iris/WIP: add broadwell support
[mesa.git] / src / gallium / drivers / iris / iris_state.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included
12 * in all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
21 */
22
23 /**
24 * @file iris_state.c
25 *
26 * ============================= GENXML CODE =============================
27 * [This file is compiled once per generation.]
28 * =======================================================================
29 *
30 * This is the main state upload code.
31 *
32 * Gallium uses Constant State Objects, or CSOs, for most state. Large,
33 * complex, or highly reusable state can be created once, and bound and
34 * rebound multiple times. This is modeled with the pipe->create_*_state()
35 * and pipe->bind_*_state() hooks. Highly dynamic or inexpensive state is
36 * streamed out on the fly, via pipe->set_*_state() hooks.
37 *
38 * OpenGL involves frequently mutating context state, which is mirrored in
39 * core Mesa by highly mutable data structures. However, most applications
40 * typically draw the same things over and over - from frame to frame, most
41 * of the same objects are still visible and need to be redrawn. So, rather
42 * than inventing new state all the time, applications usually mutate to swap
43 * between known states that we've seen before.
44 *
45 * Gallium isolates us from this mutation by tracking API state, and
46 * distilling it into a set of Constant State Objects, or CSOs. Large,
47 * complex, or typically reusable state can be created once, then reused
48 * multiple times. Drivers can create and store their own associated data.
49 * This create/bind model corresponds to the pipe->create_*_state() and
50 * pipe->bind_*_state() driver hooks.
51 *
52 * Some state is cheap to create, or expected to be highly dynamic. Rather
53 * than creating and caching piles of CSOs for these, Gallium simply streams
54 * them out, via the pipe->set_*_state() driver hooks.
55 *
56 * To reduce draw time overhead, we try to compute as much state at create
57 * time as possible. Wherever possible, we translate the Gallium pipe state
58 * to 3DSTATE commands, and store those commands in the CSO. At draw time,
59 * we can simply memcpy them into a batch buffer.
60 *
61 * No hardware matches the abstraction perfectly, so some commands require
62 * information from multiple CSOs. In this case, we can store two copies
63 * of the packet (one in each CSO), and simply | together their DWords at
64 * draw time. Sometimes the second set is trivial (one or two fields), so
65 * we simply pack it at draw time.
66 *
67 * There are two main components in the file below. First, the CSO hooks
68 * create/bind/track state. The second are the draw-time upload functions,
69 * iris_upload_render_state() and iris_upload_compute_state(), which read
70 * the context state and emit the commands into the actual batch.
71 */
72
73 #include <stdio.h>
74 #include <errno.h>
75
76 #if HAVE_VALGRIND
77 #include <valgrind.h>
78 #include <memcheck.h>
79 #define VG(x) x
80 #ifndef NDEBUG
81 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
82 #endif
83 #else
84 #define VG(x)
85 #endif
86
87 #include "pipe/p_defines.h"
88 #include "pipe/p_state.h"
89 #include "pipe/p_context.h"
90 #include "pipe/p_screen.h"
91 #include "util/u_inlines.h"
92 #include "util/u_format.h"
93 #include "util/u_framebuffer.h"
94 #include "util/u_transfer.h"
95 #include "util/u_upload_mgr.h"
96 #include "util/u_viewport.h"
97 #include "i915_drm.h"
98 #include "nir.h"
99 #include "intel/compiler/brw_compiler.h"
100 #include "intel/common/gen_l3_config.h"
101 #include "intel/common/gen_sample_positions.h"
102 #include "iris_batch.h"
103 #include "iris_context.h"
104 #include "iris_defines.h"
105 #include "iris_pipe.h"
106 #include "iris_resource.h"
107
108 #define __gen_address_type struct iris_address
109 #define __gen_user_data struct iris_batch
110
111 #define ARRAY_BYTES(x) (sizeof(uint32_t) * ARRAY_SIZE(x))
112
113 static uint64_t
114 __gen_combine_address(struct iris_batch *batch, void *location,
115 struct iris_address addr, uint32_t delta)
116 {
117 uint64_t result = addr.offset + delta;
118
119 if (addr.bo) {
120 iris_use_pinned_bo(batch, addr.bo, addr.write);
121 /* Assume this is a general address, not relative to a base. */
122 result += addr.bo->gtt_offset;
123 }
124
125 return result;
126 }
127
128 #define __genxml_cmd_length(cmd) cmd ## _length
129 #define __genxml_cmd_length_bias(cmd) cmd ## _length_bias
130 #define __genxml_cmd_header(cmd) cmd ## _header
131 #define __genxml_cmd_pack(cmd) cmd ## _pack
132
133 #define _iris_pack_command(batch, cmd, dst, name) \
134 for (struct cmd name = { __genxml_cmd_header(cmd) }, \
135 *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
136 ({ __genxml_cmd_pack(cmd)(batch, (void *)_dst, &name); \
137 _dst = NULL; \
138 }))
139
140 #define iris_pack_command(cmd, dst, name) \
141 _iris_pack_command(NULL, cmd, dst, name)
142
143 #define iris_pack_state(cmd, dst, name) \
144 for (struct cmd name = {}, \
145 *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
146 __genxml_cmd_pack(cmd)(NULL, (void *)_dst, &name), \
147 _dst = NULL)
148
149 #define iris_emit_cmd(batch, cmd, name) \
150 _iris_pack_command(batch, cmd, iris_get_command_space(batch, 4 * __genxml_cmd_length(cmd)), name)
151
152 #define iris_emit_merge(batch, dwords0, dwords1, num_dwords) \
153 do { \
154 uint32_t *dw = iris_get_command_space(batch, 4 * num_dwords); \
155 for (uint32_t i = 0; i < num_dwords; i++) \
156 dw[i] = (dwords0)[i] | (dwords1)[i]; \
157 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, num_dwords)); \
158 } while (0)
159
160 #include "genxml/genX_pack.h"
161 #include "genxml/gen_macros.h"
162 #include "genxml/genX_bits.h"
163
164 #if GEN_GEN == 8
165 #define MOCS_PTE 0x18
166 #define MOCS_WB 0x78
167 #else
168 #define MOCS_PTE (1 << 1)
169 #define MOCS_WB (2 << 1)
170 #endif
171
172 static uint32_t
173 mocs(struct iris_bo *bo)
174 {
175 return bo && bo->external ? MOCS_PTE : MOCS_WB;
176 }
177
178 /**
179 * Statically assert that PIPE_* enums match the hardware packets.
180 * (As long as they match, we don't need to translate them.)
181 */
182 UNUSED static void pipe_asserts()
183 {
184 #define PIPE_ASSERT(x) STATIC_ASSERT((int)x)
185
186 /* pipe_logicop happens to match the hardware. */
187 PIPE_ASSERT(PIPE_LOGICOP_CLEAR == LOGICOP_CLEAR);
188 PIPE_ASSERT(PIPE_LOGICOP_NOR == LOGICOP_NOR);
189 PIPE_ASSERT(PIPE_LOGICOP_AND_INVERTED == LOGICOP_AND_INVERTED);
190 PIPE_ASSERT(PIPE_LOGICOP_COPY_INVERTED == LOGICOP_COPY_INVERTED);
191 PIPE_ASSERT(PIPE_LOGICOP_AND_REVERSE == LOGICOP_AND_REVERSE);
192 PIPE_ASSERT(PIPE_LOGICOP_INVERT == LOGICOP_INVERT);
193 PIPE_ASSERT(PIPE_LOGICOP_XOR == LOGICOP_XOR);
194 PIPE_ASSERT(PIPE_LOGICOP_NAND == LOGICOP_NAND);
195 PIPE_ASSERT(PIPE_LOGICOP_AND == LOGICOP_AND);
196 PIPE_ASSERT(PIPE_LOGICOP_EQUIV == LOGICOP_EQUIV);
197 PIPE_ASSERT(PIPE_LOGICOP_NOOP == LOGICOP_NOOP);
198 PIPE_ASSERT(PIPE_LOGICOP_OR_INVERTED == LOGICOP_OR_INVERTED);
199 PIPE_ASSERT(PIPE_LOGICOP_COPY == LOGICOP_COPY);
200 PIPE_ASSERT(PIPE_LOGICOP_OR_REVERSE == LOGICOP_OR_REVERSE);
201 PIPE_ASSERT(PIPE_LOGICOP_OR == LOGICOP_OR);
202 PIPE_ASSERT(PIPE_LOGICOP_SET == LOGICOP_SET);
203
204 /* pipe_blend_func happens to match the hardware. */
205 PIPE_ASSERT(PIPE_BLENDFACTOR_ONE == BLENDFACTOR_ONE);
206 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_COLOR == BLENDFACTOR_SRC_COLOR);
207 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA == BLENDFACTOR_SRC_ALPHA);
208 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_ALPHA == BLENDFACTOR_DST_ALPHA);
209 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_COLOR == BLENDFACTOR_DST_COLOR);
210 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE == BLENDFACTOR_SRC_ALPHA_SATURATE);
211 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_COLOR == BLENDFACTOR_CONST_COLOR);
212 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_ALPHA == BLENDFACTOR_CONST_ALPHA);
213 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_COLOR == BLENDFACTOR_SRC1_COLOR);
214 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_ALPHA == BLENDFACTOR_SRC1_ALPHA);
215 PIPE_ASSERT(PIPE_BLENDFACTOR_ZERO == BLENDFACTOR_ZERO);
216 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_COLOR == BLENDFACTOR_INV_SRC_COLOR);
217 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_ALPHA == BLENDFACTOR_INV_SRC_ALPHA);
218 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_ALPHA == BLENDFACTOR_INV_DST_ALPHA);
219 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_COLOR == BLENDFACTOR_INV_DST_COLOR);
220 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_COLOR == BLENDFACTOR_INV_CONST_COLOR);
221 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_ALPHA == BLENDFACTOR_INV_CONST_ALPHA);
222 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_COLOR == BLENDFACTOR_INV_SRC1_COLOR);
223 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_ALPHA == BLENDFACTOR_INV_SRC1_ALPHA);
224
225 /* pipe_blend_func happens to match the hardware. */
226 PIPE_ASSERT(PIPE_BLEND_ADD == BLENDFUNCTION_ADD);
227 PIPE_ASSERT(PIPE_BLEND_SUBTRACT == BLENDFUNCTION_SUBTRACT);
228 PIPE_ASSERT(PIPE_BLEND_REVERSE_SUBTRACT == BLENDFUNCTION_REVERSE_SUBTRACT);
229 PIPE_ASSERT(PIPE_BLEND_MIN == BLENDFUNCTION_MIN);
230 PIPE_ASSERT(PIPE_BLEND_MAX == BLENDFUNCTION_MAX);
231
232 /* pipe_stencil_op happens to match the hardware. */
233 PIPE_ASSERT(PIPE_STENCIL_OP_KEEP == STENCILOP_KEEP);
234 PIPE_ASSERT(PIPE_STENCIL_OP_ZERO == STENCILOP_ZERO);
235 PIPE_ASSERT(PIPE_STENCIL_OP_REPLACE == STENCILOP_REPLACE);
236 PIPE_ASSERT(PIPE_STENCIL_OP_INCR == STENCILOP_INCRSAT);
237 PIPE_ASSERT(PIPE_STENCIL_OP_DECR == STENCILOP_DECRSAT);
238 PIPE_ASSERT(PIPE_STENCIL_OP_INCR_WRAP == STENCILOP_INCR);
239 PIPE_ASSERT(PIPE_STENCIL_OP_DECR_WRAP == STENCILOP_DECR);
240 PIPE_ASSERT(PIPE_STENCIL_OP_INVERT == STENCILOP_INVERT);
241
242 /* pipe_sprite_coord_mode happens to match 3DSTATE_SBE */
243 PIPE_ASSERT(PIPE_SPRITE_COORD_UPPER_LEFT == UPPERLEFT);
244 PIPE_ASSERT(PIPE_SPRITE_COORD_LOWER_LEFT == LOWERLEFT);
245 #undef PIPE_ASSERT
246 }
247
248 static unsigned
249 translate_prim_type(enum pipe_prim_type prim, uint8_t verts_per_patch)
250 {
251 static const unsigned map[] = {
252 [PIPE_PRIM_POINTS] = _3DPRIM_POINTLIST,
253 [PIPE_PRIM_LINES] = _3DPRIM_LINELIST,
254 [PIPE_PRIM_LINE_LOOP] = _3DPRIM_LINELOOP,
255 [PIPE_PRIM_LINE_STRIP] = _3DPRIM_LINESTRIP,
256 [PIPE_PRIM_TRIANGLES] = _3DPRIM_TRILIST,
257 [PIPE_PRIM_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
258 [PIPE_PRIM_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
259 [PIPE_PRIM_QUADS] = _3DPRIM_QUADLIST,
260 [PIPE_PRIM_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
261 [PIPE_PRIM_POLYGON] = _3DPRIM_POLYGON,
262 [PIPE_PRIM_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
263 [PIPE_PRIM_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
264 [PIPE_PRIM_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
265 [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
266 [PIPE_PRIM_PATCHES] = _3DPRIM_PATCHLIST_1 - 1,
267 };
268
269 return map[prim] + (prim == PIPE_PRIM_PATCHES ? verts_per_patch : 0);
270 }
271
272 static unsigned
273 translate_compare_func(enum pipe_compare_func pipe_func)
274 {
275 static const unsigned map[] = {
276 [PIPE_FUNC_NEVER] = COMPAREFUNCTION_NEVER,
277 [PIPE_FUNC_LESS] = COMPAREFUNCTION_LESS,
278 [PIPE_FUNC_EQUAL] = COMPAREFUNCTION_EQUAL,
279 [PIPE_FUNC_LEQUAL] = COMPAREFUNCTION_LEQUAL,
280 [PIPE_FUNC_GREATER] = COMPAREFUNCTION_GREATER,
281 [PIPE_FUNC_NOTEQUAL] = COMPAREFUNCTION_NOTEQUAL,
282 [PIPE_FUNC_GEQUAL] = COMPAREFUNCTION_GEQUAL,
283 [PIPE_FUNC_ALWAYS] = COMPAREFUNCTION_ALWAYS,
284 };
285 return map[pipe_func];
286 }
287
288 static unsigned
289 translate_shadow_func(enum pipe_compare_func pipe_func)
290 {
291 /* Gallium specifies the result of shadow comparisons as:
292 *
293 * 1 if ref <op> texel,
294 * 0 otherwise.
295 *
296 * The hardware does:
297 *
298 * 0 if texel <op> ref,
299 * 1 otherwise.
300 *
301 * So we need to flip the operator and also negate.
302 */
303 static const unsigned map[] = {
304 [PIPE_FUNC_NEVER] = PREFILTEROPALWAYS,
305 [PIPE_FUNC_LESS] = PREFILTEROPLEQUAL,
306 [PIPE_FUNC_EQUAL] = PREFILTEROPNOTEQUAL,
307 [PIPE_FUNC_LEQUAL] = PREFILTEROPLESS,
308 [PIPE_FUNC_GREATER] = PREFILTEROPGEQUAL,
309 [PIPE_FUNC_NOTEQUAL] = PREFILTEROPEQUAL,
310 [PIPE_FUNC_GEQUAL] = PREFILTEROPGREATER,
311 [PIPE_FUNC_ALWAYS] = PREFILTEROPNEVER,
312 };
313 return map[pipe_func];
314 }
315
316 static unsigned
317 translate_cull_mode(unsigned pipe_face)
318 {
319 static const unsigned map[4] = {
320 [PIPE_FACE_NONE] = CULLMODE_NONE,
321 [PIPE_FACE_FRONT] = CULLMODE_FRONT,
322 [PIPE_FACE_BACK] = CULLMODE_BACK,
323 [PIPE_FACE_FRONT_AND_BACK] = CULLMODE_BOTH,
324 };
325 return map[pipe_face];
326 }
327
328 static unsigned
329 translate_fill_mode(unsigned pipe_polymode)
330 {
331 static const unsigned map[4] = {
332 [PIPE_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
333 [PIPE_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
334 [PIPE_POLYGON_MODE_POINT] = FILL_MODE_POINT,
335 [PIPE_POLYGON_MODE_FILL_RECTANGLE] = FILL_MODE_SOLID,
336 };
337 return map[pipe_polymode];
338 }
339
340 static unsigned
341 translate_mip_filter(enum pipe_tex_mipfilter pipe_mip)
342 {
343 static const unsigned map[] = {
344 [PIPE_TEX_MIPFILTER_NEAREST] = MIPFILTER_NEAREST,
345 [PIPE_TEX_MIPFILTER_LINEAR] = MIPFILTER_LINEAR,
346 [PIPE_TEX_MIPFILTER_NONE] = MIPFILTER_NONE,
347 };
348 return map[pipe_mip];
349 }
350
351 static uint32_t
352 translate_wrap(unsigned pipe_wrap)
353 {
354 static const unsigned map[] = {
355 [PIPE_TEX_WRAP_REPEAT] = TCM_WRAP,
356 [PIPE_TEX_WRAP_CLAMP] = TCM_HALF_BORDER,
357 [PIPE_TEX_WRAP_CLAMP_TO_EDGE] = TCM_CLAMP,
358 [PIPE_TEX_WRAP_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER,
359 [PIPE_TEX_WRAP_MIRROR_REPEAT] = TCM_MIRROR,
360 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE,
361
362 /* These are unsupported. */
363 [PIPE_TEX_WRAP_MIRROR_CLAMP] = -1,
364 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER] = -1,
365 };
366 return map[pipe_wrap];
367 }
368
369 static struct iris_address
370 ro_bo(struct iris_bo *bo, uint64_t offset)
371 {
372 /* CSOs must pass NULL for bo! Otherwise it will add the BO to the
373 * validation list at CSO creation time, instead of draw time.
374 */
375 return (struct iris_address) { .bo = bo, .offset = offset };
376 }
377
378 static struct iris_address
379 rw_bo(struct iris_bo *bo, uint64_t offset)
380 {
381 /* CSOs must pass NULL for bo! Otherwise it will add the BO to the
382 * validation list at CSO creation time, instead of draw time.
383 */
384 return (struct iris_address) { .bo = bo, .offset = offset, .write = true };
385 }
386
387 /**
388 * Allocate space for some indirect state.
389 *
390 * Return a pointer to the map (to fill it out) and a state ref (for
391 * referring to the state in GPU commands).
392 */
393 static void *
394 upload_state(struct u_upload_mgr *uploader,
395 struct iris_state_ref *ref,
396 unsigned size,
397 unsigned alignment)
398 {
399 void *p = NULL;
400 u_upload_alloc(uploader, 0, size, alignment, &ref->offset, &ref->res, &p);
401 return p;
402 }
403
404 /**
405 * Stream out temporary/short-lived state.
406 *
407 * This allocates space, pins the BO, and includes the BO address in the
408 * returned offset (which works because all state lives in 32-bit memory
409 * zones).
410 */
411 static uint32_t *
412 stream_state(struct iris_batch *batch,
413 struct u_upload_mgr *uploader,
414 struct pipe_resource **out_res,
415 unsigned size,
416 unsigned alignment,
417 uint32_t *out_offset)
418 {
419 void *ptr = NULL;
420
421 u_upload_alloc(uploader, 0, size, alignment, out_offset, out_res, &ptr);
422
423 struct iris_bo *bo = iris_resource_bo(*out_res);
424 iris_use_pinned_bo(batch, bo, false);
425
426 *out_offset += iris_bo_offset_from_base_address(bo);
427
428 return ptr;
429 }
430
431 /**
432 * stream_state() + memcpy.
433 */
434 static uint32_t
435 emit_state(struct iris_batch *batch,
436 struct u_upload_mgr *uploader,
437 struct pipe_resource **out_res,
438 const void *data,
439 unsigned size,
440 unsigned alignment)
441 {
442 unsigned offset = 0;
443 uint32_t *map =
444 stream_state(batch, uploader, out_res, size, alignment, &offset);
445
446 if (map)
447 memcpy(map, data, size);
448
449 return offset;
450 }
451
452 /**
453 * Did field 'x' change between 'old_cso' and 'new_cso'?
454 *
455 * (If so, we may want to set some dirty flags.)
456 */
457 #define cso_changed(x) (!old_cso || (old_cso->x != new_cso->x))
458 #define cso_changed_memcmp(x) \
459 (!old_cso || memcmp(old_cso->x, new_cso->x, sizeof(old_cso->x)) != 0)
460
461 static void
462 flush_for_state_base_change(struct iris_batch *batch)
463 {
464 /* Flush before emitting STATE_BASE_ADDRESS.
465 *
466 * This isn't documented anywhere in the PRM. However, it seems to be
467 * necessary prior to changing the surface state base adress. We've
468 * seen issues in Vulkan where we get GPU hangs when using multi-level
469 * command buffers which clear depth, reset state base address, and then
470 * go render stuff.
471 *
472 * Normally, in GL, we would trust the kernel to do sufficient stalls
473 * and flushes prior to executing our batch. However, it doesn't seem
474 * as if the kernel's flushing is always sufficient and we don't want to
475 * rely on it.
476 *
477 * We make this an end-of-pipe sync instead of a normal flush because we
478 * do not know the current status of the GPU. On Haswell at least,
479 * having a fast-clear operation in flight at the same time as a normal
480 * rendering operation can cause hangs. Since the kernel's flushing is
481 * insufficient, we need to ensure that any rendering operations from
482 * other processes are definitely complete before we try to do our own
483 * rendering. It's a bit of a big hammer but it appears to work.
484 */
485 iris_emit_end_of_pipe_sync(batch,
486 PIPE_CONTROL_RENDER_TARGET_FLUSH |
487 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
488 PIPE_CONTROL_DATA_CACHE_FLUSH);
489 }
490
491 static void
492 _iris_emit_lri(struct iris_batch *batch, uint32_t reg, uint32_t val)
493 {
494 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
495 lri.RegisterOffset = reg;
496 lri.DataDWord = val;
497 }
498 }
499 #define iris_emit_lri(b, r, v) _iris_emit_lri(b, GENX(r##_num), v)
500
501 static void
502 _iris_emit_lrr(struct iris_batch *batch, uint32_t dst, uint32_t src)
503 {
504 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
505 lrr.SourceRegisterAddress = src;
506 lrr.DestinationRegisterAddress = dst;
507 }
508 }
509
510 static void
511 emit_pipeline_select(struct iris_batch *batch, uint32_t pipeline)
512 {
513 #if GEN_GEN >= 8 && GEN_GEN < 10
514 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
515 *
516 * Software must clear the COLOR_CALC_STATE Valid field in
517 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
518 * with Pipeline Select set to GPGPU.
519 *
520 * The internal hardware docs recommend the same workaround for Gen9
521 * hardware too.
522 */
523 if (pipeline == GPGPU)
524 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
525 #endif
526
527
528 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
529 * PIPELINE_SELECT [DevBWR+]":
530 *
531 * "Project: DEVSNB+
532 *
533 * Software must ensure all the write caches are flushed through a
534 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
535 * command to invalidate read only caches prior to programming
536 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode."
537 */
538 iris_emit_pipe_control_flush(batch,
539 PIPE_CONTROL_RENDER_TARGET_FLUSH |
540 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
541 PIPE_CONTROL_DATA_CACHE_FLUSH |
542 PIPE_CONTROL_CS_STALL);
543
544 iris_emit_pipe_control_flush(batch,
545 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
546 PIPE_CONTROL_CONST_CACHE_INVALIDATE |
547 PIPE_CONTROL_STATE_CACHE_INVALIDATE |
548 PIPE_CONTROL_INSTRUCTION_INVALIDATE);
549
550 iris_emit_cmd(batch, GENX(PIPELINE_SELECT), sel) {
551 #if GEN_GEN >= 9
552 sel.MaskBits = 3;
553 #endif
554 sel.PipelineSelection = pipeline;
555 }
556 }
557
558 UNUSED static void
559 init_glk_barrier_mode(struct iris_batch *batch, uint32_t value)
560 {
561 #if GEN_GEN == 9
562 /* Project: DevGLK
563 *
564 * "This chicken bit works around a hardware issue with barrier
565 * logic encountered when switching between GPGPU and 3D pipelines.
566 * To workaround the issue, this mode bit should be set after a
567 * pipeline is selected."
568 */
569 uint32_t reg_val;
570 iris_pack_state(GENX(SLICE_COMMON_ECO_CHICKEN1), &reg_val, reg) {
571 reg.GLKBarrierMode = value;
572 reg.GLKBarrierModeMask = 1;
573 }
574 iris_emit_lri(batch, SLICE_COMMON_ECO_CHICKEN1, reg_val);
575 #endif
576 }
577
578 static void
579 init_state_base_address(struct iris_batch *batch)
580 {
581 flush_for_state_base_change(batch);
582
583 /* We program most base addresses once at context initialization time.
584 * Each base address points at a 4GB memory zone, and never needs to
585 * change. See iris_bufmgr.h for a description of the memory zones.
586 *
587 * The one exception is Surface State Base Address, which needs to be
588 * updated occasionally. See iris_binder.c for the details there.
589 */
590 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
591 sba.GeneralStateMOCS = MOCS_WB;
592 sba.StatelessDataPortAccessMOCS = MOCS_WB;
593 sba.DynamicStateMOCS = MOCS_WB;
594 sba.IndirectObjectMOCS = MOCS_WB;
595 sba.InstructionMOCS = MOCS_WB;
596
597 sba.GeneralStateBaseAddressModifyEnable = true;
598 sba.DynamicStateBaseAddressModifyEnable = true;
599 sba.IndirectObjectBaseAddressModifyEnable = true;
600 sba.InstructionBaseAddressModifyEnable = true;
601 sba.GeneralStateBufferSizeModifyEnable = true;
602 sba.DynamicStateBufferSizeModifyEnable = true;
603 #if (GEN_GEN >= 9)
604 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
605 sba.BindlessSurfaceStateMOCS = MOCS_WB;
606 #endif
607 sba.IndirectObjectBufferSizeModifyEnable = true;
608 sba.InstructionBuffersizeModifyEnable = true;
609
610 sba.InstructionBaseAddress = ro_bo(NULL, IRIS_MEMZONE_SHADER_START);
611 sba.DynamicStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_DYNAMIC_START);
612
613 sba.GeneralStateBufferSize = 0xfffff;
614 sba.IndirectObjectBufferSize = 0xfffff;
615 sba.InstructionBufferSize = 0xfffff;
616 sba.DynamicStateBufferSize = 0xfffff;
617 }
618 }
619
620 /**
621 * Upload the initial GPU state for a render context.
622 *
623 * This sets some invariant state that needs to be programmed a particular
624 * way, but we never actually change.
625 */
626 static void
627 iris_init_render_context(struct iris_screen *screen,
628 struct iris_batch *batch,
629 struct iris_vtable *vtbl,
630 struct pipe_debug_callback *dbg)
631 {
632 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
633 uint32_t reg_val;
634
635 emit_pipeline_select(batch, _3D);
636
637 init_state_base_address(batch);
638
639 #if GEN_GEN >= 9
640 // XXX: INSTPM on Gen8
641 iris_pack_state(GENX(CS_DEBUG_MODE2), &reg_val, reg) {
642 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
643 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
644 }
645 iris_emit_lri(batch, CS_DEBUG_MODE2, reg_val);
646 #else
647 iris_pack_state(GENX(INSTPM), &reg_val, reg) {
648 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
649 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
650 }
651 iris_emit_lri(batch, INSTPM, reg_val);
652 #endif
653
654 #if GEN_GEN == 9
655 iris_pack_state(GENX(CACHE_MODE_1), &reg_val, reg) {
656 reg.FloatBlendOptimizationEnable = true;
657 reg.FloatBlendOptimizationEnableMask = true;
658 reg.PartialResolveDisableInVC = true;
659 reg.PartialResolveDisableInVCMask = true;
660 }
661 iris_emit_lri(batch, CACHE_MODE_1, reg_val);
662
663 if (devinfo->is_geminilake)
664 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_3D_HULL);
665 #endif
666
667 #if GEN_GEN == 11
668 iris_pack_state(GENX(SAMPLER_MODE), &reg_val, reg) {
669 reg.HeaderlessMessageforPreemptableContexts = 1;
670 reg.HeaderlessMessageforPreemptableContextsMask = 1;
671 }
672 iris_emit_lri(batch, SAMPLER_MODE, reg_val);
673
674 // XXX: 3D_MODE?
675 #endif
676
677 /* 3DSTATE_DRAWING_RECTANGLE is non-pipelined, so we want to avoid
678 * changing it dynamically. We set it to the maximum size here, and
679 * instead include the render target dimensions in the viewport, so
680 * viewport extents clipping takes care of pruning stray geometry.
681 */
682 iris_emit_cmd(batch, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
683 rect.ClippedDrawingRectangleXMax = UINT16_MAX;
684 rect.ClippedDrawingRectangleYMax = UINT16_MAX;
685 }
686
687 /* Set the initial MSAA sample positions. */
688 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_PATTERN), pat) {
689 GEN_SAMPLE_POS_1X(pat._1xSample);
690 GEN_SAMPLE_POS_2X(pat._2xSample);
691 GEN_SAMPLE_POS_4X(pat._4xSample);
692 GEN_SAMPLE_POS_8X(pat._8xSample);
693 #if GEN_GEN >= 9
694 GEN_SAMPLE_POS_16X(pat._16xSample);
695 #endif
696 }
697
698 /* Use the legacy AA line coverage computation. */
699 iris_emit_cmd(batch, GENX(3DSTATE_AA_LINE_PARAMETERS), foo);
700
701 /* Disable chromakeying (it's for media) */
702 iris_emit_cmd(batch, GENX(3DSTATE_WM_CHROMAKEY), foo);
703
704 /* We want regular rendering, not special HiZ operations. */
705 iris_emit_cmd(batch, GENX(3DSTATE_WM_HZ_OP), foo);
706
707 /* No polygon stippling offsets are necessary. */
708 // XXX: may need to set an offset for origin-UL framebuffers
709 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_OFFSET), foo);
710
711 /* Set a static partitioning of the push constant area. */
712 // XXX: this may be a bad idea...could starve the push ringbuffers...
713 for (int i = 0; i <= MESA_SHADER_FRAGMENT; i++) {
714 iris_emit_cmd(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
715 alloc._3DCommandSubOpcode = 18 + i;
716 alloc.ConstantBufferOffset = 6 * i;
717 alloc.ConstantBufferSize = i == MESA_SHADER_FRAGMENT ? 8 : 6;
718 }
719 }
720 }
721
722 static void
723 iris_init_compute_context(struct iris_screen *screen,
724 struct iris_batch *batch,
725 struct iris_vtable *vtbl,
726 struct pipe_debug_callback *dbg)
727 {
728 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
729
730 emit_pipeline_select(batch, GPGPU);
731
732 const bool has_slm = true;
733 const bool wants_dc_cache = true;
734
735 const struct gen_l3_weights w =
736 gen_get_default_l3_weights(devinfo, wants_dc_cache, has_slm);
737 const struct gen_l3_config *cfg = gen_get_l3_config(devinfo, w);
738
739 uint32_t reg_val;
740 iris_pack_state(GENX(L3CNTLREG), &reg_val, reg) {
741 reg.SLMEnable = has_slm;
742 #if GEN_GEN == 11
743 /* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set
744 * in L3CNTLREG register. The default setting of the bit is not the
745 * desirable behavior.
746 */
747 reg.ErrorDetectionBehaviorControl = true;
748 #endif
749 reg.URBAllocation = cfg->n[GEN_L3P_URB];
750 reg.ROAllocation = cfg->n[GEN_L3P_RO];
751 reg.DCAllocation = cfg->n[GEN_L3P_DC];
752 reg.AllAllocation = cfg->n[GEN_L3P_ALL];
753 }
754 iris_emit_lri(batch, L3CNTLREG, reg_val);
755
756 init_state_base_address(batch);
757
758 #if GEN_GEN == 9
759 if (devinfo->is_geminilake)
760 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_GPGPU);
761 #endif
762 }
763
764 struct iris_vertex_buffer_state {
765 /** The VERTEX_BUFFER_STATE hardware structure. */
766 uint32_t state[GENX(VERTEX_BUFFER_STATE_length)];
767
768 /** The resource to source vertex data from. */
769 struct pipe_resource *resource;
770 };
771
772 struct iris_depth_buffer_state {
773 /* Depth/HiZ/Stencil related hardware packets. */
774 uint32_t packets[GENX(3DSTATE_DEPTH_BUFFER_length) +
775 GENX(3DSTATE_STENCIL_BUFFER_length) +
776 GENX(3DSTATE_HIER_DEPTH_BUFFER_length) +
777 GENX(3DSTATE_CLEAR_PARAMS_length)];
778 };
779
780 /**
781 * Generation-specific context state (ice->state.genx->...).
782 *
783 * Most state can go in iris_context directly, but these encode hardware
784 * packets which vary by generation.
785 */
786 struct iris_genx_state {
787 struct iris_vertex_buffer_state vertex_buffers[33];
788
789 /** The number of bound vertex buffers. */
790 uint64_t bound_vertex_buffers;
791
792 struct iris_depth_buffer_state depth_buffer;
793
794 uint32_t so_buffers[4 * GENX(3DSTATE_SO_BUFFER_length)];
795 };
796
797 /**
798 * The pipe->set_blend_color() driver hook.
799 *
800 * This corresponds to our COLOR_CALC_STATE.
801 */
802 static void
803 iris_set_blend_color(struct pipe_context *ctx,
804 const struct pipe_blend_color *state)
805 {
806 struct iris_context *ice = (struct iris_context *) ctx;
807
808 /* Our COLOR_CALC_STATE is exactly pipe_blend_color, so just memcpy */
809 memcpy(&ice->state.blend_color, state, sizeof(struct pipe_blend_color));
810 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
811 }
812
813 /**
814 * Gallium CSO for blend state (see pipe_blend_state).
815 */
816 struct iris_blend_state {
817 /** Partial 3DSTATE_PS_BLEND */
818 uint32_t ps_blend[GENX(3DSTATE_PS_BLEND_length)];
819
820 /** Partial BLEND_STATE */
821 uint32_t blend_state[GENX(BLEND_STATE_length) +
822 BRW_MAX_DRAW_BUFFERS * GENX(BLEND_STATE_ENTRY_length)];
823
824 bool alpha_to_coverage; /* for shader key */
825
826 /** Bitfield of whether blending is enabled for RT[i] - for aux resolves */
827 uint8_t blend_enables;
828 };
829
830 static enum pipe_blendfactor
831 fix_blendfactor(enum pipe_blendfactor f, bool alpha_to_one)
832 {
833 if (alpha_to_one) {
834 if (f == PIPE_BLENDFACTOR_SRC1_ALPHA)
835 return PIPE_BLENDFACTOR_ONE;
836
837 if (f == PIPE_BLENDFACTOR_INV_SRC1_ALPHA)
838 return PIPE_BLENDFACTOR_ZERO;
839 }
840
841 return f;
842 }
843
844 /**
845 * The pipe->create_blend_state() driver hook.
846 *
847 * Translates a pipe_blend_state into iris_blend_state.
848 */
849 static void *
850 iris_create_blend_state(struct pipe_context *ctx,
851 const struct pipe_blend_state *state)
852 {
853 struct iris_blend_state *cso = malloc(sizeof(struct iris_blend_state));
854 uint32_t *blend_entry = cso->blend_state + GENX(BLEND_STATE_length);
855
856 cso->blend_enables = 0;
857 STATIC_ASSERT(BRW_MAX_DRAW_BUFFERS <= 8);
858
859 cso->alpha_to_coverage = state->alpha_to_coverage;
860
861 bool indep_alpha_blend = false;
862
863 for (int i = 0; i < BRW_MAX_DRAW_BUFFERS; i++) {
864 const struct pipe_rt_blend_state *rt =
865 &state->rt[state->independent_blend_enable ? i : 0];
866
867 enum pipe_blendfactor src_rgb =
868 fix_blendfactor(rt->rgb_src_factor, state->alpha_to_one);
869 enum pipe_blendfactor src_alpha =
870 fix_blendfactor(rt->alpha_src_factor, state->alpha_to_one);
871 enum pipe_blendfactor dst_rgb =
872 fix_blendfactor(rt->rgb_dst_factor, state->alpha_to_one);
873 enum pipe_blendfactor dst_alpha =
874 fix_blendfactor(rt->alpha_dst_factor, state->alpha_to_one);
875
876 if (rt->rgb_func != rt->alpha_func ||
877 src_rgb != src_alpha || dst_rgb != dst_alpha)
878 indep_alpha_blend = true;
879
880 if (rt->blend_enable)
881 cso->blend_enables |= 1u << i;
882
883 iris_pack_state(GENX(BLEND_STATE_ENTRY), blend_entry, be) {
884 be.LogicOpEnable = state->logicop_enable;
885 be.LogicOpFunction = state->logicop_func;
886
887 be.PreBlendSourceOnlyClampEnable = false;
888 be.ColorClampRange = COLORCLAMP_RTFORMAT;
889 be.PreBlendColorClampEnable = true;
890 be.PostBlendColorClampEnable = true;
891
892 be.ColorBufferBlendEnable = rt->blend_enable;
893
894 be.ColorBlendFunction = rt->rgb_func;
895 be.AlphaBlendFunction = rt->alpha_func;
896 be.SourceBlendFactor = src_rgb;
897 be.SourceAlphaBlendFactor = src_alpha;
898 be.DestinationBlendFactor = dst_rgb;
899 be.DestinationAlphaBlendFactor = dst_alpha;
900
901 be.WriteDisableRed = !(rt->colormask & PIPE_MASK_R);
902 be.WriteDisableGreen = !(rt->colormask & PIPE_MASK_G);
903 be.WriteDisableBlue = !(rt->colormask & PIPE_MASK_B);
904 be.WriteDisableAlpha = !(rt->colormask & PIPE_MASK_A);
905 }
906 blend_entry += GENX(BLEND_STATE_ENTRY_length);
907 }
908
909 iris_pack_command(GENX(3DSTATE_PS_BLEND), cso->ps_blend, pb) {
910 /* pb.HasWriteableRT is filled in at draw time. */
911 /* pb.AlphaTestEnable is filled in at draw time. */
912 pb.AlphaToCoverageEnable = state->alpha_to_coverage;
913 pb.IndependentAlphaBlendEnable = indep_alpha_blend;
914
915 pb.ColorBufferBlendEnable = state->rt[0].blend_enable;
916
917 pb.SourceBlendFactor =
918 fix_blendfactor(state->rt[0].rgb_src_factor, state->alpha_to_one);
919 pb.SourceAlphaBlendFactor =
920 fix_blendfactor(state->rt[0].alpha_src_factor, state->alpha_to_one);
921 pb.DestinationBlendFactor =
922 fix_blendfactor(state->rt[0].rgb_dst_factor, state->alpha_to_one);
923 pb.DestinationAlphaBlendFactor =
924 fix_blendfactor(state->rt[0].alpha_dst_factor, state->alpha_to_one);
925 }
926
927 iris_pack_state(GENX(BLEND_STATE), cso->blend_state, bs) {
928 bs.AlphaToCoverageEnable = state->alpha_to_coverage;
929 bs.IndependentAlphaBlendEnable = indep_alpha_blend;
930 bs.AlphaToOneEnable = state->alpha_to_one;
931 bs.AlphaToCoverageDitherEnable = state->alpha_to_coverage;
932 bs.ColorDitherEnable = state->dither;
933 /* bl.AlphaTestEnable and bs.AlphaTestFunction are filled in later. */
934 }
935
936
937 return cso;
938 }
939
940 /**
941 * The pipe->bind_blend_state() driver hook.
942 *
943 * Bind a blending CSO and flag related dirty bits.
944 */
945 static void
946 iris_bind_blend_state(struct pipe_context *ctx, void *state)
947 {
948 struct iris_context *ice = (struct iris_context *) ctx;
949 struct iris_blend_state *cso = state;
950
951 ice->state.cso_blend = cso;
952 ice->state.blend_enables = cso ? cso->blend_enables : 0;
953
954 ice->state.dirty |= IRIS_DIRTY_PS_BLEND;
955 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
956 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_BLEND];
957 }
958
959 /**
960 * Gallium CSO for depth, stencil, and alpha testing state.
961 */
962 struct iris_depth_stencil_alpha_state {
963 /** Partial 3DSTATE_WM_DEPTH_STENCIL. */
964 uint32_t wmds[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
965
966 /** Outbound to BLEND_STATE, 3DSTATE_PS_BLEND, COLOR_CALC_STATE. */
967 struct pipe_alpha_state alpha;
968
969 /** Outbound to resolve and cache set tracking. */
970 bool depth_writes_enabled;
971 bool stencil_writes_enabled;
972 };
973
974 /**
975 * The pipe->create_depth_stencil_alpha_state() driver hook.
976 *
977 * We encode most of 3DSTATE_WM_DEPTH_STENCIL, and just save off the alpha
978 * testing state since we need pieces of it in a variety of places.
979 */
980 static void *
981 iris_create_zsa_state(struct pipe_context *ctx,
982 const struct pipe_depth_stencil_alpha_state *state)
983 {
984 struct iris_depth_stencil_alpha_state *cso =
985 malloc(sizeof(struct iris_depth_stencil_alpha_state));
986
987 bool two_sided_stencil = state->stencil[1].enabled;
988
989 cso->alpha = state->alpha;
990 cso->depth_writes_enabled = state->depth.writemask;
991 cso->stencil_writes_enabled =
992 state->stencil[0].writemask != 0 ||
993 (two_sided_stencil && state->stencil[1].writemask != 1);
994
995 /* The state tracker needs to optimize away EQUAL writes for us. */
996 assert(!(state->depth.func == PIPE_FUNC_EQUAL && state->depth.writemask));
997
998 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), cso->wmds, wmds) {
999 wmds.StencilFailOp = state->stencil[0].fail_op;
1000 wmds.StencilPassDepthFailOp = state->stencil[0].zfail_op;
1001 wmds.StencilPassDepthPassOp = state->stencil[0].zpass_op;
1002 wmds.StencilTestFunction =
1003 translate_compare_func(state->stencil[0].func);
1004 wmds.BackfaceStencilFailOp = state->stencil[1].fail_op;
1005 wmds.BackfaceStencilPassDepthFailOp = state->stencil[1].zfail_op;
1006 wmds.BackfaceStencilPassDepthPassOp = state->stencil[1].zpass_op;
1007 wmds.BackfaceStencilTestFunction =
1008 translate_compare_func(state->stencil[1].func);
1009 wmds.DepthTestFunction = translate_compare_func(state->depth.func);
1010 wmds.DoubleSidedStencilEnable = two_sided_stencil;
1011 wmds.StencilTestEnable = state->stencil[0].enabled;
1012 wmds.StencilBufferWriteEnable =
1013 state->stencil[0].writemask != 0 ||
1014 (two_sided_stencil && state->stencil[1].writemask != 0);
1015 wmds.DepthTestEnable = state->depth.enabled;
1016 wmds.DepthBufferWriteEnable = state->depth.writemask;
1017 wmds.StencilTestMask = state->stencil[0].valuemask;
1018 wmds.StencilWriteMask = state->stencil[0].writemask;
1019 wmds.BackfaceStencilTestMask = state->stencil[1].valuemask;
1020 wmds.BackfaceStencilWriteMask = state->stencil[1].writemask;
1021 /* wmds.[Backface]StencilReferenceValue are merged later */
1022 }
1023
1024 return cso;
1025 }
1026
1027 /**
1028 * The pipe->bind_depth_stencil_alpha_state() driver hook.
1029 *
1030 * Bind a depth/stencil/alpha CSO and flag related dirty bits.
1031 */
1032 static void
1033 iris_bind_zsa_state(struct pipe_context *ctx, void *state)
1034 {
1035 struct iris_context *ice = (struct iris_context *) ctx;
1036 struct iris_depth_stencil_alpha_state *old_cso = ice->state.cso_zsa;
1037 struct iris_depth_stencil_alpha_state *new_cso = state;
1038
1039 if (new_cso) {
1040 if (cso_changed(alpha.ref_value))
1041 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
1042
1043 if (cso_changed(alpha.enabled))
1044 ice->state.dirty |= IRIS_DIRTY_PS_BLEND | IRIS_DIRTY_BLEND_STATE;
1045
1046 if (cso_changed(alpha.func))
1047 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1048
1049 ice->state.depth_writes_enabled = new_cso->depth_writes_enabled;
1050 ice->state.stencil_writes_enabled = new_cso->stencil_writes_enabled;
1051 }
1052
1053 ice->state.cso_zsa = new_cso;
1054 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1055 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
1056 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_DEPTH_STENCIL_ALPHA];
1057 }
1058
1059 /**
1060 * Gallium CSO for rasterizer state.
1061 */
1062 struct iris_rasterizer_state {
1063 uint32_t sf[GENX(3DSTATE_SF_length)];
1064 uint32_t clip[GENX(3DSTATE_CLIP_length)];
1065 uint32_t raster[GENX(3DSTATE_RASTER_length)];
1066 uint32_t wm[GENX(3DSTATE_WM_length)];
1067 uint32_t line_stipple[GENX(3DSTATE_LINE_STIPPLE_length)];
1068
1069 uint8_t num_clip_plane_consts;
1070 bool clip_halfz; /* for CC_VIEWPORT */
1071 bool depth_clip_near; /* for CC_VIEWPORT */
1072 bool depth_clip_far; /* for CC_VIEWPORT */
1073 bool flatshade; /* for shader state */
1074 bool flatshade_first; /* for stream output */
1075 bool clamp_fragment_color; /* for shader state */
1076 bool light_twoside; /* for shader state */
1077 bool rasterizer_discard; /* for 3DSTATE_STREAMOUT and 3DSTATE_CLIP */
1078 bool half_pixel_center; /* for 3DSTATE_MULTISAMPLE */
1079 bool line_stipple_enable;
1080 bool poly_stipple_enable;
1081 bool multisample;
1082 bool force_persample_interp;
1083 enum pipe_sprite_coord_mode sprite_coord_mode; /* PIPE_SPRITE_* */
1084 uint16_t sprite_coord_enable;
1085 };
1086
1087 static float
1088 get_line_width(const struct pipe_rasterizer_state *state)
1089 {
1090 float line_width = state->line_width;
1091
1092 /* From the OpenGL 4.4 spec:
1093 *
1094 * "The actual width of non-antialiased lines is determined by rounding
1095 * the supplied width to the nearest integer, then clamping it to the
1096 * implementation-dependent maximum non-antialiased line width."
1097 */
1098 if (!state->multisample && !state->line_smooth)
1099 line_width = roundf(state->line_width);
1100
1101 if (!state->multisample && state->line_smooth && line_width < 1.5f) {
1102 /* For 1 pixel line thickness or less, the general anti-aliasing
1103 * algorithm gives up, and a garbage line is generated. Setting a
1104 * Line Width of 0.0 specifies the rasterization of the "thinnest"
1105 * (one-pixel-wide), non-antialiased lines.
1106 *
1107 * Lines rendered with zero Line Width are rasterized using the
1108 * "Grid Intersection Quantization" rules as specified by the
1109 * "Zero-Width (Cosmetic) Line Rasterization" section of the docs.
1110 */
1111 line_width = 0.0f;
1112 }
1113
1114 return line_width;
1115 }
1116
1117 /**
1118 * The pipe->create_rasterizer_state() driver hook.
1119 */
1120 static void *
1121 iris_create_rasterizer_state(struct pipe_context *ctx,
1122 const struct pipe_rasterizer_state *state)
1123 {
1124 struct iris_rasterizer_state *cso =
1125 malloc(sizeof(struct iris_rasterizer_state));
1126
1127 #if 0
1128 point_quad_rasterization -> SBE?
1129
1130 not necessary?
1131 {
1132 poly_smooth
1133 bottom_edge_rule
1134
1135 offset_units_unscaled - cap not exposed
1136 }
1137 #endif
1138
1139 // XXX: it may make more sense just to store the pipe_rasterizer_state,
1140 // we're copying a lot of booleans here. But we don't need all of them...
1141
1142 cso->multisample = state->multisample;
1143 cso->force_persample_interp = state->force_persample_interp;
1144 cso->clip_halfz = state->clip_halfz;
1145 cso->depth_clip_near = state->depth_clip_near;
1146 cso->depth_clip_far = state->depth_clip_far;
1147 cso->flatshade = state->flatshade;
1148 cso->flatshade_first = state->flatshade_first;
1149 cso->clamp_fragment_color = state->clamp_fragment_color;
1150 cso->light_twoside = state->light_twoside;
1151 cso->rasterizer_discard = state->rasterizer_discard;
1152 cso->half_pixel_center = state->half_pixel_center;
1153 cso->sprite_coord_mode = state->sprite_coord_mode;
1154 cso->sprite_coord_enable = state->sprite_coord_enable;
1155 cso->line_stipple_enable = state->line_stipple_enable;
1156 cso->poly_stipple_enable = state->poly_stipple_enable;
1157
1158 if (state->clip_plane_enable != 0)
1159 cso->num_clip_plane_consts = util_logbase2(state->clip_plane_enable) + 1;
1160 else
1161 cso->num_clip_plane_consts = 0;
1162
1163 float line_width = get_line_width(state);
1164
1165 iris_pack_command(GENX(3DSTATE_SF), cso->sf, sf) {
1166 sf.StatisticsEnable = true;
1167 sf.ViewportTransformEnable = true;
1168 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
1169 sf.LineEndCapAntialiasingRegionWidth =
1170 state->line_smooth ? _10pixels : _05pixels;
1171 sf.LastPixelEnable = state->line_last_pixel;
1172 sf.LineWidth = line_width;
1173 sf.SmoothPointEnable = state->point_smooth || state->multisample;
1174 sf.PointWidthSource = state->point_size_per_vertex ? Vertex : State;
1175 sf.PointWidth = state->point_size;
1176
1177 if (state->flatshade_first) {
1178 sf.TriangleFanProvokingVertexSelect = 1;
1179 } else {
1180 sf.TriangleStripListProvokingVertexSelect = 2;
1181 sf.TriangleFanProvokingVertexSelect = 2;
1182 sf.LineStripListProvokingVertexSelect = 1;
1183 }
1184 }
1185
1186 iris_pack_command(GENX(3DSTATE_RASTER), cso->raster, rr) {
1187 rr.FrontWinding = state->front_ccw ? CounterClockwise : Clockwise;
1188 rr.CullMode = translate_cull_mode(state->cull_face);
1189 rr.FrontFaceFillMode = translate_fill_mode(state->fill_front);
1190 rr.BackFaceFillMode = translate_fill_mode(state->fill_back);
1191 rr.DXMultisampleRasterizationEnable = state->multisample;
1192 rr.GlobalDepthOffsetEnableSolid = state->offset_tri;
1193 rr.GlobalDepthOffsetEnableWireframe = state->offset_line;
1194 rr.GlobalDepthOffsetEnablePoint = state->offset_point;
1195 rr.GlobalDepthOffsetConstant = state->offset_units * 2;
1196 rr.GlobalDepthOffsetScale = state->offset_scale;
1197 rr.GlobalDepthOffsetClamp = state->offset_clamp;
1198 rr.SmoothPointEnable = state->point_smooth || state->multisample;
1199 rr.AntialiasingEnable = state->line_smooth;
1200 rr.ScissorRectangleEnable = state->scissor;
1201 #if GEN_GEN >= 9
1202 rr.ViewportZNearClipTestEnable = state->depth_clip_near;
1203 rr.ViewportZFarClipTestEnable = state->depth_clip_far;
1204 #else
1205 rr.ViewportZClipTestEnable = (state->depth_clip_near || state->depth_clip_far);
1206 #endif
1207 //rr.ConservativeRasterizationEnable = not yet supported by Gallium...
1208 }
1209
1210 iris_pack_command(GENX(3DSTATE_CLIP), cso->clip, cl) {
1211 /* cl.NonPerspectiveBarycentricEnable is filled in at draw time from
1212 * the FS program; cl.ForceZeroRTAIndexEnable is filled in from the FB.
1213 */
1214 cl.EarlyCullEnable = true;
1215 cl.UserClipDistanceClipTestEnableBitmask = state->clip_plane_enable;
1216 cl.ForceUserClipDistanceClipTestEnableBitmask = true;
1217 cl.APIMode = state->clip_halfz ? APIMODE_D3D : APIMODE_OGL;
1218 cl.GuardbandClipTestEnable = true;
1219 cl.ClipEnable = true;
1220 cl.ViewportXYClipTestEnable = state->point_tri_clip;
1221 cl.MinimumPointWidth = 0.125;
1222 cl.MaximumPointWidth = 255.875;
1223
1224 if (state->flatshade_first) {
1225 cl.TriangleFanProvokingVertexSelect = 1;
1226 } else {
1227 cl.TriangleStripListProvokingVertexSelect = 2;
1228 cl.TriangleFanProvokingVertexSelect = 2;
1229 cl.LineStripListProvokingVertexSelect = 1;
1230 }
1231 }
1232
1233 iris_pack_command(GENX(3DSTATE_WM), cso->wm, wm) {
1234 /* wm.BarycentricInterpolationMode and wm.EarlyDepthStencilControl are
1235 * filled in at draw time from the FS program.
1236 */
1237 wm.LineAntialiasingRegionWidth = _10pixels;
1238 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1239 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1240 wm.LineStippleEnable = state->line_stipple_enable;
1241 wm.PolygonStippleEnable = state->poly_stipple_enable;
1242 }
1243
1244 /* Remap from 0..255 back to 1..256 */
1245 const unsigned line_stipple_factor = state->line_stipple_factor + 1;
1246
1247 iris_pack_command(GENX(3DSTATE_LINE_STIPPLE), cso->line_stipple, line) {
1248 line.LineStipplePattern = state->line_stipple_pattern;
1249 line.LineStippleInverseRepeatCount = 1.0f / line_stipple_factor;
1250 line.LineStippleRepeatCount = line_stipple_factor;
1251 }
1252
1253 return cso;
1254 }
1255
1256 /**
1257 * The pipe->bind_rasterizer_state() driver hook.
1258 *
1259 * Bind a rasterizer CSO and flag related dirty bits.
1260 */
1261 static void
1262 iris_bind_rasterizer_state(struct pipe_context *ctx, void *state)
1263 {
1264 struct iris_context *ice = (struct iris_context *) ctx;
1265 struct iris_rasterizer_state *old_cso = ice->state.cso_rast;
1266 struct iris_rasterizer_state *new_cso = state;
1267
1268 if (new_cso) {
1269 /* Try to avoid re-emitting 3DSTATE_LINE_STIPPLE, it's non-pipelined */
1270 if (cso_changed_memcmp(line_stipple))
1271 ice->state.dirty |= IRIS_DIRTY_LINE_STIPPLE;
1272
1273 if (cso_changed(half_pixel_center))
1274 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
1275
1276 if (cso_changed(line_stipple_enable) || cso_changed(poly_stipple_enable))
1277 ice->state.dirty |= IRIS_DIRTY_WM;
1278
1279 if (cso_changed(rasterizer_discard))
1280 ice->state.dirty |= IRIS_DIRTY_STREAMOUT | IRIS_DIRTY_CLIP;
1281
1282 if (cso_changed(flatshade_first))
1283 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
1284
1285 if (cso_changed(depth_clip_near) || cso_changed(depth_clip_far) ||
1286 cso_changed(clip_halfz))
1287 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1288
1289 if (cso_changed(sprite_coord_enable) ||
1290 cso_changed(sprite_coord_mode) ||
1291 cso_changed(light_twoside))
1292 ice->state.dirty |= IRIS_DIRTY_SBE;
1293 }
1294
1295 ice->state.cso_rast = new_cso;
1296 ice->state.dirty |= IRIS_DIRTY_RASTER;
1297 ice->state.dirty |= IRIS_DIRTY_CLIP;
1298 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_RASTERIZER];
1299 }
1300
1301 /**
1302 * Return true if the given wrap mode requires the border color to exist.
1303 *
1304 * (We can skip uploading it if the sampler isn't going to use it.)
1305 */
1306 static bool
1307 wrap_mode_needs_border_color(unsigned wrap_mode)
1308 {
1309 return wrap_mode == TCM_CLAMP_BORDER || wrap_mode == TCM_HALF_BORDER;
1310 }
1311
1312 /**
1313 * Gallium CSO for sampler state.
1314 */
1315 struct iris_sampler_state {
1316 union pipe_color_union border_color;
1317 bool needs_border_color;
1318
1319 uint32_t sampler_state[GENX(SAMPLER_STATE_length)];
1320 };
1321
1322 /**
1323 * The pipe->create_sampler_state() driver hook.
1324 *
1325 * We fill out SAMPLER_STATE (except for the border color pointer), and
1326 * store that on the CPU. It doesn't make sense to upload it to a GPU
1327 * buffer object yet, because 3DSTATE_SAMPLER_STATE_POINTERS requires
1328 * all bound sampler states to be in contiguous memor.
1329 */
1330 static void *
1331 iris_create_sampler_state(struct pipe_context *ctx,
1332 const struct pipe_sampler_state *state)
1333 {
1334 struct iris_sampler_state *cso = CALLOC_STRUCT(iris_sampler_state);
1335
1336 if (!cso)
1337 return NULL;
1338
1339 STATIC_ASSERT(PIPE_TEX_FILTER_NEAREST == MAPFILTER_NEAREST);
1340 STATIC_ASSERT(PIPE_TEX_FILTER_LINEAR == MAPFILTER_LINEAR);
1341
1342 unsigned wrap_s = translate_wrap(state->wrap_s);
1343 unsigned wrap_t = translate_wrap(state->wrap_t);
1344 unsigned wrap_r = translate_wrap(state->wrap_r);
1345
1346 memcpy(&cso->border_color, &state->border_color, sizeof(cso->border_color));
1347
1348 cso->needs_border_color = wrap_mode_needs_border_color(wrap_s) ||
1349 wrap_mode_needs_border_color(wrap_t) ||
1350 wrap_mode_needs_border_color(wrap_r);
1351
1352 float min_lod = state->min_lod;
1353 unsigned mag_img_filter = state->mag_img_filter;
1354
1355 // XXX: explain this code ported from ilo...I don't get it at all...
1356 if (state->min_mip_filter == PIPE_TEX_MIPFILTER_NONE &&
1357 state->min_lod > 0.0f) {
1358 min_lod = 0.0f;
1359 mag_img_filter = state->min_img_filter;
1360 }
1361
1362 iris_pack_state(GENX(SAMPLER_STATE), cso->sampler_state, samp) {
1363 samp.TCXAddressControlMode = wrap_s;
1364 samp.TCYAddressControlMode = wrap_t;
1365 samp.TCZAddressControlMode = wrap_r;
1366 samp.CubeSurfaceControlMode = state->seamless_cube_map;
1367 samp.NonnormalizedCoordinateEnable = !state->normalized_coords;
1368 samp.MinModeFilter = state->min_img_filter;
1369 samp.MagModeFilter = mag_img_filter;
1370 samp.MipModeFilter = translate_mip_filter(state->min_mip_filter);
1371 samp.MaximumAnisotropy = RATIO21;
1372
1373 if (state->max_anisotropy >= 2) {
1374 if (state->min_img_filter == PIPE_TEX_FILTER_LINEAR) {
1375 samp.MinModeFilter = MAPFILTER_ANISOTROPIC;
1376 samp.AnisotropicAlgorithm = EWAApproximation;
1377 }
1378
1379 if (state->mag_img_filter == PIPE_TEX_FILTER_LINEAR)
1380 samp.MagModeFilter = MAPFILTER_ANISOTROPIC;
1381
1382 samp.MaximumAnisotropy =
1383 MIN2((state->max_anisotropy - 2) / 2, RATIO161);
1384 }
1385
1386 /* Set address rounding bits if not using nearest filtering. */
1387 if (state->min_img_filter != PIPE_TEX_FILTER_NEAREST) {
1388 samp.UAddressMinFilterRoundingEnable = true;
1389 samp.VAddressMinFilterRoundingEnable = true;
1390 samp.RAddressMinFilterRoundingEnable = true;
1391 }
1392
1393 if (state->mag_img_filter != PIPE_TEX_FILTER_NEAREST) {
1394 samp.UAddressMagFilterRoundingEnable = true;
1395 samp.VAddressMagFilterRoundingEnable = true;
1396 samp.RAddressMagFilterRoundingEnable = true;
1397 }
1398
1399 if (state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE)
1400 samp.ShadowFunction = translate_shadow_func(state->compare_func);
1401
1402 const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
1403
1404 samp.LODPreClampMode = CLAMP_MODE_OGL;
1405 samp.MinLOD = CLAMP(min_lod, 0, hw_max_lod);
1406 samp.MaxLOD = CLAMP(state->max_lod, 0, hw_max_lod);
1407 samp.TextureLODBias = CLAMP(state->lod_bias, -16, 15);
1408
1409 /* .BorderColorPointer is filled in by iris_bind_sampler_states. */
1410 }
1411
1412 return cso;
1413 }
1414
1415 /**
1416 * The pipe->bind_sampler_states() driver hook.
1417 *
1418 * Now that we know all the sampler states, we upload them all into a
1419 * contiguous area of GPU memory, for 3DSTATE_SAMPLER_STATE_POINTERS_*.
1420 * We also fill out the border color state pointers at this point.
1421 *
1422 * We could defer this work to draw time, but we assume that binding
1423 * will be less frequent than drawing.
1424 */
1425 // XXX: this may be a bad idea, need to make sure that st/mesa calls us
1426 // XXX: with the complete set of shaders. If it makes multiple calls to
1427 // XXX: things one at a time, we could waste a lot of time assembling things.
1428 // XXX: it doesn't even BUY us anything to do it here, because we only flag
1429 // XXX: IRIS_DIRTY_SAMPLER_STATE when this is called...
1430 static void
1431 iris_bind_sampler_states(struct pipe_context *ctx,
1432 enum pipe_shader_type p_stage,
1433 unsigned start, unsigned count,
1434 void **states)
1435 {
1436 struct iris_context *ice = (struct iris_context *) ctx;
1437 gl_shader_stage stage = stage_from_pipe(p_stage);
1438 struct iris_shader_state *shs = &ice->state.shaders[stage];
1439
1440 assert(start + count <= IRIS_MAX_TEXTURE_SAMPLERS);
1441
1442 for (int i = 0; i < count; i++) {
1443 shs->samplers[start + i] = states[i];
1444 }
1445
1446 /* Assemble the SAMPLER_STATEs into a contiguous table that lives
1447 * in the dynamic state memory zone, so we can point to it via the
1448 * 3DSTATE_SAMPLER_STATE_POINTERS_* commands.
1449 */
1450 uint32_t *map =
1451 upload_state(ice->state.dynamic_uploader, &shs->sampler_table,
1452 count * 4 * GENX(SAMPLER_STATE_length), 32);
1453 if (unlikely(!map))
1454 return;
1455
1456 struct pipe_resource *res = shs->sampler_table.res;
1457 shs->sampler_table.offset +=
1458 iris_bo_offset_from_base_address(iris_resource_bo(res));
1459
1460 /* Make sure all land in the same BO */
1461 iris_border_color_pool_reserve(ice, IRIS_MAX_TEXTURE_SAMPLERS);
1462
1463 for (int i = 0; i < count; i++) {
1464 struct iris_sampler_state *state = shs->samplers[i];
1465
1466 if (!state) {
1467 memset(map, 0, 4 * GENX(SAMPLER_STATE_length));
1468 } else if (!state->needs_border_color) {
1469 memcpy(map, state->sampler_state, 4 * GENX(SAMPLER_STATE_length));
1470 } else {
1471 ice->state.need_border_colors = true;
1472
1473 /* Stream out the border color and merge the pointer. */
1474 uint32_t offset =
1475 iris_upload_border_color(ice, &state->border_color);
1476
1477 uint32_t dynamic[GENX(SAMPLER_STATE_length)];
1478 iris_pack_state(GENX(SAMPLER_STATE), dynamic, dyns) {
1479 dyns.BorderColorPointer = offset;
1480 }
1481
1482 for (uint32_t j = 0; j < GENX(SAMPLER_STATE_length); j++)
1483 map[j] = state->sampler_state[j] | dynamic[j];
1484 }
1485
1486 map += GENX(SAMPLER_STATE_length);
1487 }
1488
1489 ice->state.dirty |= IRIS_DIRTY_SAMPLER_STATES_VS << stage;
1490 }
1491
1492 static enum isl_channel_select
1493 fmt_swizzle(const struct iris_format_info *fmt, enum pipe_swizzle swz)
1494 {
1495 switch (swz) {
1496 case PIPE_SWIZZLE_X: return fmt->swizzle.r;
1497 case PIPE_SWIZZLE_Y: return fmt->swizzle.g;
1498 case PIPE_SWIZZLE_Z: return fmt->swizzle.b;
1499 case PIPE_SWIZZLE_W: return fmt->swizzle.a;
1500 case PIPE_SWIZZLE_1: return SCS_ONE;
1501 case PIPE_SWIZZLE_0: return SCS_ZERO;
1502 default: unreachable("invalid swizzle");
1503 }
1504 }
1505
1506 static void
1507 fill_buffer_surface_state(struct isl_device *isl_dev,
1508 struct iris_bo *bo,
1509 void *map,
1510 enum isl_format format,
1511 unsigned offset,
1512 unsigned size)
1513 {
1514 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
1515 const unsigned cpp = fmtl->bpb / 8;
1516
1517 /* The ARB_texture_buffer_specification says:
1518 *
1519 * "The number of texels in the buffer texture's texel array is given by
1520 *
1521 * floor(<buffer_size> / (<components> * sizeof(<base_type>)),
1522 *
1523 * where <buffer_size> is the size of the buffer object, in basic
1524 * machine units and <components> and <base_type> are the element count
1525 * and base data type for elements, as specified in Table X.1. The
1526 * number of texels in the texel array is then clamped to the
1527 * implementation-dependent limit MAX_TEXTURE_BUFFER_SIZE_ARB."
1528 *
1529 * We need to clamp the size in bytes to MAX_TEXTURE_BUFFER_SIZE * stride,
1530 * so that when ISL divides by stride to obtain the number of texels, that
1531 * texel count is clamped to MAX_TEXTURE_BUFFER_SIZE.
1532 */
1533 unsigned final_size =
1534 MIN3(size, bo->size - offset, IRIS_MAX_TEXTURE_BUFFER_SIZE * cpp);
1535
1536 isl_buffer_fill_state(isl_dev, map,
1537 .address = bo->gtt_offset + offset,
1538 .size_B = final_size,
1539 .format = format,
1540 .stride_B = cpp,
1541 .mocs = mocs(bo));
1542 }
1543
1544 /**
1545 * Allocate a SURFACE_STATE structure.
1546 */
1547 static void *
1548 alloc_surface_states(struct u_upload_mgr *mgr,
1549 struct iris_state_ref *ref)
1550 {
1551 const unsigned surf_size = 4 * GENX(RENDER_SURFACE_STATE_length);
1552
1553 void *map = upload_state(mgr, ref, surf_size, 64);
1554
1555 ref->offset += iris_bo_offset_from_base_address(iris_resource_bo(ref->res));
1556
1557 return map;
1558 }
1559
1560 static void
1561 fill_surface_state(struct isl_device *isl_dev,
1562 void *map,
1563 struct iris_resource *res,
1564 struct isl_view *view)
1565 {
1566 struct isl_surf_fill_state_info f = {
1567 .surf = &res->surf,
1568 .view = view,
1569 .mocs = mocs(res->bo),
1570 .address = res->bo->gtt_offset,
1571 };
1572
1573 isl_surf_fill_state_s(isl_dev, map, &f);
1574 }
1575
1576 /**
1577 * The pipe->create_sampler_view() driver hook.
1578 */
1579 static struct pipe_sampler_view *
1580 iris_create_sampler_view(struct pipe_context *ctx,
1581 struct pipe_resource *tex,
1582 const struct pipe_sampler_view *tmpl)
1583 {
1584 struct iris_context *ice = (struct iris_context *) ctx;
1585 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1586 const struct gen_device_info *devinfo = &screen->devinfo;
1587 struct iris_sampler_view *isv = calloc(1, sizeof(struct iris_sampler_view));
1588
1589 if (!isv)
1590 return NULL;
1591
1592 /* initialize base object */
1593 isv->base = *tmpl;
1594 isv->base.context = ctx;
1595 isv->base.texture = NULL;
1596 pipe_reference_init(&isv->base.reference, 1);
1597 pipe_resource_reference(&isv->base.texture, tex);
1598
1599 void *map = alloc_surface_states(ice->state.surface_uploader,
1600 &isv->surface_state);
1601 if (!unlikely(map))
1602 return NULL;
1603
1604 if (util_format_is_depth_or_stencil(tmpl->format)) {
1605 struct iris_resource *zres, *sres;
1606 const struct util_format_description *desc =
1607 util_format_description(tmpl->format);
1608
1609 iris_get_depth_stencil_resources(tex, &zres, &sres);
1610
1611 tex = util_format_has_depth(desc) ? &zres->base : &sres->base;
1612 }
1613
1614 isv->res = (struct iris_resource *) tex;
1615
1616 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_TEXTURE_BIT;
1617
1618 if (isv->base.target == PIPE_TEXTURE_CUBE ||
1619 isv->base.target == PIPE_TEXTURE_CUBE_ARRAY)
1620 usage |= ISL_SURF_USAGE_CUBE_BIT;
1621
1622 const struct iris_format_info fmt =
1623 iris_format_for_usage(devinfo, tmpl->format, usage);
1624
1625 isv->view = (struct isl_view) {
1626 .format = fmt.fmt,
1627 .swizzle = (struct isl_swizzle) {
1628 .r = fmt_swizzle(&fmt, tmpl->swizzle_r),
1629 .g = fmt_swizzle(&fmt, tmpl->swizzle_g),
1630 .b = fmt_swizzle(&fmt, tmpl->swizzle_b),
1631 .a = fmt_swizzle(&fmt, tmpl->swizzle_a),
1632 },
1633 .usage = usage,
1634 };
1635
1636 /* Fill out SURFACE_STATE for this view. */
1637 if (tmpl->target != PIPE_BUFFER) {
1638 isv->view.base_level = tmpl->u.tex.first_level;
1639 isv->view.levels = tmpl->u.tex.last_level - tmpl->u.tex.first_level + 1;
1640 // XXX: do I need to port f9fd0cf4790cb2a530e75d1a2206dbb9d8af7cb2?
1641 isv->view.base_array_layer = tmpl->u.tex.first_layer;
1642 isv->view.array_len =
1643 tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
1644
1645 fill_surface_state(&screen->isl_dev, map, isv->res, &isv->view);
1646 } else {
1647 fill_buffer_surface_state(&screen->isl_dev, isv->res->bo, map,
1648 isv->view.format, tmpl->u.buf.offset,
1649 tmpl->u.buf.size);
1650 }
1651
1652 return &isv->base;
1653 }
1654
1655 static void
1656 iris_sampler_view_destroy(struct pipe_context *ctx,
1657 struct pipe_sampler_view *state)
1658 {
1659 struct iris_sampler_view *isv = (void *) state;
1660 pipe_resource_reference(&state->texture, NULL);
1661 pipe_resource_reference(&isv->surface_state.res, NULL);
1662 free(isv);
1663 }
1664
1665 /**
1666 * The pipe->create_surface() driver hook.
1667 *
1668 * In Gallium nomenclature, "surfaces" are a view of a resource that
1669 * can be bound as a render target or depth/stencil buffer.
1670 */
1671 static struct pipe_surface *
1672 iris_create_surface(struct pipe_context *ctx,
1673 struct pipe_resource *tex,
1674 const struct pipe_surface *tmpl)
1675 {
1676 struct iris_context *ice = (struct iris_context *) ctx;
1677 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1678 const struct gen_device_info *devinfo = &screen->devinfo;
1679 struct iris_surface *surf = calloc(1, sizeof(struct iris_surface));
1680 struct pipe_surface *psurf = &surf->base;
1681 struct iris_resource *res = (struct iris_resource *) tex;
1682
1683 if (!surf)
1684 return NULL;
1685
1686 pipe_reference_init(&psurf->reference, 1);
1687 pipe_resource_reference(&psurf->texture, tex);
1688 psurf->context = ctx;
1689 psurf->format = tmpl->format;
1690 psurf->width = tex->width0;
1691 psurf->height = tex->height0;
1692 psurf->texture = tex;
1693 psurf->u.tex.first_layer = tmpl->u.tex.first_layer;
1694 psurf->u.tex.last_layer = tmpl->u.tex.last_layer;
1695 psurf->u.tex.level = tmpl->u.tex.level;
1696
1697 isl_surf_usage_flags_t usage = 0;
1698 if (tmpl->writable)
1699 usage = ISL_SURF_USAGE_STORAGE_BIT;
1700 else if (util_format_is_depth_or_stencil(tmpl->format))
1701 usage = ISL_SURF_USAGE_DEPTH_BIT;
1702 else
1703 usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
1704
1705 const struct iris_format_info fmt =
1706 iris_format_for_usage(devinfo, psurf->format, usage);
1707
1708 if ((usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) &&
1709 !isl_format_supports_rendering(devinfo, fmt.fmt)) {
1710 /* Framebuffer validation will reject this invalid case, but it
1711 * hasn't had the opportunity yet. In the meantime, we need to
1712 * avoid hitting ISL asserts about unsupported formats below.
1713 */
1714 free(surf);
1715 return NULL;
1716 }
1717
1718 surf->view = (struct isl_view) {
1719 .format = fmt.fmt,
1720 .base_level = tmpl->u.tex.level,
1721 .levels = 1,
1722 .base_array_layer = tmpl->u.tex.first_layer,
1723 .array_len = tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1,
1724 .swizzle = ISL_SWIZZLE_IDENTITY,
1725 .usage = usage,
1726 };
1727
1728 /* Bail early for depth/stencil - we don't want SURFACE_STATE for them. */
1729 if (res->surf.usage & (ISL_SURF_USAGE_DEPTH_BIT |
1730 ISL_SURF_USAGE_STENCIL_BIT))
1731 return psurf;
1732
1733
1734 void *map = alloc_surface_states(ice->state.surface_uploader,
1735 &surf->surface_state);
1736 if (!unlikely(map))
1737 return NULL;
1738
1739 fill_surface_state(&screen->isl_dev, map, res, &surf->view);
1740
1741 return psurf;
1742 }
1743
1744 /**
1745 * The pipe->set_shader_images() driver hook.
1746 */
1747 static void
1748 iris_set_shader_images(struct pipe_context *ctx,
1749 enum pipe_shader_type p_stage,
1750 unsigned start_slot, unsigned count,
1751 const struct pipe_image_view *p_images)
1752 {
1753 struct iris_context *ice = (struct iris_context *) ctx;
1754 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1755 const struct gen_device_info *devinfo = &screen->devinfo;
1756 gl_shader_stage stage = stage_from_pipe(p_stage);
1757 struct iris_shader_state *shs = &ice->state.shaders[stage];
1758
1759 shs->bound_image_views &= ~u_bit_consecutive(start_slot, count);
1760
1761 for (unsigned i = 0; i < count; i++) {
1762 if (p_images && p_images[i].resource) {
1763 const struct pipe_image_view *img = &p_images[i];
1764 struct iris_resource *res = (void *) img->resource;
1765 pipe_resource_reference(&shs->image[start_slot + i].res, &res->base);
1766
1767 shs->bound_image_views |= 1 << (start_slot + i);
1768
1769 res->bind_history |= PIPE_BIND_SHADER_IMAGE;
1770
1771 // XXX: these are not retained forever, use a separate uploader?
1772 void *map =
1773 alloc_surface_states(ice->state.surface_uploader,
1774 &shs->image[start_slot + i].surface_state);
1775 if (!unlikely(map)) {
1776 pipe_resource_reference(&shs->image[start_slot + i].res, NULL);
1777 return;
1778 }
1779
1780 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_STORAGE_BIT;
1781 enum isl_format isl_format =
1782 iris_format_for_usage(devinfo, img->format, usage).fmt;
1783
1784 if (img->shader_access & PIPE_IMAGE_ACCESS_READ)
1785 isl_format = isl_lower_storage_image_format(devinfo, isl_format);
1786
1787 shs->image[start_slot + i].access = img->shader_access;
1788
1789 if (res->base.target != PIPE_BUFFER) {
1790 struct isl_view view = {
1791 .format = isl_format,
1792 .base_level = img->u.tex.level,
1793 .levels = 1,
1794 .base_array_layer = img->u.tex.first_layer,
1795 .array_len = img->u.tex.last_layer - img->u.tex.first_layer + 1,
1796 .swizzle = ISL_SWIZZLE_IDENTITY,
1797 .usage = usage,
1798 };
1799
1800 fill_surface_state(&screen->isl_dev, map, res, &view);
1801 } else {
1802 fill_buffer_surface_state(&screen->isl_dev, res->bo, map,
1803 isl_format, img->u.buf.offset,
1804 img->u.buf.size);
1805 }
1806 } else {
1807 pipe_resource_reference(&shs->image[start_slot + i].res, NULL);
1808 pipe_resource_reference(&shs->image[start_slot + i].surface_state.res,
1809 NULL);
1810 }
1811 }
1812
1813 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
1814 }
1815
1816
1817 /**
1818 * The pipe->set_sampler_views() driver hook.
1819 */
1820 static void
1821 iris_set_sampler_views(struct pipe_context *ctx,
1822 enum pipe_shader_type p_stage,
1823 unsigned start, unsigned count,
1824 struct pipe_sampler_view **views)
1825 {
1826 struct iris_context *ice = (struct iris_context *) ctx;
1827 gl_shader_stage stage = stage_from_pipe(p_stage);
1828 struct iris_shader_state *shs = &ice->state.shaders[stage];
1829
1830 shs->bound_sampler_views &= ~u_bit_consecutive(start, count);
1831
1832 for (unsigned i = 0; i < count; i++) {
1833 pipe_sampler_view_reference((struct pipe_sampler_view **)
1834 &shs->textures[start + i], views[i]);
1835 struct iris_sampler_view *view = (void *) views[i];
1836 if (view) {
1837 view->res->bind_history |= PIPE_BIND_SAMPLER_VIEW;
1838 shs->bound_sampler_views |= 1 << (start + i);
1839 }
1840 }
1841
1842 ice->state.dirty |= (IRIS_DIRTY_BINDINGS_VS << stage);
1843 }
1844
1845 /**
1846 * The pipe->set_tess_state() driver hook.
1847 */
1848 static void
1849 iris_set_tess_state(struct pipe_context *ctx,
1850 const float default_outer_level[4],
1851 const float default_inner_level[2])
1852 {
1853 struct iris_context *ice = (struct iris_context *) ctx;
1854
1855 memcpy(&ice->state.default_outer_level[0], &default_outer_level[0], 4 * sizeof(float));
1856 memcpy(&ice->state.default_inner_level[0], &default_inner_level[0], 2 * sizeof(float));
1857
1858 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_TCS;
1859 }
1860
1861 static void
1862 iris_surface_destroy(struct pipe_context *ctx, struct pipe_surface *p_surf)
1863 {
1864 struct iris_surface *surf = (void *) p_surf;
1865 pipe_resource_reference(&p_surf->texture, NULL);
1866 pipe_resource_reference(&surf->surface_state.res, NULL);
1867 free(surf);
1868 }
1869
1870 static void
1871 iris_set_clip_state(struct pipe_context *ctx,
1872 const struct pipe_clip_state *state)
1873 {
1874 struct iris_context *ice = (struct iris_context *) ctx;
1875 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_VERTEX];
1876
1877 memcpy(&ice->state.clip_planes, state, sizeof(*state));
1878
1879 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS;
1880 shs->cbuf0_needs_upload = true;
1881 }
1882
1883 /**
1884 * The pipe->set_polygon_stipple() driver hook.
1885 */
1886 static void
1887 iris_set_polygon_stipple(struct pipe_context *ctx,
1888 const struct pipe_poly_stipple *state)
1889 {
1890 struct iris_context *ice = (struct iris_context *) ctx;
1891 memcpy(&ice->state.poly_stipple, state, sizeof(*state));
1892 ice->state.dirty |= IRIS_DIRTY_POLYGON_STIPPLE;
1893 }
1894
1895 /**
1896 * The pipe->set_sample_mask() driver hook.
1897 */
1898 static void
1899 iris_set_sample_mask(struct pipe_context *ctx, unsigned sample_mask)
1900 {
1901 struct iris_context *ice = (struct iris_context *) ctx;
1902
1903 /* We only support 16x MSAA, so we have 16 bits of sample maks.
1904 * st/mesa may pass us 0xffffffff though, meaning "enable all samples".
1905 */
1906 ice->state.sample_mask = sample_mask & 0xffff;
1907 ice->state.dirty |= IRIS_DIRTY_SAMPLE_MASK;
1908 }
1909
1910 /**
1911 * The pipe->set_scissor_states() driver hook.
1912 *
1913 * This corresponds to our SCISSOR_RECT state structures. It's an
1914 * exact match, so we just store them, and memcpy them out later.
1915 */
1916 static void
1917 iris_set_scissor_states(struct pipe_context *ctx,
1918 unsigned start_slot,
1919 unsigned num_scissors,
1920 const struct pipe_scissor_state *rects)
1921 {
1922 struct iris_context *ice = (struct iris_context *) ctx;
1923
1924 for (unsigned i = 0; i < num_scissors; i++) {
1925 if (rects[i].minx == rects[i].maxx || rects[i].miny == rects[i].maxy) {
1926 /* If the scissor was out of bounds and got clamped to 0 width/height
1927 * at the bounds, the subtraction of 1 from maximums could produce a
1928 * negative number and thus not clip anything. Instead, just provide
1929 * a min > max scissor inside the bounds, which produces the expected
1930 * no rendering.
1931 */
1932 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
1933 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
1934 };
1935 } else {
1936 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
1937 .minx = rects[i].minx, .miny = rects[i].miny,
1938 .maxx = rects[i].maxx - 1, .maxy = rects[i].maxy - 1,
1939 };
1940 }
1941 }
1942
1943 ice->state.dirty |= IRIS_DIRTY_SCISSOR_RECT;
1944 }
1945
1946 /**
1947 * The pipe->set_stencil_ref() driver hook.
1948 *
1949 * This is added to 3DSTATE_WM_DEPTH_STENCIL dynamically at draw time.
1950 */
1951 static void
1952 iris_set_stencil_ref(struct pipe_context *ctx,
1953 const struct pipe_stencil_ref *state)
1954 {
1955 struct iris_context *ice = (struct iris_context *) ctx;
1956 memcpy(&ice->state.stencil_ref, state, sizeof(*state));
1957 if (GEN_GEN == 8)
1958 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
1959 else
1960 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
1961 }
1962
1963 static float
1964 viewport_extent(const struct pipe_viewport_state *state, int axis, float sign)
1965 {
1966 return copysignf(state->scale[axis], sign) + state->translate[axis];
1967 }
1968
1969 static void
1970 calculate_guardband_size(uint32_t fb_width, uint32_t fb_height,
1971 float m00, float m11, float m30, float m31,
1972 float *xmin, float *xmax,
1973 float *ymin, float *ymax)
1974 {
1975 /* According to the "Vertex X,Y Clamping and Quantization" section of the
1976 * Strips and Fans documentation:
1977 *
1978 * "The vertex X and Y screen-space coordinates are also /clamped/ to the
1979 * fixed-point "guardband" range supported by the rasterization hardware"
1980 *
1981 * and
1982 *
1983 * "In almost all circumstances, if an object’s vertices are actually
1984 * modified by this clamping (i.e., had X or Y coordinates outside of
1985 * the guardband extent the rendered object will not match the intended
1986 * result. Therefore software should take steps to ensure that this does
1987 * not happen - e.g., by clipping objects such that they do not exceed
1988 * these limits after the Drawing Rectangle is applied."
1989 *
1990 * I believe the fundamental restriction is that the rasterizer (in
1991 * the SF/WM stages) have a limit on the number of pixels that can be
1992 * rasterized. We need to ensure any coordinates beyond the rasterizer
1993 * limit are handled by the clipper. So effectively that limit becomes
1994 * the clipper's guardband size.
1995 *
1996 * It goes on to say:
1997 *
1998 * "In addition, in order to be correctly rendered, objects must have a
1999 * screenspace bounding box not exceeding 8K in the X or Y direction.
2000 * This additional restriction must also be comprehended by software,
2001 * i.e., enforced by use of clipping."
2002 *
2003 * This makes no sense. Gen7+ hardware supports 16K render targets,
2004 * and you definitely need to be able to draw polygons that fill the
2005 * surface. Our assumption is that the rasterizer was limited to 8K
2006 * on Sandybridge, which only supports 8K surfaces, and it was actually
2007 * increased to 16K on Ivybridge and later.
2008 *
2009 * So, limit the guardband to 16K on Gen7+ and 8K on Sandybridge.
2010 */
2011 const float gb_size = GEN_GEN >= 7 ? 16384.0f : 8192.0f;
2012
2013 if (m00 != 0 && m11 != 0) {
2014 /* First, we compute the screen-space render area */
2015 const float ss_ra_xmin = MIN3( 0, m30 + m00, m30 - m00);
2016 const float ss_ra_xmax = MAX3( fb_width, m30 + m00, m30 - m00);
2017 const float ss_ra_ymin = MIN3( 0, m31 + m11, m31 - m11);
2018 const float ss_ra_ymax = MAX3(fb_height, m31 + m11, m31 - m11);
2019
2020 /* We want the guardband to be centered on that */
2021 const float ss_gb_xmin = (ss_ra_xmin + ss_ra_xmax) / 2 - gb_size;
2022 const float ss_gb_xmax = (ss_ra_xmin + ss_ra_xmax) / 2 + gb_size;
2023 const float ss_gb_ymin = (ss_ra_ymin + ss_ra_ymax) / 2 - gb_size;
2024 const float ss_gb_ymax = (ss_ra_ymin + ss_ra_ymax) / 2 + gb_size;
2025
2026 /* Now we need it in native device coordinates */
2027 const float ndc_gb_xmin = (ss_gb_xmin - m30) / m00;
2028 const float ndc_gb_xmax = (ss_gb_xmax - m30) / m00;
2029 const float ndc_gb_ymin = (ss_gb_ymin - m31) / m11;
2030 const float ndc_gb_ymax = (ss_gb_ymax - m31) / m11;
2031
2032 /* Thanks to Y-flipping and ORIGIN_UPPER_LEFT, the Y coordinates may be
2033 * flipped upside-down. X should be fine though.
2034 */
2035 assert(ndc_gb_xmin <= ndc_gb_xmax);
2036 *xmin = ndc_gb_xmin;
2037 *xmax = ndc_gb_xmax;
2038 *ymin = MIN2(ndc_gb_ymin, ndc_gb_ymax);
2039 *ymax = MAX2(ndc_gb_ymin, ndc_gb_ymax);
2040 } else {
2041 /* The viewport scales to 0, so nothing will be rendered. */
2042 *xmin = 0.0f;
2043 *xmax = 0.0f;
2044 *ymin = 0.0f;
2045 *ymax = 0.0f;
2046 }
2047 }
2048
2049 /**
2050 * The pipe->set_viewport_states() driver hook.
2051 *
2052 * This corresponds to our SF_CLIP_VIEWPORT states. We can't calculate
2053 * the guardband yet, as we need the framebuffer dimensions, but we can
2054 * at least fill out the rest.
2055 */
2056 static void
2057 iris_set_viewport_states(struct pipe_context *ctx,
2058 unsigned start_slot,
2059 unsigned count,
2060 const struct pipe_viewport_state *states)
2061 {
2062 struct iris_context *ice = (struct iris_context *) ctx;
2063
2064 memcpy(&ice->state.viewports[start_slot], states, sizeof(*states) * count);
2065
2066 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2067
2068 if (ice->state.cso_rast && (!ice->state.cso_rast->depth_clip_near ||
2069 !ice->state.cso_rast->depth_clip_far))
2070 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
2071 }
2072
2073 /**
2074 * The pipe->set_framebuffer_state() driver hook.
2075 *
2076 * Sets the current draw FBO, including color render targets, depth,
2077 * and stencil buffers.
2078 */
2079 static void
2080 iris_set_framebuffer_state(struct pipe_context *ctx,
2081 const struct pipe_framebuffer_state *state)
2082 {
2083 struct iris_context *ice = (struct iris_context *) ctx;
2084 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2085 struct isl_device *isl_dev = &screen->isl_dev;
2086 struct pipe_framebuffer_state *cso = &ice->state.framebuffer;
2087 struct iris_resource *zres;
2088 struct iris_resource *stencil_res;
2089
2090 unsigned samples = util_framebuffer_get_num_samples(state);
2091
2092 if (cso->samples != samples) {
2093 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
2094 }
2095
2096 if (cso->nr_cbufs != state->nr_cbufs) {
2097 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
2098 }
2099
2100 if ((cso->layers == 0) != (state->layers == 0)) {
2101 ice->state.dirty |= IRIS_DIRTY_CLIP;
2102 }
2103
2104 if (cso->width != state->width || cso->height != state->height) {
2105 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2106 }
2107
2108 util_copy_framebuffer_state(cso, state);
2109 cso->samples = samples;
2110
2111 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
2112
2113 struct isl_view view = {
2114 .base_level = 0,
2115 .levels = 1,
2116 .base_array_layer = 0,
2117 .array_len = 1,
2118 .swizzle = ISL_SWIZZLE_IDENTITY,
2119 };
2120
2121 struct isl_depth_stencil_hiz_emit_info info = { .view = &view };
2122
2123 if (cso->zsbuf) {
2124 iris_get_depth_stencil_resources(cso->zsbuf->texture, &zres,
2125 &stencil_res);
2126
2127 view.base_level = cso->zsbuf->u.tex.level;
2128 view.base_array_layer = cso->zsbuf->u.tex.first_layer;
2129 view.array_len =
2130 cso->zsbuf->u.tex.last_layer - cso->zsbuf->u.tex.first_layer + 1;
2131
2132 if (zres) {
2133 view.usage |= ISL_SURF_USAGE_DEPTH_BIT;
2134
2135 info.depth_surf = &zres->surf;
2136 info.depth_address = zres->bo->gtt_offset;
2137 info.mocs = mocs(zres->bo);
2138
2139 view.format = zres->surf.format;
2140 }
2141
2142 if (stencil_res) {
2143 view.usage |= ISL_SURF_USAGE_STENCIL_BIT;
2144 info.stencil_surf = &stencil_res->surf;
2145 info.stencil_address = stencil_res->bo->gtt_offset;
2146 if (!zres) {
2147 view.format = stencil_res->surf.format;
2148 info.mocs = mocs(stencil_res->bo);
2149 }
2150 }
2151 }
2152
2153 isl_emit_depth_stencil_hiz_s(isl_dev, cso_z->packets, &info);
2154
2155 /* Make a null surface for unbound buffers */
2156 void *null_surf_map =
2157 upload_state(ice->state.surface_uploader, &ice->state.null_fb,
2158 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2159 isl_null_fill_state(&screen->isl_dev, null_surf_map,
2160 isl_extent3d(MAX2(cso->width, 1),
2161 MAX2(cso->height, 1),
2162 cso->layers ? cso->layers : 1));
2163 ice->state.null_fb.offset +=
2164 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.null_fb.res));
2165
2166 ice->state.dirty |= IRIS_DIRTY_DEPTH_BUFFER;
2167
2168 /* Render target change */
2169 ice->state.dirty |= IRIS_DIRTY_BINDINGS_FS;
2170
2171 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_FRAMEBUFFER];
2172
2173 #if GEN_GEN == 11
2174 // XXX: we may want to flag IRIS_DIRTY_MULTISAMPLE (or SAMPLE_MASK?)
2175 // XXX: see commit 979fc1bc9bcc64027ff2cfafd285676f31b930a6
2176
2177 /* The PIPE_CONTROL command description says:
2178 *
2179 * "Whenever a Binding Table Index (BTI) used by a Render Target Message
2180 * points to a different RENDER_SURFACE_STATE, SW must issue a Render
2181 * Target Cache Flush by enabling this bit. When render target flush
2182 * is set due to new association of BTI, PS Scoreboard Stall bit must
2183 * be set in this packet."
2184 */
2185 // XXX: does this need to happen at 3DSTATE_BTP_PS time?
2186 iris_emit_pipe_control_flush(&ice->batches[IRIS_BATCH_RENDER],
2187 PIPE_CONTROL_RENDER_TARGET_FLUSH |
2188 PIPE_CONTROL_STALL_AT_SCOREBOARD);
2189 #endif
2190 }
2191
2192 static void
2193 upload_ubo_surf_state(struct iris_context *ice,
2194 struct iris_const_buffer *cbuf,
2195 unsigned buffer_size)
2196 {
2197 struct pipe_context *ctx = &ice->ctx;
2198 struct iris_screen *screen = (struct iris_screen *) ctx->screen;
2199
2200 // XXX: these are not retained forever, use a separate uploader?
2201 void *map =
2202 upload_state(ice->state.surface_uploader, &cbuf->surface_state,
2203 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2204 if (!unlikely(map)) {
2205 pipe_resource_reference(&cbuf->data.res, NULL);
2206 return;
2207 }
2208
2209 struct iris_resource *res = (void *) cbuf->data.res;
2210 struct iris_bo *surf_bo = iris_resource_bo(cbuf->surface_state.res);
2211 cbuf->surface_state.offset += iris_bo_offset_from_base_address(surf_bo);
2212
2213 isl_buffer_fill_state(&screen->isl_dev, map,
2214 .address = res->bo->gtt_offset + cbuf->data.offset,
2215 .size_B = MIN2(buffer_size,
2216 res->bo->size - cbuf->data.offset),
2217 .format = ISL_FORMAT_R32G32B32A32_FLOAT,
2218 .stride_B = 1,
2219 .mocs = mocs(res->bo))
2220 }
2221
2222 /**
2223 * The pipe->set_constant_buffer() driver hook.
2224 *
2225 * This uploads any constant data in user buffers, and references
2226 * any UBO resources containing constant data.
2227 */
2228 static void
2229 iris_set_constant_buffer(struct pipe_context *ctx,
2230 enum pipe_shader_type p_stage, unsigned index,
2231 const struct pipe_constant_buffer *input)
2232 {
2233 struct iris_context *ice = (struct iris_context *) ctx;
2234 gl_shader_stage stage = stage_from_pipe(p_stage);
2235 struct iris_shader_state *shs = &ice->state.shaders[stage];
2236 struct iris_const_buffer *cbuf = &shs->constbuf[index];
2237
2238 if (input && input->buffer) {
2239 assert(index > 0);
2240
2241 pipe_resource_reference(&cbuf->data.res, input->buffer);
2242 cbuf->data.offset = input->buffer_offset;
2243
2244 struct iris_resource *res = (void *) cbuf->data.res;
2245 res->bind_history |= PIPE_BIND_CONSTANT_BUFFER;
2246
2247 upload_ubo_surf_state(ice, cbuf, input->buffer_size);
2248 } else {
2249 pipe_resource_reference(&cbuf->data.res, NULL);
2250 pipe_resource_reference(&cbuf->surface_state.res, NULL);
2251 }
2252
2253 if (index == 0) {
2254 if (input)
2255 memcpy(&shs->cbuf0, input, sizeof(shs->cbuf0));
2256 else
2257 memset(&shs->cbuf0, 0, sizeof(shs->cbuf0));
2258
2259 shs->cbuf0_needs_upload = true;
2260 }
2261
2262 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
2263 // XXX: maybe not necessary all the time...?
2264 // XXX: we need 3DS_BTP to commit these changes, and if we fell back to
2265 // XXX: pull model we may need actual new bindings...
2266 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2267 }
2268
2269 static void
2270 upload_uniforms(struct iris_context *ice,
2271 gl_shader_stage stage)
2272 {
2273 struct iris_shader_state *shs = &ice->state.shaders[stage];
2274 struct iris_const_buffer *cbuf = &shs->constbuf[0];
2275 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
2276
2277 unsigned upload_size = shader->num_system_values * sizeof(uint32_t) +
2278 shs->cbuf0.buffer_size;
2279
2280 if (upload_size == 0)
2281 return;
2282
2283 uint32_t *map =
2284 upload_state(ice->ctx.const_uploader, &cbuf->data, upload_size, 64);
2285
2286 for (int i = 0; i < shader->num_system_values; i++) {
2287 uint32_t sysval = shader->system_values[i];
2288 uint32_t value = 0;
2289
2290 if (BRW_PARAM_BUILTIN_IS_CLIP_PLANE(sysval)) {
2291 int plane = BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(sysval);
2292 int comp = BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(sysval);
2293 value = fui(ice->state.clip_planes.ucp[plane][comp]);
2294 } else if (sysval == BRW_PARAM_BUILTIN_PATCH_VERTICES_IN) {
2295 if (stage == MESA_SHADER_TESS_CTRL) {
2296 value = ice->state.vertices_per_patch;
2297 } else {
2298 assert(stage == MESA_SHADER_TESS_EVAL);
2299 const struct shader_info *tcs_info =
2300 iris_get_shader_info(ice, MESA_SHADER_TESS_CTRL);
2301 assert(tcs_info);
2302
2303 value = tcs_info->tess.tcs_vertices_out;
2304 }
2305 } else {
2306 assert(!"unhandled system value");
2307 }
2308
2309 *map++ = value;
2310 }
2311
2312 if (shs->cbuf0.user_buffer) {
2313 memcpy(map, shs->cbuf0.user_buffer, shs->cbuf0.buffer_size);
2314 }
2315
2316 upload_ubo_surf_state(ice, cbuf, upload_size);
2317 }
2318
2319 /**
2320 * The pipe->set_shader_buffers() driver hook.
2321 *
2322 * This binds SSBOs and ABOs. Unfortunately, we need to stream out
2323 * SURFACE_STATE here, as the buffer offset may change each time.
2324 */
2325 static void
2326 iris_set_shader_buffers(struct pipe_context *ctx,
2327 enum pipe_shader_type p_stage,
2328 unsigned start_slot, unsigned count,
2329 const struct pipe_shader_buffer *buffers)
2330 {
2331 struct iris_context *ice = (struct iris_context *) ctx;
2332 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2333 gl_shader_stage stage = stage_from_pipe(p_stage);
2334 struct iris_shader_state *shs = &ice->state.shaders[stage];
2335
2336 for (unsigned i = 0; i < count; i++) {
2337 if (buffers && buffers[i].buffer) {
2338 const struct pipe_shader_buffer *buffer = &buffers[i];
2339 struct iris_resource *res = (void *) buffer->buffer;
2340 pipe_resource_reference(&shs->ssbo[start_slot + i], &res->base);
2341
2342 res->bind_history |= PIPE_BIND_SHADER_BUFFER;
2343
2344 // XXX: these are not retained forever, use a separate uploader?
2345 void *map =
2346 upload_state(ice->state.surface_uploader,
2347 &shs->ssbo_surface_state[start_slot + i],
2348 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2349 if (!unlikely(map)) {
2350 pipe_resource_reference(&shs->ssbo[start_slot + i], NULL);
2351 return;
2352 }
2353
2354 struct iris_bo *surf_state_bo =
2355 iris_resource_bo(shs->ssbo_surface_state[start_slot + i].res);
2356 shs->ssbo_surface_state[start_slot + i].offset +=
2357 iris_bo_offset_from_base_address(surf_state_bo);
2358
2359 isl_buffer_fill_state(&screen->isl_dev, map,
2360 .address =
2361 res->bo->gtt_offset + buffer->buffer_offset,
2362 .size_B =
2363 MIN2(buffer->buffer_size,
2364 res->bo->size - buffer->buffer_offset),
2365 .format = ISL_FORMAT_RAW,
2366 .stride_B = 1,
2367 .mocs = mocs(res->bo));
2368 } else {
2369 pipe_resource_reference(&shs->ssbo[start_slot + i], NULL);
2370 pipe_resource_reference(&shs->ssbo_surface_state[start_slot + i].res,
2371 NULL);
2372 }
2373 }
2374
2375 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2376 }
2377
2378 static void
2379 iris_delete_state(struct pipe_context *ctx, void *state)
2380 {
2381 free(state);
2382 }
2383
2384 /**
2385 * The pipe->set_vertex_buffers() driver hook.
2386 *
2387 * This translates pipe_vertex_buffer to our 3DSTATE_VERTEX_BUFFERS packet.
2388 */
2389 static void
2390 iris_set_vertex_buffers(struct pipe_context *ctx,
2391 unsigned start_slot, unsigned count,
2392 const struct pipe_vertex_buffer *buffers)
2393 {
2394 struct iris_context *ice = (struct iris_context *) ctx;
2395 struct iris_genx_state *genx = ice->state.genx;
2396
2397 ice->state.bound_vertex_buffers &= ~u_bit_consecutive64(start_slot, count);
2398
2399 for (unsigned i = 0; i < count; i++) {
2400 const struct pipe_vertex_buffer *buffer = buffers ? &buffers[i] : NULL;
2401 struct iris_vertex_buffer_state *state =
2402 &genx->vertex_buffers[start_slot + i];
2403
2404 if (!buffer) {
2405 pipe_resource_reference(&state->resource, NULL);
2406 continue;
2407 }
2408
2409 assert(!buffer->is_user_buffer);
2410
2411 ice->state.bound_vertex_buffers |= 1ull << (start_slot + i);
2412
2413 pipe_resource_reference(&state->resource, buffer->buffer.resource);
2414 struct iris_resource *res = (void *) state->resource;
2415
2416 if (res)
2417 res->bind_history |= PIPE_BIND_VERTEX_BUFFER;
2418
2419 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
2420 vb.VertexBufferIndex = start_slot + i;
2421 vb.AddressModifyEnable = true;
2422 vb.BufferPitch = buffer->stride;
2423 if (res) {
2424 vb.BufferSize = res->bo->size;
2425 vb.BufferStartingAddress =
2426 ro_bo(NULL, res->bo->gtt_offset + (int) buffer->buffer_offset);
2427 vb.MOCS = mocs(res->bo);
2428 } else {
2429 vb.NullVertexBuffer = true;
2430 }
2431 }
2432 }
2433
2434 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
2435 }
2436
2437 /**
2438 * Gallium CSO for vertex elements.
2439 */
2440 struct iris_vertex_element_state {
2441 uint32_t vertex_elements[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
2442 uint32_t vf_instancing[33 * GENX(3DSTATE_VF_INSTANCING_length)];
2443 unsigned count;
2444 };
2445
2446 /**
2447 * The pipe->create_vertex_elements() driver hook.
2448 *
2449 * This translates pipe_vertex_element to our 3DSTATE_VERTEX_ELEMENTS
2450 * and 3DSTATE_VF_INSTANCING commands. SGVs are handled at draw time.
2451 */
2452 static void *
2453 iris_create_vertex_elements(struct pipe_context *ctx,
2454 unsigned count,
2455 const struct pipe_vertex_element *state)
2456 {
2457 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2458 const struct gen_device_info *devinfo = &screen->devinfo;
2459 struct iris_vertex_element_state *cso =
2460 malloc(sizeof(struct iris_vertex_element_state));
2461
2462 cso->count = count;
2463
2464 /* TODO:
2465 * - create edge flag one
2466 * - create SGV ones
2467 * - if those are necessary, use count + 1/2/3... OR in the length
2468 */
2469 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS), cso->vertex_elements, ve) {
2470 ve.DWordLength =
2471 1 + GENX(VERTEX_ELEMENT_STATE_length) * MAX2(count, 1) - 2;
2472 }
2473
2474 uint32_t *ve_pack_dest = &cso->vertex_elements[1];
2475 uint32_t *vfi_pack_dest = cso->vf_instancing;
2476
2477 if (count == 0) {
2478 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
2479 ve.Valid = true;
2480 ve.SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT;
2481 ve.Component0Control = VFCOMP_STORE_0;
2482 ve.Component1Control = VFCOMP_STORE_0;
2483 ve.Component2Control = VFCOMP_STORE_0;
2484 ve.Component3Control = VFCOMP_STORE_1_FP;
2485 }
2486
2487 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
2488 }
2489 }
2490
2491 for (int i = 0; i < count; i++) {
2492 const struct iris_format_info fmt =
2493 iris_format_for_usage(devinfo, state[i].src_format, 0);
2494 unsigned comp[4] = { VFCOMP_STORE_SRC, VFCOMP_STORE_SRC,
2495 VFCOMP_STORE_SRC, VFCOMP_STORE_SRC };
2496
2497 switch (isl_format_get_num_channels(fmt.fmt)) {
2498 case 0: comp[0] = VFCOMP_STORE_0;
2499 case 1: comp[1] = VFCOMP_STORE_0;
2500 case 2: comp[2] = VFCOMP_STORE_0;
2501 case 3:
2502 comp[3] = isl_format_has_int_channel(fmt.fmt) ? VFCOMP_STORE_1_INT
2503 : VFCOMP_STORE_1_FP;
2504 break;
2505 }
2506 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
2507 ve.VertexBufferIndex = state[i].vertex_buffer_index;
2508 ve.Valid = true;
2509 ve.SourceElementOffset = state[i].src_offset;
2510 ve.SourceElementFormat = fmt.fmt;
2511 ve.Component0Control = comp[0];
2512 ve.Component1Control = comp[1];
2513 ve.Component2Control = comp[2];
2514 ve.Component3Control = comp[3];
2515 }
2516
2517 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
2518 vi.VertexElementIndex = i;
2519 vi.InstancingEnable = state[i].instance_divisor > 0;
2520 vi.InstanceDataStepRate = state[i].instance_divisor;
2521 }
2522
2523 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
2524 vfi_pack_dest += GENX(3DSTATE_VF_INSTANCING_length);
2525 }
2526
2527 return cso;
2528 }
2529
2530 /**
2531 * The pipe->bind_vertex_elements_state() driver hook.
2532 */
2533 static void
2534 iris_bind_vertex_elements_state(struct pipe_context *ctx, void *state)
2535 {
2536 struct iris_context *ice = (struct iris_context *) ctx;
2537 struct iris_vertex_element_state *old_cso = ice->state.cso_vertex_elements;
2538 struct iris_vertex_element_state *new_cso = state;
2539
2540 /* 3DSTATE_VF_SGVs overrides the last VE, so if the count is changing,
2541 * we need to re-emit it to ensure we're overriding the right one.
2542 */
2543 if (new_cso && cso_changed(count))
2544 ice->state.dirty |= IRIS_DIRTY_VF_SGVS;
2545
2546 ice->state.cso_vertex_elements = state;
2547 ice->state.dirty |= IRIS_DIRTY_VERTEX_ELEMENTS;
2548 }
2549
2550 /**
2551 * The pipe->create_stream_output_target() driver hook.
2552 *
2553 * "Target" here refers to a destination buffer. We translate this into
2554 * a 3DSTATE_SO_BUFFER packet. We can handle most fields, but don't yet
2555 * know which buffer this represents, or whether we ought to zero the
2556 * write-offsets, or append. Those are handled in the set() hook.
2557 */
2558 static struct pipe_stream_output_target *
2559 iris_create_stream_output_target(struct pipe_context *ctx,
2560 struct pipe_resource *p_res,
2561 unsigned buffer_offset,
2562 unsigned buffer_size)
2563 {
2564 struct iris_resource *res = (void *) p_res;
2565 struct iris_stream_output_target *cso = calloc(1, sizeof(*cso));
2566 if (!cso)
2567 return NULL;
2568
2569 res->bind_history |= PIPE_BIND_STREAM_OUTPUT;
2570
2571 pipe_reference_init(&cso->base.reference, 1);
2572 pipe_resource_reference(&cso->base.buffer, p_res);
2573 cso->base.buffer_offset = buffer_offset;
2574 cso->base.buffer_size = buffer_size;
2575 cso->base.context = ctx;
2576
2577 upload_state(ctx->stream_uploader, &cso->offset, sizeof(uint32_t), 4);
2578
2579 return &cso->base;
2580 }
2581
2582 static void
2583 iris_stream_output_target_destroy(struct pipe_context *ctx,
2584 struct pipe_stream_output_target *state)
2585 {
2586 struct iris_stream_output_target *cso = (void *) state;
2587
2588 pipe_resource_reference(&cso->base.buffer, NULL);
2589 pipe_resource_reference(&cso->offset.res, NULL);
2590
2591 free(cso);
2592 }
2593
2594 /**
2595 * The pipe->set_stream_output_targets() driver hook.
2596 *
2597 * At this point, we know which targets are bound to a particular index,
2598 * and also whether we want to append or start over. We can finish the
2599 * 3DSTATE_SO_BUFFER packets we started earlier.
2600 */
2601 static void
2602 iris_set_stream_output_targets(struct pipe_context *ctx,
2603 unsigned num_targets,
2604 struct pipe_stream_output_target **targets,
2605 const unsigned *offsets)
2606 {
2607 struct iris_context *ice = (struct iris_context *) ctx;
2608 struct iris_genx_state *genx = ice->state.genx;
2609 uint32_t *so_buffers = genx->so_buffers;
2610
2611 const bool active = num_targets > 0;
2612 if (ice->state.streamout_active != active) {
2613 ice->state.streamout_active = active;
2614 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
2615
2616 /* We only emit 3DSTATE_SO_DECL_LIST when streamout is active, because
2617 * it's a non-pipelined command. If we're switching streamout on, we
2618 * may have missed emitting it earlier, so do so now. (We're already
2619 * taking a stall to update 3DSTATE_SO_BUFFERS anyway...)
2620 */
2621 if (active)
2622 ice->state.dirty |= IRIS_DIRTY_SO_DECL_LIST;
2623 }
2624
2625 for (int i = 0; i < 4; i++) {
2626 pipe_so_target_reference(&ice->state.so_target[i],
2627 i < num_targets ? targets[i] : NULL);
2628 }
2629
2630 /* No need to update 3DSTATE_SO_BUFFER unless SOL is active. */
2631 if (!active)
2632 return;
2633
2634 for (unsigned i = 0; i < 4; i++,
2635 so_buffers += GENX(3DSTATE_SO_BUFFER_length)) {
2636
2637 if (i >= num_targets || !targets[i]) {
2638 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob)
2639 sob.SOBufferIndex = i;
2640 continue;
2641 }
2642
2643 struct iris_stream_output_target *tgt = (void *) targets[i];
2644 struct iris_resource *res = (void *) tgt->base.buffer;
2645
2646 /* Note that offsets[i] will either be 0, causing us to zero
2647 * the value in the buffer, or 0xFFFFFFFF, which happens to mean
2648 * "continue appending at the existing offset."
2649 */
2650 assert(offsets[i] == 0 || offsets[i] == 0xFFFFFFFF);
2651
2652 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob) {
2653 sob.SurfaceBaseAddress =
2654 rw_bo(NULL, res->bo->gtt_offset + tgt->base.buffer_offset);
2655 sob.SOBufferEnable = true;
2656 sob.StreamOffsetWriteEnable = true;
2657 sob.StreamOutputBufferOffsetAddressEnable = true;
2658 sob.MOCS = mocs(res->bo);
2659
2660 sob.SurfaceSize = MAX2(tgt->base.buffer_size / 4, 1) - 1;
2661
2662 sob.SOBufferIndex = i;
2663 sob.StreamOffset = offsets[i];
2664 sob.StreamOutputBufferOffsetAddress =
2665 rw_bo(NULL, iris_resource_bo(tgt->offset.res)->gtt_offset +
2666 tgt->offset.offset);
2667 }
2668 }
2669
2670 ice->state.dirty |= IRIS_DIRTY_SO_BUFFERS;
2671 }
2672
2673 /**
2674 * An iris-vtable helper for encoding the 3DSTATE_SO_DECL_LIST and
2675 * 3DSTATE_STREAMOUT packets.
2676 *
2677 * 3DSTATE_SO_DECL_LIST is a list of shader outputs we want the streamout
2678 * hardware to record. We can create it entirely based on the shader, with
2679 * no dynamic state dependencies.
2680 *
2681 * 3DSTATE_STREAMOUT is an annoying mix of shader-based information and
2682 * state-based settings. We capture the shader-related ones here, and merge
2683 * the rest in at draw time.
2684 */
2685 static uint32_t *
2686 iris_create_so_decl_list(const struct pipe_stream_output_info *info,
2687 const struct brw_vue_map *vue_map)
2688 {
2689 struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
2690 int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2691 int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2692 int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2693 int max_decls = 0;
2694 STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
2695
2696 memset(so_decl, 0, sizeof(so_decl));
2697
2698 /* Construct the list of SO_DECLs to be emitted. The formatting of the
2699 * command feels strange -- each dword pair contains a SO_DECL per stream.
2700 */
2701 for (unsigned i = 0; i < info->num_outputs; i++) {
2702 const struct pipe_stream_output *output = &info->output[i];
2703 const int buffer = output->output_buffer;
2704 const int varying = output->register_index;
2705 const unsigned stream_id = output->stream;
2706 assert(stream_id < MAX_VERTEX_STREAMS);
2707
2708 buffer_mask[stream_id] |= 1 << buffer;
2709
2710 assert(vue_map->varying_to_slot[varying] >= 0);
2711
2712 /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
2713 * array. Instead, it simply increments DstOffset for the following
2714 * input by the number of components that should be skipped.
2715 *
2716 * Our hardware is unusual in that it requires us to program SO_DECLs
2717 * for fake "hole" components, rather than simply taking the offset
2718 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
2719 * program as many size = 4 holes as we can, then a final hole to
2720 * accommodate the final 1, 2, or 3 remaining.
2721 */
2722 int skip_components = output->dst_offset - next_offset[buffer];
2723
2724 while (skip_components > 0) {
2725 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
2726 .HoleFlag = 1,
2727 .OutputBufferSlot = output->output_buffer,
2728 .ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
2729 };
2730 skip_components -= 4;
2731 }
2732
2733 next_offset[buffer] = output->dst_offset + output->num_components;
2734
2735 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
2736 .OutputBufferSlot = output->output_buffer,
2737 .RegisterIndex = vue_map->varying_to_slot[varying],
2738 .ComponentMask =
2739 ((1 << output->num_components) - 1) << output->start_component,
2740 };
2741
2742 if (decls[stream_id] > max_decls)
2743 max_decls = decls[stream_id];
2744 }
2745
2746 unsigned dwords = GENX(3DSTATE_STREAMOUT_length) + (3 + 2 * max_decls);
2747 uint32_t *map = ralloc_size(NULL, sizeof(uint32_t) * dwords);
2748 uint32_t *so_decl_map = map + GENX(3DSTATE_STREAMOUT_length);
2749
2750 iris_pack_command(GENX(3DSTATE_STREAMOUT), map, sol) {
2751 int urb_entry_read_offset = 0;
2752 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
2753 urb_entry_read_offset;
2754
2755 /* We always read the whole vertex. This could be reduced at some
2756 * point by reading less and offsetting the register index in the
2757 * SO_DECLs.
2758 */
2759 sol.Stream0VertexReadOffset = urb_entry_read_offset;
2760 sol.Stream0VertexReadLength = urb_entry_read_length - 1;
2761 sol.Stream1VertexReadOffset = urb_entry_read_offset;
2762 sol.Stream1VertexReadLength = urb_entry_read_length - 1;
2763 sol.Stream2VertexReadOffset = urb_entry_read_offset;
2764 sol.Stream2VertexReadLength = urb_entry_read_length - 1;
2765 sol.Stream3VertexReadOffset = urb_entry_read_offset;
2766 sol.Stream3VertexReadLength = urb_entry_read_length - 1;
2767
2768 /* Set buffer pitches; 0 means unbound. */
2769 sol.Buffer0SurfacePitch = 4 * info->stride[0];
2770 sol.Buffer1SurfacePitch = 4 * info->stride[1];
2771 sol.Buffer2SurfacePitch = 4 * info->stride[2];
2772 sol.Buffer3SurfacePitch = 4 * info->stride[3];
2773 }
2774
2775 iris_pack_command(GENX(3DSTATE_SO_DECL_LIST), so_decl_map, list) {
2776 list.DWordLength = 3 + 2 * max_decls - 2;
2777 list.StreamtoBufferSelects0 = buffer_mask[0];
2778 list.StreamtoBufferSelects1 = buffer_mask[1];
2779 list.StreamtoBufferSelects2 = buffer_mask[2];
2780 list.StreamtoBufferSelects3 = buffer_mask[3];
2781 list.NumEntries0 = decls[0];
2782 list.NumEntries1 = decls[1];
2783 list.NumEntries2 = decls[2];
2784 list.NumEntries3 = decls[3];
2785 }
2786
2787 for (int i = 0; i < max_decls; i++) {
2788 iris_pack_state(GENX(SO_DECL_ENTRY), so_decl_map + 3 + i * 2, entry) {
2789 entry.Stream0Decl = so_decl[0][i];
2790 entry.Stream1Decl = so_decl[1][i];
2791 entry.Stream2Decl = so_decl[2][i];
2792 entry.Stream3Decl = so_decl[3][i];
2793 }
2794 }
2795
2796 return map;
2797 }
2798
2799 static void
2800 iris_compute_sbe_urb_read_interval(uint64_t fs_input_slots,
2801 const struct brw_vue_map *last_vue_map,
2802 bool two_sided_color,
2803 unsigned *out_offset,
2804 unsigned *out_length)
2805 {
2806 /* The compiler computes the first URB slot without considering COL/BFC
2807 * swizzling (because it doesn't know whether it's enabled), so we need
2808 * to do that here too. This may result in a smaller offset, which
2809 * should be safe.
2810 */
2811 const unsigned first_slot =
2812 brw_compute_first_urb_slot_required(fs_input_slots, last_vue_map);
2813
2814 /* This becomes the URB read offset (counted in pairs of slots). */
2815 assert(first_slot % 2 == 0);
2816 *out_offset = first_slot / 2;
2817
2818 /* We need to adjust the inputs read to account for front/back color
2819 * swizzling, as it can make the URB length longer.
2820 */
2821 for (int c = 0; c <= 1; c++) {
2822 if (fs_input_slots & (VARYING_BIT_COL0 << c)) {
2823 /* If two sided color is enabled, the fragment shader's gl_Color
2824 * (COL0) input comes from either the gl_FrontColor (COL0) or
2825 * gl_BackColor (BFC0) input varyings. Mark BFC as used, too.
2826 */
2827 if (two_sided_color)
2828 fs_input_slots |= (VARYING_BIT_BFC0 << c);
2829
2830 /* If front color isn't written, we opt to give them back color
2831 * instead of an undefined value. Switch from COL to BFC.
2832 */
2833 if (last_vue_map->varying_to_slot[VARYING_SLOT_COL0 + c] == -1) {
2834 fs_input_slots &= ~(VARYING_BIT_COL0 << c);
2835 fs_input_slots |= (VARYING_BIT_BFC0 << c);
2836 }
2837 }
2838 }
2839
2840 /* Compute the minimum URB Read Length necessary for the FS inputs.
2841 *
2842 * From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
2843 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
2844 *
2845 * "This field should be set to the minimum length required to read the
2846 * maximum source attribute. The maximum source attribute is indicated
2847 * by the maximum value of the enabled Attribute # Source Attribute if
2848 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
2849 * enable is not set.
2850 * read_length = ceiling((max_source_attr + 1) / 2)
2851 *
2852 * [errata] Corruption/Hang possible if length programmed larger than
2853 * recommended"
2854 *
2855 * Similar text exists for Ivy Bridge.
2856 *
2857 * We find the last URB slot that's actually read by the FS.
2858 */
2859 unsigned last_read_slot = last_vue_map->num_slots - 1;
2860 while (last_read_slot > first_slot && !(fs_input_slots &
2861 (1ull << last_vue_map->slot_to_varying[last_read_slot])))
2862 --last_read_slot;
2863
2864 /* The URB read length is the difference of the two, counted in pairs. */
2865 *out_length = DIV_ROUND_UP(last_read_slot - first_slot + 1, 2);
2866 }
2867
2868 static void
2869 iris_emit_sbe_swiz(struct iris_batch *batch,
2870 const struct iris_context *ice,
2871 unsigned urb_read_offset,
2872 unsigned sprite_coord_enables)
2873 {
2874 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = {};
2875 const struct brw_wm_prog_data *wm_prog_data = (void *)
2876 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
2877 const struct brw_vue_map *vue_map = ice->shaders.last_vue_map;
2878 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
2879
2880 /* XXX: this should be generated when putting programs in place */
2881
2882 for (int fs_attr = 0; fs_attr < VARYING_SLOT_MAX; fs_attr++) {
2883 const int input_index = wm_prog_data->urb_setup[fs_attr];
2884 if (input_index < 0 || input_index >= 16)
2885 continue;
2886
2887 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr =
2888 &attr_overrides[input_index];
2889 int slot = vue_map->varying_to_slot[fs_attr];
2890
2891 /* Viewport and Layer are stored in the VUE header. We need to override
2892 * them to zero if earlier stages didn't write them, as GL requires that
2893 * they read back as zero when not explicitly set.
2894 */
2895 switch (fs_attr) {
2896 case VARYING_SLOT_VIEWPORT:
2897 case VARYING_SLOT_LAYER:
2898 attr->ComponentOverrideX = true;
2899 attr->ComponentOverrideW = true;
2900 attr->ConstantSource = CONST_0000;
2901
2902 if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
2903 attr->ComponentOverrideY = true;
2904 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
2905 attr->ComponentOverrideZ = true;
2906 continue;
2907
2908 case VARYING_SLOT_PRIMITIVE_ID:
2909 /* Override if the previous shader stage didn't write gl_PrimitiveID. */
2910 if (slot == -1) {
2911 attr->ComponentOverrideX = true;
2912 attr->ComponentOverrideY = true;
2913 attr->ComponentOverrideZ = true;
2914 attr->ComponentOverrideW = true;
2915 attr->ConstantSource = PRIM_ID;
2916 continue;
2917 }
2918
2919 default:
2920 break;
2921 }
2922
2923 if (sprite_coord_enables & (1 << input_index))
2924 continue;
2925
2926 /* If there was only a back color written but not front, use back
2927 * as the color instead of undefined.
2928 */
2929 if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
2930 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
2931 if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
2932 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
2933
2934 /* Not written by the previous stage - undefined. */
2935 if (slot == -1) {
2936 attr->ComponentOverrideX = true;
2937 attr->ComponentOverrideY = true;
2938 attr->ComponentOverrideZ = true;
2939 attr->ComponentOverrideW = true;
2940 attr->ConstantSource = CONST_0001_FLOAT;
2941 continue;
2942 }
2943
2944 /* Compute the location of the attribute relative to the read offset,
2945 * which is counted in 256-bit increments (two 128-bit VUE slots).
2946 */
2947 const int source_attr = slot - 2 * urb_read_offset;
2948 assert(source_attr >= 0 && source_attr <= 32);
2949 attr->SourceAttribute = source_attr;
2950
2951 /* If we are doing two-sided color, and the VUE slot following this one
2952 * represents a back-facing color, then we need to instruct the SF unit
2953 * to do back-facing swizzling.
2954 */
2955 if (cso_rast->light_twoside &&
2956 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
2957 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
2958 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
2959 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1)))
2960 attr->SwizzleSelect = INPUTATTR_FACING;
2961 }
2962
2963 iris_emit_cmd(batch, GENX(3DSTATE_SBE_SWIZ), sbes) {
2964 for (int i = 0; i < 16; i++)
2965 sbes.Attribute[i] = attr_overrides[i];
2966 }
2967 }
2968
2969 static unsigned
2970 iris_calculate_point_sprite_overrides(const struct brw_wm_prog_data *prog_data,
2971 const struct iris_rasterizer_state *cso)
2972 {
2973 unsigned overrides = 0;
2974
2975 if (prog_data->urb_setup[VARYING_SLOT_PNTC] != -1)
2976 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_PNTC];
2977
2978 for (int i = 0; i < 8; i++) {
2979 if ((cso->sprite_coord_enable & (1 << i)) &&
2980 prog_data->urb_setup[VARYING_SLOT_TEX0 + i] != -1)
2981 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_TEX0 + i];
2982 }
2983
2984 return overrides;
2985 }
2986
2987 static void
2988 iris_emit_sbe(struct iris_batch *batch, const struct iris_context *ice)
2989 {
2990 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
2991 const struct brw_wm_prog_data *wm_prog_data = (void *)
2992 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
2993 const struct shader_info *fs_info =
2994 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
2995
2996 unsigned urb_read_offset, urb_read_length;
2997 iris_compute_sbe_urb_read_interval(fs_info->inputs_read,
2998 ice->shaders.last_vue_map,
2999 cso_rast->light_twoside,
3000 &urb_read_offset, &urb_read_length);
3001
3002 unsigned sprite_coord_overrides =
3003 iris_calculate_point_sprite_overrides(wm_prog_data, cso_rast);
3004
3005 iris_emit_cmd(batch, GENX(3DSTATE_SBE), sbe) {
3006 sbe.AttributeSwizzleEnable = true;
3007 sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
3008 sbe.PointSpriteTextureCoordinateOrigin = cso_rast->sprite_coord_mode;
3009 sbe.VertexURBEntryReadOffset = urb_read_offset;
3010 sbe.VertexURBEntryReadLength = urb_read_length;
3011 sbe.ForceVertexURBEntryReadOffset = true;
3012 sbe.ForceVertexURBEntryReadLength = true;
3013 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
3014 sbe.PointSpriteTextureCoordinateEnable = sprite_coord_overrides;
3015 #if GEN_GEN >= 9
3016 for (int i = 0; i < 32; i++) {
3017 sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW;
3018 }
3019 #endif
3020 }
3021
3022 iris_emit_sbe_swiz(batch, ice, urb_read_offset, sprite_coord_overrides);
3023 }
3024
3025 /* ------------------------------------------------------------------- */
3026
3027 /**
3028 * Populate VS program key fields based on the current state.
3029 */
3030 static void
3031 iris_populate_vs_key(const struct iris_context *ice,
3032 const struct shader_info *info,
3033 struct brw_vs_prog_key *key)
3034 {
3035 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3036
3037 if (info->clip_distance_array_size == 0 &&
3038 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)))
3039 key->nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
3040 }
3041
3042 /**
3043 * Populate TCS program key fields based on the current state.
3044 */
3045 static void
3046 iris_populate_tcs_key(const struct iris_context *ice,
3047 struct brw_tcs_prog_key *key)
3048 {
3049 }
3050
3051 /**
3052 * Populate TES program key fields based on the current state.
3053 */
3054 static void
3055 iris_populate_tes_key(const struct iris_context *ice,
3056 struct brw_tes_prog_key *key)
3057 {
3058 }
3059
3060 /**
3061 * Populate GS program key fields based on the current state.
3062 */
3063 static void
3064 iris_populate_gs_key(const struct iris_context *ice,
3065 struct brw_gs_prog_key *key)
3066 {
3067 }
3068
3069 /**
3070 * Populate FS program key fields based on the current state.
3071 */
3072 static void
3073 iris_populate_fs_key(const struct iris_context *ice,
3074 struct brw_wm_prog_key *key)
3075 {
3076 const struct pipe_framebuffer_state *fb = &ice->state.framebuffer;
3077 const struct iris_depth_stencil_alpha_state *zsa = ice->state.cso_zsa;
3078 const struct iris_rasterizer_state *rast = ice->state.cso_rast;
3079 const struct iris_blend_state *blend = ice->state.cso_blend;
3080
3081 key->nr_color_regions = fb->nr_cbufs;
3082
3083 key->clamp_fragment_color = rast->clamp_fragment_color;
3084
3085 key->replicate_alpha = fb->nr_cbufs > 1 &&
3086 (zsa->alpha.enabled || blend->alpha_to_coverage);
3087
3088 /* XXX: only bother if COL0/1 are read */
3089 key->flat_shade = rast->flatshade;
3090
3091 key->persample_interp = rast->force_persample_interp;
3092 key->multisample_fbo = rast->multisample && fb->samples > 1;
3093
3094 key->coherent_fb_fetch = true;
3095
3096 // XXX: key->force_dual_color_blend for unigine
3097 // XXX: respect hint for high_quality_derivatives:1;
3098 }
3099
3100 static void
3101 iris_populate_cs_key(const struct iris_context *ice,
3102 struct brw_cs_prog_key *key)
3103 {
3104 }
3105
3106 #if 0
3107 // XXX: these need to go in INIT_THREAD_DISPATCH_FIELDS
3108 pkt.SamplerCount = \
3109 DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4); \
3110
3111 #endif
3112
3113 static uint64_t
3114 KSP(const struct iris_compiled_shader *shader)
3115 {
3116 struct iris_resource *res = (void *) shader->assembly.res;
3117 return iris_bo_offset_from_base_address(res->bo) + shader->assembly.offset;
3118 }
3119
3120 // Gen11 workaround table #2056 WABTPPrefetchDisable suggests to disable
3121 // prefetching of binding tables in A0 and B0 steppings. XXX: Revisit
3122 // this WA on C0 stepping.
3123
3124 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix, stage) \
3125 pkt.KernelStartPointer = KSP(shader); \
3126 pkt.BindingTableEntryCount = GEN_GEN == 11 ? 0 : \
3127 prog_data->binding_table.size_bytes / 4; \
3128 pkt.FloatingPointMode = prog_data->use_alt_mode; \
3129 \
3130 pkt.DispatchGRFStartRegisterForURBData = \
3131 prog_data->dispatch_grf_start_reg; \
3132 pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
3133 pkt.prefix##URBEntryReadOffset = 0; \
3134 \
3135 pkt.StatisticsEnable = true; \
3136 pkt.Enable = true; \
3137 \
3138 if (prog_data->total_scratch) { \
3139 struct iris_bo *bo = \
3140 iris_get_scratch_space(ice, prog_data->total_scratch, stage); \
3141 uint32_t scratch_addr = bo->gtt_offset; \
3142 pkt.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11; \
3143 pkt.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr); \
3144 }
3145
3146 /**
3147 * Encode most of 3DSTATE_VS based on the compiled shader.
3148 */
3149 static void
3150 iris_store_vs_state(struct iris_context *ice,
3151 const struct gen_device_info *devinfo,
3152 struct iris_compiled_shader *shader)
3153 {
3154 struct brw_stage_prog_data *prog_data = shader->prog_data;
3155 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3156
3157 iris_pack_command(GENX(3DSTATE_VS), shader->derived_data, vs) {
3158 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex, MESA_SHADER_VERTEX);
3159 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
3160 vs.SIMD8DispatchEnable = true;
3161 vs.UserClipDistanceCullTestEnableBitmask =
3162 vue_prog_data->cull_distance_mask;
3163 }
3164 }
3165
3166 /**
3167 * Encode most of 3DSTATE_HS based on the compiled shader.
3168 */
3169 static void
3170 iris_store_tcs_state(struct iris_context *ice,
3171 const struct gen_device_info *devinfo,
3172 struct iris_compiled_shader *shader)
3173 {
3174 struct brw_stage_prog_data *prog_data = shader->prog_data;
3175 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3176 struct brw_tcs_prog_data *tcs_prog_data = (void *) prog_data;
3177
3178 iris_pack_command(GENX(3DSTATE_HS), shader->derived_data, hs) {
3179 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex, MESA_SHADER_TESS_CTRL);
3180
3181 hs.InstanceCount = tcs_prog_data->instances - 1;
3182 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
3183 hs.IncludeVertexHandles = true;
3184 }
3185 }
3186
3187 /**
3188 * Encode 3DSTATE_TE and most of 3DSTATE_DS based on the compiled shader.
3189 */
3190 static void
3191 iris_store_tes_state(struct iris_context *ice,
3192 const struct gen_device_info *devinfo,
3193 struct iris_compiled_shader *shader)
3194 {
3195 struct brw_stage_prog_data *prog_data = shader->prog_data;
3196 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3197 struct brw_tes_prog_data *tes_prog_data = (void *) prog_data;
3198
3199 uint32_t *te_state = (void *) shader->derived_data;
3200 uint32_t *ds_state = te_state + GENX(3DSTATE_TE_length);
3201
3202 iris_pack_command(GENX(3DSTATE_TE), te_state, te) {
3203 te.Partitioning = tes_prog_data->partitioning;
3204 te.OutputTopology = tes_prog_data->output_topology;
3205 te.TEDomain = tes_prog_data->domain;
3206 te.TEEnable = true;
3207 te.MaximumTessellationFactorOdd = 63.0;
3208 te.MaximumTessellationFactorNotOdd = 64.0;
3209 }
3210
3211 iris_pack_command(GENX(3DSTATE_DS), ds_state, ds) {
3212 INIT_THREAD_DISPATCH_FIELDS(ds, Patch, MESA_SHADER_TESS_EVAL);
3213
3214 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
3215 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
3216 ds.ComputeWCoordinateEnable =
3217 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
3218
3219 ds.UserClipDistanceCullTestEnableBitmask =
3220 vue_prog_data->cull_distance_mask;
3221 }
3222
3223 }
3224
3225 /**
3226 * Encode most of 3DSTATE_GS based on the compiled shader.
3227 */
3228 static void
3229 iris_store_gs_state(struct iris_context *ice,
3230 const struct gen_device_info *devinfo,
3231 struct iris_compiled_shader *shader)
3232 {
3233 struct brw_stage_prog_data *prog_data = shader->prog_data;
3234 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3235 struct brw_gs_prog_data *gs_prog_data = (void *) prog_data;
3236
3237 iris_pack_command(GENX(3DSTATE_GS), shader->derived_data, gs) {
3238 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex, MESA_SHADER_GEOMETRY);
3239
3240 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
3241 gs.OutputTopology = gs_prog_data->output_topology;
3242 gs.ControlDataHeaderSize =
3243 gs_prog_data->control_data_header_size_hwords;
3244 gs.InstanceControl = gs_prog_data->invocations - 1;
3245 gs.DispatchMode = DISPATCH_MODE_SIMD8;
3246 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
3247 gs.ControlDataFormat = gs_prog_data->control_data_format;
3248 gs.ReorderMode = TRAILING;
3249 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
3250 gs.MaximumNumberofThreads =
3251 GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
3252 : (devinfo->max_gs_threads - 1);
3253
3254 if (gs_prog_data->static_vertex_count != -1) {
3255 gs.StaticOutput = true;
3256 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
3257 }
3258 gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
3259
3260 gs.UserClipDistanceCullTestEnableBitmask =
3261 vue_prog_data->cull_distance_mask;
3262
3263 const int urb_entry_write_offset = 1;
3264 const uint32_t urb_entry_output_length =
3265 DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
3266 urb_entry_write_offset;
3267
3268 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
3269 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
3270 }
3271 }
3272
3273 /**
3274 * Encode most of 3DSTATE_PS and 3DSTATE_PS_EXTRA based on the shader.
3275 */
3276 static void
3277 iris_store_fs_state(struct iris_context *ice,
3278 const struct gen_device_info *devinfo,
3279 struct iris_compiled_shader *shader)
3280 {
3281 struct brw_stage_prog_data *prog_data = shader->prog_data;
3282 struct brw_wm_prog_data *wm_prog_data = (void *) shader->prog_data;
3283
3284 uint32_t *ps_state = (void *) shader->derived_data;
3285 uint32_t *psx_state = ps_state + GENX(3DSTATE_PS_length);
3286
3287 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
3288 ps.VectorMaskEnable = true;
3289 //ps.SamplerCount = ...
3290 // XXX: WABTPPrefetchDisable, see above, drop at C0
3291 ps.BindingTableEntryCount = GEN_GEN == 11 ? 0 :
3292 prog_data->binding_table.size_bytes / 4;
3293 ps.FloatingPointMode = prog_data->use_alt_mode;
3294 ps.MaximumNumberofThreadsPerPSD = 64 - (GEN_GEN == 8 ? 2 : 1);
3295
3296 ps.PushConstantEnable = shader->num_system_values > 0 ||
3297 prog_data->ubo_ranges[0].length > 0;
3298
3299 /* From the documentation for this packet:
3300 * "If the PS kernel does not need the Position XY Offsets to
3301 * compute a Position Value, then this field should be programmed
3302 * to POSOFFSET_NONE."
3303 *
3304 * "SW Recommendation: If the PS kernel needs the Position Offsets
3305 * to compute a Position XY value, this field should match Position
3306 * ZW Interpolation Mode to ensure a consistent position.xyzw
3307 * computation."
3308 *
3309 * We only require XY sample offsets. So, this recommendation doesn't
3310 * look useful at the moment. We might need this in future.
3311 */
3312 ps.PositionXYOffsetSelect =
3313 wm_prog_data->uses_pos_offset ? POSOFFSET_SAMPLE : POSOFFSET_NONE;
3314 ps._8PixelDispatchEnable = wm_prog_data->dispatch_8;
3315 ps._16PixelDispatchEnable = wm_prog_data->dispatch_16;
3316 ps._32PixelDispatchEnable = wm_prog_data->dispatch_32;
3317
3318 // XXX: Disable SIMD32 with 16x MSAA
3319
3320 ps.DispatchGRFStartRegisterForConstantSetupData0 =
3321 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
3322 ps.DispatchGRFStartRegisterForConstantSetupData1 =
3323 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
3324 ps.DispatchGRFStartRegisterForConstantSetupData2 =
3325 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
3326
3327 ps.KernelStartPointer0 =
3328 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
3329 ps.KernelStartPointer1 =
3330 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
3331 ps.KernelStartPointer2 =
3332 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
3333
3334 if (prog_data->total_scratch) {
3335 struct iris_bo *bo =
3336 iris_get_scratch_space(ice, prog_data->total_scratch,
3337 MESA_SHADER_FRAGMENT);
3338 uint32_t scratch_addr = bo->gtt_offset;
3339 ps.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
3340 ps.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr);
3341 }
3342 }
3343
3344 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
3345 psx.PixelShaderValid = true;
3346 psx.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
3347 // XXX: alpha test / alpha to coverage :/
3348 psx.PixelShaderKillsPixel = wm_prog_data->uses_kill ||
3349 wm_prog_data->uses_omask;
3350 psx.AttributeEnable = wm_prog_data->num_varying_inputs != 0;
3351 psx.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
3352 psx.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
3353 psx.PixelShaderIsPerSample = wm_prog_data->persample_dispatch;
3354 psx.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
3355
3356 #if GEN_GEN >= 9
3357 if (wm_prog_data->uses_sample_mask) {
3358 /* TODO: conservative rasterization */
3359 if (wm_prog_data->post_depth_coverage)
3360 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
3361 else
3362 psx.InputCoverageMaskState = ICMS_NORMAL;
3363 }
3364
3365 psx.PixelShaderPullsBary = wm_prog_data->pulls_bary;
3366 psx.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
3367 #else
3368 psx.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
3369 #endif
3370 // XXX: UAV bit
3371 }
3372 }
3373
3374 /**
3375 * Compute the size of the derived data (shader command packets).
3376 *
3377 * This must match the data written by the iris_store_xs_state() functions.
3378 */
3379 static void
3380 iris_store_cs_state(struct iris_context *ice,
3381 const struct gen_device_info *devinfo,
3382 struct iris_compiled_shader *shader)
3383 {
3384 struct brw_stage_prog_data *prog_data = shader->prog_data;
3385 struct brw_cs_prog_data *cs_prog_data = (void *) shader->prog_data;
3386 void *map = shader->derived_data;
3387
3388 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), map, desc) {
3389 desc.KernelStartPointer = KSP(shader);
3390 desc.ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs;
3391 desc.NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads;
3392 desc.SharedLocalMemorySize =
3393 encode_slm_size(GEN_GEN, prog_data->total_shared);
3394 desc.BarrierEnable = cs_prog_data->uses_barrier;
3395 desc.CrossThreadConstantDataReadLength =
3396 cs_prog_data->push.cross_thread.regs;
3397 }
3398 }
3399
3400 static unsigned
3401 iris_derived_program_state_size(enum iris_program_cache_id cache_id)
3402 {
3403 assert(cache_id <= IRIS_CACHE_BLORP);
3404
3405 static const unsigned dwords[] = {
3406 [IRIS_CACHE_VS] = GENX(3DSTATE_VS_length),
3407 [IRIS_CACHE_TCS] = GENX(3DSTATE_HS_length),
3408 [IRIS_CACHE_TES] = GENX(3DSTATE_TE_length) + GENX(3DSTATE_DS_length),
3409 [IRIS_CACHE_GS] = GENX(3DSTATE_GS_length),
3410 [IRIS_CACHE_FS] =
3411 GENX(3DSTATE_PS_length) + GENX(3DSTATE_PS_EXTRA_length),
3412 [IRIS_CACHE_CS] = GENX(INTERFACE_DESCRIPTOR_DATA_length),
3413 [IRIS_CACHE_BLORP] = 0,
3414 };
3415
3416 return sizeof(uint32_t) * dwords[cache_id];
3417 }
3418
3419 /**
3420 * Create any state packets corresponding to the given shader stage
3421 * (i.e. 3DSTATE_VS) and save them as "derived data" in the shader variant.
3422 * This means that we can look up a program in the in-memory cache and
3423 * get most of the state packet without having to reconstruct it.
3424 */
3425 static void
3426 iris_store_derived_program_state(struct iris_context *ice,
3427 enum iris_program_cache_id cache_id,
3428 struct iris_compiled_shader *shader)
3429 {
3430 struct iris_screen *screen = (void *) ice->ctx.screen;
3431 const struct gen_device_info *devinfo = &screen->devinfo;
3432
3433 switch (cache_id) {
3434 case IRIS_CACHE_VS:
3435 iris_store_vs_state(ice, devinfo, shader);
3436 break;
3437 case IRIS_CACHE_TCS:
3438 iris_store_tcs_state(ice, devinfo, shader);
3439 break;
3440 case IRIS_CACHE_TES:
3441 iris_store_tes_state(ice, devinfo, shader);
3442 break;
3443 case IRIS_CACHE_GS:
3444 iris_store_gs_state(ice, devinfo, shader);
3445 break;
3446 case IRIS_CACHE_FS:
3447 iris_store_fs_state(ice, devinfo, shader);
3448 break;
3449 case IRIS_CACHE_CS:
3450 iris_store_cs_state(ice, devinfo, shader);
3451 case IRIS_CACHE_BLORP:
3452 break;
3453 default:
3454 break;
3455 }
3456 }
3457
3458 /* ------------------------------------------------------------------- */
3459
3460 /**
3461 * Configure the URB.
3462 *
3463 * XXX: write a real comment.
3464 */
3465 static void
3466 iris_upload_urb_config(struct iris_context *ice, struct iris_batch *batch)
3467 {
3468 const struct gen_device_info *devinfo = &batch->screen->devinfo;
3469 const unsigned push_size_kB = 32;
3470 unsigned entries[4];
3471 unsigned start[4];
3472 unsigned size[4];
3473
3474 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
3475 if (!ice->shaders.prog[i]) {
3476 size[i] = 1;
3477 } else {
3478 struct brw_vue_prog_data *vue_prog_data =
3479 (void *) ice->shaders.prog[i]->prog_data;
3480 size[i] = vue_prog_data->urb_entry_size;
3481 }
3482 assert(size[i] != 0);
3483 }
3484
3485 gen_get_urb_config(devinfo, 1024 * push_size_kB,
3486 1024 * ice->shaders.urb_size,
3487 ice->shaders.prog[MESA_SHADER_TESS_EVAL] != NULL,
3488 ice->shaders.prog[MESA_SHADER_GEOMETRY] != NULL,
3489 size, entries, start);
3490
3491 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
3492 iris_emit_cmd(batch, GENX(3DSTATE_URB_VS), urb) {
3493 urb._3DCommandSubOpcode += i;
3494 urb.VSURBStartingAddress = start[i];
3495 urb.VSURBEntryAllocationSize = size[i] - 1;
3496 urb.VSNumberofURBEntries = entries[i];
3497 }
3498 }
3499 }
3500
3501 static const uint32_t push_constant_opcodes[] = {
3502 [MESA_SHADER_VERTEX] = 21,
3503 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
3504 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
3505 [MESA_SHADER_GEOMETRY] = 22,
3506 [MESA_SHADER_FRAGMENT] = 23,
3507 [MESA_SHADER_COMPUTE] = 0,
3508 };
3509
3510 static uint32_t
3511 use_null_surface(struct iris_batch *batch, struct iris_context *ice)
3512 {
3513 struct iris_bo *state_bo = iris_resource_bo(ice->state.unbound_tex.res);
3514
3515 iris_use_pinned_bo(batch, state_bo, false);
3516
3517 return ice->state.unbound_tex.offset;
3518 }
3519
3520 static uint32_t
3521 use_null_fb_surface(struct iris_batch *batch, struct iris_context *ice)
3522 {
3523 /* If set_framebuffer_state() was never called, fall back to 1x1x1 */
3524 if (!ice->state.null_fb.res)
3525 return use_null_surface(batch, ice);
3526
3527 struct iris_bo *state_bo = iris_resource_bo(ice->state.null_fb.res);
3528
3529 iris_use_pinned_bo(batch, state_bo, false);
3530
3531 return ice->state.null_fb.offset;
3532 }
3533
3534 /**
3535 * Add a surface to the validation list, as well as the buffer containing
3536 * the corresponding SURFACE_STATE.
3537 *
3538 * Returns the binding table entry (offset to SURFACE_STATE).
3539 */
3540 static uint32_t
3541 use_surface(struct iris_batch *batch,
3542 struct pipe_surface *p_surf,
3543 bool writeable)
3544 {
3545 struct iris_surface *surf = (void *) p_surf;
3546
3547 iris_use_pinned_bo(batch, iris_resource_bo(p_surf->texture), writeable);
3548 iris_use_pinned_bo(batch, iris_resource_bo(surf->surface_state.res), false);
3549
3550 return surf->surface_state.offset;
3551 }
3552
3553 static uint32_t
3554 use_sampler_view(struct iris_batch *batch, struct iris_sampler_view *isv)
3555 {
3556 iris_use_pinned_bo(batch, isv->res->bo, false);
3557 iris_use_pinned_bo(batch, iris_resource_bo(isv->surface_state.res), false);
3558
3559 return isv->surface_state.offset;
3560 }
3561
3562 static uint32_t
3563 use_const_buffer(struct iris_batch *batch,
3564 struct iris_context *ice,
3565 struct iris_const_buffer *cbuf)
3566 {
3567 if (!cbuf->surface_state.res)
3568 return use_null_surface(batch, ice);
3569
3570 iris_use_pinned_bo(batch, iris_resource_bo(cbuf->data.res), false);
3571 iris_use_pinned_bo(batch, iris_resource_bo(cbuf->surface_state.res), false);
3572
3573 return cbuf->surface_state.offset;
3574 }
3575
3576 static uint32_t
3577 use_ssbo(struct iris_batch *batch, struct iris_context *ice,
3578 struct iris_shader_state *shs, int i)
3579 {
3580 if (!shs->ssbo[i])
3581 return use_null_surface(batch, ice);
3582
3583 struct iris_state_ref *surf_state = &shs->ssbo_surface_state[i];
3584
3585 iris_use_pinned_bo(batch, iris_resource_bo(shs->ssbo[i]), true);
3586 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false);
3587
3588 return surf_state->offset;
3589 }
3590
3591 static uint32_t
3592 use_image(struct iris_batch *batch, struct iris_context *ice,
3593 struct iris_shader_state *shs, int i)
3594 {
3595 if (!shs->image[i].res)
3596 return use_null_surface(batch, ice);
3597
3598 struct iris_state_ref *surf_state = &shs->image[i].surface_state;
3599
3600 iris_use_pinned_bo(batch, iris_resource_bo(shs->image[i].res),
3601 shs->image[i].access & PIPE_IMAGE_ACCESS_WRITE);
3602 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false);
3603
3604 return surf_state->offset;
3605 }
3606
3607 #define push_bt_entry(addr) \
3608 assert(addr >= binder_addr); \
3609 assert(s < prog_data->binding_table.size_bytes / sizeof(uint32_t)); \
3610 if (!pin_only) bt_map[s++] = (addr) - binder_addr;
3611
3612 #define bt_assert(section, exists) \
3613 if (!pin_only) assert(prog_data->binding_table.section == \
3614 (exists) ? s : 0xd0d0d0d0)
3615
3616 /**
3617 * Populate the binding table for a given shader stage.
3618 *
3619 * This fills out the table of pointers to surfaces required by the shader,
3620 * and also adds those buffers to the validation list so the kernel can make
3621 * resident before running our batch.
3622 */
3623 static void
3624 iris_populate_binding_table(struct iris_context *ice,
3625 struct iris_batch *batch,
3626 gl_shader_stage stage,
3627 bool pin_only)
3628 {
3629 const struct iris_binder *binder = &ice->state.binder;
3630 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3631 if (!shader)
3632 return;
3633
3634 UNUSED struct brw_stage_prog_data *prog_data = shader->prog_data;
3635 struct iris_shader_state *shs = &ice->state.shaders[stage];
3636 uint32_t binder_addr = binder->bo->gtt_offset;
3637
3638 //struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
3639 uint32_t *bt_map = binder->map + binder->bt_offset[stage];
3640 int s = 0;
3641
3642 const struct shader_info *info = iris_get_shader_info(ice, stage);
3643 if (!info) {
3644 /* TCS passthrough doesn't need a binding table. */
3645 assert(stage == MESA_SHADER_TESS_CTRL);
3646 return;
3647 }
3648
3649 if (stage == MESA_SHADER_COMPUTE) {
3650 /* surface for gl_NumWorkGroups */
3651 struct iris_state_ref *grid_data = &ice->state.grid_size;
3652 struct iris_state_ref *grid_state = &ice->state.grid_surf_state;
3653 iris_use_pinned_bo(batch, iris_resource_bo(grid_data->res), false);
3654 iris_use_pinned_bo(batch, iris_resource_bo(grid_state->res), false);
3655 push_bt_entry(grid_state->offset);
3656 }
3657
3658 if (stage == MESA_SHADER_FRAGMENT) {
3659 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
3660 /* Note that cso_fb->nr_cbufs == fs_key->nr_color_regions. */
3661 if (cso_fb->nr_cbufs) {
3662 for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
3663 uint32_t addr =
3664 cso_fb->cbufs[i] ? use_surface(batch, cso_fb->cbufs[i], true)
3665 : use_null_fb_surface(batch, ice);
3666 push_bt_entry(addr);
3667 }
3668 } else {
3669 uint32_t addr = use_null_fb_surface(batch, ice);
3670 push_bt_entry(addr);
3671 }
3672 }
3673
3674 bt_assert(texture_start, info->num_textures > 0);
3675
3676 for (int i = 0; i < info->num_textures; i++) {
3677 struct iris_sampler_view *view = shs->textures[i];
3678 uint32_t addr = view ? use_sampler_view(batch, view)
3679 : use_null_surface(batch, ice);
3680 push_bt_entry(addr);
3681 }
3682
3683 bt_assert(image_start, info->num_images > 0);
3684
3685 for (int i = 0; i < info->num_images; i++) {
3686 uint32_t addr = use_image(batch, ice, shs, i);
3687 push_bt_entry(addr);
3688 }
3689
3690 const int num_ubos = iris_get_shader_num_ubos(ice, stage);
3691
3692 bt_assert(ubo_start, num_ubos > 0);
3693
3694 for (int i = 0; i < num_ubos; i++) {
3695 uint32_t addr = use_const_buffer(batch, ice, &shs->constbuf[i]);
3696 push_bt_entry(addr);
3697 }
3698
3699 bt_assert(ssbo_start, info->num_abos + info->num_ssbos > 0);
3700
3701 /* XXX: st is wasting 16 binding table slots for ABOs. Should add a cap
3702 * for changing nir_lower_atomics_to_ssbos setting and buffer_base offset
3703 * in st_atom_storagebuf.c so it'll compact them into one range, with
3704 * SSBOs starting at info->num_abos. Ideally it'd reset num_abos to 0 too
3705 */
3706 if (info->num_abos + info->num_ssbos > 0) {
3707 for (int i = 0; i < IRIS_MAX_ABOS + info->num_ssbos; i++) {
3708 uint32_t addr = use_ssbo(batch, ice, shs, i);
3709 push_bt_entry(addr);
3710 }
3711 }
3712
3713 #if 0
3714 // XXX: not implemented yet
3715 bt_assert(plane_start[1], ...);
3716 bt_assert(plane_start[2], ...);
3717 #endif
3718 }
3719
3720 static void
3721 iris_use_optional_res(struct iris_batch *batch,
3722 struct pipe_resource *res,
3723 bool writeable)
3724 {
3725 if (res) {
3726 struct iris_bo *bo = iris_resource_bo(res);
3727 iris_use_pinned_bo(batch, bo, writeable);
3728 }
3729 }
3730
3731 /* ------------------------------------------------------------------- */
3732
3733 /**
3734 * Pin any BOs which were installed by a previous batch, and restored
3735 * via the hardware logical context mechanism.
3736 *
3737 * We don't need to re-emit all state every batch - the hardware context
3738 * mechanism will save and restore it for us. This includes pointers to
3739 * various BOs...which won't exist unless we ask the kernel to pin them
3740 * by adding them to the validation list.
3741 *
3742 * We can skip buffers if we've re-emitted those packets, as we're
3743 * overwriting those stale pointers with new ones, and don't actually
3744 * refer to the old BOs.
3745 */
3746 static void
3747 iris_restore_render_saved_bos(struct iris_context *ice,
3748 struct iris_batch *batch,
3749 const struct pipe_draw_info *draw)
3750 {
3751 struct iris_genx_state *genx = ice->state.genx;
3752
3753 const uint64_t clean = ~ice->state.dirty;
3754
3755 if (clean & IRIS_DIRTY_CC_VIEWPORT) {
3756 iris_use_optional_res(batch, ice->state.last_res.cc_vp, false);
3757 }
3758
3759 if (clean & IRIS_DIRTY_SF_CL_VIEWPORT) {
3760 iris_use_optional_res(batch, ice->state.last_res.sf_cl_vp, false);
3761 }
3762
3763 if (clean & IRIS_DIRTY_BLEND_STATE) {
3764 iris_use_optional_res(batch, ice->state.last_res.blend, false);
3765 }
3766
3767 if (clean & IRIS_DIRTY_COLOR_CALC_STATE) {
3768 iris_use_optional_res(batch, ice->state.last_res.color_calc, false);
3769 }
3770
3771 if (clean & IRIS_DIRTY_SCISSOR_RECT) {
3772 iris_use_optional_res(batch, ice->state.last_res.scissor, false);
3773 }
3774
3775 if (ice->state.streamout_active && (clean & IRIS_DIRTY_SO_BUFFERS)) {
3776 for (int i = 0; i < 4; i++) {
3777 struct iris_stream_output_target *tgt =
3778 (void *) ice->state.so_target[i];
3779 if (tgt) {
3780 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
3781 true);
3782 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
3783 true);
3784 }
3785 }
3786 }
3787
3788 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3789 if (!(clean & (IRIS_DIRTY_CONSTANTS_VS << stage)))
3790 continue;
3791
3792 struct iris_shader_state *shs = &ice->state.shaders[stage];
3793 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3794
3795 if (!shader)
3796 continue;
3797
3798 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
3799
3800 for (int i = 0; i < 4; i++) {
3801 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
3802
3803 if (range->length == 0)
3804 continue;
3805
3806 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
3807 struct iris_resource *res = (void *) cbuf->data.res;
3808
3809 if (res)
3810 iris_use_pinned_bo(batch, res->bo, false);
3811 else
3812 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
3813 }
3814 }
3815
3816 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3817 if (clean & (IRIS_DIRTY_BINDINGS_VS << stage)) {
3818 /* Re-pin any buffers referred to by the binding table. */
3819 iris_populate_binding_table(ice, batch, stage, true);
3820 }
3821 }
3822
3823 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3824 struct iris_shader_state *shs = &ice->state.shaders[stage];
3825 struct pipe_resource *res = shs->sampler_table.res;
3826 if (res)
3827 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
3828 }
3829
3830 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3831 if (clean & (IRIS_DIRTY_VS << stage)) {
3832 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3833
3834 if (shader) {
3835 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
3836 iris_use_pinned_bo(batch, bo, false);
3837
3838 struct brw_stage_prog_data *prog_data = shader->prog_data;
3839
3840 if (prog_data->total_scratch > 0) {
3841 struct iris_bo *bo =
3842 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
3843 iris_use_pinned_bo(batch, bo, true);
3844 }
3845 }
3846 }
3847 }
3848
3849 if (clean & IRIS_DIRTY_DEPTH_BUFFER) {
3850 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
3851
3852 if (cso_fb->zsbuf) {
3853 struct iris_resource *zres, *sres;
3854 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
3855 &zres, &sres);
3856 if (zres) {
3857 iris_use_pinned_bo(batch, zres->bo,
3858 ice->state.depth_writes_enabled);
3859 }
3860 if (sres) {
3861 iris_use_pinned_bo(batch, sres->bo,
3862 ice->state.stencil_writes_enabled);
3863 }
3864 }
3865 }
3866
3867 if (draw->index_size == 0 && ice->state.last_res.index_buffer) {
3868 /* This draw didn't emit a new index buffer, so we are inheriting the
3869 * older index buffer. This draw didn't need it, but future ones may.
3870 */
3871 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
3872 iris_use_pinned_bo(batch, bo, false);
3873 }
3874
3875 if (clean & IRIS_DIRTY_VERTEX_BUFFERS) {
3876 uint64_t bound = ice->state.bound_vertex_buffers;
3877 while (bound) {
3878 const int i = u_bit_scan64(&bound);
3879 struct pipe_resource *res = genx->vertex_buffers[i].resource;
3880 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
3881 }
3882 }
3883 }
3884
3885 static void
3886 iris_restore_compute_saved_bos(struct iris_context *ice,
3887 struct iris_batch *batch,
3888 const struct pipe_grid_info *grid)
3889 {
3890 const uint64_t clean = ~ice->state.dirty;
3891
3892 const int stage = MESA_SHADER_COMPUTE;
3893 struct iris_shader_state *shs = &ice->state.shaders[stage];
3894
3895 if (clean & IRIS_DIRTY_CONSTANTS_CS) {
3896 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3897
3898 if (shader) {
3899 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
3900 const struct brw_ubo_range *range = &prog_data->ubo_ranges[0];
3901
3902 if (range->length > 0) {
3903 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
3904 struct iris_resource *res = (void *) cbuf->data.res;
3905
3906 if (res)
3907 iris_use_pinned_bo(batch, res->bo, false);
3908 else
3909 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
3910 }
3911 }
3912 }
3913
3914 if (clean & IRIS_DIRTY_BINDINGS_CS) {
3915 /* Re-pin any buffers referred to by the binding table. */
3916 iris_populate_binding_table(ice, batch, stage, true);
3917 }
3918
3919 struct pipe_resource *sampler_res = shs->sampler_table.res;
3920 if (sampler_res)
3921 iris_use_pinned_bo(batch, iris_resource_bo(sampler_res), false);
3922
3923 if (clean & IRIS_DIRTY_CS) {
3924 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3925
3926 if (shader) {
3927 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
3928 iris_use_pinned_bo(batch, bo, false);
3929
3930 struct brw_stage_prog_data *prog_data = shader->prog_data;
3931
3932 if (prog_data->total_scratch > 0) {
3933 struct iris_bo *bo =
3934 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
3935 iris_use_pinned_bo(batch, bo, true);
3936 }
3937 }
3938 }
3939 }
3940
3941 /**
3942 * Possibly emit STATE_BASE_ADDRESS to update Surface State Base Address.
3943 */
3944 static void
3945 iris_update_surface_base_address(struct iris_batch *batch,
3946 struct iris_binder *binder)
3947 {
3948 if (batch->last_surface_base_address == binder->bo->gtt_offset)
3949 return;
3950
3951 flush_for_state_base_change(batch);
3952
3953 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
3954 sba.SurfaceStateMOCS = MOCS_WB;
3955 sba.SurfaceStateBaseAddressModifyEnable = true;
3956 sba.SurfaceStateBaseAddress = ro_bo(binder->bo, 0);
3957 }
3958
3959 batch->last_surface_base_address = binder->bo->gtt_offset;
3960 }
3961
3962 static void
3963 iris_upload_dirty_render_state(struct iris_context *ice,
3964 struct iris_batch *batch,
3965 const struct pipe_draw_info *draw)
3966 {
3967 const uint64_t dirty = ice->state.dirty;
3968
3969 if (!(dirty & IRIS_ALL_DIRTY_FOR_RENDER))
3970 return;
3971
3972 struct iris_genx_state *genx = ice->state.genx;
3973 struct iris_binder *binder = &ice->state.binder;
3974 struct brw_wm_prog_data *wm_prog_data = (void *)
3975 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3976
3977 if (dirty & IRIS_DIRTY_CC_VIEWPORT) {
3978 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3979 uint32_t cc_vp_address;
3980
3981 /* XXX: could avoid streaming for depth_clip [0,1] case. */
3982 uint32_t *cc_vp_map =
3983 stream_state(batch, ice->state.dynamic_uploader,
3984 &ice->state.last_res.cc_vp,
3985 4 * ice->state.num_viewports *
3986 GENX(CC_VIEWPORT_length), 32, &cc_vp_address);
3987 for (int i = 0; i < ice->state.num_viewports; i++) {
3988 float zmin, zmax;
3989 util_viewport_zmin_zmax(&ice->state.viewports[i],
3990 cso_rast->clip_halfz, &zmin, &zmax);
3991 if (cso_rast->depth_clip_near)
3992 zmin = 0.0;
3993 if (cso_rast->depth_clip_far)
3994 zmax = 1.0;
3995
3996 iris_pack_state(GENX(CC_VIEWPORT), cc_vp_map, ccv) {
3997 ccv.MinimumDepth = zmin;
3998 ccv.MaximumDepth = zmax;
3999 }
4000
4001 cc_vp_map += GENX(CC_VIEWPORT_length);
4002 }
4003
4004 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
4005 ptr.CCViewportPointer = cc_vp_address;
4006 }
4007 }
4008
4009 if (dirty & IRIS_DIRTY_SF_CL_VIEWPORT) {
4010 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4011 uint32_t sf_cl_vp_address;
4012 uint32_t *vp_map =
4013 stream_state(batch, ice->state.dynamic_uploader,
4014 &ice->state.last_res.sf_cl_vp,
4015 4 * ice->state.num_viewports *
4016 GENX(SF_CLIP_VIEWPORT_length), 64, &sf_cl_vp_address);
4017
4018 for (unsigned i = 0; i < ice->state.num_viewports; i++) {
4019 const struct pipe_viewport_state *state = &ice->state.viewports[i];
4020 float gb_xmin, gb_xmax, gb_ymin, gb_ymax;
4021
4022 float vp_xmin = viewport_extent(state, 0, -1.0f);
4023 float vp_xmax = viewport_extent(state, 0, 1.0f);
4024 float vp_ymin = viewport_extent(state, 1, -1.0f);
4025 float vp_ymax = viewport_extent(state, 1, 1.0f);
4026
4027 calculate_guardband_size(cso_fb->width, cso_fb->height,
4028 state->scale[0], state->scale[1],
4029 state->translate[0], state->translate[1],
4030 &gb_xmin, &gb_xmax, &gb_ymin, &gb_ymax);
4031
4032 iris_pack_state(GENX(SF_CLIP_VIEWPORT), vp_map, vp) {
4033 vp.ViewportMatrixElementm00 = state->scale[0];
4034 vp.ViewportMatrixElementm11 = state->scale[1];
4035 vp.ViewportMatrixElementm22 = state->scale[2];
4036 vp.ViewportMatrixElementm30 = state->translate[0];
4037 vp.ViewportMatrixElementm31 = state->translate[1];
4038 vp.ViewportMatrixElementm32 = state->translate[2];
4039 vp.XMinClipGuardband = gb_xmin;
4040 vp.XMaxClipGuardband = gb_xmax;
4041 vp.YMinClipGuardband = gb_ymin;
4042 vp.YMaxClipGuardband = gb_ymax;
4043 vp.XMinViewPort = MAX2(vp_xmin, 0);
4044 vp.XMaxViewPort = MIN2(vp_xmax, cso_fb->width) - 1;
4045 vp.YMinViewPort = MAX2(vp_ymin, 0);
4046 vp.YMaxViewPort = MIN2(vp_ymax, cso_fb->height) - 1;
4047 }
4048
4049 vp_map += GENX(SF_CLIP_VIEWPORT_length);
4050 }
4051
4052 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
4053 ptr.SFClipViewportPointer = sf_cl_vp_address;
4054 }
4055 }
4056
4057 if (dirty & IRIS_DIRTY_URB) {
4058 iris_upload_urb_config(ice, batch);
4059 }
4060
4061 if (dirty & IRIS_DIRTY_BLEND_STATE) {
4062 struct iris_blend_state *cso_blend = ice->state.cso_blend;
4063 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4064 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
4065 const int header_dwords = GENX(BLEND_STATE_length);
4066 const int rt_dwords = cso_fb->nr_cbufs * GENX(BLEND_STATE_ENTRY_length);
4067 uint32_t blend_offset;
4068 uint32_t *blend_map =
4069 stream_state(batch, ice->state.dynamic_uploader,
4070 &ice->state.last_res.blend,
4071 4 * (header_dwords + rt_dwords), 64, &blend_offset);
4072
4073 uint32_t blend_state_header;
4074 iris_pack_state(GENX(BLEND_STATE), &blend_state_header, bs) {
4075 bs.AlphaTestEnable = cso_zsa->alpha.enabled;
4076 bs.AlphaTestFunction = translate_compare_func(cso_zsa->alpha.func);
4077 }
4078
4079 blend_map[0] = blend_state_header | cso_blend->blend_state[0];
4080 memcpy(&blend_map[1], &cso_blend->blend_state[1], 4 * rt_dwords);
4081
4082 iris_emit_cmd(batch, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
4083 ptr.BlendStatePointer = blend_offset;
4084 ptr.BlendStatePointerValid = true;
4085 }
4086 }
4087
4088 if (dirty & IRIS_DIRTY_COLOR_CALC_STATE) {
4089 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
4090 #if GEN_GEN == 8
4091 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
4092 #endif
4093 uint32_t cc_offset;
4094 void *cc_map =
4095 stream_state(batch, ice->state.dynamic_uploader,
4096 &ice->state.last_res.color_calc,
4097 sizeof(uint32_t) * GENX(COLOR_CALC_STATE_length),
4098 64, &cc_offset);
4099 iris_pack_state(GENX(COLOR_CALC_STATE), cc_map, cc) {
4100 cc.AlphaTestFormat = ALPHATEST_FLOAT32;
4101 cc.AlphaReferenceValueAsFLOAT32 = cso->alpha.ref_value;
4102 cc.BlendConstantColorRed = ice->state.blend_color.color[0];
4103 cc.BlendConstantColorGreen = ice->state.blend_color.color[1];
4104 cc.BlendConstantColorBlue = ice->state.blend_color.color[2];
4105 cc.BlendConstantColorAlpha = ice->state.blend_color.color[3];
4106 #if GEN_GEN == 8
4107 cc.StencilReferenceValue = p_stencil_refs->ref_value[0];
4108 cc.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
4109 #endif
4110 }
4111 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
4112 ptr.ColorCalcStatePointer = cc_offset;
4113 ptr.ColorCalcStatePointerValid = true;
4114 }
4115 }
4116
4117 /* Upload constants for TCS passthrough. */
4118 if ((dirty & IRIS_DIRTY_CONSTANTS_TCS) &&
4119 ice->shaders.prog[MESA_SHADER_TESS_CTRL] &&
4120 !ice->shaders.uncompiled[MESA_SHADER_TESS_CTRL]) {
4121 struct iris_compiled_shader *tes_shader = ice->shaders.prog[MESA_SHADER_TESS_EVAL];
4122 assert(tes_shader);
4123
4124 /* Passthrough always copies 2 vec4s, so when uploading data we ensure
4125 * it is in the right layout for TES.
4126 */
4127 float hdr[8] = {};
4128 struct brw_tes_prog_data *tes_prog_data = (void *) tes_shader->prog_data;
4129 switch (tes_prog_data->domain) {
4130 case BRW_TESS_DOMAIN_QUAD:
4131 for (int i = 0; i < 4; i++)
4132 hdr[7 - i] = ice->state.default_outer_level[i];
4133 hdr[3] = ice->state.default_inner_level[0];
4134 hdr[2] = ice->state.default_inner_level[1];
4135 break;
4136 case BRW_TESS_DOMAIN_TRI:
4137 for (int i = 0; i < 3; i++)
4138 hdr[7 - i] = ice->state.default_outer_level[i];
4139 hdr[4] = ice->state.default_inner_level[0];
4140 break;
4141 case BRW_TESS_DOMAIN_ISOLINE:
4142 hdr[7] = ice->state.default_outer_level[1];
4143 hdr[6] = ice->state.default_outer_level[0];
4144 break;
4145 }
4146
4147 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_TESS_CTRL];
4148 struct iris_const_buffer *cbuf = &shs->constbuf[0];
4149 u_upload_data(ice->ctx.const_uploader, 0, sizeof(hdr), 32,
4150 &hdr[0], &cbuf->data.offset,
4151 &cbuf->data.res);
4152 }
4153
4154 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4155 if (!(dirty & (IRIS_DIRTY_CONSTANTS_VS << stage)))
4156 continue;
4157
4158 struct iris_shader_state *shs = &ice->state.shaders[stage];
4159 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4160
4161 if (!shader)
4162 continue;
4163
4164 if (shs->cbuf0_needs_upload)
4165 upload_uniforms(ice, stage);
4166
4167 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4168
4169 iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_VS), pkt) {
4170 pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
4171 if (prog_data) {
4172 /* The Skylake PRM contains the following restriction:
4173 *
4174 * "The driver must ensure The following case does not occur
4175 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
4176 * buffer 3 read length equal to zero committed followed by a
4177 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
4178 * zero committed."
4179 *
4180 * To avoid this, we program the buffers in the highest slots.
4181 * This way, slot 0 is only used if slot 3 is also used.
4182 */
4183 int n = 3;
4184
4185 for (int i = 3; i >= 0; i--) {
4186 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4187
4188 if (range->length == 0)
4189 continue;
4190
4191 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
4192 struct iris_resource *res = (void *) cbuf->data.res;
4193
4194 assert(cbuf->data.offset % 32 == 0);
4195
4196 pkt.ConstantBody.ReadLength[n] = range->length;
4197 pkt.ConstantBody.Buffer[n] =
4198 res ? ro_bo(res->bo, range->start * 32 + cbuf->data.offset)
4199 : ro_bo(batch->screen->workaround_bo, 0);
4200 n--;
4201 }
4202 }
4203 }
4204 }
4205
4206 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4207 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4208 iris_emit_cmd(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), ptr) {
4209 ptr._3DCommandSubOpcode = 38 + stage;
4210 ptr.PointertoVSBindingTable = binder->bt_offset[stage];
4211 }
4212 }
4213 }
4214
4215 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4216 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4217 iris_populate_binding_table(ice, batch, stage, false);
4218 }
4219 }
4220
4221 if (ice->state.need_border_colors)
4222 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
4223
4224 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4225 if (!(dirty & (IRIS_DIRTY_SAMPLER_STATES_VS << stage)) ||
4226 !ice->shaders.prog[stage])
4227 continue;
4228
4229 struct iris_shader_state *shs = &ice->state.shaders[stage];
4230 struct pipe_resource *res = shs->sampler_table.res;
4231 if (res)
4232 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4233
4234 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
4235 ptr._3DCommandSubOpcode = 43 + stage;
4236 ptr.PointertoVSSamplerState = shs->sampler_table.offset;
4237 }
4238 }
4239
4240 if (dirty & IRIS_DIRTY_MULTISAMPLE) {
4241 iris_emit_cmd(batch, GENX(3DSTATE_MULTISAMPLE), ms) {
4242 ms.PixelLocation =
4243 ice->state.cso_rast->half_pixel_center ? CENTER : UL_CORNER;
4244 if (ice->state.framebuffer.samples > 0)
4245 ms.NumberofMultisamples = ffs(ice->state.framebuffer.samples) - 1;
4246 }
4247 }
4248
4249 if (dirty & IRIS_DIRTY_SAMPLE_MASK) {
4250 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_MASK), ms) {
4251 ms.SampleMask = MAX2(ice->state.sample_mask, 1);
4252 }
4253 }
4254
4255 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4256 if (!(dirty & (IRIS_DIRTY_VS << stage)))
4257 continue;
4258
4259 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4260
4261 if (shader) {
4262 struct iris_resource *cache = (void *) shader->assembly.res;
4263 iris_use_pinned_bo(batch, cache->bo, false);
4264 iris_batch_emit(batch, shader->derived_data,
4265 iris_derived_program_state_size(stage));
4266 } else {
4267 if (stage == MESA_SHADER_TESS_EVAL) {
4268 iris_emit_cmd(batch, GENX(3DSTATE_HS), hs);
4269 iris_emit_cmd(batch, GENX(3DSTATE_TE), te);
4270 iris_emit_cmd(batch, GENX(3DSTATE_DS), ds);
4271 } else if (stage == MESA_SHADER_GEOMETRY) {
4272 iris_emit_cmd(batch, GENX(3DSTATE_GS), gs);
4273 }
4274 }
4275 }
4276
4277 if (ice->state.streamout_active) {
4278 if (dirty & IRIS_DIRTY_SO_BUFFERS) {
4279 iris_batch_emit(batch, genx->so_buffers,
4280 4 * 4 * GENX(3DSTATE_SO_BUFFER_length));
4281 for (int i = 0; i < 4; i++) {
4282 struct iris_stream_output_target *tgt =
4283 (void *) ice->state.so_target[i];
4284 if (tgt) {
4285 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
4286 true);
4287 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
4288 true);
4289 }
4290 }
4291 }
4292
4293 if ((dirty & IRIS_DIRTY_SO_DECL_LIST) && ice->state.streamout) {
4294 uint32_t *decl_list =
4295 ice->state.streamout + GENX(3DSTATE_STREAMOUT_length);
4296 iris_batch_emit(batch, decl_list, 4 * ((decl_list[0] & 0xff) + 2));
4297 }
4298
4299 if (dirty & IRIS_DIRTY_STREAMOUT) {
4300 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4301
4302 uint32_t dynamic_sol[GENX(3DSTATE_STREAMOUT_length)];
4303 iris_pack_command(GENX(3DSTATE_STREAMOUT), dynamic_sol, sol) {
4304 sol.SOFunctionEnable = true;
4305 sol.SOStatisticsEnable = true;
4306
4307 sol.RenderingDisable = cso_rast->rasterizer_discard &&
4308 !ice->state.prims_generated_query_active;
4309 sol.ReorderMode = cso_rast->flatshade_first ? LEADING : TRAILING;
4310 }
4311
4312 assert(ice->state.streamout);
4313
4314 iris_emit_merge(batch, ice->state.streamout, dynamic_sol,
4315 GENX(3DSTATE_STREAMOUT_length));
4316 }
4317 } else {
4318 if (dirty & IRIS_DIRTY_STREAMOUT) {
4319 iris_emit_cmd(batch, GENX(3DSTATE_STREAMOUT), sol);
4320 }
4321 }
4322
4323 if (dirty & IRIS_DIRTY_CLIP) {
4324 struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4325 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4326
4327 uint32_t dynamic_clip[GENX(3DSTATE_CLIP_length)];
4328 iris_pack_command(GENX(3DSTATE_CLIP), &dynamic_clip, cl) {
4329 cl.StatisticsEnable = ice->state.statistics_counters_enabled;
4330 cl.ClipMode = cso_rast->rasterizer_discard ? CLIPMODE_REJECT_ALL
4331 : CLIPMODE_NORMAL;
4332 if (wm_prog_data->barycentric_interp_modes &
4333 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
4334 cl.NonPerspectiveBarycentricEnable = true;
4335
4336 cl.ForceZeroRTAIndexEnable = cso_fb->layers == 0;
4337 cl.MaximumVPIndex = ice->state.num_viewports - 1;
4338 }
4339 iris_emit_merge(batch, cso_rast->clip, dynamic_clip,
4340 ARRAY_SIZE(cso_rast->clip));
4341 }
4342
4343 if (dirty & IRIS_DIRTY_RASTER) {
4344 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4345 iris_batch_emit(batch, cso->raster, sizeof(cso->raster));
4346 iris_batch_emit(batch, cso->sf, sizeof(cso->sf));
4347
4348 }
4349
4350 if (dirty & IRIS_DIRTY_WM) {
4351 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4352 uint32_t dynamic_wm[GENX(3DSTATE_WM_length)];
4353
4354 iris_pack_command(GENX(3DSTATE_WM), &dynamic_wm, wm) {
4355 wm.StatisticsEnable = ice->state.statistics_counters_enabled;
4356
4357 wm.BarycentricInterpolationMode =
4358 wm_prog_data->barycentric_interp_modes;
4359
4360 if (wm_prog_data->early_fragment_tests)
4361 wm.EarlyDepthStencilControl = EDSC_PREPS;
4362 else if (wm_prog_data->has_side_effects)
4363 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
4364 }
4365 iris_emit_merge(batch, cso->wm, dynamic_wm, ARRAY_SIZE(cso->wm));
4366 }
4367
4368 if (dirty & IRIS_DIRTY_SBE) {
4369 iris_emit_sbe(batch, ice);
4370 }
4371
4372 if (dirty & IRIS_DIRTY_PS_BLEND) {
4373 struct iris_blend_state *cso_blend = ice->state.cso_blend;
4374 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
4375 uint32_t dynamic_pb[GENX(3DSTATE_PS_BLEND_length)];
4376 iris_pack_command(GENX(3DSTATE_PS_BLEND), &dynamic_pb, pb) {
4377 pb.HasWriteableRT = true; // XXX: comes from somewhere :(
4378 pb.AlphaTestEnable = cso_zsa->alpha.enabled;
4379 }
4380
4381 iris_emit_merge(batch, cso_blend->ps_blend, dynamic_pb,
4382 ARRAY_SIZE(cso_blend->ps_blend));
4383 }
4384
4385 if (dirty & IRIS_DIRTY_WM_DEPTH_STENCIL) {
4386 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
4387 #if GEN_GEN >= 9
4388 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
4389 uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
4390 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
4391 wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
4392 wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
4393 }
4394 iris_emit_merge(batch, cso->wmds, stencil_refs, ARRAY_SIZE(cso->wmds));
4395 #else
4396 iris_batch_emit(batch, cso->wmds, sizeof(cso->wmds));
4397 #endif
4398 }
4399
4400 if (dirty & IRIS_DIRTY_SCISSOR_RECT) {
4401 uint32_t scissor_offset =
4402 emit_state(batch, ice->state.dynamic_uploader,
4403 &ice->state.last_res.scissor,
4404 ice->state.scissors,
4405 sizeof(struct pipe_scissor_state) *
4406 ice->state.num_viewports, 32);
4407
4408 iris_emit_cmd(batch, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
4409 ptr.ScissorRectPointer = scissor_offset;
4410 }
4411 }
4412
4413 if (dirty & IRIS_DIRTY_DEPTH_BUFFER) {
4414 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4415 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
4416
4417 iris_batch_emit(batch, cso_z->packets, sizeof(cso_z->packets));
4418
4419 if (cso_fb->zsbuf) {
4420 struct iris_resource *zres, *sres;
4421 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
4422 &zres, &sres);
4423 if (zres) {
4424 iris_use_pinned_bo(batch, zres->bo,
4425 ice->state.depth_writes_enabled);
4426 }
4427
4428 if (sres) {
4429 iris_use_pinned_bo(batch, sres->bo,
4430 ice->state.stencil_writes_enabled);
4431 }
4432 }
4433 }
4434
4435 if (dirty & IRIS_DIRTY_POLYGON_STIPPLE) {
4436 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
4437 for (int i = 0; i < 32; i++) {
4438 poly.PatternRow[i] = ice->state.poly_stipple.stipple[i];
4439 }
4440 }
4441 }
4442
4443 if (dirty & IRIS_DIRTY_LINE_STIPPLE) {
4444 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4445 iris_batch_emit(batch, cso->line_stipple, sizeof(cso->line_stipple));
4446 }
4447
4448 if (dirty & IRIS_DIRTY_VF_TOPOLOGY) {
4449 iris_emit_cmd(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
4450 topo.PrimitiveTopologyType =
4451 translate_prim_type(draw->mode, draw->vertices_per_patch);
4452 }
4453 }
4454
4455 if (dirty & IRIS_DIRTY_VERTEX_BUFFERS) {
4456 int count = util_bitcount64(ice->state.bound_vertex_buffers);
4457
4458 if (count) {
4459 /* The VF cache designers cut corners, and made the cache key's
4460 * <VertexBufferIndex, Memory Address> tuple only consider the bottom
4461 * 32 bits of the address. If you have two vertex buffers which get
4462 * placed exactly 4 GiB apart and use them in back-to-back draw calls,
4463 * you can get collisions (even within a single batch).
4464 *
4465 * So, we need to do a VF cache invalidate if the buffer for a VB
4466 * slot slot changes [48:32] address bits from the previous time.
4467 */
4468 unsigned flush_flags = 0;
4469
4470 uint64_t bound = ice->state.bound_vertex_buffers;
4471 while (bound) {
4472 const int i = u_bit_scan64(&bound);
4473 uint16_t high_bits = 0;
4474
4475 struct iris_resource *res =
4476 (void *) genx->vertex_buffers[i].resource;
4477 if (res) {
4478 iris_use_pinned_bo(batch, res->bo, false);
4479
4480 high_bits = res->bo->gtt_offset >> 32ull;
4481 if (high_bits != ice->state.last_vbo_high_bits[i]) {
4482 flush_flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
4483 ice->state.last_vbo_high_bits[i] = high_bits;
4484 }
4485
4486 /* If the buffer was written to by streamout, we may need
4487 * to stall so those writes land and become visible to the
4488 * vertex fetcher.
4489 *
4490 * TODO: This may stall more than necessary.
4491 */
4492 if (res->bind_history & PIPE_BIND_STREAM_OUTPUT)
4493 flush_flags |= PIPE_CONTROL_CS_STALL;
4494 }
4495 }
4496
4497 if (flush_flags)
4498 iris_emit_pipe_control_flush(batch, flush_flags);
4499
4500 const unsigned vb_dwords = GENX(VERTEX_BUFFER_STATE_length);
4501
4502 uint32_t *map =
4503 iris_get_command_space(batch, 4 * (1 + vb_dwords * count));
4504 _iris_pack_command(batch, GENX(3DSTATE_VERTEX_BUFFERS), map, vb) {
4505 vb.DWordLength = (vb_dwords * count + 1) - 2;
4506 }
4507 map += 1;
4508
4509 bound = ice->state.bound_vertex_buffers;
4510 while (bound) {
4511 const int i = u_bit_scan64(&bound);
4512 memcpy(map, genx->vertex_buffers[i].state,
4513 sizeof(uint32_t) * vb_dwords);
4514 map += vb_dwords;
4515 }
4516 }
4517 }
4518
4519 if (dirty & IRIS_DIRTY_VERTEX_ELEMENTS) {
4520 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
4521 const unsigned entries = MAX2(cso->count, 1);
4522 iris_batch_emit(batch, cso->vertex_elements, sizeof(uint32_t) *
4523 (1 + entries * GENX(VERTEX_ELEMENT_STATE_length)));
4524 iris_batch_emit(batch, cso->vf_instancing, sizeof(uint32_t) *
4525 entries * GENX(3DSTATE_VF_INSTANCING_length));
4526 }
4527
4528 if (dirty & IRIS_DIRTY_VF_SGVS) {
4529 const struct brw_vs_prog_data *vs_prog_data = (void *)
4530 ice->shaders.prog[MESA_SHADER_VERTEX]->prog_data;
4531 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
4532
4533 iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS), sgv) {
4534 if (vs_prog_data->uses_vertexid) {
4535 sgv.VertexIDEnable = true;
4536 sgv.VertexIDComponentNumber = 2;
4537 sgv.VertexIDElementOffset = cso->count;
4538 }
4539
4540 if (vs_prog_data->uses_instanceid) {
4541 sgv.InstanceIDEnable = true;
4542 sgv.InstanceIDComponentNumber = 3;
4543 sgv.InstanceIDElementOffset = cso->count;
4544 }
4545 }
4546 }
4547
4548 if (dirty & IRIS_DIRTY_VF) {
4549 iris_emit_cmd(batch, GENX(3DSTATE_VF), vf) {
4550 if (draw->primitive_restart) {
4551 vf.IndexedDrawCutIndexEnable = true;
4552 vf.CutIndex = draw->restart_index;
4553 }
4554 }
4555 }
4556
4557 // XXX: Gen8 - PMA fix
4558 }
4559
4560 static void
4561 iris_upload_render_state(struct iris_context *ice,
4562 struct iris_batch *batch,
4563 const struct pipe_draw_info *draw)
4564 {
4565 /* Always pin the binder. If we're emitting new binding table pointers,
4566 * we need it. If not, we're probably inheriting old tables via the
4567 * context, and need it anyway. Since true zero-bindings cases are
4568 * practically non-existent, just pin it and avoid last_res tracking.
4569 */
4570 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
4571
4572 if (!batch->contains_draw) {
4573 iris_restore_render_saved_bos(ice, batch, draw);
4574 batch->contains_draw = true;
4575 }
4576
4577 iris_upload_dirty_render_state(ice, batch, draw);
4578
4579 if (draw->index_size > 0) {
4580 unsigned offset;
4581
4582 if (draw->has_user_indices) {
4583 u_upload_data(ice->ctx.stream_uploader, 0,
4584 draw->count * draw->index_size, 4, draw->index.user,
4585 &offset, &ice->state.last_res.index_buffer);
4586 } else {
4587 struct iris_resource *res = (void *) draw->index.resource;
4588 res->bind_history |= PIPE_BIND_INDEX_BUFFER;
4589
4590 pipe_resource_reference(&ice->state.last_res.index_buffer,
4591 draw->index.resource);
4592 offset = 0;
4593 }
4594
4595 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
4596
4597 iris_emit_cmd(batch, GENX(3DSTATE_INDEX_BUFFER), ib) {
4598 ib.IndexFormat = draw->index_size >> 1;
4599 ib.MOCS = mocs(bo);
4600 ib.BufferSize = bo->size;
4601 ib.BufferStartingAddress = ro_bo(bo, offset);
4602 }
4603
4604 /* The VF cache key only uses 32-bits, see vertex buffer comment above */
4605 uint16_t high_bits = bo->gtt_offset >> 32ull;
4606 if (high_bits != ice->state.last_index_bo_high_bits) {
4607 iris_emit_pipe_control_flush(batch, PIPE_CONTROL_VF_CACHE_INVALIDATE);
4608 ice->state.last_index_bo_high_bits = high_bits;
4609 }
4610 }
4611
4612 #define _3DPRIM_END_OFFSET 0x2420
4613 #define _3DPRIM_START_VERTEX 0x2430
4614 #define _3DPRIM_VERTEX_COUNT 0x2434
4615 #define _3DPRIM_INSTANCE_COUNT 0x2438
4616 #define _3DPRIM_START_INSTANCE 0x243C
4617 #define _3DPRIM_BASE_VERTEX 0x2440
4618
4619 if (draw->indirect) {
4620 /* We don't support this MultidrawIndirect. */
4621 assert(!draw->indirect->indirect_draw_count);
4622
4623 struct iris_bo *bo = iris_resource_bo(draw->indirect->buffer);
4624 assert(bo);
4625
4626 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4627 lrm.RegisterAddress = _3DPRIM_VERTEX_COUNT;
4628 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 0);
4629 }
4630 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4631 lrm.RegisterAddress = _3DPRIM_INSTANCE_COUNT;
4632 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 4);
4633 }
4634 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4635 lrm.RegisterAddress = _3DPRIM_START_VERTEX;
4636 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 8);
4637 }
4638 if (draw->index_size) {
4639 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4640 lrm.RegisterAddress = _3DPRIM_BASE_VERTEX;
4641 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
4642 }
4643 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4644 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
4645 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 16);
4646 }
4647 } else {
4648 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4649 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
4650 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
4651 }
4652 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
4653 lri.RegisterOffset = _3DPRIM_BASE_VERTEX;
4654 lri.DataDWord = 0;
4655 }
4656 }
4657 } else if (draw->count_from_stream_output) {
4658 struct iris_stream_output_target *so =
4659 (void *) draw->count_from_stream_output;
4660
4661 // XXX: avoid if possible
4662 iris_emit_pipe_control_flush(batch, PIPE_CONTROL_CS_STALL);
4663
4664 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4665 lrm.RegisterAddress = CS_GPR(0);
4666 lrm.MemoryAddress =
4667 ro_bo(iris_resource_bo(so->offset.res), so->offset.offset);
4668 }
4669 iris_math_div32_gpr0(ice, batch, so->stride);
4670 _iris_emit_lrr(batch, _3DPRIM_VERTEX_COUNT, CS_GPR(0));
4671
4672 _iris_emit_lri(batch, _3DPRIM_START_VERTEX, 0);
4673 _iris_emit_lri(batch, _3DPRIM_BASE_VERTEX, 0);
4674 _iris_emit_lri(batch, _3DPRIM_START_INSTANCE, 0);
4675 _iris_emit_lri(batch, _3DPRIM_INSTANCE_COUNT, draw->instance_count);
4676 }
4677
4678 iris_emit_cmd(batch, GENX(3DPRIMITIVE), prim) {
4679 prim.VertexAccessType = draw->index_size > 0 ? RANDOM : SEQUENTIAL;
4680 prim.PredicateEnable =
4681 ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT;
4682
4683 if (draw->indirect || draw->count_from_stream_output) {
4684 prim.IndirectParameterEnable = true;
4685 } else {
4686 prim.StartInstanceLocation = draw->start_instance;
4687 prim.InstanceCount = draw->instance_count;
4688 prim.VertexCountPerInstance = draw->count;
4689
4690 // XXX: this is probably bonkers.
4691 prim.StartVertexLocation = draw->start;
4692
4693 if (draw->index_size) {
4694 prim.BaseVertexLocation += draw->index_bias;
4695 } else {
4696 prim.StartVertexLocation += draw->index_bias;
4697 }
4698
4699 //prim.BaseVertexLocation = ...;
4700 }
4701 }
4702 }
4703
4704 static void
4705 iris_upload_compute_state(struct iris_context *ice,
4706 struct iris_batch *batch,
4707 const struct pipe_grid_info *grid)
4708 {
4709 const uint64_t dirty = ice->state.dirty;
4710 struct iris_screen *screen = batch->screen;
4711 const struct gen_device_info *devinfo = &screen->devinfo;
4712 struct iris_binder *binder = &ice->state.binder;
4713 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
4714 struct iris_compiled_shader *shader =
4715 ice->shaders.prog[MESA_SHADER_COMPUTE];
4716 struct brw_stage_prog_data *prog_data = shader->prog_data;
4717 struct brw_cs_prog_data *cs_prog_data = (void *) prog_data;
4718
4719 /* Always pin the binder. If we're emitting new binding table pointers,
4720 * we need it. If not, we're probably inheriting old tables via the
4721 * context, and need it anyway. Since true zero-bindings cases are
4722 * practically non-existent, just pin it and avoid last_res tracking.
4723 */
4724 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
4725
4726 if ((dirty & IRIS_DIRTY_CONSTANTS_CS) && shs->cbuf0_needs_upload)
4727 upload_uniforms(ice, MESA_SHADER_COMPUTE);
4728
4729 if (dirty & IRIS_DIRTY_BINDINGS_CS)
4730 iris_populate_binding_table(ice, batch, MESA_SHADER_COMPUTE, false);
4731
4732 iris_use_optional_res(batch, shs->sampler_table.res, false);
4733 iris_use_pinned_bo(batch, iris_resource_bo(shader->assembly.res), false);
4734
4735 if (ice->state.need_border_colors)
4736 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
4737
4738 if (dirty & IRIS_DIRTY_CS) {
4739 /* The MEDIA_VFE_STATE documentation for Gen8+ says:
4740 *
4741 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
4742 * the only bits that are changed are scoreboard related: Scoreboard
4743 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard Delta. For
4744 * these scoreboard related states, a MEDIA_STATE_FLUSH is
4745 * sufficient."
4746 */
4747 iris_emit_pipe_control_flush(batch, PIPE_CONTROL_CS_STALL);
4748
4749 iris_emit_cmd(batch, GENX(MEDIA_VFE_STATE), vfe) {
4750 if (prog_data->total_scratch) {
4751 struct iris_bo *bo =
4752 iris_get_scratch_space(ice, prog_data->total_scratch,
4753 MESA_SHADER_COMPUTE);
4754 vfe.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
4755 vfe.ScratchSpaceBasePointer = rw_bo(bo, 0);
4756 }
4757
4758 vfe.MaximumNumberofThreads =
4759 devinfo->max_cs_threads * screen->subslice_total - 1;
4760 #if GEN_GEN < 11
4761 vfe.ResetGatewayTimer =
4762 Resettingrelativetimerandlatchingtheglobaltimestamp;
4763 #endif
4764 #if GEN_GEN == 8
4765 vfe.BypassGatewayControl = true;
4766 #endif
4767 vfe.NumberofURBEntries = 2;
4768 vfe.URBEntryAllocationSize = 2;
4769
4770 // XXX: Use Indirect Payload Storage?
4771 vfe.CURBEAllocationSize =
4772 ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
4773 cs_prog_data->push.cross_thread.regs, 2);
4774 }
4775 }
4776
4777 // XXX: hack iris_set_constant_buffers to upload these thread counts
4778 // XXX: along with regular uniforms for compute shaders, somehow.
4779
4780 uint32_t curbe_data_offset = 0;
4781 // TODO: Move subgroup-id into uniforms ubo so we can push uniforms
4782 assert(cs_prog_data->push.cross_thread.dwords == 0 &&
4783 cs_prog_data->push.per_thread.dwords == 1 &&
4784 cs_prog_data->base.param[0] == BRW_PARAM_BUILTIN_SUBGROUP_ID);
4785 struct pipe_resource *curbe_data_res = NULL;
4786 uint32_t *curbe_data_map =
4787 stream_state(batch, ice->state.dynamic_uploader, &curbe_data_res,
4788 ALIGN(cs_prog_data->push.total.size, 64), 64,
4789 &curbe_data_offset);
4790 assert(curbe_data_map);
4791 memset(curbe_data_map, 0x5a, ALIGN(cs_prog_data->push.total.size, 64));
4792 iris_fill_cs_push_const_buffer(cs_prog_data, curbe_data_map);
4793
4794 if (dirty & IRIS_DIRTY_CONSTANTS_CS) {
4795 iris_emit_cmd(batch, GENX(MEDIA_CURBE_LOAD), curbe) {
4796 curbe.CURBETotalDataLength =
4797 ALIGN(cs_prog_data->push.total.size, 64);
4798 curbe.CURBEDataStartAddress = curbe_data_offset;
4799 }
4800 }
4801
4802 if (dirty & (IRIS_DIRTY_SAMPLER_STATES_CS |
4803 IRIS_DIRTY_BINDINGS_CS |
4804 IRIS_DIRTY_CONSTANTS_CS |
4805 IRIS_DIRTY_CS)) {
4806 struct pipe_resource *desc_res = NULL;
4807 uint32_t desc[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
4808
4809 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), desc, idd) {
4810 idd.SamplerStatePointer = shs->sampler_table.offset;
4811 idd.BindingTablePointer = binder->bt_offset[MESA_SHADER_COMPUTE];
4812 }
4813
4814 for (int i = 0; i < GENX(INTERFACE_DESCRIPTOR_DATA_length); i++)
4815 desc[i] |= ((uint32_t *) shader->derived_data)[i];
4816
4817 iris_emit_cmd(batch, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
4818 load.InterfaceDescriptorTotalLength =
4819 GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
4820 load.InterfaceDescriptorDataStartAddress =
4821 emit_state(batch, ice->state.dynamic_uploader,
4822 &desc_res, desc, sizeof(desc), 32);
4823 }
4824
4825 pipe_resource_reference(&desc_res, NULL);
4826 }
4827
4828 uint32_t group_size = grid->block[0] * grid->block[1] * grid->block[2];
4829 uint32_t remainder = group_size & (cs_prog_data->simd_size - 1);
4830 uint32_t right_mask;
4831
4832 if (remainder > 0)
4833 right_mask = ~0u >> (32 - remainder);
4834 else
4835 right_mask = ~0u >> (32 - cs_prog_data->simd_size);
4836
4837 #define GPGPU_DISPATCHDIMX 0x2500
4838 #define GPGPU_DISPATCHDIMY 0x2504
4839 #define GPGPU_DISPATCHDIMZ 0x2508
4840
4841 if (grid->indirect) {
4842 struct iris_state_ref *grid_size = &ice->state.grid_size;
4843 struct iris_bo *bo = iris_resource_bo(grid_size->res);
4844 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4845 lrm.RegisterAddress = GPGPU_DISPATCHDIMX;
4846 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 0);
4847 }
4848 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4849 lrm.RegisterAddress = GPGPU_DISPATCHDIMY;
4850 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 4);
4851 }
4852 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4853 lrm.RegisterAddress = GPGPU_DISPATCHDIMZ;
4854 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 8);
4855 }
4856 }
4857
4858 iris_emit_cmd(batch, GENX(GPGPU_WALKER), ggw) {
4859 ggw.IndirectParameterEnable = grid->indirect != NULL;
4860 ggw.SIMDSize = cs_prog_data->simd_size / 16;
4861 ggw.ThreadDepthCounterMaximum = 0;
4862 ggw.ThreadHeightCounterMaximum = 0;
4863 ggw.ThreadWidthCounterMaximum = cs_prog_data->threads - 1;
4864 ggw.ThreadGroupIDXDimension = grid->grid[0];
4865 ggw.ThreadGroupIDYDimension = grid->grid[1];
4866 ggw.ThreadGroupIDZDimension = grid->grid[2];
4867 ggw.RightExecutionMask = right_mask;
4868 ggw.BottomExecutionMask = 0xffffffff;
4869 }
4870
4871 iris_emit_cmd(batch, GENX(MEDIA_STATE_FLUSH), msf);
4872
4873 if (!batch->contains_draw) {
4874 iris_restore_compute_saved_bos(ice, batch, grid);
4875 batch->contains_draw = true;
4876 }
4877 }
4878
4879 /**
4880 * State module teardown.
4881 */
4882 static void
4883 iris_destroy_state(struct iris_context *ice)
4884 {
4885 struct iris_genx_state *genx = ice->state.genx;
4886
4887 uint64_t bound_vbs = ice->state.bound_vertex_buffers;
4888 while (bound_vbs) {
4889 const int i = u_bit_scan64(&bound_vbs);
4890 pipe_resource_reference(&genx->vertex_buffers[i].resource, NULL);
4891 }
4892
4893 // XXX: unreference resources/surfaces.
4894 for (unsigned i = 0; i < ice->state.framebuffer.nr_cbufs; i++) {
4895 pipe_surface_reference(&ice->state.framebuffer.cbufs[i], NULL);
4896 }
4897 pipe_surface_reference(&ice->state.framebuffer.zsbuf, NULL);
4898
4899 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4900 struct iris_shader_state *shs = &ice->state.shaders[stage];
4901 pipe_resource_reference(&shs->sampler_table.res, NULL);
4902 }
4903 free(ice->state.genx);
4904
4905 pipe_resource_reference(&ice->state.unbound_tex.res, NULL);
4906
4907 pipe_resource_reference(&ice->state.last_res.cc_vp, NULL);
4908 pipe_resource_reference(&ice->state.last_res.sf_cl_vp, NULL);
4909 pipe_resource_reference(&ice->state.last_res.color_calc, NULL);
4910 pipe_resource_reference(&ice->state.last_res.scissor, NULL);
4911 pipe_resource_reference(&ice->state.last_res.blend, NULL);
4912 pipe_resource_reference(&ice->state.last_res.index_buffer, NULL);
4913 }
4914
4915 /* ------------------------------------------------------------------- */
4916
4917 static void
4918 iris_load_register_reg32(struct iris_batch *batch, uint32_t dst,
4919 uint32_t src)
4920 {
4921 _iris_emit_lrr(batch, dst, src);
4922 }
4923
4924 static void
4925 iris_load_register_reg64(struct iris_batch *batch, uint32_t dst,
4926 uint32_t src)
4927 {
4928 _iris_emit_lrr(batch, dst, src);
4929 _iris_emit_lrr(batch, dst + 4, src + 4);
4930 }
4931
4932 static void
4933 iris_load_register_imm32(struct iris_batch *batch, uint32_t reg,
4934 uint32_t val)
4935 {
4936 _iris_emit_lri(batch, reg, val);
4937 }
4938
4939 static void
4940 iris_load_register_imm64(struct iris_batch *batch, uint32_t reg,
4941 uint64_t val)
4942 {
4943 _iris_emit_lri(batch, reg + 0, val & 0xffffffff);
4944 _iris_emit_lri(batch, reg + 4, val >> 32);
4945 }
4946
4947 /**
4948 * Emit MI_LOAD_REGISTER_MEM to load a 32-bit MMIO register from a buffer.
4949 */
4950 static void
4951 iris_load_register_mem32(struct iris_batch *batch, uint32_t reg,
4952 struct iris_bo *bo, uint32_t offset)
4953 {
4954 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4955 lrm.RegisterAddress = reg;
4956 lrm.MemoryAddress = ro_bo(bo, offset);
4957 }
4958 }
4959
4960 /**
4961 * Load a 64-bit value from a buffer into a MMIO register via
4962 * two MI_LOAD_REGISTER_MEM commands.
4963 */
4964 static void
4965 iris_load_register_mem64(struct iris_batch *batch, uint32_t reg,
4966 struct iris_bo *bo, uint32_t offset)
4967 {
4968 iris_load_register_mem32(batch, reg + 0, bo, offset + 0);
4969 iris_load_register_mem32(batch, reg + 4, bo, offset + 4);
4970 }
4971
4972 static void
4973 iris_store_register_mem32(struct iris_batch *batch, uint32_t reg,
4974 struct iris_bo *bo, uint32_t offset,
4975 bool predicated)
4976 {
4977 iris_emit_cmd(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
4978 srm.RegisterAddress = reg;
4979 srm.MemoryAddress = rw_bo(bo, offset);
4980 srm.PredicateEnable = predicated;
4981 }
4982 }
4983
4984 static void
4985 iris_store_register_mem64(struct iris_batch *batch, uint32_t reg,
4986 struct iris_bo *bo, uint32_t offset,
4987 bool predicated)
4988 {
4989 iris_store_register_mem32(batch, reg + 0, bo, offset + 0, predicated);
4990 iris_store_register_mem32(batch, reg + 4, bo, offset + 4, predicated);
4991 }
4992
4993 static void
4994 iris_store_data_imm32(struct iris_batch *batch,
4995 struct iris_bo *bo, uint32_t offset,
4996 uint32_t imm)
4997 {
4998 iris_emit_cmd(batch, GENX(MI_STORE_DATA_IMM), sdi) {
4999 sdi.Address = rw_bo(bo, offset);
5000 sdi.ImmediateData = imm;
5001 }
5002 }
5003
5004 static void
5005 iris_store_data_imm64(struct iris_batch *batch,
5006 struct iris_bo *bo, uint32_t offset,
5007 uint64_t imm)
5008 {
5009 /* Can't use iris_emit_cmd because MI_STORE_DATA_IMM has a length of
5010 * 2 in genxml but it's actually variable length and we need 5 DWords.
5011 */
5012 void *map = iris_get_command_space(batch, 4 * 5);
5013 _iris_pack_command(batch, GENX(MI_STORE_DATA_IMM), map, sdi) {
5014 sdi.DWordLength = 5 - 2;
5015 sdi.Address = rw_bo(bo, offset);
5016 sdi.ImmediateData = imm;
5017 }
5018 }
5019
5020 static void
5021 iris_copy_mem_mem(struct iris_batch *batch,
5022 struct iris_bo *dst_bo, uint32_t dst_offset,
5023 struct iris_bo *src_bo, uint32_t src_offset,
5024 unsigned bytes)
5025 {
5026 /* MI_COPY_MEM_MEM operates on DWords. */
5027 assert(bytes % 4 == 0);
5028 assert(dst_offset % 4 == 0);
5029 assert(src_offset % 4 == 0);
5030
5031 for (unsigned i = 0; i < bytes; i += 4) {
5032 iris_emit_cmd(batch, GENX(MI_COPY_MEM_MEM), cp) {
5033 cp.DestinationMemoryAddress = rw_bo(dst_bo, dst_offset + i);
5034 cp.SourceMemoryAddress = ro_bo(src_bo, src_offset + i);
5035 }
5036 }
5037 }
5038
5039 /* ------------------------------------------------------------------- */
5040
5041 static unsigned
5042 flags_to_post_sync_op(uint32_t flags)
5043 {
5044 if (flags & PIPE_CONTROL_WRITE_IMMEDIATE)
5045 return WriteImmediateData;
5046
5047 if (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT)
5048 return WritePSDepthCount;
5049
5050 if (flags & PIPE_CONTROL_WRITE_TIMESTAMP)
5051 return WriteTimestamp;
5052
5053 return 0;
5054 }
5055
5056 /**
5057 * Do the given flags have a Post Sync or LRI Post Sync operation?
5058 */
5059 static enum pipe_control_flags
5060 get_post_sync_flags(enum pipe_control_flags flags)
5061 {
5062 flags &= PIPE_CONTROL_WRITE_IMMEDIATE |
5063 PIPE_CONTROL_WRITE_DEPTH_COUNT |
5064 PIPE_CONTROL_WRITE_TIMESTAMP |
5065 PIPE_CONTROL_LRI_POST_SYNC_OP;
5066
5067 /* Only one "Post Sync Op" is allowed, and it's mutually exclusive with
5068 * "LRI Post Sync Operation". So more than one bit set would be illegal.
5069 */
5070 assert(util_bitcount(flags) <= 1);
5071
5072 return flags;
5073 }
5074
5075 #define IS_COMPUTE_PIPELINE(batch) (batch->name == IRIS_BATCH_COMPUTE)
5076
5077 /**
5078 * Emit a series of PIPE_CONTROL commands, taking into account any
5079 * workarounds necessary to actually accomplish the caller's request.
5080 *
5081 * Unless otherwise noted, spec quotations in this function come from:
5082 *
5083 * Synchronization of the 3D Pipeline > PIPE_CONTROL Command > Programming
5084 * Restrictions for PIPE_CONTROL.
5085 *
5086 * You should not use this function directly. Use the helpers in
5087 * iris_pipe_control.c instead, which may split the pipe control further.
5088 */
5089 static void
5090 iris_emit_raw_pipe_control(struct iris_batch *batch, uint32_t flags,
5091 struct iris_bo *bo, uint32_t offset, uint64_t imm)
5092 {
5093 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
5094 enum pipe_control_flags post_sync_flags = get_post_sync_flags(flags);
5095 enum pipe_control_flags non_lri_post_sync_flags =
5096 post_sync_flags & ~PIPE_CONTROL_LRI_POST_SYNC_OP;
5097
5098 /* Recursive PIPE_CONTROL workarounds --------------------------------
5099 * (http://knowyourmeme.com/memes/xzibit-yo-dawg)
5100 *
5101 * We do these first because we want to look at the original operation,
5102 * rather than any workarounds we set.
5103 */
5104 if (GEN_GEN == 9 && (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE)) {
5105 /* The PIPE_CONTROL "VF Cache Invalidation Enable" bit description
5106 * lists several workarounds:
5107 *
5108 * "Project: SKL, KBL, BXT
5109 *
5110 * If the VF Cache Invalidation Enable is set to a 1 in a
5111 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields
5112 * sets to 0, with the VF Cache Invalidation Enable set to 0
5113 * needs to be sent prior to the PIPE_CONTROL with VF Cache
5114 * Invalidation Enable set to a 1."
5115 */
5116 iris_emit_raw_pipe_control(batch, 0, NULL, 0, 0);
5117 }
5118
5119 if (GEN_GEN == 9 && IS_COMPUTE_PIPELINE(batch) && post_sync_flags) {
5120 /* Project: SKL / Argument: LRI Post Sync Operation [23]
5121 *
5122 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
5123 * programmed prior to programming a PIPECONTROL command with "LRI
5124 * Post Sync Operation" in GPGPU mode of operation (i.e when
5125 * PIPELINE_SELECT command is set to GPGPU mode of operation)."
5126 *
5127 * The same text exists a few rows below for Post Sync Op.
5128 */
5129 iris_emit_raw_pipe_control(batch, PIPE_CONTROL_CS_STALL, bo, offset, imm);
5130 }
5131
5132 if (GEN_GEN == 10 && (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH)) {
5133 /* Cannonlake:
5134 * "Before sending a PIPE_CONTROL command with bit 12 set, SW must issue
5135 * another PIPE_CONTROL with Render Target Cache Flush Enable (bit 12)
5136 * = 0 and Pipe Control Flush Enable (bit 7) = 1"
5137 */
5138 iris_emit_raw_pipe_control(batch, PIPE_CONTROL_FLUSH_ENABLE, bo,
5139 offset, imm);
5140 }
5141
5142 /* "Flush Types" workarounds ---------------------------------------------
5143 * We do these now because they may add post-sync operations or CS stalls.
5144 */
5145
5146 if (GEN_GEN < 11 && flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) {
5147 /* Project: BDW, SKL+ (stopping at CNL) / Argument: VF Invalidate
5148 *
5149 * "'Post Sync Operation' must be enabled to 'Write Immediate Data' or
5150 * 'Write PS Depth Count' or 'Write Timestamp'."
5151 */
5152 if (!bo) {
5153 flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
5154 post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
5155 non_lri_post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
5156 bo = batch->screen->workaround_bo;
5157 }
5158 }
5159
5160 /* #1130 from Gen10 workarounds page:
5161 *
5162 * "Enable Depth Stall on every Post Sync Op if Render target Cache
5163 * Flush is not enabled in same PIPE CONTROL and Enable Pixel score
5164 * board stall if Render target cache flush is enabled."
5165 *
5166 * Applicable to CNL B0 and C0 steppings only.
5167 *
5168 * The wording here is unclear, and this workaround doesn't look anything
5169 * like the internal bug report recommendations, but leave it be for now...
5170 */
5171 if (GEN_GEN == 10) {
5172 if (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) {
5173 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
5174 } else if (flags & non_lri_post_sync_flags) {
5175 flags |= PIPE_CONTROL_DEPTH_STALL;
5176 }
5177 }
5178
5179 if (flags & PIPE_CONTROL_DEPTH_STALL) {
5180 /* From the PIPE_CONTROL instruction table, bit 13 (Depth Stall Enable):
5181 *
5182 * "This bit must be DISABLED for operations other than writing
5183 * PS_DEPTH_COUNT."
5184 *
5185 * This seems like nonsense. An Ivybridge workaround requires us to
5186 * emit a PIPE_CONTROL with a depth stall and write immediate post-sync
5187 * operation. Gen8+ requires us to emit depth stalls and depth cache
5188 * flushes together. So, it's hard to imagine this means anything other
5189 * than "we originally intended this to be used for PS_DEPTH_COUNT".
5190 *
5191 * We ignore the supposed restriction and do nothing.
5192 */
5193 }
5194
5195 if (flags & (PIPE_CONTROL_RENDER_TARGET_FLUSH |
5196 PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
5197 /* From the PIPE_CONTROL instruction table, bit 12 and bit 1:
5198 *
5199 * "This bit must be DISABLED for End-of-pipe (Read) fences,
5200 * PS_DEPTH_COUNT or TIMESTAMP queries."
5201 *
5202 * TODO: Implement end-of-pipe checking.
5203 */
5204 assert(!(post_sync_flags & (PIPE_CONTROL_WRITE_DEPTH_COUNT |
5205 PIPE_CONTROL_WRITE_TIMESTAMP)));
5206 }
5207
5208 if (GEN_GEN < 11 && (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
5209 /* From the PIPE_CONTROL instruction table, bit 1:
5210 *
5211 * "This bit is ignored if Depth Stall Enable is set.
5212 * Further, the render cache is not flushed even if Write Cache
5213 * Flush Enable bit is set."
5214 *
5215 * We assert that the caller doesn't do this combination, to try and
5216 * prevent mistakes. It shouldn't hurt the GPU, though.
5217 *
5218 * We skip this check on Gen11+ as the "Stall at Pixel Scoreboard"
5219 * and "Render Target Flush" combo is explicitly required for BTI
5220 * update workarounds.
5221 */
5222 assert(!(flags & (PIPE_CONTROL_DEPTH_STALL |
5223 PIPE_CONTROL_RENDER_TARGET_FLUSH)));
5224 }
5225
5226 /* PIPE_CONTROL page workarounds ------------------------------------- */
5227
5228 if (GEN_GEN <= 8 && (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE)) {
5229 /* From the PIPE_CONTROL page itself:
5230 *
5231 * "IVB, HSW, BDW
5232 * Restriction: Pipe_control with CS-stall bit set must be issued
5233 * before a pipe-control command that has the State Cache
5234 * Invalidate bit set."
5235 */
5236 flags |= PIPE_CONTROL_CS_STALL;
5237 }
5238
5239 if (flags & PIPE_CONTROL_FLUSH_LLC) {
5240 /* From the PIPE_CONTROL instruction table, bit 26 (Flush LLC):
5241 *
5242 * "Project: ALL
5243 * SW must always program Post-Sync Operation to "Write Immediate
5244 * Data" when Flush LLC is set."
5245 *
5246 * For now, we just require the caller to do it.
5247 */
5248 assert(flags & PIPE_CONTROL_WRITE_IMMEDIATE);
5249 }
5250
5251 /* "Post-Sync Operation" workarounds -------------------------------- */
5252
5253 /* Project: All / Argument: Global Snapshot Count Reset [19]
5254 *
5255 * "This bit must not be exercised on any product.
5256 * Requires stall bit ([20] of DW1) set."
5257 *
5258 * We don't use this, so we just assert that it isn't used. The
5259 * PIPE_CONTROL instruction page indicates that they intended this
5260 * as a debug feature and don't think it is useful in production,
5261 * but it may actually be usable, should we ever want to.
5262 */
5263 assert((flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) == 0);
5264
5265 if (flags & (PIPE_CONTROL_MEDIA_STATE_CLEAR |
5266 PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE)) {
5267 /* Project: All / Arguments:
5268 *
5269 * - Generic Media State Clear [16]
5270 * - Indirect State Pointers Disable [16]
5271 *
5272 * "Requires stall bit ([20] of DW1) set."
5273 *
5274 * Also, the PIPE_CONTROL instruction table, bit 16 (Generic Media
5275 * State Clear) says:
5276 *
5277 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
5278 * programmed prior to programming a PIPECONTROL command with "Media
5279 * State Clear" set in GPGPU mode of operation"
5280 *
5281 * This is a subset of the earlier rule, so there's nothing to do.
5282 */
5283 flags |= PIPE_CONTROL_CS_STALL;
5284 }
5285
5286 if (flags & PIPE_CONTROL_STORE_DATA_INDEX) {
5287 /* Project: All / Argument: Store Data Index
5288 *
5289 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
5290 * than '0'."
5291 *
5292 * For now, we just assert that the caller does this. We might want to
5293 * automatically add a write to the workaround BO...
5294 */
5295 assert(non_lri_post_sync_flags != 0);
5296 }
5297
5298 if (flags & PIPE_CONTROL_SYNC_GFDT) {
5299 /* Project: All / Argument: Sync GFDT
5300 *
5301 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
5302 * than '0' or 0x2520[13] must be set."
5303 *
5304 * For now, we just assert that the caller does this.
5305 */
5306 assert(non_lri_post_sync_flags != 0);
5307 }
5308
5309 if (flags & PIPE_CONTROL_TLB_INVALIDATE) {
5310 /* Project: IVB+ / Argument: TLB inv
5311 *
5312 * "Requires stall bit ([20] of DW1) set."
5313 *
5314 * Also, from the PIPE_CONTROL instruction table:
5315 *
5316 * "Project: SKL+
5317 * Post Sync Operation or CS stall must be set to ensure a TLB
5318 * invalidation occurs. Otherwise no cycle will occur to the TLB
5319 * cache to invalidate."
5320 *
5321 * This is not a subset of the earlier rule, so there's nothing to do.
5322 */
5323 flags |= PIPE_CONTROL_CS_STALL;
5324 }
5325
5326 if (GEN_GEN == 9 && devinfo->gt == 4) {
5327 /* TODO: The big Skylake GT4 post sync op workaround */
5328 }
5329
5330 /* "GPGPU specific workarounds" (both post-sync and flush) ------------ */
5331
5332 if (IS_COMPUTE_PIPELINE(batch)) {
5333 if (GEN_GEN >= 9 && (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE)) {
5334 /* Project: SKL+ / Argument: Tex Invalidate
5335 * "Requires stall bit ([20] of DW) set for all GPGPU Workloads."
5336 */
5337 flags |= PIPE_CONTROL_CS_STALL;
5338 }
5339
5340 if (GEN_GEN == 8 && (post_sync_flags ||
5341 (flags & (PIPE_CONTROL_NOTIFY_ENABLE |
5342 PIPE_CONTROL_DEPTH_STALL |
5343 PIPE_CONTROL_RENDER_TARGET_FLUSH |
5344 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
5345 PIPE_CONTROL_DATA_CACHE_FLUSH)))) {
5346 /* Project: BDW / Arguments:
5347 *
5348 * - LRI Post Sync Operation [23]
5349 * - Post Sync Op [15:14]
5350 * - Notify En [8]
5351 * - Depth Stall [13]
5352 * - Render Target Cache Flush [12]
5353 * - Depth Cache Flush [0]
5354 * - DC Flush Enable [5]
5355 *
5356 * "Requires stall bit ([20] of DW) set for all GPGPU and Media
5357 * Workloads."
5358 */
5359 flags |= PIPE_CONTROL_CS_STALL;
5360
5361 /* Also, from the PIPE_CONTROL instruction table, bit 20:
5362 *
5363 * "Project: BDW
5364 * This bit must be always set when PIPE_CONTROL command is
5365 * programmed by GPGPU and MEDIA workloads, except for the cases
5366 * when only Read Only Cache Invalidation bits are set (State
5367 * Cache Invalidation Enable, Instruction cache Invalidation
5368 * Enable, Texture Cache Invalidation Enable, Constant Cache
5369 * Invalidation Enable). This is to WA FFDOP CG issue, this WA
5370 * need not implemented when FF_DOP_CG is disable via "Fixed
5371 * Function DOP Clock Gate Disable" bit in RC_PSMI_CTRL register."
5372 *
5373 * It sounds like we could avoid CS stalls in some cases, but we
5374 * don't currently bother. This list isn't exactly the list above,
5375 * either...
5376 */
5377 }
5378 }
5379
5380 /* "Stall" workarounds ----------------------------------------------
5381 * These have to come after the earlier ones because we may have added
5382 * some additional CS stalls above.
5383 */
5384
5385 if (GEN_GEN < 9 && (flags & PIPE_CONTROL_CS_STALL)) {
5386 /* Project: PRE-SKL, VLV, CHV
5387 *
5388 * "[All Stepping][All SKUs]:
5389 *
5390 * One of the following must also be set:
5391 *
5392 * - Render Target Cache Flush Enable ([12] of DW1)
5393 * - Depth Cache Flush Enable ([0] of DW1)
5394 * - Stall at Pixel Scoreboard ([1] of DW1)
5395 * - Depth Stall ([13] of DW1)
5396 * - Post-Sync Operation ([13] of DW1)
5397 * - DC Flush Enable ([5] of DW1)"
5398 *
5399 * If we don't already have one of those bits set, we choose to add
5400 * "Stall at Pixel Scoreboard". Some of the other bits require a
5401 * CS stall as a workaround (see above), which would send us into
5402 * an infinite recursion of PIPE_CONTROLs. "Stall at Pixel Scoreboard"
5403 * appears to be safe, so we choose that.
5404 */
5405 const uint32_t wa_bits = PIPE_CONTROL_RENDER_TARGET_FLUSH |
5406 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
5407 PIPE_CONTROL_WRITE_IMMEDIATE |
5408 PIPE_CONTROL_WRITE_DEPTH_COUNT |
5409 PIPE_CONTROL_WRITE_TIMESTAMP |
5410 PIPE_CONTROL_STALL_AT_SCOREBOARD |
5411 PIPE_CONTROL_DEPTH_STALL |
5412 PIPE_CONTROL_DATA_CACHE_FLUSH;
5413 if (!(flags & wa_bits))
5414 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
5415 }
5416
5417 /* Emit --------------------------------------------------------------- */
5418
5419 iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
5420 pc.LRIPostSyncOperation = NoLRIOperation;
5421 pc.PipeControlFlushEnable = flags & PIPE_CONTROL_FLUSH_ENABLE;
5422 pc.DCFlushEnable = flags & PIPE_CONTROL_DATA_CACHE_FLUSH;
5423 pc.StoreDataIndex = 0;
5424 pc.CommandStreamerStallEnable = flags & PIPE_CONTROL_CS_STALL;
5425 pc.GlobalSnapshotCountReset =
5426 flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET;
5427 pc.TLBInvalidate = flags & PIPE_CONTROL_TLB_INVALIDATE;
5428 pc.GenericMediaStateClear = flags & PIPE_CONTROL_MEDIA_STATE_CLEAR;
5429 pc.StallAtPixelScoreboard = flags & PIPE_CONTROL_STALL_AT_SCOREBOARD;
5430 pc.RenderTargetCacheFlushEnable =
5431 flags & PIPE_CONTROL_RENDER_TARGET_FLUSH;
5432 pc.DepthCacheFlushEnable = flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH;
5433 pc.StateCacheInvalidationEnable =
5434 flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE;
5435 pc.VFCacheInvalidationEnable = flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
5436 pc.ConstantCacheInvalidationEnable =
5437 flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE;
5438 pc.PostSyncOperation = flags_to_post_sync_op(flags);
5439 pc.DepthStallEnable = flags & PIPE_CONTROL_DEPTH_STALL;
5440 pc.InstructionCacheInvalidateEnable =
5441 flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE;
5442 pc.NotifyEnable = flags & PIPE_CONTROL_NOTIFY_ENABLE;
5443 pc.IndirectStatePointersDisable =
5444 flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE;
5445 pc.TextureCacheInvalidationEnable =
5446 flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
5447 pc.Address = rw_bo(bo, offset);
5448 pc.ImmediateData = imm;
5449 }
5450 }
5451
5452 void
5453 genX(init_state)(struct iris_context *ice)
5454 {
5455 struct pipe_context *ctx = &ice->ctx;
5456 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
5457
5458 ctx->create_blend_state = iris_create_blend_state;
5459 ctx->create_depth_stencil_alpha_state = iris_create_zsa_state;
5460 ctx->create_rasterizer_state = iris_create_rasterizer_state;
5461 ctx->create_sampler_state = iris_create_sampler_state;
5462 ctx->create_sampler_view = iris_create_sampler_view;
5463 ctx->create_surface = iris_create_surface;
5464 ctx->create_vertex_elements_state = iris_create_vertex_elements;
5465 ctx->bind_blend_state = iris_bind_blend_state;
5466 ctx->bind_depth_stencil_alpha_state = iris_bind_zsa_state;
5467 ctx->bind_sampler_states = iris_bind_sampler_states;
5468 ctx->bind_rasterizer_state = iris_bind_rasterizer_state;
5469 ctx->bind_vertex_elements_state = iris_bind_vertex_elements_state;
5470 ctx->delete_blend_state = iris_delete_state;
5471 ctx->delete_depth_stencil_alpha_state = iris_delete_state;
5472 ctx->delete_rasterizer_state = iris_delete_state;
5473 ctx->delete_sampler_state = iris_delete_state;
5474 ctx->delete_vertex_elements_state = iris_delete_state;
5475 ctx->set_blend_color = iris_set_blend_color;
5476 ctx->set_clip_state = iris_set_clip_state;
5477 ctx->set_constant_buffer = iris_set_constant_buffer;
5478 ctx->set_shader_buffers = iris_set_shader_buffers;
5479 ctx->set_shader_images = iris_set_shader_images;
5480 ctx->set_sampler_views = iris_set_sampler_views;
5481 ctx->set_tess_state = iris_set_tess_state;
5482 ctx->set_framebuffer_state = iris_set_framebuffer_state;
5483 ctx->set_polygon_stipple = iris_set_polygon_stipple;
5484 ctx->set_sample_mask = iris_set_sample_mask;
5485 ctx->set_scissor_states = iris_set_scissor_states;
5486 ctx->set_stencil_ref = iris_set_stencil_ref;
5487 ctx->set_vertex_buffers = iris_set_vertex_buffers;
5488 ctx->set_viewport_states = iris_set_viewport_states;
5489 ctx->sampler_view_destroy = iris_sampler_view_destroy;
5490 ctx->surface_destroy = iris_surface_destroy;
5491 ctx->draw_vbo = iris_draw_vbo;
5492 ctx->launch_grid = iris_launch_grid;
5493 ctx->create_stream_output_target = iris_create_stream_output_target;
5494 ctx->stream_output_target_destroy = iris_stream_output_target_destroy;
5495 ctx->set_stream_output_targets = iris_set_stream_output_targets;
5496
5497 ice->vtbl.destroy_state = iris_destroy_state;
5498 ice->vtbl.init_render_context = iris_init_render_context;
5499 ice->vtbl.init_compute_context = iris_init_compute_context;
5500 ice->vtbl.upload_render_state = iris_upload_render_state;
5501 ice->vtbl.update_surface_base_address = iris_update_surface_base_address;
5502 ice->vtbl.upload_compute_state = iris_upload_compute_state;
5503 ice->vtbl.emit_raw_pipe_control = iris_emit_raw_pipe_control;
5504 ice->vtbl.load_register_reg32 = iris_load_register_reg32;
5505 ice->vtbl.load_register_reg64 = iris_load_register_reg64;
5506 ice->vtbl.load_register_imm32 = iris_load_register_imm32;
5507 ice->vtbl.load_register_imm64 = iris_load_register_imm64;
5508 ice->vtbl.load_register_mem32 = iris_load_register_mem32;
5509 ice->vtbl.load_register_mem64 = iris_load_register_mem64;
5510 ice->vtbl.store_register_mem32 = iris_store_register_mem32;
5511 ice->vtbl.store_register_mem64 = iris_store_register_mem64;
5512 ice->vtbl.store_data_imm32 = iris_store_data_imm32;
5513 ice->vtbl.store_data_imm64 = iris_store_data_imm64;
5514 ice->vtbl.copy_mem_mem = iris_copy_mem_mem;
5515 ice->vtbl.derived_program_state_size = iris_derived_program_state_size;
5516 ice->vtbl.store_derived_program_state = iris_store_derived_program_state;
5517 ice->vtbl.create_so_decl_list = iris_create_so_decl_list;
5518 ice->vtbl.populate_vs_key = iris_populate_vs_key;
5519 ice->vtbl.populate_tcs_key = iris_populate_tcs_key;
5520 ice->vtbl.populate_tes_key = iris_populate_tes_key;
5521 ice->vtbl.populate_gs_key = iris_populate_gs_key;
5522 ice->vtbl.populate_fs_key = iris_populate_fs_key;
5523 ice->vtbl.populate_cs_key = iris_populate_cs_key;
5524
5525 ice->state.dirty = ~0ull;
5526
5527 ice->state.statistics_counters_enabled = true;
5528
5529 ice->state.sample_mask = 0xffff;
5530 ice->state.num_viewports = 1;
5531 ice->state.genx = calloc(1, sizeof(struct iris_genx_state));
5532
5533 /* Make a 1x1x1 null surface for unbound textures */
5534 void *null_surf_map =
5535 upload_state(ice->state.surface_uploader, &ice->state.unbound_tex,
5536 4 * GENX(RENDER_SURFACE_STATE_length), 64);
5537 isl_null_fill_state(&screen->isl_dev, null_surf_map, isl_extent3d(1, 1, 1));
5538 ice->state.unbound_tex.offset +=
5539 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.unbound_tex.res));
5540
5541 /* Default all scissor rectangles to be empty regions. */
5542 for (int i = 0; i < IRIS_MAX_VIEWPORTS; i++) {
5543 ice->state.scissors[i] = (struct pipe_scissor_state) {
5544 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
5545 };
5546 }
5547 }