iris: Drop bonus parameters from iris_init_*_context()
[mesa.git] / src / gallium / drivers / iris / iris_state.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included
12 * in all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
21 */
22
23 /**
24 * @file iris_state.c
25 *
26 * ============================= GENXML CODE =============================
27 * [This file is compiled once per generation.]
28 * =======================================================================
29 *
30 * This is the main state upload code.
31 *
32 * Gallium uses Constant State Objects, or CSOs, for most state. Large,
33 * complex, or highly reusable state can be created once, and bound and
34 * rebound multiple times. This is modeled with the pipe->create_*_state()
35 * and pipe->bind_*_state() hooks. Highly dynamic or inexpensive state is
36 * streamed out on the fly, via pipe->set_*_state() hooks.
37 *
38 * OpenGL involves frequently mutating context state, which is mirrored in
39 * core Mesa by highly mutable data structures. However, most applications
40 * typically draw the same things over and over - from frame to frame, most
41 * of the same objects are still visible and need to be redrawn. So, rather
42 * than inventing new state all the time, applications usually mutate to swap
43 * between known states that we've seen before.
44 *
45 * Gallium isolates us from this mutation by tracking API state, and
46 * distilling it into a set of Constant State Objects, or CSOs. Large,
47 * complex, or typically reusable state can be created once, then reused
48 * multiple times. Drivers can create and store their own associated data.
49 * This create/bind model corresponds to the pipe->create_*_state() and
50 * pipe->bind_*_state() driver hooks.
51 *
52 * Some state is cheap to create, or expected to be highly dynamic. Rather
53 * than creating and caching piles of CSOs for these, Gallium simply streams
54 * them out, via the pipe->set_*_state() driver hooks.
55 *
56 * To reduce draw time overhead, we try to compute as much state at create
57 * time as possible. Wherever possible, we translate the Gallium pipe state
58 * to 3DSTATE commands, and store those commands in the CSO. At draw time,
59 * we can simply memcpy them into a batch buffer.
60 *
61 * No hardware matches the abstraction perfectly, so some commands require
62 * information from multiple CSOs. In this case, we can store two copies
63 * of the packet (one in each CSO), and simply | together their DWords at
64 * draw time. Sometimes the second set is trivial (one or two fields), so
65 * we simply pack it at draw time.
66 *
67 * There are two main components in the file below. First, the CSO hooks
68 * create/bind/track state. The second are the draw-time upload functions,
69 * iris_upload_render_state() and iris_upload_compute_state(), which read
70 * the context state and emit the commands into the actual batch.
71 */
72
73 #include <stdio.h>
74 #include <errno.h>
75
76 #if HAVE_VALGRIND
77 #include <valgrind.h>
78 #include <memcheck.h>
79 #define VG(x) x
80 #ifdef DEBUG
81 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
82 #endif
83 #else
84 #define VG(x)
85 #endif
86
87 #include "pipe/p_defines.h"
88 #include "pipe/p_state.h"
89 #include "pipe/p_context.h"
90 #include "pipe/p_screen.h"
91 #include "util/u_dual_blend.h"
92 #include "util/u_inlines.h"
93 #include "util/u_format.h"
94 #include "util/u_framebuffer.h"
95 #include "util/u_transfer.h"
96 #include "util/u_upload_mgr.h"
97 #include "util/u_viewport.h"
98 #include "drm-uapi/i915_drm.h"
99 #include "nir.h"
100 #include "intel/compiler/brw_compiler.h"
101 #include "intel/common/gen_l3_config.h"
102 #include "intel/common/gen_sample_positions.h"
103 #include "iris_batch.h"
104 #include "iris_context.h"
105 #include "iris_defines.h"
106 #include "iris_pipe.h"
107 #include "iris_resource.h"
108
109 #include "iris_genx_macros.h"
110 #include "intel/common/gen_guardband.h"
111
112 #if GEN_GEN == 8
113 #define MOCS_PTE 0x18
114 #define MOCS_WB 0x78
115 #else
116 #define MOCS_PTE (1 << 1)
117 #define MOCS_WB (2 << 1)
118 #endif
119
120 static uint32_t
121 mocs(const struct iris_bo *bo)
122 {
123 return bo && bo->external ? MOCS_PTE : MOCS_WB;
124 }
125
126 /**
127 * Statically assert that PIPE_* enums match the hardware packets.
128 * (As long as they match, we don't need to translate them.)
129 */
130 UNUSED static void pipe_asserts()
131 {
132 #define PIPE_ASSERT(x) STATIC_ASSERT((int)x)
133
134 /* pipe_logicop happens to match the hardware. */
135 PIPE_ASSERT(PIPE_LOGICOP_CLEAR == LOGICOP_CLEAR);
136 PIPE_ASSERT(PIPE_LOGICOP_NOR == LOGICOP_NOR);
137 PIPE_ASSERT(PIPE_LOGICOP_AND_INVERTED == LOGICOP_AND_INVERTED);
138 PIPE_ASSERT(PIPE_LOGICOP_COPY_INVERTED == LOGICOP_COPY_INVERTED);
139 PIPE_ASSERT(PIPE_LOGICOP_AND_REVERSE == LOGICOP_AND_REVERSE);
140 PIPE_ASSERT(PIPE_LOGICOP_INVERT == LOGICOP_INVERT);
141 PIPE_ASSERT(PIPE_LOGICOP_XOR == LOGICOP_XOR);
142 PIPE_ASSERT(PIPE_LOGICOP_NAND == LOGICOP_NAND);
143 PIPE_ASSERT(PIPE_LOGICOP_AND == LOGICOP_AND);
144 PIPE_ASSERT(PIPE_LOGICOP_EQUIV == LOGICOP_EQUIV);
145 PIPE_ASSERT(PIPE_LOGICOP_NOOP == LOGICOP_NOOP);
146 PIPE_ASSERT(PIPE_LOGICOP_OR_INVERTED == LOGICOP_OR_INVERTED);
147 PIPE_ASSERT(PIPE_LOGICOP_COPY == LOGICOP_COPY);
148 PIPE_ASSERT(PIPE_LOGICOP_OR_REVERSE == LOGICOP_OR_REVERSE);
149 PIPE_ASSERT(PIPE_LOGICOP_OR == LOGICOP_OR);
150 PIPE_ASSERT(PIPE_LOGICOP_SET == LOGICOP_SET);
151
152 /* pipe_blend_func happens to match the hardware. */
153 PIPE_ASSERT(PIPE_BLENDFACTOR_ONE == BLENDFACTOR_ONE);
154 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_COLOR == BLENDFACTOR_SRC_COLOR);
155 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA == BLENDFACTOR_SRC_ALPHA);
156 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_ALPHA == BLENDFACTOR_DST_ALPHA);
157 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_COLOR == BLENDFACTOR_DST_COLOR);
158 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE == BLENDFACTOR_SRC_ALPHA_SATURATE);
159 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_COLOR == BLENDFACTOR_CONST_COLOR);
160 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_ALPHA == BLENDFACTOR_CONST_ALPHA);
161 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_COLOR == BLENDFACTOR_SRC1_COLOR);
162 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_ALPHA == BLENDFACTOR_SRC1_ALPHA);
163 PIPE_ASSERT(PIPE_BLENDFACTOR_ZERO == BLENDFACTOR_ZERO);
164 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_COLOR == BLENDFACTOR_INV_SRC_COLOR);
165 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_ALPHA == BLENDFACTOR_INV_SRC_ALPHA);
166 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_ALPHA == BLENDFACTOR_INV_DST_ALPHA);
167 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_COLOR == BLENDFACTOR_INV_DST_COLOR);
168 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_COLOR == BLENDFACTOR_INV_CONST_COLOR);
169 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_ALPHA == BLENDFACTOR_INV_CONST_ALPHA);
170 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_COLOR == BLENDFACTOR_INV_SRC1_COLOR);
171 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_ALPHA == BLENDFACTOR_INV_SRC1_ALPHA);
172
173 /* pipe_blend_func happens to match the hardware. */
174 PIPE_ASSERT(PIPE_BLEND_ADD == BLENDFUNCTION_ADD);
175 PIPE_ASSERT(PIPE_BLEND_SUBTRACT == BLENDFUNCTION_SUBTRACT);
176 PIPE_ASSERT(PIPE_BLEND_REVERSE_SUBTRACT == BLENDFUNCTION_REVERSE_SUBTRACT);
177 PIPE_ASSERT(PIPE_BLEND_MIN == BLENDFUNCTION_MIN);
178 PIPE_ASSERT(PIPE_BLEND_MAX == BLENDFUNCTION_MAX);
179
180 /* pipe_stencil_op happens to match the hardware. */
181 PIPE_ASSERT(PIPE_STENCIL_OP_KEEP == STENCILOP_KEEP);
182 PIPE_ASSERT(PIPE_STENCIL_OP_ZERO == STENCILOP_ZERO);
183 PIPE_ASSERT(PIPE_STENCIL_OP_REPLACE == STENCILOP_REPLACE);
184 PIPE_ASSERT(PIPE_STENCIL_OP_INCR == STENCILOP_INCRSAT);
185 PIPE_ASSERT(PIPE_STENCIL_OP_DECR == STENCILOP_DECRSAT);
186 PIPE_ASSERT(PIPE_STENCIL_OP_INCR_WRAP == STENCILOP_INCR);
187 PIPE_ASSERT(PIPE_STENCIL_OP_DECR_WRAP == STENCILOP_DECR);
188 PIPE_ASSERT(PIPE_STENCIL_OP_INVERT == STENCILOP_INVERT);
189
190 /* pipe_sprite_coord_mode happens to match 3DSTATE_SBE */
191 PIPE_ASSERT(PIPE_SPRITE_COORD_UPPER_LEFT == UPPERLEFT);
192 PIPE_ASSERT(PIPE_SPRITE_COORD_LOWER_LEFT == LOWERLEFT);
193 #undef PIPE_ASSERT
194 }
195
196 static unsigned
197 translate_prim_type(enum pipe_prim_type prim, uint8_t verts_per_patch)
198 {
199 static const unsigned map[] = {
200 [PIPE_PRIM_POINTS] = _3DPRIM_POINTLIST,
201 [PIPE_PRIM_LINES] = _3DPRIM_LINELIST,
202 [PIPE_PRIM_LINE_LOOP] = _3DPRIM_LINELOOP,
203 [PIPE_PRIM_LINE_STRIP] = _3DPRIM_LINESTRIP,
204 [PIPE_PRIM_TRIANGLES] = _3DPRIM_TRILIST,
205 [PIPE_PRIM_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
206 [PIPE_PRIM_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
207 [PIPE_PRIM_QUADS] = _3DPRIM_QUADLIST,
208 [PIPE_PRIM_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
209 [PIPE_PRIM_POLYGON] = _3DPRIM_POLYGON,
210 [PIPE_PRIM_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
211 [PIPE_PRIM_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
212 [PIPE_PRIM_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
213 [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
214 [PIPE_PRIM_PATCHES] = _3DPRIM_PATCHLIST_1 - 1,
215 };
216
217 return map[prim] + (prim == PIPE_PRIM_PATCHES ? verts_per_patch : 0);
218 }
219
220 static unsigned
221 translate_compare_func(enum pipe_compare_func pipe_func)
222 {
223 static const unsigned map[] = {
224 [PIPE_FUNC_NEVER] = COMPAREFUNCTION_NEVER,
225 [PIPE_FUNC_LESS] = COMPAREFUNCTION_LESS,
226 [PIPE_FUNC_EQUAL] = COMPAREFUNCTION_EQUAL,
227 [PIPE_FUNC_LEQUAL] = COMPAREFUNCTION_LEQUAL,
228 [PIPE_FUNC_GREATER] = COMPAREFUNCTION_GREATER,
229 [PIPE_FUNC_NOTEQUAL] = COMPAREFUNCTION_NOTEQUAL,
230 [PIPE_FUNC_GEQUAL] = COMPAREFUNCTION_GEQUAL,
231 [PIPE_FUNC_ALWAYS] = COMPAREFUNCTION_ALWAYS,
232 };
233 return map[pipe_func];
234 }
235
236 static unsigned
237 translate_shadow_func(enum pipe_compare_func pipe_func)
238 {
239 /* Gallium specifies the result of shadow comparisons as:
240 *
241 * 1 if ref <op> texel,
242 * 0 otherwise.
243 *
244 * The hardware does:
245 *
246 * 0 if texel <op> ref,
247 * 1 otherwise.
248 *
249 * So we need to flip the operator and also negate.
250 */
251 static const unsigned map[] = {
252 [PIPE_FUNC_NEVER] = PREFILTEROPALWAYS,
253 [PIPE_FUNC_LESS] = PREFILTEROPLEQUAL,
254 [PIPE_FUNC_EQUAL] = PREFILTEROPNOTEQUAL,
255 [PIPE_FUNC_LEQUAL] = PREFILTEROPLESS,
256 [PIPE_FUNC_GREATER] = PREFILTEROPGEQUAL,
257 [PIPE_FUNC_NOTEQUAL] = PREFILTEROPEQUAL,
258 [PIPE_FUNC_GEQUAL] = PREFILTEROPGREATER,
259 [PIPE_FUNC_ALWAYS] = PREFILTEROPNEVER,
260 };
261 return map[pipe_func];
262 }
263
264 static unsigned
265 translate_cull_mode(unsigned pipe_face)
266 {
267 static const unsigned map[4] = {
268 [PIPE_FACE_NONE] = CULLMODE_NONE,
269 [PIPE_FACE_FRONT] = CULLMODE_FRONT,
270 [PIPE_FACE_BACK] = CULLMODE_BACK,
271 [PIPE_FACE_FRONT_AND_BACK] = CULLMODE_BOTH,
272 };
273 return map[pipe_face];
274 }
275
276 static unsigned
277 translate_fill_mode(unsigned pipe_polymode)
278 {
279 static const unsigned map[4] = {
280 [PIPE_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
281 [PIPE_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
282 [PIPE_POLYGON_MODE_POINT] = FILL_MODE_POINT,
283 [PIPE_POLYGON_MODE_FILL_RECTANGLE] = FILL_MODE_SOLID,
284 };
285 return map[pipe_polymode];
286 }
287
288 static unsigned
289 translate_mip_filter(enum pipe_tex_mipfilter pipe_mip)
290 {
291 static const unsigned map[] = {
292 [PIPE_TEX_MIPFILTER_NEAREST] = MIPFILTER_NEAREST,
293 [PIPE_TEX_MIPFILTER_LINEAR] = MIPFILTER_LINEAR,
294 [PIPE_TEX_MIPFILTER_NONE] = MIPFILTER_NONE,
295 };
296 return map[pipe_mip];
297 }
298
299 static uint32_t
300 translate_wrap(unsigned pipe_wrap)
301 {
302 static const unsigned map[] = {
303 [PIPE_TEX_WRAP_REPEAT] = TCM_WRAP,
304 [PIPE_TEX_WRAP_CLAMP] = TCM_HALF_BORDER,
305 [PIPE_TEX_WRAP_CLAMP_TO_EDGE] = TCM_CLAMP,
306 [PIPE_TEX_WRAP_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER,
307 [PIPE_TEX_WRAP_MIRROR_REPEAT] = TCM_MIRROR,
308 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE,
309
310 /* These are unsupported. */
311 [PIPE_TEX_WRAP_MIRROR_CLAMP] = -1,
312 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER] = -1,
313 };
314 return map[pipe_wrap];
315 }
316
317 /**
318 * Allocate space for some indirect state.
319 *
320 * Return a pointer to the map (to fill it out) and a state ref (for
321 * referring to the state in GPU commands).
322 */
323 static void *
324 upload_state(struct u_upload_mgr *uploader,
325 struct iris_state_ref *ref,
326 unsigned size,
327 unsigned alignment)
328 {
329 void *p = NULL;
330 u_upload_alloc(uploader, 0, size, alignment, &ref->offset, &ref->res, &p);
331 return p;
332 }
333
334 /**
335 * Stream out temporary/short-lived state.
336 *
337 * This allocates space, pins the BO, and includes the BO address in the
338 * returned offset (which works because all state lives in 32-bit memory
339 * zones).
340 */
341 static uint32_t *
342 stream_state(struct iris_batch *batch,
343 struct u_upload_mgr *uploader,
344 struct pipe_resource **out_res,
345 unsigned size,
346 unsigned alignment,
347 uint32_t *out_offset)
348 {
349 void *ptr = NULL;
350
351 u_upload_alloc(uploader, 0, size, alignment, out_offset, out_res, &ptr);
352
353 struct iris_bo *bo = iris_resource_bo(*out_res);
354 iris_use_pinned_bo(batch, bo, false);
355
356 *out_offset += iris_bo_offset_from_base_address(bo);
357
358 iris_record_state_size(batch->state_sizes, *out_offset, size);
359
360 return ptr;
361 }
362
363 /**
364 * stream_state() + memcpy.
365 */
366 static uint32_t
367 emit_state(struct iris_batch *batch,
368 struct u_upload_mgr *uploader,
369 struct pipe_resource **out_res,
370 const void *data,
371 unsigned size,
372 unsigned alignment)
373 {
374 unsigned offset = 0;
375 uint32_t *map =
376 stream_state(batch, uploader, out_res, size, alignment, &offset);
377
378 if (map)
379 memcpy(map, data, size);
380
381 return offset;
382 }
383
384 /**
385 * Did field 'x' change between 'old_cso' and 'new_cso'?
386 *
387 * (If so, we may want to set some dirty flags.)
388 */
389 #define cso_changed(x) (!old_cso || (old_cso->x != new_cso->x))
390 #define cso_changed_memcmp(x) \
391 (!old_cso || memcmp(old_cso->x, new_cso->x, sizeof(old_cso->x)) != 0)
392
393 static void
394 flush_before_state_base_change(struct iris_batch *batch)
395 {
396 /* Flush before emitting STATE_BASE_ADDRESS.
397 *
398 * This isn't documented anywhere in the PRM. However, it seems to be
399 * necessary prior to changing the surface state base adress. We've
400 * seen issues in Vulkan where we get GPU hangs when using multi-level
401 * command buffers which clear depth, reset state base address, and then
402 * go render stuff.
403 *
404 * Normally, in GL, we would trust the kernel to do sufficient stalls
405 * and flushes prior to executing our batch. However, it doesn't seem
406 * as if the kernel's flushing is always sufficient and we don't want to
407 * rely on it.
408 *
409 * We make this an end-of-pipe sync instead of a normal flush because we
410 * do not know the current status of the GPU. On Haswell at least,
411 * having a fast-clear operation in flight at the same time as a normal
412 * rendering operation can cause hangs. Since the kernel's flushing is
413 * insufficient, we need to ensure that any rendering operations from
414 * other processes are definitely complete before we try to do our own
415 * rendering. It's a bit of a big hammer but it appears to work.
416 */
417 iris_emit_end_of_pipe_sync(batch,
418 "change STATE_BASE_ADDRESS (flushes)",
419 PIPE_CONTROL_RENDER_TARGET_FLUSH |
420 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
421 PIPE_CONTROL_DATA_CACHE_FLUSH);
422 }
423
424 static void
425 flush_after_state_base_change(struct iris_batch *batch)
426 {
427 /* After re-setting the surface state base address, we have to do some
428 * cache flusing so that the sampler engine will pick up the new
429 * SURFACE_STATE objects and binding tables. From the Broadwell PRM,
430 * Shared Function > 3D Sampler > State > State Caching (page 96):
431 *
432 * Coherency with system memory in the state cache, like the texture
433 * cache is handled partially by software. It is expected that the
434 * command stream or shader will issue Cache Flush operation or
435 * Cache_Flush sampler message to ensure that the L1 cache remains
436 * coherent with system memory.
437 *
438 * [...]
439 *
440 * Whenever the value of the Dynamic_State_Base_Addr,
441 * Surface_State_Base_Addr are altered, the L1 state cache must be
442 * invalidated to ensure the new surface or sampler state is fetched
443 * from system memory.
444 *
445 * The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
446 * which, according the PIPE_CONTROL instruction documentation in the
447 * Broadwell PRM:
448 *
449 * Setting this bit is independent of any other bit in this packet.
450 * This bit controls the invalidation of the L1 and L2 state caches
451 * at the top of the pipe i.e. at the parsing time.
452 *
453 * Unfortunately, experimentation seems to indicate that state cache
454 * invalidation through a PIPE_CONTROL does nothing whatsoever in
455 * regards to surface state and binding tables. In stead, it seems that
456 * invalidating the texture cache is what is actually needed.
457 *
458 * XXX: As far as we have been able to determine through
459 * experimentation, shows that flush the texture cache appears to be
460 * sufficient. The theory here is that all of the sampling/rendering
461 * units cache the binding table in the texture cache. However, we have
462 * yet to be able to actually confirm this.
463 */
464 iris_emit_end_of_pipe_sync(batch,
465 "change STATE_BASE_ADDRESS (invalidates)",
466 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
467 PIPE_CONTROL_CONST_CACHE_INVALIDATE |
468 PIPE_CONTROL_STATE_CACHE_INVALIDATE);
469 }
470
471 static void
472 _iris_emit_lri(struct iris_batch *batch, uint32_t reg, uint32_t val)
473 {
474 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
475 lri.RegisterOffset = reg;
476 lri.DataDWord = val;
477 }
478 }
479 #define iris_emit_lri(b, r, v) _iris_emit_lri(b, GENX(r##_num), v)
480
481 static void
482 _iris_emit_lrr(struct iris_batch *batch, uint32_t dst, uint32_t src)
483 {
484 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
485 lrr.SourceRegisterAddress = src;
486 lrr.DestinationRegisterAddress = dst;
487 }
488 }
489
490 static void
491 emit_pipeline_select(struct iris_batch *batch, uint32_t pipeline)
492 {
493 #if GEN_GEN >= 8 && GEN_GEN < 10
494 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
495 *
496 * Software must clear the COLOR_CALC_STATE Valid field in
497 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
498 * with Pipeline Select set to GPGPU.
499 *
500 * The internal hardware docs recommend the same workaround for Gen9
501 * hardware too.
502 */
503 if (pipeline == GPGPU)
504 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
505 #endif
506
507
508 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
509 * PIPELINE_SELECT [DevBWR+]":
510 *
511 * "Project: DEVSNB+
512 *
513 * Software must ensure all the write caches are flushed through a
514 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
515 * command to invalidate read only caches prior to programming
516 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode."
517 */
518 iris_emit_pipe_control_flush(batch,
519 "workaround: PIPELINE_SELECT flushes (1/2)",
520 PIPE_CONTROL_RENDER_TARGET_FLUSH |
521 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
522 PIPE_CONTROL_DATA_CACHE_FLUSH |
523 PIPE_CONTROL_CS_STALL);
524
525 iris_emit_pipe_control_flush(batch,
526 "workaround: PIPELINE_SELECT flushes (2/2)",
527 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
528 PIPE_CONTROL_CONST_CACHE_INVALIDATE |
529 PIPE_CONTROL_STATE_CACHE_INVALIDATE |
530 PIPE_CONTROL_INSTRUCTION_INVALIDATE);
531
532 iris_emit_cmd(batch, GENX(PIPELINE_SELECT), sel) {
533 #if GEN_GEN >= 9
534 sel.MaskBits = 3;
535 #endif
536 sel.PipelineSelection = pipeline;
537 }
538 }
539
540 UNUSED static void
541 init_glk_barrier_mode(struct iris_batch *batch, uint32_t value)
542 {
543 #if GEN_GEN == 9
544 /* Project: DevGLK
545 *
546 * "This chicken bit works around a hardware issue with barrier
547 * logic encountered when switching between GPGPU and 3D pipelines.
548 * To workaround the issue, this mode bit should be set after a
549 * pipeline is selected."
550 */
551 uint32_t reg_val;
552 iris_pack_state(GENX(SLICE_COMMON_ECO_CHICKEN1), &reg_val, reg) {
553 reg.GLKBarrierMode = value;
554 reg.GLKBarrierModeMask = 1;
555 }
556 iris_emit_lri(batch, SLICE_COMMON_ECO_CHICKEN1, reg_val);
557 #endif
558 }
559
560 static void
561 init_state_base_address(struct iris_batch *batch)
562 {
563 flush_before_state_base_change(batch);
564
565 /* We program most base addresses once at context initialization time.
566 * Each base address points at a 4GB memory zone, and never needs to
567 * change. See iris_bufmgr.h for a description of the memory zones.
568 *
569 * The one exception is Surface State Base Address, which needs to be
570 * updated occasionally. See iris_binder.c for the details there.
571 */
572 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
573 sba.GeneralStateMOCS = MOCS_WB;
574 sba.StatelessDataPortAccessMOCS = MOCS_WB;
575 sba.DynamicStateMOCS = MOCS_WB;
576 sba.IndirectObjectMOCS = MOCS_WB;
577 sba.InstructionMOCS = MOCS_WB;
578 sba.SurfaceStateMOCS = MOCS_WB;
579
580 sba.GeneralStateBaseAddressModifyEnable = true;
581 sba.DynamicStateBaseAddressModifyEnable = true;
582 sba.IndirectObjectBaseAddressModifyEnable = true;
583 sba.InstructionBaseAddressModifyEnable = true;
584 sba.GeneralStateBufferSizeModifyEnable = true;
585 sba.DynamicStateBufferSizeModifyEnable = true;
586 #if (GEN_GEN >= 9)
587 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
588 sba.BindlessSurfaceStateMOCS = MOCS_WB;
589 #endif
590 sba.IndirectObjectBufferSizeModifyEnable = true;
591 sba.InstructionBuffersizeModifyEnable = true;
592
593 sba.InstructionBaseAddress = ro_bo(NULL, IRIS_MEMZONE_SHADER_START);
594 sba.DynamicStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_DYNAMIC_START);
595
596 sba.GeneralStateBufferSize = 0xfffff;
597 sba.IndirectObjectBufferSize = 0xfffff;
598 sba.InstructionBufferSize = 0xfffff;
599 sba.DynamicStateBufferSize = 0xfffff;
600 }
601
602 flush_after_state_base_change(batch);
603 }
604
605 static void
606 iris_emit_l3_config(struct iris_batch *batch, const struct gen_l3_config *cfg,
607 bool has_slm, bool wants_dc_cache)
608 {
609 uint32_t reg_val;
610
611 #if GEN_GEN >= 12
612 #define L3_ALLOCATION_REG GENX(L3ALLOC)
613 #define L3_ALLOCATION_REG_num GENX(L3ALLOC_num)
614 #else
615 #define L3_ALLOCATION_REG GENX(L3CNTLREG)
616 #define L3_ALLOCATION_REG_num GENX(L3CNTLREG_num)
617 #endif
618
619 iris_pack_state(L3_ALLOCATION_REG, &reg_val, reg) {
620 #if GEN_GEN < 12
621 reg.SLMEnable = has_slm;
622 #endif
623 #if GEN_GEN == 11
624 /* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set
625 * in L3CNTLREG register. The default setting of the bit is not the
626 * desirable behavior.
627 */
628 reg.ErrorDetectionBehaviorControl = true;
629 reg.UseFullWays = true;
630 #endif
631 reg.URBAllocation = cfg->n[GEN_L3P_URB];
632 reg.ROAllocation = cfg->n[GEN_L3P_RO];
633 reg.DCAllocation = cfg->n[GEN_L3P_DC];
634 reg.AllAllocation = cfg->n[GEN_L3P_ALL];
635 }
636 _iris_emit_lri(batch, L3_ALLOCATION_REG_num, reg_val);
637 }
638
639 static void
640 iris_emit_default_l3_config(struct iris_batch *batch,
641 const struct gen_device_info *devinfo,
642 bool compute)
643 {
644 bool wants_dc_cache = true;
645 bool has_slm = compute;
646 const struct gen_l3_weights w =
647 gen_get_default_l3_weights(devinfo, wants_dc_cache, has_slm);
648 const struct gen_l3_config *cfg = gen_get_l3_config(devinfo, w);
649 iris_emit_l3_config(batch, cfg, has_slm, wants_dc_cache);
650 }
651
652 #if GEN_GEN == 9 || GEN_GEN == 10
653 static void
654 iris_enable_obj_preemption(struct iris_batch *batch, bool enable)
655 {
656 uint32_t reg_val;
657
658 /* A fixed function pipe flush is required before modifying this field */
659 iris_emit_end_of_pipe_sync(batch, enable ? "enable preemption"
660 : "disable preemption",
661 PIPE_CONTROL_RENDER_TARGET_FLUSH);
662
663 /* enable object level preemption */
664 iris_pack_state(GENX(CS_CHICKEN1), &reg_val, reg) {
665 reg.ReplayMode = enable;
666 reg.ReplayModeMask = true;
667 }
668 iris_emit_lri(batch, CS_CHICKEN1, reg_val);
669 }
670 #endif
671
672 #if GEN_GEN == 11
673 static void
674 iris_upload_slice_hashing_state(struct iris_batch *batch)
675 {
676 const struct gen_device_info *devinfo = &batch->screen->devinfo;
677 int subslices_delta =
678 devinfo->ppipe_subslices[0] - devinfo->ppipe_subslices[1];
679 if (subslices_delta == 0)
680 return;
681
682 struct iris_context *ice = NULL;
683 ice = container_of(batch, ice, batches[IRIS_BATCH_RENDER]);
684 assert(&ice->batches[IRIS_BATCH_RENDER] == batch);
685
686 unsigned size = GENX(SLICE_HASH_TABLE_length) * 4;
687 uint32_t hash_address;
688 struct pipe_resource *tmp = NULL;
689 uint32_t *map =
690 stream_state(batch, ice->state.dynamic_uploader, &tmp,
691 size, 64, &hash_address);
692 pipe_resource_reference(&tmp, NULL);
693
694 struct GENX(SLICE_HASH_TABLE) table0 = {
695 .Entry = {
696 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
697 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
698 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
699 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
700 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
701 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
702 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
703 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
704 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
705 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
706 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
707 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
708 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
709 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
710 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
711 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 }
712 }
713 };
714
715 struct GENX(SLICE_HASH_TABLE) table1 = {
716 .Entry = {
717 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
718 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
719 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
720 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
721 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
722 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
723 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
724 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
725 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
726 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
727 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
728 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
729 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
730 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
731 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
732 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 }
733 }
734 };
735
736 const struct GENX(SLICE_HASH_TABLE) *table =
737 subslices_delta < 0 ? &table0 : &table1;
738 GENX(SLICE_HASH_TABLE_pack)(NULL, map, table);
739
740 iris_emit_cmd(batch, GENX(3DSTATE_SLICE_TABLE_STATE_POINTERS), ptr) {
741 ptr.SliceHashStatePointerValid = true;
742 ptr.SliceHashTableStatePointer = hash_address;
743 }
744
745 iris_emit_cmd(batch, GENX(3DSTATE_3D_MODE), mode) {
746 mode.SliceHashingTableEnable = true;
747 }
748 }
749 #endif
750
751 static void
752 iris_alloc_push_constants(struct iris_batch *batch)
753 {
754 /* For now, we set a static partitioning of the push constant area,
755 * assuming that all stages could be in use.
756 *
757 * TODO: Try lazily allocating the HS/DS/GS sections as needed, and
758 * see if that improves performance by offering more space to
759 * the VS/FS when those aren't in use. Also, try dynamically
760 * enabling/disabling it like i965 does. This would be more
761 * stalls and may not actually help; we don't know yet.
762 */
763 for (int i = 0; i <= MESA_SHADER_FRAGMENT; i++) {
764 iris_emit_cmd(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
765 alloc._3DCommandSubOpcode = 18 + i;
766 alloc.ConstantBufferOffset = 6 * i;
767 alloc.ConstantBufferSize = i == MESA_SHADER_FRAGMENT ? 8 : 6;
768 }
769 }
770 }
771
772 /**
773 * Upload the initial GPU state for a render context.
774 *
775 * This sets some invariant state that needs to be programmed a particular
776 * way, but we never actually change.
777 */
778 static void
779 iris_init_render_context(struct iris_batch *batch)
780 {
781 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
782 uint32_t reg_val;
783
784 emit_pipeline_select(batch, _3D);
785
786 iris_emit_default_l3_config(batch, devinfo, false);
787
788 init_state_base_address(batch);
789
790 #if GEN_GEN >= 9
791 iris_pack_state(GENX(CS_DEBUG_MODE2), &reg_val, reg) {
792 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
793 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
794 }
795 iris_emit_lri(batch, CS_DEBUG_MODE2, reg_val);
796 #else
797 iris_pack_state(GENX(INSTPM), &reg_val, reg) {
798 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
799 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
800 }
801 iris_emit_lri(batch, INSTPM, reg_val);
802 #endif
803
804 #if GEN_GEN == 9
805 iris_pack_state(GENX(CACHE_MODE_1), &reg_val, reg) {
806 reg.FloatBlendOptimizationEnable = true;
807 reg.FloatBlendOptimizationEnableMask = true;
808 reg.PartialResolveDisableInVC = true;
809 reg.PartialResolveDisableInVCMask = true;
810 }
811 iris_emit_lri(batch, CACHE_MODE_1, reg_val);
812
813 if (devinfo->is_geminilake)
814 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_3D_HULL);
815 #endif
816
817 #if GEN_GEN == 11
818 iris_pack_state(GENX(SAMPLER_MODE), &reg_val, reg) {
819 reg.HeaderlessMessageforPreemptableContexts = 1;
820 reg.HeaderlessMessageforPreemptableContextsMask = 1;
821 }
822 iris_emit_lri(batch, SAMPLER_MODE, reg_val);
823
824 /* Bit 1 must be set in HALF_SLICE_CHICKEN7. */
825 iris_pack_state(GENX(HALF_SLICE_CHICKEN7), &reg_val, reg) {
826 reg.EnabledTexelOffsetPrecisionFix = 1;
827 reg.EnabledTexelOffsetPrecisionFixMask = 1;
828 }
829 iris_emit_lri(batch, HALF_SLICE_CHICKEN7, reg_val);
830
831 /* Hardware specification recommends disabling repacking for the
832 * compatibility with decompression mechanism in display controller.
833 */
834 if (devinfo->disable_ccs_repack) {
835 iris_pack_state(GENX(CACHE_MODE_0), &reg_val, reg) {
836 reg.DisableRepackingforCompression = true;
837 reg.DisableRepackingforCompressionMask = true;
838 }
839 iris_emit_lri(batch, CACHE_MODE_0, reg_val);
840 }
841
842 iris_upload_slice_hashing_state(batch);
843 #endif
844
845 /* 3DSTATE_DRAWING_RECTANGLE is non-pipelined, so we want to avoid
846 * changing it dynamically. We set it to the maximum size here, and
847 * instead include the render target dimensions in the viewport, so
848 * viewport extents clipping takes care of pruning stray geometry.
849 */
850 iris_emit_cmd(batch, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
851 rect.ClippedDrawingRectangleXMax = UINT16_MAX;
852 rect.ClippedDrawingRectangleYMax = UINT16_MAX;
853 }
854
855 /* Set the initial MSAA sample positions. */
856 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_PATTERN), pat) {
857 GEN_SAMPLE_POS_1X(pat._1xSample);
858 GEN_SAMPLE_POS_2X(pat._2xSample);
859 GEN_SAMPLE_POS_4X(pat._4xSample);
860 GEN_SAMPLE_POS_8X(pat._8xSample);
861 #if GEN_GEN >= 9
862 GEN_SAMPLE_POS_16X(pat._16xSample);
863 #endif
864 }
865
866 /* Use the legacy AA line coverage computation. */
867 iris_emit_cmd(batch, GENX(3DSTATE_AA_LINE_PARAMETERS), foo);
868
869 /* Disable chromakeying (it's for media) */
870 iris_emit_cmd(batch, GENX(3DSTATE_WM_CHROMAKEY), foo);
871
872 /* We want regular rendering, not special HiZ operations. */
873 iris_emit_cmd(batch, GENX(3DSTATE_WM_HZ_OP), foo);
874
875 /* No polygon stippling offsets are necessary. */
876 /* TODO: may need to set an offset for origin-UL framebuffers */
877 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_OFFSET), foo);
878
879 iris_alloc_push_constants(batch);
880
881 #if GEN_GEN == 10
882 /* Gen11+ is enabled for us by the kernel. */
883 iris_enable_obj_preemption(batch, true);
884 #endif
885 }
886
887 static void
888 iris_init_compute_context(struct iris_batch *batch)
889 {
890 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
891
892 emit_pipeline_select(batch, GPGPU);
893
894 iris_emit_default_l3_config(batch, devinfo, true);
895
896 init_state_base_address(batch);
897
898 #if GEN_GEN == 9
899 if (devinfo->is_geminilake)
900 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_GPGPU);
901 #endif
902 }
903
904 struct iris_vertex_buffer_state {
905 /** The VERTEX_BUFFER_STATE hardware structure. */
906 uint32_t state[GENX(VERTEX_BUFFER_STATE_length)];
907
908 /** The resource to source vertex data from. */
909 struct pipe_resource *resource;
910
911 int offset;
912 };
913
914 struct iris_depth_buffer_state {
915 /* Depth/HiZ/Stencil related hardware packets. */
916 uint32_t packets[GENX(3DSTATE_DEPTH_BUFFER_length) +
917 GENX(3DSTATE_STENCIL_BUFFER_length) +
918 GENX(3DSTATE_HIER_DEPTH_BUFFER_length) +
919 GENX(3DSTATE_CLEAR_PARAMS_length)];
920 };
921
922 /**
923 * Generation-specific context state (ice->state.genx->...).
924 *
925 * Most state can go in iris_context directly, but these encode hardware
926 * packets which vary by generation.
927 */
928 struct iris_genx_state {
929 struct iris_vertex_buffer_state vertex_buffers[33];
930 uint32_t last_index_buffer[GENX(3DSTATE_INDEX_BUFFER_length)];
931
932 struct iris_depth_buffer_state depth_buffer;
933
934 uint32_t so_buffers[4 * GENX(3DSTATE_SO_BUFFER_length)];
935
936 #if GEN_GEN == 9
937 /* Is object level preemption enabled? */
938 bool object_preemption;
939 #endif
940
941 struct {
942 #if GEN_GEN == 8
943 struct brw_image_param image_param[PIPE_MAX_SHADER_IMAGES];
944 #endif
945 } shaders[MESA_SHADER_STAGES];
946 };
947
948 /**
949 * The pipe->set_blend_color() driver hook.
950 *
951 * This corresponds to our COLOR_CALC_STATE.
952 */
953 static void
954 iris_set_blend_color(struct pipe_context *ctx,
955 const struct pipe_blend_color *state)
956 {
957 struct iris_context *ice = (struct iris_context *) ctx;
958
959 /* Our COLOR_CALC_STATE is exactly pipe_blend_color, so just memcpy */
960 memcpy(&ice->state.blend_color, state, sizeof(struct pipe_blend_color));
961 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
962 }
963
964 /**
965 * Gallium CSO for blend state (see pipe_blend_state).
966 */
967 struct iris_blend_state {
968 /** Partial 3DSTATE_PS_BLEND */
969 uint32_t ps_blend[GENX(3DSTATE_PS_BLEND_length)];
970
971 /** Partial BLEND_STATE */
972 uint32_t blend_state[GENX(BLEND_STATE_length) +
973 BRW_MAX_DRAW_BUFFERS * GENX(BLEND_STATE_ENTRY_length)];
974
975 bool alpha_to_coverage; /* for shader key */
976
977 /** Bitfield of whether blending is enabled for RT[i] - for aux resolves */
978 uint8_t blend_enables;
979
980 /** Bitfield of whether color writes are enabled for RT[i] */
981 uint8_t color_write_enables;
982
983 /** Does RT[0] use dual color blending? */
984 bool dual_color_blending;
985 };
986
987 static enum pipe_blendfactor
988 fix_blendfactor(enum pipe_blendfactor f, bool alpha_to_one)
989 {
990 if (alpha_to_one) {
991 if (f == PIPE_BLENDFACTOR_SRC1_ALPHA)
992 return PIPE_BLENDFACTOR_ONE;
993
994 if (f == PIPE_BLENDFACTOR_INV_SRC1_ALPHA)
995 return PIPE_BLENDFACTOR_ZERO;
996 }
997
998 return f;
999 }
1000
1001 /**
1002 * The pipe->create_blend_state() driver hook.
1003 *
1004 * Translates a pipe_blend_state into iris_blend_state.
1005 */
1006 static void *
1007 iris_create_blend_state(struct pipe_context *ctx,
1008 const struct pipe_blend_state *state)
1009 {
1010 struct iris_blend_state *cso = malloc(sizeof(struct iris_blend_state));
1011 uint32_t *blend_entry = cso->blend_state + GENX(BLEND_STATE_length);
1012
1013 cso->blend_enables = 0;
1014 cso->color_write_enables = 0;
1015 STATIC_ASSERT(BRW_MAX_DRAW_BUFFERS <= 8);
1016
1017 cso->alpha_to_coverage = state->alpha_to_coverage;
1018
1019 bool indep_alpha_blend = false;
1020
1021 for (int i = 0; i < BRW_MAX_DRAW_BUFFERS; i++) {
1022 const struct pipe_rt_blend_state *rt =
1023 &state->rt[state->independent_blend_enable ? i : 0];
1024
1025 enum pipe_blendfactor src_rgb =
1026 fix_blendfactor(rt->rgb_src_factor, state->alpha_to_one);
1027 enum pipe_blendfactor src_alpha =
1028 fix_blendfactor(rt->alpha_src_factor, state->alpha_to_one);
1029 enum pipe_blendfactor dst_rgb =
1030 fix_blendfactor(rt->rgb_dst_factor, state->alpha_to_one);
1031 enum pipe_blendfactor dst_alpha =
1032 fix_blendfactor(rt->alpha_dst_factor, state->alpha_to_one);
1033
1034 if (rt->rgb_func != rt->alpha_func ||
1035 src_rgb != src_alpha || dst_rgb != dst_alpha)
1036 indep_alpha_blend = true;
1037
1038 if (rt->blend_enable)
1039 cso->blend_enables |= 1u << i;
1040
1041 if (rt->colormask)
1042 cso->color_write_enables |= 1u << i;
1043
1044 iris_pack_state(GENX(BLEND_STATE_ENTRY), blend_entry, be) {
1045 be.LogicOpEnable = state->logicop_enable;
1046 be.LogicOpFunction = state->logicop_func;
1047
1048 be.PreBlendSourceOnlyClampEnable = false;
1049 be.ColorClampRange = COLORCLAMP_RTFORMAT;
1050 be.PreBlendColorClampEnable = true;
1051 be.PostBlendColorClampEnable = true;
1052
1053 be.ColorBufferBlendEnable = rt->blend_enable;
1054
1055 be.ColorBlendFunction = rt->rgb_func;
1056 be.AlphaBlendFunction = rt->alpha_func;
1057 be.SourceBlendFactor = src_rgb;
1058 be.SourceAlphaBlendFactor = src_alpha;
1059 be.DestinationBlendFactor = dst_rgb;
1060 be.DestinationAlphaBlendFactor = dst_alpha;
1061
1062 be.WriteDisableRed = !(rt->colormask & PIPE_MASK_R);
1063 be.WriteDisableGreen = !(rt->colormask & PIPE_MASK_G);
1064 be.WriteDisableBlue = !(rt->colormask & PIPE_MASK_B);
1065 be.WriteDisableAlpha = !(rt->colormask & PIPE_MASK_A);
1066 }
1067 blend_entry += GENX(BLEND_STATE_ENTRY_length);
1068 }
1069
1070 iris_pack_command(GENX(3DSTATE_PS_BLEND), cso->ps_blend, pb) {
1071 /* pb.HasWriteableRT is filled in at draw time.
1072 * pb.AlphaTestEnable is filled in at draw time.
1073 *
1074 * pb.ColorBufferBlendEnable is filled in at draw time so we can avoid
1075 * setting it when dual color blending without an appropriate shader.
1076 */
1077
1078 pb.AlphaToCoverageEnable = state->alpha_to_coverage;
1079 pb.IndependentAlphaBlendEnable = indep_alpha_blend;
1080
1081 pb.SourceBlendFactor =
1082 fix_blendfactor(state->rt[0].rgb_src_factor, state->alpha_to_one);
1083 pb.SourceAlphaBlendFactor =
1084 fix_blendfactor(state->rt[0].alpha_src_factor, state->alpha_to_one);
1085 pb.DestinationBlendFactor =
1086 fix_blendfactor(state->rt[0].rgb_dst_factor, state->alpha_to_one);
1087 pb.DestinationAlphaBlendFactor =
1088 fix_blendfactor(state->rt[0].alpha_dst_factor, state->alpha_to_one);
1089 }
1090
1091 iris_pack_state(GENX(BLEND_STATE), cso->blend_state, bs) {
1092 bs.AlphaToCoverageEnable = state->alpha_to_coverage;
1093 bs.IndependentAlphaBlendEnable = indep_alpha_blend;
1094 bs.AlphaToOneEnable = state->alpha_to_one;
1095 bs.AlphaToCoverageDitherEnable = state->alpha_to_coverage;
1096 bs.ColorDitherEnable = state->dither;
1097 /* bl.AlphaTestEnable and bs.AlphaTestFunction are filled in later. */
1098 }
1099
1100 cso->dual_color_blending = util_blend_state_is_dual(state, 0);
1101
1102 return cso;
1103 }
1104
1105 /**
1106 * The pipe->bind_blend_state() driver hook.
1107 *
1108 * Bind a blending CSO and flag related dirty bits.
1109 */
1110 static void
1111 iris_bind_blend_state(struct pipe_context *ctx, void *state)
1112 {
1113 struct iris_context *ice = (struct iris_context *) ctx;
1114 struct iris_blend_state *cso = state;
1115
1116 ice->state.cso_blend = cso;
1117 ice->state.blend_enables = cso ? cso->blend_enables : 0;
1118
1119 ice->state.dirty |= IRIS_DIRTY_PS_BLEND;
1120 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1121 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
1122 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_BLEND];
1123 }
1124
1125 /**
1126 * Return true if the FS writes to any color outputs which are not disabled
1127 * via color masking.
1128 */
1129 static bool
1130 has_writeable_rt(const struct iris_blend_state *cso_blend,
1131 const struct shader_info *fs_info)
1132 {
1133 if (!fs_info)
1134 return false;
1135
1136 unsigned rt_outputs = fs_info->outputs_written >> FRAG_RESULT_DATA0;
1137
1138 if (fs_info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_COLOR))
1139 rt_outputs = (1 << BRW_MAX_DRAW_BUFFERS) - 1;
1140
1141 return cso_blend->color_write_enables & rt_outputs;
1142 }
1143
1144 /**
1145 * Gallium CSO for depth, stencil, and alpha testing state.
1146 */
1147 struct iris_depth_stencil_alpha_state {
1148 /** Partial 3DSTATE_WM_DEPTH_STENCIL. */
1149 uint32_t wmds[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
1150
1151 /** Outbound to BLEND_STATE, 3DSTATE_PS_BLEND, COLOR_CALC_STATE. */
1152 struct pipe_alpha_state alpha;
1153
1154 /** Outbound to resolve and cache set tracking. */
1155 bool depth_writes_enabled;
1156 bool stencil_writes_enabled;
1157 };
1158
1159 /**
1160 * The pipe->create_depth_stencil_alpha_state() driver hook.
1161 *
1162 * We encode most of 3DSTATE_WM_DEPTH_STENCIL, and just save off the alpha
1163 * testing state since we need pieces of it in a variety of places.
1164 */
1165 static void *
1166 iris_create_zsa_state(struct pipe_context *ctx,
1167 const struct pipe_depth_stencil_alpha_state *state)
1168 {
1169 struct iris_depth_stencil_alpha_state *cso =
1170 malloc(sizeof(struct iris_depth_stencil_alpha_state));
1171
1172 bool two_sided_stencil = state->stencil[1].enabled;
1173
1174 cso->alpha = state->alpha;
1175 cso->depth_writes_enabled = state->depth.writemask;
1176 cso->stencil_writes_enabled =
1177 state->stencil[0].writemask != 0 ||
1178 (two_sided_stencil && state->stencil[1].writemask != 0);
1179
1180 /* The state tracker needs to optimize away EQUAL writes for us. */
1181 assert(!(state->depth.func == PIPE_FUNC_EQUAL && state->depth.writemask));
1182
1183 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), cso->wmds, wmds) {
1184 wmds.StencilFailOp = state->stencil[0].fail_op;
1185 wmds.StencilPassDepthFailOp = state->stencil[0].zfail_op;
1186 wmds.StencilPassDepthPassOp = state->stencil[0].zpass_op;
1187 wmds.StencilTestFunction =
1188 translate_compare_func(state->stencil[0].func);
1189 wmds.BackfaceStencilFailOp = state->stencil[1].fail_op;
1190 wmds.BackfaceStencilPassDepthFailOp = state->stencil[1].zfail_op;
1191 wmds.BackfaceStencilPassDepthPassOp = state->stencil[1].zpass_op;
1192 wmds.BackfaceStencilTestFunction =
1193 translate_compare_func(state->stencil[1].func);
1194 wmds.DepthTestFunction = translate_compare_func(state->depth.func);
1195 wmds.DoubleSidedStencilEnable = two_sided_stencil;
1196 wmds.StencilTestEnable = state->stencil[0].enabled;
1197 wmds.StencilBufferWriteEnable =
1198 state->stencil[0].writemask != 0 ||
1199 (two_sided_stencil && state->stencil[1].writemask != 0);
1200 wmds.DepthTestEnable = state->depth.enabled;
1201 wmds.DepthBufferWriteEnable = state->depth.writemask;
1202 wmds.StencilTestMask = state->stencil[0].valuemask;
1203 wmds.StencilWriteMask = state->stencil[0].writemask;
1204 wmds.BackfaceStencilTestMask = state->stencil[1].valuemask;
1205 wmds.BackfaceStencilWriteMask = state->stencil[1].writemask;
1206 /* wmds.[Backface]StencilReferenceValue are merged later */
1207 }
1208
1209 return cso;
1210 }
1211
1212 /**
1213 * The pipe->bind_depth_stencil_alpha_state() driver hook.
1214 *
1215 * Bind a depth/stencil/alpha CSO and flag related dirty bits.
1216 */
1217 static void
1218 iris_bind_zsa_state(struct pipe_context *ctx, void *state)
1219 {
1220 struct iris_context *ice = (struct iris_context *) ctx;
1221 struct iris_depth_stencil_alpha_state *old_cso = ice->state.cso_zsa;
1222 struct iris_depth_stencil_alpha_state *new_cso = state;
1223
1224 if (new_cso) {
1225 if (cso_changed(alpha.ref_value))
1226 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
1227
1228 if (cso_changed(alpha.enabled))
1229 ice->state.dirty |= IRIS_DIRTY_PS_BLEND | IRIS_DIRTY_BLEND_STATE;
1230
1231 if (cso_changed(alpha.func))
1232 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1233
1234 if (cso_changed(depth_writes_enabled))
1235 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
1236
1237 ice->state.depth_writes_enabled = new_cso->depth_writes_enabled;
1238 ice->state.stencil_writes_enabled = new_cso->stencil_writes_enabled;
1239 }
1240
1241 ice->state.cso_zsa = new_cso;
1242 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1243 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
1244 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_DEPTH_STENCIL_ALPHA];
1245 }
1246
1247 /**
1248 * Gallium CSO for rasterizer state.
1249 */
1250 struct iris_rasterizer_state {
1251 uint32_t sf[GENX(3DSTATE_SF_length)];
1252 uint32_t clip[GENX(3DSTATE_CLIP_length)];
1253 uint32_t raster[GENX(3DSTATE_RASTER_length)];
1254 uint32_t wm[GENX(3DSTATE_WM_length)];
1255 uint32_t line_stipple[GENX(3DSTATE_LINE_STIPPLE_length)];
1256
1257 uint8_t num_clip_plane_consts;
1258 bool clip_halfz; /* for CC_VIEWPORT */
1259 bool depth_clip_near; /* for CC_VIEWPORT */
1260 bool depth_clip_far; /* for CC_VIEWPORT */
1261 bool flatshade; /* for shader state */
1262 bool flatshade_first; /* for stream output */
1263 bool clamp_fragment_color; /* for shader state */
1264 bool light_twoside; /* for shader state */
1265 bool rasterizer_discard; /* for 3DSTATE_STREAMOUT and 3DSTATE_CLIP */
1266 bool half_pixel_center; /* for 3DSTATE_MULTISAMPLE */
1267 bool line_stipple_enable;
1268 bool poly_stipple_enable;
1269 bool multisample;
1270 bool force_persample_interp;
1271 bool conservative_rasterization;
1272 bool fill_mode_point_or_line;
1273 enum pipe_sprite_coord_mode sprite_coord_mode; /* PIPE_SPRITE_* */
1274 uint16_t sprite_coord_enable;
1275 };
1276
1277 static float
1278 get_line_width(const struct pipe_rasterizer_state *state)
1279 {
1280 float line_width = state->line_width;
1281
1282 /* From the OpenGL 4.4 spec:
1283 *
1284 * "The actual width of non-antialiased lines is determined by rounding
1285 * the supplied width to the nearest integer, then clamping it to the
1286 * implementation-dependent maximum non-antialiased line width."
1287 */
1288 if (!state->multisample && !state->line_smooth)
1289 line_width = roundf(state->line_width);
1290
1291 if (!state->multisample && state->line_smooth && line_width < 1.5f) {
1292 /* For 1 pixel line thickness or less, the general anti-aliasing
1293 * algorithm gives up, and a garbage line is generated. Setting a
1294 * Line Width of 0.0 specifies the rasterization of the "thinnest"
1295 * (one-pixel-wide), non-antialiased lines.
1296 *
1297 * Lines rendered with zero Line Width are rasterized using the
1298 * "Grid Intersection Quantization" rules as specified by the
1299 * "Zero-Width (Cosmetic) Line Rasterization" section of the docs.
1300 */
1301 line_width = 0.0f;
1302 }
1303
1304 return line_width;
1305 }
1306
1307 /**
1308 * The pipe->create_rasterizer_state() driver hook.
1309 */
1310 static void *
1311 iris_create_rasterizer_state(struct pipe_context *ctx,
1312 const struct pipe_rasterizer_state *state)
1313 {
1314 struct iris_rasterizer_state *cso =
1315 malloc(sizeof(struct iris_rasterizer_state));
1316
1317 cso->multisample = state->multisample;
1318 cso->force_persample_interp = state->force_persample_interp;
1319 cso->clip_halfz = state->clip_halfz;
1320 cso->depth_clip_near = state->depth_clip_near;
1321 cso->depth_clip_far = state->depth_clip_far;
1322 cso->flatshade = state->flatshade;
1323 cso->flatshade_first = state->flatshade_first;
1324 cso->clamp_fragment_color = state->clamp_fragment_color;
1325 cso->light_twoside = state->light_twoside;
1326 cso->rasterizer_discard = state->rasterizer_discard;
1327 cso->half_pixel_center = state->half_pixel_center;
1328 cso->sprite_coord_mode = state->sprite_coord_mode;
1329 cso->sprite_coord_enable = state->sprite_coord_enable;
1330 cso->line_stipple_enable = state->line_stipple_enable;
1331 cso->poly_stipple_enable = state->poly_stipple_enable;
1332 cso->conservative_rasterization =
1333 state->conservative_raster_mode == PIPE_CONSERVATIVE_RASTER_POST_SNAP;
1334
1335 cso->fill_mode_point_or_line =
1336 state->fill_front == PIPE_POLYGON_MODE_LINE ||
1337 state->fill_front == PIPE_POLYGON_MODE_POINT ||
1338 state->fill_back == PIPE_POLYGON_MODE_LINE ||
1339 state->fill_back == PIPE_POLYGON_MODE_POINT;
1340
1341 if (state->clip_plane_enable != 0)
1342 cso->num_clip_plane_consts = util_logbase2(state->clip_plane_enable) + 1;
1343 else
1344 cso->num_clip_plane_consts = 0;
1345
1346 float line_width = get_line_width(state);
1347
1348 iris_pack_command(GENX(3DSTATE_SF), cso->sf, sf) {
1349 sf.StatisticsEnable = true;
1350 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
1351 sf.LineEndCapAntialiasingRegionWidth =
1352 state->line_smooth ? _10pixels : _05pixels;
1353 sf.LastPixelEnable = state->line_last_pixel;
1354 sf.LineWidth = line_width;
1355 sf.SmoothPointEnable = (state->point_smooth || state->multisample) &&
1356 !state->point_quad_rasterization;
1357 sf.PointWidthSource = state->point_size_per_vertex ? Vertex : State;
1358 sf.PointWidth = state->point_size;
1359
1360 if (state->flatshade_first) {
1361 sf.TriangleFanProvokingVertexSelect = 1;
1362 } else {
1363 sf.TriangleStripListProvokingVertexSelect = 2;
1364 sf.TriangleFanProvokingVertexSelect = 2;
1365 sf.LineStripListProvokingVertexSelect = 1;
1366 }
1367 }
1368
1369 iris_pack_command(GENX(3DSTATE_RASTER), cso->raster, rr) {
1370 rr.FrontWinding = state->front_ccw ? CounterClockwise : Clockwise;
1371 rr.CullMode = translate_cull_mode(state->cull_face);
1372 rr.FrontFaceFillMode = translate_fill_mode(state->fill_front);
1373 rr.BackFaceFillMode = translate_fill_mode(state->fill_back);
1374 rr.DXMultisampleRasterizationEnable = state->multisample;
1375 rr.GlobalDepthOffsetEnableSolid = state->offset_tri;
1376 rr.GlobalDepthOffsetEnableWireframe = state->offset_line;
1377 rr.GlobalDepthOffsetEnablePoint = state->offset_point;
1378 rr.GlobalDepthOffsetConstant = state->offset_units * 2;
1379 rr.GlobalDepthOffsetScale = state->offset_scale;
1380 rr.GlobalDepthOffsetClamp = state->offset_clamp;
1381 rr.SmoothPointEnable = state->point_smooth;
1382 rr.AntialiasingEnable = state->line_smooth;
1383 rr.ScissorRectangleEnable = state->scissor;
1384 #if GEN_GEN >= 9
1385 rr.ViewportZNearClipTestEnable = state->depth_clip_near;
1386 rr.ViewportZFarClipTestEnable = state->depth_clip_far;
1387 rr.ConservativeRasterizationEnable =
1388 cso->conservative_rasterization;
1389 #else
1390 rr.ViewportZClipTestEnable = (state->depth_clip_near || state->depth_clip_far);
1391 #endif
1392 }
1393
1394 iris_pack_command(GENX(3DSTATE_CLIP), cso->clip, cl) {
1395 /* cl.NonPerspectiveBarycentricEnable is filled in at draw time from
1396 * the FS program; cl.ForceZeroRTAIndexEnable is filled in from the FB.
1397 */
1398 cl.EarlyCullEnable = true;
1399 cl.UserClipDistanceClipTestEnableBitmask = state->clip_plane_enable;
1400 cl.ForceUserClipDistanceClipTestEnableBitmask = true;
1401 cl.APIMode = state->clip_halfz ? APIMODE_D3D : APIMODE_OGL;
1402 cl.GuardbandClipTestEnable = true;
1403 cl.ClipEnable = true;
1404 cl.MinimumPointWidth = 0.125;
1405 cl.MaximumPointWidth = 255.875;
1406
1407 if (state->flatshade_first) {
1408 cl.TriangleFanProvokingVertexSelect = 1;
1409 } else {
1410 cl.TriangleStripListProvokingVertexSelect = 2;
1411 cl.TriangleFanProvokingVertexSelect = 2;
1412 cl.LineStripListProvokingVertexSelect = 1;
1413 }
1414 }
1415
1416 iris_pack_command(GENX(3DSTATE_WM), cso->wm, wm) {
1417 /* wm.BarycentricInterpolationMode and wm.EarlyDepthStencilControl are
1418 * filled in at draw time from the FS program.
1419 */
1420 wm.LineAntialiasingRegionWidth = _10pixels;
1421 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1422 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1423 wm.LineStippleEnable = state->line_stipple_enable;
1424 wm.PolygonStippleEnable = state->poly_stipple_enable;
1425 }
1426
1427 /* Remap from 0..255 back to 1..256 */
1428 const unsigned line_stipple_factor = state->line_stipple_factor + 1;
1429
1430 iris_pack_command(GENX(3DSTATE_LINE_STIPPLE), cso->line_stipple, line) {
1431 if (state->line_stipple_enable) {
1432 line.LineStipplePattern = state->line_stipple_pattern;
1433 line.LineStippleInverseRepeatCount = 1.0f / line_stipple_factor;
1434 line.LineStippleRepeatCount = line_stipple_factor;
1435 }
1436 }
1437
1438 return cso;
1439 }
1440
1441 /**
1442 * The pipe->bind_rasterizer_state() driver hook.
1443 *
1444 * Bind a rasterizer CSO and flag related dirty bits.
1445 */
1446 static void
1447 iris_bind_rasterizer_state(struct pipe_context *ctx, void *state)
1448 {
1449 struct iris_context *ice = (struct iris_context *) ctx;
1450 struct iris_rasterizer_state *old_cso = ice->state.cso_rast;
1451 struct iris_rasterizer_state *new_cso = state;
1452
1453 if (new_cso) {
1454 /* Try to avoid re-emitting 3DSTATE_LINE_STIPPLE, it's non-pipelined */
1455 if (cso_changed_memcmp(line_stipple))
1456 ice->state.dirty |= IRIS_DIRTY_LINE_STIPPLE;
1457
1458 if (cso_changed(half_pixel_center))
1459 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
1460
1461 if (cso_changed(line_stipple_enable) || cso_changed(poly_stipple_enable))
1462 ice->state.dirty |= IRIS_DIRTY_WM;
1463
1464 if (cso_changed(rasterizer_discard))
1465 ice->state.dirty |= IRIS_DIRTY_STREAMOUT | IRIS_DIRTY_CLIP;
1466
1467 if (cso_changed(flatshade_first))
1468 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
1469
1470 if (cso_changed(depth_clip_near) || cso_changed(depth_clip_far) ||
1471 cso_changed(clip_halfz))
1472 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1473
1474 if (cso_changed(sprite_coord_enable) ||
1475 cso_changed(sprite_coord_mode) ||
1476 cso_changed(light_twoside))
1477 ice->state.dirty |= IRIS_DIRTY_SBE;
1478
1479 if (cso_changed(conservative_rasterization))
1480 ice->state.dirty |= IRIS_DIRTY_FS;
1481 }
1482
1483 ice->state.cso_rast = new_cso;
1484 ice->state.dirty |= IRIS_DIRTY_RASTER;
1485 ice->state.dirty |= IRIS_DIRTY_CLIP;
1486 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_RASTERIZER];
1487 }
1488
1489 /**
1490 * Return true if the given wrap mode requires the border color to exist.
1491 *
1492 * (We can skip uploading it if the sampler isn't going to use it.)
1493 */
1494 static bool
1495 wrap_mode_needs_border_color(unsigned wrap_mode)
1496 {
1497 return wrap_mode == TCM_CLAMP_BORDER || wrap_mode == TCM_HALF_BORDER;
1498 }
1499
1500 /**
1501 * Gallium CSO for sampler state.
1502 */
1503 struct iris_sampler_state {
1504 union pipe_color_union border_color;
1505 bool needs_border_color;
1506
1507 uint32_t sampler_state[GENX(SAMPLER_STATE_length)];
1508 };
1509
1510 /**
1511 * The pipe->create_sampler_state() driver hook.
1512 *
1513 * We fill out SAMPLER_STATE (except for the border color pointer), and
1514 * store that on the CPU. It doesn't make sense to upload it to a GPU
1515 * buffer object yet, because 3DSTATE_SAMPLER_STATE_POINTERS requires
1516 * all bound sampler states to be in contiguous memor.
1517 */
1518 static void *
1519 iris_create_sampler_state(struct pipe_context *ctx,
1520 const struct pipe_sampler_state *state)
1521 {
1522 struct iris_sampler_state *cso = CALLOC_STRUCT(iris_sampler_state);
1523
1524 if (!cso)
1525 return NULL;
1526
1527 STATIC_ASSERT(PIPE_TEX_FILTER_NEAREST == MAPFILTER_NEAREST);
1528 STATIC_ASSERT(PIPE_TEX_FILTER_LINEAR == MAPFILTER_LINEAR);
1529
1530 unsigned wrap_s = translate_wrap(state->wrap_s);
1531 unsigned wrap_t = translate_wrap(state->wrap_t);
1532 unsigned wrap_r = translate_wrap(state->wrap_r);
1533
1534 memcpy(&cso->border_color, &state->border_color, sizeof(cso->border_color));
1535
1536 cso->needs_border_color = wrap_mode_needs_border_color(wrap_s) ||
1537 wrap_mode_needs_border_color(wrap_t) ||
1538 wrap_mode_needs_border_color(wrap_r);
1539
1540 float min_lod = state->min_lod;
1541 unsigned mag_img_filter = state->mag_img_filter;
1542
1543 // XXX: explain this code ported from ilo...I don't get it at all...
1544 if (state->min_mip_filter == PIPE_TEX_MIPFILTER_NONE &&
1545 state->min_lod > 0.0f) {
1546 min_lod = 0.0f;
1547 mag_img_filter = state->min_img_filter;
1548 }
1549
1550 iris_pack_state(GENX(SAMPLER_STATE), cso->sampler_state, samp) {
1551 samp.TCXAddressControlMode = wrap_s;
1552 samp.TCYAddressControlMode = wrap_t;
1553 samp.TCZAddressControlMode = wrap_r;
1554 samp.CubeSurfaceControlMode = state->seamless_cube_map;
1555 samp.NonnormalizedCoordinateEnable = !state->normalized_coords;
1556 samp.MinModeFilter = state->min_img_filter;
1557 samp.MagModeFilter = mag_img_filter;
1558 samp.MipModeFilter = translate_mip_filter(state->min_mip_filter);
1559 samp.MaximumAnisotropy = RATIO21;
1560
1561 if (state->max_anisotropy >= 2) {
1562 if (state->min_img_filter == PIPE_TEX_FILTER_LINEAR) {
1563 samp.MinModeFilter = MAPFILTER_ANISOTROPIC;
1564 samp.AnisotropicAlgorithm = EWAApproximation;
1565 }
1566
1567 if (state->mag_img_filter == PIPE_TEX_FILTER_LINEAR)
1568 samp.MagModeFilter = MAPFILTER_ANISOTROPIC;
1569
1570 samp.MaximumAnisotropy =
1571 MIN2((state->max_anisotropy - 2) / 2, RATIO161);
1572 }
1573
1574 /* Set address rounding bits if not using nearest filtering. */
1575 if (state->min_img_filter != PIPE_TEX_FILTER_NEAREST) {
1576 samp.UAddressMinFilterRoundingEnable = true;
1577 samp.VAddressMinFilterRoundingEnable = true;
1578 samp.RAddressMinFilterRoundingEnable = true;
1579 }
1580
1581 if (state->mag_img_filter != PIPE_TEX_FILTER_NEAREST) {
1582 samp.UAddressMagFilterRoundingEnable = true;
1583 samp.VAddressMagFilterRoundingEnable = true;
1584 samp.RAddressMagFilterRoundingEnable = true;
1585 }
1586
1587 if (state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE)
1588 samp.ShadowFunction = translate_shadow_func(state->compare_func);
1589
1590 const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
1591
1592 samp.LODPreClampMode = CLAMP_MODE_OGL;
1593 samp.MinLOD = CLAMP(min_lod, 0, hw_max_lod);
1594 samp.MaxLOD = CLAMP(state->max_lod, 0, hw_max_lod);
1595 samp.TextureLODBias = CLAMP(state->lod_bias, -16, 15);
1596
1597 /* .BorderColorPointer is filled in by iris_bind_sampler_states. */
1598 }
1599
1600 return cso;
1601 }
1602
1603 /**
1604 * The pipe->bind_sampler_states() driver hook.
1605 */
1606 static void
1607 iris_bind_sampler_states(struct pipe_context *ctx,
1608 enum pipe_shader_type p_stage,
1609 unsigned start, unsigned count,
1610 void **states)
1611 {
1612 struct iris_context *ice = (struct iris_context *) ctx;
1613 gl_shader_stage stage = stage_from_pipe(p_stage);
1614 struct iris_shader_state *shs = &ice->state.shaders[stage];
1615
1616 assert(start + count <= IRIS_MAX_TEXTURE_SAMPLERS);
1617
1618 bool dirty = false;
1619
1620 for (int i = 0; i < count; i++) {
1621 if (shs->samplers[start + i] != states[i]) {
1622 shs->samplers[start + i] = states[i];
1623 dirty = true;
1624 }
1625 }
1626
1627 if (dirty)
1628 ice->state.dirty |= IRIS_DIRTY_SAMPLER_STATES_VS << stage;
1629 }
1630
1631 /**
1632 * Upload the sampler states into a contiguous area of GPU memory, for
1633 * for 3DSTATE_SAMPLER_STATE_POINTERS_*.
1634 *
1635 * Also fill out the border color state pointers.
1636 */
1637 static void
1638 iris_upload_sampler_states(struct iris_context *ice, gl_shader_stage stage)
1639 {
1640 struct iris_shader_state *shs = &ice->state.shaders[stage];
1641 const struct shader_info *info = iris_get_shader_info(ice, stage);
1642
1643 /* We assume the state tracker will call pipe->bind_sampler_states()
1644 * if the program's number of textures changes.
1645 */
1646 unsigned count = info ? util_last_bit(info->textures_used) : 0;
1647
1648 if (!count)
1649 return;
1650
1651 /* Assemble the SAMPLER_STATEs into a contiguous table that lives
1652 * in the dynamic state memory zone, so we can point to it via the
1653 * 3DSTATE_SAMPLER_STATE_POINTERS_* commands.
1654 */
1655 unsigned size = count * 4 * GENX(SAMPLER_STATE_length);
1656 uint32_t *map =
1657 upload_state(ice->state.dynamic_uploader, &shs->sampler_table, size, 32);
1658 if (unlikely(!map))
1659 return;
1660
1661 struct pipe_resource *res = shs->sampler_table.res;
1662 shs->sampler_table.offset +=
1663 iris_bo_offset_from_base_address(iris_resource_bo(res));
1664
1665 iris_record_state_size(ice->state.sizes, shs->sampler_table.offset, size);
1666
1667 /* Make sure all land in the same BO */
1668 iris_border_color_pool_reserve(ice, IRIS_MAX_TEXTURE_SAMPLERS);
1669
1670 ice->state.need_border_colors &= ~(1 << stage);
1671
1672 for (int i = 0; i < count; i++) {
1673 struct iris_sampler_state *state = shs->samplers[i];
1674 struct iris_sampler_view *tex = shs->textures[i];
1675
1676 if (!state) {
1677 memset(map, 0, 4 * GENX(SAMPLER_STATE_length));
1678 } else if (!state->needs_border_color) {
1679 memcpy(map, state->sampler_state, 4 * GENX(SAMPLER_STATE_length));
1680 } else {
1681 ice->state.need_border_colors |= 1 << stage;
1682
1683 /* We may need to swizzle the border color for format faking.
1684 * A/LA formats are faked as R/RG with 000R or R00G swizzles.
1685 * This means we need to move the border color's A channel into
1686 * the R or G channels so that those read swizzles will move it
1687 * back into A.
1688 */
1689 union pipe_color_union *color = &state->border_color;
1690 union pipe_color_union tmp;
1691 if (tex) {
1692 enum pipe_format internal_format = tex->res->internal_format;
1693
1694 if (util_format_is_alpha(internal_format)) {
1695 unsigned char swz[4] = {
1696 PIPE_SWIZZLE_W, PIPE_SWIZZLE_0,
1697 PIPE_SWIZZLE_0, PIPE_SWIZZLE_0
1698 };
1699 util_format_apply_color_swizzle(&tmp, color, swz, true);
1700 color = &tmp;
1701 } else if (util_format_is_luminance_alpha(internal_format) &&
1702 internal_format != PIPE_FORMAT_L8A8_SRGB) {
1703 unsigned char swz[4] = {
1704 PIPE_SWIZZLE_X, PIPE_SWIZZLE_W,
1705 PIPE_SWIZZLE_0, PIPE_SWIZZLE_0
1706 };
1707 util_format_apply_color_swizzle(&tmp, color, swz, true);
1708 color = &tmp;
1709 }
1710 }
1711
1712 /* Stream out the border color and merge the pointer. */
1713 uint32_t offset = iris_upload_border_color(ice, color);
1714
1715 uint32_t dynamic[GENX(SAMPLER_STATE_length)];
1716 iris_pack_state(GENX(SAMPLER_STATE), dynamic, dyns) {
1717 dyns.BorderColorPointer = offset;
1718 }
1719
1720 for (uint32_t j = 0; j < GENX(SAMPLER_STATE_length); j++)
1721 map[j] = state->sampler_state[j] | dynamic[j];
1722 }
1723
1724 map += GENX(SAMPLER_STATE_length);
1725 }
1726 }
1727
1728 static enum isl_channel_select
1729 fmt_swizzle(const struct iris_format_info *fmt, enum pipe_swizzle swz)
1730 {
1731 switch (swz) {
1732 case PIPE_SWIZZLE_X: return fmt->swizzle.r;
1733 case PIPE_SWIZZLE_Y: return fmt->swizzle.g;
1734 case PIPE_SWIZZLE_Z: return fmt->swizzle.b;
1735 case PIPE_SWIZZLE_W: return fmt->swizzle.a;
1736 case PIPE_SWIZZLE_1: return SCS_ONE;
1737 case PIPE_SWIZZLE_0: return SCS_ZERO;
1738 default: unreachable("invalid swizzle");
1739 }
1740 }
1741
1742 static void
1743 fill_buffer_surface_state(struct isl_device *isl_dev,
1744 struct iris_resource *res,
1745 void *map,
1746 enum isl_format format,
1747 struct isl_swizzle swizzle,
1748 unsigned offset,
1749 unsigned size)
1750 {
1751 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
1752 const unsigned cpp = format == ISL_FORMAT_RAW ? 1 : fmtl->bpb / 8;
1753
1754 /* The ARB_texture_buffer_specification says:
1755 *
1756 * "The number of texels in the buffer texture's texel array is given by
1757 *
1758 * floor(<buffer_size> / (<components> * sizeof(<base_type>)),
1759 *
1760 * where <buffer_size> is the size of the buffer object, in basic
1761 * machine units and <components> and <base_type> are the element count
1762 * and base data type for elements, as specified in Table X.1. The
1763 * number of texels in the texel array is then clamped to the
1764 * implementation-dependent limit MAX_TEXTURE_BUFFER_SIZE_ARB."
1765 *
1766 * We need to clamp the size in bytes to MAX_TEXTURE_BUFFER_SIZE * stride,
1767 * so that when ISL divides by stride to obtain the number of texels, that
1768 * texel count is clamped to MAX_TEXTURE_BUFFER_SIZE.
1769 */
1770 unsigned final_size =
1771 MIN3(size, res->bo->size - res->offset - offset,
1772 IRIS_MAX_TEXTURE_BUFFER_SIZE * cpp);
1773
1774 isl_buffer_fill_state(isl_dev, map,
1775 .address = res->bo->gtt_offset + res->offset + offset,
1776 .size_B = final_size,
1777 .format = format,
1778 .swizzle = swizzle,
1779 .stride_B = cpp,
1780 .mocs = mocs(res->bo));
1781 }
1782
1783 #define SURFACE_STATE_ALIGNMENT 64
1784
1785 /**
1786 * Allocate several contiguous SURFACE_STATE structures, one for each
1787 * supported auxiliary surface mode.
1788 */
1789 static void *
1790 alloc_surface_states(struct u_upload_mgr *mgr,
1791 struct iris_state_ref *ref,
1792 unsigned aux_usages)
1793 {
1794 const unsigned surf_size = 4 * GENX(RENDER_SURFACE_STATE_length);
1795
1796 /* If this changes, update this to explicitly align pointers */
1797 STATIC_ASSERT(surf_size == SURFACE_STATE_ALIGNMENT);
1798
1799 assert(aux_usages != 0);
1800
1801 void *map =
1802 upload_state(mgr, ref, util_bitcount(aux_usages) * surf_size,
1803 SURFACE_STATE_ALIGNMENT);
1804
1805 ref->offset += iris_bo_offset_from_base_address(iris_resource_bo(ref->res));
1806
1807 return map;
1808 }
1809
1810 #if GEN_GEN == 8
1811 /**
1812 * Return an ISL surface for use with non-coherent render target reads.
1813 *
1814 * In a few complex cases, we can't use the SURFACE_STATE for normal render
1815 * target writes. We need to make a separate one for sampling which refers
1816 * to the single slice of the texture being read.
1817 */
1818 static void
1819 get_rt_read_isl_surf(const struct gen_device_info *devinfo,
1820 struct iris_resource *res,
1821 enum pipe_texture_target target,
1822 struct isl_view *view,
1823 uint32_t *tile_x_sa,
1824 uint32_t *tile_y_sa,
1825 struct isl_surf *surf)
1826 {
1827
1828 *surf = res->surf;
1829
1830 const enum isl_dim_layout dim_layout =
1831 iris_get_isl_dim_layout(devinfo, res->surf.tiling, target);
1832
1833 surf->dim = target_to_isl_surf_dim(target);
1834
1835 if (surf->dim_layout == dim_layout)
1836 return;
1837
1838 /* The layout of the specified texture target is not compatible with the
1839 * actual layout of the miptree structure in memory -- You're entering
1840 * dangerous territory, this can only possibly work if you only intended
1841 * to access a single level and slice of the texture, and the hardware
1842 * supports the tile offset feature in order to allow non-tile-aligned
1843 * base offsets, since we'll have to point the hardware to the first
1844 * texel of the level instead of relying on the usual base level/layer
1845 * controls.
1846 */
1847 assert(view->levels == 1 && view->array_len == 1);
1848 assert(*tile_x_sa == 0 && *tile_y_sa == 0);
1849
1850 res->offset += iris_resource_get_tile_offsets(res, view->base_level,
1851 view->base_array_layer,
1852 tile_x_sa, tile_y_sa);
1853 const unsigned l = view->base_level;
1854
1855 surf->logical_level0_px.width = minify(surf->logical_level0_px.width, l);
1856 surf->logical_level0_px.height = surf->dim <= ISL_SURF_DIM_1D ? 1 :
1857 minify(surf->logical_level0_px.height, l);
1858 surf->logical_level0_px.depth = surf->dim <= ISL_SURF_DIM_2D ? 1 :
1859 minify(surf->logical_level0_px.depth, l);
1860
1861 surf->logical_level0_px.array_len = 1;
1862 surf->levels = 1;
1863 surf->dim_layout = dim_layout;
1864
1865 view->base_level = 0;
1866 view->base_array_layer = 0;
1867 }
1868 #endif
1869
1870 static void
1871 fill_surface_state(struct isl_device *isl_dev,
1872 void *map,
1873 struct iris_resource *res,
1874 struct isl_surf *surf,
1875 struct isl_view *view,
1876 unsigned aux_usage,
1877 uint32_t tile_x_sa,
1878 uint32_t tile_y_sa)
1879 {
1880 struct isl_surf_fill_state_info f = {
1881 .surf = surf,
1882 .view = view,
1883 .mocs = mocs(res->bo),
1884 .address = res->bo->gtt_offset + res->offset,
1885 .x_offset_sa = tile_x_sa,
1886 .y_offset_sa = tile_y_sa,
1887 };
1888
1889 assert(!iris_resource_unfinished_aux_import(res));
1890
1891 if (aux_usage != ISL_AUX_USAGE_NONE) {
1892 f.aux_surf = &res->aux.surf;
1893 f.aux_usage = aux_usage;
1894 f.aux_address = res->aux.bo->gtt_offset + res->aux.offset;
1895
1896 struct iris_bo *clear_bo = NULL;
1897 uint64_t clear_offset = 0;
1898 f.clear_color =
1899 iris_resource_get_clear_color(res, &clear_bo, &clear_offset);
1900 if (clear_bo) {
1901 f.clear_address = clear_bo->gtt_offset + clear_offset;
1902 f.use_clear_address = isl_dev->info->gen > 9;
1903 }
1904 }
1905
1906 isl_surf_fill_state_s(isl_dev, map, &f);
1907 }
1908
1909 /**
1910 * The pipe->create_sampler_view() driver hook.
1911 */
1912 static struct pipe_sampler_view *
1913 iris_create_sampler_view(struct pipe_context *ctx,
1914 struct pipe_resource *tex,
1915 const struct pipe_sampler_view *tmpl)
1916 {
1917 struct iris_context *ice = (struct iris_context *) ctx;
1918 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1919 const struct gen_device_info *devinfo = &screen->devinfo;
1920 struct iris_sampler_view *isv = calloc(1, sizeof(struct iris_sampler_view));
1921
1922 if (!isv)
1923 return NULL;
1924
1925 /* initialize base object */
1926 isv->base = *tmpl;
1927 isv->base.context = ctx;
1928 isv->base.texture = NULL;
1929 pipe_reference_init(&isv->base.reference, 1);
1930 pipe_resource_reference(&isv->base.texture, tex);
1931
1932 if (util_format_is_depth_or_stencil(tmpl->format)) {
1933 struct iris_resource *zres, *sres;
1934 const struct util_format_description *desc =
1935 util_format_description(tmpl->format);
1936
1937 iris_get_depth_stencil_resources(tex, &zres, &sres);
1938
1939 tex = util_format_has_depth(desc) ? &zres->base : &sres->base;
1940 }
1941
1942 isv->res = (struct iris_resource *) tex;
1943
1944 void *map = alloc_surface_states(ice->state.surface_uploader,
1945 &isv->surface_state,
1946 isv->res->aux.sampler_usages);
1947 if (!unlikely(map))
1948 return NULL;
1949
1950 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_TEXTURE_BIT;
1951
1952 if (isv->base.target == PIPE_TEXTURE_CUBE ||
1953 isv->base.target == PIPE_TEXTURE_CUBE_ARRAY)
1954 usage |= ISL_SURF_USAGE_CUBE_BIT;
1955
1956 const struct iris_format_info fmt =
1957 iris_format_for_usage(devinfo, tmpl->format, usage);
1958
1959 isv->clear_color = isv->res->aux.clear_color;
1960
1961 isv->view = (struct isl_view) {
1962 .format = fmt.fmt,
1963 .swizzle = (struct isl_swizzle) {
1964 .r = fmt_swizzle(&fmt, tmpl->swizzle_r),
1965 .g = fmt_swizzle(&fmt, tmpl->swizzle_g),
1966 .b = fmt_swizzle(&fmt, tmpl->swizzle_b),
1967 .a = fmt_swizzle(&fmt, tmpl->swizzle_a),
1968 },
1969 .usage = usage,
1970 };
1971
1972 /* Fill out SURFACE_STATE for this view. */
1973 if (tmpl->target != PIPE_BUFFER) {
1974 isv->view.base_level = tmpl->u.tex.first_level;
1975 isv->view.levels = tmpl->u.tex.last_level - tmpl->u.tex.first_level + 1;
1976 // XXX: do I need to port f9fd0cf4790cb2a530e75d1a2206dbb9d8af7cb2?
1977 isv->view.base_array_layer = tmpl->u.tex.first_layer;
1978 isv->view.array_len =
1979 tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
1980
1981 if (iris_resource_unfinished_aux_import(isv->res))
1982 iris_resource_finish_aux_import(&screen->base, isv->res);
1983
1984 unsigned aux_modes = isv->res->aux.sampler_usages;
1985 while (aux_modes) {
1986 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
1987
1988 /* If we have a multisampled depth buffer, do not create a sampler
1989 * surface state with HiZ.
1990 */
1991 fill_surface_state(&screen->isl_dev, map, isv->res, &isv->res->surf,
1992 &isv->view, aux_usage, 0, 0);
1993
1994 map += SURFACE_STATE_ALIGNMENT;
1995 }
1996 } else {
1997 fill_buffer_surface_state(&screen->isl_dev, isv->res, map,
1998 isv->view.format, isv->view.swizzle,
1999 tmpl->u.buf.offset, tmpl->u.buf.size);
2000 }
2001
2002 return &isv->base;
2003 }
2004
2005 static void
2006 iris_sampler_view_destroy(struct pipe_context *ctx,
2007 struct pipe_sampler_view *state)
2008 {
2009 struct iris_sampler_view *isv = (void *) state;
2010 pipe_resource_reference(&state->texture, NULL);
2011 pipe_resource_reference(&isv->surface_state.res, NULL);
2012 free(isv);
2013 }
2014
2015 /**
2016 * The pipe->create_surface() driver hook.
2017 *
2018 * In Gallium nomenclature, "surfaces" are a view of a resource that
2019 * can be bound as a render target or depth/stencil buffer.
2020 */
2021 static struct pipe_surface *
2022 iris_create_surface(struct pipe_context *ctx,
2023 struct pipe_resource *tex,
2024 const struct pipe_surface *tmpl)
2025 {
2026 struct iris_context *ice = (struct iris_context *) ctx;
2027 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2028 const struct gen_device_info *devinfo = &screen->devinfo;
2029
2030 isl_surf_usage_flags_t usage = 0;
2031 if (tmpl->writable)
2032 usage = ISL_SURF_USAGE_STORAGE_BIT;
2033 else if (util_format_is_depth_or_stencil(tmpl->format))
2034 usage = ISL_SURF_USAGE_DEPTH_BIT;
2035 else
2036 usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
2037
2038 const struct iris_format_info fmt =
2039 iris_format_for_usage(devinfo, tmpl->format, usage);
2040
2041 if ((usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) &&
2042 !isl_format_supports_rendering(devinfo, fmt.fmt)) {
2043 /* Framebuffer validation will reject this invalid case, but it
2044 * hasn't had the opportunity yet. In the meantime, we need to
2045 * avoid hitting ISL asserts about unsupported formats below.
2046 */
2047 return NULL;
2048 }
2049
2050 struct iris_surface *surf = calloc(1, sizeof(struct iris_surface));
2051 struct pipe_surface *psurf = &surf->base;
2052 struct iris_resource *res = (struct iris_resource *) tex;
2053
2054 if (!surf)
2055 return NULL;
2056
2057 pipe_reference_init(&psurf->reference, 1);
2058 pipe_resource_reference(&psurf->texture, tex);
2059 psurf->context = ctx;
2060 psurf->format = tmpl->format;
2061 psurf->width = tex->width0;
2062 psurf->height = tex->height0;
2063 psurf->texture = tex;
2064 psurf->u.tex.first_layer = tmpl->u.tex.first_layer;
2065 psurf->u.tex.last_layer = tmpl->u.tex.last_layer;
2066 psurf->u.tex.level = tmpl->u.tex.level;
2067
2068 uint32_t array_len = tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
2069
2070 struct isl_view *view = &surf->view;
2071 *view = (struct isl_view) {
2072 .format = fmt.fmt,
2073 .base_level = tmpl->u.tex.level,
2074 .levels = 1,
2075 .base_array_layer = tmpl->u.tex.first_layer,
2076 .array_len = array_len,
2077 .swizzle = ISL_SWIZZLE_IDENTITY,
2078 .usage = usage,
2079 };
2080
2081 #if GEN_GEN == 8
2082 enum pipe_texture_target target = (tex->target == PIPE_TEXTURE_3D &&
2083 array_len == 1) ? PIPE_TEXTURE_2D :
2084 tex->target == PIPE_TEXTURE_1D_ARRAY ?
2085 PIPE_TEXTURE_2D_ARRAY : tex->target;
2086
2087 struct isl_view *read_view = &surf->read_view;
2088 *read_view = (struct isl_view) {
2089 .format = fmt.fmt,
2090 .base_level = tmpl->u.tex.level,
2091 .levels = 1,
2092 .base_array_layer = tmpl->u.tex.first_layer,
2093 .array_len = array_len,
2094 .swizzle = ISL_SWIZZLE_IDENTITY,
2095 .usage = ISL_SURF_USAGE_TEXTURE_BIT,
2096 };
2097 #endif
2098
2099 surf->clear_color = res->aux.clear_color;
2100
2101 /* Bail early for depth/stencil - we don't want SURFACE_STATE for them. */
2102 if (res->surf.usage & (ISL_SURF_USAGE_DEPTH_BIT |
2103 ISL_SURF_USAGE_STENCIL_BIT))
2104 return psurf;
2105
2106
2107 void *map = alloc_surface_states(ice->state.surface_uploader,
2108 &surf->surface_state,
2109 res->aux.possible_usages);
2110 if (!unlikely(map)) {
2111 pipe_resource_reference(&surf->surface_state.res, NULL);
2112 return NULL;
2113 }
2114
2115 #if GEN_GEN == 8
2116 void *map_read = alloc_surface_states(ice->state.surface_uploader,
2117 &surf->surface_state_read,
2118 res->aux.possible_usages);
2119 if (!unlikely(map_read)) {
2120 pipe_resource_reference(&surf->surface_state_read.res, NULL);
2121 return NULL;
2122 }
2123 #endif
2124
2125 if (!isl_format_is_compressed(res->surf.format)) {
2126 if (iris_resource_unfinished_aux_import(res))
2127 iris_resource_finish_aux_import(&screen->base, res);
2128
2129 /* This is a normal surface. Fill out a SURFACE_STATE for each possible
2130 * auxiliary surface mode and return the pipe_surface.
2131 */
2132 unsigned aux_modes = res->aux.possible_usages;
2133 while (aux_modes) {
2134 #if GEN_GEN == 8
2135 uint32_t offset = res->offset;
2136 #endif
2137 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
2138 fill_surface_state(&screen->isl_dev, map, res, &res->surf,
2139 view, aux_usage, 0, 0);
2140 map += SURFACE_STATE_ALIGNMENT;
2141
2142 #if GEN_GEN == 8
2143 struct isl_surf surf;
2144 uint32_t tile_x_sa = 0, tile_y_sa = 0;
2145 get_rt_read_isl_surf(devinfo, res, target, read_view,
2146 &tile_x_sa, &tile_y_sa, &surf);
2147 fill_surface_state(&screen->isl_dev, map_read, res, &surf, read_view,
2148 aux_usage, tile_x_sa, tile_y_sa);
2149 /* Restore offset because we change offset in case of handling
2150 * non_coherent fb fetch
2151 */
2152 res->offset = offset;
2153 map_read += SURFACE_STATE_ALIGNMENT;
2154 #endif
2155 }
2156
2157 return psurf;
2158 }
2159
2160 /* The resource has a compressed format, which is not renderable, but we
2161 * have a renderable view format. We must be attempting to upload blocks
2162 * of compressed data via an uncompressed view.
2163 *
2164 * In this case, we can assume there are no auxiliary buffers, a single
2165 * miplevel, and that the resource is single-sampled. Gallium may try
2166 * and create an uncompressed view with multiple layers, however.
2167 */
2168 assert(!isl_format_is_compressed(fmt.fmt));
2169 assert(res->aux.possible_usages == 1 << ISL_AUX_USAGE_NONE);
2170 assert(res->surf.samples == 1);
2171 assert(view->levels == 1);
2172
2173 struct isl_surf isl_surf;
2174 uint32_t offset_B = 0, tile_x_sa = 0, tile_y_sa = 0;
2175
2176 if (view->base_level > 0) {
2177 /* We can't rely on the hardware's miplevel selection with such
2178 * a substantial lie about the format, so we select a single image
2179 * using the Tile X/Y Offset fields. In this case, we can't handle
2180 * multiple array slices.
2181 *
2182 * On Broadwell, HALIGN and VALIGN are specified in pixels and are
2183 * hard-coded to align to exactly the block size of the compressed
2184 * texture. This means that, when reinterpreted as a non-compressed
2185 * texture, the tile offsets may be anything and we can't rely on
2186 * X/Y Offset.
2187 *
2188 * Return NULL to force the state tracker to take fallback paths.
2189 */
2190 if (view->array_len > 1 || GEN_GEN == 8)
2191 return NULL;
2192
2193 const bool is_3d = res->surf.dim == ISL_SURF_DIM_3D;
2194 isl_surf_get_image_surf(&screen->isl_dev, &res->surf,
2195 view->base_level,
2196 is_3d ? 0 : view->base_array_layer,
2197 is_3d ? view->base_array_layer : 0,
2198 &isl_surf,
2199 &offset_B, &tile_x_sa, &tile_y_sa);
2200
2201 /* We use address and tile offsets to access a single level/layer
2202 * as a subimage, so reset level/layer so it doesn't offset again.
2203 */
2204 view->base_array_layer = 0;
2205 view->base_level = 0;
2206 } else {
2207 /* Level 0 doesn't require tile offsets, and the hardware can find
2208 * array slices using QPitch even with the format override, so we
2209 * can allow layers in this case. Copy the original ISL surface.
2210 */
2211 memcpy(&isl_surf, &res->surf, sizeof(isl_surf));
2212 }
2213
2214 /* Scale down the image dimensions by the block size. */
2215 const struct isl_format_layout *fmtl =
2216 isl_format_get_layout(res->surf.format);
2217 isl_surf.format = fmt.fmt;
2218 isl_surf.logical_level0_px = isl_surf_get_logical_level0_el(&isl_surf);
2219 isl_surf.phys_level0_sa = isl_surf_get_phys_level0_el(&isl_surf);
2220 tile_x_sa /= fmtl->bw;
2221 tile_y_sa /= fmtl->bh;
2222
2223 psurf->width = isl_surf.logical_level0_px.width;
2224 psurf->height = isl_surf.logical_level0_px.height;
2225
2226 struct isl_surf_fill_state_info f = {
2227 .surf = &isl_surf,
2228 .view = view,
2229 .mocs = mocs(res->bo),
2230 .address = res->bo->gtt_offset + offset_B,
2231 .x_offset_sa = tile_x_sa,
2232 .y_offset_sa = tile_y_sa,
2233 };
2234
2235 isl_surf_fill_state_s(&screen->isl_dev, map, &f);
2236 return psurf;
2237 }
2238
2239 #if GEN_GEN < 9
2240 static void
2241 fill_default_image_param(struct brw_image_param *param)
2242 {
2243 memset(param, 0, sizeof(*param));
2244 /* Set the swizzling shifts to all-ones to effectively disable swizzling --
2245 * See emit_address_calculation() in brw_fs_surface_builder.cpp for a more
2246 * detailed explanation of these parameters.
2247 */
2248 param->swizzling[0] = 0xff;
2249 param->swizzling[1] = 0xff;
2250 }
2251
2252 static void
2253 fill_buffer_image_param(struct brw_image_param *param,
2254 enum pipe_format pfmt,
2255 unsigned size)
2256 {
2257 const unsigned cpp = util_format_get_blocksize(pfmt);
2258
2259 fill_default_image_param(param);
2260 param->size[0] = size / cpp;
2261 param->stride[0] = cpp;
2262 }
2263 #else
2264 #define isl_surf_fill_image_param(x, ...)
2265 #define fill_default_image_param(x, ...)
2266 #define fill_buffer_image_param(x, ...)
2267 #endif
2268
2269 /**
2270 * The pipe->set_shader_images() driver hook.
2271 */
2272 static void
2273 iris_set_shader_images(struct pipe_context *ctx,
2274 enum pipe_shader_type p_stage,
2275 unsigned start_slot, unsigned count,
2276 const struct pipe_image_view *p_images)
2277 {
2278 struct iris_context *ice = (struct iris_context *) ctx;
2279 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2280 const struct gen_device_info *devinfo = &screen->devinfo;
2281 gl_shader_stage stage = stage_from_pipe(p_stage);
2282 struct iris_shader_state *shs = &ice->state.shaders[stage];
2283 #if GEN_GEN == 8
2284 struct iris_genx_state *genx = ice->state.genx;
2285 struct brw_image_param *image_params = genx->shaders[stage].image_param;
2286 #endif
2287
2288 shs->bound_image_views &= ~u_bit_consecutive(start_slot, count);
2289
2290 for (unsigned i = 0; i < count; i++) {
2291 struct iris_image_view *iv = &shs->image[start_slot + i];
2292
2293 if (p_images && p_images[i].resource) {
2294 const struct pipe_image_view *img = &p_images[i];
2295 struct iris_resource *res = (void *) img->resource;
2296
2297 void *map =
2298 alloc_surface_states(ice->state.surface_uploader,
2299 &iv->surface_state, 1 << ISL_AUX_USAGE_NONE);
2300 if (!unlikely(map))
2301 return;
2302
2303 util_copy_image_view(&iv->base, img);
2304
2305 shs->bound_image_views |= 1 << (start_slot + i);
2306
2307 res->bind_history |= PIPE_BIND_SHADER_IMAGE;
2308 res->bind_stages |= 1 << stage;
2309
2310 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_STORAGE_BIT;
2311 enum isl_format isl_fmt =
2312 iris_format_for_usage(devinfo, img->format, usage).fmt;
2313
2314 bool untyped_fallback = false;
2315
2316 if (img->shader_access & PIPE_IMAGE_ACCESS_READ) {
2317 /* On Gen8, try to use typed surfaces reads (which support a
2318 * limited number of formats), and if not possible, fall back
2319 * to untyped reads.
2320 */
2321 untyped_fallback = GEN_GEN == 8 &&
2322 !isl_has_matching_typed_storage_image_format(devinfo, isl_fmt);
2323
2324 if (untyped_fallback)
2325 isl_fmt = ISL_FORMAT_RAW;
2326 else
2327 isl_fmt = isl_lower_storage_image_format(devinfo, isl_fmt);
2328 }
2329
2330 if (res->base.target != PIPE_BUFFER) {
2331 struct isl_view view = {
2332 .format = isl_fmt,
2333 .base_level = img->u.tex.level,
2334 .levels = 1,
2335 .base_array_layer = img->u.tex.first_layer,
2336 .array_len = img->u.tex.last_layer - img->u.tex.first_layer + 1,
2337 .swizzle = ISL_SWIZZLE_IDENTITY,
2338 .usage = usage,
2339 };
2340
2341 if (untyped_fallback) {
2342 fill_buffer_surface_state(&screen->isl_dev, res, map,
2343 isl_fmt, ISL_SWIZZLE_IDENTITY,
2344 0, res->bo->size);
2345 } else {
2346 /* Images don't support compression */
2347 unsigned aux_modes = 1 << ISL_AUX_USAGE_NONE;
2348 while (aux_modes) {
2349 enum isl_aux_usage usage = u_bit_scan(&aux_modes);
2350
2351 fill_surface_state(&screen->isl_dev, map, res, &res->surf,
2352 &view, usage, 0, 0);
2353
2354 map += SURFACE_STATE_ALIGNMENT;
2355 }
2356 }
2357
2358 isl_surf_fill_image_param(&screen->isl_dev,
2359 &image_params[start_slot + i],
2360 &res->surf, &view);
2361 } else {
2362 util_range_add(&res->valid_buffer_range, img->u.buf.offset,
2363 img->u.buf.offset + img->u.buf.size);
2364
2365 fill_buffer_surface_state(&screen->isl_dev, res, map,
2366 isl_fmt, ISL_SWIZZLE_IDENTITY,
2367 img->u.buf.offset, img->u.buf.size);
2368 fill_buffer_image_param(&image_params[start_slot + i],
2369 img->format, img->u.buf.size);
2370 }
2371 } else {
2372 pipe_resource_reference(&iv->base.resource, NULL);
2373 pipe_resource_reference(&iv->surface_state.res, NULL);
2374 fill_default_image_param(&image_params[start_slot + i]);
2375 }
2376 }
2377
2378 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2379 ice->state.dirty |=
2380 stage == MESA_SHADER_COMPUTE ? IRIS_DIRTY_COMPUTE_RESOLVES_AND_FLUSHES
2381 : IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
2382
2383 /* Broadwell also needs brw_image_params re-uploaded */
2384 if (GEN_GEN < 9) {
2385 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
2386 shs->sysvals_need_upload = true;
2387 }
2388 }
2389
2390
2391 /**
2392 * The pipe->set_sampler_views() driver hook.
2393 */
2394 static void
2395 iris_set_sampler_views(struct pipe_context *ctx,
2396 enum pipe_shader_type p_stage,
2397 unsigned start, unsigned count,
2398 struct pipe_sampler_view **views)
2399 {
2400 struct iris_context *ice = (struct iris_context *) ctx;
2401 gl_shader_stage stage = stage_from_pipe(p_stage);
2402 struct iris_shader_state *shs = &ice->state.shaders[stage];
2403
2404 shs->bound_sampler_views &= ~u_bit_consecutive(start, count);
2405
2406 for (unsigned i = 0; i < count; i++) {
2407 struct pipe_sampler_view *pview = views ? views[i] : NULL;
2408 pipe_sampler_view_reference((struct pipe_sampler_view **)
2409 &shs->textures[start + i], pview);
2410 struct iris_sampler_view *view = (void *) pview;
2411 if (view) {
2412 view->res->bind_history |= PIPE_BIND_SAMPLER_VIEW;
2413 view->res->bind_stages |= 1 << stage;
2414
2415 shs->bound_sampler_views |= 1 << (start + i);
2416 }
2417 }
2418
2419 ice->state.dirty |= (IRIS_DIRTY_BINDINGS_VS << stage);
2420 ice->state.dirty |=
2421 stage == MESA_SHADER_COMPUTE ? IRIS_DIRTY_COMPUTE_RESOLVES_AND_FLUSHES
2422 : IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
2423 }
2424
2425 /**
2426 * The pipe->set_tess_state() driver hook.
2427 */
2428 static void
2429 iris_set_tess_state(struct pipe_context *ctx,
2430 const float default_outer_level[4],
2431 const float default_inner_level[2])
2432 {
2433 struct iris_context *ice = (struct iris_context *) ctx;
2434 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_TESS_CTRL];
2435
2436 memcpy(&ice->state.default_outer_level[0], &default_outer_level[0], 4 * sizeof(float));
2437 memcpy(&ice->state.default_inner_level[0], &default_inner_level[0], 2 * sizeof(float));
2438
2439 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_TCS;
2440 shs->sysvals_need_upload = true;
2441 }
2442
2443 static void
2444 iris_surface_destroy(struct pipe_context *ctx, struct pipe_surface *p_surf)
2445 {
2446 struct iris_surface *surf = (void *) p_surf;
2447 pipe_resource_reference(&p_surf->texture, NULL);
2448 pipe_resource_reference(&surf->surface_state.res, NULL);
2449 pipe_resource_reference(&surf->surface_state_read.res, NULL);
2450 free(surf);
2451 }
2452
2453 static void
2454 iris_set_clip_state(struct pipe_context *ctx,
2455 const struct pipe_clip_state *state)
2456 {
2457 struct iris_context *ice = (struct iris_context *) ctx;
2458 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_VERTEX];
2459 struct iris_shader_state *gshs = &ice->state.shaders[MESA_SHADER_GEOMETRY];
2460 struct iris_shader_state *tshs = &ice->state.shaders[MESA_SHADER_TESS_EVAL];
2461
2462 memcpy(&ice->state.clip_planes, state, sizeof(*state));
2463
2464 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS | IRIS_DIRTY_CONSTANTS_GS |
2465 IRIS_DIRTY_CONSTANTS_TES;
2466 shs->sysvals_need_upload = true;
2467 gshs->sysvals_need_upload = true;
2468 tshs->sysvals_need_upload = true;
2469 }
2470
2471 /**
2472 * The pipe->set_polygon_stipple() driver hook.
2473 */
2474 static void
2475 iris_set_polygon_stipple(struct pipe_context *ctx,
2476 const struct pipe_poly_stipple *state)
2477 {
2478 struct iris_context *ice = (struct iris_context *) ctx;
2479 memcpy(&ice->state.poly_stipple, state, sizeof(*state));
2480 ice->state.dirty |= IRIS_DIRTY_POLYGON_STIPPLE;
2481 }
2482
2483 /**
2484 * The pipe->set_sample_mask() driver hook.
2485 */
2486 static void
2487 iris_set_sample_mask(struct pipe_context *ctx, unsigned sample_mask)
2488 {
2489 struct iris_context *ice = (struct iris_context *) ctx;
2490
2491 /* We only support 16x MSAA, so we have 16 bits of sample maks.
2492 * st/mesa may pass us 0xffffffff though, meaning "enable all samples".
2493 */
2494 ice->state.sample_mask = sample_mask & 0xffff;
2495 ice->state.dirty |= IRIS_DIRTY_SAMPLE_MASK;
2496 }
2497
2498 /**
2499 * The pipe->set_scissor_states() driver hook.
2500 *
2501 * This corresponds to our SCISSOR_RECT state structures. It's an
2502 * exact match, so we just store them, and memcpy them out later.
2503 */
2504 static void
2505 iris_set_scissor_states(struct pipe_context *ctx,
2506 unsigned start_slot,
2507 unsigned num_scissors,
2508 const struct pipe_scissor_state *rects)
2509 {
2510 struct iris_context *ice = (struct iris_context *) ctx;
2511
2512 for (unsigned i = 0; i < num_scissors; i++) {
2513 if (rects[i].minx == rects[i].maxx || rects[i].miny == rects[i].maxy) {
2514 /* If the scissor was out of bounds and got clamped to 0 width/height
2515 * at the bounds, the subtraction of 1 from maximums could produce a
2516 * negative number and thus not clip anything. Instead, just provide
2517 * a min > max scissor inside the bounds, which produces the expected
2518 * no rendering.
2519 */
2520 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
2521 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
2522 };
2523 } else {
2524 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
2525 .minx = rects[i].minx, .miny = rects[i].miny,
2526 .maxx = rects[i].maxx - 1, .maxy = rects[i].maxy - 1,
2527 };
2528 }
2529 }
2530
2531 ice->state.dirty |= IRIS_DIRTY_SCISSOR_RECT;
2532 }
2533
2534 /**
2535 * The pipe->set_stencil_ref() driver hook.
2536 *
2537 * This is added to 3DSTATE_WM_DEPTH_STENCIL dynamically at draw time.
2538 */
2539 static void
2540 iris_set_stencil_ref(struct pipe_context *ctx,
2541 const struct pipe_stencil_ref *state)
2542 {
2543 struct iris_context *ice = (struct iris_context *) ctx;
2544 memcpy(&ice->state.stencil_ref, state, sizeof(*state));
2545 if (GEN_GEN == 8)
2546 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
2547 else
2548 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
2549 }
2550
2551 static float
2552 viewport_extent(const struct pipe_viewport_state *state, int axis, float sign)
2553 {
2554 return copysignf(state->scale[axis], sign) + state->translate[axis];
2555 }
2556
2557 /**
2558 * The pipe->set_viewport_states() driver hook.
2559 *
2560 * This corresponds to our SF_CLIP_VIEWPORT states. We can't calculate
2561 * the guardband yet, as we need the framebuffer dimensions, but we can
2562 * at least fill out the rest.
2563 */
2564 static void
2565 iris_set_viewport_states(struct pipe_context *ctx,
2566 unsigned start_slot,
2567 unsigned count,
2568 const struct pipe_viewport_state *states)
2569 {
2570 struct iris_context *ice = (struct iris_context *) ctx;
2571
2572 memcpy(&ice->state.viewports[start_slot], states, sizeof(*states) * count);
2573
2574 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2575
2576 if (ice->state.cso_rast && (!ice->state.cso_rast->depth_clip_near ||
2577 !ice->state.cso_rast->depth_clip_far))
2578 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
2579 }
2580
2581 /**
2582 * The pipe->set_framebuffer_state() driver hook.
2583 *
2584 * Sets the current draw FBO, including color render targets, depth,
2585 * and stencil buffers.
2586 */
2587 static void
2588 iris_set_framebuffer_state(struct pipe_context *ctx,
2589 const struct pipe_framebuffer_state *state)
2590 {
2591 struct iris_context *ice = (struct iris_context *) ctx;
2592 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2593 struct isl_device *isl_dev = &screen->isl_dev;
2594 struct pipe_framebuffer_state *cso = &ice->state.framebuffer;
2595 struct iris_resource *zres;
2596 struct iris_resource *stencil_res;
2597
2598 unsigned samples = util_framebuffer_get_num_samples(state);
2599 unsigned layers = util_framebuffer_get_num_layers(state);
2600
2601 if (cso->samples != samples) {
2602 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
2603
2604 /* We need to toggle 3DSTATE_PS::32 Pixel Dispatch Enable */
2605 if (GEN_GEN >= 9 && (cso->samples == 16 || samples == 16))
2606 ice->state.dirty |= IRIS_DIRTY_FS;
2607 }
2608
2609 if (cso->nr_cbufs != state->nr_cbufs) {
2610 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
2611 }
2612
2613 if ((cso->layers == 0) != (layers == 0)) {
2614 ice->state.dirty |= IRIS_DIRTY_CLIP;
2615 }
2616
2617 if (cso->width != state->width || cso->height != state->height) {
2618 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2619 }
2620
2621 if (cso->zsbuf || state->zsbuf) {
2622 ice->state.dirty |= IRIS_DIRTY_DEPTH_BUFFER;
2623 }
2624
2625 util_copy_framebuffer_state(cso, state);
2626 cso->samples = samples;
2627 cso->layers = layers;
2628
2629 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
2630
2631 struct isl_view view = {
2632 .base_level = 0,
2633 .levels = 1,
2634 .base_array_layer = 0,
2635 .array_len = 1,
2636 .swizzle = ISL_SWIZZLE_IDENTITY,
2637 };
2638
2639 struct isl_depth_stencil_hiz_emit_info info = { .view = &view };
2640
2641 if (cso->zsbuf) {
2642 iris_get_depth_stencil_resources(cso->zsbuf->texture, &zres,
2643 &stencil_res);
2644
2645 view.base_level = cso->zsbuf->u.tex.level;
2646 view.base_array_layer = cso->zsbuf->u.tex.first_layer;
2647 view.array_len =
2648 cso->zsbuf->u.tex.last_layer - cso->zsbuf->u.tex.first_layer + 1;
2649
2650 if (zres) {
2651 view.usage |= ISL_SURF_USAGE_DEPTH_BIT;
2652
2653 info.depth_surf = &zres->surf;
2654 info.depth_address = zres->bo->gtt_offset + zres->offset;
2655 info.mocs = mocs(zres->bo);
2656
2657 view.format = zres->surf.format;
2658
2659 if (iris_resource_level_has_hiz(zres, view.base_level)) {
2660 info.hiz_usage = ISL_AUX_USAGE_HIZ;
2661 info.hiz_surf = &zres->aux.surf;
2662 info.hiz_address = zres->aux.bo->gtt_offset + zres->aux.offset;
2663 }
2664 }
2665
2666 if (stencil_res) {
2667 view.usage |= ISL_SURF_USAGE_STENCIL_BIT;
2668 info.stencil_surf = &stencil_res->surf;
2669 info.stencil_address = stencil_res->bo->gtt_offset + stencil_res->offset;
2670 if (!zres) {
2671 view.format = stencil_res->surf.format;
2672 info.mocs = mocs(stencil_res->bo);
2673 }
2674 }
2675 }
2676
2677 isl_emit_depth_stencil_hiz_s(isl_dev, cso_z->packets, &info);
2678
2679 /* Make a null surface for unbound buffers */
2680 void *null_surf_map =
2681 upload_state(ice->state.surface_uploader, &ice->state.null_fb,
2682 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2683 isl_null_fill_state(&screen->isl_dev, null_surf_map,
2684 isl_extent3d(MAX2(cso->width, 1),
2685 MAX2(cso->height, 1),
2686 cso->layers ? cso->layers : 1));
2687 ice->state.null_fb.offset +=
2688 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.null_fb.res));
2689
2690 /* Render target change */
2691 ice->state.dirty |= IRIS_DIRTY_BINDINGS_FS;
2692
2693 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
2694
2695 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_FRAMEBUFFER];
2696
2697 #if GEN_GEN == 11
2698 // XXX: we may want to flag IRIS_DIRTY_MULTISAMPLE (or SAMPLE_MASK?)
2699 // XXX: see commit 979fc1bc9bcc64027ff2cfafd285676f31b930a6
2700
2701 /* The PIPE_CONTROL command description says:
2702 *
2703 * "Whenever a Binding Table Index (BTI) used by a Render Target Message
2704 * points to a different RENDER_SURFACE_STATE, SW must issue a Render
2705 * Target Cache Flush by enabling this bit. When render target flush
2706 * is set due to new association of BTI, PS Scoreboard Stall bit must
2707 * be set in this packet."
2708 */
2709 // XXX: does this need to happen at 3DSTATE_BTP_PS time?
2710 iris_emit_pipe_control_flush(&ice->batches[IRIS_BATCH_RENDER],
2711 "workaround: RT BTI change [draw]",
2712 PIPE_CONTROL_RENDER_TARGET_FLUSH |
2713 PIPE_CONTROL_STALL_AT_SCOREBOARD);
2714 #endif
2715 }
2716
2717 /**
2718 * The pipe->set_constant_buffer() driver hook.
2719 *
2720 * This uploads any constant data in user buffers, and references
2721 * any UBO resources containing constant data.
2722 */
2723 static void
2724 iris_set_constant_buffer(struct pipe_context *ctx,
2725 enum pipe_shader_type p_stage, unsigned index,
2726 const struct pipe_constant_buffer *input)
2727 {
2728 struct iris_context *ice = (struct iris_context *) ctx;
2729 gl_shader_stage stage = stage_from_pipe(p_stage);
2730 struct iris_shader_state *shs = &ice->state.shaders[stage];
2731 struct pipe_shader_buffer *cbuf = &shs->constbuf[index];
2732
2733 /* TODO: Only do this if the buffer changes? */
2734 pipe_resource_reference(&shs->constbuf_surf_state[index].res, NULL);
2735
2736 if (input && input->buffer_size && (input->buffer || input->user_buffer)) {
2737 shs->bound_cbufs |= 1u << index;
2738
2739 if (input->user_buffer) {
2740 void *map = NULL;
2741 pipe_resource_reference(&cbuf->buffer, NULL);
2742 u_upload_alloc(ice->ctx.const_uploader, 0, input->buffer_size, 64,
2743 &cbuf->buffer_offset, &cbuf->buffer, (void **) &map);
2744
2745 if (!cbuf->buffer) {
2746 /* Allocation was unsuccessful - just unbind */
2747 iris_set_constant_buffer(ctx, p_stage, index, NULL);
2748 return;
2749 }
2750
2751 assert(map);
2752 memcpy(map, input->user_buffer, input->buffer_size);
2753 } else if (input->buffer) {
2754 pipe_resource_reference(&cbuf->buffer, input->buffer);
2755
2756 cbuf->buffer_offset = input->buffer_offset;
2757 }
2758
2759 cbuf->buffer_size =
2760 MIN2(input->buffer_size,
2761 iris_resource_bo(cbuf->buffer)->size - cbuf->buffer_offset);
2762
2763 struct iris_resource *res = (void *) cbuf->buffer;
2764 res->bind_history |= PIPE_BIND_CONSTANT_BUFFER;
2765 res->bind_stages |= 1 << stage;
2766 } else {
2767 shs->bound_cbufs &= ~(1u << index);
2768 pipe_resource_reference(&cbuf->buffer, NULL);
2769 }
2770
2771 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
2772 }
2773
2774 static void
2775 upload_sysvals(struct iris_context *ice,
2776 gl_shader_stage stage)
2777 {
2778 UNUSED struct iris_genx_state *genx = ice->state.genx;
2779 struct iris_shader_state *shs = &ice->state.shaders[stage];
2780
2781 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
2782 if (!shader || shader->num_system_values == 0)
2783 return;
2784
2785 assert(shader->num_cbufs > 0);
2786
2787 unsigned sysval_cbuf_index = shader->num_cbufs - 1;
2788 struct pipe_shader_buffer *cbuf = &shs->constbuf[sysval_cbuf_index];
2789 unsigned upload_size = shader->num_system_values * sizeof(uint32_t);
2790 uint32_t *map = NULL;
2791
2792 assert(sysval_cbuf_index < PIPE_MAX_CONSTANT_BUFFERS);
2793 u_upload_alloc(ice->ctx.const_uploader, 0, upload_size, 64,
2794 &cbuf->buffer_offset, &cbuf->buffer, (void **) &map);
2795
2796 for (int i = 0; i < shader->num_system_values; i++) {
2797 uint32_t sysval = shader->system_values[i];
2798 uint32_t value = 0;
2799
2800 if (BRW_PARAM_DOMAIN(sysval) == BRW_PARAM_DOMAIN_IMAGE) {
2801 #if GEN_GEN == 8
2802 unsigned img = BRW_PARAM_IMAGE_IDX(sysval);
2803 unsigned offset = BRW_PARAM_IMAGE_OFFSET(sysval);
2804 struct brw_image_param *param =
2805 &genx->shaders[stage].image_param[img];
2806
2807 assert(offset < sizeof(struct brw_image_param));
2808 value = ((uint32_t *) param)[offset];
2809 #endif
2810 } else if (sysval == BRW_PARAM_BUILTIN_ZERO) {
2811 value = 0;
2812 } else if (BRW_PARAM_BUILTIN_IS_CLIP_PLANE(sysval)) {
2813 int plane = BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(sysval);
2814 int comp = BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(sysval);
2815 value = fui(ice->state.clip_planes.ucp[plane][comp]);
2816 } else if (sysval == BRW_PARAM_BUILTIN_PATCH_VERTICES_IN) {
2817 if (stage == MESA_SHADER_TESS_CTRL) {
2818 value = ice->state.vertices_per_patch;
2819 } else {
2820 assert(stage == MESA_SHADER_TESS_EVAL);
2821 const struct shader_info *tcs_info =
2822 iris_get_shader_info(ice, MESA_SHADER_TESS_CTRL);
2823 if (tcs_info)
2824 value = tcs_info->tess.tcs_vertices_out;
2825 else
2826 value = ice->state.vertices_per_patch;
2827 }
2828 } else if (sysval >= BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X &&
2829 sysval <= BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W) {
2830 unsigned i = sysval - BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X;
2831 value = fui(ice->state.default_outer_level[i]);
2832 } else if (sysval == BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X) {
2833 value = fui(ice->state.default_inner_level[0]);
2834 } else if (sysval == BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y) {
2835 value = fui(ice->state.default_inner_level[1]);
2836 } else {
2837 assert(!"unhandled system value");
2838 }
2839
2840 *map++ = value;
2841 }
2842
2843 cbuf->buffer_size = upload_size;
2844 iris_upload_ubo_ssbo_surf_state(ice, cbuf,
2845 &shs->constbuf_surf_state[sysval_cbuf_index], false);
2846
2847 shs->sysvals_need_upload = false;
2848 }
2849
2850 /**
2851 * The pipe->set_shader_buffers() driver hook.
2852 *
2853 * This binds SSBOs and ABOs. Unfortunately, we need to stream out
2854 * SURFACE_STATE here, as the buffer offset may change each time.
2855 */
2856 static void
2857 iris_set_shader_buffers(struct pipe_context *ctx,
2858 enum pipe_shader_type p_stage,
2859 unsigned start_slot, unsigned count,
2860 const struct pipe_shader_buffer *buffers,
2861 unsigned writable_bitmask)
2862 {
2863 struct iris_context *ice = (struct iris_context *) ctx;
2864 gl_shader_stage stage = stage_from_pipe(p_stage);
2865 struct iris_shader_state *shs = &ice->state.shaders[stage];
2866
2867 unsigned modified_bits = u_bit_consecutive(start_slot, count);
2868
2869 shs->bound_ssbos &= ~modified_bits;
2870 shs->writable_ssbos &= ~modified_bits;
2871 shs->writable_ssbos |= writable_bitmask << start_slot;
2872
2873 for (unsigned i = 0; i < count; i++) {
2874 if (buffers && buffers[i].buffer) {
2875 struct iris_resource *res = (void *) buffers[i].buffer;
2876 struct pipe_shader_buffer *ssbo = &shs->ssbo[start_slot + i];
2877 struct iris_state_ref *surf_state =
2878 &shs->ssbo_surf_state[start_slot + i];
2879 pipe_resource_reference(&ssbo->buffer, &res->base);
2880 ssbo->buffer_offset = buffers[i].buffer_offset;
2881 ssbo->buffer_size =
2882 MIN2(buffers[i].buffer_size, res->bo->size - ssbo->buffer_offset);
2883
2884 shs->bound_ssbos |= 1 << (start_slot + i);
2885
2886 iris_upload_ubo_ssbo_surf_state(ice, ssbo, surf_state, true);
2887
2888 res->bind_history |= PIPE_BIND_SHADER_BUFFER;
2889 res->bind_stages |= 1 << stage;
2890
2891 util_range_add(&res->valid_buffer_range, ssbo->buffer_offset,
2892 ssbo->buffer_offset + ssbo->buffer_size);
2893 } else {
2894 pipe_resource_reference(&shs->ssbo[start_slot + i].buffer, NULL);
2895 pipe_resource_reference(&shs->ssbo_surf_state[start_slot + i].res,
2896 NULL);
2897 }
2898 }
2899
2900 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2901 }
2902
2903 static void
2904 iris_delete_state(struct pipe_context *ctx, void *state)
2905 {
2906 free(state);
2907 }
2908
2909 /**
2910 * The pipe->set_vertex_buffers() driver hook.
2911 *
2912 * This translates pipe_vertex_buffer to our 3DSTATE_VERTEX_BUFFERS packet.
2913 */
2914 static void
2915 iris_set_vertex_buffers(struct pipe_context *ctx,
2916 unsigned start_slot, unsigned count,
2917 const struct pipe_vertex_buffer *buffers)
2918 {
2919 struct iris_context *ice = (struct iris_context *) ctx;
2920 struct iris_genx_state *genx = ice->state.genx;
2921
2922 ice->state.bound_vertex_buffers &= ~u_bit_consecutive64(start_slot, count);
2923
2924 for (unsigned i = 0; i < count; i++) {
2925 const struct pipe_vertex_buffer *buffer = buffers ? &buffers[i] : NULL;
2926 struct iris_vertex_buffer_state *state =
2927 &genx->vertex_buffers[start_slot + i];
2928
2929 if (!buffer) {
2930 pipe_resource_reference(&state->resource, NULL);
2931 continue;
2932 }
2933
2934 /* We may see user buffers that are NULL bindings. */
2935 assert(!(buffer->is_user_buffer && buffer->buffer.user != NULL));
2936
2937 pipe_resource_reference(&state->resource, buffer->buffer.resource);
2938 struct iris_resource *res = (void *) state->resource;
2939
2940 state->offset = (int) buffer->buffer_offset;
2941
2942 if (res) {
2943 ice->state.bound_vertex_buffers |= 1ull << (start_slot + i);
2944 res->bind_history |= PIPE_BIND_VERTEX_BUFFER;
2945 }
2946
2947 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
2948 vb.VertexBufferIndex = start_slot + i;
2949 vb.AddressModifyEnable = true;
2950 vb.BufferPitch = buffer->stride;
2951 if (res) {
2952 vb.BufferSize = res->bo->size - (int) buffer->buffer_offset;
2953 vb.BufferStartingAddress =
2954 ro_bo(NULL, res->bo->gtt_offset + (int) buffer->buffer_offset);
2955 vb.MOCS = mocs(res->bo);
2956 } else {
2957 vb.NullVertexBuffer = true;
2958 }
2959 }
2960 }
2961
2962 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
2963 }
2964
2965 /**
2966 * Gallium CSO for vertex elements.
2967 */
2968 struct iris_vertex_element_state {
2969 uint32_t vertex_elements[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
2970 uint32_t vf_instancing[33 * GENX(3DSTATE_VF_INSTANCING_length)];
2971 uint32_t edgeflag_ve[GENX(VERTEX_ELEMENT_STATE_length)];
2972 uint32_t edgeflag_vfi[GENX(3DSTATE_VF_INSTANCING_length)];
2973 unsigned count;
2974 };
2975
2976 /**
2977 * The pipe->create_vertex_elements() driver hook.
2978 *
2979 * This translates pipe_vertex_element to our 3DSTATE_VERTEX_ELEMENTS
2980 * and 3DSTATE_VF_INSTANCING commands. The vertex_elements and vf_instancing
2981 * arrays are ready to be emitted at draw time if no EdgeFlag or SGVs are
2982 * needed. In these cases we will need information available at draw time.
2983 * We setup edgeflag_ve and edgeflag_vfi as alternatives last
2984 * 3DSTATE_VERTEX_ELEMENT and 3DSTATE_VF_INSTANCING that can be used at
2985 * draw time if we detect that EdgeFlag is needed by the Vertex Shader.
2986 */
2987 static void *
2988 iris_create_vertex_elements(struct pipe_context *ctx,
2989 unsigned count,
2990 const struct pipe_vertex_element *state)
2991 {
2992 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2993 const struct gen_device_info *devinfo = &screen->devinfo;
2994 struct iris_vertex_element_state *cso =
2995 malloc(sizeof(struct iris_vertex_element_state));
2996
2997 cso->count = count;
2998
2999 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS), cso->vertex_elements, ve) {
3000 ve.DWordLength =
3001 1 + GENX(VERTEX_ELEMENT_STATE_length) * MAX2(count, 1) - 2;
3002 }
3003
3004 uint32_t *ve_pack_dest = &cso->vertex_elements[1];
3005 uint32_t *vfi_pack_dest = cso->vf_instancing;
3006
3007 if (count == 0) {
3008 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
3009 ve.Valid = true;
3010 ve.SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT;
3011 ve.Component0Control = VFCOMP_STORE_0;
3012 ve.Component1Control = VFCOMP_STORE_0;
3013 ve.Component2Control = VFCOMP_STORE_0;
3014 ve.Component3Control = VFCOMP_STORE_1_FP;
3015 }
3016
3017 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
3018 }
3019 }
3020
3021 for (int i = 0; i < count; i++) {
3022 const struct iris_format_info fmt =
3023 iris_format_for_usage(devinfo, state[i].src_format, 0);
3024 unsigned comp[4] = { VFCOMP_STORE_SRC, VFCOMP_STORE_SRC,
3025 VFCOMP_STORE_SRC, VFCOMP_STORE_SRC };
3026
3027 switch (isl_format_get_num_channels(fmt.fmt)) {
3028 case 0: comp[0] = VFCOMP_STORE_0; /* fallthrough */
3029 case 1: comp[1] = VFCOMP_STORE_0; /* fallthrough */
3030 case 2: comp[2] = VFCOMP_STORE_0; /* fallthrough */
3031 case 3:
3032 comp[3] = isl_format_has_int_channel(fmt.fmt) ? VFCOMP_STORE_1_INT
3033 : VFCOMP_STORE_1_FP;
3034 break;
3035 }
3036 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
3037 ve.EdgeFlagEnable = false;
3038 ve.VertexBufferIndex = state[i].vertex_buffer_index;
3039 ve.Valid = true;
3040 ve.SourceElementOffset = state[i].src_offset;
3041 ve.SourceElementFormat = fmt.fmt;
3042 ve.Component0Control = comp[0];
3043 ve.Component1Control = comp[1];
3044 ve.Component2Control = comp[2];
3045 ve.Component3Control = comp[3];
3046 }
3047
3048 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
3049 vi.VertexElementIndex = i;
3050 vi.InstancingEnable = state[i].instance_divisor > 0;
3051 vi.InstanceDataStepRate = state[i].instance_divisor;
3052 }
3053
3054 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
3055 vfi_pack_dest += GENX(3DSTATE_VF_INSTANCING_length);
3056 }
3057
3058 /* An alternative version of the last VE and VFI is stored so it
3059 * can be used at draw time in case Vertex Shader uses EdgeFlag
3060 */
3061 if (count) {
3062 const unsigned edgeflag_index = count - 1;
3063 const struct iris_format_info fmt =
3064 iris_format_for_usage(devinfo, state[edgeflag_index].src_format, 0);
3065 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), cso->edgeflag_ve, ve) {
3066 ve.EdgeFlagEnable = true ;
3067 ve.VertexBufferIndex = state[edgeflag_index].vertex_buffer_index;
3068 ve.Valid = true;
3069 ve.SourceElementOffset = state[edgeflag_index].src_offset;
3070 ve.SourceElementFormat = fmt.fmt;
3071 ve.Component0Control = VFCOMP_STORE_SRC;
3072 ve.Component1Control = VFCOMP_STORE_0;
3073 ve.Component2Control = VFCOMP_STORE_0;
3074 ve.Component3Control = VFCOMP_STORE_0;
3075 }
3076 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), cso->edgeflag_vfi, vi) {
3077 /* The vi.VertexElementIndex of the EdgeFlag Vertex Element is filled
3078 * at draw time, as it should change if SGVs are emitted.
3079 */
3080 vi.InstancingEnable = state[edgeflag_index].instance_divisor > 0;
3081 vi.InstanceDataStepRate = state[edgeflag_index].instance_divisor;
3082 }
3083 }
3084
3085 return cso;
3086 }
3087
3088 /**
3089 * The pipe->bind_vertex_elements_state() driver hook.
3090 */
3091 static void
3092 iris_bind_vertex_elements_state(struct pipe_context *ctx, void *state)
3093 {
3094 struct iris_context *ice = (struct iris_context *) ctx;
3095 struct iris_vertex_element_state *old_cso = ice->state.cso_vertex_elements;
3096 struct iris_vertex_element_state *new_cso = state;
3097
3098 /* 3DSTATE_VF_SGVs overrides the last VE, so if the count is changing,
3099 * we need to re-emit it to ensure we're overriding the right one.
3100 */
3101 if (new_cso && cso_changed(count))
3102 ice->state.dirty |= IRIS_DIRTY_VF_SGVS;
3103
3104 ice->state.cso_vertex_elements = state;
3105 ice->state.dirty |= IRIS_DIRTY_VERTEX_ELEMENTS;
3106 }
3107
3108 /**
3109 * The pipe->create_stream_output_target() driver hook.
3110 *
3111 * "Target" here refers to a destination buffer. We translate this into
3112 * a 3DSTATE_SO_BUFFER packet. We can handle most fields, but don't yet
3113 * know which buffer this represents, or whether we ought to zero the
3114 * write-offsets, or append. Those are handled in the set() hook.
3115 */
3116 static struct pipe_stream_output_target *
3117 iris_create_stream_output_target(struct pipe_context *ctx,
3118 struct pipe_resource *p_res,
3119 unsigned buffer_offset,
3120 unsigned buffer_size)
3121 {
3122 struct iris_resource *res = (void *) p_res;
3123 struct iris_stream_output_target *cso = calloc(1, sizeof(*cso));
3124 if (!cso)
3125 return NULL;
3126
3127 res->bind_history |= PIPE_BIND_STREAM_OUTPUT;
3128
3129 pipe_reference_init(&cso->base.reference, 1);
3130 pipe_resource_reference(&cso->base.buffer, p_res);
3131 cso->base.buffer_offset = buffer_offset;
3132 cso->base.buffer_size = buffer_size;
3133 cso->base.context = ctx;
3134
3135 util_range_add(&res->valid_buffer_range, buffer_offset,
3136 buffer_offset + buffer_size);
3137
3138 upload_state(ctx->stream_uploader, &cso->offset, sizeof(uint32_t), 4);
3139
3140 return &cso->base;
3141 }
3142
3143 static void
3144 iris_stream_output_target_destroy(struct pipe_context *ctx,
3145 struct pipe_stream_output_target *state)
3146 {
3147 struct iris_stream_output_target *cso = (void *) state;
3148
3149 pipe_resource_reference(&cso->base.buffer, NULL);
3150 pipe_resource_reference(&cso->offset.res, NULL);
3151
3152 free(cso);
3153 }
3154
3155 /**
3156 * The pipe->set_stream_output_targets() driver hook.
3157 *
3158 * At this point, we know which targets are bound to a particular index,
3159 * and also whether we want to append or start over. We can finish the
3160 * 3DSTATE_SO_BUFFER packets we started earlier.
3161 */
3162 static void
3163 iris_set_stream_output_targets(struct pipe_context *ctx,
3164 unsigned num_targets,
3165 struct pipe_stream_output_target **targets,
3166 const unsigned *offsets)
3167 {
3168 struct iris_context *ice = (struct iris_context *) ctx;
3169 struct iris_genx_state *genx = ice->state.genx;
3170 uint32_t *so_buffers = genx->so_buffers;
3171
3172 const bool active = num_targets > 0;
3173 if (ice->state.streamout_active != active) {
3174 ice->state.streamout_active = active;
3175 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
3176
3177 /* We only emit 3DSTATE_SO_DECL_LIST when streamout is active, because
3178 * it's a non-pipelined command. If we're switching streamout on, we
3179 * may have missed emitting it earlier, so do so now. (We're already
3180 * taking a stall to update 3DSTATE_SO_BUFFERS anyway...)
3181 */
3182 if (active) {
3183 ice->state.dirty |= IRIS_DIRTY_SO_DECL_LIST;
3184 } else {
3185 uint32_t flush = 0;
3186 for (int i = 0; i < PIPE_MAX_SO_BUFFERS; i++) {
3187 struct iris_stream_output_target *tgt =
3188 (void *) ice->state.so_target[i];
3189 if (tgt) {
3190 struct iris_resource *res = (void *) tgt->base.buffer;
3191
3192 flush |= iris_flush_bits_for_history(res);
3193 iris_dirty_for_history(ice, res);
3194 }
3195 }
3196 iris_emit_pipe_control_flush(&ice->batches[IRIS_BATCH_RENDER],
3197 "make streamout results visible", flush);
3198 }
3199 }
3200
3201 for (int i = 0; i < 4; i++) {
3202 pipe_so_target_reference(&ice->state.so_target[i],
3203 i < num_targets ? targets[i] : NULL);
3204 }
3205
3206 /* No need to update 3DSTATE_SO_BUFFER unless SOL is active. */
3207 if (!active)
3208 return;
3209
3210 for (unsigned i = 0; i < 4; i++,
3211 so_buffers += GENX(3DSTATE_SO_BUFFER_length)) {
3212
3213 struct iris_stream_output_target *tgt = (void *) ice->state.so_target[i];
3214 unsigned offset = offsets[i];
3215
3216 if (!tgt) {
3217 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob)
3218 sob.SOBufferIndex = i;
3219 continue;
3220 }
3221
3222 struct iris_resource *res = (void *) tgt->base.buffer;
3223
3224 /* Note that offsets[i] will either be 0, causing us to zero
3225 * the value in the buffer, or 0xFFFFFFFF, which happens to mean
3226 * "continue appending at the existing offset."
3227 */
3228 assert(offset == 0 || offset == 0xFFFFFFFF);
3229
3230 /* We might be called by Begin (offset = 0), Pause, then Resume
3231 * (offset = 0xFFFFFFFF) before ever drawing (where these commands
3232 * will actually be sent to the GPU). In this case, we don't want
3233 * to append - we still want to do our initial zeroing.
3234 */
3235 if (!tgt->zeroed)
3236 offset = 0;
3237
3238 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob) {
3239 sob.SurfaceBaseAddress =
3240 rw_bo(NULL, res->bo->gtt_offset + tgt->base.buffer_offset);
3241 sob.SOBufferEnable = true;
3242 sob.StreamOffsetWriteEnable = true;
3243 sob.StreamOutputBufferOffsetAddressEnable = true;
3244 sob.MOCS = mocs(res->bo);
3245
3246 sob.SurfaceSize = MAX2(tgt->base.buffer_size / 4, 1) - 1;
3247
3248 sob.SOBufferIndex = i;
3249 sob.StreamOffset = offset;
3250 sob.StreamOutputBufferOffsetAddress =
3251 rw_bo(NULL, iris_resource_bo(tgt->offset.res)->gtt_offset +
3252 tgt->offset.offset);
3253 }
3254 }
3255
3256 ice->state.dirty |= IRIS_DIRTY_SO_BUFFERS;
3257 }
3258
3259 /**
3260 * An iris-vtable helper for encoding the 3DSTATE_SO_DECL_LIST and
3261 * 3DSTATE_STREAMOUT packets.
3262 *
3263 * 3DSTATE_SO_DECL_LIST is a list of shader outputs we want the streamout
3264 * hardware to record. We can create it entirely based on the shader, with
3265 * no dynamic state dependencies.
3266 *
3267 * 3DSTATE_STREAMOUT is an annoying mix of shader-based information and
3268 * state-based settings. We capture the shader-related ones here, and merge
3269 * the rest in at draw time.
3270 */
3271 static uint32_t *
3272 iris_create_so_decl_list(const struct pipe_stream_output_info *info,
3273 const struct brw_vue_map *vue_map)
3274 {
3275 struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
3276 int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3277 int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3278 int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3279 int max_decls = 0;
3280 STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
3281
3282 memset(so_decl, 0, sizeof(so_decl));
3283
3284 /* Construct the list of SO_DECLs to be emitted. The formatting of the
3285 * command feels strange -- each dword pair contains a SO_DECL per stream.
3286 */
3287 for (unsigned i = 0; i < info->num_outputs; i++) {
3288 const struct pipe_stream_output *output = &info->output[i];
3289 const int buffer = output->output_buffer;
3290 const int varying = output->register_index;
3291 const unsigned stream_id = output->stream;
3292 assert(stream_id < MAX_VERTEX_STREAMS);
3293
3294 buffer_mask[stream_id] |= 1 << buffer;
3295
3296 assert(vue_map->varying_to_slot[varying] >= 0);
3297
3298 /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
3299 * array. Instead, it simply increments DstOffset for the following
3300 * input by the number of components that should be skipped.
3301 *
3302 * Our hardware is unusual in that it requires us to program SO_DECLs
3303 * for fake "hole" components, rather than simply taking the offset
3304 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
3305 * program as many size = 4 holes as we can, then a final hole to
3306 * accommodate the final 1, 2, or 3 remaining.
3307 */
3308 int skip_components = output->dst_offset - next_offset[buffer];
3309
3310 while (skip_components > 0) {
3311 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3312 .HoleFlag = 1,
3313 .OutputBufferSlot = output->output_buffer,
3314 .ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
3315 };
3316 skip_components -= 4;
3317 }
3318
3319 next_offset[buffer] = output->dst_offset + output->num_components;
3320
3321 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3322 .OutputBufferSlot = output->output_buffer,
3323 .RegisterIndex = vue_map->varying_to_slot[varying],
3324 .ComponentMask =
3325 ((1 << output->num_components) - 1) << output->start_component,
3326 };
3327
3328 if (decls[stream_id] > max_decls)
3329 max_decls = decls[stream_id];
3330 }
3331
3332 unsigned dwords = GENX(3DSTATE_STREAMOUT_length) + (3 + 2 * max_decls);
3333 uint32_t *map = ralloc_size(NULL, sizeof(uint32_t) * dwords);
3334 uint32_t *so_decl_map = map + GENX(3DSTATE_STREAMOUT_length);
3335
3336 iris_pack_command(GENX(3DSTATE_STREAMOUT), map, sol) {
3337 int urb_entry_read_offset = 0;
3338 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
3339 urb_entry_read_offset;
3340
3341 /* We always read the whole vertex. This could be reduced at some
3342 * point by reading less and offsetting the register index in the
3343 * SO_DECLs.
3344 */
3345 sol.Stream0VertexReadOffset = urb_entry_read_offset;
3346 sol.Stream0VertexReadLength = urb_entry_read_length - 1;
3347 sol.Stream1VertexReadOffset = urb_entry_read_offset;
3348 sol.Stream1VertexReadLength = urb_entry_read_length - 1;
3349 sol.Stream2VertexReadOffset = urb_entry_read_offset;
3350 sol.Stream2VertexReadLength = urb_entry_read_length - 1;
3351 sol.Stream3VertexReadOffset = urb_entry_read_offset;
3352 sol.Stream3VertexReadLength = urb_entry_read_length - 1;
3353
3354 /* Set buffer pitches; 0 means unbound. */
3355 sol.Buffer0SurfacePitch = 4 * info->stride[0];
3356 sol.Buffer1SurfacePitch = 4 * info->stride[1];
3357 sol.Buffer2SurfacePitch = 4 * info->stride[2];
3358 sol.Buffer3SurfacePitch = 4 * info->stride[3];
3359 }
3360
3361 iris_pack_command(GENX(3DSTATE_SO_DECL_LIST), so_decl_map, list) {
3362 list.DWordLength = 3 + 2 * max_decls - 2;
3363 list.StreamtoBufferSelects0 = buffer_mask[0];
3364 list.StreamtoBufferSelects1 = buffer_mask[1];
3365 list.StreamtoBufferSelects2 = buffer_mask[2];
3366 list.StreamtoBufferSelects3 = buffer_mask[3];
3367 list.NumEntries0 = decls[0];
3368 list.NumEntries1 = decls[1];
3369 list.NumEntries2 = decls[2];
3370 list.NumEntries3 = decls[3];
3371 }
3372
3373 for (int i = 0; i < max_decls; i++) {
3374 iris_pack_state(GENX(SO_DECL_ENTRY), so_decl_map + 3 + i * 2, entry) {
3375 entry.Stream0Decl = so_decl[0][i];
3376 entry.Stream1Decl = so_decl[1][i];
3377 entry.Stream2Decl = so_decl[2][i];
3378 entry.Stream3Decl = so_decl[3][i];
3379 }
3380 }
3381
3382 return map;
3383 }
3384
3385 static void
3386 iris_compute_sbe_urb_read_interval(uint64_t fs_input_slots,
3387 const struct brw_vue_map *last_vue_map,
3388 bool two_sided_color,
3389 unsigned *out_offset,
3390 unsigned *out_length)
3391 {
3392 /* The compiler computes the first URB slot without considering COL/BFC
3393 * swizzling (because it doesn't know whether it's enabled), so we need
3394 * to do that here too. This may result in a smaller offset, which
3395 * should be safe.
3396 */
3397 const unsigned first_slot =
3398 brw_compute_first_urb_slot_required(fs_input_slots, last_vue_map);
3399
3400 /* This becomes the URB read offset (counted in pairs of slots). */
3401 assert(first_slot % 2 == 0);
3402 *out_offset = first_slot / 2;
3403
3404 /* We need to adjust the inputs read to account for front/back color
3405 * swizzling, as it can make the URB length longer.
3406 */
3407 for (int c = 0; c <= 1; c++) {
3408 if (fs_input_slots & (VARYING_BIT_COL0 << c)) {
3409 /* If two sided color is enabled, the fragment shader's gl_Color
3410 * (COL0) input comes from either the gl_FrontColor (COL0) or
3411 * gl_BackColor (BFC0) input varyings. Mark BFC as used, too.
3412 */
3413 if (two_sided_color)
3414 fs_input_slots |= (VARYING_BIT_BFC0 << c);
3415
3416 /* If front color isn't written, we opt to give them back color
3417 * instead of an undefined value. Switch from COL to BFC.
3418 */
3419 if (last_vue_map->varying_to_slot[VARYING_SLOT_COL0 + c] == -1) {
3420 fs_input_slots &= ~(VARYING_BIT_COL0 << c);
3421 fs_input_slots |= (VARYING_BIT_BFC0 << c);
3422 }
3423 }
3424 }
3425
3426 /* Compute the minimum URB Read Length necessary for the FS inputs.
3427 *
3428 * From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
3429 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
3430 *
3431 * "This field should be set to the minimum length required to read the
3432 * maximum source attribute. The maximum source attribute is indicated
3433 * by the maximum value of the enabled Attribute # Source Attribute if
3434 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
3435 * enable is not set.
3436 * read_length = ceiling((max_source_attr + 1) / 2)
3437 *
3438 * [errata] Corruption/Hang possible if length programmed larger than
3439 * recommended"
3440 *
3441 * Similar text exists for Ivy Bridge.
3442 *
3443 * We find the last URB slot that's actually read by the FS.
3444 */
3445 unsigned last_read_slot = last_vue_map->num_slots - 1;
3446 while (last_read_slot > first_slot && !(fs_input_slots &
3447 (1ull << last_vue_map->slot_to_varying[last_read_slot])))
3448 --last_read_slot;
3449
3450 /* The URB read length is the difference of the two, counted in pairs. */
3451 *out_length = DIV_ROUND_UP(last_read_slot - first_slot + 1, 2);
3452 }
3453
3454 static void
3455 iris_emit_sbe_swiz(struct iris_batch *batch,
3456 const struct iris_context *ice,
3457 unsigned urb_read_offset,
3458 unsigned sprite_coord_enables)
3459 {
3460 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = {};
3461 const struct brw_wm_prog_data *wm_prog_data = (void *)
3462 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3463 const struct brw_vue_map *vue_map = ice->shaders.last_vue_map;
3464 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3465
3466 /* XXX: this should be generated when putting programs in place */
3467
3468 for (int fs_attr = 0; fs_attr < VARYING_SLOT_MAX; fs_attr++) {
3469 const int input_index = wm_prog_data->urb_setup[fs_attr];
3470 if (input_index < 0 || input_index >= 16)
3471 continue;
3472
3473 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr =
3474 &attr_overrides[input_index];
3475 int slot = vue_map->varying_to_slot[fs_attr];
3476
3477 /* Viewport and Layer are stored in the VUE header. We need to override
3478 * them to zero if earlier stages didn't write them, as GL requires that
3479 * they read back as zero when not explicitly set.
3480 */
3481 switch (fs_attr) {
3482 case VARYING_SLOT_VIEWPORT:
3483 case VARYING_SLOT_LAYER:
3484 attr->ComponentOverrideX = true;
3485 attr->ComponentOverrideW = true;
3486 attr->ConstantSource = CONST_0000;
3487
3488 if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
3489 attr->ComponentOverrideY = true;
3490 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
3491 attr->ComponentOverrideZ = true;
3492 continue;
3493
3494 case VARYING_SLOT_PRIMITIVE_ID:
3495 /* Override if the previous shader stage didn't write gl_PrimitiveID. */
3496 if (slot == -1) {
3497 attr->ComponentOverrideX = true;
3498 attr->ComponentOverrideY = true;
3499 attr->ComponentOverrideZ = true;
3500 attr->ComponentOverrideW = true;
3501 attr->ConstantSource = PRIM_ID;
3502 continue;
3503 }
3504
3505 default:
3506 break;
3507 }
3508
3509 if (sprite_coord_enables & (1 << input_index))
3510 continue;
3511
3512 /* If there was only a back color written but not front, use back
3513 * as the color instead of undefined.
3514 */
3515 if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
3516 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
3517 if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
3518 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
3519
3520 /* Not written by the previous stage - undefined. */
3521 if (slot == -1) {
3522 attr->ComponentOverrideX = true;
3523 attr->ComponentOverrideY = true;
3524 attr->ComponentOverrideZ = true;
3525 attr->ComponentOverrideW = true;
3526 attr->ConstantSource = CONST_0001_FLOAT;
3527 continue;
3528 }
3529
3530 /* Compute the location of the attribute relative to the read offset,
3531 * which is counted in 256-bit increments (two 128-bit VUE slots).
3532 */
3533 const int source_attr = slot - 2 * urb_read_offset;
3534 assert(source_attr >= 0 && source_attr <= 32);
3535 attr->SourceAttribute = source_attr;
3536
3537 /* If we are doing two-sided color, and the VUE slot following this one
3538 * represents a back-facing color, then we need to instruct the SF unit
3539 * to do back-facing swizzling.
3540 */
3541 if (cso_rast->light_twoside &&
3542 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
3543 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
3544 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
3545 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1)))
3546 attr->SwizzleSelect = INPUTATTR_FACING;
3547 }
3548
3549 iris_emit_cmd(batch, GENX(3DSTATE_SBE_SWIZ), sbes) {
3550 for (int i = 0; i < 16; i++)
3551 sbes.Attribute[i] = attr_overrides[i];
3552 }
3553 }
3554
3555 static unsigned
3556 iris_calculate_point_sprite_overrides(const struct brw_wm_prog_data *prog_data,
3557 const struct iris_rasterizer_state *cso)
3558 {
3559 unsigned overrides = 0;
3560
3561 if (prog_data->urb_setup[VARYING_SLOT_PNTC] != -1)
3562 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_PNTC];
3563
3564 for (int i = 0; i < 8; i++) {
3565 if ((cso->sprite_coord_enable & (1 << i)) &&
3566 prog_data->urb_setup[VARYING_SLOT_TEX0 + i] != -1)
3567 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_TEX0 + i];
3568 }
3569
3570 return overrides;
3571 }
3572
3573 static void
3574 iris_emit_sbe(struct iris_batch *batch, const struct iris_context *ice)
3575 {
3576 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3577 const struct brw_wm_prog_data *wm_prog_data = (void *)
3578 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3579 const struct shader_info *fs_info =
3580 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
3581
3582 unsigned urb_read_offset, urb_read_length;
3583 iris_compute_sbe_urb_read_interval(fs_info->inputs_read,
3584 ice->shaders.last_vue_map,
3585 cso_rast->light_twoside,
3586 &urb_read_offset, &urb_read_length);
3587
3588 unsigned sprite_coord_overrides =
3589 iris_calculate_point_sprite_overrides(wm_prog_data, cso_rast);
3590
3591 iris_emit_cmd(batch, GENX(3DSTATE_SBE), sbe) {
3592 sbe.AttributeSwizzleEnable = true;
3593 sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
3594 sbe.PointSpriteTextureCoordinateOrigin = cso_rast->sprite_coord_mode;
3595 sbe.VertexURBEntryReadOffset = urb_read_offset;
3596 sbe.VertexURBEntryReadLength = urb_read_length;
3597 sbe.ForceVertexURBEntryReadOffset = true;
3598 sbe.ForceVertexURBEntryReadLength = true;
3599 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
3600 sbe.PointSpriteTextureCoordinateEnable = sprite_coord_overrides;
3601 #if GEN_GEN >= 9
3602 for (int i = 0; i < 32; i++) {
3603 sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW;
3604 }
3605 #endif
3606 }
3607
3608 iris_emit_sbe_swiz(batch, ice, urb_read_offset, sprite_coord_overrides);
3609 }
3610
3611 /* ------------------------------------------------------------------- */
3612
3613 /**
3614 * Populate VS program key fields based on the current state.
3615 */
3616 static void
3617 iris_populate_vs_key(const struct iris_context *ice,
3618 const struct shader_info *info,
3619 gl_shader_stage last_stage,
3620 struct brw_vs_prog_key *key)
3621 {
3622 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3623
3624 if (info->clip_distance_array_size == 0 &&
3625 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
3626 last_stage == MESA_SHADER_VERTEX)
3627 key->nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
3628 }
3629
3630 /**
3631 * Populate TCS program key fields based on the current state.
3632 */
3633 static void
3634 iris_populate_tcs_key(const struct iris_context *ice,
3635 struct brw_tcs_prog_key *key)
3636 {
3637 }
3638
3639 /**
3640 * Populate TES program key fields based on the current state.
3641 */
3642 static void
3643 iris_populate_tes_key(const struct iris_context *ice,
3644 const struct shader_info *info,
3645 gl_shader_stage last_stage,
3646 struct brw_tes_prog_key *key)
3647 {
3648 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3649
3650 if (info->clip_distance_array_size == 0 &&
3651 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
3652 last_stage == MESA_SHADER_TESS_EVAL)
3653 key->nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
3654 }
3655
3656 /**
3657 * Populate GS program key fields based on the current state.
3658 */
3659 static void
3660 iris_populate_gs_key(const struct iris_context *ice,
3661 const struct shader_info *info,
3662 gl_shader_stage last_stage,
3663 struct brw_gs_prog_key *key)
3664 {
3665 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3666
3667 if (info->clip_distance_array_size == 0 &&
3668 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
3669 last_stage == MESA_SHADER_GEOMETRY)
3670 key->nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
3671 }
3672
3673 /**
3674 * Populate FS program key fields based on the current state.
3675 */
3676 static void
3677 iris_populate_fs_key(const struct iris_context *ice,
3678 const struct shader_info *info,
3679 struct brw_wm_prog_key *key)
3680 {
3681 struct iris_screen *screen = (void *) ice->ctx.screen;
3682 const struct pipe_framebuffer_state *fb = &ice->state.framebuffer;
3683 const struct iris_depth_stencil_alpha_state *zsa = ice->state.cso_zsa;
3684 const struct iris_rasterizer_state *rast = ice->state.cso_rast;
3685 const struct iris_blend_state *blend = ice->state.cso_blend;
3686
3687 key->nr_color_regions = fb->nr_cbufs;
3688
3689 key->clamp_fragment_color = rast->clamp_fragment_color;
3690
3691 key->alpha_to_coverage = blend->alpha_to_coverage;
3692
3693 key->alpha_test_replicate_alpha = fb->nr_cbufs > 1 && zsa->alpha.enabled;
3694
3695 key->flat_shade = rast->flatshade &&
3696 (info->inputs_read & (VARYING_BIT_COL0 | VARYING_BIT_COL1));
3697
3698 key->persample_interp = rast->force_persample_interp;
3699 key->multisample_fbo = rast->multisample && fb->samples > 1;
3700
3701 key->coherent_fb_fetch = GEN_GEN >= 9;
3702
3703 key->force_dual_color_blend =
3704 screen->driconf.dual_color_blend_by_location &&
3705 (blend->blend_enables & 1) && blend->dual_color_blending;
3706
3707 /* TODO: Respect glHint for key->high_quality_derivatives */
3708 }
3709
3710 static void
3711 iris_populate_cs_key(const struct iris_context *ice,
3712 struct brw_cs_prog_key *key)
3713 {
3714 }
3715
3716 static uint64_t
3717 KSP(const struct iris_compiled_shader *shader)
3718 {
3719 struct iris_resource *res = (void *) shader->assembly.res;
3720 return iris_bo_offset_from_base_address(res->bo) + shader->assembly.offset;
3721 }
3722
3723 /* Gen11 workaround table #2056 WABTPPrefetchDisable suggests to disable
3724 * prefetching of binding tables in A0 and B0 steppings. XXX: Revisit
3725 * this WA on C0 stepping.
3726 *
3727 * TODO: Fill out SamplerCount for prefetching?
3728 */
3729
3730 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix, stage) \
3731 pkt.KernelStartPointer = KSP(shader); \
3732 pkt.BindingTableEntryCount = GEN_GEN == 11 ? 0 : \
3733 shader->bt.size_bytes / 4; \
3734 pkt.FloatingPointMode = prog_data->use_alt_mode; \
3735 \
3736 pkt.DispatchGRFStartRegisterForURBData = \
3737 prog_data->dispatch_grf_start_reg; \
3738 pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
3739 pkt.prefix##URBEntryReadOffset = 0; \
3740 \
3741 pkt.StatisticsEnable = true; \
3742 pkt.Enable = true; \
3743 \
3744 if (prog_data->total_scratch) { \
3745 struct iris_bo *bo = \
3746 iris_get_scratch_space(ice, prog_data->total_scratch, stage); \
3747 uint32_t scratch_addr = bo->gtt_offset; \
3748 pkt.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11; \
3749 pkt.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr); \
3750 }
3751
3752 /**
3753 * Encode most of 3DSTATE_VS based on the compiled shader.
3754 */
3755 static void
3756 iris_store_vs_state(struct iris_context *ice,
3757 const struct gen_device_info *devinfo,
3758 struct iris_compiled_shader *shader)
3759 {
3760 struct brw_stage_prog_data *prog_data = shader->prog_data;
3761 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3762
3763 iris_pack_command(GENX(3DSTATE_VS), shader->derived_data, vs) {
3764 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex, MESA_SHADER_VERTEX);
3765 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
3766 vs.SIMD8DispatchEnable = true;
3767 vs.UserClipDistanceCullTestEnableBitmask =
3768 vue_prog_data->cull_distance_mask;
3769 }
3770 }
3771
3772 /**
3773 * Encode most of 3DSTATE_HS based on the compiled shader.
3774 */
3775 static void
3776 iris_store_tcs_state(struct iris_context *ice,
3777 const struct gen_device_info *devinfo,
3778 struct iris_compiled_shader *shader)
3779 {
3780 struct brw_stage_prog_data *prog_data = shader->prog_data;
3781 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3782 struct brw_tcs_prog_data *tcs_prog_data = (void *) prog_data;
3783
3784 iris_pack_command(GENX(3DSTATE_HS), shader->derived_data, hs) {
3785 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex, MESA_SHADER_TESS_CTRL);
3786
3787 hs.InstanceCount = tcs_prog_data->instances - 1;
3788 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
3789 hs.IncludeVertexHandles = true;
3790
3791 #if GEN_GEN >= 9
3792 hs.DispatchMode = vue_prog_data->dispatch_mode;
3793 hs.IncludePrimitiveID = tcs_prog_data->include_primitive_id;
3794 #endif
3795 }
3796 }
3797
3798 /**
3799 * Encode 3DSTATE_TE and most of 3DSTATE_DS based on the compiled shader.
3800 */
3801 static void
3802 iris_store_tes_state(struct iris_context *ice,
3803 const struct gen_device_info *devinfo,
3804 struct iris_compiled_shader *shader)
3805 {
3806 struct brw_stage_prog_data *prog_data = shader->prog_data;
3807 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3808 struct brw_tes_prog_data *tes_prog_data = (void *) prog_data;
3809
3810 uint32_t *te_state = (void *) shader->derived_data;
3811 uint32_t *ds_state = te_state + GENX(3DSTATE_TE_length);
3812
3813 iris_pack_command(GENX(3DSTATE_TE), te_state, te) {
3814 te.Partitioning = tes_prog_data->partitioning;
3815 te.OutputTopology = tes_prog_data->output_topology;
3816 te.TEDomain = tes_prog_data->domain;
3817 te.TEEnable = true;
3818 te.MaximumTessellationFactorOdd = 63.0;
3819 te.MaximumTessellationFactorNotOdd = 64.0;
3820 }
3821
3822 iris_pack_command(GENX(3DSTATE_DS), ds_state, ds) {
3823 INIT_THREAD_DISPATCH_FIELDS(ds, Patch, MESA_SHADER_TESS_EVAL);
3824
3825 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
3826 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
3827 ds.ComputeWCoordinateEnable =
3828 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
3829
3830 ds.UserClipDistanceCullTestEnableBitmask =
3831 vue_prog_data->cull_distance_mask;
3832 }
3833
3834 }
3835
3836 /**
3837 * Encode most of 3DSTATE_GS based on the compiled shader.
3838 */
3839 static void
3840 iris_store_gs_state(struct iris_context *ice,
3841 const struct gen_device_info *devinfo,
3842 struct iris_compiled_shader *shader)
3843 {
3844 struct brw_stage_prog_data *prog_data = shader->prog_data;
3845 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3846 struct brw_gs_prog_data *gs_prog_data = (void *) prog_data;
3847
3848 iris_pack_command(GENX(3DSTATE_GS), shader->derived_data, gs) {
3849 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex, MESA_SHADER_GEOMETRY);
3850
3851 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
3852 gs.OutputTopology = gs_prog_data->output_topology;
3853 gs.ControlDataHeaderSize =
3854 gs_prog_data->control_data_header_size_hwords;
3855 gs.InstanceControl = gs_prog_data->invocations - 1;
3856 gs.DispatchMode = DISPATCH_MODE_SIMD8;
3857 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
3858 gs.ControlDataFormat = gs_prog_data->control_data_format;
3859 gs.ReorderMode = TRAILING;
3860 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
3861 gs.MaximumNumberofThreads =
3862 GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
3863 : (devinfo->max_gs_threads - 1);
3864
3865 if (gs_prog_data->static_vertex_count != -1) {
3866 gs.StaticOutput = true;
3867 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
3868 }
3869 gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
3870
3871 gs.UserClipDistanceCullTestEnableBitmask =
3872 vue_prog_data->cull_distance_mask;
3873
3874 const int urb_entry_write_offset = 1;
3875 const uint32_t urb_entry_output_length =
3876 DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
3877 urb_entry_write_offset;
3878
3879 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
3880 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
3881 }
3882 }
3883
3884 /**
3885 * Encode most of 3DSTATE_PS and 3DSTATE_PS_EXTRA based on the shader.
3886 */
3887 static void
3888 iris_store_fs_state(struct iris_context *ice,
3889 const struct gen_device_info *devinfo,
3890 struct iris_compiled_shader *shader)
3891 {
3892 struct brw_stage_prog_data *prog_data = shader->prog_data;
3893 struct brw_wm_prog_data *wm_prog_data = (void *) shader->prog_data;
3894
3895 uint32_t *ps_state = (void *) shader->derived_data;
3896 uint32_t *psx_state = ps_state + GENX(3DSTATE_PS_length);
3897
3898 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
3899 ps.VectorMaskEnable = true;
3900 // XXX: WABTPPrefetchDisable, see above, drop at C0
3901 ps.BindingTableEntryCount = GEN_GEN == 11 ? 0 :
3902 shader->bt.size_bytes / 4;
3903 ps.FloatingPointMode = prog_data->use_alt_mode;
3904 ps.MaximumNumberofThreadsPerPSD = 64 - (GEN_GEN == 8 ? 2 : 1);
3905
3906 ps.PushConstantEnable = prog_data->ubo_ranges[0].length > 0;
3907
3908 /* From the documentation for this packet:
3909 * "If the PS kernel does not need the Position XY Offsets to
3910 * compute a Position Value, then this field should be programmed
3911 * to POSOFFSET_NONE."
3912 *
3913 * "SW Recommendation: If the PS kernel needs the Position Offsets
3914 * to compute a Position XY value, this field should match Position
3915 * ZW Interpolation Mode to ensure a consistent position.xyzw
3916 * computation."
3917 *
3918 * We only require XY sample offsets. So, this recommendation doesn't
3919 * look useful at the moment. We might need this in future.
3920 */
3921 ps.PositionXYOffsetSelect =
3922 wm_prog_data->uses_pos_offset ? POSOFFSET_SAMPLE : POSOFFSET_NONE;
3923
3924 if (prog_data->total_scratch) {
3925 struct iris_bo *bo =
3926 iris_get_scratch_space(ice, prog_data->total_scratch,
3927 MESA_SHADER_FRAGMENT);
3928 uint32_t scratch_addr = bo->gtt_offset;
3929 ps.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
3930 ps.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr);
3931 }
3932 }
3933
3934 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
3935 psx.PixelShaderValid = true;
3936 psx.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
3937 psx.PixelShaderKillsPixel = wm_prog_data->uses_kill;
3938 psx.AttributeEnable = wm_prog_data->num_varying_inputs != 0;
3939 psx.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
3940 psx.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
3941 psx.PixelShaderIsPerSample = wm_prog_data->persample_dispatch;
3942 psx.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
3943
3944 #if GEN_GEN >= 9
3945 psx.PixelShaderPullsBary = wm_prog_data->pulls_bary;
3946 psx.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
3947 #endif
3948 }
3949 }
3950
3951 /**
3952 * Compute the size of the derived data (shader command packets).
3953 *
3954 * This must match the data written by the iris_store_xs_state() functions.
3955 */
3956 static void
3957 iris_store_cs_state(struct iris_context *ice,
3958 const struct gen_device_info *devinfo,
3959 struct iris_compiled_shader *shader)
3960 {
3961 struct brw_stage_prog_data *prog_data = shader->prog_data;
3962 struct brw_cs_prog_data *cs_prog_data = (void *) shader->prog_data;
3963 void *map = shader->derived_data;
3964
3965 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), map, desc) {
3966 desc.KernelStartPointer = KSP(shader);
3967 desc.ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs;
3968 desc.NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads;
3969 desc.SharedLocalMemorySize =
3970 encode_slm_size(GEN_GEN, prog_data->total_shared);
3971 desc.BarrierEnable = cs_prog_data->uses_barrier;
3972 desc.CrossThreadConstantDataReadLength =
3973 cs_prog_data->push.cross_thread.regs;
3974 }
3975 }
3976
3977 static unsigned
3978 iris_derived_program_state_size(enum iris_program_cache_id cache_id)
3979 {
3980 assert(cache_id <= IRIS_CACHE_BLORP);
3981
3982 static const unsigned dwords[] = {
3983 [IRIS_CACHE_VS] = GENX(3DSTATE_VS_length),
3984 [IRIS_CACHE_TCS] = GENX(3DSTATE_HS_length),
3985 [IRIS_CACHE_TES] = GENX(3DSTATE_TE_length) + GENX(3DSTATE_DS_length),
3986 [IRIS_CACHE_GS] = GENX(3DSTATE_GS_length),
3987 [IRIS_CACHE_FS] =
3988 GENX(3DSTATE_PS_length) + GENX(3DSTATE_PS_EXTRA_length),
3989 [IRIS_CACHE_CS] = GENX(INTERFACE_DESCRIPTOR_DATA_length),
3990 [IRIS_CACHE_BLORP] = 0,
3991 };
3992
3993 return sizeof(uint32_t) * dwords[cache_id];
3994 }
3995
3996 /**
3997 * Create any state packets corresponding to the given shader stage
3998 * (i.e. 3DSTATE_VS) and save them as "derived data" in the shader variant.
3999 * This means that we can look up a program in the in-memory cache and
4000 * get most of the state packet without having to reconstruct it.
4001 */
4002 static void
4003 iris_store_derived_program_state(struct iris_context *ice,
4004 enum iris_program_cache_id cache_id,
4005 struct iris_compiled_shader *shader)
4006 {
4007 struct iris_screen *screen = (void *) ice->ctx.screen;
4008 const struct gen_device_info *devinfo = &screen->devinfo;
4009
4010 switch (cache_id) {
4011 case IRIS_CACHE_VS:
4012 iris_store_vs_state(ice, devinfo, shader);
4013 break;
4014 case IRIS_CACHE_TCS:
4015 iris_store_tcs_state(ice, devinfo, shader);
4016 break;
4017 case IRIS_CACHE_TES:
4018 iris_store_tes_state(ice, devinfo, shader);
4019 break;
4020 case IRIS_CACHE_GS:
4021 iris_store_gs_state(ice, devinfo, shader);
4022 break;
4023 case IRIS_CACHE_FS:
4024 iris_store_fs_state(ice, devinfo, shader);
4025 break;
4026 case IRIS_CACHE_CS:
4027 iris_store_cs_state(ice, devinfo, shader);
4028 case IRIS_CACHE_BLORP:
4029 break;
4030 default:
4031 break;
4032 }
4033 }
4034
4035 /* ------------------------------------------------------------------- */
4036
4037 static const uint32_t push_constant_opcodes[] = {
4038 [MESA_SHADER_VERTEX] = 21,
4039 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
4040 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
4041 [MESA_SHADER_GEOMETRY] = 22,
4042 [MESA_SHADER_FRAGMENT] = 23,
4043 [MESA_SHADER_COMPUTE] = 0,
4044 };
4045
4046 static uint32_t
4047 use_null_surface(struct iris_batch *batch, struct iris_context *ice)
4048 {
4049 struct iris_bo *state_bo = iris_resource_bo(ice->state.unbound_tex.res);
4050
4051 iris_use_pinned_bo(batch, state_bo, false);
4052
4053 return ice->state.unbound_tex.offset;
4054 }
4055
4056 static uint32_t
4057 use_null_fb_surface(struct iris_batch *batch, struct iris_context *ice)
4058 {
4059 /* If set_framebuffer_state() was never called, fall back to 1x1x1 */
4060 if (!ice->state.null_fb.res)
4061 return use_null_surface(batch, ice);
4062
4063 struct iris_bo *state_bo = iris_resource_bo(ice->state.null_fb.res);
4064
4065 iris_use_pinned_bo(batch, state_bo, false);
4066
4067 return ice->state.null_fb.offset;
4068 }
4069
4070 static uint32_t
4071 surf_state_offset_for_aux(struct iris_resource *res,
4072 unsigned aux_modes,
4073 enum isl_aux_usage aux_usage)
4074 {
4075 return SURFACE_STATE_ALIGNMENT *
4076 util_bitcount(aux_modes & ((1 << aux_usage) - 1));
4077 }
4078
4079 #if GEN_GEN == 9
4080 static void
4081 surf_state_update_clear_value(struct iris_batch *batch,
4082 struct iris_resource *res,
4083 struct iris_state_ref *state,
4084 unsigned aux_modes,
4085 enum isl_aux_usage aux_usage)
4086 {
4087 struct isl_device *isl_dev = &batch->screen->isl_dev;
4088 struct iris_bo *state_bo = iris_resource_bo(state->res);
4089 uint64_t real_offset = state->offset + IRIS_MEMZONE_BINDER_START;
4090 uint32_t offset_into_bo = real_offset - state_bo->gtt_offset;
4091 uint32_t clear_offset = offset_into_bo +
4092 isl_dev->ss.clear_value_offset +
4093 surf_state_offset_for_aux(res, aux_modes, aux_usage);
4094 uint32_t *color = res->aux.clear_color.u32;
4095
4096 assert(isl_dev->ss.clear_value_size == 16);
4097
4098 if (aux_usage == ISL_AUX_USAGE_HIZ) {
4099 iris_emit_pipe_control_write(batch, "update fast clear value (Z)",
4100 PIPE_CONTROL_WRITE_IMMEDIATE,
4101 state_bo, clear_offset, color[0]);
4102 } else {
4103 iris_emit_pipe_control_write(batch, "update fast clear color (RG__)",
4104 PIPE_CONTROL_WRITE_IMMEDIATE,
4105 state_bo, clear_offset,
4106 (uint64_t) color[0] |
4107 (uint64_t) color[1] << 32);
4108 iris_emit_pipe_control_write(batch, "update fast clear color (__BA)",
4109 PIPE_CONTROL_WRITE_IMMEDIATE,
4110 state_bo, clear_offset + 8,
4111 (uint64_t) color[2] |
4112 (uint64_t) color[3] << 32);
4113 }
4114
4115 iris_emit_pipe_control_flush(batch,
4116 "update fast clear: state cache invalidate",
4117 PIPE_CONTROL_FLUSH_ENABLE |
4118 PIPE_CONTROL_STATE_CACHE_INVALIDATE);
4119 }
4120 #endif
4121
4122 static void
4123 update_clear_value(struct iris_context *ice,
4124 struct iris_batch *batch,
4125 struct iris_resource *res,
4126 struct iris_state_ref *state,
4127 unsigned all_aux_modes,
4128 struct isl_view *view)
4129 {
4130 UNUSED struct isl_device *isl_dev = &batch->screen->isl_dev;
4131 UNUSED unsigned aux_modes = all_aux_modes;
4132
4133 /* We only need to update the clear color in the surface state for gen8 and
4134 * gen9. Newer gens can read it directly from the clear color state buffer.
4135 */
4136 #if GEN_GEN == 9
4137 /* Skip updating the ISL_AUX_USAGE_NONE surface state */
4138 aux_modes &= ~(1 << ISL_AUX_USAGE_NONE);
4139
4140 while (aux_modes) {
4141 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
4142
4143 surf_state_update_clear_value(batch, res, state, all_aux_modes,
4144 aux_usage);
4145 }
4146 #elif GEN_GEN == 8
4147 pipe_resource_reference(&state->res, NULL);
4148
4149 void *map = alloc_surface_states(ice->state.surface_uploader,
4150 state, all_aux_modes);
4151 while (aux_modes) {
4152 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
4153 fill_surface_state(isl_dev, map, res, &res->surf, view, aux_usage, 0, 0);
4154 map += SURFACE_STATE_ALIGNMENT;
4155 }
4156 #endif
4157 }
4158
4159 /**
4160 * Add a surface to the validation list, as well as the buffer containing
4161 * the corresponding SURFACE_STATE.
4162 *
4163 * Returns the binding table entry (offset to SURFACE_STATE).
4164 */
4165 static uint32_t
4166 use_surface(struct iris_context *ice,
4167 struct iris_batch *batch,
4168 struct pipe_surface *p_surf,
4169 bool writeable,
4170 enum isl_aux_usage aux_usage,
4171 bool is_read_surface)
4172 {
4173 struct iris_surface *surf = (void *) p_surf;
4174 struct iris_resource *res = (void *) p_surf->texture;
4175 uint32_t offset = 0;
4176
4177 iris_use_pinned_bo(batch, iris_resource_bo(p_surf->texture), writeable);
4178 if (GEN_GEN == 8 && is_read_surface) {
4179 iris_use_pinned_bo(batch, iris_resource_bo(surf->surface_state_read.res), false);
4180 } else {
4181 iris_use_pinned_bo(batch, iris_resource_bo(surf->surface_state.res), false);
4182 }
4183
4184 if (res->aux.bo) {
4185 iris_use_pinned_bo(batch, res->aux.bo, writeable);
4186 if (res->aux.clear_color_bo)
4187 iris_use_pinned_bo(batch, res->aux.clear_color_bo, false);
4188
4189 if (memcmp(&res->aux.clear_color, &surf->clear_color,
4190 sizeof(surf->clear_color)) != 0) {
4191 update_clear_value(ice, batch, res, &surf->surface_state,
4192 res->aux.possible_usages, &surf->view);
4193 if (GEN_GEN == 8) {
4194 update_clear_value(ice, batch, res, &surf->surface_state_read,
4195 res->aux.possible_usages, &surf->read_view);
4196 }
4197 surf->clear_color = res->aux.clear_color;
4198 }
4199 }
4200
4201 offset = (GEN_GEN == 8 && is_read_surface) ? surf->surface_state_read.offset
4202 : surf->surface_state.offset;
4203
4204 return offset +
4205 surf_state_offset_for_aux(res, res->aux.possible_usages, aux_usage);
4206 }
4207
4208 static uint32_t
4209 use_sampler_view(struct iris_context *ice,
4210 struct iris_batch *batch,
4211 struct iris_sampler_view *isv)
4212 {
4213 // XXX: ASTC hacks
4214 enum isl_aux_usage aux_usage =
4215 iris_resource_texture_aux_usage(ice, isv->res, isv->view.format, 0);
4216
4217 iris_use_pinned_bo(batch, isv->res->bo, false);
4218 iris_use_pinned_bo(batch, iris_resource_bo(isv->surface_state.res), false);
4219
4220 if (isv->res->aux.bo) {
4221 iris_use_pinned_bo(batch, isv->res->aux.bo, false);
4222 if (isv->res->aux.clear_color_bo)
4223 iris_use_pinned_bo(batch, isv->res->aux.clear_color_bo, false);
4224 if (memcmp(&isv->res->aux.clear_color, &isv->clear_color,
4225 sizeof(isv->clear_color)) != 0) {
4226 update_clear_value(ice, batch, isv->res, &isv->surface_state,
4227 isv->res->aux.sampler_usages, &isv->view);
4228 isv->clear_color = isv->res->aux.clear_color;
4229 }
4230 }
4231
4232 return isv->surface_state.offset +
4233 surf_state_offset_for_aux(isv->res, isv->res->aux.sampler_usages,
4234 aux_usage);
4235 }
4236
4237 static uint32_t
4238 use_ubo_ssbo(struct iris_batch *batch,
4239 struct iris_context *ice,
4240 struct pipe_shader_buffer *buf,
4241 struct iris_state_ref *surf_state,
4242 bool writable)
4243 {
4244 if (!buf->buffer || !surf_state->res)
4245 return use_null_surface(batch, ice);
4246
4247 iris_use_pinned_bo(batch, iris_resource_bo(buf->buffer), writable);
4248 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false);
4249
4250 return surf_state->offset;
4251 }
4252
4253 static uint32_t
4254 use_image(struct iris_batch *batch, struct iris_context *ice,
4255 struct iris_shader_state *shs, int i)
4256 {
4257 struct iris_image_view *iv = &shs->image[i];
4258 struct iris_resource *res = (void *) iv->base.resource;
4259
4260 if (!res)
4261 return use_null_surface(batch, ice);
4262
4263 bool write = iv->base.shader_access & PIPE_IMAGE_ACCESS_WRITE;
4264
4265 iris_use_pinned_bo(batch, res->bo, write);
4266 iris_use_pinned_bo(batch, iris_resource_bo(iv->surface_state.res), false);
4267
4268 if (res->aux.bo)
4269 iris_use_pinned_bo(batch, res->aux.bo, write);
4270
4271 return iv->surface_state.offset;
4272 }
4273
4274 #define push_bt_entry(addr) \
4275 assert(addr >= binder_addr); \
4276 assert(s < shader->bt.size_bytes / sizeof(uint32_t)); \
4277 if (!pin_only) bt_map[s++] = (addr) - binder_addr;
4278
4279 #define bt_assert(section) \
4280 if (!pin_only && shader->bt.used_mask[section] != 0) \
4281 assert(shader->bt.offsets[section] == s);
4282
4283 /**
4284 * Populate the binding table for a given shader stage.
4285 *
4286 * This fills out the table of pointers to surfaces required by the shader,
4287 * and also adds those buffers to the validation list so the kernel can make
4288 * resident before running our batch.
4289 */
4290 static void
4291 iris_populate_binding_table(struct iris_context *ice,
4292 struct iris_batch *batch,
4293 gl_shader_stage stage,
4294 bool pin_only)
4295 {
4296 const struct iris_binder *binder = &ice->state.binder;
4297 struct iris_uncompiled_shader *ish = ice->shaders.uncompiled[stage];
4298 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4299 if (!shader)
4300 return;
4301
4302 struct iris_binding_table *bt = &shader->bt;
4303 UNUSED struct brw_stage_prog_data *prog_data = shader->prog_data;
4304 struct iris_shader_state *shs = &ice->state.shaders[stage];
4305 uint32_t binder_addr = binder->bo->gtt_offset;
4306
4307 uint32_t *bt_map = binder->map + binder->bt_offset[stage];
4308 int s = 0;
4309
4310 const struct shader_info *info = iris_get_shader_info(ice, stage);
4311 if (!info) {
4312 /* TCS passthrough doesn't need a binding table. */
4313 assert(stage == MESA_SHADER_TESS_CTRL);
4314 return;
4315 }
4316
4317 if (stage == MESA_SHADER_COMPUTE &&
4318 shader->bt.used_mask[IRIS_SURFACE_GROUP_CS_WORK_GROUPS]) {
4319 /* surface for gl_NumWorkGroups */
4320 struct iris_state_ref *grid_data = &ice->state.grid_size;
4321 struct iris_state_ref *grid_state = &ice->state.grid_surf_state;
4322 iris_use_pinned_bo(batch, iris_resource_bo(grid_data->res), false);
4323 iris_use_pinned_bo(batch, iris_resource_bo(grid_state->res), false);
4324 push_bt_entry(grid_state->offset);
4325 }
4326
4327 if (stage == MESA_SHADER_FRAGMENT) {
4328 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4329 /* Note that cso_fb->nr_cbufs == fs_key->nr_color_regions. */
4330 if (cso_fb->nr_cbufs) {
4331 for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
4332 uint32_t addr;
4333 if (cso_fb->cbufs[i]) {
4334 addr = use_surface(ice, batch, cso_fb->cbufs[i], true,
4335 ice->state.draw_aux_usage[i], false);
4336 } else {
4337 addr = use_null_fb_surface(batch, ice);
4338 }
4339 push_bt_entry(addr);
4340 }
4341 } else if (GEN_GEN < 11) {
4342 uint32_t addr = use_null_fb_surface(batch, ice);
4343 push_bt_entry(addr);
4344 }
4345 }
4346
4347 #define foreach_surface_used(index, group) \
4348 bt_assert(group); \
4349 for (int index = 0; index < bt->sizes[group]; index++) \
4350 if (iris_group_index_to_bti(bt, group, index) != \
4351 IRIS_SURFACE_NOT_USED)
4352
4353 foreach_surface_used(i, IRIS_SURFACE_GROUP_RENDER_TARGET_READ) {
4354 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4355 uint32_t addr;
4356 if (cso_fb->cbufs[i]) {
4357 addr = use_surface(ice, batch, cso_fb->cbufs[i],
4358 true, ice->state.draw_aux_usage[i], true);
4359 push_bt_entry(addr);
4360 }
4361 }
4362
4363 foreach_surface_used(i, IRIS_SURFACE_GROUP_TEXTURE) {
4364 struct iris_sampler_view *view = shs->textures[i];
4365 uint32_t addr = view ? use_sampler_view(ice, batch, view)
4366 : use_null_surface(batch, ice);
4367 push_bt_entry(addr);
4368 }
4369
4370 foreach_surface_used(i, IRIS_SURFACE_GROUP_IMAGE) {
4371 uint32_t addr = use_image(batch, ice, shs, i);
4372 push_bt_entry(addr);
4373 }
4374
4375 foreach_surface_used(i, IRIS_SURFACE_GROUP_UBO) {
4376 uint32_t addr;
4377
4378 if (i == bt->sizes[IRIS_SURFACE_GROUP_UBO] - 1) {
4379 if (ish->const_data) {
4380 iris_use_pinned_bo(batch, iris_resource_bo(ish->const_data), false);
4381 iris_use_pinned_bo(batch, iris_resource_bo(ish->const_data_state.res),
4382 false);
4383 addr = ish->const_data_state.offset;
4384 } else {
4385 /* This can only happen with INTEL_DISABLE_COMPACT_BINDING_TABLE=1. */
4386 addr = use_null_surface(batch, ice);
4387 }
4388 } else {
4389 addr = use_ubo_ssbo(batch, ice, &shs->constbuf[i],
4390 &shs->constbuf_surf_state[i], false);
4391 }
4392
4393 push_bt_entry(addr);
4394 }
4395
4396 foreach_surface_used(i, IRIS_SURFACE_GROUP_SSBO) {
4397 uint32_t addr =
4398 use_ubo_ssbo(batch, ice, &shs->ssbo[i], &shs->ssbo_surf_state[i],
4399 shs->writable_ssbos & (1u << i));
4400 push_bt_entry(addr);
4401 }
4402
4403 #if 0
4404 /* XXX: YUV surfaces not implemented yet */
4405 bt_assert(plane_start[1], ...);
4406 bt_assert(plane_start[2], ...);
4407 #endif
4408 }
4409
4410 static void
4411 iris_use_optional_res(struct iris_batch *batch,
4412 struct pipe_resource *res,
4413 bool writeable)
4414 {
4415 if (res) {
4416 struct iris_bo *bo = iris_resource_bo(res);
4417 iris_use_pinned_bo(batch, bo, writeable);
4418 }
4419 }
4420
4421 static void
4422 pin_depth_and_stencil_buffers(struct iris_batch *batch,
4423 struct pipe_surface *zsbuf,
4424 struct iris_depth_stencil_alpha_state *cso_zsa)
4425 {
4426 if (!zsbuf)
4427 return;
4428
4429 struct iris_resource *zres, *sres;
4430 iris_get_depth_stencil_resources(zsbuf->texture, &zres, &sres);
4431
4432 if (zres) {
4433 iris_use_pinned_bo(batch, zres->bo, cso_zsa->depth_writes_enabled);
4434 if (zres->aux.bo) {
4435 iris_use_pinned_bo(batch, zres->aux.bo,
4436 cso_zsa->depth_writes_enabled);
4437 }
4438 }
4439
4440 if (sres) {
4441 iris_use_pinned_bo(batch, sres->bo, cso_zsa->stencil_writes_enabled);
4442 }
4443 }
4444
4445 /* ------------------------------------------------------------------- */
4446
4447 /**
4448 * Pin any BOs which were installed by a previous batch, and restored
4449 * via the hardware logical context mechanism.
4450 *
4451 * We don't need to re-emit all state every batch - the hardware context
4452 * mechanism will save and restore it for us. This includes pointers to
4453 * various BOs...which won't exist unless we ask the kernel to pin them
4454 * by adding them to the validation list.
4455 *
4456 * We can skip buffers if we've re-emitted those packets, as we're
4457 * overwriting those stale pointers with new ones, and don't actually
4458 * refer to the old BOs.
4459 */
4460 static void
4461 iris_restore_render_saved_bos(struct iris_context *ice,
4462 struct iris_batch *batch,
4463 const struct pipe_draw_info *draw)
4464 {
4465 struct iris_genx_state *genx = ice->state.genx;
4466
4467 const uint64_t clean = ~ice->state.dirty;
4468
4469 if (clean & IRIS_DIRTY_CC_VIEWPORT) {
4470 iris_use_optional_res(batch, ice->state.last_res.cc_vp, false);
4471 }
4472
4473 if (clean & IRIS_DIRTY_SF_CL_VIEWPORT) {
4474 iris_use_optional_res(batch, ice->state.last_res.sf_cl_vp, false);
4475 }
4476
4477 if (clean & IRIS_DIRTY_BLEND_STATE) {
4478 iris_use_optional_res(batch, ice->state.last_res.blend, false);
4479 }
4480
4481 if (clean & IRIS_DIRTY_COLOR_CALC_STATE) {
4482 iris_use_optional_res(batch, ice->state.last_res.color_calc, false);
4483 }
4484
4485 if (clean & IRIS_DIRTY_SCISSOR_RECT) {
4486 iris_use_optional_res(batch, ice->state.last_res.scissor, false);
4487 }
4488
4489 if (ice->state.streamout_active && (clean & IRIS_DIRTY_SO_BUFFERS)) {
4490 for (int i = 0; i < 4; i++) {
4491 struct iris_stream_output_target *tgt =
4492 (void *) ice->state.so_target[i];
4493 if (tgt) {
4494 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
4495 true);
4496 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
4497 true);
4498 }
4499 }
4500 }
4501
4502 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4503 if (!(clean & (IRIS_DIRTY_CONSTANTS_VS << stage)))
4504 continue;
4505
4506 struct iris_shader_state *shs = &ice->state.shaders[stage];
4507 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4508
4509 if (!shader)
4510 continue;
4511
4512 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4513
4514 for (int i = 0; i < 4; i++) {
4515 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4516
4517 if (range->length == 0)
4518 continue;
4519
4520 /* Range block is a binding table index, map back to UBO index. */
4521 unsigned block_index = iris_bti_to_group_index(
4522 &shader->bt, IRIS_SURFACE_GROUP_UBO, range->block);
4523 assert(block_index != IRIS_SURFACE_NOT_USED);
4524
4525 struct pipe_shader_buffer *cbuf = &shs->constbuf[block_index];
4526 struct iris_resource *res = (void *) cbuf->buffer;
4527
4528 if (res)
4529 iris_use_pinned_bo(batch, res->bo, false);
4530 else
4531 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
4532 }
4533 }
4534
4535 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4536 if (clean & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4537 /* Re-pin any buffers referred to by the binding table. */
4538 iris_populate_binding_table(ice, batch, stage, true);
4539 }
4540 }
4541
4542 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4543 struct iris_shader_state *shs = &ice->state.shaders[stage];
4544 struct pipe_resource *res = shs->sampler_table.res;
4545 if (res)
4546 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4547 }
4548
4549 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4550 if (clean & (IRIS_DIRTY_VS << stage)) {
4551 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4552
4553 if (shader) {
4554 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
4555 iris_use_pinned_bo(batch, bo, false);
4556
4557 struct brw_stage_prog_data *prog_data = shader->prog_data;
4558
4559 if (prog_data->total_scratch > 0) {
4560 struct iris_bo *bo =
4561 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4562 iris_use_pinned_bo(batch, bo, true);
4563 }
4564 }
4565 }
4566 }
4567
4568 if ((clean & IRIS_DIRTY_DEPTH_BUFFER) &&
4569 (clean & IRIS_DIRTY_WM_DEPTH_STENCIL)) {
4570 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4571 pin_depth_and_stencil_buffers(batch, cso_fb->zsbuf, ice->state.cso_zsa);
4572 }
4573
4574 iris_use_optional_res(batch, ice->state.last_res.index_buffer, false);
4575
4576 if (clean & IRIS_DIRTY_VERTEX_BUFFERS) {
4577 uint64_t bound = ice->state.bound_vertex_buffers;
4578 while (bound) {
4579 const int i = u_bit_scan64(&bound);
4580 struct pipe_resource *res = genx->vertex_buffers[i].resource;
4581 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4582 }
4583 }
4584 }
4585
4586 static void
4587 iris_restore_compute_saved_bos(struct iris_context *ice,
4588 struct iris_batch *batch,
4589 const struct pipe_grid_info *grid)
4590 {
4591 const uint64_t clean = ~ice->state.dirty;
4592
4593 const int stage = MESA_SHADER_COMPUTE;
4594 struct iris_shader_state *shs = &ice->state.shaders[stage];
4595
4596 if (clean & IRIS_DIRTY_BINDINGS_CS) {
4597 /* Re-pin any buffers referred to by the binding table. */
4598 iris_populate_binding_table(ice, batch, stage, true);
4599 }
4600
4601 struct pipe_resource *sampler_res = shs->sampler_table.res;
4602 if (sampler_res)
4603 iris_use_pinned_bo(batch, iris_resource_bo(sampler_res), false);
4604
4605 if ((clean & IRIS_DIRTY_SAMPLER_STATES_CS) &&
4606 (clean & IRIS_DIRTY_BINDINGS_CS) &&
4607 (clean & IRIS_DIRTY_CONSTANTS_CS) &&
4608 (clean & IRIS_DIRTY_CS)) {
4609 iris_use_optional_res(batch, ice->state.last_res.cs_desc, false);
4610 }
4611
4612 if (clean & IRIS_DIRTY_CS) {
4613 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4614
4615 if (shader) {
4616 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
4617 iris_use_pinned_bo(batch, bo, false);
4618
4619 struct iris_bo *curbe_bo =
4620 iris_resource_bo(ice->state.last_res.cs_thread_ids);
4621 iris_use_pinned_bo(batch, curbe_bo, false);
4622
4623 struct brw_stage_prog_data *prog_data = shader->prog_data;
4624
4625 if (prog_data->total_scratch > 0) {
4626 struct iris_bo *bo =
4627 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4628 iris_use_pinned_bo(batch, bo, true);
4629 }
4630 }
4631 }
4632 }
4633
4634 /**
4635 * Possibly emit STATE_BASE_ADDRESS to update Surface State Base Address.
4636 */
4637 static void
4638 iris_update_surface_base_address(struct iris_batch *batch,
4639 struct iris_binder *binder)
4640 {
4641 if (batch->last_surface_base_address == binder->bo->gtt_offset)
4642 return;
4643
4644 flush_before_state_base_change(batch);
4645
4646 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
4647 sba.SurfaceStateBaseAddressModifyEnable = true;
4648 sba.SurfaceStateBaseAddress = ro_bo(binder->bo, 0);
4649
4650 /* The hardware appears to pay attention to the MOCS fields even
4651 * if you don't set the "Address Modify Enable" bit for the base.
4652 */
4653 sba.GeneralStateMOCS = MOCS_WB;
4654 sba.StatelessDataPortAccessMOCS = MOCS_WB;
4655 sba.DynamicStateMOCS = MOCS_WB;
4656 sba.IndirectObjectMOCS = MOCS_WB;
4657 sba.InstructionMOCS = MOCS_WB;
4658 sba.SurfaceStateMOCS = MOCS_WB;
4659 #if GEN_GEN >= 9
4660 sba.BindlessSurfaceStateMOCS = MOCS_WB;
4661 #endif
4662 }
4663
4664 flush_after_state_base_change(batch);
4665
4666 batch->last_surface_base_address = binder->bo->gtt_offset;
4667 }
4668
4669 static inline void
4670 iris_viewport_zmin_zmax(const struct pipe_viewport_state *vp, bool halfz,
4671 bool window_space_position, float *zmin, float *zmax)
4672 {
4673 if (window_space_position) {
4674 *zmin = 0.f;
4675 *zmax = 1.f;
4676 return;
4677 }
4678 util_viewport_zmin_zmax(vp, halfz, zmin, zmax);
4679 }
4680
4681 static void
4682 iris_upload_dirty_render_state(struct iris_context *ice,
4683 struct iris_batch *batch,
4684 const struct pipe_draw_info *draw)
4685 {
4686 const uint64_t dirty = ice->state.dirty;
4687
4688 if (!(dirty & IRIS_ALL_DIRTY_FOR_RENDER))
4689 return;
4690
4691 struct iris_genx_state *genx = ice->state.genx;
4692 struct iris_binder *binder = &ice->state.binder;
4693 struct brw_wm_prog_data *wm_prog_data = (void *)
4694 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
4695
4696 if (dirty & IRIS_DIRTY_CC_VIEWPORT) {
4697 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4698 uint32_t cc_vp_address;
4699
4700 /* XXX: could avoid streaming for depth_clip [0,1] case. */
4701 uint32_t *cc_vp_map =
4702 stream_state(batch, ice->state.dynamic_uploader,
4703 &ice->state.last_res.cc_vp,
4704 4 * ice->state.num_viewports *
4705 GENX(CC_VIEWPORT_length), 32, &cc_vp_address);
4706 for (int i = 0; i < ice->state.num_viewports; i++) {
4707 float zmin, zmax;
4708 iris_viewport_zmin_zmax(&ice->state.viewports[i], cso_rast->clip_halfz,
4709 ice->state.window_space_position,
4710 &zmin, &zmax);
4711 if (cso_rast->depth_clip_near)
4712 zmin = 0.0;
4713 if (cso_rast->depth_clip_far)
4714 zmax = 1.0;
4715
4716 iris_pack_state(GENX(CC_VIEWPORT), cc_vp_map, ccv) {
4717 ccv.MinimumDepth = zmin;
4718 ccv.MaximumDepth = zmax;
4719 }
4720
4721 cc_vp_map += GENX(CC_VIEWPORT_length);
4722 }
4723
4724 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
4725 ptr.CCViewportPointer = cc_vp_address;
4726 }
4727 }
4728
4729 if (dirty & IRIS_DIRTY_SF_CL_VIEWPORT) {
4730 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4731 uint32_t sf_cl_vp_address;
4732 uint32_t *vp_map =
4733 stream_state(batch, ice->state.dynamic_uploader,
4734 &ice->state.last_res.sf_cl_vp,
4735 4 * ice->state.num_viewports *
4736 GENX(SF_CLIP_VIEWPORT_length), 64, &sf_cl_vp_address);
4737
4738 for (unsigned i = 0; i < ice->state.num_viewports; i++) {
4739 const struct pipe_viewport_state *state = &ice->state.viewports[i];
4740 float gb_xmin, gb_xmax, gb_ymin, gb_ymax;
4741
4742 float vp_xmin = viewport_extent(state, 0, -1.0f);
4743 float vp_xmax = viewport_extent(state, 0, 1.0f);
4744 float vp_ymin = viewport_extent(state, 1, -1.0f);
4745 float vp_ymax = viewport_extent(state, 1, 1.0f);
4746
4747 gen_calculate_guardband_size(cso_fb->width, cso_fb->height,
4748 state->scale[0], state->scale[1],
4749 state->translate[0], state->translate[1],
4750 &gb_xmin, &gb_xmax, &gb_ymin, &gb_ymax);
4751
4752 iris_pack_state(GENX(SF_CLIP_VIEWPORT), vp_map, vp) {
4753 vp.ViewportMatrixElementm00 = state->scale[0];
4754 vp.ViewportMatrixElementm11 = state->scale[1];
4755 vp.ViewportMatrixElementm22 = state->scale[2];
4756 vp.ViewportMatrixElementm30 = state->translate[0];
4757 vp.ViewportMatrixElementm31 = state->translate[1];
4758 vp.ViewportMatrixElementm32 = state->translate[2];
4759 vp.XMinClipGuardband = gb_xmin;
4760 vp.XMaxClipGuardband = gb_xmax;
4761 vp.YMinClipGuardband = gb_ymin;
4762 vp.YMaxClipGuardband = gb_ymax;
4763 vp.XMinViewPort = MAX2(vp_xmin, 0);
4764 vp.XMaxViewPort = MIN2(vp_xmax, cso_fb->width) - 1;
4765 vp.YMinViewPort = MAX2(vp_ymin, 0);
4766 vp.YMaxViewPort = MIN2(vp_ymax, cso_fb->height) - 1;
4767 }
4768
4769 vp_map += GENX(SF_CLIP_VIEWPORT_length);
4770 }
4771
4772 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
4773 ptr.SFClipViewportPointer = sf_cl_vp_address;
4774 }
4775 }
4776
4777 if (dirty & IRIS_DIRTY_URB) {
4778 unsigned size[4];
4779
4780 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
4781 if (!ice->shaders.prog[i]) {
4782 size[i] = 1;
4783 } else {
4784 struct brw_vue_prog_data *vue_prog_data =
4785 (void *) ice->shaders.prog[i]->prog_data;
4786 size[i] = vue_prog_data->urb_entry_size;
4787 }
4788 assert(size[i] != 0);
4789 }
4790
4791 genX(emit_urb_setup)(ice, batch, size,
4792 ice->shaders.prog[MESA_SHADER_TESS_EVAL] != NULL,
4793 ice->shaders.prog[MESA_SHADER_GEOMETRY] != NULL);
4794 }
4795
4796 if (dirty & IRIS_DIRTY_BLEND_STATE) {
4797 struct iris_blend_state *cso_blend = ice->state.cso_blend;
4798 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4799 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
4800 const int header_dwords = GENX(BLEND_STATE_length);
4801
4802 /* Always write at least one BLEND_STATE - the final RT message will
4803 * reference BLEND_STATE[0] even if there aren't color writes. There
4804 * may still be alpha testing, computed depth, and so on.
4805 */
4806 const int rt_dwords =
4807 MAX2(cso_fb->nr_cbufs, 1) * GENX(BLEND_STATE_ENTRY_length);
4808
4809 uint32_t blend_offset;
4810 uint32_t *blend_map =
4811 stream_state(batch, ice->state.dynamic_uploader,
4812 &ice->state.last_res.blend,
4813 4 * (header_dwords + rt_dwords), 64, &blend_offset);
4814
4815 uint32_t blend_state_header;
4816 iris_pack_state(GENX(BLEND_STATE), &blend_state_header, bs) {
4817 bs.AlphaTestEnable = cso_zsa->alpha.enabled;
4818 bs.AlphaTestFunction = translate_compare_func(cso_zsa->alpha.func);
4819 }
4820
4821 blend_map[0] = blend_state_header | cso_blend->blend_state[0];
4822 memcpy(&blend_map[1], &cso_blend->blend_state[1], 4 * rt_dwords);
4823
4824 iris_emit_cmd(batch, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
4825 ptr.BlendStatePointer = blend_offset;
4826 ptr.BlendStatePointerValid = true;
4827 }
4828 }
4829
4830 if (dirty & IRIS_DIRTY_COLOR_CALC_STATE) {
4831 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
4832 #if GEN_GEN == 8
4833 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
4834 #endif
4835 uint32_t cc_offset;
4836 void *cc_map =
4837 stream_state(batch, ice->state.dynamic_uploader,
4838 &ice->state.last_res.color_calc,
4839 sizeof(uint32_t) * GENX(COLOR_CALC_STATE_length),
4840 64, &cc_offset);
4841 iris_pack_state(GENX(COLOR_CALC_STATE), cc_map, cc) {
4842 cc.AlphaTestFormat = ALPHATEST_FLOAT32;
4843 cc.AlphaReferenceValueAsFLOAT32 = cso->alpha.ref_value;
4844 cc.BlendConstantColorRed = ice->state.blend_color.color[0];
4845 cc.BlendConstantColorGreen = ice->state.blend_color.color[1];
4846 cc.BlendConstantColorBlue = ice->state.blend_color.color[2];
4847 cc.BlendConstantColorAlpha = ice->state.blend_color.color[3];
4848 #if GEN_GEN == 8
4849 cc.StencilReferenceValue = p_stencil_refs->ref_value[0];
4850 cc.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
4851 #endif
4852 }
4853 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
4854 ptr.ColorCalcStatePointer = cc_offset;
4855 ptr.ColorCalcStatePointerValid = true;
4856 }
4857 }
4858
4859 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4860 if (!(dirty & (IRIS_DIRTY_CONSTANTS_VS << stage)))
4861 continue;
4862
4863 struct iris_shader_state *shs = &ice->state.shaders[stage];
4864 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4865
4866 if (!shader)
4867 continue;
4868
4869 if (shs->sysvals_need_upload)
4870 upload_sysvals(ice, stage);
4871
4872 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4873
4874 iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_VS), pkt) {
4875 pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
4876 if (prog_data) {
4877 /* The Skylake PRM contains the following restriction:
4878 *
4879 * "The driver must ensure The following case does not occur
4880 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
4881 * buffer 3 read length equal to zero committed followed by a
4882 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
4883 * zero committed."
4884 *
4885 * To avoid this, we program the buffers in the highest slots.
4886 * This way, slot 0 is only used if slot 3 is also used.
4887 */
4888 int n = 3;
4889
4890 for (int i = 3; i >= 0; i--) {
4891 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4892
4893 if (range->length == 0)
4894 continue;
4895
4896 /* Range block is a binding table index, map back to UBO index. */
4897 unsigned block_index = iris_bti_to_group_index(
4898 &shader->bt, IRIS_SURFACE_GROUP_UBO, range->block);
4899 assert(block_index != IRIS_SURFACE_NOT_USED);
4900
4901 struct pipe_shader_buffer *cbuf = &shs->constbuf[block_index];
4902 struct iris_resource *res = (void *) cbuf->buffer;
4903
4904 assert(cbuf->buffer_offset % 32 == 0);
4905
4906 pkt.ConstantBody.ReadLength[n] = range->length;
4907 pkt.ConstantBody.Buffer[n] =
4908 res ? ro_bo(res->bo, range->start * 32 + cbuf->buffer_offset)
4909 : ro_bo(batch->screen->workaround_bo, 0);
4910 n--;
4911 }
4912 }
4913 }
4914 }
4915
4916 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4917 /* Gen9 requires 3DSTATE_BINDING_TABLE_POINTERS_XS to be re-emitted
4918 * in order to commit constants. TODO: Investigate "Disable Gather
4919 * at Set Shader" to go back to legacy mode...
4920 */
4921 if (dirty & ((IRIS_DIRTY_BINDINGS_VS |
4922 (GEN_GEN == 9 ? IRIS_DIRTY_CONSTANTS_VS : 0)) << stage)) {
4923 iris_emit_cmd(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), ptr) {
4924 ptr._3DCommandSubOpcode = 38 + stage;
4925 ptr.PointertoVSBindingTable = binder->bt_offset[stage];
4926 }
4927 }
4928 }
4929
4930 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4931 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4932 iris_populate_binding_table(ice, batch, stage, false);
4933 }
4934 }
4935
4936 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4937 if (!(dirty & (IRIS_DIRTY_SAMPLER_STATES_VS << stage)) ||
4938 !ice->shaders.prog[stage])
4939 continue;
4940
4941 iris_upload_sampler_states(ice, stage);
4942
4943 struct iris_shader_state *shs = &ice->state.shaders[stage];
4944 struct pipe_resource *res = shs->sampler_table.res;
4945 if (res)
4946 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4947
4948 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
4949 ptr._3DCommandSubOpcode = 43 + stage;
4950 ptr.PointertoVSSamplerState = shs->sampler_table.offset;
4951 }
4952 }
4953
4954 if (ice->state.need_border_colors)
4955 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
4956
4957 if (dirty & IRIS_DIRTY_MULTISAMPLE) {
4958 iris_emit_cmd(batch, GENX(3DSTATE_MULTISAMPLE), ms) {
4959 ms.PixelLocation =
4960 ice->state.cso_rast->half_pixel_center ? CENTER : UL_CORNER;
4961 if (ice->state.framebuffer.samples > 0)
4962 ms.NumberofMultisamples = ffs(ice->state.framebuffer.samples) - 1;
4963 }
4964 }
4965
4966 if (dirty & IRIS_DIRTY_SAMPLE_MASK) {
4967 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_MASK), ms) {
4968 ms.SampleMask = ice->state.sample_mask;
4969 }
4970 }
4971
4972 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4973 if (!(dirty & (IRIS_DIRTY_VS << stage)))
4974 continue;
4975
4976 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4977
4978 if (shader) {
4979 struct brw_stage_prog_data *prog_data = shader->prog_data;
4980 struct iris_resource *cache = (void *) shader->assembly.res;
4981 iris_use_pinned_bo(batch, cache->bo, false);
4982
4983 if (prog_data->total_scratch > 0) {
4984 struct iris_bo *bo =
4985 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4986 iris_use_pinned_bo(batch, bo, true);
4987 }
4988
4989 if (stage == MESA_SHADER_FRAGMENT) {
4990 UNUSED struct iris_rasterizer_state *cso = ice->state.cso_rast;
4991 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4992
4993 uint32_t ps_state[GENX(3DSTATE_PS_length)] = {0};
4994 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
4995 ps._8PixelDispatchEnable = wm_prog_data->dispatch_8;
4996 ps._16PixelDispatchEnable = wm_prog_data->dispatch_16;
4997 ps._32PixelDispatchEnable = wm_prog_data->dispatch_32;
4998
4999 /* The docs for 3DSTATE_PS::32 Pixel Dispatch Enable say:
5000 *
5001 * "When NUM_MULTISAMPLES = 16 or FORCE_SAMPLE_COUNT = 16,
5002 * SIMD32 Dispatch must not be enabled for PER_PIXEL dispatch
5003 * mode."
5004 *
5005 * 16x MSAA only exists on Gen9+, so we can skip this on Gen8.
5006 */
5007 if (GEN_GEN >= 9 && cso_fb->samples == 16 &&
5008 !wm_prog_data->persample_dispatch) {
5009 assert(ps._8PixelDispatchEnable || ps._16PixelDispatchEnable);
5010 ps._32PixelDispatchEnable = false;
5011 }
5012
5013 ps.DispatchGRFStartRegisterForConstantSetupData0 =
5014 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
5015 ps.DispatchGRFStartRegisterForConstantSetupData1 =
5016 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
5017 ps.DispatchGRFStartRegisterForConstantSetupData2 =
5018 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
5019
5020 ps.KernelStartPointer0 = KSP(shader) +
5021 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
5022 ps.KernelStartPointer1 = KSP(shader) +
5023 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
5024 ps.KernelStartPointer2 = KSP(shader) +
5025 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
5026 }
5027
5028 uint32_t psx_state[GENX(3DSTATE_PS_EXTRA_length)] = {0};
5029 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
5030 #if GEN_GEN >= 9
5031 if (!wm_prog_data->uses_sample_mask)
5032 psx.InputCoverageMaskState = ICMS_NONE;
5033 else if (wm_prog_data->post_depth_coverage)
5034 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
5035 else if (wm_prog_data->inner_coverage &&
5036 cso->conservative_rasterization)
5037 psx.InputCoverageMaskState = ICMS_INNER_CONSERVATIVE;
5038 else
5039 psx.InputCoverageMaskState = ICMS_NORMAL;
5040 #else
5041 psx.PixelShaderUsesInputCoverageMask =
5042 wm_prog_data->uses_sample_mask;
5043 #endif
5044 }
5045
5046 uint32_t *shader_ps = (uint32_t *) shader->derived_data;
5047 uint32_t *shader_psx = shader_ps + GENX(3DSTATE_PS_length);
5048 iris_emit_merge(batch, shader_ps, ps_state,
5049 GENX(3DSTATE_PS_length));
5050 iris_emit_merge(batch, shader_psx, psx_state,
5051 GENX(3DSTATE_PS_EXTRA_length));
5052 } else {
5053 iris_batch_emit(batch, shader->derived_data,
5054 iris_derived_program_state_size(stage));
5055 }
5056 } else {
5057 if (stage == MESA_SHADER_TESS_EVAL) {
5058 iris_emit_cmd(batch, GENX(3DSTATE_HS), hs);
5059 iris_emit_cmd(batch, GENX(3DSTATE_TE), te);
5060 iris_emit_cmd(batch, GENX(3DSTATE_DS), ds);
5061 } else if (stage == MESA_SHADER_GEOMETRY) {
5062 iris_emit_cmd(batch, GENX(3DSTATE_GS), gs);
5063 }
5064 }
5065 }
5066
5067 if (ice->state.streamout_active) {
5068 if (dirty & IRIS_DIRTY_SO_BUFFERS) {
5069 iris_batch_emit(batch, genx->so_buffers,
5070 4 * 4 * GENX(3DSTATE_SO_BUFFER_length));
5071 for (int i = 0; i < 4; i++) {
5072 struct iris_stream_output_target *tgt =
5073 (void *) ice->state.so_target[i];
5074 if (tgt) {
5075 tgt->zeroed = true;
5076 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
5077 true);
5078 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
5079 true);
5080 }
5081 }
5082 }
5083
5084 if ((dirty & IRIS_DIRTY_SO_DECL_LIST) && ice->state.streamout) {
5085 uint32_t *decl_list =
5086 ice->state.streamout + GENX(3DSTATE_STREAMOUT_length);
5087 iris_batch_emit(batch, decl_list, 4 * ((decl_list[0] & 0xff) + 2));
5088 }
5089
5090 if (dirty & IRIS_DIRTY_STREAMOUT) {
5091 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
5092
5093 uint32_t dynamic_sol[GENX(3DSTATE_STREAMOUT_length)];
5094 iris_pack_command(GENX(3DSTATE_STREAMOUT), dynamic_sol, sol) {
5095 sol.SOFunctionEnable = true;
5096 sol.SOStatisticsEnable = true;
5097
5098 sol.RenderingDisable = cso_rast->rasterizer_discard &&
5099 !ice->state.prims_generated_query_active;
5100 sol.ReorderMode = cso_rast->flatshade_first ? LEADING : TRAILING;
5101 }
5102
5103 assert(ice->state.streamout);
5104
5105 iris_emit_merge(batch, ice->state.streamout, dynamic_sol,
5106 GENX(3DSTATE_STREAMOUT_length));
5107 }
5108 } else {
5109 if (dirty & IRIS_DIRTY_STREAMOUT) {
5110 iris_emit_cmd(batch, GENX(3DSTATE_STREAMOUT), sol);
5111 }
5112 }
5113
5114 if (dirty & IRIS_DIRTY_CLIP) {
5115 struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
5116 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5117
5118 bool gs_or_tes = ice->shaders.prog[MESA_SHADER_GEOMETRY] ||
5119 ice->shaders.prog[MESA_SHADER_TESS_EVAL];
5120 bool points_or_lines = cso_rast->fill_mode_point_or_line ||
5121 (gs_or_tes ? ice->shaders.output_topology_is_points_or_lines
5122 : ice->state.prim_is_points_or_lines);
5123
5124 uint32_t dynamic_clip[GENX(3DSTATE_CLIP_length)];
5125 iris_pack_command(GENX(3DSTATE_CLIP), &dynamic_clip, cl) {
5126 cl.StatisticsEnable = ice->state.statistics_counters_enabled;
5127 if (cso_rast->rasterizer_discard)
5128 cl.ClipMode = CLIPMODE_REJECT_ALL;
5129 else if (ice->state.window_space_position)
5130 cl.ClipMode = CLIPMODE_ACCEPT_ALL;
5131 else
5132 cl.ClipMode = CLIPMODE_NORMAL;
5133
5134 cl.PerspectiveDivideDisable = ice->state.window_space_position;
5135 cl.ViewportXYClipTestEnable = !points_or_lines;
5136
5137 if (wm_prog_data->barycentric_interp_modes &
5138 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
5139 cl.NonPerspectiveBarycentricEnable = true;
5140
5141 cl.ForceZeroRTAIndexEnable = cso_fb->layers == 0;
5142 cl.MaximumVPIndex = ice->state.num_viewports - 1;
5143 }
5144 iris_emit_merge(batch, cso_rast->clip, dynamic_clip,
5145 ARRAY_SIZE(cso_rast->clip));
5146 }
5147
5148 if (dirty & IRIS_DIRTY_RASTER) {
5149 struct iris_rasterizer_state *cso = ice->state.cso_rast;
5150 iris_batch_emit(batch, cso->raster, sizeof(cso->raster));
5151
5152 uint32_t dynamic_sf[GENX(3DSTATE_SF_length)];
5153 iris_pack_command(GENX(3DSTATE_SF), &dynamic_sf, sf) {
5154 sf.ViewportTransformEnable = !ice->state.window_space_position;
5155 }
5156 iris_emit_merge(batch, cso->sf, dynamic_sf,
5157 ARRAY_SIZE(dynamic_sf));
5158 }
5159
5160 if (dirty & IRIS_DIRTY_WM) {
5161 struct iris_rasterizer_state *cso = ice->state.cso_rast;
5162 uint32_t dynamic_wm[GENX(3DSTATE_WM_length)];
5163
5164 iris_pack_command(GENX(3DSTATE_WM), &dynamic_wm, wm) {
5165 wm.StatisticsEnable = ice->state.statistics_counters_enabled;
5166
5167 wm.BarycentricInterpolationMode =
5168 wm_prog_data->barycentric_interp_modes;
5169
5170 if (wm_prog_data->early_fragment_tests)
5171 wm.EarlyDepthStencilControl = EDSC_PREPS;
5172 else if (wm_prog_data->has_side_effects)
5173 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
5174
5175 /* We could skip this bit if color writes are enabled. */
5176 if (wm_prog_data->has_side_effects || wm_prog_data->uses_kill)
5177 wm.ForceThreadDispatchEnable = ForceON;
5178 }
5179 iris_emit_merge(batch, cso->wm, dynamic_wm, ARRAY_SIZE(cso->wm));
5180 }
5181
5182 if (dirty & IRIS_DIRTY_SBE) {
5183 iris_emit_sbe(batch, ice);
5184 }
5185
5186 if (dirty & IRIS_DIRTY_PS_BLEND) {
5187 struct iris_blend_state *cso_blend = ice->state.cso_blend;
5188 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
5189 const struct shader_info *fs_info =
5190 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
5191
5192 uint32_t dynamic_pb[GENX(3DSTATE_PS_BLEND_length)];
5193 iris_pack_command(GENX(3DSTATE_PS_BLEND), &dynamic_pb, pb) {
5194 pb.HasWriteableRT = has_writeable_rt(cso_blend, fs_info);
5195 pb.AlphaTestEnable = cso_zsa->alpha.enabled;
5196
5197 /* The dual source blending docs caution against using SRC1 factors
5198 * when the shader doesn't use a dual source render target write.
5199 * Empirically, this can lead to GPU hangs, and the results are
5200 * undefined anyway, so simply disable blending to avoid the hang.
5201 */
5202 pb.ColorBufferBlendEnable = (cso_blend->blend_enables & 1) &&
5203 (!cso_blend->dual_color_blending || wm_prog_data->dual_src_blend);
5204 }
5205
5206 iris_emit_merge(batch, cso_blend->ps_blend, dynamic_pb,
5207 ARRAY_SIZE(cso_blend->ps_blend));
5208 }
5209
5210 if (dirty & IRIS_DIRTY_WM_DEPTH_STENCIL) {
5211 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
5212 #if GEN_GEN >= 9
5213 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
5214 uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
5215 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
5216 wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
5217 wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
5218 }
5219 iris_emit_merge(batch, cso->wmds, stencil_refs, ARRAY_SIZE(cso->wmds));
5220 #else
5221 iris_batch_emit(batch, cso->wmds, sizeof(cso->wmds));
5222 #endif
5223 }
5224
5225 if (dirty & IRIS_DIRTY_SCISSOR_RECT) {
5226 uint32_t scissor_offset =
5227 emit_state(batch, ice->state.dynamic_uploader,
5228 &ice->state.last_res.scissor,
5229 ice->state.scissors,
5230 sizeof(struct pipe_scissor_state) *
5231 ice->state.num_viewports, 32);
5232
5233 iris_emit_cmd(batch, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
5234 ptr.ScissorRectPointer = scissor_offset;
5235 }
5236 }
5237
5238 if (dirty & IRIS_DIRTY_DEPTH_BUFFER) {
5239 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
5240
5241 /* Do not emit the clear params yets. We need to update the clear value
5242 * first.
5243 */
5244 uint32_t clear_length = GENX(3DSTATE_CLEAR_PARAMS_length) * 4;
5245 uint32_t cso_z_size = sizeof(cso_z->packets) - clear_length;
5246 iris_batch_emit(batch, cso_z->packets, cso_z_size);
5247
5248 union isl_color_value clear_value = { .f32 = { 0, } };
5249
5250 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5251 if (cso_fb->zsbuf) {
5252 struct iris_resource *zres, *sres;
5253 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
5254 &zres, &sres);
5255 if (zres && zres->aux.bo)
5256 clear_value = iris_resource_get_clear_color(zres, NULL, NULL);
5257 }
5258
5259 uint32_t clear_params[GENX(3DSTATE_CLEAR_PARAMS_length)];
5260 iris_pack_command(GENX(3DSTATE_CLEAR_PARAMS), clear_params, clear) {
5261 clear.DepthClearValueValid = true;
5262 clear.DepthClearValue = clear_value.f32[0];
5263 }
5264 iris_batch_emit(batch, clear_params, clear_length);
5265 }
5266
5267 if (dirty & (IRIS_DIRTY_DEPTH_BUFFER | IRIS_DIRTY_WM_DEPTH_STENCIL)) {
5268 /* Listen for buffer changes, and also write enable changes. */
5269 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5270 pin_depth_and_stencil_buffers(batch, cso_fb->zsbuf, ice->state.cso_zsa);
5271 }
5272
5273 if (dirty & IRIS_DIRTY_POLYGON_STIPPLE) {
5274 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
5275 for (int i = 0; i < 32; i++) {
5276 poly.PatternRow[i] = ice->state.poly_stipple.stipple[i];
5277 }
5278 }
5279 }
5280
5281 if (dirty & IRIS_DIRTY_LINE_STIPPLE) {
5282 struct iris_rasterizer_state *cso = ice->state.cso_rast;
5283 iris_batch_emit(batch, cso->line_stipple, sizeof(cso->line_stipple));
5284 }
5285
5286 if (dirty & IRIS_DIRTY_VF_TOPOLOGY) {
5287 iris_emit_cmd(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
5288 topo.PrimitiveTopologyType =
5289 translate_prim_type(draw->mode, draw->vertices_per_patch);
5290 }
5291 }
5292
5293 if (dirty & IRIS_DIRTY_VERTEX_BUFFERS) {
5294 int count = util_bitcount64(ice->state.bound_vertex_buffers);
5295 int dynamic_bound = ice->state.bound_vertex_buffers;
5296
5297 if (ice->state.vs_uses_draw_params) {
5298 assert(ice->draw.draw_params.res);
5299
5300 struct iris_vertex_buffer_state *state =
5301 &(ice->state.genx->vertex_buffers[count]);
5302 pipe_resource_reference(&state->resource, ice->draw.draw_params.res);
5303 struct iris_resource *res = (void *) state->resource;
5304
5305 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
5306 vb.VertexBufferIndex = count;
5307 vb.AddressModifyEnable = true;
5308 vb.BufferPitch = 0;
5309 vb.BufferSize = res->bo->size - ice->draw.draw_params.offset;
5310 vb.BufferStartingAddress =
5311 ro_bo(NULL, res->bo->gtt_offset +
5312 (int) ice->draw.draw_params.offset);
5313 vb.MOCS = mocs(res->bo);
5314 }
5315 dynamic_bound |= 1ull << count;
5316 count++;
5317 }
5318
5319 if (ice->state.vs_uses_derived_draw_params) {
5320 struct iris_vertex_buffer_state *state =
5321 &(ice->state.genx->vertex_buffers[count]);
5322 pipe_resource_reference(&state->resource,
5323 ice->draw.derived_draw_params.res);
5324 struct iris_resource *res = (void *) ice->draw.derived_draw_params.res;
5325
5326 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
5327 vb.VertexBufferIndex = count;
5328 vb.AddressModifyEnable = true;
5329 vb.BufferPitch = 0;
5330 vb.BufferSize =
5331 res->bo->size - ice->draw.derived_draw_params.offset;
5332 vb.BufferStartingAddress =
5333 ro_bo(NULL, res->bo->gtt_offset +
5334 (int) ice->draw.derived_draw_params.offset);
5335 vb.MOCS = mocs(res->bo);
5336 }
5337 dynamic_bound |= 1ull << count;
5338 count++;
5339 }
5340
5341 if (count) {
5342 /* The VF cache designers cut corners, and made the cache key's
5343 * <VertexBufferIndex, Memory Address> tuple only consider the bottom
5344 * 32 bits of the address. If you have two vertex buffers which get
5345 * placed exactly 4 GiB apart and use them in back-to-back draw calls,
5346 * you can get collisions (even within a single batch).
5347 *
5348 * So, we need to do a VF cache invalidate if the buffer for a VB
5349 * slot slot changes [48:32] address bits from the previous time.
5350 */
5351 unsigned flush_flags = 0;
5352
5353 uint64_t bound = dynamic_bound;
5354 while (bound) {
5355 const int i = u_bit_scan64(&bound);
5356 uint16_t high_bits = 0;
5357
5358 struct iris_resource *res =
5359 (void *) genx->vertex_buffers[i].resource;
5360 if (res) {
5361 iris_use_pinned_bo(batch, res->bo, false);
5362
5363 high_bits = res->bo->gtt_offset >> 32ull;
5364 if (high_bits != ice->state.last_vbo_high_bits[i]) {
5365 flush_flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE |
5366 PIPE_CONTROL_CS_STALL;
5367 ice->state.last_vbo_high_bits[i] = high_bits;
5368 }
5369 }
5370 }
5371
5372 if (flush_flags) {
5373 iris_emit_pipe_control_flush(batch,
5374 "workaround: VF cache 32-bit key [VB]",
5375 flush_flags);
5376 }
5377
5378 const unsigned vb_dwords = GENX(VERTEX_BUFFER_STATE_length);
5379
5380 uint32_t *map =
5381 iris_get_command_space(batch, 4 * (1 + vb_dwords * count));
5382 _iris_pack_command(batch, GENX(3DSTATE_VERTEX_BUFFERS), map, vb) {
5383 vb.DWordLength = (vb_dwords * count + 1) - 2;
5384 }
5385 map += 1;
5386
5387 bound = dynamic_bound;
5388 while (bound) {
5389 const int i = u_bit_scan64(&bound);
5390 memcpy(map, genx->vertex_buffers[i].state,
5391 sizeof(uint32_t) * vb_dwords);
5392 map += vb_dwords;
5393 }
5394 }
5395 }
5396
5397 if (dirty & IRIS_DIRTY_VERTEX_ELEMENTS) {
5398 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
5399 const unsigned entries = MAX2(cso->count, 1);
5400 if (!(ice->state.vs_needs_sgvs_element ||
5401 ice->state.vs_uses_derived_draw_params ||
5402 ice->state.vs_needs_edge_flag)) {
5403 iris_batch_emit(batch, cso->vertex_elements, sizeof(uint32_t) *
5404 (1 + entries * GENX(VERTEX_ELEMENT_STATE_length)));
5405 } else {
5406 uint32_t dynamic_ves[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
5407 const unsigned dyn_count = cso->count +
5408 ice->state.vs_needs_sgvs_element +
5409 ice->state.vs_uses_derived_draw_params;
5410
5411 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS),
5412 &dynamic_ves, ve) {
5413 ve.DWordLength =
5414 1 + GENX(VERTEX_ELEMENT_STATE_length) * dyn_count - 2;
5415 }
5416 memcpy(&dynamic_ves[1], &cso->vertex_elements[1],
5417 (cso->count - ice->state.vs_needs_edge_flag) *
5418 GENX(VERTEX_ELEMENT_STATE_length) * sizeof(uint32_t));
5419 uint32_t *ve_pack_dest =
5420 &dynamic_ves[1 + (cso->count - ice->state.vs_needs_edge_flag) *
5421 GENX(VERTEX_ELEMENT_STATE_length)];
5422
5423 if (ice->state.vs_needs_sgvs_element) {
5424 uint32_t base_ctrl = ice->state.vs_uses_draw_params ?
5425 VFCOMP_STORE_SRC : VFCOMP_STORE_0;
5426 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
5427 ve.Valid = true;
5428 ve.VertexBufferIndex =
5429 util_bitcount64(ice->state.bound_vertex_buffers);
5430 ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
5431 ve.Component0Control = base_ctrl;
5432 ve.Component1Control = base_ctrl;
5433 ve.Component2Control = VFCOMP_STORE_0;
5434 ve.Component3Control = VFCOMP_STORE_0;
5435 }
5436 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
5437 }
5438 if (ice->state.vs_uses_derived_draw_params) {
5439 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
5440 ve.Valid = true;
5441 ve.VertexBufferIndex =
5442 util_bitcount64(ice->state.bound_vertex_buffers) +
5443 ice->state.vs_uses_draw_params;
5444 ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
5445 ve.Component0Control = VFCOMP_STORE_SRC;
5446 ve.Component1Control = VFCOMP_STORE_SRC;
5447 ve.Component2Control = VFCOMP_STORE_0;
5448 ve.Component3Control = VFCOMP_STORE_0;
5449 }
5450 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
5451 }
5452 if (ice->state.vs_needs_edge_flag) {
5453 for (int i = 0; i < GENX(VERTEX_ELEMENT_STATE_length); i++)
5454 ve_pack_dest[i] = cso->edgeflag_ve[i];
5455 }
5456
5457 iris_batch_emit(batch, &dynamic_ves, sizeof(uint32_t) *
5458 (1 + dyn_count * GENX(VERTEX_ELEMENT_STATE_length)));
5459 }
5460
5461 if (!ice->state.vs_needs_edge_flag) {
5462 iris_batch_emit(batch, cso->vf_instancing, sizeof(uint32_t) *
5463 entries * GENX(3DSTATE_VF_INSTANCING_length));
5464 } else {
5465 assert(cso->count > 0);
5466 const unsigned edgeflag_index = cso->count - 1;
5467 uint32_t dynamic_vfi[33 * GENX(3DSTATE_VF_INSTANCING_length)];
5468 memcpy(&dynamic_vfi[0], cso->vf_instancing, edgeflag_index *
5469 GENX(3DSTATE_VF_INSTANCING_length) * sizeof(uint32_t));
5470
5471 uint32_t *vfi_pack_dest = &dynamic_vfi[0] +
5472 edgeflag_index * GENX(3DSTATE_VF_INSTANCING_length);
5473 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
5474 vi.VertexElementIndex = edgeflag_index +
5475 ice->state.vs_needs_sgvs_element +
5476 ice->state.vs_uses_derived_draw_params;
5477 }
5478 for (int i = 0; i < GENX(3DSTATE_VF_INSTANCING_length); i++)
5479 vfi_pack_dest[i] |= cso->edgeflag_vfi[i];
5480
5481 iris_batch_emit(batch, &dynamic_vfi[0], sizeof(uint32_t) *
5482 entries * GENX(3DSTATE_VF_INSTANCING_length));
5483 }
5484 }
5485
5486 if (dirty & IRIS_DIRTY_VF_SGVS) {
5487 const struct brw_vs_prog_data *vs_prog_data = (void *)
5488 ice->shaders.prog[MESA_SHADER_VERTEX]->prog_data;
5489 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
5490
5491 iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS), sgv) {
5492 if (vs_prog_data->uses_vertexid) {
5493 sgv.VertexIDEnable = true;
5494 sgv.VertexIDComponentNumber = 2;
5495 sgv.VertexIDElementOffset =
5496 cso->count - ice->state.vs_needs_edge_flag;
5497 }
5498
5499 if (vs_prog_data->uses_instanceid) {
5500 sgv.InstanceIDEnable = true;
5501 sgv.InstanceIDComponentNumber = 3;
5502 sgv.InstanceIDElementOffset =
5503 cso->count - ice->state.vs_needs_edge_flag;
5504 }
5505 }
5506 }
5507
5508 if (dirty & IRIS_DIRTY_VF) {
5509 iris_emit_cmd(batch, GENX(3DSTATE_VF), vf) {
5510 if (draw->primitive_restart) {
5511 vf.IndexedDrawCutIndexEnable = true;
5512 vf.CutIndex = draw->restart_index;
5513 }
5514 }
5515 }
5516
5517 if (dirty & IRIS_DIRTY_VF_STATISTICS) {
5518 iris_emit_cmd(batch, GENX(3DSTATE_VF_STATISTICS), vf) {
5519 vf.StatisticsEnable = true;
5520 }
5521 }
5522
5523 if (ice->state.current_hash_scale != 1)
5524 genX(emit_hashing_mode)(ice, batch, UINT_MAX, UINT_MAX, 1);
5525
5526 /* TODO: Gen8 PMA fix */
5527 }
5528
5529 static void
5530 iris_upload_render_state(struct iris_context *ice,
5531 struct iris_batch *batch,
5532 const struct pipe_draw_info *draw)
5533 {
5534 bool use_predicate = ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT;
5535
5536 /* Always pin the binder. If we're emitting new binding table pointers,
5537 * we need it. If not, we're probably inheriting old tables via the
5538 * context, and need it anyway. Since true zero-bindings cases are
5539 * practically non-existent, just pin it and avoid last_res tracking.
5540 */
5541 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
5542
5543 if (!batch->contains_draw) {
5544 iris_restore_render_saved_bos(ice, batch, draw);
5545 batch->contains_draw = true;
5546 }
5547
5548 iris_upload_dirty_render_state(ice, batch, draw);
5549
5550 if (draw->index_size > 0) {
5551 unsigned offset;
5552
5553 if (draw->has_user_indices) {
5554 u_upload_data(ice->ctx.stream_uploader, 0,
5555 draw->count * draw->index_size, 4, draw->index.user,
5556 &offset, &ice->state.last_res.index_buffer);
5557 } else {
5558 struct iris_resource *res = (void *) draw->index.resource;
5559 res->bind_history |= PIPE_BIND_INDEX_BUFFER;
5560
5561 pipe_resource_reference(&ice->state.last_res.index_buffer,
5562 draw->index.resource);
5563 offset = 0;
5564 }
5565
5566 struct iris_genx_state *genx = ice->state.genx;
5567 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
5568
5569 uint32_t ib_packet[GENX(3DSTATE_INDEX_BUFFER_length)];
5570 iris_pack_command(GENX(3DSTATE_INDEX_BUFFER), ib_packet, ib) {
5571 ib.IndexFormat = draw->index_size >> 1;
5572 ib.MOCS = mocs(bo);
5573 ib.BufferSize = bo->size - offset;
5574 ib.BufferStartingAddress = ro_bo(NULL, bo->gtt_offset + offset);
5575 }
5576
5577 if (memcmp(genx->last_index_buffer, ib_packet, sizeof(ib_packet)) != 0) {
5578 memcpy(genx->last_index_buffer, ib_packet, sizeof(ib_packet));
5579 iris_batch_emit(batch, ib_packet, sizeof(ib_packet));
5580 iris_use_pinned_bo(batch, bo, false);
5581 }
5582
5583 /* The VF cache key only uses 32-bits, see vertex buffer comment above */
5584 uint16_t high_bits = bo->gtt_offset >> 32ull;
5585 if (high_bits != ice->state.last_index_bo_high_bits) {
5586 iris_emit_pipe_control_flush(batch,
5587 "workaround: VF cache 32-bit key [IB]",
5588 PIPE_CONTROL_VF_CACHE_INVALIDATE |
5589 PIPE_CONTROL_CS_STALL);
5590 ice->state.last_index_bo_high_bits = high_bits;
5591 }
5592 }
5593
5594 #define _3DPRIM_END_OFFSET 0x2420
5595 #define _3DPRIM_START_VERTEX 0x2430
5596 #define _3DPRIM_VERTEX_COUNT 0x2434
5597 #define _3DPRIM_INSTANCE_COUNT 0x2438
5598 #define _3DPRIM_START_INSTANCE 0x243C
5599 #define _3DPRIM_BASE_VERTEX 0x2440
5600
5601 if (draw->indirect) {
5602 if (draw->indirect->indirect_draw_count) {
5603 use_predicate = true;
5604
5605 struct iris_bo *draw_count_bo =
5606 iris_resource_bo(draw->indirect->indirect_draw_count);
5607 unsigned draw_count_offset =
5608 draw->indirect->indirect_draw_count_offset;
5609
5610 iris_emit_pipe_control_flush(batch,
5611 "ensure indirect draw buffer is flushed",
5612 PIPE_CONTROL_FLUSH_ENABLE);
5613
5614 if (ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT) {
5615 struct gen_mi_builder b;
5616 gen_mi_builder_init(&b, batch);
5617
5618 /* comparison = draw id < draw count */
5619 struct gen_mi_value comparison =
5620 gen_mi_ult(&b, gen_mi_imm(draw->drawid),
5621 gen_mi_mem32(ro_bo(draw_count_bo,
5622 draw_count_offset)));
5623
5624 /* predicate = comparison & conditional rendering predicate */
5625 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_RESULT),
5626 gen_mi_iand(&b, comparison,
5627 gen_mi_reg32(CS_GPR(15))));
5628 } else {
5629 uint32_t mi_predicate;
5630
5631 /* Upload the id of the current primitive to MI_PREDICATE_SRC1. */
5632 ice->vtbl.load_register_imm64(batch, MI_PREDICATE_SRC1,
5633 draw->drawid);
5634 /* Upload the current draw count from the draw parameters buffer
5635 * to MI_PREDICATE_SRC0.
5636 */
5637 ice->vtbl.load_register_mem32(batch, MI_PREDICATE_SRC0,
5638 draw_count_bo, draw_count_offset);
5639 /* Zero the top 32-bits of MI_PREDICATE_SRC0 */
5640 ice->vtbl.load_register_imm32(batch, MI_PREDICATE_SRC0 + 4, 0);
5641
5642 if (draw->drawid == 0) {
5643 mi_predicate = MI_PREDICATE | MI_PREDICATE_LOADOP_LOADINV |
5644 MI_PREDICATE_COMBINEOP_SET |
5645 MI_PREDICATE_COMPAREOP_SRCS_EQUAL;
5646 } else {
5647 /* While draw_index < draw_count the predicate's result will be
5648 * (draw_index == draw_count) ^ TRUE = TRUE
5649 * When draw_index == draw_count the result is
5650 * (TRUE) ^ TRUE = FALSE
5651 * After this all results will be:
5652 * (FALSE) ^ FALSE = FALSE
5653 */
5654 mi_predicate = MI_PREDICATE | MI_PREDICATE_LOADOP_LOAD |
5655 MI_PREDICATE_COMBINEOP_XOR |
5656 MI_PREDICATE_COMPAREOP_SRCS_EQUAL;
5657 }
5658 iris_batch_emit(batch, &mi_predicate, sizeof(uint32_t));
5659 }
5660 }
5661 struct iris_bo *bo = iris_resource_bo(draw->indirect->buffer);
5662 assert(bo);
5663
5664 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5665 lrm.RegisterAddress = _3DPRIM_VERTEX_COUNT;
5666 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 0);
5667 }
5668 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5669 lrm.RegisterAddress = _3DPRIM_INSTANCE_COUNT;
5670 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 4);
5671 }
5672 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5673 lrm.RegisterAddress = _3DPRIM_START_VERTEX;
5674 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 8);
5675 }
5676 if (draw->index_size) {
5677 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5678 lrm.RegisterAddress = _3DPRIM_BASE_VERTEX;
5679 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
5680 }
5681 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5682 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
5683 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 16);
5684 }
5685 } else {
5686 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5687 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
5688 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
5689 }
5690 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
5691 lri.RegisterOffset = _3DPRIM_BASE_VERTEX;
5692 lri.DataDWord = 0;
5693 }
5694 }
5695 } else if (draw->count_from_stream_output) {
5696 struct iris_stream_output_target *so =
5697 (void *) draw->count_from_stream_output;
5698
5699 /* XXX: Replace with actual cache tracking */
5700 iris_emit_pipe_control_flush(batch,
5701 "draw count from stream output stall",
5702 PIPE_CONTROL_CS_STALL);
5703
5704 struct gen_mi_builder b;
5705 gen_mi_builder_init(&b, batch);
5706
5707 struct iris_address addr =
5708 ro_bo(iris_resource_bo(so->offset.res), so->offset.offset);
5709 struct gen_mi_value offset =
5710 gen_mi_iadd_imm(&b, gen_mi_mem32(addr), -so->base.buffer_offset);
5711
5712 gen_mi_store(&b, gen_mi_reg32(_3DPRIM_VERTEX_COUNT),
5713 gen_mi_udiv32_imm(&b, offset, so->stride));
5714
5715 _iris_emit_lri(batch, _3DPRIM_START_VERTEX, 0);
5716 _iris_emit_lri(batch, _3DPRIM_BASE_VERTEX, 0);
5717 _iris_emit_lri(batch, _3DPRIM_START_INSTANCE, 0);
5718 _iris_emit_lri(batch, _3DPRIM_INSTANCE_COUNT, draw->instance_count);
5719 }
5720
5721 iris_emit_cmd(batch, GENX(3DPRIMITIVE), prim) {
5722 prim.VertexAccessType = draw->index_size > 0 ? RANDOM : SEQUENTIAL;
5723 prim.PredicateEnable = use_predicate;
5724
5725 if (draw->indirect || draw->count_from_stream_output) {
5726 prim.IndirectParameterEnable = true;
5727 } else {
5728 prim.StartInstanceLocation = draw->start_instance;
5729 prim.InstanceCount = draw->instance_count;
5730 prim.VertexCountPerInstance = draw->count;
5731
5732 prim.StartVertexLocation = draw->start;
5733
5734 if (draw->index_size) {
5735 prim.BaseVertexLocation += draw->index_bias;
5736 } else {
5737 prim.StartVertexLocation += draw->index_bias;
5738 }
5739 }
5740 }
5741 }
5742
5743 static void
5744 iris_upload_compute_state(struct iris_context *ice,
5745 struct iris_batch *batch,
5746 const struct pipe_grid_info *grid)
5747 {
5748 const uint64_t dirty = ice->state.dirty;
5749 struct iris_screen *screen = batch->screen;
5750 const struct gen_device_info *devinfo = &screen->devinfo;
5751 struct iris_binder *binder = &ice->state.binder;
5752 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
5753 struct iris_compiled_shader *shader =
5754 ice->shaders.prog[MESA_SHADER_COMPUTE];
5755 struct brw_stage_prog_data *prog_data = shader->prog_data;
5756 struct brw_cs_prog_data *cs_prog_data = (void *) prog_data;
5757
5758 /* Always pin the binder. If we're emitting new binding table pointers,
5759 * we need it. If not, we're probably inheriting old tables via the
5760 * context, and need it anyway. Since true zero-bindings cases are
5761 * practically non-existent, just pin it and avoid last_res tracking.
5762 */
5763 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
5764
5765 if ((dirty & IRIS_DIRTY_CONSTANTS_CS) && shs->sysvals_need_upload)
5766 upload_sysvals(ice, MESA_SHADER_COMPUTE);
5767
5768 if (dirty & IRIS_DIRTY_BINDINGS_CS)
5769 iris_populate_binding_table(ice, batch, MESA_SHADER_COMPUTE, false);
5770
5771 if (dirty & IRIS_DIRTY_SAMPLER_STATES_CS)
5772 iris_upload_sampler_states(ice, MESA_SHADER_COMPUTE);
5773
5774 iris_use_optional_res(batch, shs->sampler_table.res, false);
5775 iris_use_pinned_bo(batch, iris_resource_bo(shader->assembly.res), false);
5776
5777 if (ice->state.need_border_colors)
5778 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
5779
5780 if (dirty & IRIS_DIRTY_CS) {
5781 /* The MEDIA_VFE_STATE documentation for Gen8+ says:
5782 *
5783 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
5784 * the only bits that are changed are scoreboard related: Scoreboard
5785 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard Delta. For
5786 * these scoreboard related states, a MEDIA_STATE_FLUSH is
5787 * sufficient."
5788 */
5789 iris_emit_pipe_control_flush(batch,
5790 "workaround: stall before MEDIA_VFE_STATE",
5791 PIPE_CONTROL_CS_STALL);
5792
5793 iris_emit_cmd(batch, GENX(MEDIA_VFE_STATE), vfe) {
5794 if (prog_data->total_scratch) {
5795 struct iris_bo *bo =
5796 iris_get_scratch_space(ice, prog_data->total_scratch,
5797 MESA_SHADER_COMPUTE);
5798 vfe.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
5799 vfe.ScratchSpaceBasePointer = rw_bo(bo, 0);
5800 }
5801
5802 vfe.MaximumNumberofThreads =
5803 devinfo->max_cs_threads * screen->subslice_total - 1;
5804 #if GEN_GEN < 11
5805 vfe.ResetGatewayTimer =
5806 Resettingrelativetimerandlatchingtheglobaltimestamp;
5807 #endif
5808 #if GEN_GEN == 8
5809 vfe.BypassGatewayControl = true;
5810 #endif
5811 vfe.NumberofURBEntries = 2;
5812 vfe.URBEntryAllocationSize = 2;
5813
5814 vfe.CURBEAllocationSize =
5815 ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
5816 cs_prog_data->push.cross_thread.regs, 2);
5817 }
5818 }
5819
5820 /* TODO: Combine subgroup-id with cbuf0 so we can push regular uniforms */
5821 if (dirty & IRIS_DIRTY_CS) {
5822 uint32_t curbe_data_offset = 0;
5823 assert(cs_prog_data->push.cross_thread.dwords == 0 &&
5824 cs_prog_data->push.per_thread.dwords == 1 &&
5825 cs_prog_data->base.param[0] == BRW_PARAM_BUILTIN_SUBGROUP_ID);
5826 uint32_t *curbe_data_map =
5827 stream_state(batch, ice->state.dynamic_uploader,
5828 &ice->state.last_res.cs_thread_ids,
5829 ALIGN(cs_prog_data->push.total.size, 64), 64,
5830 &curbe_data_offset);
5831 assert(curbe_data_map);
5832 memset(curbe_data_map, 0x5a, ALIGN(cs_prog_data->push.total.size, 64));
5833 iris_fill_cs_push_const_buffer(cs_prog_data, curbe_data_map);
5834
5835 iris_emit_cmd(batch, GENX(MEDIA_CURBE_LOAD), curbe) {
5836 curbe.CURBETotalDataLength =
5837 ALIGN(cs_prog_data->push.total.size, 64);
5838 curbe.CURBEDataStartAddress = curbe_data_offset;
5839 }
5840 }
5841
5842 if (dirty & (IRIS_DIRTY_SAMPLER_STATES_CS |
5843 IRIS_DIRTY_BINDINGS_CS |
5844 IRIS_DIRTY_CONSTANTS_CS |
5845 IRIS_DIRTY_CS)) {
5846 uint32_t desc[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
5847
5848 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), desc, idd) {
5849 idd.SamplerStatePointer = shs->sampler_table.offset;
5850 idd.BindingTablePointer = binder->bt_offset[MESA_SHADER_COMPUTE];
5851 }
5852
5853 for (int i = 0; i < GENX(INTERFACE_DESCRIPTOR_DATA_length); i++)
5854 desc[i] |= ((uint32_t *) shader->derived_data)[i];
5855
5856 iris_emit_cmd(batch, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
5857 load.InterfaceDescriptorTotalLength =
5858 GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
5859 load.InterfaceDescriptorDataStartAddress =
5860 emit_state(batch, ice->state.dynamic_uploader,
5861 &ice->state.last_res.cs_desc, desc, sizeof(desc), 64);
5862 }
5863 }
5864
5865 uint32_t group_size = grid->block[0] * grid->block[1] * grid->block[2];
5866 uint32_t remainder = group_size & (cs_prog_data->simd_size - 1);
5867 uint32_t right_mask;
5868
5869 if (remainder > 0)
5870 right_mask = ~0u >> (32 - remainder);
5871 else
5872 right_mask = ~0u >> (32 - cs_prog_data->simd_size);
5873
5874 #define GPGPU_DISPATCHDIMX 0x2500
5875 #define GPGPU_DISPATCHDIMY 0x2504
5876 #define GPGPU_DISPATCHDIMZ 0x2508
5877
5878 if (grid->indirect) {
5879 struct iris_state_ref *grid_size = &ice->state.grid_size;
5880 struct iris_bo *bo = iris_resource_bo(grid_size->res);
5881 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5882 lrm.RegisterAddress = GPGPU_DISPATCHDIMX;
5883 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 0);
5884 }
5885 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5886 lrm.RegisterAddress = GPGPU_DISPATCHDIMY;
5887 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 4);
5888 }
5889 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5890 lrm.RegisterAddress = GPGPU_DISPATCHDIMZ;
5891 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 8);
5892 }
5893 }
5894
5895 iris_emit_cmd(batch, GENX(GPGPU_WALKER), ggw) {
5896 ggw.IndirectParameterEnable = grid->indirect != NULL;
5897 ggw.SIMDSize = cs_prog_data->simd_size / 16;
5898 ggw.ThreadDepthCounterMaximum = 0;
5899 ggw.ThreadHeightCounterMaximum = 0;
5900 ggw.ThreadWidthCounterMaximum = cs_prog_data->threads - 1;
5901 ggw.ThreadGroupIDXDimension = grid->grid[0];
5902 ggw.ThreadGroupIDYDimension = grid->grid[1];
5903 ggw.ThreadGroupIDZDimension = grid->grid[2];
5904 ggw.RightExecutionMask = right_mask;
5905 ggw.BottomExecutionMask = 0xffffffff;
5906 }
5907
5908 iris_emit_cmd(batch, GENX(MEDIA_STATE_FLUSH), msf);
5909
5910 if (!batch->contains_draw) {
5911 iris_restore_compute_saved_bos(ice, batch, grid);
5912 batch->contains_draw = true;
5913 }
5914 }
5915
5916 /**
5917 * State module teardown.
5918 */
5919 static void
5920 iris_destroy_state(struct iris_context *ice)
5921 {
5922 struct iris_genx_state *genx = ice->state.genx;
5923
5924 pipe_resource_reference(&ice->draw.draw_params.res, NULL);
5925 pipe_resource_reference(&ice->draw.derived_draw_params.res, NULL);
5926
5927 uint64_t bound_vbs = ice->state.bound_vertex_buffers;
5928 while (bound_vbs) {
5929 const int i = u_bit_scan64(&bound_vbs);
5930 pipe_resource_reference(&genx->vertex_buffers[i].resource, NULL);
5931 }
5932 free(ice->state.genx);
5933
5934 for (int i = 0; i < 4; i++) {
5935 pipe_so_target_reference(&ice->state.so_target[i], NULL);
5936 }
5937
5938 for (unsigned i = 0; i < ice->state.framebuffer.nr_cbufs; i++) {
5939 pipe_surface_reference(&ice->state.framebuffer.cbufs[i], NULL);
5940 }
5941 pipe_surface_reference(&ice->state.framebuffer.zsbuf, NULL);
5942
5943 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
5944 struct iris_shader_state *shs = &ice->state.shaders[stage];
5945 pipe_resource_reference(&shs->sampler_table.res, NULL);
5946 for (int i = 0; i < PIPE_MAX_CONSTANT_BUFFERS; i++) {
5947 pipe_resource_reference(&shs->constbuf[i].buffer, NULL);
5948 pipe_resource_reference(&shs->constbuf_surf_state[i].res, NULL);
5949 }
5950 for (int i = 0; i < PIPE_MAX_SHADER_IMAGES; i++) {
5951 pipe_resource_reference(&shs->image[i].base.resource, NULL);
5952 pipe_resource_reference(&shs->image[i].surface_state.res, NULL);
5953 }
5954 for (int i = 0; i < PIPE_MAX_SHADER_BUFFERS; i++) {
5955 pipe_resource_reference(&shs->ssbo[i].buffer, NULL);
5956 pipe_resource_reference(&shs->ssbo_surf_state[i].res, NULL);
5957 }
5958 for (int i = 0; i < IRIS_MAX_TEXTURE_SAMPLERS; i++) {
5959 pipe_sampler_view_reference((struct pipe_sampler_view **)
5960 &shs->textures[i], NULL);
5961 }
5962 }
5963
5964 pipe_resource_reference(&ice->state.grid_size.res, NULL);
5965 pipe_resource_reference(&ice->state.grid_surf_state.res, NULL);
5966
5967 pipe_resource_reference(&ice->state.null_fb.res, NULL);
5968 pipe_resource_reference(&ice->state.unbound_tex.res, NULL);
5969
5970 pipe_resource_reference(&ice->state.last_res.cc_vp, NULL);
5971 pipe_resource_reference(&ice->state.last_res.sf_cl_vp, NULL);
5972 pipe_resource_reference(&ice->state.last_res.color_calc, NULL);
5973 pipe_resource_reference(&ice->state.last_res.scissor, NULL);
5974 pipe_resource_reference(&ice->state.last_res.blend, NULL);
5975 pipe_resource_reference(&ice->state.last_res.index_buffer, NULL);
5976 pipe_resource_reference(&ice->state.last_res.cs_thread_ids, NULL);
5977 pipe_resource_reference(&ice->state.last_res.cs_desc, NULL);
5978 }
5979
5980 /* ------------------------------------------------------------------- */
5981
5982 static void
5983 iris_rebind_buffer(struct iris_context *ice,
5984 struct iris_resource *res,
5985 uint64_t old_address)
5986 {
5987 struct pipe_context *ctx = &ice->ctx;
5988 struct iris_screen *screen = (void *) ctx->screen;
5989 struct iris_genx_state *genx = ice->state.genx;
5990
5991 assert(res->base.target == PIPE_BUFFER);
5992
5993 /* Buffers can't be framebuffer attachments, nor display related,
5994 * and we don't have upstream Clover support.
5995 */
5996 assert(!(res->bind_history & (PIPE_BIND_DEPTH_STENCIL |
5997 PIPE_BIND_RENDER_TARGET |
5998 PIPE_BIND_BLENDABLE |
5999 PIPE_BIND_DISPLAY_TARGET |
6000 PIPE_BIND_CURSOR |
6001 PIPE_BIND_COMPUTE_RESOURCE |
6002 PIPE_BIND_GLOBAL)));
6003
6004 if (res->bind_history & PIPE_BIND_VERTEX_BUFFER) {
6005 uint64_t bound_vbs = ice->state.bound_vertex_buffers;
6006 while (bound_vbs) {
6007 const int i = u_bit_scan64(&bound_vbs);
6008 struct iris_vertex_buffer_state *state = &genx->vertex_buffers[i];
6009
6010 /* Update the CPU struct */
6011 STATIC_ASSERT(GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_start) == 32);
6012 STATIC_ASSERT(GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_bits) == 64);
6013 uint64_t *addr = (uint64_t *) &state->state[1];
6014
6015 if (*addr == old_address + state->offset) {
6016 *addr = res->bo->gtt_offset + state->offset;
6017 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
6018 }
6019 }
6020 }
6021
6022 /* We don't need to handle PIPE_BIND_INDEX_BUFFER here: we re-emit
6023 * the 3DSTATE_INDEX_BUFFER packet whenever the address changes.
6024 *
6025 * There is also no need to handle these:
6026 * - PIPE_BIND_COMMAND_ARGS_BUFFER (emitted for every indirect draw)
6027 * - PIPE_BIND_QUERY_BUFFER (no persistent state references)
6028 */
6029
6030 if (res->bind_history & PIPE_BIND_STREAM_OUTPUT) {
6031 /* XXX: be careful about resetting vs appending... */
6032 assert(false);
6033 }
6034
6035 for (int s = MESA_SHADER_VERTEX; s < MESA_SHADER_STAGES; s++) {
6036 struct iris_shader_state *shs = &ice->state.shaders[s];
6037 enum pipe_shader_type p_stage = stage_to_pipe(s);
6038
6039 if (!(res->bind_stages & (1 << s)))
6040 continue;
6041
6042 if (res->bind_history & PIPE_BIND_CONSTANT_BUFFER) {
6043 /* Skip constant buffer 0, it's for regular uniforms, not UBOs */
6044 uint32_t bound_cbufs = shs->bound_cbufs & ~1u;
6045 while (bound_cbufs) {
6046 const int i = u_bit_scan(&bound_cbufs);
6047 struct pipe_shader_buffer *cbuf = &shs->constbuf[i];
6048 struct iris_state_ref *surf_state = &shs->constbuf_surf_state[i];
6049
6050 if (res->bo == iris_resource_bo(cbuf->buffer)) {
6051 pipe_resource_reference(&surf_state->res, NULL);
6052 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << s;
6053 }
6054 }
6055 }
6056
6057 if (res->bind_history & PIPE_BIND_SHADER_BUFFER) {
6058 uint32_t bound_ssbos = shs->bound_ssbos;
6059 while (bound_ssbos) {
6060 const int i = u_bit_scan(&bound_ssbos);
6061 struct pipe_shader_buffer *ssbo = &shs->ssbo[i];
6062
6063 if (res->bo == iris_resource_bo(ssbo->buffer)) {
6064 struct pipe_shader_buffer buf = {
6065 .buffer = &res->base,
6066 .buffer_offset = ssbo->buffer_offset,
6067 .buffer_size = ssbo->buffer_size,
6068 };
6069 iris_set_shader_buffers(ctx, p_stage, i, 1, &buf,
6070 (shs->writable_ssbos >> i) & 1);
6071 }
6072 }
6073 }
6074
6075 if (res->bind_history & PIPE_BIND_SAMPLER_VIEW) {
6076 uint32_t bound_sampler_views = shs->bound_sampler_views;
6077 while (bound_sampler_views) {
6078 const int i = u_bit_scan(&bound_sampler_views);
6079 struct iris_sampler_view *isv = shs->textures[i];
6080
6081 if (res->bo == iris_resource_bo(isv->base.texture)) {
6082 void *map = alloc_surface_states(ice->state.surface_uploader,
6083 &isv->surface_state,
6084 isv->res->aux.sampler_usages);
6085 assert(map);
6086 fill_buffer_surface_state(&screen->isl_dev, isv->res, map,
6087 isv->view.format, isv->view.swizzle,
6088 isv->base.u.buf.offset,
6089 isv->base.u.buf.size);
6090 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << s;
6091 }
6092 }
6093 }
6094
6095 if (res->bind_history & PIPE_BIND_SHADER_IMAGE) {
6096 uint32_t bound_image_views = shs->bound_image_views;
6097 while (bound_image_views) {
6098 const int i = u_bit_scan(&bound_image_views);
6099 struct iris_image_view *iv = &shs->image[i];
6100
6101 if (res->bo == iris_resource_bo(iv->base.resource)) {
6102 iris_set_shader_images(ctx, p_stage, i, 1, &iv->base);
6103 }
6104 }
6105 }
6106 }
6107 }
6108
6109 /* ------------------------------------------------------------------- */
6110
6111 static void
6112 iris_load_register_reg32(struct iris_batch *batch, uint32_t dst,
6113 uint32_t src)
6114 {
6115 _iris_emit_lrr(batch, dst, src);
6116 }
6117
6118 static void
6119 iris_load_register_reg64(struct iris_batch *batch, uint32_t dst,
6120 uint32_t src)
6121 {
6122 _iris_emit_lrr(batch, dst, src);
6123 _iris_emit_lrr(batch, dst + 4, src + 4);
6124 }
6125
6126 static void
6127 iris_load_register_imm32(struct iris_batch *batch, uint32_t reg,
6128 uint32_t val)
6129 {
6130 _iris_emit_lri(batch, reg, val);
6131 }
6132
6133 static void
6134 iris_load_register_imm64(struct iris_batch *batch, uint32_t reg,
6135 uint64_t val)
6136 {
6137 _iris_emit_lri(batch, reg + 0, val & 0xffffffff);
6138 _iris_emit_lri(batch, reg + 4, val >> 32);
6139 }
6140
6141 /**
6142 * Emit MI_LOAD_REGISTER_MEM to load a 32-bit MMIO register from a buffer.
6143 */
6144 static void
6145 iris_load_register_mem32(struct iris_batch *batch, uint32_t reg,
6146 struct iris_bo *bo, uint32_t offset)
6147 {
6148 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6149 lrm.RegisterAddress = reg;
6150 lrm.MemoryAddress = ro_bo(bo, offset);
6151 }
6152 }
6153
6154 /**
6155 * Load a 64-bit value from a buffer into a MMIO register via
6156 * two MI_LOAD_REGISTER_MEM commands.
6157 */
6158 static void
6159 iris_load_register_mem64(struct iris_batch *batch, uint32_t reg,
6160 struct iris_bo *bo, uint32_t offset)
6161 {
6162 iris_load_register_mem32(batch, reg + 0, bo, offset + 0);
6163 iris_load_register_mem32(batch, reg + 4, bo, offset + 4);
6164 }
6165
6166 static void
6167 iris_store_register_mem32(struct iris_batch *batch, uint32_t reg,
6168 struct iris_bo *bo, uint32_t offset,
6169 bool predicated)
6170 {
6171 iris_emit_cmd(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
6172 srm.RegisterAddress = reg;
6173 srm.MemoryAddress = rw_bo(bo, offset);
6174 srm.PredicateEnable = predicated;
6175 }
6176 }
6177
6178 static void
6179 iris_store_register_mem64(struct iris_batch *batch, uint32_t reg,
6180 struct iris_bo *bo, uint32_t offset,
6181 bool predicated)
6182 {
6183 iris_store_register_mem32(batch, reg + 0, bo, offset + 0, predicated);
6184 iris_store_register_mem32(batch, reg + 4, bo, offset + 4, predicated);
6185 }
6186
6187 static void
6188 iris_store_data_imm32(struct iris_batch *batch,
6189 struct iris_bo *bo, uint32_t offset,
6190 uint32_t imm)
6191 {
6192 iris_emit_cmd(batch, GENX(MI_STORE_DATA_IMM), sdi) {
6193 sdi.Address = rw_bo(bo, offset);
6194 sdi.ImmediateData = imm;
6195 }
6196 }
6197
6198 static void
6199 iris_store_data_imm64(struct iris_batch *batch,
6200 struct iris_bo *bo, uint32_t offset,
6201 uint64_t imm)
6202 {
6203 /* Can't use iris_emit_cmd because MI_STORE_DATA_IMM has a length of
6204 * 2 in genxml but it's actually variable length and we need 5 DWords.
6205 */
6206 void *map = iris_get_command_space(batch, 4 * 5);
6207 _iris_pack_command(batch, GENX(MI_STORE_DATA_IMM), map, sdi) {
6208 sdi.DWordLength = 5 - 2;
6209 sdi.Address = rw_bo(bo, offset);
6210 sdi.ImmediateData = imm;
6211 }
6212 }
6213
6214 static void
6215 iris_copy_mem_mem(struct iris_batch *batch,
6216 struct iris_bo *dst_bo, uint32_t dst_offset,
6217 struct iris_bo *src_bo, uint32_t src_offset,
6218 unsigned bytes)
6219 {
6220 /* MI_COPY_MEM_MEM operates on DWords. */
6221 assert(bytes % 4 == 0);
6222 assert(dst_offset % 4 == 0);
6223 assert(src_offset % 4 == 0);
6224
6225 for (unsigned i = 0; i < bytes; i += 4) {
6226 iris_emit_cmd(batch, GENX(MI_COPY_MEM_MEM), cp) {
6227 cp.DestinationMemoryAddress = rw_bo(dst_bo, dst_offset + i);
6228 cp.SourceMemoryAddress = ro_bo(src_bo, src_offset + i);
6229 }
6230 }
6231 }
6232
6233 /* ------------------------------------------------------------------- */
6234
6235 static unsigned
6236 flags_to_post_sync_op(uint32_t flags)
6237 {
6238 if (flags & PIPE_CONTROL_WRITE_IMMEDIATE)
6239 return WriteImmediateData;
6240
6241 if (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT)
6242 return WritePSDepthCount;
6243
6244 if (flags & PIPE_CONTROL_WRITE_TIMESTAMP)
6245 return WriteTimestamp;
6246
6247 return 0;
6248 }
6249
6250 /**
6251 * Do the given flags have a Post Sync or LRI Post Sync operation?
6252 */
6253 static enum pipe_control_flags
6254 get_post_sync_flags(enum pipe_control_flags flags)
6255 {
6256 flags &= PIPE_CONTROL_WRITE_IMMEDIATE |
6257 PIPE_CONTROL_WRITE_DEPTH_COUNT |
6258 PIPE_CONTROL_WRITE_TIMESTAMP |
6259 PIPE_CONTROL_LRI_POST_SYNC_OP;
6260
6261 /* Only one "Post Sync Op" is allowed, and it's mutually exclusive with
6262 * "LRI Post Sync Operation". So more than one bit set would be illegal.
6263 */
6264 assert(util_bitcount(flags) <= 1);
6265
6266 return flags;
6267 }
6268
6269 #define IS_COMPUTE_PIPELINE(batch) (batch->name == IRIS_BATCH_COMPUTE)
6270
6271 /**
6272 * Emit a series of PIPE_CONTROL commands, taking into account any
6273 * workarounds necessary to actually accomplish the caller's request.
6274 *
6275 * Unless otherwise noted, spec quotations in this function come from:
6276 *
6277 * Synchronization of the 3D Pipeline > PIPE_CONTROL Command > Programming
6278 * Restrictions for PIPE_CONTROL.
6279 *
6280 * You should not use this function directly. Use the helpers in
6281 * iris_pipe_control.c instead, which may split the pipe control further.
6282 */
6283 static void
6284 iris_emit_raw_pipe_control(struct iris_batch *batch,
6285 const char *reason,
6286 uint32_t flags,
6287 struct iris_bo *bo,
6288 uint32_t offset,
6289 uint64_t imm)
6290 {
6291 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
6292 enum pipe_control_flags post_sync_flags = get_post_sync_flags(flags);
6293 enum pipe_control_flags non_lri_post_sync_flags =
6294 post_sync_flags & ~PIPE_CONTROL_LRI_POST_SYNC_OP;
6295
6296 /* Recursive PIPE_CONTROL workarounds --------------------------------
6297 * (http://knowyourmeme.com/memes/xzibit-yo-dawg)
6298 *
6299 * We do these first because we want to look at the original operation,
6300 * rather than any workarounds we set.
6301 */
6302 if (GEN_GEN == 9 && (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE)) {
6303 /* The PIPE_CONTROL "VF Cache Invalidation Enable" bit description
6304 * lists several workarounds:
6305 *
6306 * "Project: SKL, KBL, BXT
6307 *
6308 * If the VF Cache Invalidation Enable is set to a 1 in a
6309 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields
6310 * sets to 0, with the VF Cache Invalidation Enable set to 0
6311 * needs to be sent prior to the PIPE_CONTROL with VF Cache
6312 * Invalidation Enable set to a 1."
6313 */
6314 iris_emit_raw_pipe_control(batch,
6315 "workaround: recursive VF cache invalidate",
6316 0, NULL, 0, 0);
6317 }
6318
6319 if (GEN_GEN == 9 && IS_COMPUTE_PIPELINE(batch) && post_sync_flags) {
6320 /* Project: SKL / Argument: LRI Post Sync Operation [23]
6321 *
6322 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
6323 * programmed prior to programming a PIPECONTROL command with "LRI
6324 * Post Sync Operation" in GPGPU mode of operation (i.e when
6325 * PIPELINE_SELECT command is set to GPGPU mode of operation)."
6326 *
6327 * The same text exists a few rows below for Post Sync Op.
6328 */
6329 iris_emit_raw_pipe_control(batch,
6330 "workaround: CS stall before gpgpu post-sync",
6331 PIPE_CONTROL_CS_STALL, bo, offset, imm);
6332 }
6333
6334 if (GEN_GEN == 10 && (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH)) {
6335 /* Cannonlake:
6336 * "Before sending a PIPE_CONTROL command with bit 12 set, SW must issue
6337 * another PIPE_CONTROL with Render Target Cache Flush Enable (bit 12)
6338 * = 0 and Pipe Control Flush Enable (bit 7) = 1"
6339 */
6340 iris_emit_raw_pipe_control(batch,
6341 "workaround: PC flush before RT flush",
6342 PIPE_CONTROL_FLUSH_ENABLE, bo, offset, imm);
6343 }
6344
6345 /* "Flush Types" workarounds ---------------------------------------------
6346 * We do these now because they may add post-sync operations or CS stalls.
6347 */
6348
6349 if (GEN_GEN < 11 && flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) {
6350 /* Project: BDW, SKL+ (stopping at CNL) / Argument: VF Invalidate
6351 *
6352 * "'Post Sync Operation' must be enabled to 'Write Immediate Data' or
6353 * 'Write PS Depth Count' or 'Write Timestamp'."
6354 */
6355 if (!bo) {
6356 flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
6357 post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
6358 non_lri_post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
6359 bo = batch->screen->workaround_bo;
6360 }
6361 }
6362
6363 /* #1130 from Gen10 workarounds page:
6364 *
6365 * "Enable Depth Stall on every Post Sync Op if Render target Cache
6366 * Flush is not enabled in same PIPE CONTROL and Enable Pixel score
6367 * board stall if Render target cache flush is enabled."
6368 *
6369 * Applicable to CNL B0 and C0 steppings only.
6370 *
6371 * The wording here is unclear, and this workaround doesn't look anything
6372 * like the internal bug report recommendations, but leave it be for now...
6373 */
6374 if (GEN_GEN == 10) {
6375 if (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) {
6376 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
6377 } else if (flags & non_lri_post_sync_flags) {
6378 flags |= PIPE_CONTROL_DEPTH_STALL;
6379 }
6380 }
6381
6382 if (flags & PIPE_CONTROL_DEPTH_STALL) {
6383 /* From the PIPE_CONTROL instruction table, bit 13 (Depth Stall Enable):
6384 *
6385 * "This bit must be DISABLED for operations other than writing
6386 * PS_DEPTH_COUNT."
6387 *
6388 * This seems like nonsense. An Ivybridge workaround requires us to
6389 * emit a PIPE_CONTROL with a depth stall and write immediate post-sync
6390 * operation. Gen8+ requires us to emit depth stalls and depth cache
6391 * flushes together. So, it's hard to imagine this means anything other
6392 * than "we originally intended this to be used for PS_DEPTH_COUNT".
6393 *
6394 * We ignore the supposed restriction and do nothing.
6395 */
6396 }
6397
6398 if (flags & (PIPE_CONTROL_RENDER_TARGET_FLUSH |
6399 PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
6400 /* From the PIPE_CONTROL instruction table, bit 12 and bit 1:
6401 *
6402 * "This bit must be DISABLED for End-of-pipe (Read) fences,
6403 * PS_DEPTH_COUNT or TIMESTAMP queries."
6404 *
6405 * TODO: Implement end-of-pipe checking.
6406 */
6407 assert(!(post_sync_flags & (PIPE_CONTROL_WRITE_DEPTH_COUNT |
6408 PIPE_CONTROL_WRITE_TIMESTAMP)));
6409 }
6410
6411 if (GEN_GEN < 11 && (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
6412 /* From the PIPE_CONTROL instruction table, bit 1:
6413 *
6414 * "This bit is ignored if Depth Stall Enable is set.
6415 * Further, the render cache is not flushed even if Write Cache
6416 * Flush Enable bit is set."
6417 *
6418 * We assert that the caller doesn't do this combination, to try and
6419 * prevent mistakes. It shouldn't hurt the GPU, though.
6420 *
6421 * We skip this check on Gen11+ as the "Stall at Pixel Scoreboard"
6422 * and "Render Target Flush" combo is explicitly required for BTI
6423 * update workarounds.
6424 */
6425 assert(!(flags & (PIPE_CONTROL_DEPTH_STALL |
6426 PIPE_CONTROL_RENDER_TARGET_FLUSH)));
6427 }
6428
6429 /* PIPE_CONTROL page workarounds ------------------------------------- */
6430
6431 if (GEN_GEN <= 8 && (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE)) {
6432 /* From the PIPE_CONTROL page itself:
6433 *
6434 * "IVB, HSW, BDW
6435 * Restriction: Pipe_control with CS-stall bit set must be issued
6436 * before a pipe-control command that has the State Cache
6437 * Invalidate bit set."
6438 */
6439 flags |= PIPE_CONTROL_CS_STALL;
6440 }
6441
6442 if (flags & PIPE_CONTROL_FLUSH_LLC) {
6443 /* From the PIPE_CONTROL instruction table, bit 26 (Flush LLC):
6444 *
6445 * "Project: ALL
6446 * SW must always program Post-Sync Operation to "Write Immediate
6447 * Data" when Flush LLC is set."
6448 *
6449 * For now, we just require the caller to do it.
6450 */
6451 assert(flags & PIPE_CONTROL_WRITE_IMMEDIATE);
6452 }
6453
6454 /* "Post-Sync Operation" workarounds -------------------------------- */
6455
6456 /* Project: All / Argument: Global Snapshot Count Reset [19]
6457 *
6458 * "This bit must not be exercised on any product.
6459 * Requires stall bit ([20] of DW1) set."
6460 *
6461 * We don't use this, so we just assert that it isn't used. The
6462 * PIPE_CONTROL instruction page indicates that they intended this
6463 * as a debug feature and don't think it is useful in production,
6464 * but it may actually be usable, should we ever want to.
6465 */
6466 assert((flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) == 0);
6467
6468 if (flags & (PIPE_CONTROL_MEDIA_STATE_CLEAR |
6469 PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE)) {
6470 /* Project: All / Arguments:
6471 *
6472 * - Generic Media State Clear [16]
6473 * - Indirect State Pointers Disable [16]
6474 *
6475 * "Requires stall bit ([20] of DW1) set."
6476 *
6477 * Also, the PIPE_CONTROL instruction table, bit 16 (Generic Media
6478 * State Clear) says:
6479 *
6480 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
6481 * programmed prior to programming a PIPECONTROL command with "Media
6482 * State Clear" set in GPGPU mode of operation"
6483 *
6484 * This is a subset of the earlier rule, so there's nothing to do.
6485 */
6486 flags |= PIPE_CONTROL_CS_STALL;
6487 }
6488
6489 if (flags & PIPE_CONTROL_STORE_DATA_INDEX) {
6490 /* Project: All / Argument: Store Data Index
6491 *
6492 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
6493 * than '0'."
6494 *
6495 * For now, we just assert that the caller does this. We might want to
6496 * automatically add a write to the workaround BO...
6497 */
6498 assert(non_lri_post_sync_flags != 0);
6499 }
6500
6501 if (flags & PIPE_CONTROL_SYNC_GFDT) {
6502 /* Project: All / Argument: Sync GFDT
6503 *
6504 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
6505 * than '0' or 0x2520[13] must be set."
6506 *
6507 * For now, we just assert that the caller does this.
6508 */
6509 assert(non_lri_post_sync_flags != 0);
6510 }
6511
6512 if (flags & PIPE_CONTROL_TLB_INVALIDATE) {
6513 /* Project: IVB+ / Argument: TLB inv
6514 *
6515 * "Requires stall bit ([20] of DW1) set."
6516 *
6517 * Also, from the PIPE_CONTROL instruction table:
6518 *
6519 * "Project: SKL+
6520 * Post Sync Operation or CS stall must be set to ensure a TLB
6521 * invalidation occurs. Otherwise no cycle will occur to the TLB
6522 * cache to invalidate."
6523 *
6524 * This is not a subset of the earlier rule, so there's nothing to do.
6525 */
6526 flags |= PIPE_CONTROL_CS_STALL;
6527 }
6528
6529 if (GEN_GEN == 9 && devinfo->gt == 4) {
6530 /* TODO: The big Skylake GT4 post sync op workaround */
6531 }
6532
6533 /* "GPGPU specific workarounds" (both post-sync and flush) ------------ */
6534
6535 if (IS_COMPUTE_PIPELINE(batch)) {
6536 if (GEN_GEN >= 9 && (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE)) {
6537 /* Project: SKL+ / Argument: Tex Invalidate
6538 * "Requires stall bit ([20] of DW) set for all GPGPU Workloads."
6539 */
6540 flags |= PIPE_CONTROL_CS_STALL;
6541 }
6542
6543 if (GEN_GEN == 8 && (post_sync_flags ||
6544 (flags & (PIPE_CONTROL_NOTIFY_ENABLE |
6545 PIPE_CONTROL_DEPTH_STALL |
6546 PIPE_CONTROL_RENDER_TARGET_FLUSH |
6547 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
6548 PIPE_CONTROL_DATA_CACHE_FLUSH)))) {
6549 /* Project: BDW / Arguments:
6550 *
6551 * - LRI Post Sync Operation [23]
6552 * - Post Sync Op [15:14]
6553 * - Notify En [8]
6554 * - Depth Stall [13]
6555 * - Render Target Cache Flush [12]
6556 * - Depth Cache Flush [0]
6557 * - DC Flush Enable [5]
6558 *
6559 * "Requires stall bit ([20] of DW) set for all GPGPU and Media
6560 * Workloads."
6561 */
6562 flags |= PIPE_CONTROL_CS_STALL;
6563
6564 /* Also, from the PIPE_CONTROL instruction table, bit 20:
6565 *
6566 * "Project: BDW
6567 * This bit must be always set when PIPE_CONTROL command is
6568 * programmed by GPGPU and MEDIA workloads, except for the cases
6569 * when only Read Only Cache Invalidation bits are set (State
6570 * Cache Invalidation Enable, Instruction cache Invalidation
6571 * Enable, Texture Cache Invalidation Enable, Constant Cache
6572 * Invalidation Enable). This is to WA FFDOP CG issue, this WA
6573 * need not implemented when FF_DOP_CG is disable via "Fixed
6574 * Function DOP Clock Gate Disable" bit in RC_PSMI_CTRL register."
6575 *
6576 * It sounds like we could avoid CS stalls in some cases, but we
6577 * don't currently bother. This list isn't exactly the list above,
6578 * either...
6579 */
6580 }
6581 }
6582
6583 /* "Stall" workarounds ----------------------------------------------
6584 * These have to come after the earlier ones because we may have added
6585 * some additional CS stalls above.
6586 */
6587
6588 if (GEN_GEN < 9 && (flags & PIPE_CONTROL_CS_STALL)) {
6589 /* Project: PRE-SKL, VLV, CHV
6590 *
6591 * "[All Stepping][All SKUs]:
6592 *
6593 * One of the following must also be set:
6594 *
6595 * - Render Target Cache Flush Enable ([12] of DW1)
6596 * - Depth Cache Flush Enable ([0] of DW1)
6597 * - Stall at Pixel Scoreboard ([1] of DW1)
6598 * - Depth Stall ([13] of DW1)
6599 * - Post-Sync Operation ([13] of DW1)
6600 * - DC Flush Enable ([5] of DW1)"
6601 *
6602 * If we don't already have one of those bits set, we choose to add
6603 * "Stall at Pixel Scoreboard". Some of the other bits require a
6604 * CS stall as a workaround (see above), which would send us into
6605 * an infinite recursion of PIPE_CONTROLs. "Stall at Pixel Scoreboard"
6606 * appears to be safe, so we choose that.
6607 */
6608 const uint32_t wa_bits = PIPE_CONTROL_RENDER_TARGET_FLUSH |
6609 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
6610 PIPE_CONTROL_WRITE_IMMEDIATE |
6611 PIPE_CONTROL_WRITE_DEPTH_COUNT |
6612 PIPE_CONTROL_WRITE_TIMESTAMP |
6613 PIPE_CONTROL_STALL_AT_SCOREBOARD |
6614 PIPE_CONTROL_DEPTH_STALL |
6615 PIPE_CONTROL_DATA_CACHE_FLUSH;
6616 if (!(flags & wa_bits))
6617 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
6618 }
6619
6620 /* Emit --------------------------------------------------------------- */
6621
6622 if (INTEL_DEBUG & DEBUG_PIPE_CONTROL) {
6623 fprintf(stderr,
6624 " PC [%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%"PRIx64"]: %s\n",
6625 (flags & PIPE_CONTROL_FLUSH_ENABLE) ? "PipeCon " : "",
6626 (flags & PIPE_CONTROL_CS_STALL) ? "CS " : "",
6627 (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD) ? "Scoreboard " : "",
6628 (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) ? "VF " : "",
6629 (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) ? "RT " : "",
6630 (flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE) ? "Const " : "",
6631 (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE) ? "TC " : "",
6632 (flags & PIPE_CONTROL_DATA_CACHE_FLUSH) ? "DC " : "",
6633 (flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH) ? "ZFlush " : "",
6634 (flags & PIPE_CONTROL_DEPTH_STALL) ? "ZStall " : "",
6635 (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE) ? "State " : "",
6636 (flags & PIPE_CONTROL_TLB_INVALIDATE) ? "TLB " : "",
6637 (flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE) ? "Inst " : "",
6638 (flags & PIPE_CONTROL_MEDIA_STATE_CLEAR) ? "MediaClear " : "",
6639 (flags & PIPE_CONTROL_NOTIFY_ENABLE) ? "Notify " : "",
6640 (flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) ?
6641 "SnapRes" : "",
6642 (flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE) ?
6643 "ISPDis" : "",
6644 (flags & PIPE_CONTROL_WRITE_IMMEDIATE) ? "WriteImm " : "",
6645 (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT) ? "WriteZCount " : "",
6646 (flags & PIPE_CONTROL_WRITE_TIMESTAMP) ? "WriteTimestamp " : "",
6647 imm, reason);
6648 }
6649
6650 iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
6651 pc.LRIPostSyncOperation = NoLRIOperation;
6652 pc.PipeControlFlushEnable = flags & PIPE_CONTROL_FLUSH_ENABLE;
6653 pc.DCFlushEnable = flags & PIPE_CONTROL_DATA_CACHE_FLUSH;
6654 pc.StoreDataIndex = 0;
6655 pc.CommandStreamerStallEnable = flags & PIPE_CONTROL_CS_STALL;
6656 pc.GlobalSnapshotCountReset =
6657 flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET;
6658 pc.TLBInvalidate = flags & PIPE_CONTROL_TLB_INVALIDATE;
6659 pc.GenericMediaStateClear = flags & PIPE_CONTROL_MEDIA_STATE_CLEAR;
6660 pc.StallAtPixelScoreboard = flags & PIPE_CONTROL_STALL_AT_SCOREBOARD;
6661 pc.RenderTargetCacheFlushEnable =
6662 flags & PIPE_CONTROL_RENDER_TARGET_FLUSH;
6663 pc.DepthCacheFlushEnable = flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH;
6664 pc.StateCacheInvalidationEnable =
6665 flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE;
6666 pc.VFCacheInvalidationEnable = flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
6667 pc.ConstantCacheInvalidationEnable =
6668 flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE;
6669 pc.PostSyncOperation = flags_to_post_sync_op(flags);
6670 pc.DepthStallEnable = flags & PIPE_CONTROL_DEPTH_STALL;
6671 pc.InstructionCacheInvalidateEnable =
6672 flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE;
6673 pc.NotifyEnable = flags & PIPE_CONTROL_NOTIFY_ENABLE;
6674 pc.IndirectStatePointersDisable =
6675 flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE;
6676 pc.TextureCacheInvalidationEnable =
6677 flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
6678 pc.Address = rw_bo(bo, offset);
6679 pc.ImmediateData = imm;
6680 }
6681 }
6682
6683 void
6684 genX(emit_urb_setup)(struct iris_context *ice,
6685 struct iris_batch *batch,
6686 const unsigned size[4],
6687 bool tess_present, bool gs_present)
6688 {
6689 const struct gen_device_info *devinfo = &batch->screen->devinfo;
6690 const unsigned push_size_kB = 32;
6691 unsigned entries[4];
6692 unsigned start[4];
6693
6694 ice->shaders.last_vs_entry_size = size[MESA_SHADER_VERTEX];
6695
6696 gen_get_urb_config(devinfo, 1024 * push_size_kB,
6697 1024 * ice->shaders.urb_size,
6698 tess_present, gs_present,
6699 size, entries, start);
6700
6701 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
6702 iris_emit_cmd(batch, GENX(3DSTATE_URB_VS), urb) {
6703 urb._3DCommandSubOpcode += i;
6704 urb.VSURBStartingAddress = start[i];
6705 urb.VSURBEntryAllocationSize = size[i] - 1;
6706 urb.VSNumberofURBEntries = entries[i];
6707 }
6708 }
6709 }
6710
6711 #if GEN_GEN == 9
6712 /**
6713 * Preemption on Gen9 has to be enabled or disabled in various cases.
6714 *
6715 * See these workarounds for preemption:
6716 * - WaDisableMidObjectPreemptionForGSLineStripAdj
6717 * - WaDisableMidObjectPreemptionForTrifanOrPolygon
6718 * - WaDisableMidObjectPreemptionForLineLoop
6719 * - WA#0798
6720 *
6721 * We don't put this in the vtable because it's only used on Gen9.
6722 */
6723 void
6724 gen9_toggle_preemption(struct iris_context *ice,
6725 struct iris_batch *batch,
6726 const struct pipe_draw_info *draw)
6727 {
6728 struct iris_genx_state *genx = ice->state.genx;
6729 bool object_preemption = true;
6730
6731 /* WaDisableMidObjectPreemptionForGSLineStripAdj
6732 *
6733 * "WA: Disable mid-draw preemption when draw-call is a linestrip_adj
6734 * and GS is enabled."
6735 */
6736 if (draw->mode == PIPE_PRIM_LINE_STRIP_ADJACENCY &&
6737 ice->shaders.prog[MESA_SHADER_GEOMETRY])
6738 object_preemption = false;
6739
6740 /* WaDisableMidObjectPreemptionForTrifanOrPolygon
6741 *
6742 * "TriFan miscompare in Execlist Preemption test. Cut index that is
6743 * on a previous context. End the previous, the resume another context
6744 * with a tri-fan or polygon, and the vertex count is corrupted. If we
6745 * prempt again we will cause corruption.
6746 *
6747 * WA: Disable mid-draw preemption when draw-call has a tri-fan."
6748 */
6749 if (draw->mode == PIPE_PRIM_TRIANGLE_FAN)
6750 object_preemption = false;
6751
6752 /* WaDisableMidObjectPreemptionForLineLoop
6753 *
6754 * "VF Stats Counters Missing a vertex when preemption enabled.
6755 *
6756 * WA: Disable mid-draw preemption when the draw uses a lineloop
6757 * topology."
6758 */
6759 if (draw->mode == PIPE_PRIM_LINE_LOOP)
6760 object_preemption = false;
6761
6762 /* WA#0798
6763 *
6764 * "VF is corrupting GAFS data when preempted on an instance boundary
6765 * and replayed with instancing enabled.
6766 *
6767 * WA: Disable preemption when using instanceing."
6768 */
6769 if (draw->instance_count > 1)
6770 object_preemption = false;
6771
6772 if (genx->object_preemption != object_preemption) {
6773 iris_enable_obj_preemption(batch, object_preemption);
6774 genx->object_preemption = object_preemption;
6775 }
6776 }
6777 #endif
6778
6779 static void
6780 iris_lost_genx_state(struct iris_context *ice, struct iris_batch *batch)
6781 {
6782 struct iris_genx_state *genx = ice->state.genx;
6783
6784 memset(genx->last_index_buffer, 0, sizeof(genx->last_index_buffer));
6785 }
6786
6787 static void
6788 iris_emit_mi_report_perf_count(struct iris_batch *batch,
6789 struct iris_bo *bo,
6790 uint32_t offset_in_bytes,
6791 uint32_t report_id)
6792 {
6793 iris_emit_cmd(batch, GENX(MI_REPORT_PERF_COUNT), mi_rpc) {
6794 mi_rpc.MemoryAddress = rw_bo(bo, offset_in_bytes);
6795 mi_rpc.ReportID = report_id;
6796 }
6797 }
6798
6799 /**
6800 * Update the pixel hashing modes that determine the balancing of PS threads
6801 * across subslices and slices.
6802 *
6803 * \param width Width bound of the rendering area (already scaled down if \p
6804 * scale is greater than 1).
6805 * \param height Height bound of the rendering area (already scaled down if \p
6806 * scale is greater than 1).
6807 * \param scale The number of framebuffer samples that could potentially be
6808 * affected by an individual channel of the PS thread. This is
6809 * typically one for single-sampled rendering, but for operations
6810 * like CCS resolves and fast clears a single PS invocation may
6811 * update a huge number of pixels, in which case a finer
6812 * balancing is desirable in order to maximally utilize the
6813 * bandwidth available. UINT_MAX can be used as shorthand for
6814 * "finest hashing mode available".
6815 */
6816 void
6817 genX(emit_hashing_mode)(struct iris_context *ice, struct iris_batch *batch,
6818 unsigned width, unsigned height, unsigned scale)
6819 {
6820 #if GEN_GEN == 9
6821 const struct gen_device_info *devinfo = &batch->screen->devinfo;
6822 const unsigned slice_hashing[] = {
6823 /* Because all Gen9 platforms with more than one slice require
6824 * three-way subslice hashing, a single "normal" 16x16 slice hashing
6825 * block is guaranteed to suffer from substantial imbalance, with one
6826 * subslice receiving twice as much work as the other two in the
6827 * slice.
6828 *
6829 * The performance impact of that would be particularly severe when
6830 * three-way hashing is also in use for slice balancing (which is the
6831 * case for all Gen9 GT4 platforms), because one of the slices
6832 * receives one every three 16x16 blocks in either direction, which
6833 * is roughly the periodicity of the underlying subslice imbalance
6834 * pattern ("roughly" because in reality the hardware's
6835 * implementation of three-way hashing doesn't do exact modulo 3
6836 * arithmetic, which somewhat decreases the magnitude of this effect
6837 * in practice). This leads to a systematic subslice imbalance
6838 * within that slice regardless of the size of the primitive. The
6839 * 32x32 hashing mode guarantees that the subslice imbalance within a
6840 * single slice hashing block is minimal, largely eliminating this
6841 * effect.
6842 */
6843 _32x32,
6844 /* Finest slice hashing mode available. */
6845 NORMAL
6846 };
6847 const unsigned subslice_hashing[] = {
6848 /* 16x16 would provide a slight cache locality benefit especially
6849 * visible in the sampler L1 cache efficiency of low-bandwidth
6850 * non-LLC platforms, but it comes at the cost of greater subslice
6851 * imbalance for primitives of dimensions approximately intermediate
6852 * between 16x4 and 16x16.
6853 */
6854 _16x4,
6855 /* Finest subslice hashing mode available. */
6856 _8x4
6857 };
6858 /* Dimensions of the smallest hashing block of a given hashing mode. If
6859 * the rendering area is smaller than this there can't possibly be any
6860 * benefit from switching to this mode, so we optimize out the
6861 * transition.
6862 */
6863 const unsigned min_size[][2] = {
6864 { 16, 4 },
6865 { 8, 4 }
6866 };
6867 const unsigned idx = scale > 1;
6868
6869 if (width > min_size[idx][0] || height > min_size[idx][1]) {
6870 uint32_t gt_mode;
6871
6872 iris_pack_state(GENX(GT_MODE), &gt_mode, reg) {
6873 reg.SliceHashing = (devinfo->num_slices > 1 ? slice_hashing[idx] : 0);
6874 reg.SliceHashingMask = (devinfo->num_slices > 1 ? -1 : 0);
6875 reg.SubsliceHashing = subslice_hashing[idx];
6876 reg.SubsliceHashingMask = -1;
6877 };
6878
6879 iris_emit_raw_pipe_control(batch,
6880 "workaround: CS stall before GT_MODE LRI",
6881 PIPE_CONTROL_STALL_AT_SCOREBOARD |
6882 PIPE_CONTROL_CS_STALL,
6883 NULL, 0, 0);
6884
6885 iris_emit_lri(batch, GT_MODE, gt_mode);
6886
6887 ice->state.current_hash_scale = scale;
6888 }
6889 #endif
6890 }
6891
6892 void
6893 genX(init_state)(struct iris_context *ice)
6894 {
6895 struct pipe_context *ctx = &ice->ctx;
6896 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
6897
6898 ctx->create_blend_state = iris_create_blend_state;
6899 ctx->create_depth_stencil_alpha_state = iris_create_zsa_state;
6900 ctx->create_rasterizer_state = iris_create_rasterizer_state;
6901 ctx->create_sampler_state = iris_create_sampler_state;
6902 ctx->create_sampler_view = iris_create_sampler_view;
6903 ctx->create_surface = iris_create_surface;
6904 ctx->create_vertex_elements_state = iris_create_vertex_elements;
6905 ctx->bind_blend_state = iris_bind_blend_state;
6906 ctx->bind_depth_stencil_alpha_state = iris_bind_zsa_state;
6907 ctx->bind_sampler_states = iris_bind_sampler_states;
6908 ctx->bind_rasterizer_state = iris_bind_rasterizer_state;
6909 ctx->bind_vertex_elements_state = iris_bind_vertex_elements_state;
6910 ctx->delete_blend_state = iris_delete_state;
6911 ctx->delete_depth_stencil_alpha_state = iris_delete_state;
6912 ctx->delete_rasterizer_state = iris_delete_state;
6913 ctx->delete_sampler_state = iris_delete_state;
6914 ctx->delete_vertex_elements_state = iris_delete_state;
6915 ctx->set_blend_color = iris_set_blend_color;
6916 ctx->set_clip_state = iris_set_clip_state;
6917 ctx->set_constant_buffer = iris_set_constant_buffer;
6918 ctx->set_shader_buffers = iris_set_shader_buffers;
6919 ctx->set_shader_images = iris_set_shader_images;
6920 ctx->set_sampler_views = iris_set_sampler_views;
6921 ctx->set_tess_state = iris_set_tess_state;
6922 ctx->set_framebuffer_state = iris_set_framebuffer_state;
6923 ctx->set_polygon_stipple = iris_set_polygon_stipple;
6924 ctx->set_sample_mask = iris_set_sample_mask;
6925 ctx->set_scissor_states = iris_set_scissor_states;
6926 ctx->set_stencil_ref = iris_set_stencil_ref;
6927 ctx->set_vertex_buffers = iris_set_vertex_buffers;
6928 ctx->set_viewport_states = iris_set_viewport_states;
6929 ctx->sampler_view_destroy = iris_sampler_view_destroy;
6930 ctx->surface_destroy = iris_surface_destroy;
6931 ctx->draw_vbo = iris_draw_vbo;
6932 ctx->launch_grid = iris_launch_grid;
6933 ctx->create_stream_output_target = iris_create_stream_output_target;
6934 ctx->stream_output_target_destroy = iris_stream_output_target_destroy;
6935 ctx->set_stream_output_targets = iris_set_stream_output_targets;
6936
6937 ice->vtbl.destroy_state = iris_destroy_state;
6938 ice->vtbl.init_render_context = iris_init_render_context;
6939 ice->vtbl.init_compute_context = iris_init_compute_context;
6940 ice->vtbl.upload_render_state = iris_upload_render_state;
6941 ice->vtbl.update_surface_base_address = iris_update_surface_base_address;
6942 ice->vtbl.upload_compute_state = iris_upload_compute_state;
6943 ice->vtbl.emit_raw_pipe_control = iris_emit_raw_pipe_control;
6944 ice->vtbl.emit_mi_report_perf_count = iris_emit_mi_report_perf_count;
6945 ice->vtbl.rebind_buffer = iris_rebind_buffer;
6946 ice->vtbl.load_register_reg32 = iris_load_register_reg32;
6947 ice->vtbl.load_register_reg64 = iris_load_register_reg64;
6948 ice->vtbl.load_register_imm32 = iris_load_register_imm32;
6949 ice->vtbl.load_register_imm64 = iris_load_register_imm64;
6950 ice->vtbl.load_register_mem32 = iris_load_register_mem32;
6951 ice->vtbl.load_register_mem64 = iris_load_register_mem64;
6952 ice->vtbl.store_register_mem32 = iris_store_register_mem32;
6953 ice->vtbl.store_register_mem64 = iris_store_register_mem64;
6954 ice->vtbl.store_data_imm32 = iris_store_data_imm32;
6955 ice->vtbl.store_data_imm64 = iris_store_data_imm64;
6956 ice->vtbl.copy_mem_mem = iris_copy_mem_mem;
6957 ice->vtbl.derived_program_state_size = iris_derived_program_state_size;
6958 ice->vtbl.store_derived_program_state = iris_store_derived_program_state;
6959 ice->vtbl.create_so_decl_list = iris_create_so_decl_list;
6960 ice->vtbl.populate_vs_key = iris_populate_vs_key;
6961 ice->vtbl.populate_tcs_key = iris_populate_tcs_key;
6962 ice->vtbl.populate_tes_key = iris_populate_tes_key;
6963 ice->vtbl.populate_gs_key = iris_populate_gs_key;
6964 ice->vtbl.populate_fs_key = iris_populate_fs_key;
6965 ice->vtbl.populate_cs_key = iris_populate_cs_key;
6966 ice->vtbl.mocs = mocs;
6967 ice->vtbl.lost_genx_state = iris_lost_genx_state;
6968
6969 ice->state.dirty = ~0ull;
6970
6971 ice->state.statistics_counters_enabled = true;
6972
6973 ice->state.sample_mask = 0xffff;
6974 ice->state.num_viewports = 1;
6975 ice->state.prim_mode = PIPE_PRIM_MAX;
6976 ice->state.genx = calloc(1, sizeof(struct iris_genx_state));
6977 ice->draw.derived_params.drawid = -1;
6978
6979 /* Make a 1x1x1 null surface for unbound textures */
6980 void *null_surf_map =
6981 upload_state(ice->state.surface_uploader, &ice->state.unbound_tex,
6982 4 * GENX(RENDER_SURFACE_STATE_length), 64);
6983 isl_null_fill_state(&screen->isl_dev, null_surf_map, isl_extent3d(1, 1, 1));
6984 ice->state.unbound_tex.offset +=
6985 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.unbound_tex.res));
6986
6987 /* Default all scissor rectangles to be empty regions. */
6988 for (int i = 0; i < IRIS_MAX_VIEWPORTS; i++) {
6989 ice->state.scissors[i] = (struct pipe_scissor_state) {
6990 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
6991 };
6992 }
6993 }