981 {
1982 struct iris_context *ice = (struct iris_context *) ctx;
1983 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1984 struct isl_device *isl_dev = &screen->isl_dev;
1985 struct pipe_framebuffer_state *cso = &ice->state.framebuffer;
1986 struct iris_resource *zres;
1987 struct iris_resource *stencil_res;
1988
1989 unsigned samples = util_framebuffer_get_num_samples(state);
1990
1991 if (cso->samples != samples) {
1992 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
1993 }
1994
1995 if (cso->nr_cbufs != state->nr_cbufs) {
1996 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1997 }
1998
1999 if ((cso->layers == 0) != (state->layers == 0)) {
2000 ice->state.dirty |= IRIS_DIRTY_CLIP;
2001 }
2002
2003 util_copy_framebuffer_state(cso, state);
2004 cso->samples = samples;
2005
2006 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
2007
2008 struct isl_view view = {
2009 .base_level = 0,
2010 .levels = 1,
2011 .base_array_layer = 0,
2012 .array_len = 1,
2013 .swizzle = ISL_SWIZZLE_IDENTITY,
2014 };
2015
2016 struct isl_depth_stencil_hiz_emit_info info = {
2017 .view = &view,
2018 .mocs = MOCS_WB,
2019 };
2020
2021 if (cso->zsbuf) {
2022 iris_get_depth_stencil_resources(cso->zsbuf->texture, &zres,
2023 &stencil_res);
2024
2025 view.base_level = cso->zsbuf->u.tex.level;
2026 view.base_array_layer = cso->zsbuf->u.tex.first_layer;
2027 view.array_len =
2028 cso->zsbuf->u.tex.last_layer - cso->zsbuf->u.tex.first_layer + 1;
2029
2030 if (zres) {
2031 view.usage |= ISL_SURF_USAGE_DEPTH_BIT;
2032
2033 info.depth_surf = &zres->surf;
2034 info.depth_address = zres->bo->gtt_offset;
2035 info.hiz_usage = ISL_AUX_USAGE_NONE;
2036
2037 view.format = zres->surf.format;
2038 }
2039
2040 if (stencil_res) {
2041 view.usage |= ISL_SURF_USAGE_STENCIL_BIT;
2042 info.stencil_surf = &stencil_res->surf;
2043 info.stencil_address = stencil_res->bo->gtt_offset;
2044 if (!zres)
2045 view.format = stencil_res->surf.format;
2046 }
2047 }
2048
2049 isl_emit_depth_stencil_hiz_s(isl_dev, cso_z->packets, &info);
2050
2051 /* Make a null surface for unbound buffers */
2052 void *null_surf_map =
2053 upload_state(ice->state.surface_uploader, &ice->state.null_fb,
2054 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2055 isl_null_fill_state(&screen->isl_dev, null_surf_map,
2056 isl_extent3d(MAX2(cso->width, 1),
2057 MAX2(cso->height, 1),
2058 cso->layers ? cso->layers : 1));
2059 ice->state.null_fb.offset +=
2060 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.null_fb.res));
2061
2062 ice->state.dirty |= IRIS_DIRTY_DEPTH_BUFFER;
2063
2064 /* Render target change */
2065 ice->state.dirty |= IRIS_DIRTY_BINDINGS_FS;
2066
2067 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_FRAMEBUFFER];
2068
2069 #if GEN_GEN == 11
2070 // XXX: we may want to flag IRIS_DIRTY_MULTISAMPLE (or SAMPLE_MASK?)
2071 // XXX: see commit 979fc1bc9bcc64027ff2cfafd285676f31b930a6
2072
2073 /* The PIPE_CONTROL command description says:
2074 *
2075 * "Whenever a Binding Table Index (BTI) used by a Render Target Message
2076 * points to a different RENDER_SURFACE_STATE, SW must issue a Render
2077 * Target Cache Flush by enabling this bit. When render target flush
2078 * is set due to new association of BTI, PS Scoreboard Stall bit must
2079 * be set in this packet."
2080 */
2081 // XXX: does this need to happen at 3DSTATE_BTP_PS time?
2082 iris_emit_pipe_control_flush(&ice->render_batch,
2083 PIPE_CONTROL_RENDER_TARGET_FLUSH |
2084 PIPE_CONTROL_STALL_AT_SCOREBOARD);
2085 #endif
2086 }
2087
2088 static void
2089 upload_ubo_surf_state(struct iris_context *ice,
2090 struct iris_const_buffer *cbuf,
2091 unsigned buffer_size)
2092 {
2093 struct pipe_context *ctx = &ice->ctx;
2094 struct iris_screen *screen = (struct iris_screen *) ctx->screen;
2095
2096 // XXX: these are not retained forever, use a separate uploader?
2097 void *map =
2098 upload_state(ice->state.surface_uploader, &cbuf->surface_state,
2099 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2100 if (!unlikely(map)) {
2101 pipe_resource_reference(&cbuf->data.res, NULL);
2102 return;
2103 }
2104
2105 struct iris_resource *res = (void *) cbuf->data.res;
2106 struct iris_bo *surf_bo = iris_resource_bo(cbuf->surface_state.res);
2107 cbuf->surface_state.offset += iris_bo_offset_from_base_address(surf_bo);
2108
2109 isl_buffer_fill_state(&screen->isl_dev, map,
2110 .address = res->bo->gtt_offset + cbuf->data.offset,
2111 .size_B = MIN2(buffer_size,
2112 res->bo->size - cbuf->data.offset),
2113 .format = ISL_FORMAT_R32G32B32A32_FLOAT,
2114 .stride_B = 1,
2115 .mocs = MOCS_WB)
2116 }
2117
2118 /**
2119 * The pipe->set_constant_buffer() driver hook.
2120 *
2121 * This uploads any constant data in user buffers, and references
2122 * any UBO resources containing constant data.
2123 */
2124 static void
2125 iris_set_constant_buffer(struct pipe_context *ctx,
2126 enum pipe_shader_type p_stage, unsigned index,
2127 const struct pipe_constant_buffer *input)
2128 {
2129 struct iris_context *ice = (struct iris_context *) ctx;
2130 gl_shader_stage stage = stage_from_pipe(p_stage);
2131 struct iris_shader_state *shs = &ice->state.shaders[stage];
2132 struct iris_const_buffer *cbuf = &shs->constbuf[index];
2133
2134 if (input && input->buffer) {
2135 assert(index > 0);
2136
2137 pipe_resource_reference(&cbuf->data.res, input->buffer);
2138 cbuf->data.offset = input->buffer_offset;
2139
2140 upload_ubo_surf_state(ice, cbuf, input->buffer_size);
2141 } else {
2142 pipe_resource_reference(&cbuf->data.res, NULL);
2143 pipe_resource_reference(&cbuf->surface_state.res, NULL);
2144 }
2145
2146 if (index == 0) {
2147 if (input)
2148 memcpy(&shs->cbuf0, input, sizeof(shs->cbuf0));
2149 else
2150 memset(&shs->cbuf0, 0, sizeof(shs->cbuf0));
2151
2152 shs->cbuf0_needs_upload = true;
2153 }
2154
2155 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
2156 // XXX: maybe not necessary all the time...?
2157 // XXX: we need 3DS_BTP to commit these changes, and if we fell back to
2158 // XXX: pull model we may need actual new bindings...
2159 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2160 }
2161
2162 static void
2163 upload_uniforms(struct iris_context *ice,
2164 gl_shader_stage stage)
2165 {
2166 struct iris_shader_state *shs = &ice->state.shaders[stage];
2167 struct iris_const_buffer *cbuf = &shs->constbuf[0];
2168 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
2169 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
2170
2171 unsigned upload_size = prog_data->nr_params * sizeof(uint32_t) +
2172 shs->cbuf0.buffer_size;
2173
2174 if (upload_size == 0)
2175 return;
2176
2177 uint32_t *map =
2178 upload_state(ice->ctx.const_uploader, &cbuf->data, upload_size, 64);
2179
2180 for (int i = 0; i < prog_data->nr_params; i++) {
2181 uint32_t param = prog_data->param[i];
2182 uint32_t value = 0;
2183
2184 printf("got a param to upload - %u\n", param);
2185
2186 *map++ = value;
2187 }
2188
2189 if (shs->cbuf0.user_buffer) {
2190 memcpy(map, shs->cbuf0.user_buffer, shs->cbuf0.buffer_size);
2191 }
2192
2193 upload_ubo_surf_state(ice, cbuf, upload_size);
2194 }
2195
2196 /**
2197 * The pipe->set_shader_buffers() driver hook.
2198 *
2199 * This binds SSBOs and ABOs. Unfortunately, we need to stream out
2200 * SURFACE_STATE here, as the buffer offset may change each time.
2201 */
2202 static void
2203 iris_set_shader_buffers(struct pipe_context *ctx,
2204 enum pipe_shader_type p_stage,
2205 unsigned start_slot, unsigned count,
2206 const struct pipe_shader_buffer *buffers)
2207 {
2208 struct iris_context *ice = (struct iris_context *) ctx;
2209 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2210 gl_shader_stage stage = stage_from_pipe(p_stage);
2211 struct iris_shader_state *shs = &ice->state.shaders[stage];
2212
2213 for (unsigned i = 0; i < count; i++) {
2214 if (buffers && buffers[i].buffer) {
2215 const struct pipe_shader_buffer *buffer = &buffers[i];
2216 struct iris_resource *res = (void *) buffer->buffer;
2217 pipe_resource_reference(&shs->ssbo[start_slot + i], &res->base);
2218
2219 // XXX: these are not retained forever, use a separate uploader?
2220 void *map =
2221 upload_state(ice->state.surface_uploader,
2222 &shs->ssbo_surface_state[start_slot + i],
2223 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2224 if (!unlikely(map)) {
2225 pipe_resource_reference(&shs->ssbo[start_slot + i], NULL);
2226 return;
2227 }
2228
2229 struct iris_bo *surf_state_bo =
2230 iris_resource_bo(shs->ssbo_surface_state[start_slot + i].res);
2231 shs->ssbo_surface_state[start_slot + i].offset +=
2232 iris_bo_offset_from_base_address(surf_state_bo);
2233
2234 isl_buffer_fill_state(&screen->isl_dev, map,
2235 .address =
2236 res->bo->gtt_offset + buffer->buffer_offset,
2237 .size_B =
2238 MIN2(buffer->buffer_size,
2239 res->bo->size - buffer->buffer_offset),
2240 .format = ISL_FORMAT_RAW,
2241 .stride_B = 1,
2242 .mocs = MOCS_WB);
2243 } else {
2244 pipe_resource_reference(&shs->ssbo[start_slot + i], NULL);
2245 pipe_resource_reference(&shs->ssbo_surface_state[start_slot + i].res,
2246 NULL);
2247 }
2248 }
2249
2250 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2251 }
2252
2253 static void
2254 iris_delete_state(struct pipe_context *ctx, void *state)
2255 {
2256 free(state);
2257 }
2258
2259 static void
2260 iris_free_vertex_buffers(struct iris_vertex_buffer_state *cso)
2261 {
2262 for (unsigned i = 0; i < cso->num_buffers; i++)
2263 pipe_resource_reference(&cso->resources[i], NULL);
2264 }
2265
2266 /**
2267 * The pipe->set_vertex_buffers() driver hook.
2268 *
2269 * This translates pipe_vertex_buffer to our 3DSTATE_VERTEX_BUFFERS packet.
2270 */
2271 static void
2272 iris_set_vertex_buffers(struct pipe_context *ctx,
2273 unsigned start_slot, unsigned count,
2274 const struct pipe_vertex_buffer *buffers)
2275 {
2276 struct iris_context *ice = (struct iris_context *) ctx;
2277 struct iris_vertex_buffer_state *cso = &ice->state.genx->vertex_buffers;
2278
2279 iris_free_vertex_buffers(&ice->state.genx->vertex_buffers);
2280
2281 if (!buffers)
2282 count = 0;
2283
2284 cso->num_buffers = count;
2285
2286 iris_pack_command(GENX(3DSTATE_VERTEX_BUFFERS), cso->vertex_buffers, vb) {
2287 vb.DWordLength = 4 * MAX2(cso->num_buffers, 1) - 1;
2288 }
2289
2290 uint32_t *vb_pack_dest = &cso->vertex_buffers[1];
2291
2292 if (count == 0) {
2293 iris_pack_state(GENX(VERTEX_BUFFER_STATE), vb_pack_dest, vb) {
2294 vb.VertexBufferIndex = start_slot;
2295 vb.NullVertexBuffer = true;
2296 vb.AddressModifyEnable = true;
2297 }
2298 }
2299
2300 for (unsigned i = 0; i < count; i++) {
2301 assert(!buffers[i].is_user_buffer);
2302
2303 pipe_resource_reference(&cso->resources[i], buffers[i].buffer.resource);
2304 struct iris_resource *res = (void *) cso->resources[i];
2305
2306 iris_pack_state(GENX(VERTEX_BUFFER_STATE), vb_pack_dest, vb) {
2307 vb.VertexBufferIndex = start_slot + i;
2308 vb.MOCS = MOCS_WB;
2309 vb.AddressModifyEnable = true;
2310 vb.BufferPitch = buffers[i].stride;
2311 if (res) {
2312 vb.BufferSize = res->bo->size;
2313 vb.BufferStartingAddress =
2314 ro_bo(NULL, res->bo->gtt_offset + buffers[i].buffer_offset);
2315 } else {
2316 vb.NullVertexBuffer = true;
2317 }
2318 }
2319
2320 vb_pack_dest += GENX(VERTEX_BUFFER_STATE_length);
2321 }
2322
2323 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
2324 }
2325
2326 /**
2327 * Gallium CSO for vertex elements.
2328 */
2329 struct iris_vertex_element_state {
2330 uint32_t vertex_elements[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
2331 uint32_t vf_instancing[33 * GENX(3DSTATE_VF_INSTANCING_length)];
2332 unsigned count;
2333 };
2334
2335 /**
2336 * The pipe->create_vertex_elements() driver hook.
2337 *
2338 * This translates pipe_vertex_element to our 3DSTATE_VERTEX_ELEMENTS
2339 * and 3DSTATE_VF_INSTANCING commands. SGVs are handled at draw time.
2340 */
2341 static void *
2342 iris_create_vertex_elements(struct pipe_context *ctx,
2343 unsigned count,
2344 const struct pipe_vertex_element *state)
2345 {
2346 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2347 const struct gen_device_info *devinfo = &screen->devinfo;
2348 struct iris_vertex_element_state *cso =
2349 malloc(sizeof(struct iris_vertex_element_state));
2350
2351 cso->count = count;
2352
2353 /* TODO:
2354 * - create edge flag one
2355 * - create SGV ones
2356 * - if those are necessary, use count + 1/2/3... OR in the length
2357 */
2358 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS), cso->vertex_elements, ve) {
2359 ve.DWordLength =
2360 1 + GENX(VERTEX_ELEMENT_STATE_length) * MAX2(count, 1) - 2;
2361 }
2362
2363 uint32_t *ve_pack_dest = &cso->vertex_elements[1];
2364 uint32_t *vfi_pack_dest = cso->vf_instancing;
2365
2366 if (count == 0) {
2367 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
2368 ve.Valid = true;
2369 ve.SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT;
2370 ve.Component0Control = VFCOMP_STORE_0;
2371 ve.Component1Control = VFCOMP_STORE_0;
2372 ve.Component2Control = VFCOMP_STORE_0;
2373 ve.Component3Control = VFCOMP_STORE_1_FP;
2374 }
2375
2376 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
2377 }
2378 }
2379
2380 for (int i = 0; i < count; i++) {
2381 const struct iris_format_info fmt =
2382 iris_format_for_usage(devinfo, state[i].src_format, 0);
2383 unsigned comp[4] = { VFCOMP_STORE_SRC, VFCOMP_STORE_SRC,
2384 VFCOMP_STORE_SRC, VFCOMP_STORE_SRC };
2385
2386 switch (isl_format_get_num_channels(fmt.fmt)) {
2387 case 0: comp[0] = VFCOMP_STORE_0;
2388 case 1: comp[1] = VFCOMP_STORE_0;
2389 case 2: comp[2] = VFCOMP_STORE_0;
2390 case 3:
2391 comp[3] = isl_format_has_int_channel(fmt.fmt) ? VFCOMP_STORE_1_INT
2392 : VFCOMP_STORE_1_FP;
2393 break;
2394 }
2395 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
2396 ve.VertexBufferIndex = state[i].vertex_buffer_index;
2397 ve.Valid = true;
2398 ve.SourceElementOffset = state[i].src_offset;
2399 ve.SourceElementFormat = fmt.fmt;
2400 ve.Component0Control = comp[0];
2401 ve.Component1Control = comp[1];
2402 ve.Component2Control = comp[2];
2403 ve.Component3Control = comp[3];
2404 }
2405
2406 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
2407 vi.VertexElementIndex = i;
2408 vi.InstancingEnable = state[i].instance_divisor > 0;
2409 vi.InstanceDataStepRate = state[i].instance_divisor;
2410 }
2411
2412 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
2413 vfi_pack_dest += GENX(3DSTATE_VF_INSTANCING_length);
2414 }
2415
2416 return cso;
2417 }
2418
2419 /**
2420 * The pipe->bind_vertex_elements_state() driver hook.
2421 */
2422 static void
2423 iris_bind_vertex_elements_state(struct pipe_context *ctx, void *state)
2424 {
2425 struct iris_context *ice = (struct iris_context *) ctx;
2426 struct iris_vertex_element_state *old_cso = ice->state.cso_vertex_elements;
2427 struct iris_vertex_element_state *new_cso = state;
2428
2429 /* 3DSTATE_VF_SGVs overrides the last VE, so if the count is changing,
2430 * we need to re-emit it to ensure we're overriding the right one.
2431 */
2432 if (new_cso && cso_changed(count))
2433 ice->state.dirty |= IRIS_DIRTY_VF_SGVS;
2434
2435 ice->state.cso_vertex_elements = state;
2436 ice->state.dirty |= IRIS_DIRTY_VERTEX_ELEMENTS;
2437 }
2438
2439 /**
2440 * Gallium CSO for stream output (transform feedback) targets.
2441 */
2442 struct iris_stream_output_target {
2443 struct pipe_stream_output_target base;
2444
2445 uint32_t so_buffer[GENX(3DSTATE_SO_BUFFER_length)];
2446
2447 /** Storage holding the offset where we're writing in the buffer */
2448 struct iris_state_ref offset;
2449 };
2450
2451 /**
2452 * The pipe->create_stream_output_target() driver hook.
2453 *
2454 * "Target" here refers to a destination buffer. We translate this into
2455 * a 3DSTATE_SO_BUFFER packet. We can handle most fields, but don't yet
2456 * know which buffer this represents, or whether we ought to zero the
2457 * write-offsets, or append. Those are handled in the set() hook.
2458 */
2459 static struct pipe_stream_output_target *
2460 iris_create_stream_output_target(struct pipe_context *ctx,
2461 struct pipe_resource *res,
2462 unsigned buffer_offset,
2463 unsigned buffer_size)
2464 {
2465 struct iris_stream_output_target *cso = calloc(1, sizeof(*cso));
2466 if (!cso)
2467 return NULL;
2468
2469 pipe_reference_init(&cso->base.reference, 1);
2470 pipe_resource_reference(&cso->base.buffer, res);
2471 cso->base.buffer_offset = buffer_offset;
2472 cso->base.buffer_size = buffer_size;
2473 cso->base.context = ctx;
2474
2475 upload_state(ctx->stream_uploader, &cso->offset, 4 * sizeof(uint32_t), 4);
2476
2477 iris_pack_command(GENX(3DSTATE_SO_BUFFER), cso->so_buffer, sob) {
2478 sob.SurfaceBaseAddress =
2479 rw_bo(NULL, iris_resource_bo(res)->gtt_offset + buffer_offset);
2480 sob.SOBufferEnable = true;
2481 sob.StreamOffsetWriteEnable = true;
2482 sob.StreamOutputBufferOffsetAddressEnable = true;
2483 sob.MOCS = MOCS_WB; // XXX: MOCS
2484
2485 sob.SurfaceSize = MAX2(buffer_size / 4, 1) - 1;
2486
2487 /* .SOBufferIndex, .StreamOffset, and .StreamOutputBufferOffsetAddress
2488 * are filled in later when we have stream IDs.
2489 */
2490 }
2491
2492 return &cso->base;
2493 }
2494
2495 static void
2496 iris_stream_output_target_destroy(struct pipe_context *ctx,
2497 struct pipe_stream_output_target *state)
2498 {
2499 struct iris_stream_output_target *cso = (void *) state;
2500
2501 pipe_resource_reference(&cso->base.buffer, NULL);
2502 pipe_resource_reference(&cso->offset.res, NULL);
2503
2504 free(cso);
2505 }
2506
2507 /**
2508 * The pipe->set_stream_output_targets() driver hook.
2509 *
2510 * At this point, we know which targets are bound to a particular index,
2511 * and also whether we want to append or start over. We can finish the
2512 * 3DSTATE_SO_BUFFER packets we started earlier.
2513 */
2514 static void
2515 iris_set_stream_output_targets(struct pipe_context *ctx,
2516 unsigned num_targets,
2517 struct pipe_stream_output_target **targets,
2518 const unsigned *offsets)
2519 {
2520 struct iris_context *ice = (struct iris_context *) ctx;
2521 struct iris_genx_state *genx = ice->state.genx;
2522 uint32_t *so_buffers = genx->so_buffers;
2523
2524 const bool active = num_targets > 0;
2525 if (ice->state.streamout_active != active) {
2526 ice->state.streamout_active = active;
2527 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
2528
2529 /* We only emit 3DSTATE_SO_DECL_LIST when streamout is active, because
2530 * it's a non-pipelined command. If we're switching streamout on, we
2531 * may have missed emitting it earlier, so do so now. (We're already
2532 * taking a stall to update 3DSTATE_SO_BUFFERS anyway...)
2533 */
2534 if (active)
2535 ice->state.dirty |= IRIS_DIRTY_SO_DECL_LIST;
2536 }
2537
2538 for (int i = 0; i < 4; i++) {
2539 pipe_so_target_reference(&ice->state.so_target[i],
2540 i < num_targets ? targets[i] : NULL);
2541 }
2542
2543 /* No need to update 3DSTATE_SO_BUFFER unless SOL is active. */
2544 if (!active)
2545 return;
2546
2547 for (unsigned i = 0; i < 4; i++,
2548 so_buffers += GENX(3DSTATE_SO_BUFFER_length)) {
2549
2550 if (i >= num_targets || !targets[i]) {
2551 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob)
2552 sob.SOBufferIndex = i;
2553 continue;
2554 }
2555
2556 struct iris_stream_output_target *tgt = (void *) targets[i];
2557
2558 /* Note that offsets[i] will either be 0, causing us to zero
2559 * the value in the buffer, or 0xFFFFFFFF, which happens to mean
2560 * "continue appending at the existing offset."
2561 */
2562 assert(offsets[i] == 0 || offsets[i] == 0xFFFFFFFF);
2563
2564 uint32_t dynamic[GENX(3DSTATE_SO_BUFFER_length)];
2565 iris_pack_state(GENX(3DSTATE_SO_BUFFER), dynamic, dyns) {
2566 dyns.SOBufferIndex = i;
2567 dyns.StreamOffset = offsets[i];
2568 dyns.StreamOutputBufferOffsetAddress =
2569 rw_bo(NULL, iris_resource_bo(tgt->offset.res)->gtt_offset + tgt->offset.offset + i * sizeof(uint32_t));
2570 }
2571
2572 for (uint32_t j = 0; j < GENX(3DSTATE_SO_BUFFER_length); j++) {
2573 so_buffers[j] = tgt->so_buffer[j] | dynamic[j];
2574 }
2575 }
2576
2577 ice->state.dirty |= IRIS_DIRTY_SO_BUFFERS;
2578 }
2579
2580 /**
2581 * An iris-vtable helper for encoding the 3DSTATE_SO_DECL_LIST and
2582 * 3DSTATE_STREAMOUT packets.
2583 *
2584 * 3DSTATE_SO_DECL_LIST is a list of shader outputs we want the streamout
2585 * hardware to record. We can create it entirely based on the shader, with
2586 * no dynamic state dependencies.
2587 *
2588 * 3DSTATE_STREAMOUT is an annoying mix of shader-based information and
2589 * state-based settings. We capture the shader-related ones here, and merge
2590 * the rest in at draw time.
2591 */
2592 static uint32_t *
2593 iris_create_so_decl_list(const struct pipe_stream_output_info *info,
2594 const struct brw_vue_map *vue_map)
2595 {
2596 struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
2597 int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2598 int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2599 int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2600 int max_decls = 0;
2601 STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
2602
2603 memset(so_decl, 0, sizeof(so_decl));
2604
2605 /* Construct the list of SO_DECLs to be emitted. The formatting of the
2606 * command feels strange -- each dword pair contains a SO_DECL per stream.
2607 */
2608 for (unsigned i = 0; i < info->num_outputs; i++) {
2609 const struct pipe_stream_output *output = &info->output[i];
2610 const int buffer = output->output_buffer;
2611 const int varying = output->register_index;
2612 const unsigned stream_id = output->stream;
2613 assert(stream_id < MAX_VERTEX_STREAMS);
2614
2615 buffer_mask[stream_id] |= 1 << buffer;
2616
2617 assert(vue_map->varying_to_slot[varying] >= 0);
2618
2619 /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
2620 * array. Instead, it simply increments DstOffset for the following
2621 * input by the number of components that should be skipped.
2622 *
2623 * Our hardware is unusual in that it requires us to program SO_DECLs
2624 * for fake "hole" components, rather than simply taking the offset
2625 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
2626 * program as many size = 4 holes as we can, then a final hole to
2627 * accommodate the final 1, 2, or 3 remaining.
2628 */
2629 int skip_components = output->dst_offset - next_offset[buffer];
2630
2631 while (skip_components > 0) {
2632 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
2633 .HoleFlag = 1,
2634 .OutputBufferSlot = output->output_buffer,
2635 .ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
2636 };
2637 skip_components -= 4;
2638 }
2639
2640 next_offset[buffer] = output->dst_offset + output->num_components;
2641
2642 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
2643 .OutputBufferSlot = output->output_buffer,
2644 .RegisterIndex = vue_map->varying_to_slot[varying],
2645 .ComponentMask =
2646 ((1 << output->num_components) - 1) << output->start_component,
2647 };
2648
2649 if (decls[stream_id] > max_decls)
2650 max_decls = decls[stream_id];
2651 }
2652
2653 unsigned dwords = GENX(3DSTATE_STREAMOUT_length) + (3 + 2 * max_decls);
2654 uint32_t *map = ralloc_size(NULL, sizeof(uint32_t) * dwords);
2655 uint32_t *so_decl_map = map + GENX(3DSTATE_STREAMOUT_length);
2656
2657 iris_pack_command(GENX(3DSTATE_STREAMOUT), map, sol) {
2658 int urb_entry_read_offset = 0;
2659 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
2660 urb_entry_read_offset;
2661
2662 /* We always read the whole vertex. This could be reduced at some
2663 * point by reading less and offsetting the register index in the
2664 * SO_DECLs.
2665 */
2666 sol.Stream0VertexReadOffset = urb_entry_read_offset;
2667 sol.Stream0VertexReadLength = urb_entry_read_length - 1;
2668 sol.Stream1VertexReadOffset = urb_entry_read_offset;
2669 sol.Stream1VertexReadLength = urb_entry_read_length - 1;
2670 sol.Stream2VertexReadOffset = urb_entry_read_offset;
2671 sol.Stream2VertexReadLength = urb_entry_read_length - 1;
2672 sol.Stream3VertexReadOffset = urb_entry_read_offset;
2673 sol.Stream3VertexReadLength = urb_entry_read_length - 1;
2674
2675 /* Set buffer pitches; 0 means unbound. */
2676 sol.Buffer0SurfacePitch = 4 * info->stride[0];
2677 sol.Buffer1SurfacePitch = 4 * info->stride[1];
2678 sol.Buffer2SurfacePitch = 4 * info->stride[2];
2679 sol.Buffer3SurfacePitch = 4 * info->stride[3];
2680 }
2681
2682 iris_pack_command(GENX(3DSTATE_SO_DECL_LIST), so_decl_map, list) {
2683 list.DWordLength = 3 + 2 * max_decls - 2;
2684 list.StreamtoBufferSelects0 = buffer_mask[0];
2685 list.StreamtoBufferSelects1 = buffer_mask[1];
2686 list.StreamtoBufferSelects2 = buffer_mask[2];
2687 list.StreamtoBufferSelects3 = buffer_mask[3];
2688 list.NumEntries0 = decls[0];
2689 list.NumEntries1 = decls[1];
2690 list.NumEntries2 = decls[2];
2691 list.NumEntries3 = decls[3];
2692 }
2693
2694 for (int i = 0; i < max_decls; i++) {
2695 iris_pack_state(GENX(SO_DECL_ENTRY), so_decl_map + 3 + i * 2, entry) {
2696 entry.Stream0Decl = so_decl[0][i];
2697 entry.Stream1Decl = so_decl[1][i];
2698 entry.Stream2Decl = so_decl[2][i];
2699 entry.Stream3Decl = so_decl[3][i];
2700 }
2701 }
2702
2703 return map;
2704 }
2705
2706 static void
2707 iris_compute_sbe_urb_read_interval(uint64_t fs_input_slots,
2708 const struct brw_vue_map *last_vue_map,
2709 bool two_sided_color,
2710 unsigned *out_offset,
2711 unsigned *out_length)
2712 {
2713 /* The compiler computes the first URB slot without considering COL/BFC
2714 * swizzling (because it doesn't know whether it's enabled), so we need
2715 * to do that here too. This may result in a smaller offset, which
2716 * should be safe.
2717 */
2718 const unsigned first_slot =
2719 brw_compute_first_urb_slot_required(fs_input_slots, last_vue_map);
2720
2721 /* This becomes the URB read offset (counted in pairs of slots). */
2722 assert(first_slot % 2 == 0);
2723 *out_offset = first_slot / 2;
2724
2725 /* We need to adjust the inputs read to account for front/back color
2726 * swizzling, as it can make the URB length longer.
2727 */
2728 for (int c = 0; c <= 1; c++) {
2729 if (fs_input_slots & (VARYING_BIT_COL0 << c)) {
2730 /* If two sided color is enabled, the fragment shader's gl_Color
2731 * (COL0) input comes from either the gl_FrontColor (COL0) or
2732 * gl_BackColor (BFC0) input varyings. Mark BFC as used, too.
2733 */
2734 if (two_sided_color)
2735 fs_input_slots |= (VARYING_BIT_BFC0 << c);
2736
2737 /* If front color isn't written, we opt to give them back color
2738 * instead of an undefined value. Switch from COL to BFC.
2739 */
2740 if (last_vue_map->varying_to_slot[VARYING_SLOT_COL0 + c] == -1) {
2741 fs_input_slots &= ~(VARYING_BIT_COL0 << c);
2742 fs_input_slots |= (VARYING_BIT_BFC0 << c);
2743 }
2744 }
2745 }
2746
2747 /* Compute the minimum URB Read Length necessary for the FS inputs.
2748 *
2749 * From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
2750 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
2751 *
2752 * "This field should be set to the minimum length required to read the
2753 * maximum source attribute. The maximum source attribute is indicated
2754 * by the maximum value of the enabled Attribute # Source Attribute if
2755 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
2756 * enable is not set.
2757 * read_length = ceiling((max_source_attr + 1) / 2)
2758 *
2759 * [errata] Corruption/Hang possible if length programmed larger than
2760 * recommended"
2761 *
2762 * Similar text exists for Ivy Bridge.
2763 *
2764 * We find the last URB slot that's actually read by the FS.
2765 */
2766 unsigned last_read_slot = last_vue_map->num_slots - 1;
2767 while (last_read_slot > first_slot && !(fs_input_slots &
2768 (1ull << last_vue_map->slot_to_varying[last_read_slot])))
2769 --last_read_slot;
2770
2771 /* The URB read length is the difference of the two, counted in pairs. */
2772 *out_length = DIV_ROUND_UP(last_read_slot - first_slot + 1, 2);
2773 }
2774
2775 static void
2776 iris_emit_sbe_swiz(struct iris_batch *batch,
2777 const struct iris_context *ice,
2778 unsigned urb_read_offset,
2779 unsigned sprite_coord_enables)
2780 {
2781 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = {};
2782 const struct brw_wm_prog_data *wm_prog_data = (void *)
2783 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
2784 const struct brw_vue_map *vue_map = ice->shaders.last_vue_map;
2785 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
2786
2787 /* XXX: this should be generated when putting programs in place */
2788
2789 // XXX: raster->sprite_coord_enable
2790
2791 for (int fs_attr = 0; fs_attr < VARYING_SLOT_MAX; fs_attr++) {
2792 const int input_index = wm_prog_data->urb_setup[fs_attr];
2793 if (input_index < 0 || input_index >= 16)
2794 continue;
2795
2796 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr =
2797 &attr_overrides[input_index];
2798 int slot = vue_map->varying_to_slot[fs_attr];
2799
2800 /* Viewport and Layer are stored in the VUE header. We need to override
2801 * them to zero if earlier stages didn't write them, as GL requires that
2802 * they read back as zero when not explicitly set.
2803 */
2804 switch (fs_attr) {
2805 case VARYING_SLOT_VIEWPORT:
2806 case VARYING_SLOT_LAYER:
2807 attr->ComponentOverrideX = true;
2808 attr->ComponentOverrideW = true;
2809 attr->ConstantSource = CONST_0000;
2810
2811 if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
2812 attr->ComponentOverrideY = true;
2813 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
2814 attr->ComponentOverrideZ = true;
2815 continue;
2816
2817 case VARYING_SLOT_PRIMITIVE_ID:
2818 /* Override if the previous shader stage didn't write gl_PrimitiveID. */
2819 if (slot == -1) {
2820 attr->ComponentOverrideX = true;
2821 attr->ComponentOverrideY = true;
2822 attr->ComponentOverrideZ = true;
2823 attr->ComponentOverrideW = true;
2824 attr->ConstantSource = PRIM_ID;
2825 continue;
2826 }
2827
2828 default:
2829 break;
2830 }
2831
2832 if (sprite_coord_enables & (1 << input_index))
2833 continue;
2834
2835 /* If there was only a back color written but not front, use back
2836 * as the color instead of undefined.
2837 */
2838 if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
2839 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
2840 if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
2841 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
2842
2843 /* Not written by the previous stage - undefined. */
2844 if (slot == -1) {
2845 attr->ComponentOverrideX = true;
2846 attr->ComponentOverrideY = true;
2847 attr->ComponentOverrideZ = true;
2848 attr->ComponentOverrideW = true;
2849 attr->ConstantSource = CONST_0001_FLOAT;
2850 continue;
2851 }
2852
2853 /* Compute the location of the attribute relative to the read offset,
2854 * which is counted in 256-bit increments (two 128-bit VUE slots).
2855 */
2856 const int source_attr = slot - 2 * urb_read_offset;
2857 assert(source_attr >= 0 && source_attr <= 32);
2858 attr->SourceAttribute = source_attr;
2859
2860 /* If we are doing two-sided color, and the VUE slot following this one
2861 * represents a back-facing color, then we need to instruct the SF unit
2862 * to do back-facing swizzling.
2863 */
2864 if (cso_rast->light_twoside &&
2865 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
2866 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
2867 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
2868 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1)))
2869 attr->SwizzleSelect = INPUTATTR_FACING;
2870 }
2871
2872 iris_emit_cmd(batch, GENX(3DSTATE_SBE_SWIZ), sbes) {
2873 for (int i = 0; i < 16; i++)
2874 sbes.Attribute[i] = attr_overrides[i];
2875 }
2876 }
2877
2878 static unsigned
2879 iris_calculate_point_sprite_overrides(const struct brw_wm_prog_data *prog_data,
2880 const struct iris_rasterizer_state *cso)
2881 {
2882 unsigned overrides = 0;
2883
2884 if (prog_data->urb_setup[VARYING_SLOT_PNTC] != -1)
2885 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_PNTC];
2886
2887 for (int i = 0; i < 8; i++) {
2888 if ((cso->sprite_coord_enable & (1 << i)) &&
2889 prog_data->urb_setup[VARYING_SLOT_TEX0 + i] != -1)
2890 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_TEX0 + i];
2891 }
2892
2893 return overrides;
2894 }
2895
2896 static void
2897 iris_emit_sbe(struct iris_batch *batch, const struct iris_context *ice)
2898 {
2899 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
2900 const struct brw_wm_prog_data *wm_prog_data = (void *)
2901 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
2902 const struct shader_info *fs_info =
2903 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
2904
2905 unsigned urb_read_offset, urb_read_length;
2906 iris_compute_sbe_urb_read_interval(fs_info->inputs_read,
2907 ice->shaders.last_vue_map,
2908 cso_rast->light_twoside,
2909 &urb_read_offset, &urb_read_length);
2910
2911 unsigned sprite_coord_overrides =
2912 iris_calculate_point_sprite_overrides(wm_prog_data, cso_rast);
2913
2914 iris_emit_cmd(batch, GENX(3DSTATE_SBE), sbe) {
2915 sbe.AttributeSwizzleEnable = true;
2916 sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
2917 sbe.PointSpriteTextureCoordinateOrigin = cso_rast->sprite_coord_mode;
2918 sbe.VertexURBEntryReadOffset = urb_read_offset;
2919 sbe.VertexURBEntryReadLength = urb_read_length;
2920 sbe.ForceVertexURBEntryReadOffset = true;
2921 sbe.ForceVertexURBEntryReadLength = true;
2922 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
2923 sbe.PointSpriteTextureCoordinateEnable = sprite_coord_overrides;
2924
2925 for (int i = 0; i < 32; i++) {
2926 sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW;
2927 }
2928 }
2929
2930 iris_emit_sbe_swiz(batch, ice, urb_read_offset, sprite_coord_overrides);
2931 }
2932
2933 /* ------------------------------------------------------------------- */
2934
2935 /**
2936 * Set sampler-related program key fields based on the current state.
2937 */
2938 static void
2939 iris_populate_sampler_key(const struct iris_context *ice,
2940 struct brw_sampler_prog_key_data *key)
2941 {
2942 for (int i = 0; i < MAX_SAMPLERS; i++) {
2943 key->swizzles[i] = 0x688; /* XYZW */
2944 }
2945 }
2946
2947 /**
2948 * Populate VS program key fields based on the current state.
2949 */
2950 static void
2951 iris_populate_vs_key(const struct iris_context *ice,
2952 struct brw_vs_prog_key *key)
2953 {
2954 iris_populate_sampler_key(ice, &key->tex);
2955 }
2956
2957 /**
2958 * Populate TCS program key fields based on the current state.
2959 */
2960 static void
2961 iris_populate_tcs_key(const struct iris_context *ice,
2962 struct brw_tcs_prog_key *key)
2963 {
2964 iris_populate_sampler_key(ice, &key->tex);
2965 }
2966
2967 /**
2968 * Populate TES program key fields based on the current state.
2969 */
2970 static void
2971 iris_populate_tes_key(const struct iris_context *ice,
2972 struct brw_tes_prog_key *key)
2973 {
2974 iris_populate_sampler_key(ice, &key->tex);
2975 }
2976
2977 /**
2978 * Populate GS program key fields based on the current state.
2979 */
2980 static void
2981 iris_populate_gs_key(const struct iris_context *ice,
2982 struct brw_gs_prog_key *key)
2983 {
2984 iris_populate_sampler_key(ice, &key->tex);
2985 }
2986
2987 /**
2988 * Populate FS program key fields based on the current state.
2989 */
2990 static void
2991 iris_populate_fs_key(const struct iris_context *ice,
2992 struct brw_wm_prog_key *key)
2993 {
2994 iris_populate_sampler_key(ice, &key->tex);
2995
2996 /* XXX: dirty flags? */
2997 const struct pipe_framebuffer_state *fb = &ice->state.framebuffer;
2998 const struct iris_depth_stencil_alpha_state *zsa = ice->state.cso_zsa;
2999 const struct iris_rasterizer_state *rast = ice->state.cso_rast;
3000 const struct iris_blend_state *blend = ice->state.cso_blend;
3001
3002 key->nr_color_regions = fb->nr_cbufs;
3003
3004 key->clamp_fragment_color = rast->clamp_fragment_color;
3005
3006 key->replicate_alpha = fb->nr_cbufs > 1 &&
3007 (zsa->alpha.enabled || blend->alpha_to_coverage);
3008
3009 /* XXX: only bother if COL0/1 are read */
3010 key->flat_shade = rast->flatshade;
3011
3012 key->persample_interp = rast->force_persample_interp;
3013 key->multisample_fbo = rast->multisample && fb->samples > 1;
3014
3015 key->coherent_fb_fetch = true;
3016
3017 // XXX: uint64_t input_slots_valid; - for >16 inputs
3018
3019 // XXX: key->force_dual_color_blend for unigine
3020 // XXX: respect hint for high_quality_derivatives:1;
3021 }
3022
3023 static void
3024 iris_populate_cs_key(const struct iris_context *ice,
3025 struct brw_cs_prog_key *key)
3026 {
3027 iris_populate_sampler_key(ice, &key->tex);
3028 }
3029
3030 #if 0
3031 // XXX: these need to go in INIT_THREAD_DISPATCH_FIELDS
3032 pkt.SamplerCount = \
3033 DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4); \
3034
3035 #endif
3036
3037 static uint64_t
3038 KSP(const struct iris_compiled_shader *shader)
3039 {
3040 struct iris_resource *res = (void *) shader->assembly.res;
3041 return iris_bo_offset_from_base_address(res->bo) + shader->assembly.offset;
3042 }
3043
3044 // Gen11 workaround table #2056 WABTPPrefetchDisable suggests to disable
3045 // prefetching of binding tables in A0 and B0 steppings. XXX: Revisit
3046 // this WA on C0 stepping.
3047
3048 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix, stage) \
3049 pkt.KernelStartPointer = KSP(shader); \
3050 pkt.BindingTableEntryCount = GEN_GEN == 11 ? 0 : \
3051 prog_data->binding_table.size_bytes / 4; \
3052 pkt.FloatingPointMode = prog_data->use_alt_mode; \
3053 \
3054 pkt.DispatchGRFStartRegisterForURBData = \
3055 prog_data->dispatch_grf_start_reg; \
3056 pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
3057 pkt.prefix##URBEntryReadOffset = 0; \
3058 \
3059 pkt.StatisticsEnable = true; \
3060 pkt.Enable = true; \
3061 \
3062 if (prog_data->total_scratch) { \
3063 uint32_t scratch_addr = \
3064 iris_get_scratch_space(ice, prog_data->total_scratch, stage); \
3065 pkt.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11; \
3066 pkt.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr); \
3067 }
3068
3069 /**
3070 * Encode most of 3DSTATE_VS based on the compiled shader.
3071 */
3072 static void
3073 iris_store_vs_state(struct iris_context *ice,
3074 const struct gen_device_info *devinfo,
3075 struct iris_compiled_shader *shader)
3076 {
3077 struct brw_stage_prog_data *prog_data = shader->prog_data;
3078 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3079
3080 iris_pack_command(GENX(3DSTATE_VS), shader->derived_data, vs) {
3081 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex, MESA_SHADER_VERTEX);
3082 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
3083 vs.SIMD8DispatchEnable = true;
3084 vs.UserClipDistanceCullTestEnableBitmask =
3085 vue_prog_data->cull_distance_mask;
3086 }
3087 }
3088
3089 /**
3090 * Encode most of 3DSTATE_HS based on the compiled shader.
3091 */
3092 static void
3093 iris_store_tcs_state(struct iris_context *ice,
3094 const struct gen_device_info *devinfo,
3095 struct iris_compiled_shader *shader)
3096 {
3097 struct brw_stage_prog_data *prog_data = shader->prog_data;
3098 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3099 struct brw_tcs_prog_data *tcs_prog_data = (void *) prog_data;
3100
3101 iris_pack_command(GENX(3DSTATE_HS), shader->derived_data, hs) {
3102 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex, MESA_SHADER_TESS_CTRL);
3103
3104 hs.InstanceCount = tcs_prog_data->instances - 1;
3105 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
3106 hs.IncludeVertexHandles = true;
3107 }
3108 }
3109
3110 /**
3111 * Encode 3DSTATE_TE and most of 3DSTATE_DS based on the compiled shader.
3112 */
3113 static void
3114 iris_store_tes_state(struct iris_context *ice,
3115 const struct gen_device_info *devinfo,
3116 struct iris_compiled_shader *shader)
3117 {
3118 struct brw_stage_prog_data *prog_data = shader->prog_data;
3119 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3120 struct brw_tes_prog_data *tes_prog_data = (void *) prog_data;
3121
3122 uint32_t *te_state = (void *) shader->derived_data;
3123 uint32_t *ds_state = te_state + GENX(3DSTATE_TE_length);
3124
3125 iris_pack_command(GENX(3DSTATE_TE), te_state, te) {
3126 te.Partitioning = tes_prog_data->partitioning;
3127 te.OutputTopology = tes_prog_data->output_topology;
3128 te.TEDomain = tes_prog_data->domain;
3129 te.TEEnable = true;
3130 te.MaximumTessellationFactorOdd = 63.0;
3131 te.MaximumTessellationFactorNotOdd = 64.0;
3132 }
3133
3134 iris_pack_command(GENX(3DSTATE_DS), ds_state, ds) {
3135 INIT_THREAD_DISPATCH_FIELDS(ds, Patch, MESA_SHADER_TESS_EVAL);
3136
3137 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
3138 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
3139 ds.ComputeWCoordinateEnable =
3140 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
3141
3142 ds.UserClipDistanceCullTestEnableBitmask =
3143 vue_prog_data->cull_distance_mask;
3144 }
3145
3146 }
3147
3148 /**
3149 * Encode most of 3DSTATE_GS based on the compiled shader.
3150 */
3151 static void
3152 iris_store_gs_state(struct iris_context *ice,
3153 const struct gen_device_info *devinfo,
3154 struct iris_compiled_shader *shader)
3155 {
3156 struct brw_stage_prog_data *prog_data = shader->prog_data;
3157 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3158 struct brw_gs_prog_data *gs_prog_data = (void *) prog_data;
3159
3160 iris_pack_command(GENX(3DSTATE_GS), shader->derived_data, gs) {
3161 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex, MESA_SHADER_GEOMETRY);
3162
3163 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
3164 gs.OutputTopology = gs_prog_data->output_topology;
3165 gs.ControlDataHeaderSize =
3166 gs_prog_data->control_data_header_size_hwords;
3167 gs.InstanceControl = gs_prog_data->invocations - 1;
3168 gs.DispatchMode = DISPATCH_MODE_SIMD8;
3169 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
3170 gs.ControlDataFormat = gs_prog_data->control_data_format;
3171 gs.ReorderMode = TRAILING;
3172 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
3173 gs.MaximumNumberofThreads =
3174 GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
3175 : (devinfo->max_gs_threads - 1);
3176
3177 if (gs_prog_data->static_vertex_count != -1) {
3178 gs.StaticOutput = true;
3179 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
3180 }
3181 gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
3182
3183 gs.UserClipDistanceCullTestEnableBitmask =
3184 vue_prog_data->cull_distance_mask;
3185
3186 const int urb_entry_write_offset = 1;
3187 const uint32_t urb_entry_output_length =
3188 DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
3189 urb_entry_write_offset;
3190
3191 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
3192 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
3193 }
3194 }
3195
3196 /**
3197 * Encode most of 3DSTATE_PS and 3DSTATE_PS_EXTRA based on the shader.
3198 */
3199 static void
3200 iris_store_fs_state(struct iris_context *ice,
3201 const struct gen_device_info *devinfo,
3202 struct iris_compiled_shader *shader)
3203 {
3204 struct brw_stage_prog_data *prog_data = shader->prog_data;
3205 struct brw_wm_prog_data *wm_prog_data = (void *) shader->prog_data;
3206
3207 uint32_t *ps_state = (void *) shader->derived_data;
3208 uint32_t *psx_state = ps_state + GENX(3DSTATE_PS_length);
3209
3210 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
3211 ps.VectorMaskEnable = true;
3212 //ps.SamplerCount = ...
3213 // XXX: WABTPPrefetchDisable, see above, drop at C0
3214 ps.BindingTableEntryCount = GEN_GEN == 11 ? 0 :
3215 prog_data->binding_table.size_bytes / 4;
3216 ps.FloatingPointMode = prog_data->use_alt_mode;
3217 ps.MaximumNumberofThreadsPerPSD = 64 - (GEN_GEN == 8 ? 2 : 1);
3218
3219 ps.PushConstantEnable = prog_data->nr_params > 0 ||
3220 prog_data->ubo_ranges[0].length > 0;
3221
3222 /* From the documentation for this packet:
3223 * "If the PS kernel does not need the Position XY Offsets to
3224 * compute a Position Value, then this field should be programmed
3225 * to POSOFFSET_NONE."
3226 *
3227 * "SW Recommendation: If the PS kernel needs the Position Offsets
3228 * to compute a Position XY value, this field should match Position
3229 * ZW Interpolation Mode to ensure a consistent position.xyzw
3230 * computation."
3231 *
3232 * We only require XY sample offsets. So, this recommendation doesn't
3233 * look useful at the moment. We might need this in future.
3234 */
3235 ps.PositionXYOffsetSelect =
3236 wm_prog_data->uses_pos_offset ? POSOFFSET_SAMPLE : POSOFFSET_NONE;
3237 ps._8PixelDispatchEnable = wm_prog_data->dispatch_8;
3238 ps._16PixelDispatchEnable = wm_prog_data->dispatch_16;
3239 ps._32PixelDispatchEnable = wm_prog_data->dispatch_32;
3240
3241 // XXX: Disable SIMD32 with 16x MSAA
3242
3243 ps.DispatchGRFStartRegisterForConstantSetupData0 =
3244 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
3245 ps.DispatchGRFStartRegisterForConstantSetupData1 =
3246 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
3247 ps.DispatchGRFStartRegisterForConstantSetupData2 =
3248 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
3249
3250 ps.KernelStartPointer0 =
3251 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
3252 ps.KernelStartPointer1 =
3253 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
3254 ps.KernelStartPointer2 =
3255 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
3256
3257 if (prog_data->total_scratch) {
3258 uint32_t scratch_addr =
3259 iris_get_scratch_space(ice, prog_data->total_scratch,
3260 MESA_SHADER_FRAGMENT);
3261 ps.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
3262 ps.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr);
3263 }
3264 }
3265
3266 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
3267 psx.PixelShaderValid = true;
3268 psx.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
3269 psx.PixelShaderKillsPixel = wm_prog_data->uses_kill;
3270 psx.AttributeEnable = wm_prog_data->num_varying_inputs != 0;
3271 psx.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
3272 psx.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
3273 psx.PixelShaderIsPerSample = wm_prog_data->persample_dispatch;
3274
3275 if (wm_prog_data->uses_sample_mask) {
3276 /* TODO: conservative rasterization */
3277 if (wm_prog_data->post_depth_coverage)
3278 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
3279 else
3280 psx.InputCoverageMaskState = ICMS_NORMAL;
3281 }
3282
3283 psx.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
3284 psx.PixelShaderPullsBary = wm_prog_data->pulls_bary;
3285 psx.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
3286
3287 // XXX: UAV bit
3288 }
3289 }
3290
3291 /**
3292 * Compute the size of the derived data (shader command packets).
3293 *
3294 * This must match the data written by the iris_store_xs_state() functions.
3295 */
3296 static void
3297 iris_store_cs_state(struct iris_context *ice,
3298 const struct gen_device_info *devinfo,
3299 struct iris_compiled_shader *shader)
3300 {
3301 struct brw_stage_prog_data *prog_data = shader->prog_data;
3302 struct brw_cs_prog_data *cs_prog_data = (void *) shader->prog_data;
3303 void *map = shader->derived_data;
3304
3305 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), map, desc) {
3306 desc.KernelStartPointer = KSP(shader);
3307 desc.ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs;
3308 desc.NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads;
3309 desc.SharedLocalMemorySize =
3310 encode_slm_size(GEN_GEN, prog_data->total_shared);
3311 desc.BarrierEnable = cs_prog_data->uses_barrier;
3312 desc.CrossThreadConstantDataReadLength =
3313 cs_prog_data->push.cross_thread.regs;
3314 }
3315 }
3316
3317 static unsigned
3318 iris_derived_program_state_size(enum iris_program_cache_id cache_id)
3319 {
3320 assert(cache_id <= IRIS_CACHE_BLORP);
3321
3322 static const unsigned dwords[] = {
3323 [IRIS_CACHE_VS] = GENX(3DSTATE_VS_length),
3324 [IRIS_CACHE_TCS] = GENX(3DSTATE_HS_length),
3325 [IRIS_CACHE_TES] = GENX(3DSTATE_TE_length) + GENX(3DSTATE_DS_length),
3326 [IRIS_CACHE_GS] = GENX(3DSTATE_GS_length),
3327 [IRIS_CACHE_FS] =
3328 GENX(3DSTATE_PS_length) + GENX(3DSTATE_PS_EXTRA_length),
3329 [IRIS_CACHE_CS] = GENX(INTERFACE_DESCRIPTOR_DATA_length),
3330 [IRIS_CACHE_BLORP] = 0,
3331 };
3332
3333 return sizeof(uint32_t) * dwords[cache_id];
3334 }
3335
3336 /**
3337 * Create any state packets corresponding to the given shader stage
3338 * (i.e. 3DSTATE_VS) and save them as "derived data" in the shader variant.
3339 * This means that we can look up a program in the in-memory cache and
3340 * get most of the state packet without having to reconstruct it.
3341 */
3342 static void
3343 iris_store_derived_program_state(struct iris_context *ice,
3344 enum iris_program_cache_id cache_id,
3345 struct iris_compiled_shader *shader)
3346 {
3347 struct iris_screen *screen = (void *) ice->ctx.screen;
3348 const struct gen_device_info *devinfo = &screen->devinfo;
3349
3350 switch (cache_id) {
3351 case IRIS_CACHE_VS:
3352 iris_store_vs_state(ice, devinfo, shader);
3353 break;
3354 case IRIS_CACHE_TCS:
3355 iris_store_tcs_state(ice, devinfo, shader);
3356 break;
3357 case IRIS_CACHE_TES:
3358 iris_store_tes_state(ice, devinfo, shader);
3359 break;
3360 case IRIS_CACHE_GS:
3361 iris_store_gs_state(ice, devinfo, shader);
3362 break;
3363 case IRIS_CACHE_FS:
3364 iris_store_fs_state(ice, devinfo, shader);
3365 break;
3366 case IRIS_CACHE_CS:
3367 iris_store_cs_state(ice, devinfo, shader);
3368 case IRIS_CACHE_BLORP:
3369 break;
3370 default:
3371 break;
3372 }
3373 }
3374
3375 /* ------------------------------------------------------------------- */
3376
3377 /**
3378 * Configure the URB.
3379 *
3380 * XXX: write a real comment.
3381 */
3382 static void
3383 iris_upload_urb_config(struct iris_context *ice, struct iris_batch *batch)
3384 {
3385 const struct gen_device_info *devinfo = &batch->screen->devinfo;
3386 const unsigned push_size_kB = 32;
3387 unsigned entries[4];
3388 unsigned start[4];
3389 unsigned size[4];
3390
3391 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
3392 if (!ice->shaders.prog[i]) {
3393 size[i] = 1;
3394 } else {
3395 struct brw_vue_prog_data *vue_prog_data =
3396 (void *) ice->shaders.prog[i]->prog_data;
3397 size[i] = vue_prog_data->urb_entry_size;
3398 }
3399 assert(size[i] != 0);
3400 }
3401
3402 gen_get_urb_config(devinfo, 1024 * push_size_kB,
3403 1024 * ice->shaders.urb_size,
3404 ice->shaders.prog[MESA_SHADER_TESS_EVAL] != NULL,
3405 ice->shaders.prog[MESA_SHADER_GEOMETRY] != NULL,
3406 size, entries, start);
3407
3408 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
3409 iris_emit_cmd(batch, GENX(3DSTATE_URB_VS), urb) {
3410 urb._3DCommandSubOpcode += i;
3411 urb.VSURBStartingAddress = start[i];
3412 urb.VSURBEntryAllocationSize = size[i] - 1;
3413 urb.VSNumberofURBEntries = entries[i];
3414 }
3415 }
3416 }
3417
3418 static const uint32_t push_constant_opcodes[] = {
3419 [MESA_SHADER_VERTEX] = 21,
3420 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
3421 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
3422 [MESA_SHADER_GEOMETRY] = 22,
3423 [MESA_SHADER_FRAGMENT] = 23,
3424 [MESA_SHADER_COMPUTE] = 0,
3425 };
3426
3427 static uint32_t
3428 use_null_surface(struct iris_batch *batch, struct iris_context *ice)
3429 {
3430 struct iris_bo *state_bo = iris_resource_bo(ice->state.unbound_tex.res);
3431
3432 iris_use_pinned_bo(batch, state_bo, false);
3433
3434 return ice->state.unbound_tex.offset;
3435 }
3436
3437 static uint32_t
3438 use_null_fb_surface(struct iris_batch *batch, struct iris_context *ice)
3439 {
3440 /* If set_framebuffer_state() was never called, fall back to 1x1x1 */
3441 if (!ice->state.null_fb.res)
3442 return use_null_surface(batch, ice);
3443
3444 struct iris_bo *state_bo = iris_resource_bo(ice->state.null_fb.res);
3445
3446 iris_use_pinned_bo(batch, state_bo, false);
3447
3448 return ice->state.null_fb.offset;
3449 }
3450
3451 /**
3452 * Add a surface to the validation list, as well as the buffer containing
3453 * the corresponding SURFACE_STATE.
3454 *
3455 * Returns the binding table entry (offset to SURFACE_STATE).
3456 */
3457 static uint32_t
3458 use_surface(struct iris_batch *batch,
3459 struct pipe_surface *p_surf,
3460 bool writeable)
3461 {
3462 struct iris_surface *surf = (void *) p_surf;
3463
3464 iris_use_pinned_bo(batch, iris_resource_bo(p_surf->texture), writeable);
3465 iris_use_pinned_bo(batch, iris_resource_bo(surf->surface_state.res), false);
3466
3467 return surf->surface_state.offset;
3468 }
3469
3470 static uint32_t
3471 use_sampler_view(struct iris_batch *batch, struct iris_sampler_view *isv)
3472 {
3473 iris_use_pinned_bo(batch, isv->res->bo, false);
3474 iris_use_pinned_bo(batch, iris_resource_bo(isv->surface_state.res), false);
3475
3476 return isv->surface_state.offset;
3477 }
3478
3479 static uint32_t
3480 use_const_buffer(struct iris_batch *batch,
3481 struct iris_context *ice,
3482 struct iris_const_buffer *cbuf)
3483 {
3484 if (!cbuf->surface_state.res)
3485 return use_null_surface(batch, ice);
3486
3487 iris_use_pinned_bo(batch, iris_resource_bo(cbuf->data.res), false);
3488 iris_use_pinned_bo(batch, iris_resource_bo(cbuf->surface_state.res), false);
3489
3490 return cbuf->surface_state.offset;
3491 }
3492
3493 static uint32_t
3494 use_ssbo(struct iris_batch *batch, struct iris_context *ice,
3495 struct iris_shader_state *shs, int i)
3496 {
3497 if (!shs->ssbo[i])
3498 return use_null_surface(batch, ice);
3499
3500 struct iris_state_ref *surf_state = &shs->ssbo_surface_state[i];
3501
3502 iris_use_pinned_bo(batch, iris_resource_bo(shs->ssbo[i]), true);
3503 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false);
3504
3505 return surf_state->offset;
3506 }
3507
3508 static uint32_t
3509 use_image(struct iris_batch *batch, struct iris_context *ice,
3510 struct iris_shader_state *shs, int i)
3511 {
3512 if (!shs->image[i].res)
3513 return use_null_surface(batch, ice);
3514
3515 struct iris_state_ref *surf_state = &shs->image[i].surface_state;
3516
3517 iris_use_pinned_bo(batch, iris_resource_bo(shs->image[i].res),
3518 shs->image[i].access & PIPE_IMAGE_ACCESS_WRITE);
3519 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false);
3520
3521 return surf_state->offset;
3522 }
3523
3524 #define push_bt_entry(addr) \
3525 assert(addr >= binder_addr); \
3526 if (!pin_only) bt_map[s++] = (addr) - binder_addr;
3527
3528 /**
3529 * Populate the binding table for a given shader stage.
3530 *
3531 * This fills out the table of pointers to surfaces required by the shader,
3532 * and also adds those buffers to the validation list so the kernel can make
3533 * resident before running our batch.
3534 */
3535 static void
3536 iris_populate_binding_table(struct iris_context *ice,
3537 struct iris_batch *batch,
3538 gl_shader_stage stage,
3539 bool pin_only)
3540 {
3541 const struct iris_binder *binder = &ice->state.binder;
3542 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3543 if (!shader)
3544 return;
3545
3546 struct iris_shader_state *shs = &ice->state.shaders[stage];
3547 uint32_t binder_addr = binder->bo->gtt_offset;
3548
3549 //struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
3550 uint32_t *bt_map = binder->map + binder->bt_offset[stage];
3551 int s = 0;
3552
3553 const struct shader_info *info = iris_get_shader_info(ice, stage);
3554 if (!info) {
3555 /* TCS passthrough doesn't need a binding table. */
3556 assert(stage == MESA_SHADER_TESS_CTRL);
3557 return;
3558 }
3559
3560 if (stage == MESA_SHADER_COMPUTE) {
3561 /* surface for gl_NumWorkGroups */
3562 struct iris_state_ref *grid_data = &ice->state.grid_size;
3563 struct iris_state_ref *grid_state = &ice->state.grid_surf_state;
3564 iris_use_pinned_bo(batch, iris_resource_bo(grid_data->res), false);
3565 iris_use_pinned_bo(batch, iris_resource_bo(grid_state->res), false);
3566 push_bt_entry(grid_state->offset);
3567 }
3568
3569 if (stage == MESA_SHADER_FRAGMENT) {
3570 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
3571 /* Note that cso_fb->nr_cbufs == fs_key->nr_color_regions. */
3572 if (cso_fb->nr_cbufs) {
3573 for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
3574 uint32_t addr =
3575 cso_fb->cbufs[i] ? use_surface(batch, cso_fb->cbufs[i], true)
3576 : use_null_fb_surface(batch, ice);
3577 push_bt_entry(addr);
3578 }
3579 } else {
3580 uint32_t addr = use_null_fb_surface(batch, ice);
3581 push_bt_entry(addr);
3582 }
3583 }
3584
3585 //assert(prog_data->binding_table.texture_start ==
3586 //(ice->state.num_textures[stage] ? s : 0xd0d0d0d0));
3587
3588 for (int i = 0; i < shs->num_textures; i++) {
3589 struct iris_sampler_view *view = shs->textures[i];
3590 uint32_t addr = view ? use_sampler_view(batch, view)
3591 : use_null_surface(batch, ice);
3592 push_bt_entry(addr);
3593 }
3594
3595 for (int i = 0; i < info->num_images; i++) {
3596 uint32_t addr = use_image(batch, ice, shs, i);
3597 push_bt_entry(addr);
3598 }
3599
3600 const int num_ubos = iris_get_shader_num_ubos(ice, stage);
3601
3602 for (int i = 0; i < num_ubos; i++) {
3603 uint32_t addr = use_const_buffer(batch, ice, &shs->constbuf[i]);
3604 push_bt_entry(addr);
3605 }
3606
3607 /* XXX: st is wasting 16 binding table slots for ABOs. Should add a cap
3608 * for changing nir_lower_atomics_to_ssbos setting and buffer_base offset
3609 * in st_atom_storagebuf.c so it'll compact them into one range, with
3610 * SSBOs starting at info->num_abos. Ideally it'd reset num_abos to 0 too
3611 */
3612 if (info->num_abos + info->num_ssbos > 0) {
3613 for (int i = 0; i < IRIS_MAX_ABOS + info->num_ssbos; i++) {
3614 uint32_t addr = use_ssbo(batch, ice, shs, i);
3615 push_bt_entry(addr);
3616 }
3617 }
3618
3619 #if 0
3620 // XXX: not implemented yet
3621 assert(prog_data->binding_table.plane_start[1] == 0xd0d0d0d0);
3622 assert(prog_data->binding_table.plane_start[2] == 0xd0d0d0d0);
3623 #endif
3624 }
3625
3626 static void
3627 iris_use_optional_res(struct iris_batch *batch,
3628 struct pipe_resource *res,
3629 bool writeable)
3630 {
3631 if (res) {
3632 struct iris_bo *bo = iris_resource_bo(res);
3633 iris_use_pinned_bo(batch, bo, writeable);
3634 }
3635 }
3636
3637 /* ------------------------------------------------------------------- */
3638
3639 /**
3640 * Pin any BOs which were installed by a previous batch, and restored
3641 * via the hardware logical context mechanism.
3642 *
3643 * We don't need to re-emit all state every batch - the hardware context
3644 * mechanism will save and restore it for us. This includes pointers to
3645 * various BOs...which won't exist unless we ask the kernel to pin them
3646 * by adding them to the validation list.
3647 *
3648 * We can skip buffers if we've re-emitted those packets, as we're
3649 * overwriting those stale pointers with new ones, and don't actually
3650 * refer to the old BOs.
3651 */
3652 static void
3653 iris_restore_render_saved_bos(struct iris_context *ice,
3654 struct iris_batch *batch,
3655 const struct pipe_draw_info *draw)
3656 {
3657 // XXX: whack IRIS_SHADER_DIRTY_BINDING_TABLE on new batch
3658
3659 const uint64_t clean = ~ice->state.dirty;
3660
3661 if (clean & IRIS_DIRTY_CC_VIEWPORT) {
3662 iris_use_optional_res(batch, ice->state.last_res.cc_vp, false);
3663 }
3664
3665 if (clean & IRIS_DIRTY_SF_CL_VIEWPORT) {
3666 iris_use_optional_res(batch, ice->state.last_res.sf_cl_vp, false);
3667 }
3668
3669 if (clean & IRIS_DIRTY_BLEND_STATE) {
3670 iris_use_optional_res(batch, ice->state.last_res.blend, false);
3671 }
3672
3673 if (clean & IRIS_DIRTY_COLOR_CALC_STATE) {
3674 iris_use_optional_res(batch, ice->state.last_res.color_calc, false);
3675 }
3676
3677 if (clean & IRIS_DIRTY_SCISSOR_RECT) {
3678 iris_use_optional_res(batch, ice->state.last_res.scissor, false);
3679 }
3680
3681 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3682 if (!(clean & (IRIS_DIRTY_CONSTANTS_VS << stage)))
3683 continue;
3684
3685 struct iris_shader_state *shs = &ice->state.shaders[stage];
3686 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3687
3688 if (!shader)
3689 continue;
3690
3691 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
3692
3693 for (int i = 0; i < 4; i++) {
3694 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
3695
3696 if (range->length == 0)
3697 continue;
3698
3699 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
3700 struct iris_resource *res = (void *) cbuf->data.res;
3701
3702 if (res)
3703 iris_use_pinned_bo(batch, res->bo, false);
3704 else
3705 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
3706 }
3707 }
3708
3709 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3710 if (clean & (IRIS_DIRTY_BINDINGS_VS << stage)) {
3711 /* Re-pin any buffers referred to by the binding table. */
3712 iris_populate_binding_table(ice, batch, stage, true);
3713 }
3714 }
3715
3716 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3717 struct iris_shader_state *shs = &ice->state.shaders[stage];
3718 struct pipe_resource *res = shs->sampler_table.res;
3719 if (res)
3720 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
3721 }
3722
3723 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3724 if (clean & (IRIS_DIRTY_VS << stage)) {
3725 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3726 if (shader) {
3727 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
3728 iris_use_pinned_bo(batch, bo, false);
3729 }
3730
3731 // XXX: scratch buffer
3732 }
3733 }
3734
3735 if (clean & IRIS_DIRTY_DEPTH_BUFFER) {
3736 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
3737
3738 if (cso_fb->zsbuf) {
3739 struct iris_resource *zres, *sres;
3740 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
3741 &zres, &sres);
3742 // XXX: might not be writable...
3743 if (zres)
3744 iris_use_pinned_bo(batch, zres->bo, true);
3745 if (sres)
3746 iris_use_pinned_bo(batch, sres->bo, true);
3747 }
3748 }
3749
3750 if (draw->index_size == 0 && ice->state.last_res.index_buffer) {
3751 /* This draw didn't emit a new index buffer, so we are inheriting the
3752 * older index buffer. This draw didn't need it, but future ones may.
3753 */
3754 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
3755 iris_use_pinned_bo(batch, bo, false);
3756 }
3757
3758 if (clean & IRIS_DIRTY_VERTEX_BUFFERS) {
3759 struct iris_vertex_buffer_state *cso = &ice->state.genx->vertex_buffers;
3760 for (unsigned i = 0; i < cso->num_buffers; i++) {
3761 struct iris_resource *res = (void *) cso->resources[i];
3762 iris_use_pinned_bo(batch, res->bo, false);
3763 }
3764 }
3765 }
3766
3767 static void
3768 iris_restore_compute_saved_bos(struct iris_context *ice,
3769 struct iris_batch *batch,
3770 const struct pipe_grid_info *grid)
3771 {
3772 const uint64_t clean = ~ice->state.dirty;
3773
3774 const int stage = MESA_SHADER_COMPUTE;
3775 struct iris_shader_state *shs = &ice->state.shaders[stage];
3776
3777 if (clean & IRIS_DIRTY_CONSTANTS_CS) {
3778 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3779
3780 if (shader) {
3781 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
3782 const struct brw_ubo_range *range = &prog_data->ubo_ranges[0];
3783
3784 if (range->length > 0) {
3785 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
3786 struct iris_resource *res = (void *) cbuf->data.res;
3787
3788 if (res)
3789 iris_use_pinned_bo(batch, res->bo, false);
3790 else
3791 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
3792 }
3793 }
3794 }
3795
3796 if (clean & IRIS_DIRTY_BINDINGS_CS) {
3797 /* Re-pin any buffers referred to by the binding table. */
3798 iris_populate_binding_table(ice, batch, stage, true);
3799 }
3800
3801 struct pipe_resource *sampler_res = shs->sampler_table.res;
3802 if (sampler_res)
3803 iris_use_pinned_bo(batch, iris_resource_bo(sampler_res), false);
3804
3805 if (clean & IRIS_DIRTY_CS) {
3806 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3807 if (shader) {
3808 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
3809 iris_use_pinned_bo(batch, bo, false);
3810 }
3811
3812 // XXX: scratch buffer
3813 }
3814 }
3815
3816 /**
3817 * Possibly emit STATE_BASE_ADDRESS to update Surface State Base Address.
3818 */
3819 static void
3820 iris_update_surface_base_address(struct iris_batch *batch,
3821 struct iris_binder *binder)
3822 {
3823 if (batch->last_surface_base_address == binder->bo->gtt_offset)
3824 return;
3825
3826 flush_for_state_base_change(batch);
3827
3828 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
3829 // XXX: sba.SurfaceStateMemoryObjectControlState = MOCS_WB;
3830 sba.SurfaceStateBaseAddressModifyEnable = true;
3831 sba.SurfaceStateBaseAddress = ro_bo(binder->bo, 0);
3832 }
3833
3834 batch->last_surface_base_address = binder->bo->gtt_offset;
3835 }
3836
3837 static void
3838 iris_upload_dirty_render_state(struct iris_context *ice,
3839 struct iris_batch *batch,
3840 const struct pipe_draw_info *draw)
3841 {
3842 const uint64_t dirty = ice->state.dirty;
3843
3844 if (!(dirty & IRIS_ALL_DIRTY_FOR_RENDER))
3845 return;
3846
3847 struct iris_genx_state *genx = ice->state.genx;
3848 struct iris_binder *binder = &ice->state.binder;
3849 struct brw_wm_prog_data *wm_prog_data = (void *)
3850 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3851
3852 if (dirty & IRIS_DIRTY_CC_VIEWPORT) {
3853 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3854 uint32_t cc_vp_address;
3855
3856 /* XXX: could avoid streaming for depth_clip [0,1] case. */
3857 uint32_t *cc_vp_map =
3858 stream_state(batch, ice->state.dynamic_uploader,
3859 &ice->state.last_res.cc_vp,
3860 4 * ice->state.num_viewports *
3861 GENX(CC_VIEWPORT_length), 32, &cc_vp_address);
3862 for (int i = 0; i < ice->state.num_viewports; i++) {
3863 float zmin, zmax;
3864 util_viewport_zmin_zmax(&ice->state.viewports[i],
3865 cso_rast->clip_halfz, &zmin, &zmax);
3866 if (cso_rast->depth_clip_near)
3867 zmin = 0.0;
3868 if (cso_rast->depth_clip_far)
3869 zmax = 1.0;
3870
3871 iris_pack_state(GENX(CC_VIEWPORT), cc_vp_map, ccv) {
3872 ccv.MinimumDepth = zmin;
3873 ccv.MaximumDepth = zmax;
3874 }
3875
3876 cc_vp_map += GENX(CC_VIEWPORT_length);
3877 }
3878
3879 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
3880 ptr.CCViewportPointer = cc_vp_address;
3881 }
3882 }
3883
3884 if (dirty & IRIS_DIRTY_SF_CL_VIEWPORT) {
3885 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
3886 ptr.SFClipViewportPointer =
3887 emit_state(batch, ice->state.dynamic_uploader,
3888 &ice->state.last_res.sf_cl_vp,
3889 genx->sf_cl_vp, 4 * GENX(SF_CLIP_VIEWPORT_length) *
3890 ice->state.num_viewports, 64);
3891 }
3892 }
3893
3894 /* XXX: L3 State */
3895
3896 // XXX: this is only flagged at setup, we assume a static configuration
3897 if (dirty & IRIS_DIRTY_URB) {
3898 iris_upload_urb_config(ice, batch);
3899 }
3900
3901 if (dirty & IRIS_DIRTY_BLEND_STATE) {
3902 struct iris_blend_state *cso_blend = ice->state.cso_blend;
3903 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
3904 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
3905 const int header_dwords = GENX(BLEND_STATE_length);
3906 const int rt_dwords = cso_fb->nr_cbufs * GENX(BLEND_STATE_ENTRY_length);
3907 uint32_t blend_offset;
3908 uint32_t *blend_map =
3909 stream_state(batch, ice->state.dynamic_uploader,
3910 &ice->state.last_res.blend,
3911 4 * (header_dwords + rt_dwords), 64, &blend_offset);
3912
3913 uint32_t blend_state_header;
3914 iris_pack_state(GENX(BLEND_STATE), &blend_state_header, bs) {
3915 bs.AlphaTestEnable = cso_zsa->alpha.enabled;
3916 bs.AlphaTestFunction = translate_compare_func(cso_zsa->alpha.func);
3917 }
3918
3919 blend_map[0] = blend_state_header | cso_blend->blend_state[0];
3920 memcpy(&blend_map[1], &cso_blend->blend_state[1], 4 * rt_dwords);
3921
3922 iris_emit_cmd(batch, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
3923 ptr.BlendStatePointer = blend_offset;
3924 ptr.BlendStatePointerValid = true;
3925 }
3926 }
3927
3928 if (dirty & IRIS_DIRTY_COLOR_CALC_STATE) {
3929 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
3930 uint32_t cc_offset;
3931 void *cc_map =
3932 stream_state(batch, ice->state.dynamic_uploader,
3933 &ice->state.last_res.color_calc,
3934 sizeof(uint32_t) * GENX(COLOR_CALC_STATE_length),
3935 64, &cc_offset);
3936 iris_pack_state(GENX(COLOR_CALC_STATE), cc_map, cc) {
3937 cc.AlphaTestFormat = ALPHATEST_FLOAT32;
3938 cc.AlphaReferenceValueAsFLOAT32 = cso->alpha.ref_value;
3939 cc.BlendConstantColorRed = ice->state.blend_color.color[0];
3940 cc.BlendConstantColorGreen = ice->state.blend_color.color[1];
3941 cc.BlendConstantColorBlue = ice->state.blend_color.color[2];
3942 cc.BlendConstantColorAlpha = ice->state.blend_color.color[3];
3943 }
3944 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
3945 ptr.ColorCalcStatePointer = cc_offset;
3946 ptr.ColorCalcStatePointerValid = true;
3947 }
3948 }
3949
3950 /* Upload constants for TCS passthrough. */
3951 if ((dirty & IRIS_DIRTY_CONSTANTS_TCS) &&
3952 ice->shaders.prog[MESA_SHADER_TESS_CTRL] &&
3953 !ice->shaders.uncompiled[MESA_SHADER_TESS_CTRL]) {
3954 struct iris_compiled_shader *tes_shader = ice->shaders.prog[MESA_SHADER_TESS_EVAL];
3955 assert(tes_shader);
3956
3957 /* Passthrough always copies 2 vec4s, so when uploading data we ensure
3958 * it is in the right layout for TES.
3959 */
3960 float hdr[8] = {};
3961 struct brw_tes_prog_data *tes_prog_data = (void *) tes_shader->prog_data;
3962 switch (tes_prog_data->domain) {
3963 case BRW_TESS_DOMAIN_QUAD:
3964 for (int i = 0; i < 4; i++)
3965 hdr[7 - i] = ice->state.default_outer_level[i];
3966 hdr[3] = ice->state.default_inner_level[0];
3967 hdr[2] = ice->state.default_inner_level[1];
3968 break;
3969 case BRW_TESS_DOMAIN_TRI:
3970 for (int i = 0; i < 3; i++)
3971 hdr[7 - i] = ice->state.default_outer_level[i];
3972 hdr[4] = ice->state.default_inner_level[0];
3973 break;
3974 case BRW_TESS_DOMAIN_ISOLINE:
3975 hdr[7] = ice->state.default_outer_level[1];
3976 hdr[6] = ice->state.default_outer_level[0];
3977 break;
3978 }
3979
3980 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_TESS_CTRL];
3981 struct iris_const_buffer *cbuf = &shs->constbuf[0];
3982 u_upload_data(ice->ctx.const_uploader, 0, sizeof(hdr), 32,
3983 &hdr[0], &cbuf->data.offset,
3984 &cbuf->data.res);
3985 }
3986
3987 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3988 if (!(dirty & (IRIS_DIRTY_CONSTANTS_VS << stage)))
3989 continue;
3990
3991 struct iris_shader_state *shs = &ice->state.shaders[stage];
3992 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3993
3994 if (!shader)
3995 continue;
3996
3997 if (shs->cbuf0_needs_upload)
3998 upload_uniforms(ice, stage);
3999
4000 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4001
4002 iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_VS), pkt) {
4003 pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
4004 if (prog_data) {
4005 /* The Skylake PRM contains the following restriction:
4006 *
4007 * "The driver must ensure The following case does not occur
4008 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
4009 * buffer 3 read length equal to zero committed followed by a
4010 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
4011 * zero committed."
4012 *
4013 * To avoid this, we program the buffers in the highest slots.
4014 * This way, slot 0 is only used if slot 3 is also used.
4015 */
4016 int n = 3;
4017
4018 for (int i = 3; i >= 0; i--) {
4019 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4020
4021 if (range->length == 0)
4022 continue;
4023
4024 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
4025 struct iris_resource *res = (void *) cbuf->data.res;
4026
4027 assert(cbuf->data.offset % 32 == 0);
4028
4029 pkt.ConstantBody.ReadLength[n] = range->length;
4030 pkt.ConstantBody.Buffer[n] =
4031 res ? ro_bo(res->bo, range->start * 32 + cbuf->data.offset)
4032 : ro_bo(batch->screen->workaround_bo, 0);
4033 n--;
4034 }
4035 }
4036 }
4037 }
4038
4039 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4040 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4041 iris_emit_cmd(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), ptr) {
4042 ptr._3DCommandSubOpcode = 38 + stage;
4043 ptr.PointertoVSBindingTable = binder->bt_offset[stage];
4044 }
4045 }
4046 }
4047
4048 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4049 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4050 iris_populate_binding_table(ice, batch, stage, false);
4051 }
4052 }
4053
4054 if (ice->state.need_border_colors)
4055 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
4056
4057 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4058 if (!(dirty & (IRIS_DIRTY_SAMPLER_STATES_VS << stage)) ||
4059 !ice->shaders.prog[stage])
4060 continue;
4061
4062 struct iris_shader_state *shs = &ice->state.shaders[stage];
4063 struct pipe_resource *res = shs->sampler_table.res;
4064 if (res)
4065 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4066
4067 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
4068 ptr._3DCommandSubOpcode = 43 + stage;
4069 ptr.PointertoVSSamplerState = shs->sampler_table.offset;
4070 }
4071 }
4072
4073 if (dirty & IRIS_DIRTY_MULTISAMPLE) {
4074 iris_emit_cmd(batch, GENX(3DSTATE_MULTISAMPLE), ms) {
4075 ms.PixelLocation =
4076 ice->state.cso_rast->half_pixel_center ? CENTER : UL_CORNER;
4077 if (ice->state.framebuffer.samples > 0)
4078 ms.NumberofMultisamples = ffs(ice->state.framebuffer.samples) - 1;
4079 }
4080 }
4081
4082 if (dirty & IRIS_DIRTY_SAMPLE_MASK) {
4083 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_MASK), ms) {
4084 ms.SampleMask = MAX2(ice->state.sample_mask, 1);
4085 }
4086 }
4087
4088 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4089 if (!(dirty & (IRIS_DIRTY_VS << stage)))
4090 continue;
4091
4092 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4093
4094 if (shader) {
4095 struct iris_resource *cache = (void *) shader->assembly.res;
4096 iris_use_pinned_bo(batch, cache->bo, false);
4097 iris_batch_emit(batch, shader->derived_data,
4098 iris_derived_program_state_size(stage));
4099 } else {
4100 if (stage == MESA_SHADER_TESS_EVAL) {
4101 iris_emit_cmd(batch, GENX(3DSTATE_HS), hs);
4102 iris_emit_cmd(batch, GENX(3DSTATE_TE), te);
4103 iris_emit_cmd(batch, GENX(3DSTATE_DS), ds);
4104 } else if (stage == MESA_SHADER_GEOMETRY) {
4105 iris_emit_cmd(batch, GENX(3DSTATE_GS), gs);
4106 }
4107 }
4108 }
4109
4110 if (ice->state.streamout_active) {
4111 if (dirty & IRIS_DIRTY_SO_BUFFERS) {
4112 iris_batch_emit(batch, genx->so_buffers,
4113 4 * 4 * GENX(3DSTATE_SO_BUFFER_length));
4114 for (int i = 0; i < 4; i++) {
4115 struct iris_stream_output_target *tgt =
4116 (void *) ice->state.so_target[i];
4117 if (tgt) {
4118 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
4119 true);
4120 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
4121 true);
4122 }
4123 }
4124 }
4125
4126 if ((dirty & IRIS_DIRTY_SO_DECL_LIST) && ice->state.streamout) {
4127 uint32_t *decl_list =
4128 ice->state.streamout + GENX(3DSTATE_STREAMOUT_length);
4129 iris_batch_emit(batch, decl_list, 4 * ((decl_list[0] & 0xff) + 2));
4130 }
4131
4132 if (dirty & IRIS_DIRTY_STREAMOUT) {
4133 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4134
4135 uint32_t dynamic_sol[GENX(3DSTATE_STREAMOUT_length)];
4136 iris_pack_command(GENX(3DSTATE_STREAMOUT), dynamic_sol, sol) {
4137 sol.SOFunctionEnable = true;
4138 sol.SOStatisticsEnable = true;
4139
4140 sol.RenderingDisable = cso_rast->rasterizer_discard &&
4141 !ice->state.prims_generated_query_active;
4142 sol.ReorderMode = cso_rast->flatshade_first ? LEADING : TRAILING;
4143 }
4144
4145 assert(ice->state.streamout);
4146
4147 iris_emit_merge(batch, ice->state.streamout, dynamic_sol,
4148 GENX(3DSTATE_STREAMOUT_length));
4149 }
4150 } else {
4151 if (dirty & IRIS_DIRTY_STREAMOUT) {
4152 iris_emit_cmd(batch, GENX(3DSTATE_STREAMOUT), sol);
4153 }
4154 }
4155
4156 if (dirty & IRIS_DIRTY_CLIP) {
4157 struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4158 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4159
4160 uint32_t dynamic_clip[GENX(3DSTATE_CLIP_length)];
4161 iris_pack_command(GENX(3DSTATE_CLIP), &dynamic_clip, cl) {
4162 if (wm_prog_data->barycentric_interp_modes &
4163 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
4164 cl.NonPerspectiveBarycentricEnable = true;
4165
4166 cl.ForceZeroRTAIndexEnable = cso_fb->layers == 0;
4167 cl.MaximumVPIndex = ice->state.num_viewports - 1;
4168 }
4169 iris_emit_merge(batch, cso_rast->clip, dynamic_clip,
4170 ARRAY_SIZE(cso_rast->clip));
4171 }
4172
4173 if (dirty & IRIS_DIRTY_RASTER) {
4174 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4175 iris_batch_emit(batch, cso->raster, sizeof(cso->raster));
4176 iris_batch_emit(batch, cso->sf, sizeof(cso->sf));
4177
4178 }
4179
4180 /* XXX: FS program updates needs to flag IRIS_DIRTY_WM */
4181 if (dirty & IRIS_DIRTY_WM) {
4182 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4183 uint32_t dynamic_wm[GENX(3DSTATE_WM_length)];
4184
4185 iris_pack_command(GENX(3DSTATE_WM), &dynamic_wm, wm) {
4186 wm.StatisticsEnable = ice->state.statistics_counters_enabled;
4187
4188 wm.BarycentricInterpolationMode =
4189 wm_prog_data->barycentric_interp_modes;
4190
4191 if (wm_prog_data->early_fragment_tests)
4192 wm.EarlyDepthStencilControl = EDSC_PREPS;
4193 else if (wm_prog_data->has_side_effects)
4194 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
4195 }
4196 iris_emit_merge(batch, cso->wm, dynamic_wm, ARRAY_SIZE(cso->wm));
4197 }
4198
4199 if (dirty & IRIS_DIRTY_SBE) {
4200 iris_emit_sbe(batch, ice);
4201 }
4202
4203 if (dirty & IRIS_DIRTY_PS_BLEND) {
4204 struct iris_blend_state *cso_blend = ice->state.cso_blend;
4205 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
4206 uint32_t dynamic_pb[GENX(3DSTATE_PS_BLEND_length)];
4207 iris_pack_command(GENX(3DSTATE_PS_BLEND), &dynamic_pb, pb) {
4208 pb.HasWriteableRT = true; // XXX: comes from somewhere :(
4209 pb.AlphaTestEnable = cso_zsa->alpha.enabled;
4210 }
4211
4212 iris_emit_merge(batch, cso_blend->ps_blend, dynamic_pb,
4213 ARRAY_SIZE(cso_blend->ps_blend));
4214 }
4215
4216 if (dirty & IRIS_DIRTY_WM_DEPTH_STENCIL) {
4217 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
4218 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
4219
4220 uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
4221 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
4222 wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
4223 wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
4224 }
4225 iris_emit_merge(batch, cso->wmds, stencil_refs, ARRAY_SIZE(cso->wmds));
4226 }
4227
4228 if (dirty & IRIS_DIRTY_SCISSOR_RECT) {
4229 uint32_t scissor_offset =
4230 emit_state(batch, ice->state.dynamic_uploader,
4231 &ice->state.last_res.scissor,
4232 ice->state.scissors,
4233 sizeof(struct pipe_scissor_state) *
4234 ice->state.num_viewports, 32);
4235
4236 iris_emit_cmd(batch, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
4237 ptr.ScissorRectPointer = scissor_offset;
4238 }
4239 }
4240
4241 if (dirty & IRIS_DIRTY_DEPTH_BUFFER) {
4242 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4243 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
4244
4245 iris_batch_emit(batch, cso_z->packets, sizeof(cso_z->packets));
4246
4247 if (cso_fb->zsbuf) {
4248 struct iris_resource *zres = (void *) cso_fb->zsbuf->texture;
4249 // XXX: depth might not be writable...
4250 iris_use_pinned_bo(batch, zres->bo, true);
4251 }
4252 }
4253
4254 if (dirty & IRIS_DIRTY_POLYGON_STIPPLE) {
4255 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
4256 for (int i = 0; i < 32; i++) {
4257 poly.PatternRow[i] = ice->state.poly_stipple.stipple[i];
4258 }
4259 }
4260 }
4261
4262 if (dirty & IRIS_DIRTY_LINE_STIPPLE) {
4263 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4264 iris_batch_emit(batch, cso->line_stipple, sizeof(cso->line_stipple));
4265 }
4266
4267 if (dirty & IRIS_DIRTY_VF_TOPOLOGY) {
4268 iris_emit_cmd(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
4269 topo.PrimitiveTopologyType =
4270 translate_prim_type(draw->mode, draw->vertices_per_patch);
4271 }
4272 }
4273
4274 if (dirty & IRIS_DIRTY_VERTEX_BUFFERS) {
4275 struct iris_vertex_buffer_state *cso = &ice->state.genx->vertex_buffers;
4276 const unsigned vb_dwords = GENX(VERTEX_BUFFER_STATE_length);
4277
4278 if (cso->num_buffers > 0) {
4279 iris_batch_emit(batch, cso->vertex_buffers, sizeof(uint32_t) *
4280 (1 + vb_dwords * cso->num_buffers));
4281
4282 for (unsigned i = 0; i < cso->num_buffers; i++) {
4283 struct iris_resource *res = (void *) cso->resources[i];
4284 if (res)
4285 iris_use_pinned_bo(batch, res->bo, false);
4286 }
4287 }
4288 }
4289
4290 if (dirty & IRIS_DIRTY_VERTEX_ELEMENTS) {
4291 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
4292 const unsigned entries = MAX2(cso->count, 1);
4293 iris_batch_emit(batch, cso->vertex_elements, sizeof(uint32_t) *
4294 (1 + entries * GENX(VERTEX_ELEMENT_STATE_length)));
4295 iris_batch_emit(batch, cso->vf_instancing, sizeof(uint32_t) *
4296 entries * GENX(3DSTATE_VF_INSTANCING_length));
4297 }
4298
4299 if (dirty & IRIS_DIRTY_VF_SGVS) {
4300 const struct brw_vs_prog_data *vs_prog_data = (void *)
4301 ice->shaders.prog[MESA_SHADER_VERTEX]->prog_data;
4302 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
4303
4304 iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS), sgv) {
4305 if (vs_prog_data->uses_vertexid) {
4306 sgv.VertexIDEnable = true;
4307 sgv.VertexIDComponentNumber = 2;
4308 sgv.VertexIDElementOffset = cso->count;
4309 }
4310
4311 if (vs_prog_data->uses_instanceid) {
4312 sgv.InstanceIDEnable = true;
4313 sgv.InstanceIDComponentNumber = 3;
4314 sgv.InstanceIDElementOffset = cso->count;
4315 }
4316 }
4317 }
4318
4319 if (dirty & IRIS_DIRTY_VF) {
4320 iris_emit_cmd(batch, GENX(3DSTATE_VF), vf) {
4321 if (draw->primitive_restart) {
4322 vf.IndexedDrawCutIndexEnable = true;
4323 vf.CutIndex = draw->restart_index;
4324 }
4325 }
4326 }
4327
4328 // XXX: Gen8 - PMA fix
4329 }
4330
4331 static void
4332 iris_upload_render_state(struct iris_context *ice,
4333 struct iris_batch *batch,
4334 const struct pipe_draw_info *draw)
4335 {
4336 /* Always pin the binder. If we're emitting new binding table pointers,
4337 * we need it. If not, we're probably inheriting old tables via the
4338 * context, and need it anyway. Since true zero-bindings cases are
4339 * practically non-existent, just pin it and avoid last_res tracking.
4340 */
4341 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
4342
4343 iris_upload_dirty_render_state(ice, batch, draw);
4344
4345 if (draw->index_size > 0) {
4346 unsigned offset;
4347
4348 if (draw->has_user_indices) {
4349 u_upload_data(ice->ctx.stream_uploader, 0,
4350 draw->count * draw->index_size, 4, draw->index.user,
4351 &offset, &ice->state.last_res.index_buffer);
4352 } else {
4353 pipe_resource_reference(&ice->state.last_res.index_buffer,
4354 draw->index.resource);
4355 offset = 0;
4356 }
4357
4358 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
4359
4360 iris_emit_cmd(batch, GENX(3DSTATE_INDEX_BUFFER), ib) {
4361 ib.IndexFormat = draw->index_size >> 1;
4362 ib.MOCS = MOCS_WB;
4363 ib.BufferSize = bo->size;
4364 ib.BufferStartingAddress = ro_bo(bo, offset);
4365 }
4366 }
4367
4368 #define _3DPRIM_END_OFFSET 0x2420
4369 #define _3DPRIM_START_VERTEX 0x2430
4370 #define _3DPRIM_VERTEX_COUNT 0x2434
4371 #define _3DPRIM_INSTANCE_COUNT 0x2438
4372 #define _3DPRIM_START_INSTANCE 0x243C
4373 #define _3DPRIM_BASE_VERTEX 0x2440
4374
4375 if (draw->indirect) {
4376 /* We don't support this MultidrawIndirect. */
4377 assert(!draw->indirect->indirect_draw_count);
4378
4379 struct iris_bo *bo = iris_resource_bo(draw->indirect->buffer);
4380 assert(bo);
4381
4382 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4383 lrm.RegisterAddress = _3DPRIM_VERTEX_COUNT;
4384 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 0);
4385 }
4386 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4387 lrm.RegisterAddress = _3DPRIM_INSTANCE_COUNT;
4388 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 4);
4389 }
4390 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4391 lrm.RegisterAddress = _3DPRIM_START_VERTEX;
4392 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 8);
4393 }
4394 if (draw->index_size) {
4395 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4396 lrm.RegisterAddress = _3DPRIM_BASE_VERTEX;
4397 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
4398 }
4399 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4400 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
4401 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 16);
4402 }
4403 } else {
4404 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4405 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
4406 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
4407 }
4408 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
4409 lri.RegisterOffset = _3DPRIM_BASE_VERTEX;
4410 lri.DataDWord = 0;
4411 }
4412 }
4413 }
4414
4415 iris_emit_cmd(batch, GENX(3DPRIMITIVE), prim) {
4416 prim.StartInstanceLocation = draw->start_instance;
4417 prim.InstanceCount = draw->instance_count;
4418 prim.VertexCountPerInstance = draw->count;
4419 prim.VertexAccessType = draw->index_size > 0 ? RANDOM : SEQUENTIAL;
4420
4421 // XXX: this is probably bonkers.
4422 prim.StartVertexLocation = draw->start;
4423
4424 prim.IndirectParameterEnable = draw->indirect != NULL;
4425
4426 if (draw->index_size) {
4427 prim.BaseVertexLocation += draw->index_bias;
4428 } else {
4429 prim.StartVertexLocation += draw->index_bias;
4430 }
4431
4432 //prim.BaseVertexLocation = ...;
4433 }
4434
4435 if (!batch->contains_draw) {
4436 iris_restore_render_saved_bos(ice, batch, draw);
4437 batch->contains_draw = true;
4438 }
4439 }
4440
4441 static void
4442 iris_upload_compute_state(struct iris_context *ice,
4443 struct iris_batch *batch,
4444 const struct pipe_grid_info *grid)
4445 {
4446 const uint64_t dirty = ice->state.dirty;
4447 struct iris_screen *screen = batch->screen;
4448 const struct gen_device_info *devinfo = &screen->devinfo;
4449 struct iris_binder *binder = &ice->state.binder;
4450 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
4451 struct iris_compiled_shader *shader =
4452 ice->shaders.prog[MESA_SHADER_COMPUTE];
4453 struct brw_stage_prog_data *prog_data = shader->prog_data;
4454 struct brw_cs_prog_data *cs_prog_data = (void *) prog_data;
4455
4456 // XXX: L3 configuration not set up for SLM
4457 assert(prog_data->total_shared == 0);
4458
4459 if (dirty & IRIS_DIRTY_BINDINGS_CS)
4460 iris_populate_binding_table(ice, batch, MESA_SHADER_COMPUTE, false);
4461
4462 iris_use_optional_res(batch, shs->sampler_table.res, false);
4463 iris_use_pinned_bo(batch, iris_resource_bo(shader->assembly.res), false);
4464
4465 if (ice->state.need_border_colors)
4466 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
4467
4468 if (dirty & IRIS_DIRTY_CS) {
4469 /* The MEDIA_VFE_STATE documentation for Gen8+ says:
4470 *
4471 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
4472 * the only bits that are changed are scoreboard related: Scoreboard
4473 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard Delta. For
4474 * these scoreboard related states, a MEDIA_STATE_FLUSH is
4475 * sufficient."
4476 */
4477 iris_emit_pipe_control_flush(batch, PIPE_CONTROL_CS_STALL);
4478
4479 iris_emit_cmd(batch, GENX(MEDIA_VFE_STATE), vfe) {
4480 if (prog_data->total_scratch) {
4481 uint32_t scratch_addr =
4482 iris_get_scratch_space(ice, prog_data->total_scratch,
4483 MESA_SHADER_COMPUTE);
4484 vfe.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
4485 vfe.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr);
4486 }
4487
4488 vfe.MaximumNumberofThreads =
4489 devinfo->max_cs_threads * screen->subslice_total - 1;
4490 #if GEN_GEN < 11
4491 vfe.ResetGatewayTimer =
4492 Resettingrelativetimerandlatchingtheglobaltimestamp;
4493 #endif
4494
4495 vfe.NumberofURBEntries = 2;
4496 vfe.URBEntryAllocationSize = 2;
4497
4498 // XXX: Use Indirect Payload Storage?
4499 vfe.CURBEAllocationSize =
4500 ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
4501 cs_prog_data->push.cross_thread.regs, 2);
4502 }
4503 }
4504
4505 // XXX: hack iris_set_constant_buffers to upload these thread counts
4506 // XXX: along with regular uniforms for compute shaders, somehow.
4507
4508 uint32_t curbe_data_offset = 0;
4509 // TODO: Move subgroup-id into uniforms ubo so we can push uniforms
4510 assert(cs_prog_data->push.cross_thread.dwords == 0 &&
4511 cs_prog_data->push.per_thread.dwords == 1 &&
4512 cs_prog_data->base.param[0] == BRW_PARAM_BUILTIN_SUBGROUP_ID);
4513 struct pipe_resource *curbe_data_res = NULL;
4514 uint32_t *curbe_data_map =
4515 stream_state(batch, ice->state.dynamic_uploader, &curbe_data_res,
4516 ALIGN(cs_prog_data->push.total.size, 64), 64,
4517 &curbe_data_offset);
4518 assert(curbe_data_map);
4519 memset(curbe_data_map, 0x5a, ALIGN(cs_prog_data->push.total.size, 64));
4520 iris_fill_cs_push_const_buffer(cs_prog_data, curbe_data_map);
4521
4522 if (dirty & IRIS_DIRTY_CONSTANTS_CS) {
4523 iris_emit_cmd(batch, GENX(MEDIA_CURBE_LOAD), curbe) {
4524 curbe.CURBETotalDataLength =
4525 ALIGN(cs_prog_data->push.total.size, 64);
4526 curbe.CURBEDataStartAddress = curbe_data_offset;
4527 }
4528 }
4529
4530 if (dirty & (IRIS_DIRTY_SAMPLER_STATES_CS |
4531 IRIS_DIRTY_BINDINGS_CS |
4532 IRIS_DIRTY_CONSTANTS_CS |
4533 IRIS_DIRTY_CS)) {
4534 struct pipe_resource *desc_res = NULL;
4535 uint32_t desc[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
4536
4537 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), desc, idd) {
4538 idd.SamplerStatePointer = shs->sampler_table.offset;
4539 idd.BindingTablePointer = binder->bt_offset[MESA_SHADER_COMPUTE];
4540 idd.ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs;
4541 idd.CrossThreadConstantDataReadLength =
4542 cs_prog_data->push.cross_thread.regs;
4543 }
4544
4545 for (int i = 0; i < GENX(INTERFACE_DESCRIPTOR_DATA_length); i++)
4546 desc[i] |= ((uint32_t *) shader->derived_data)[i];
4547
4548 iris_emit_cmd(batch, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
4549 load.InterfaceDescriptorTotalLength =
4550 GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
4551 load.InterfaceDescriptorDataStartAddress =
4552 emit_state(batch, ice->state.dynamic_uploader,
4553 &desc_res, desc, sizeof(desc), 32);
4554 }
4555
4556 pipe_resource_reference(&desc_res, NULL);
4557 }
4558
4559 uint32_t group_size = grid->block[0] * grid->block[1] * grid->block[2];
4560 uint32_t remainder = group_size & (cs_prog_data->simd_size - 1);
4561 uint32_t right_mask;
4562
4563 if (remainder > 0)
4564 right_mask = ~0u >> (32 - remainder);
4565 else
4566 right_mask = ~0u >> (32 - cs_prog_data->simd_size);
4567
4568 #define GPGPU_DISPATCHDIMX 0x2500
4569 #define GPGPU_DISPATCHDIMY 0x2504
4570 #define GPGPU_DISPATCHDIMZ 0x2508
4571
4572 if (grid->indirect) {
4573 struct iris_state_ref *grid_size = &ice->state.grid_size;
4574 struct iris_bo *bo = iris_resource_bo(grid_size->res);
4575 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4576 lrm.RegisterAddress = GPGPU_DISPATCHDIMX;
4577 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 0);
4578 }
4579 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4580 lrm.RegisterAddress = GPGPU_DISPATCHDIMY;
4581 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 4);
4582 }
4583 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4584 lrm.RegisterAddress = GPGPU_DISPATCHDIMZ;
4585 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 8);
4586 }
4587 }
4588
4589 iris_emit_cmd(batch, GENX(GPGPU_WALKER), ggw) {
4590 ggw.IndirectParameterEnable = grid->indirect != NULL;
4591 ggw.SIMDSize = cs_prog_data->simd_size / 16;
4592 ggw.ThreadDepthCounterMaximum = 0;
4593 ggw.ThreadHeightCounterMaximum = 0;
4594 ggw.ThreadWidthCounterMaximum = cs_prog_data->threads - 1;
4595 ggw.ThreadGroupIDXDimension = grid->grid[0];
4596 ggw.ThreadGroupIDYDimension = grid->grid[1];
4597 ggw.ThreadGroupIDZDimension = grid->grid[2];
4598 ggw.RightExecutionMask = right_mask;
4599 ggw.BottomExecutionMask = 0xffffffff;
4600 }
4601
4602 iris_emit_cmd(batch, GENX(MEDIA_STATE_FLUSH), msf);
4603
4604 if (!batch->contains_draw) {
4605 iris_restore_compute_saved_bos(ice, batch, grid);
4606 batch->contains_draw = true;
4607 }
4608 }
4609
4610 /**
4611 * State module teardown.
4612 */
4613 static void
4614 iris_destroy_state(struct iris_context *ice)
4615 {
4616 iris_free_vertex_buffers(&ice->state.genx->vertex_buffers);
4617
4618 // XXX: unreference resources/surfaces.
4619 for (unsigned i = 0; i < ice->state.framebuffer.nr_cbufs; i++) {
4620 pipe_surface_reference(&ice->state.framebuffer.cbufs[i], NULL);
4621 }
4622 pipe_surface_reference(&ice->state.framebuffer.zsbuf, NULL);
4623
4624 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4625 struct iris_shader_state *shs = &ice->state.shaders[stage];
4626 pipe_resource_reference(&shs->sampler_table.res, NULL);
4627 }
4628 free(ice->state.genx);
4629
4630 pipe_resource_reference(&ice->state.last_res.cc_vp, NULL);
4631 pipe_resource_reference(&ice->state.last_res.sf_cl_vp, NULL);
4632 pipe_resource_reference(&ice->state.last_res.color_calc, NULL);
4633 pipe_resource_reference(&ice->state.last_res.scissor, NULL);
4634 pipe_resource_reference(&ice->state.last_res.blend, NULL);
4635 pipe_resource_reference(&ice->state.last_res.index_buffer, NULL);
4636 }
4637
4638 /* ------------------------------------------------------------------- */
4639
4640 static void
4641 iris_load_register_imm32(struct iris_batch *batch, uint32_t reg,
4642 uint32_t val)
4643 {
4644 _iris_emit_lri(batch, reg, val);
4645 }
4646
4647 static void
4648 iris_load_register_imm64(struct iris_batch *batch, uint32_t reg,
4649 uint64_t val)
4650 {
4651 _iris_emit_lri(batch, reg + 0, val & 0xffffffff);
4652 _iris_emit_lri(batch, reg + 4, val >> 32);
4653 }
4654
4655 /**
4656 * Emit MI_LOAD_REGISTER_MEM to load a 32-bit MMIO register from a buffer.
4657 */
4658 static void
4659 iris_load_register_mem32(struct iris_batch *batch, uint32_t reg,
4660 struct iris_bo *bo, uint32_t offset)
4661 {
4662 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4663 lrm.RegisterAddress = reg;
4664 lrm.MemoryAddress = ro_bo(bo, offset);
4665 }
4666 }
4667
4668 /**
4669 * Load a 64-bit value from a buffer into a MMIO register via
4670 * two MI_LOAD_REGISTER_MEM commands.
4671 */
4672 static void
4673 iris_load_register_mem64(struct iris_batch *batch, uint32_t reg,
4674 struct iris_bo *bo, uint32_t offset)
4675 {
4676 iris_load_register_mem32(batch, reg + 0, bo, offset + 0);
4677 iris_load_register_mem32(batch, reg + 4, bo, offset + 4);
4678 }
4679
4680 static void
4681 iris_store_register_mem32(struct iris_batch *batch, uint32_t reg,
4682 struct iris_bo *bo, uint32_t offset,
4683 bool predicated)
4684 {
4685 iris_emit_cmd(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
4686 srm.RegisterAddress = reg;
4687 srm.MemoryAddress = rw_bo(bo, offset);
4688 srm.PredicateEnable = predicated;
4689 }
4690 }
4691
4692 static void
4693 iris_store_register_mem64(struct iris_batch *batch, uint32_t reg,
4694 struct iris_bo *bo, uint32_t offset,
4695 bool predicated)
4696 {
4697 iris_store_register_mem32(batch, reg + 0, bo, offset + 0, predicated);
4698 iris_store_register_mem32(batch, reg + 4, bo, offset + 4, predicated);
4699 }
4700
4701 static void
4702 iris_store_data_imm32(struct iris_batch *batch,
4703 struct iris_bo *bo, uint32_t offset,
4704 uint32_t imm)
4705 {
4706 iris_emit_cmd(batch, GENX(MI_STORE_DATA_IMM), sdi) {
4707 sdi.Address = rw_bo(bo, offset);
4708 sdi.ImmediateData = imm;
4709 }
4710 }
4711
4712 static void
4713 iris_store_data_imm64(struct iris_batch *batch,
4714 struct iris_bo *bo, uint32_t offset,
4715 uint64_t imm)
4716 {
4717 /* Can't use iris_emit_cmd because MI_STORE_DATA_IMM has a length of
4718 * 2 in genxml but it's actually variable length and we need 5 DWords.
4719 */
4720 void *map = iris_get_command_space(batch, 4 * 5);
4721 _iris_pack_command(batch, GENX(MI_STORE_DATA_IMM), map, sdi) {
4722 sdi.DWordLength = 5 - 2;
4723 sdi.Address = rw_bo(bo, offset);
4724 sdi.ImmediateData = imm;
4725 }
4726 }
4727
4728 static void
4729 iris_copy_mem_mem(struct iris_batch *batch,
4730 struct iris_bo *dst_bo, uint32_t dst_offset,
4731 struct iris_bo *src_bo, uint32_t src_offset,
4732 unsigned bytes)
4733 {
4734 /* MI_COPY_MEM_MEM operates on DWords. */
4735 assert(bytes % 4 == 0);
4736 assert(dst_offset % 4 == 0);
4737 assert(src_offset % 4 == 0);
4738
4739 for (unsigned i = 0; i < bytes; i += 4) {
4740 iris_emit_cmd(batch, GENX(MI_COPY_MEM_MEM), cp) {
4741 cp.DestinationMemoryAddress = rw_bo(dst_bo, dst_offset + i);
4742 cp.SourceMemoryAddress = ro_bo(src_bo, src_offset + i);
4743 }
4744 }
4745 }
4746
4747 /* ------------------------------------------------------------------- */
4748
4749 static unsigned
4750 flags_to_post_sync_op(uint32_t flags)
4751 {
4752 if (flags & PIPE_CONTROL_WRITE_IMMEDIATE)
4753 return WriteImmediateData;
4754
4755 if (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT)
4756 return WritePSDepthCount;
4757
4758 if (flags & PIPE_CONTROL_WRITE_TIMESTAMP)
4759 return WriteTimestamp;
4760
4761 return 0;
4762 }
4763
4764 /**
4765 * Do the given flags have a Post Sync or LRI Post Sync operation?
4766 */
4767 static enum pipe_control_flags
4768 get_post_sync_flags(enum pipe_control_flags flags)
4769 {
4770 flags &= PIPE_CONTROL_WRITE_IMMEDIATE |
4771 PIPE_CONTROL_WRITE_DEPTH_COUNT |
4772 PIPE_CONTROL_WRITE_TIMESTAMP |
4773 PIPE_CONTROL_LRI_POST_SYNC_OP;
4774
4775 /* Only one "Post Sync Op" is allowed, and it's mutually exclusive with
4776 * "LRI Post Sync Operation". So more than one bit set would be illegal.
4777 */
4778 assert(util_bitcount(flags) <= 1);
4779
4780 return flags;
4781 }
4782
4783 // XXX: compute support
4784 #define IS_COMPUTE_PIPELINE(batch) (batch->engine != I915_EXEC_RENDER)
4785
4786 /**
4787 * Emit a series of PIPE_CONTROL commands, taking into account any
4788 * workarounds necessary to actually accomplish the caller's request.
4789 *
4790 * Unless otherwise noted, spec quotations in this function come from:
4791 *
4792 * Synchronization of the 3D Pipeline > PIPE_CONTROL Command > Programming
4793 * Restrictions for PIPE_CONTROL.
4794 *
4795 * You should not use this function directly. Use the helpers in
4796 * iris_pipe_control.c instead, which may split the pipe control further.
4797 */
4798 static void
4799 iris_emit_raw_pipe_control(struct iris_batch *batch, uint32_t flags,
4800 struct iris_bo *bo, uint32_t offset, uint64_t imm)
4801 {
4802 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
4803 enum pipe_control_flags post_sync_flags = get_post_sync_flags(flags);
4804 enum pipe_control_flags non_lri_post_sync_flags =
4805 post_sync_flags & ~PIPE_CONTROL_LRI_POST_SYNC_OP;
4806
4807 /* Recursive PIPE_CONTROL workarounds --------------------------------
4808 * (http://knowyourmeme.com/memes/xzibit-yo-dawg)
4809 *
4810 * We do these first because we want to look at the original operation,
4811 * rather than any workarounds we set.
4812 */
4813 if (GEN_GEN == 9 && (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE)) {
4814 /* The PIPE_CONTROL "VF Cache Invalidation Enable" bit description
4815 * lists several workarounds:
4816 *
4817 * "Project: SKL, KBL, BXT
4818 *
4819 * If the VF Cache Invalidation Enable is set to a 1 in a
4820 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields
4821 * sets to 0, with the VF Cache Invalidation Enable set to 0
4822 * needs to be sent prior to the PIPE_CONTROL with VF Cache
4823 * Invalidation Enable set to a 1."
4824 */
4825 iris_emit_raw_pipe_control(batch, 0, NULL, 0, 0);
4826 }
4827
4828 if (GEN_GEN == 9 && IS_COMPUTE_PIPELINE(batch) && post_sync_flags) {
4829 /* Project: SKL / Argument: LRI Post Sync Operation [23]
4830 *
4831 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
4832 * programmed prior to programming a PIPECONTROL command with "LRI
4833 * Post Sync Operation" in GPGPU mode of operation (i.e when
4834 * PIPELINE_SELECT command is set to GPGPU mode of operation)."
4835 *
4836 * The same text exists a few rows below for Post Sync Op.
4837 */
4838 iris_emit_raw_pipe_control(batch, PIPE_CONTROL_CS_STALL, bo, offset, imm);
4839 }
4840
4841 if (GEN_GEN == 10 && (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH)) {
4842 /* Cannonlake:
4843 * "Before sending a PIPE_CONTROL command with bit 12 set, SW must issue
4844 * another PIPE_CONTROL with Render Target Cache Flush Enable (bit 12)
4845 * = 0 and Pipe Control Flush Enable (bit 7) = 1"
4846 */
4847 iris_emit_raw_pipe_control(batch, PIPE_CONTROL_FLUSH_ENABLE, bo,
4848 offset, imm);
4849 }
4850
4851 /* "Flush Types" workarounds ---------------------------------------------
4852 * We do these now because they may add post-sync operations or CS stalls.
4853 */
4854
4855 if (GEN_GEN < 11 && flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) {
4856 /* Project: BDW, SKL+ (stopping at CNL) / Argument: VF Invalidate
4857 *
4858 * "'Post Sync Operation' must be enabled to 'Write Immediate Data' or
4859 * 'Write PS Depth Count' or 'Write Timestamp'."
4860 */
4861 if (!bo) {
4862 flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
4863 post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
4864 non_lri_post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
4865 bo = batch->screen->workaround_bo;
4866 }
4867 }
4868
4869 /* #1130 from Gen10 workarounds page:
4870 *
4871 * "Enable Depth Stall on every Post Sync Op if Render target Cache
4872 * Flush is not enabled in same PIPE CONTROL and Enable Pixel score
4873 * board stall if Render target cache flush is enabled."
4874 *
4875 * Applicable to CNL B0 and C0 steppings only.
4876 *
4877 * The wording here is unclear, and this workaround doesn't look anything
4878 * like the internal bug report recommendations, but leave it be for now...
4879 */
4880 if (GEN_GEN == 10) {
4881 if (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) {
4882 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
4883 } else if (flags & non_lri_post_sync_flags) {
4884 flags |= PIPE_CONTROL_DEPTH_STALL;
4885 }
4886 }
4887
4888 if (flags & PIPE_CONTROL_DEPTH_STALL) {
4889 /* From the PIPE_CONTROL instruction table, bit 13 (Depth Stall Enable):
4890 *
4891 * "This bit must be DISABLED for operations other than writing
4892 * PS_DEPTH_COUNT."
4893 *
4894 * This seems like nonsense. An Ivybridge workaround requires us to
4895 * emit a PIPE_CONTROL with a depth stall and write immediate post-sync
4896 * operation. Gen8+ requires us to emit depth stalls and depth cache
4897 * flushes together. So, it's hard to imagine this means anything other
4898 * than "we originally intended this to be used for PS_DEPTH_COUNT".
4899 *
4900 * We ignore the supposed restriction and do nothing.
4901 */
4902 }
4903
4904 if (flags & (PIPE_CONTROL_RENDER_TARGET_FLUSH |
4905 PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
4906 /* From the PIPE_CONTROL instruction table, bit 12 and bit 1:
4907 *
4908 * "This bit must be DISABLED for End-of-pipe (Read) fences,
4909 * PS_DEPTH_COUNT or TIMESTAMP queries."
4910 *
4911 * TODO: Implement end-of-pipe checking.
4912 */
4913 assert(!(post_sync_flags & (PIPE_CONTROL_WRITE_DEPTH_COUNT |
4914 PIPE_CONTROL_WRITE_TIMESTAMP)));
4915 }
4916
4917 if (GEN_GEN < 11 && (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
4918 /* From the PIPE_CONTROL instruction table, bit 1:
4919 *
4920 * "This bit is ignored if Depth Stall Enable is set.
4921 * Further, the render cache is not flushed even if Write Cache
4922 * Flush Enable bit is set."
4923 *
4924 * We assert that the caller doesn't do this combination, to try and
4925 * prevent mistakes. It shouldn't hurt the GPU, though.
4926 *
4927 * We skip this check on Gen11+ as the "Stall at Pixel Scoreboard"
4928 * and "Render Target Flush" combo is explicitly required for BTI
4929 * update workarounds.
4930 */
4931 assert(!(flags & (PIPE_CONTROL_DEPTH_STALL |
4932 PIPE_CONTROL_RENDER_TARGET_FLUSH)));
4933 }
4934
4935 /* PIPE_CONTROL page workarounds ------------------------------------- */
4936
4937 if (GEN_GEN <= 8 && (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE)) {
4938 /* From the PIPE_CONTROL page itself:
4939 *
4940 * "IVB, HSW, BDW
4941 * Restriction: Pipe_control with CS-stall bit set must be issued
4942 * before a pipe-control command that has the State Cache
4943 * Invalidate bit set."
4944 */
4945 flags |= PIPE_CONTROL_CS_STALL;
4946 }
4947
4948 if (flags & PIPE_CONTROL_FLUSH_LLC) {
4949 /* From the PIPE_CONTROL instruction table, bit 26 (Flush LLC):
4950 *
4951 * "Project: ALL
4952 * SW must always program Post-Sync Operation to "Write Immediate
4953 * Data" when Flush LLC is set."
4954 *
4955 * For now, we just require the caller to do it.
4956 */
4957 assert(flags & PIPE_CONTROL_WRITE_IMMEDIATE);
4958 }
4959
4960 /* "Post-Sync Operation" workarounds -------------------------------- */
4961
4962 /* Project: All / Argument: Global Snapshot Count Reset [19]
4963 *
4964 * "This bit must not be exercised on any product.
4965 * Requires stall bit ([20] of DW1) set."
4966 *
4967 * We don't use this, so we just assert that it isn't used. The
4968 * PIPE_CONTROL instruction page indicates that they intended this
4969 * as a debug feature and don't think it is useful in production,
4970 * but it may actually be usable, should we ever want to.
4971 */
4972 assert((flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) == 0);
4973
4974 if (flags & (PIPE_CONTROL_MEDIA_STATE_CLEAR |
4975 PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE)) {
4976 /* Project: All / Arguments:
4977 *
4978 * - Generic Media State Clear [16]
4979 * - Indirect State Pointers Disable [16]
4980 *
4981 * "Requires stall bit ([20] of DW1) set."
4982 *
4983 * Also, the PIPE_CONTROL instruction table, bit 16 (Generic Media
4984 * State Clear) says:
4985 *
4986 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
4987 * programmed prior to programming a PIPECONTROL command with "Media
4988 * State Clear" set in GPGPU mode of operation"
4989 *
4990 * This is a subset of the earlier rule, so there's nothing to do.
4991 */
4992 flags |= PIPE_CONTROL_CS_STALL;
4993 }
4994
4995 if (flags & PIPE_CONTROL_STORE_DATA_INDEX) {
4996 /* Project: All / Argument: Store Data Index
4997 *
4998 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
4999 * than '0'."
5000 *
5001 * For now, we just assert that the caller does this. We might want to
5002 * automatically add a write to the workaround BO...
5003 */
5004 assert(non_lri_post_sync_flags != 0);
5005 }
5006
5007 if (flags & PIPE_CONTROL_SYNC_GFDT) {
5008 /* Project: All / Argument: Sync GFDT
5009 *
5010 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
5011 * than '0' or 0x2520[13] must be set."
5012 *
5013 * For now, we just assert that the caller does this.
5014 */
5015 assert(non_lri_post_sync_flags != 0);
5016 }
5017
5018 if (flags & PIPE_CONTROL_TLB_INVALIDATE) {
5019 /* Project: IVB+ / Argument: TLB inv
5020 *
5021 * "Requires stall bit ([20] of DW1) set."
5022 *
5023 * Also, from the PIPE_CONTROL instruction table:
5024 *
5025 * "Project: SKL+
5026 * Post Sync Operation or CS stall must be set to ensure a TLB
5027 * invalidation occurs. Otherwise no cycle will occur to the TLB
5028 * cache to invalidate."
5029 *
5030 * This is not a subset of the earlier rule, so there's nothing to do.
5031 */
5032 flags |= PIPE_CONTROL_CS_STALL;
5033 }
5034
5035 if (GEN_GEN == 9 && devinfo->gt == 4) {
5036 /* TODO: The big Skylake GT4 post sync op workaround */
5037 }
5038
5039 /* "GPGPU specific workarounds" (both post-sync and flush) ------------ */
5040
5041 if (IS_COMPUTE_PIPELINE(batch)) {
5042 if (GEN_GEN >= 9 && (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE)) {
5043 /* Project: SKL+ / Argument: Tex Invalidate
5044 * "Requires stall bit ([20] of DW) set for all GPGPU Workloads."
5045 */
5046 flags |= PIPE_CONTROL_CS_STALL;
5047 }
5048
5049 if (GEN_GEN == 8 && (post_sync_flags ||
5050 (flags & (PIPE_CONTROL_NOTIFY_ENABLE |
5051 PIPE_CONTROL_DEPTH_STALL |
5052 PIPE_CONTROL_RENDER_TARGET_FLUSH |
5053 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
5054 PIPE_CONTROL_DATA_CACHE_FLUSH)))) {
5055 /* Project: BDW / Arguments:
5056 *
5057 * - LRI Post Sync Operation [23]
5058 * - Post Sync Op [15:14]
5059 * - Notify En [8]
5060 * - Depth Stall [13]
5061 * - Render Target Cache Flush [12]
5062 * - Depth Cache Flush [0]
5063 * - DC Flush Enable [5]
5064 *
5065 * "Requires stall bit ([20] of DW) set for all GPGPU and Media
5066 * Workloads."
5067 */
5068 flags |= PIPE_CONTROL_CS_STALL;
5069
5070 /* Also, from the PIPE_CONTROL instruction table, bit 20:
5071 *
5072 * "Project: BDW
5073 * This bit must be always set when PIPE_CONTROL command is
5074 * programmed by GPGPU and MEDIA workloads, except for the cases
5075 * when only Read Only Cache Invalidation bits are set (State
5076 * Cache Invalidation Enable, Instruction cache Invalidation
5077 * Enable, Texture Cache Invalidation Enable, Constant Cache
5078 * Invalidation Enable). This is to WA FFDOP CG issue, this WA
5079 * need not implemented when FF_DOP_CG is disable via "Fixed
5080 * Function DOP Clock Gate Disable" bit in RC_PSMI_CTRL register."
5081 *
5082 * It sounds like we could avoid CS stalls in some cases, but we
5083 * don't currently bother. This list isn't exactly the list above,
5084 * either...
5085 */
5086 }
5087 }
5088
5089 /* "Stall" workarounds ----------------------------------------------
5090 * These have to come after the earlier ones because we may have added
5091 * some additional CS stalls above.
5092 */
5093
5094 if (GEN_GEN < 9 && (flags & PIPE_CONTROL_CS_STALL)) {
5095 /* Project: PRE-SKL, VLV, CHV
5096 *
5097 * "[All Stepping][All SKUs]:
5098 *
5099 * One of the following must also be set:
5100 *
5101 * - Render Target Cache Flush Enable ([12] of DW1)
5102 * - Depth Cache Flush Enable ([0] of DW1)
5103 * - Stall at Pixel Scoreboard ([1] of DW1)
5104 * - Depth Stall ([13] of DW1)
5105 * - Post-Sync Operation ([13] of DW1)
5106 * - DC Flush Enable ([5] of DW1)"
5107 *
5108 * If we don't already have one of those bits set, we choose to add
5109 * "Stall at Pixel Scoreboard". Some of the other bits require a
5110 * CS stall as a workaround (see above), which would send us into
5111 * an infinite recursion of PIPE_CONTROLs. "Stall at Pixel Scoreboard"
5112 * appears to be safe, so we choose that.
5113 */
5114 const uint32_t wa_bits = PIPE_CONTROL_RENDER_TARGET_FLUSH |
5115 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
5116 PIPE_CONTROL_WRITE_IMMEDIATE |
5117 PIPE_CONTROL_WRITE_DEPTH_COUNT |
5118 PIPE_CONTROL_WRITE_TIMESTAMP |
5119 PIPE_CONTROL_STALL_AT_SCOREBOARD |
5120 PIPE_CONTROL_DEPTH_STALL |
5121 PIPE_CONTROL_DATA_CACHE_FLUSH;
5122 if (!(flags & wa_bits))
5123 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
5124 }
5125
5126 /* Emit --------------------------------------------------------------- */
5127
5128 iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
5129 pc.LRIPostSyncOperation = NoLRIOperation;
5130 pc.PipeControlFlushEnable = flags & PIPE_CONTROL_FLUSH_ENABLE;
5131 pc.DCFlushEnable = flags & PIPE_CONTROL_DATA_CACHE_FLUSH;
5132 pc.StoreDataIndex = 0;
5133 pc.CommandStreamerStallEnable = flags & PIPE_CONTROL_CS_STALL;
5134 pc.GlobalSnapshotCountReset =
5135 flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET;
5136 pc.TLBInvalidate = flags & PIPE_CONTROL_TLB_INVALIDATE;
5137 pc.GenericMediaStateClear = flags & PIPE_CONTROL_MEDIA_STATE_CLEAR;
5138 pc.StallAtPixelScoreboard = flags & PIPE_CONTROL_STALL_AT_SCOREBOARD;
5139 pc.RenderTargetCacheFlushEnable =
5140 flags & PIPE_CONTROL_RENDER_TARGET_FLUSH;
5141 pc.DepthCacheFlushEnable = flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH;
5142 pc.StateCacheInvalidationEnable =
5143 flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE;
5144 pc.VFCacheInvalidationEnable = flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
5145 pc.ConstantCacheInvalidationEnable =
5146 flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE;
5147 pc.PostSyncOperation = flags_to_post_sync_op(flags);
5148 pc.DepthStallEnable = flags & PIPE_CONTROL_DEPTH_STALL;
5149 pc.InstructionCacheInvalidateEnable =
5150 flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE;
5151 pc.NotifyEnable = flags & PIPE_CONTROL_NOTIFY_ENABLE;
5152 pc.IndirectStatePointersDisable =
5153 flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE;
5154 pc.TextureCacheInvalidationEnable =
5155 flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
5156 pc.Address = rw_bo(bo, offset);
5157 pc.ImmediateData = imm;
5158 }
5159 }
5160
5161 void
5162 genX(init_state)(struct iris_context *ice)
5163 {
5164 struct pipe_context *ctx = &ice->ctx;
5165 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
5166
5167 ctx->create_blend_state = iris_create_blend_state;
5168 ctx->create_depth_stencil_alpha_state = iris_create_zsa_state;
5169 ctx->create_rasterizer_state = iris_create_rasterizer_state;
5170 ctx->create_sampler_state = iris_create_sampler_state;
5171 ctx->create_sampler_view = iris_create_sampler_view;
5172 ctx->create_surface = iris_create_surface;
5173 ctx->create_vertex_elements_state = iris_create_vertex_elements;
5174 ctx->bind_blend_state = iris_bind_blend_state;
5175 ctx->bind_depth_stencil_alpha_state = iris_bind_zsa_state;
5176 ctx->bind_sampler_states = iris_bind_sampler_states;
5177 ctx->bind_rasterizer_state = iris_bind_rasterizer_state;
5178 ctx->bind_vertex_elements_state = iris_bind_vertex_elements_state;
5179 ctx->delete_blend_state = iris_delete_state;
5180 ctx->delete_depth_stencil_alpha_state = iris_delete_state;
5181 ctx->delete_fs_state = iris_delete_state;
5182 ctx->delete_rasterizer_state = iris_delete_state;
5183 ctx->delete_sampler_state = iris_delete_state;
5184 ctx->delete_vertex_elements_state = iris_delete_state;
5185 ctx->delete_tcs_state = iris_delete_state;
5186 ctx->delete_tes_state = iris_delete_state;
5187 ctx->delete_gs_state = iris_delete_state;
5188 ctx->delete_vs_state = iris_delete_state;
5189 ctx->set_blend_color = iris_set_blend_color;
5190 ctx->set_clip_state = iris_set_clip_state;
5191 ctx->set_constant_buffer = iris_set_constant_buffer;
5192 ctx->set_shader_buffers = iris_set_shader_buffers;
5193 ctx->set_shader_images = iris_set_shader_images;
5194 ctx->set_sampler_views = iris_set_sampler_views;
5195 ctx->set_tess_state = iris_set_tess_state;
5196 ctx->set_framebuffer_state = iris_set_framebuffer_state;
5197 ctx->set_polygon_stipple = iris_set_polygon_stipple;
5198 ctx->set_sample_mask = iris_set_sample_mask;
5199 ctx->set_scissor_states = iris_set_scissor_states;
5200 ctx->set_stencil_ref = iris_set_stencil_ref;
5201 ctx->set_vertex_buffers = iris_set_vertex_buffers;
5202 ctx->set_viewport_states = iris_set_viewport_states;
5203 ctx->sampler_view_destroy = iris_sampler_view_destroy;
5204 ctx->surface_destroy = iris_surface_destroy;
5205 ctx->draw_vbo = iris_draw_vbo;
5206 ctx->launch_grid = iris_launch_grid;
5207 ctx->create_stream_output_target = iris_create_stream_output_target;
5208 ctx->stream_output_target_destroy = iris_stream_output_target_destroy;
5209 ctx->set_stream_output_targets = iris_set_stream_output_targets;
5210
5211 ice->vtbl.destroy_state = iris_destroy_state;
5212 ice->vtbl.init_render_context = iris_init_render_context;
5213 ice->vtbl.init_compute_context = iris_init_compute_context;
5214 ice->vtbl.upload_render_state = iris_upload_render_state;
5215 ice->vtbl.update_surface_base_address = iris_update_surface_base_address;
5216 ice->vtbl.upload_compute_state = iris_upload_compute_state;
5217 ice->vtbl.emit_raw_pipe_control = iris_emit_raw_pipe_control;
5218 ice->vtbl.load_register_imm32 = iris_load_register_imm32;
5219 ice->vtbl.load_register_imm64 = iris_load_register_imm64;
5220 ice->vtbl.load_register_mem32 = iris_load_register_mem32;
5221 ice->vtbl.load_register_mem64 = iris_load_register_mem64;
5222 ice->vtbl.store_register_mem32 = iris_store_register_mem32;
5223 ice->vtbl.store_register_mem64 = iris_store_register_mem64;
5224 ice->vtbl.store_data_imm32 = iris_store_data_imm32;
5225 ice->vtbl.store_data_imm64 = iris_store_data_imm64;
5226 ice->vtbl.copy_mem_mem = iris_copy_mem_mem;
5227 ice->vtbl.derived_program_state_size = iris_derived_program_state_size;
5228 ice->vtbl.store_derived_program_state = iris_store_derived_program_state;
5229 ice->vtbl.create_so_decl_list = iris_create_so_decl_list;
5230 ice->vtbl.populate_vs_key = iris_populate_vs_key;
5231 ice->vtbl.populate_tcs_key = iris_populate_tcs_key;
5232 ice->vtbl.populate_tes_key = iris_populate_tes_key;
5233 ice->vtbl.populate_gs_key = iris_populate_gs_key;
5234 ice->vtbl.populate_fs_key = iris_populate_fs_key;
5235 ice->vtbl.populate_cs_key = iris_populate_cs_key;
5236
5237 ice->state.dirty = ~0ull;
5238
5239 ice->state.statistics_counters_enabled = true;
5240
5241 ice->state.sample_mask = 0xffff;
5242 ice->state.num_viewports = 1;
5243 ice->state.genx = calloc(1, sizeof(struct iris_genx_state));
5244
5245 /* Make a 1x1x1 null surface for unbound textures */
5246 void *null_surf_map =
5247 upload_state(ice->state.surface_uploader, &ice->state.unbound_tex,
5248 4 * GENX(RENDER_SURFACE_STATE_length), 64);
5249 isl_null_fill_state(&screen->isl_dev, null_surf_map, isl_extent3d(1, 1, 1));
5250 ice->state.unbound_tex.offset +=
5251 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.unbound_tex.res));
5252
5253 /* Default all scissor rectangles to be empty regions. */
5254 for (int i = 0; i < IRIS_MAX_VIEWPORTS; i++) {
5255 ice->state.scissors[i] = (struct pipe_scissor_state) {
5256 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
5257 };
5258 }
5259 }