iris: Plumb through ISL_SWIZZLE_IDENTITY in buffer surface emitters
[mesa.git] / src / gallium / drivers / iris / iris_state.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included
12 * in all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
21 */
22
23 /**
24 * @file iris_state.c
25 *
26 * ============================= GENXML CODE =============================
27 * [This file is compiled once per generation.]
28 * =======================================================================
29 *
30 * This is the main state upload code.
31 *
32 * Gallium uses Constant State Objects, or CSOs, for most state. Large,
33 * complex, or highly reusable state can be created once, and bound and
34 * rebound multiple times. This is modeled with the pipe->create_*_state()
35 * and pipe->bind_*_state() hooks. Highly dynamic or inexpensive state is
36 * streamed out on the fly, via pipe->set_*_state() hooks.
37 *
38 * OpenGL involves frequently mutating context state, which is mirrored in
39 * core Mesa by highly mutable data structures. However, most applications
40 * typically draw the same things over and over - from frame to frame, most
41 * of the same objects are still visible and need to be redrawn. So, rather
42 * than inventing new state all the time, applications usually mutate to swap
43 * between known states that we've seen before.
44 *
45 * Gallium isolates us from this mutation by tracking API state, and
46 * distilling it into a set of Constant State Objects, or CSOs. Large,
47 * complex, or typically reusable state can be created once, then reused
48 * multiple times. Drivers can create and store their own associated data.
49 * This create/bind model corresponds to the pipe->create_*_state() and
50 * pipe->bind_*_state() driver hooks.
51 *
52 * Some state is cheap to create, or expected to be highly dynamic. Rather
53 * than creating and caching piles of CSOs for these, Gallium simply streams
54 * them out, via the pipe->set_*_state() driver hooks.
55 *
56 * To reduce draw time overhead, we try to compute as much state at create
57 * time as possible. Wherever possible, we translate the Gallium pipe state
58 * to 3DSTATE commands, and store those commands in the CSO. At draw time,
59 * we can simply memcpy them into a batch buffer.
60 *
61 * No hardware matches the abstraction perfectly, so some commands require
62 * information from multiple CSOs. In this case, we can store two copies
63 * of the packet (one in each CSO), and simply | together their DWords at
64 * draw time. Sometimes the second set is trivial (one or two fields), so
65 * we simply pack it at draw time.
66 *
67 * There are two main components in the file below. First, the CSO hooks
68 * create/bind/track state. The second are the draw-time upload functions,
69 * iris_upload_render_state() and iris_upload_compute_state(), which read
70 * the context state and emit the commands into the actual batch.
71 */
72
73 #include <stdio.h>
74 #include <errno.h>
75
76 #if HAVE_VALGRIND
77 #include <valgrind.h>
78 #include <memcheck.h>
79 #define VG(x) x
80 #ifndef NDEBUG
81 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
82 #endif
83 #else
84 #define VG(x)
85 #endif
86
87 #include "pipe/p_defines.h"
88 #include "pipe/p_state.h"
89 #include "pipe/p_context.h"
90 #include "pipe/p_screen.h"
91 #include "util/u_inlines.h"
92 #include "util/u_format.h"
93 #include "util/u_framebuffer.h"
94 #include "util/u_transfer.h"
95 #include "util/u_upload_mgr.h"
96 #include "util/u_viewport.h"
97 #include "drm-uapi/i915_drm.h"
98 #include "nir.h"
99 #include "intel/compiler/brw_compiler.h"
100 #include "intel/common/gen_l3_config.h"
101 #include "intel/common/gen_sample_positions.h"
102 #include "iris_batch.h"
103 #include "iris_context.h"
104 #include "iris_defines.h"
105 #include "iris_pipe.h"
106 #include "iris_resource.h"
107
108 #define __gen_address_type struct iris_address
109 #define __gen_user_data struct iris_batch
110
111 #define ARRAY_BYTES(x) (sizeof(uint32_t) * ARRAY_SIZE(x))
112
113 static uint64_t
114 __gen_combine_address(struct iris_batch *batch, void *location,
115 struct iris_address addr, uint32_t delta)
116 {
117 uint64_t result = addr.offset + delta;
118
119 if (addr.bo) {
120 iris_use_pinned_bo(batch, addr.bo, addr.write);
121 /* Assume this is a general address, not relative to a base. */
122 result += addr.bo->gtt_offset;
123 }
124
125 return result;
126 }
127
128 #define __genxml_cmd_length(cmd) cmd ## _length
129 #define __genxml_cmd_length_bias(cmd) cmd ## _length_bias
130 #define __genxml_cmd_header(cmd) cmd ## _header
131 #define __genxml_cmd_pack(cmd) cmd ## _pack
132
133 #define _iris_pack_command(batch, cmd, dst, name) \
134 for (struct cmd name = { __genxml_cmd_header(cmd) }, \
135 *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
136 ({ __genxml_cmd_pack(cmd)(batch, (void *)_dst, &name); \
137 _dst = NULL; \
138 }))
139
140 #define iris_pack_command(cmd, dst, name) \
141 _iris_pack_command(NULL, cmd, dst, name)
142
143 #define iris_pack_state(cmd, dst, name) \
144 for (struct cmd name = {}, \
145 *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
146 __genxml_cmd_pack(cmd)(NULL, (void *)_dst, &name), \
147 _dst = NULL)
148
149 #define iris_emit_cmd(batch, cmd, name) \
150 _iris_pack_command(batch, cmd, iris_get_command_space(batch, 4 * __genxml_cmd_length(cmd)), name)
151
152 #define iris_emit_merge(batch, dwords0, dwords1, num_dwords) \
153 do { \
154 uint32_t *dw = iris_get_command_space(batch, 4 * num_dwords); \
155 for (uint32_t i = 0; i < num_dwords; i++) \
156 dw[i] = (dwords0)[i] | (dwords1)[i]; \
157 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, num_dwords)); \
158 } while (0)
159
160 #include "genxml/genX_pack.h"
161 #include "genxml/gen_macros.h"
162 #include "genxml/genX_bits.h"
163
164 #if GEN_GEN == 8
165 #define MOCS_PTE 0x18
166 #define MOCS_WB 0x78
167 #else
168 #define MOCS_PTE (1 << 1)
169 #define MOCS_WB (2 << 1)
170 #endif
171
172 static uint32_t
173 mocs(const struct iris_bo *bo)
174 {
175 return bo && bo->external ? MOCS_PTE : MOCS_WB;
176 }
177
178 /**
179 * Statically assert that PIPE_* enums match the hardware packets.
180 * (As long as they match, we don't need to translate them.)
181 */
182 UNUSED static void pipe_asserts()
183 {
184 #define PIPE_ASSERT(x) STATIC_ASSERT((int)x)
185
186 /* pipe_logicop happens to match the hardware. */
187 PIPE_ASSERT(PIPE_LOGICOP_CLEAR == LOGICOP_CLEAR);
188 PIPE_ASSERT(PIPE_LOGICOP_NOR == LOGICOP_NOR);
189 PIPE_ASSERT(PIPE_LOGICOP_AND_INVERTED == LOGICOP_AND_INVERTED);
190 PIPE_ASSERT(PIPE_LOGICOP_COPY_INVERTED == LOGICOP_COPY_INVERTED);
191 PIPE_ASSERT(PIPE_LOGICOP_AND_REVERSE == LOGICOP_AND_REVERSE);
192 PIPE_ASSERT(PIPE_LOGICOP_INVERT == LOGICOP_INVERT);
193 PIPE_ASSERT(PIPE_LOGICOP_XOR == LOGICOP_XOR);
194 PIPE_ASSERT(PIPE_LOGICOP_NAND == LOGICOP_NAND);
195 PIPE_ASSERT(PIPE_LOGICOP_AND == LOGICOP_AND);
196 PIPE_ASSERT(PIPE_LOGICOP_EQUIV == LOGICOP_EQUIV);
197 PIPE_ASSERT(PIPE_LOGICOP_NOOP == LOGICOP_NOOP);
198 PIPE_ASSERT(PIPE_LOGICOP_OR_INVERTED == LOGICOP_OR_INVERTED);
199 PIPE_ASSERT(PIPE_LOGICOP_COPY == LOGICOP_COPY);
200 PIPE_ASSERT(PIPE_LOGICOP_OR_REVERSE == LOGICOP_OR_REVERSE);
201 PIPE_ASSERT(PIPE_LOGICOP_OR == LOGICOP_OR);
202 PIPE_ASSERT(PIPE_LOGICOP_SET == LOGICOP_SET);
203
204 /* pipe_blend_func happens to match the hardware. */
205 PIPE_ASSERT(PIPE_BLENDFACTOR_ONE == BLENDFACTOR_ONE);
206 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_COLOR == BLENDFACTOR_SRC_COLOR);
207 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA == BLENDFACTOR_SRC_ALPHA);
208 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_ALPHA == BLENDFACTOR_DST_ALPHA);
209 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_COLOR == BLENDFACTOR_DST_COLOR);
210 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE == BLENDFACTOR_SRC_ALPHA_SATURATE);
211 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_COLOR == BLENDFACTOR_CONST_COLOR);
212 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_ALPHA == BLENDFACTOR_CONST_ALPHA);
213 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_COLOR == BLENDFACTOR_SRC1_COLOR);
214 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_ALPHA == BLENDFACTOR_SRC1_ALPHA);
215 PIPE_ASSERT(PIPE_BLENDFACTOR_ZERO == BLENDFACTOR_ZERO);
216 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_COLOR == BLENDFACTOR_INV_SRC_COLOR);
217 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_ALPHA == BLENDFACTOR_INV_SRC_ALPHA);
218 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_ALPHA == BLENDFACTOR_INV_DST_ALPHA);
219 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_COLOR == BLENDFACTOR_INV_DST_COLOR);
220 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_COLOR == BLENDFACTOR_INV_CONST_COLOR);
221 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_ALPHA == BLENDFACTOR_INV_CONST_ALPHA);
222 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_COLOR == BLENDFACTOR_INV_SRC1_COLOR);
223 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_ALPHA == BLENDFACTOR_INV_SRC1_ALPHA);
224
225 /* pipe_blend_func happens to match the hardware. */
226 PIPE_ASSERT(PIPE_BLEND_ADD == BLENDFUNCTION_ADD);
227 PIPE_ASSERT(PIPE_BLEND_SUBTRACT == BLENDFUNCTION_SUBTRACT);
228 PIPE_ASSERT(PIPE_BLEND_REVERSE_SUBTRACT == BLENDFUNCTION_REVERSE_SUBTRACT);
229 PIPE_ASSERT(PIPE_BLEND_MIN == BLENDFUNCTION_MIN);
230 PIPE_ASSERT(PIPE_BLEND_MAX == BLENDFUNCTION_MAX);
231
232 /* pipe_stencil_op happens to match the hardware. */
233 PIPE_ASSERT(PIPE_STENCIL_OP_KEEP == STENCILOP_KEEP);
234 PIPE_ASSERT(PIPE_STENCIL_OP_ZERO == STENCILOP_ZERO);
235 PIPE_ASSERT(PIPE_STENCIL_OP_REPLACE == STENCILOP_REPLACE);
236 PIPE_ASSERT(PIPE_STENCIL_OP_INCR == STENCILOP_INCRSAT);
237 PIPE_ASSERT(PIPE_STENCIL_OP_DECR == STENCILOP_DECRSAT);
238 PIPE_ASSERT(PIPE_STENCIL_OP_INCR_WRAP == STENCILOP_INCR);
239 PIPE_ASSERT(PIPE_STENCIL_OP_DECR_WRAP == STENCILOP_DECR);
240 PIPE_ASSERT(PIPE_STENCIL_OP_INVERT == STENCILOP_INVERT);
241
242 /* pipe_sprite_coord_mode happens to match 3DSTATE_SBE */
243 PIPE_ASSERT(PIPE_SPRITE_COORD_UPPER_LEFT == UPPERLEFT);
244 PIPE_ASSERT(PIPE_SPRITE_COORD_LOWER_LEFT == LOWERLEFT);
245 #undef PIPE_ASSERT
246 }
247
248 static unsigned
249 translate_prim_type(enum pipe_prim_type prim, uint8_t verts_per_patch)
250 {
251 static const unsigned map[] = {
252 [PIPE_PRIM_POINTS] = _3DPRIM_POINTLIST,
253 [PIPE_PRIM_LINES] = _3DPRIM_LINELIST,
254 [PIPE_PRIM_LINE_LOOP] = _3DPRIM_LINELOOP,
255 [PIPE_PRIM_LINE_STRIP] = _3DPRIM_LINESTRIP,
256 [PIPE_PRIM_TRIANGLES] = _3DPRIM_TRILIST,
257 [PIPE_PRIM_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
258 [PIPE_PRIM_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
259 [PIPE_PRIM_QUADS] = _3DPRIM_QUADLIST,
260 [PIPE_PRIM_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
261 [PIPE_PRIM_POLYGON] = _3DPRIM_POLYGON,
262 [PIPE_PRIM_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
263 [PIPE_PRIM_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
264 [PIPE_PRIM_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
265 [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
266 [PIPE_PRIM_PATCHES] = _3DPRIM_PATCHLIST_1 - 1,
267 };
268
269 return map[prim] + (prim == PIPE_PRIM_PATCHES ? verts_per_patch : 0);
270 }
271
272 static unsigned
273 translate_compare_func(enum pipe_compare_func pipe_func)
274 {
275 static const unsigned map[] = {
276 [PIPE_FUNC_NEVER] = COMPAREFUNCTION_NEVER,
277 [PIPE_FUNC_LESS] = COMPAREFUNCTION_LESS,
278 [PIPE_FUNC_EQUAL] = COMPAREFUNCTION_EQUAL,
279 [PIPE_FUNC_LEQUAL] = COMPAREFUNCTION_LEQUAL,
280 [PIPE_FUNC_GREATER] = COMPAREFUNCTION_GREATER,
281 [PIPE_FUNC_NOTEQUAL] = COMPAREFUNCTION_NOTEQUAL,
282 [PIPE_FUNC_GEQUAL] = COMPAREFUNCTION_GEQUAL,
283 [PIPE_FUNC_ALWAYS] = COMPAREFUNCTION_ALWAYS,
284 };
285 return map[pipe_func];
286 }
287
288 static unsigned
289 translate_shadow_func(enum pipe_compare_func pipe_func)
290 {
291 /* Gallium specifies the result of shadow comparisons as:
292 *
293 * 1 if ref <op> texel,
294 * 0 otherwise.
295 *
296 * The hardware does:
297 *
298 * 0 if texel <op> ref,
299 * 1 otherwise.
300 *
301 * So we need to flip the operator and also negate.
302 */
303 static const unsigned map[] = {
304 [PIPE_FUNC_NEVER] = PREFILTEROPALWAYS,
305 [PIPE_FUNC_LESS] = PREFILTEROPLEQUAL,
306 [PIPE_FUNC_EQUAL] = PREFILTEROPNOTEQUAL,
307 [PIPE_FUNC_LEQUAL] = PREFILTEROPLESS,
308 [PIPE_FUNC_GREATER] = PREFILTEROPGEQUAL,
309 [PIPE_FUNC_NOTEQUAL] = PREFILTEROPEQUAL,
310 [PIPE_FUNC_GEQUAL] = PREFILTEROPGREATER,
311 [PIPE_FUNC_ALWAYS] = PREFILTEROPNEVER,
312 };
313 return map[pipe_func];
314 }
315
316 static unsigned
317 translate_cull_mode(unsigned pipe_face)
318 {
319 static const unsigned map[4] = {
320 [PIPE_FACE_NONE] = CULLMODE_NONE,
321 [PIPE_FACE_FRONT] = CULLMODE_FRONT,
322 [PIPE_FACE_BACK] = CULLMODE_BACK,
323 [PIPE_FACE_FRONT_AND_BACK] = CULLMODE_BOTH,
324 };
325 return map[pipe_face];
326 }
327
328 static unsigned
329 translate_fill_mode(unsigned pipe_polymode)
330 {
331 static const unsigned map[4] = {
332 [PIPE_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
333 [PIPE_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
334 [PIPE_POLYGON_MODE_POINT] = FILL_MODE_POINT,
335 [PIPE_POLYGON_MODE_FILL_RECTANGLE] = FILL_MODE_SOLID,
336 };
337 return map[pipe_polymode];
338 }
339
340 static unsigned
341 translate_mip_filter(enum pipe_tex_mipfilter pipe_mip)
342 {
343 static const unsigned map[] = {
344 [PIPE_TEX_MIPFILTER_NEAREST] = MIPFILTER_NEAREST,
345 [PIPE_TEX_MIPFILTER_LINEAR] = MIPFILTER_LINEAR,
346 [PIPE_TEX_MIPFILTER_NONE] = MIPFILTER_NONE,
347 };
348 return map[pipe_mip];
349 }
350
351 static uint32_t
352 translate_wrap(unsigned pipe_wrap)
353 {
354 static const unsigned map[] = {
355 [PIPE_TEX_WRAP_REPEAT] = TCM_WRAP,
356 [PIPE_TEX_WRAP_CLAMP] = TCM_HALF_BORDER,
357 [PIPE_TEX_WRAP_CLAMP_TO_EDGE] = TCM_CLAMP,
358 [PIPE_TEX_WRAP_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER,
359 [PIPE_TEX_WRAP_MIRROR_REPEAT] = TCM_MIRROR,
360 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE,
361
362 /* These are unsupported. */
363 [PIPE_TEX_WRAP_MIRROR_CLAMP] = -1,
364 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER] = -1,
365 };
366 return map[pipe_wrap];
367 }
368
369 static struct iris_address
370 ro_bo(struct iris_bo *bo, uint64_t offset)
371 {
372 /* CSOs must pass NULL for bo! Otherwise it will add the BO to the
373 * validation list at CSO creation time, instead of draw time.
374 */
375 return (struct iris_address) { .bo = bo, .offset = offset };
376 }
377
378 static struct iris_address
379 rw_bo(struct iris_bo *bo, uint64_t offset)
380 {
381 /* CSOs must pass NULL for bo! Otherwise it will add the BO to the
382 * validation list at CSO creation time, instead of draw time.
383 */
384 return (struct iris_address) { .bo = bo, .offset = offset, .write = true };
385 }
386
387 /**
388 * Allocate space for some indirect state.
389 *
390 * Return a pointer to the map (to fill it out) and a state ref (for
391 * referring to the state in GPU commands).
392 */
393 static void *
394 upload_state(struct u_upload_mgr *uploader,
395 struct iris_state_ref *ref,
396 unsigned size,
397 unsigned alignment)
398 {
399 void *p = NULL;
400 u_upload_alloc(uploader, 0, size, alignment, &ref->offset, &ref->res, &p);
401 return p;
402 }
403
404 /**
405 * Stream out temporary/short-lived state.
406 *
407 * This allocates space, pins the BO, and includes the BO address in the
408 * returned offset (which works because all state lives in 32-bit memory
409 * zones).
410 */
411 static uint32_t *
412 stream_state(struct iris_batch *batch,
413 struct u_upload_mgr *uploader,
414 struct pipe_resource **out_res,
415 unsigned size,
416 unsigned alignment,
417 uint32_t *out_offset)
418 {
419 void *ptr = NULL;
420
421 u_upload_alloc(uploader, 0, size, alignment, out_offset, out_res, &ptr);
422
423 struct iris_bo *bo = iris_resource_bo(*out_res);
424 iris_use_pinned_bo(batch, bo, false);
425
426 *out_offset += iris_bo_offset_from_base_address(bo);
427
428 return ptr;
429 }
430
431 /**
432 * stream_state() + memcpy.
433 */
434 static uint32_t
435 emit_state(struct iris_batch *batch,
436 struct u_upload_mgr *uploader,
437 struct pipe_resource **out_res,
438 const void *data,
439 unsigned size,
440 unsigned alignment)
441 {
442 unsigned offset = 0;
443 uint32_t *map =
444 stream_state(batch, uploader, out_res, size, alignment, &offset);
445
446 if (map)
447 memcpy(map, data, size);
448
449 return offset;
450 }
451
452 /**
453 * Did field 'x' change between 'old_cso' and 'new_cso'?
454 *
455 * (If so, we may want to set some dirty flags.)
456 */
457 #define cso_changed(x) (!old_cso || (old_cso->x != new_cso->x))
458 #define cso_changed_memcmp(x) \
459 (!old_cso || memcmp(old_cso->x, new_cso->x, sizeof(old_cso->x)) != 0)
460
461 static void
462 flush_for_state_base_change(struct iris_batch *batch)
463 {
464 /* Flush before emitting STATE_BASE_ADDRESS.
465 *
466 * This isn't documented anywhere in the PRM. However, it seems to be
467 * necessary prior to changing the surface state base adress. We've
468 * seen issues in Vulkan where we get GPU hangs when using multi-level
469 * command buffers which clear depth, reset state base address, and then
470 * go render stuff.
471 *
472 * Normally, in GL, we would trust the kernel to do sufficient stalls
473 * and flushes prior to executing our batch. However, it doesn't seem
474 * as if the kernel's flushing is always sufficient and we don't want to
475 * rely on it.
476 *
477 * We make this an end-of-pipe sync instead of a normal flush because we
478 * do not know the current status of the GPU. On Haswell at least,
479 * having a fast-clear operation in flight at the same time as a normal
480 * rendering operation can cause hangs. Since the kernel's flushing is
481 * insufficient, we need to ensure that any rendering operations from
482 * other processes are definitely complete before we try to do our own
483 * rendering. It's a bit of a big hammer but it appears to work.
484 */
485 iris_emit_end_of_pipe_sync(batch,
486 PIPE_CONTROL_RENDER_TARGET_FLUSH |
487 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
488 PIPE_CONTROL_DATA_CACHE_FLUSH);
489 }
490
491 static void
492 _iris_emit_lri(struct iris_batch *batch, uint32_t reg, uint32_t val)
493 {
494 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
495 lri.RegisterOffset = reg;
496 lri.DataDWord = val;
497 }
498 }
499 #define iris_emit_lri(b, r, v) _iris_emit_lri(b, GENX(r##_num), v)
500
501 static void
502 _iris_emit_lrr(struct iris_batch *batch, uint32_t dst, uint32_t src)
503 {
504 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
505 lrr.SourceRegisterAddress = src;
506 lrr.DestinationRegisterAddress = dst;
507 }
508 }
509
510 static void
511 emit_pipeline_select(struct iris_batch *batch, uint32_t pipeline)
512 {
513 #if GEN_GEN >= 8 && GEN_GEN < 10
514 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
515 *
516 * Software must clear the COLOR_CALC_STATE Valid field in
517 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
518 * with Pipeline Select set to GPGPU.
519 *
520 * The internal hardware docs recommend the same workaround for Gen9
521 * hardware too.
522 */
523 if (pipeline == GPGPU)
524 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
525 #endif
526
527
528 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
529 * PIPELINE_SELECT [DevBWR+]":
530 *
531 * "Project: DEVSNB+
532 *
533 * Software must ensure all the write caches are flushed through a
534 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
535 * command to invalidate read only caches prior to programming
536 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode."
537 */
538 iris_emit_pipe_control_flush(batch,
539 PIPE_CONTROL_RENDER_TARGET_FLUSH |
540 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
541 PIPE_CONTROL_DATA_CACHE_FLUSH |
542 PIPE_CONTROL_CS_STALL);
543
544 iris_emit_pipe_control_flush(batch,
545 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
546 PIPE_CONTROL_CONST_CACHE_INVALIDATE |
547 PIPE_CONTROL_STATE_CACHE_INVALIDATE |
548 PIPE_CONTROL_INSTRUCTION_INVALIDATE);
549
550 iris_emit_cmd(batch, GENX(PIPELINE_SELECT), sel) {
551 #if GEN_GEN >= 9
552 sel.MaskBits = 3;
553 #endif
554 sel.PipelineSelection = pipeline;
555 }
556 }
557
558 UNUSED static void
559 init_glk_barrier_mode(struct iris_batch *batch, uint32_t value)
560 {
561 #if GEN_GEN == 9
562 /* Project: DevGLK
563 *
564 * "This chicken bit works around a hardware issue with barrier
565 * logic encountered when switching between GPGPU and 3D pipelines.
566 * To workaround the issue, this mode bit should be set after a
567 * pipeline is selected."
568 */
569 uint32_t reg_val;
570 iris_pack_state(GENX(SLICE_COMMON_ECO_CHICKEN1), &reg_val, reg) {
571 reg.GLKBarrierMode = value;
572 reg.GLKBarrierModeMask = 1;
573 }
574 iris_emit_lri(batch, SLICE_COMMON_ECO_CHICKEN1, reg_val);
575 #endif
576 }
577
578 static void
579 init_state_base_address(struct iris_batch *batch)
580 {
581 flush_for_state_base_change(batch);
582
583 /* We program most base addresses once at context initialization time.
584 * Each base address points at a 4GB memory zone, and never needs to
585 * change. See iris_bufmgr.h for a description of the memory zones.
586 *
587 * The one exception is Surface State Base Address, which needs to be
588 * updated occasionally. See iris_binder.c for the details there.
589 */
590 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
591 sba.GeneralStateMOCS = MOCS_WB;
592 sba.StatelessDataPortAccessMOCS = MOCS_WB;
593 sba.DynamicStateMOCS = MOCS_WB;
594 sba.IndirectObjectMOCS = MOCS_WB;
595 sba.InstructionMOCS = MOCS_WB;
596
597 sba.GeneralStateBaseAddressModifyEnable = true;
598 sba.DynamicStateBaseAddressModifyEnable = true;
599 sba.IndirectObjectBaseAddressModifyEnable = true;
600 sba.InstructionBaseAddressModifyEnable = true;
601 sba.GeneralStateBufferSizeModifyEnable = true;
602 sba.DynamicStateBufferSizeModifyEnable = true;
603 #if (GEN_GEN >= 9)
604 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
605 sba.BindlessSurfaceStateMOCS = MOCS_WB;
606 #endif
607 sba.IndirectObjectBufferSizeModifyEnable = true;
608 sba.InstructionBuffersizeModifyEnable = true;
609
610 sba.InstructionBaseAddress = ro_bo(NULL, IRIS_MEMZONE_SHADER_START);
611 sba.DynamicStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_DYNAMIC_START);
612
613 sba.GeneralStateBufferSize = 0xfffff;
614 sba.IndirectObjectBufferSize = 0xfffff;
615 sba.InstructionBufferSize = 0xfffff;
616 sba.DynamicStateBufferSize = 0xfffff;
617 }
618 }
619
620 static void
621 iris_emit_l3_config(struct iris_batch *batch, const struct gen_l3_config *cfg,
622 bool has_slm, bool wants_dc_cache)
623 {
624 uint32_t reg_val;
625 iris_pack_state(GENX(L3CNTLREG), &reg_val, reg) {
626 reg.SLMEnable = has_slm;
627 #if GEN_GEN == 11
628 /* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set
629 * in L3CNTLREG register. The default setting of the bit is not the
630 * desirable behavior.
631 */
632 reg.ErrorDetectionBehaviorControl = true;
633 #endif
634 reg.URBAllocation = cfg->n[GEN_L3P_URB];
635 reg.ROAllocation = cfg->n[GEN_L3P_RO];
636 reg.DCAllocation = cfg->n[GEN_L3P_DC];
637 reg.AllAllocation = cfg->n[GEN_L3P_ALL];
638 }
639 iris_emit_lri(batch, L3CNTLREG, reg_val);
640 }
641
642 static void
643 iris_emit_default_l3_config(struct iris_batch *batch,
644 const struct gen_device_info *devinfo,
645 bool compute)
646 {
647 bool wants_dc_cache = true;
648 bool has_slm = compute;
649 const struct gen_l3_weights w =
650 gen_get_default_l3_weights(devinfo, wants_dc_cache, has_slm);
651 const struct gen_l3_config *cfg = gen_get_l3_config(devinfo, w);
652 iris_emit_l3_config(batch, cfg, has_slm, wants_dc_cache);
653 }
654
655 /**
656 * Upload the initial GPU state for a render context.
657 *
658 * This sets some invariant state that needs to be programmed a particular
659 * way, but we never actually change.
660 */
661 static void
662 iris_init_render_context(struct iris_screen *screen,
663 struct iris_batch *batch,
664 struct iris_vtable *vtbl,
665 struct pipe_debug_callback *dbg)
666 {
667 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
668 uint32_t reg_val;
669
670 emit_pipeline_select(batch, _3D);
671
672 iris_emit_default_l3_config(batch, devinfo, false);
673
674 init_state_base_address(batch);
675
676 #if GEN_GEN >= 9
677 iris_pack_state(GENX(CS_DEBUG_MODE2), &reg_val, reg) {
678 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
679 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
680 }
681 iris_emit_lri(batch, CS_DEBUG_MODE2, reg_val);
682 #else
683 iris_pack_state(GENX(INSTPM), &reg_val, reg) {
684 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
685 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
686 }
687 iris_emit_lri(batch, INSTPM, reg_val);
688 #endif
689
690 #if GEN_GEN == 9
691 iris_pack_state(GENX(CACHE_MODE_1), &reg_val, reg) {
692 reg.FloatBlendOptimizationEnable = true;
693 reg.FloatBlendOptimizationEnableMask = true;
694 reg.PartialResolveDisableInVC = true;
695 reg.PartialResolveDisableInVCMask = true;
696 }
697 iris_emit_lri(batch, CACHE_MODE_1, reg_val);
698
699 if (devinfo->is_geminilake)
700 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_3D_HULL);
701 #endif
702
703 #if GEN_GEN == 11
704 iris_pack_state(GENX(SAMPLER_MODE), &reg_val, reg) {
705 reg.HeaderlessMessageforPreemptableContexts = 1;
706 reg.HeaderlessMessageforPreemptableContextsMask = 1;
707 }
708 iris_emit_lri(batch, SAMPLER_MODE, reg_val);
709
710 // XXX: 3D_MODE?
711 #endif
712
713 /* 3DSTATE_DRAWING_RECTANGLE is non-pipelined, so we want to avoid
714 * changing it dynamically. We set it to the maximum size here, and
715 * instead include the render target dimensions in the viewport, so
716 * viewport extents clipping takes care of pruning stray geometry.
717 */
718 iris_emit_cmd(batch, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
719 rect.ClippedDrawingRectangleXMax = UINT16_MAX;
720 rect.ClippedDrawingRectangleYMax = UINT16_MAX;
721 }
722
723 /* Set the initial MSAA sample positions. */
724 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_PATTERN), pat) {
725 GEN_SAMPLE_POS_1X(pat._1xSample);
726 GEN_SAMPLE_POS_2X(pat._2xSample);
727 GEN_SAMPLE_POS_4X(pat._4xSample);
728 GEN_SAMPLE_POS_8X(pat._8xSample);
729 #if GEN_GEN >= 9
730 GEN_SAMPLE_POS_16X(pat._16xSample);
731 #endif
732 }
733
734 /* Use the legacy AA line coverage computation. */
735 iris_emit_cmd(batch, GENX(3DSTATE_AA_LINE_PARAMETERS), foo);
736
737 /* Disable chromakeying (it's for media) */
738 iris_emit_cmd(batch, GENX(3DSTATE_WM_CHROMAKEY), foo);
739
740 /* We want regular rendering, not special HiZ operations. */
741 iris_emit_cmd(batch, GENX(3DSTATE_WM_HZ_OP), foo);
742
743 /* No polygon stippling offsets are necessary. */
744 /* TODO: may need to set an offset for origin-UL framebuffers */
745 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_OFFSET), foo);
746
747 /* Set a static partitioning of the push constant area. */
748 /* TODO: this may be a bad idea...could starve the push ringbuffers... */
749 for (int i = 0; i <= MESA_SHADER_FRAGMENT; i++) {
750 iris_emit_cmd(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
751 alloc._3DCommandSubOpcode = 18 + i;
752 alloc.ConstantBufferOffset = 6 * i;
753 alloc.ConstantBufferSize = i == MESA_SHADER_FRAGMENT ? 8 : 6;
754 }
755 }
756 }
757
758 static void
759 iris_init_compute_context(struct iris_screen *screen,
760 struct iris_batch *batch,
761 struct iris_vtable *vtbl,
762 struct pipe_debug_callback *dbg)
763 {
764 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
765
766 emit_pipeline_select(batch, GPGPU);
767
768 iris_emit_default_l3_config(batch, devinfo, true);
769
770 init_state_base_address(batch);
771
772 #if GEN_GEN == 9
773 if (devinfo->is_geminilake)
774 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_GPGPU);
775 #endif
776 }
777
778 struct iris_vertex_buffer_state {
779 /** The VERTEX_BUFFER_STATE hardware structure. */
780 uint32_t state[GENX(VERTEX_BUFFER_STATE_length)];
781
782 /** The resource to source vertex data from. */
783 struct pipe_resource *resource;
784 };
785
786 struct iris_depth_buffer_state {
787 /* Depth/HiZ/Stencil related hardware packets. */
788 uint32_t packets[GENX(3DSTATE_DEPTH_BUFFER_length) +
789 GENX(3DSTATE_STENCIL_BUFFER_length) +
790 GENX(3DSTATE_HIER_DEPTH_BUFFER_length) +
791 GENX(3DSTATE_CLEAR_PARAMS_length)];
792 };
793
794 /**
795 * Generation-specific context state (ice->state.genx->...).
796 *
797 * Most state can go in iris_context directly, but these encode hardware
798 * packets which vary by generation.
799 */
800 struct iris_genx_state {
801 struct iris_vertex_buffer_state vertex_buffers[33];
802
803 struct iris_depth_buffer_state depth_buffer;
804
805 uint32_t so_buffers[4 * GENX(3DSTATE_SO_BUFFER_length)];
806 };
807
808 /**
809 * The pipe->set_blend_color() driver hook.
810 *
811 * This corresponds to our COLOR_CALC_STATE.
812 */
813 static void
814 iris_set_blend_color(struct pipe_context *ctx,
815 const struct pipe_blend_color *state)
816 {
817 struct iris_context *ice = (struct iris_context *) ctx;
818
819 /* Our COLOR_CALC_STATE is exactly pipe_blend_color, so just memcpy */
820 memcpy(&ice->state.blend_color, state, sizeof(struct pipe_blend_color));
821 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
822 }
823
824 /**
825 * Gallium CSO for blend state (see pipe_blend_state).
826 */
827 struct iris_blend_state {
828 /** Partial 3DSTATE_PS_BLEND */
829 uint32_t ps_blend[GENX(3DSTATE_PS_BLEND_length)];
830
831 /** Partial BLEND_STATE */
832 uint32_t blend_state[GENX(BLEND_STATE_length) +
833 BRW_MAX_DRAW_BUFFERS * GENX(BLEND_STATE_ENTRY_length)];
834
835 bool alpha_to_coverage; /* for shader key */
836
837 /** Bitfield of whether blending is enabled for RT[i] - for aux resolves */
838 uint8_t blend_enables;
839
840 /** Bitfield of whether color writes are enabled for RT[i] */
841 uint8_t color_write_enables;
842 };
843
844 static enum pipe_blendfactor
845 fix_blendfactor(enum pipe_blendfactor f, bool alpha_to_one)
846 {
847 if (alpha_to_one) {
848 if (f == PIPE_BLENDFACTOR_SRC1_ALPHA)
849 return PIPE_BLENDFACTOR_ONE;
850
851 if (f == PIPE_BLENDFACTOR_INV_SRC1_ALPHA)
852 return PIPE_BLENDFACTOR_ZERO;
853 }
854
855 return f;
856 }
857
858 /**
859 * The pipe->create_blend_state() driver hook.
860 *
861 * Translates a pipe_blend_state into iris_blend_state.
862 */
863 static void *
864 iris_create_blend_state(struct pipe_context *ctx,
865 const struct pipe_blend_state *state)
866 {
867 struct iris_blend_state *cso = malloc(sizeof(struct iris_blend_state));
868 uint32_t *blend_entry = cso->blend_state + GENX(BLEND_STATE_length);
869
870 cso->blend_enables = 0;
871 cso->color_write_enables = 0;
872 STATIC_ASSERT(BRW_MAX_DRAW_BUFFERS <= 8);
873
874 cso->alpha_to_coverage = state->alpha_to_coverage;
875
876 bool indep_alpha_blend = false;
877
878 for (int i = 0; i < BRW_MAX_DRAW_BUFFERS; i++) {
879 const struct pipe_rt_blend_state *rt =
880 &state->rt[state->independent_blend_enable ? i : 0];
881
882 enum pipe_blendfactor src_rgb =
883 fix_blendfactor(rt->rgb_src_factor, state->alpha_to_one);
884 enum pipe_blendfactor src_alpha =
885 fix_blendfactor(rt->alpha_src_factor, state->alpha_to_one);
886 enum pipe_blendfactor dst_rgb =
887 fix_blendfactor(rt->rgb_dst_factor, state->alpha_to_one);
888 enum pipe_blendfactor dst_alpha =
889 fix_blendfactor(rt->alpha_dst_factor, state->alpha_to_one);
890
891 if (rt->rgb_func != rt->alpha_func ||
892 src_rgb != src_alpha || dst_rgb != dst_alpha)
893 indep_alpha_blend = true;
894
895 if (rt->blend_enable)
896 cso->blend_enables |= 1u << i;
897
898 if (rt->colormask)
899 cso->color_write_enables |= 1u << i;
900
901 iris_pack_state(GENX(BLEND_STATE_ENTRY), blend_entry, be) {
902 be.LogicOpEnable = state->logicop_enable;
903 be.LogicOpFunction = state->logicop_func;
904
905 be.PreBlendSourceOnlyClampEnable = false;
906 be.ColorClampRange = COLORCLAMP_RTFORMAT;
907 be.PreBlendColorClampEnable = true;
908 be.PostBlendColorClampEnable = true;
909
910 be.ColorBufferBlendEnable = rt->blend_enable;
911
912 be.ColorBlendFunction = rt->rgb_func;
913 be.AlphaBlendFunction = rt->alpha_func;
914 be.SourceBlendFactor = src_rgb;
915 be.SourceAlphaBlendFactor = src_alpha;
916 be.DestinationBlendFactor = dst_rgb;
917 be.DestinationAlphaBlendFactor = dst_alpha;
918
919 be.WriteDisableRed = !(rt->colormask & PIPE_MASK_R);
920 be.WriteDisableGreen = !(rt->colormask & PIPE_MASK_G);
921 be.WriteDisableBlue = !(rt->colormask & PIPE_MASK_B);
922 be.WriteDisableAlpha = !(rt->colormask & PIPE_MASK_A);
923 }
924 blend_entry += GENX(BLEND_STATE_ENTRY_length);
925 }
926
927 iris_pack_command(GENX(3DSTATE_PS_BLEND), cso->ps_blend, pb) {
928 /* pb.HasWriteableRT is filled in at draw time. */
929 /* pb.AlphaTestEnable is filled in at draw time. */
930 pb.AlphaToCoverageEnable = state->alpha_to_coverage;
931 pb.IndependentAlphaBlendEnable = indep_alpha_blend;
932
933 pb.ColorBufferBlendEnable = state->rt[0].blend_enable;
934
935 pb.SourceBlendFactor =
936 fix_blendfactor(state->rt[0].rgb_src_factor, state->alpha_to_one);
937 pb.SourceAlphaBlendFactor =
938 fix_blendfactor(state->rt[0].alpha_src_factor, state->alpha_to_one);
939 pb.DestinationBlendFactor =
940 fix_blendfactor(state->rt[0].rgb_dst_factor, state->alpha_to_one);
941 pb.DestinationAlphaBlendFactor =
942 fix_blendfactor(state->rt[0].alpha_dst_factor, state->alpha_to_one);
943 }
944
945 iris_pack_state(GENX(BLEND_STATE), cso->blend_state, bs) {
946 bs.AlphaToCoverageEnable = state->alpha_to_coverage;
947 bs.IndependentAlphaBlendEnable = indep_alpha_blend;
948 bs.AlphaToOneEnable = state->alpha_to_one;
949 bs.AlphaToCoverageDitherEnable = state->alpha_to_coverage;
950 bs.ColorDitherEnable = state->dither;
951 /* bl.AlphaTestEnable and bs.AlphaTestFunction are filled in later. */
952 }
953
954
955 return cso;
956 }
957
958 /**
959 * The pipe->bind_blend_state() driver hook.
960 *
961 * Bind a blending CSO and flag related dirty bits.
962 */
963 static void
964 iris_bind_blend_state(struct pipe_context *ctx, void *state)
965 {
966 struct iris_context *ice = (struct iris_context *) ctx;
967 struct iris_blend_state *cso = state;
968
969 ice->state.cso_blend = cso;
970 ice->state.blend_enables = cso ? cso->blend_enables : 0;
971
972 ice->state.dirty |= IRIS_DIRTY_PS_BLEND;
973 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
974 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_BLEND];
975 }
976
977 /**
978 * Return true if the FS writes to any color outputs which are not disabled
979 * via color masking.
980 */
981 static bool
982 has_writeable_rt(const struct iris_blend_state *cso_blend,
983 const struct shader_info *fs_info)
984 {
985 if (!fs_info)
986 return false;
987
988 unsigned rt_outputs = fs_info->outputs_written >> FRAG_RESULT_DATA0;
989
990 if (fs_info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_COLOR))
991 rt_outputs = (1 << BRW_MAX_DRAW_BUFFERS) - 1;
992
993 return cso_blend->color_write_enables & rt_outputs;
994 }
995
996 /**
997 * Gallium CSO for depth, stencil, and alpha testing state.
998 */
999 struct iris_depth_stencil_alpha_state {
1000 /** Partial 3DSTATE_WM_DEPTH_STENCIL. */
1001 uint32_t wmds[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
1002
1003 /** Outbound to BLEND_STATE, 3DSTATE_PS_BLEND, COLOR_CALC_STATE. */
1004 struct pipe_alpha_state alpha;
1005
1006 /** Outbound to resolve and cache set tracking. */
1007 bool depth_writes_enabled;
1008 bool stencil_writes_enabled;
1009 };
1010
1011 /**
1012 * The pipe->create_depth_stencil_alpha_state() driver hook.
1013 *
1014 * We encode most of 3DSTATE_WM_DEPTH_STENCIL, and just save off the alpha
1015 * testing state since we need pieces of it in a variety of places.
1016 */
1017 static void *
1018 iris_create_zsa_state(struct pipe_context *ctx,
1019 const struct pipe_depth_stencil_alpha_state *state)
1020 {
1021 struct iris_depth_stencil_alpha_state *cso =
1022 malloc(sizeof(struct iris_depth_stencil_alpha_state));
1023
1024 bool two_sided_stencil = state->stencil[1].enabled;
1025
1026 cso->alpha = state->alpha;
1027 cso->depth_writes_enabled = state->depth.writemask;
1028 cso->stencil_writes_enabled =
1029 state->stencil[0].writemask != 0 ||
1030 (two_sided_stencil && state->stencil[1].writemask != 1);
1031
1032 /* The state tracker needs to optimize away EQUAL writes for us. */
1033 assert(!(state->depth.func == PIPE_FUNC_EQUAL && state->depth.writemask));
1034
1035 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), cso->wmds, wmds) {
1036 wmds.StencilFailOp = state->stencil[0].fail_op;
1037 wmds.StencilPassDepthFailOp = state->stencil[0].zfail_op;
1038 wmds.StencilPassDepthPassOp = state->stencil[0].zpass_op;
1039 wmds.StencilTestFunction =
1040 translate_compare_func(state->stencil[0].func);
1041 wmds.BackfaceStencilFailOp = state->stencil[1].fail_op;
1042 wmds.BackfaceStencilPassDepthFailOp = state->stencil[1].zfail_op;
1043 wmds.BackfaceStencilPassDepthPassOp = state->stencil[1].zpass_op;
1044 wmds.BackfaceStencilTestFunction =
1045 translate_compare_func(state->stencil[1].func);
1046 wmds.DepthTestFunction = translate_compare_func(state->depth.func);
1047 wmds.DoubleSidedStencilEnable = two_sided_stencil;
1048 wmds.StencilTestEnable = state->stencil[0].enabled;
1049 wmds.StencilBufferWriteEnable =
1050 state->stencil[0].writemask != 0 ||
1051 (two_sided_stencil && state->stencil[1].writemask != 0);
1052 wmds.DepthTestEnable = state->depth.enabled;
1053 wmds.DepthBufferWriteEnable = state->depth.writemask;
1054 wmds.StencilTestMask = state->stencil[0].valuemask;
1055 wmds.StencilWriteMask = state->stencil[0].writemask;
1056 wmds.BackfaceStencilTestMask = state->stencil[1].valuemask;
1057 wmds.BackfaceStencilWriteMask = state->stencil[1].writemask;
1058 /* wmds.[Backface]StencilReferenceValue are merged later */
1059 }
1060
1061 return cso;
1062 }
1063
1064 /**
1065 * The pipe->bind_depth_stencil_alpha_state() driver hook.
1066 *
1067 * Bind a depth/stencil/alpha CSO and flag related dirty bits.
1068 */
1069 static void
1070 iris_bind_zsa_state(struct pipe_context *ctx, void *state)
1071 {
1072 struct iris_context *ice = (struct iris_context *) ctx;
1073 struct iris_depth_stencil_alpha_state *old_cso = ice->state.cso_zsa;
1074 struct iris_depth_stencil_alpha_state *new_cso = state;
1075
1076 if (new_cso) {
1077 if (cso_changed(alpha.ref_value))
1078 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
1079
1080 if (cso_changed(alpha.enabled))
1081 ice->state.dirty |= IRIS_DIRTY_PS_BLEND | IRIS_DIRTY_BLEND_STATE;
1082
1083 if (cso_changed(alpha.func))
1084 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1085
1086 ice->state.depth_writes_enabled = new_cso->depth_writes_enabled;
1087 ice->state.stencil_writes_enabled = new_cso->stencil_writes_enabled;
1088 }
1089
1090 ice->state.cso_zsa = new_cso;
1091 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1092 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
1093 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_DEPTH_STENCIL_ALPHA];
1094 }
1095
1096 /**
1097 * Gallium CSO for rasterizer state.
1098 */
1099 struct iris_rasterizer_state {
1100 uint32_t sf[GENX(3DSTATE_SF_length)];
1101 uint32_t clip[GENX(3DSTATE_CLIP_length)];
1102 uint32_t raster[GENX(3DSTATE_RASTER_length)];
1103 uint32_t wm[GENX(3DSTATE_WM_length)];
1104 uint32_t line_stipple[GENX(3DSTATE_LINE_STIPPLE_length)];
1105
1106 uint8_t num_clip_plane_consts;
1107 bool clip_halfz; /* for CC_VIEWPORT */
1108 bool depth_clip_near; /* for CC_VIEWPORT */
1109 bool depth_clip_far; /* for CC_VIEWPORT */
1110 bool flatshade; /* for shader state */
1111 bool flatshade_first; /* for stream output */
1112 bool clamp_fragment_color; /* for shader state */
1113 bool light_twoside; /* for shader state */
1114 bool rasterizer_discard; /* for 3DSTATE_STREAMOUT and 3DSTATE_CLIP */
1115 bool half_pixel_center; /* for 3DSTATE_MULTISAMPLE */
1116 bool line_stipple_enable;
1117 bool poly_stipple_enable;
1118 bool multisample;
1119 bool force_persample_interp;
1120 enum pipe_sprite_coord_mode sprite_coord_mode; /* PIPE_SPRITE_* */
1121 uint16_t sprite_coord_enable;
1122 };
1123
1124 static float
1125 get_line_width(const struct pipe_rasterizer_state *state)
1126 {
1127 float line_width = state->line_width;
1128
1129 /* From the OpenGL 4.4 spec:
1130 *
1131 * "The actual width of non-antialiased lines is determined by rounding
1132 * the supplied width to the nearest integer, then clamping it to the
1133 * implementation-dependent maximum non-antialiased line width."
1134 */
1135 if (!state->multisample && !state->line_smooth)
1136 line_width = roundf(state->line_width);
1137
1138 if (!state->multisample && state->line_smooth && line_width < 1.5f) {
1139 /* For 1 pixel line thickness or less, the general anti-aliasing
1140 * algorithm gives up, and a garbage line is generated. Setting a
1141 * Line Width of 0.0 specifies the rasterization of the "thinnest"
1142 * (one-pixel-wide), non-antialiased lines.
1143 *
1144 * Lines rendered with zero Line Width are rasterized using the
1145 * "Grid Intersection Quantization" rules as specified by the
1146 * "Zero-Width (Cosmetic) Line Rasterization" section of the docs.
1147 */
1148 line_width = 0.0f;
1149 }
1150
1151 return line_width;
1152 }
1153
1154 /**
1155 * The pipe->create_rasterizer_state() driver hook.
1156 */
1157 static void *
1158 iris_create_rasterizer_state(struct pipe_context *ctx,
1159 const struct pipe_rasterizer_state *state)
1160 {
1161 struct iris_rasterizer_state *cso =
1162 malloc(sizeof(struct iris_rasterizer_state));
1163
1164 cso->multisample = state->multisample;
1165 cso->force_persample_interp = state->force_persample_interp;
1166 cso->clip_halfz = state->clip_halfz;
1167 cso->depth_clip_near = state->depth_clip_near;
1168 cso->depth_clip_far = state->depth_clip_far;
1169 cso->flatshade = state->flatshade;
1170 cso->flatshade_first = state->flatshade_first;
1171 cso->clamp_fragment_color = state->clamp_fragment_color;
1172 cso->light_twoside = state->light_twoside;
1173 cso->rasterizer_discard = state->rasterizer_discard;
1174 cso->half_pixel_center = state->half_pixel_center;
1175 cso->sprite_coord_mode = state->sprite_coord_mode;
1176 cso->sprite_coord_enable = state->sprite_coord_enable;
1177 cso->line_stipple_enable = state->line_stipple_enable;
1178 cso->poly_stipple_enable = state->poly_stipple_enable;
1179
1180 if (state->clip_plane_enable != 0)
1181 cso->num_clip_plane_consts = util_logbase2(state->clip_plane_enable) + 1;
1182 else
1183 cso->num_clip_plane_consts = 0;
1184
1185 float line_width = get_line_width(state);
1186
1187 iris_pack_command(GENX(3DSTATE_SF), cso->sf, sf) {
1188 sf.StatisticsEnable = true;
1189 sf.ViewportTransformEnable = true;
1190 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
1191 sf.LineEndCapAntialiasingRegionWidth =
1192 state->line_smooth ? _10pixels : _05pixels;
1193 sf.LastPixelEnable = state->line_last_pixel;
1194 sf.LineWidth = line_width;
1195 sf.SmoothPointEnable = (state->point_smooth || state->multisample) &&
1196 !state->point_quad_rasterization;
1197 sf.PointWidthSource = state->point_size_per_vertex ? Vertex : State;
1198 sf.PointWidth = state->point_size;
1199
1200 if (state->flatshade_first) {
1201 sf.TriangleFanProvokingVertexSelect = 1;
1202 } else {
1203 sf.TriangleStripListProvokingVertexSelect = 2;
1204 sf.TriangleFanProvokingVertexSelect = 2;
1205 sf.LineStripListProvokingVertexSelect = 1;
1206 }
1207 }
1208
1209 iris_pack_command(GENX(3DSTATE_RASTER), cso->raster, rr) {
1210 rr.FrontWinding = state->front_ccw ? CounterClockwise : Clockwise;
1211 rr.CullMode = translate_cull_mode(state->cull_face);
1212 rr.FrontFaceFillMode = translate_fill_mode(state->fill_front);
1213 rr.BackFaceFillMode = translate_fill_mode(state->fill_back);
1214 rr.DXMultisampleRasterizationEnable = state->multisample;
1215 rr.GlobalDepthOffsetEnableSolid = state->offset_tri;
1216 rr.GlobalDepthOffsetEnableWireframe = state->offset_line;
1217 rr.GlobalDepthOffsetEnablePoint = state->offset_point;
1218 rr.GlobalDepthOffsetConstant = state->offset_units * 2;
1219 rr.GlobalDepthOffsetScale = state->offset_scale;
1220 rr.GlobalDepthOffsetClamp = state->offset_clamp;
1221 rr.SmoothPointEnable = state->point_smooth;
1222 rr.AntialiasingEnable = state->line_smooth;
1223 rr.ScissorRectangleEnable = state->scissor;
1224 #if GEN_GEN >= 9
1225 rr.ViewportZNearClipTestEnable = state->depth_clip_near;
1226 rr.ViewportZFarClipTestEnable = state->depth_clip_far;
1227 #else
1228 rr.ViewportZClipTestEnable = (state->depth_clip_near || state->depth_clip_far);
1229 #endif
1230 /* TODO: ConservativeRasterizationEnable */
1231 }
1232
1233 iris_pack_command(GENX(3DSTATE_CLIP), cso->clip, cl) {
1234 /* cl.NonPerspectiveBarycentricEnable is filled in at draw time from
1235 * the FS program; cl.ForceZeroRTAIndexEnable is filled in from the FB.
1236 */
1237 cl.EarlyCullEnable = true;
1238 cl.UserClipDistanceClipTestEnableBitmask = state->clip_plane_enable;
1239 cl.ForceUserClipDistanceClipTestEnableBitmask = true;
1240 cl.APIMode = state->clip_halfz ? APIMODE_D3D : APIMODE_OGL;
1241 cl.GuardbandClipTestEnable = true;
1242 cl.ClipEnable = true;
1243 cl.ViewportXYClipTestEnable = state->point_tri_clip;
1244 cl.MinimumPointWidth = 0.125;
1245 cl.MaximumPointWidth = 255.875;
1246
1247 if (state->flatshade_first) {
1248 cl.TriangleFanProvokingVertexSelect = 1;
1249 } else {
1250 cl.TriangleStripListProvokingVertexSelect = 2;
1251 cl.TriangleFanProvokingVertexSelect = 2;
1252 cl.LineStripListProvokingVertexSelect = 1;
1253 }
1254 }
1255
1256 iris_pack_command(GENX(3DSTATE_WM), cso->wm, wm) {
1257 /* wm.BarycentricInterpolationMode and wm.EarlyDepthStencilControl are
1258 * filled in at draw time from the FS program.
1259 */
1260 wm.LineAntialiasingRegionWidth = _10pixels;
1261 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1262 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1263 wm.LineStippleEnable = state->line_stipple_enable;
1264 wm.PolygonStippleEnable = state->poly_stipple_enable;
1265 }
1266
1267 /* Remap from 0..255 back to 1..256 */
1268 const unsigned line_stipple_factor = state->line_stipple_factor + 1;
1269
1270 iris_pack_command(GENX(3DSTATE_LINE_STIPPLE), cso->line_stipple, line) {
1271 line.LineStipplePattern = state->line_stipple_pattern;
1272 line.LineStippleInverseRepeatCount = 1.0f / line_stipple_factor;
1273 line.LineStippleRepeatCount = line_stipple_factor;
1274 }
1275
1276 return cso;
1277 }
1278
1279 /**
1280 * The pipe->bind_rasterizer_state() driver hook.
1281 *
1282 * Bind a rasterizer CSO and flag related dirty bits.
1283 */
1284 static void
1285 iris_bind_rasterizer_state(struct pipe_context *ctx, void *state)
1286 {
1287 struct iris_context *ice = (struct iris_context *) ctx;
1288 struct iris_rasterizer_state *old_cso = ice->state.cso_rast;
1289 struct iris_rasterizer_state *new_cso = state;
1290
1291 if (new_cso) {
1292 /* Try to avoid re-emitting 3DSTATE_LINE_STIPPLE, it's non-pipelined */
1293 if (cso_changed_memcmp(line_stipple))
1294 ice->state.dirty |= IRIS_DIRTY_LINE_STIPPLE;
1295
1296 if (cso_changed(half_pixel_center))
1297 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
1298
1299 if (cso_changed(line_stipple_enable) || cso_changed(poly_stipple_enable))
1300 ice->state.dirty |= IRIS_DIRTY_WM;
1301
1302 if (cso_changed(rasterizer_discard))
1303 ice->state.dirty |= IRIS_DIRTY_STREAMOUT | IRIS_DIRTY_CLIP;
1304
1305 if (cso_changed(flatshade_first))
1306 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
1307
1308 if (cso_changed(depth_clip_near) || cso_changed(depth_clip_far) ||
1309 cso_changed(clip_halfz))
1310 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1311
1312 if (cso_changed(sprite_coord_enable) ||
1313 cso_changed(sprite_coord_mode) ||
1314 cso_changed(light_twoside))
1315 ice->state.dirty |= IRIS_DIRTY_SBE;
1316 }
1317
1318 ice->state.cso_rast = new_cso;
1319 ice->state.dirty |= IRIS_DIRTY_RASTER;
1320 ice->state.dirty |= IRIS_DIRTY_CLIP;
1321 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_RASTERIZER];
1322 }
1323
1324 /**
1325 * Return true if the given wrap mode requires the border color to exist.
1326 *
1327 * (We can skip uploading it if the sampler isn't going to use it.)
1328 */
1329 static bool
1330 wrap_mode_needs_border_color(unsigned wrap_mode)
1331 {
1332 return wrap_mode == TCM_CLAMP_BORDER || wrap_mode == TCM_HALF_BORDER;
1333 }
1334
1335 /**
1336 * Gallium CSO for sampler state.
1337 */
1338 struct iris_sampler_state {
1339 union pipe_color_union border_color;
1340 bool needs_border_color;
1341
1342 uint32_t sampler_state[GENX(SAMPLER_STATE_length)];
1343 };
1344
1345 /**
1346 * The pipe->create_sampler_state() driver hook.
1347 *
1348 * We fill out SAMPLER_STATE (except for the border color pointer), and
1349 * store that on the CPU. It doesn't make sense to upload it to a GPU
1350 * buffer object yet, because 3DSTATE_SAMPLER_STATE_POINTERS requires
1351 * all bound sampler states to be in contiguous memor.
1352 */
1353 static void *
1354 iris_create_sampler_state(struct pipe_context *ctx,
1355 const struct pipe_sampler_state *state)
1356 {
1357 struct iris_sampler_state *cso = CALLOC_STRUCT(iris_sampler_state);
1358
1359 if (!cso)
1360 return NULL;
1361
1362 STATIC_ASSERT(PIPE_TEX_FILTER_NEAREST == MAPFILTER_NEAREST);
1363 STATIC_ASSERT(PIPE_TEX_FILTER_LINEAR == MAPFILTER_LINEAR);
1364
1365 unsigned wrap_s = translate_wrap(state->wrap_s);
1366 unsigned wrap_t = translate_wrap(state->wrap_t);
1367 unsigned wrap_r = translate_wrap(state->wrap_r);
1368
1369 memcpy(&cso->border_color, &state->border_color, sizeof(cso->border_color));
1370
1371 cso->needs_border_color = wrap_mode_needs_border_color(wrap_s) ||
1372 wrap_mode_needs_border_color(wrap_t) ||
1373 wrap_mode_needs_border_color(wrap_r);
1374
1375 float min_lod = state->min_lod;
1376 unsigned mag_img_filter = state->mag_img_filter;
1377
1378 // XXX: explain this code ported from ilo...I don't get it at all...
1379 if (state->min_mip_filter == PIPE_TEX_MIPFILTER_NONE &&
1380 state->min_lod > 0.0f) {
1381 min_lod = 0.0f;
1382 mag_img_filter = state->min_img_filter;
1383 }
1384
1385 iris_pack_state(GENX(SAMPLER_STATE), cso->sampler_state, samp) {
1386 samp.TCXAddressControlMode = wrap_s;
1387 samp.TCYAddressControlMode = wrap_t;
1388 samp.TCZAddressControlMode = wrap_r;
1389 samp.CubeSurfaceControlMode = state->seamless_cube_map;
1390 samp.NonnormalizedCoordinateEnable = !state->normalized_coords;
1391 samp.MinModeFilter = state->min_img_filter;
1392 samp.MagModeFilter = mag_img_filter;
1393 samp.MipModeFilter = translate_mip_filter(state->min_mip_filter);
1394 samp.MaximumAnisotropy = RATIO21;
1395
1396 if (state->max_anisotropy >= 2) {
1397 if (state->min_img_filter == PIPE_TEX_FILTER_LINEAR) {
1398 samp.MinModeFilter = MAPFILTER_ANISOTROPIC;
1399 samp.AnisotropicAlgorithm = EWAApproximation;
1400 }
1401
1402 if (state->mag_img_filter == PIPE_TEX_FILTER_LINEAR)
1403 samp.MagModeFilter = MAPFILTER_ANISOTROPIC;
1404
1405 samp.MaximumAnisotropy =
1406 MIN2((state->max_anisotropy - 2) / 2, RATIO161);
1407 }
1408
1409 /* Set address rounding bits if not using nearest filtering. */
1410 if (state->min_img_filter != PIPE_TEX_FILTER_NEAREST) {
1411 samp.UAddressMinFilterRoundingEnable = true;
1412 samp.VAddressMinFilterRoundingEnable = true;
1413 samp.RAddressMinFilterRoundingEnable = true;
1414 }
1415
1416 if (state->mag_img_filter != PIPE_TEX_FILTER_NEAREST) {
1417 samp.UAddressMagFilterRoundingEnable = true;
1418 samp.VAddressMagFilterRoundingEnable = true;
1419 samp.RAddressMagFilterRoundingEnable = true;
1420 }
1421
1422 if (state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE)
1423 samp.ShadowFunction = translate_shadow_func(state->compare_func);
1424
1425 const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
1426
1427 samp.LODPreClampMode = CLAMP_MODE_OGL;
1428 samp.MinLOD = CLAMP(min_lod, 0, hw_max_lod);
1429 samp.MaxLOD = CLAMP(state->max_lod, 0, hw_max_lod);
1430 samp.TextureLODBias = CLAMP(state->lod_bias, -16, 15);
1431
1432 /* .BorderColorPointer is filled in by iris_bind_sampler_states. */
1433 }
1434
1435 return cso;
1436 }
1437
1438 /**
1439 * The pipe->bind_sampler_states() driver hook.
1440 *
1441 * Now that we know all the sampler states, we upload them all into a
1442 * contiguous area of GPU memory, for 3DSTATE_SAMPLER_STATE_POINTERS_*.
1443 * We also fill out the border color state pointers at this point.
1444 *
1445 * We could defer this work to draw time, but we assume that binding
1446 * will be less frequent than drawing.
1447 */
1448 // XXX: this may be a bad idea, need to make sure that st/mesa calls us
1449 // XXX: with the complete set of shaders. If it makes multiple calls to
1450 // XXX: things one at a time, we could waste a lot of time assembling things.
1451 // XXX: it doesn't even BUY us anything to do it here, because we only flag
1452 // XXX: IRIS_DIRTY_SAMPLER_STATE when this is called...
1453 static void
1454 iris_bind_sampler_states(struct pipe_context *ctx,
1455 enum pipe_shader_type p_stage,
1456 unsigned start, unsigned count,
1457 void **states)
1458 {
1459 struct iris_context *ice = (struct iris_context *) ctx;
1460 gl_shader_stage stage = stage_from_pipe(p_stage);
1461 struct iris_shader_state *shs = &ice->state.shaders[stage];
1462
1463 assert(start + count <= IRIS_MAX_TEXTURE_SAMPLERS);
1464
1465 for (int i = 0; i < count; i++) {
1466 shs->samplers[start + i] = states[i];
1467 }
1468
1469 /* Assemble the SAMPLER_STATEs into a contiguous table that lives
1470 * in the dynamic state memory zone, so we can point to it via the
1471 * 3DSTATE_SAMPLER_STATE_POINTERS_* commands.
1472 */
1473 uint32_t *map =
1474 upload_state(ice->state.dynamic_uploader, &shs->sampler_table,
1475 count * 4 * GENX(SAMPLER_STATE_length), 32);
1476 if (unlikely(!map))
1477 return;
1478
1479 struct pipe_resource *res = shs->sampler_table.res;
1480 shs->sampler_table.offset +=
1481 iris_bo_offset_from_base_address(iris_resource_bo(res));
1482
1483 /* Make sure all land in the same BO */
1484 iris_border_color_pool_reserve(ice, IRIS_MAX_TEXTURE_SAMPLERS);
1485
1486 for (int i = 0; i < count; i++) {
1487 struct iris_sampler_state *state = shs->samplers[i];
1488
1489 if (!state) {
1490 memset(map, 0, 4 * GENX(SAMPLER_STATE_length));
1491 } else if (!state->needs_border_color) {
1492 memcpy(map, state->sampler_state, 4 * GENX(SAMPLER_STATE_length));
1493 } else {
1494 ice->state.need_border_colors = true;
1495
1496 /* Stream out the border color and merge the pointer. */
1497 uint32_t offset =
1498 iris_upload_border_color(ice, &state->border_color);
1499
1500 uint32_t dynamic[GENX(SAMPLER_STATE_length)];
1501 iris_pack_state(GENX(SAMPLER_STATE), dynamic, dyns) {
1502 dyns.BorderColorPointer = offset;
1503 }
1504
1505 for (uint32_t j = 0; j < GENX(SAMPLER_STATE_length); j++)
1506 map[j] = state->sampler_state[j] | dynamic[j];
1507 }
1508
1509 map += GENX(SAMPLER_STATE_length);
1510 }
1511
1512 ice->state.dirty |= IRIS_DIRTY_SAMPLER_STATES_VS << stage;
1513 }
1514
1515 static enum isl_channel_select
1516 fmt_swizzle(const struct iris_format_info *fmt, enum pipe_swizzle swz)
1517 {
1518 switch (swz) {
1519 case PIPE_SWIZZLE_X: return fmt->swizzle.r;
1520 case PIPE_SWIZZLE_Y: return fmt->swizzle.g;
1521 case PIPE_SWIZZLE_Z: return fmt->swizzle.b;
1522 case PIPE_SWIZZLE_W: return fmt->swizzle.a;
1523 case PIPE_SWIZZLE_1: return SCS_ONE;
1524 case PIPE_SWIZZLE_0: return SCS_ZERO;
1525 default: unreachable("invalid swizzle");
1526 }
1527 }
1528
1529 static void
1530 fill_buffer_surface_state(struct isl_device *isl_dev,
1531 struct iris_bo *bo,
1532 void *map,
1533 enum isl_format format,
1534 struct isl_swizzle swizzle,
1535 unsigned offset,
1536 unsigned size)
1537 {
1538 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
1539 const unsigned cpp = format == ISL_FORMAT_RAW ? 1 : fmtl->bpb / 8;
1540
1541 /* The ARB_texture_buffer_specification says:
1542 *
1543 * "The number of texels in the buffer texture's texel array is given by
1544 *
1545 * floor(<buffer_size> / (<components> * sizeof(<base_type>)),
1546 *
1547 * where <buffer_size> is the size of the buffer object, in basic
1548 * machine units and <components> and <base_type> are the element count
1549 * and base data type for elements, as specified in Table X.1. The
1550 * number of texels in the texel array is then clamped to the
1551 * implementation-dependent limit MAX_TEXTURE_BUFFER_SIZE_ARB."
1552 *
1553 * We need to clamp the size in bytes to MAX_TEXTURE_BUFFER_SIZE * stride,
1554 * so that when ISL divides by stride to obtain the number of texels, that
1555 * texel count is clamped to MAX_TEXTURE_BUFFER_SIZE.
1556 */
1557 unsigned final_size =
1558 MIN3(size, bo->size - offset, IRIS_MAX_TEXTURE_BUFFER_SIZE * cpp);
1559
1560 isl_buffer_fill_state(isl_dev, map,
1561 .address = bo->gtt_offset + offset,
1562 .size_B = final_size,
1563 .format = format,
1564 .swizzle = swizzle,
1565 .stride_B = cpp,
1566 .mocs = mocs(bo));
1567 }
1568
1569 #define SURFACE_STATE_ALIGNMENT 64
1570
1571 /**
1572 * Allocate several contiguous SURFACE_STATE structures, one for each
1573 * supported auxiliary surface mode.
1574 */
1575 static void *
1576 alloc_surface_states(struct u_upload_mgr *mgr,
1577 struct iris_state_ref *ref,
1578 unsigned aux_usages)
1579 {
1580 const unsigned surf_size = 4 * GENX(RENDER_SURFACE_STATE_length);
1581
1582 /* If this changes, update this to explicitly align pointers */
1583 STATIC_ASSERT(surf_size == SURFACE_STATE_ALIGNMENT);
1584
1585 assert(aux_usages != 0);
1586
1587 void *map =
1588 upload_state(mgr, ref, util_bitcount(aux_usages) * surf_size,
1589 SURFACE_STATE_ALIGNMENT);
1590
1591 ref->offset += iris_bo_offset_from_base_address(iris_resource_bo(ref->res));
1592
1593 return map;
1594 }
1595
1596 static void
1597 fill_surface_state(struct isl_device *isl_dev,
1598 void *map,
1599 struct iris_resource *res,
1600 struct isl_view *view,
1601 unsigned aux_usage)
1602 {
1603 struct isl_surf_fill_state_info f = {
1604 .surf = &res->surf,
1605 .view = view,
1606 .mocs = mocs(res->bo),
1607 .address = res->bo->gtt_offset,
1608 };
1609
1610 if (aux_usage != ISL_AUX_USAGE_NONE) {
1611 f.aux_surf = &res->aux.surf;
1612 f.aux_usage = aux_usage;
1613 f.aux_address = res->aux.bo->gtt_offset + res->aux.offset;
1614 // XXX: clear color
1615 }
1616
1617 isl_surf_fill_state_s(isl_dev, map, &f);
1618 }
1619
1620 /**
1621 * The pipe->create_sampler_view() driver hook.
1622 */
1623 static struct pipe_sampler_view *
1624 iris_create_sampler_view(struct pipe_context *ctx,
1625 struct pipe_resource *tex,
1626 const struct pipe_sampler_view *tmpl)
1627 {
1628 struct iris_context *ice = (struct iris_context *) ctx;
1629 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1630 const struct gen_device_info *devinfo = &screen->devinfo;
1631 struct iris_sampler_view *isv = calloc(1, sizeof(struct iris_sampler_view));
1632
1633 if (!isv)
1634 return NULL;
1635
1636 /* initialize base object */
1637 isv->base = *tmpl;
1638 isv->base.context = ctx;
1639 isv->base.texture = NULL;
1640 pipe_reference_init(&isv->base.reference, 1);
1641 pipe_resource_reference(&isv->base.texture, tex);
1642
1643 if (util_format_is_depth_or_stencil(tmpl->format)) {
1644 struct iris_resource *zres, *sres;
1645 const struct util_format_description *desc =
1646 util_format_description(tmpl->format);
1647
1648 iris_get_depth_stencil_resources(tex, &zres, &sres);
1649
1650 tex = util_format_has_depth(desc) ? &zres->base : &sres->base;
1651 }
1652
1653 isv->res = (struct iris_resource *) tex;
1654
1655 void *map = alloc_surface_states(ice->state.surface_uploader,
1656 &isv->surface_state,
1657 isv->res->aux.possible_usages);
1658 if (!unlikely(map))
1659 return NULL;
1660
1661 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_TEXTURE_BIT;
1662
1663 if (isv->base.target == PIPE_TEXTURE_CUBE ||
1664 isv->base.target == PIPE_TEXTURE_CUBE_ARRAY)
1665 usage |= ISL_SURF_USAGE_CUBE_BIT;
1666
1667 const struct iris_format_info fmt =
1668 iris_format_for_usage(devinfo, tmpl->format, usage);
1669
1670 isv->view = (struct isl_view) {
1671 .format = fmt.fmt,
1672 .swizzle = (struct isl_swizzle) {
1673 .r = fmt_swizzle(&fmt, tmpl->swizzle_r),
1674 .g = fmt_swizzle(&fmt, tmpl->swizzle_g),
1675 .b = fmt_swizzle(&fmt, tmpl->swizzle_b),
1676 .a = fmt_swizzle(&fmt, tmpl->swizzle_a),
1677 },
1678 .usage = usage,
1679 };
1680
1681 /* Fill out SURFACE_STATE for this view. */
1682 if (tmpl->target != PIPE_BUFFER) {
1683 isv->view.base_level = tmpl->u.tex.first_level;
1684 isv->view.levels = tmpl->u.tex.last_level - tmpl->u.tex.first_level + 1;
1685 // XXX: do I need to port f9fd0cf4790cb2a530e75d1a2206dbb9d8af7cb2?
1686 isv->view.base_array_layer = tmpl->u.tex.first_layer;
1687 isv->view.array_len =
1688 tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
1689
1690 unsigned aux_modes = isv->res->aux.possible_usages;
1691 while (aux_modes) {
1692 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
1693
1694 fill_surface_state(&screen->isl_dev, map, isv->res, &isv->view,
1695 aux_usage);
1696
1697 map += SURFACE_STATE_ALIGNMENT;
1698 }
1699 } else {
1700 fill_buffer_surface_state(&screen->isl_dev, isv->res->bo, map,
1701 isv->view.format, ISL_SWIZZLE_IDENTITY,
1702 tmpl->u.buf.offset, tmpl->u.buf.size);
1703 }
1704
1705 return &isv->base;
1706 }
1707
1708 static void
1709 iris_sampler_view_destroy(struct pipe_context *ctx,
1710 struct pipe_sampler_view *state)
1711 {
1712 struct iris_sampler_view *isv = (void *) state;
1713 pipe_resource_reference(&state->texture, NULL);
1714 pipe_resource_reference(&isv->surface_state.res, NULL);
1715 free(isv);
1716 }
1717
1718 /**
1719 * The pipe->create_surface() driver hook.
1720 *
1721 * In Gallium nomenclature, "surfaces" are a view of a resource that
1722 * can be bound as a render target or depth/stencil buffer.
1723 */
1724 static struct pipe_surface *
1725 iris_create_surface(struct pipe_context *ctx,
1726 struct pipe_resource *tex,
1727 const struct pipe_surface *tmpl)
1728 {
1729 struct iris_context *ice = (struct iris_context *) ctx;
1730 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1731 const struct gen_device_info *devinfo = &screen->devinfo;
1732 struct iris_surface *surf = calloc(1, sizeof(struct iris_surface));
1733 struct pipe_surface *psurf = &surf->base;
1734 struct iris_resource *res = (struct iris_resource *) tex;
1735
1736 if (!surf)
1737 return NULL;
1738
1739 pipe_reference_init(&psurf->reference, 1);
1740 pipe_resource_reference(&psurf->texture, tex);
1741 psurf->context = ctx;
1742 psurf->format = tmpl->format;
1743 psurf->width = tex->width0;
1744 psurf->height = tex->height0;
1745 psurf->texture = tex;
1746 psurf->u.tex.first_layer = tmpl->u.tex.first_layer;
1747 psurf->u.tex.last_layer = tmpl->u.tex.last_layer;
1748 psurf->u.tex.level = tmpl->u.tex.level;
1749
1750 isl_surf_usage_flags_t usage = 0;
1751 if (tmpl->writable)
1752 usage = ISL_SURF_USAGE_STORAGE_BIT;
1753 else if (util_format_is_depth_or_stencil(tmpl->format))
1754 usage = ISL_SURF_USAGE_DEPTH_BIT;
1755 else
1756 usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
1757
1758 const struct iris_format_info fmt =
1759 iris_format_for_usage(devinfo, psurf->format, usage);
1760
1761 if ((usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) &&
1762 !isl_format_supports_rendering(devinfo, fmt.fmt)) {
1763 /* Framebuffer validation will reject this invalid case, but it
1764 * hasn't had the opportunity yet. In the meantime, we need to
1765 * avoid hitting ISL asserts about unsupported formats below.
1766 */
1767 free(surf);
1768 return NULL;
1769 }
1770
1771 surf->view = (struct isl_view) {
1772 .format = fmt.fmt,
1773 .base_level = tmpl->u.tex.level,
1774 .levels = 1,
1775 .base_array_layer = tmpl->u.tex.first_layer,
1776 .array_len = tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1,
1777 .swizzle = ISL_SWIZZLE_IDENTITY,
1778 .usage = usage,
1779 };
1780
1781 /* Bail early for depth/stencil - we don't want SURFACE_STATE for them. */
1782 if (res->surf.usage & (ISL_SURF_USAGE_DEPTH_BIT |
1783 ISL_SURF_USAGE_STENCIL_BIT))
1784 return psurf;
1785
1786
1787 void *map = alloc_surface_states(ice->state.surface_uploader,
1788 &surf->surface_state,
1789 res->aux.possible_usages);
1790 if (!unlikely(map))
1791 return NULL;
1792
1793 unsigned aux_modes = res->aux.possible_usages;
1794 while (aux_modes) {
1795 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
1796
1797 fill_surface_state(&screen->isl_dev, map, res, &surf->view, aux_usage);
1798
1799 map += SURFACE_STATE_ALIGNMENT;
1800 }
1801
1802 return psurf;
1803 }
1804
1805 #if GEN_GEN < 9
1806 static void
1807 fill_default_image_param(struct brw_image_param *param)
1808 {
1809 memset(param, 0, sizeof(*param));
1810 /* Set the swizzling shifts to all-ones to effectively disable swizzling --
1811 * See emit_address_calculation() in brw_fs_surface_builder.cpp for a more
1812 * detailed explanation of these parameters.
1813 */
1814 param->swizzling[0] = 0xff;
1815 param->swizzling[1] = 0xff;
1816 }
1817
1818 static void
1819 fill_buffer_image_param(struct brw_image_param *param,
1820 enum pipe_format pfmt,
1821 unsigned size)
1822 {
1823 const unsigned cpp = util_format_get_blocksize(pfmt);
1824
1825 fill_default_image_param(param);
1826 param->size[0] = size / cpp;
1827 param->stride[0] = cpp;
1828 }
1829 #else
1830 #define isl_surf_fill_image_param(x, ...)
1831 #define fill_default_image_param(x, ...)
1832 #define fill_buffer_image_param(x, ...)
1833 #endif
1834
1835 /**
1836 * The pipe->set_shader_images() driver hook.
1837 */
1838 static void
1839 iris_set_shader_images(struct pipe_context *ctx,
1840 enum pipe_shader_type p_stage,
1841 unsigned start_slot, unsigned count,
1842 const struct pipe_image_view *p_images)
1843 {
1844 struct iris_context *ice = (struct iris_context *) ctx;
1845 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1846 const struct gen_device_info *devinfo = &screen->devinfo;
1847 gl_shader_stage stage = stage_from_pipe(p_stage);
1848 struct iris_shader_state *shs = &ice->state.shaders[stage];
1849
1850 shs->bound_image_views &= ~u_bit_consecutive(start_slot, count);
1851
1852 for (unsigned i = 0; i < count; i++) {
1853 if (p_images && p_images[i].resource) {
1854 const struct pipe_image_view *img = &p_images[i];
1855 struct iris_resource *res = (void *) img->resource;
1856 pipe_resource_reference(&shs->image[start_slot + i].res, &res->base);
1857
1858 shs->bound_image_views |= 1 << (start_slot + i);
1859
1860 res->bind_history |= PIPE_BIND_SHADER_IMAGE;
1861
1862 // XXX: these are not retained forever, use a separate uploader?
1863 void *map =
1864 alloc_surface_states(ice->state.surface_uploader,
1865 &shs->image[start_slot + i].surface_state,
1866 1 << ISL_AUX_USAGE_NONE);
1867 if (!unlikely(map)) {
1868 pipe_resource_reference(&shs->image[start_slot + i].res, NULL);
1869 return;
1870 }
1871
1872 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_STORAGE_BIT;
1873 enum isl_format isl_fmt =
1874 iris_format_for_usage(devinfo, img->format, usage).fmt;
1875
1876 bool untyped_fallback = false;
1877
1878 if (img->shader_access & PIPE_IMAGE_ACCESS_READ) {
1879 /* On Gen8, try to use typed surfaces reads (which support a
1880 * limited number of formats), and if not possible, fall back
1881 * to untyped reads.
1882 */
1883 untyped_fallback = GEN_GEN == 8 &&
1884 !isl_has_matching_typed_storage_image_format(devinfo, isl_fmt);
1885
1886 if (untyped_fallback)
1887 isl_fmt = ISL_FORMAT_RAW;
1888 else
1889 isl_fmt = isl_lower_storage_image_format(devinfo, isl_fmt);
1890 }
1891
1892 shs->image[start_slot + i].access = img->shader_access;
1893
1894 if (res->base.target != PIPE_BUFFER) {
1895 struct isl_view view = {
1896 .format = isl_fmt,
1897 .base_level = img->u.tex.level,
1898 .levels = 1,
1899 .base_array_layer = img->u.tex.first_layer,
1900 .array_len = img->u.tex.last_layer - img->u.tex.first_layer + 1,
1901 .swizzle = ISL_SWIZZLE_IDENTITY,
1902 .usage = usage,
1903 };
1904
1905 if (untyped_fallback) {
1906 fill_buffer_surface_state(&screen->isl_dev, res->bo, map,
1907 isl_fmt, ISL_SWIZZLE_IDENTITY,
1908 0, res->bo->size);
1909 } else {
1910 /* Images don't support compression */
1911 unsigned aux_modes = 1 << ISL_AUX_USAGE_NONE;
1912 while (aux_modes) {
1913 enum isl_aux_usage usage = u_bit_scan(&aux_modes);
1914
1915 fill_surface_state(&screen->isl_dev, map, res, &view, usage);
1916
1917 map += SURFACE_STATE_ALIGNMENT;
1918 }
1919 }
1920
1921 isl_surf_fill_image_param(&screen->isl_dev,
1922 &shs->image[start_slot + i].param,
1923 &res->surf, &view);
1924 } else {
1925 fill_buffer_surface_state(&screen->isl_dev, res->bo, map,
1926 isl_fmt, ISL_SWIZZLE_IDENTITY,
1927 img->u.buf.offset, img->u.buf.size);
1928 fill_buffer_image_param(&shs->image[start_slot + i].param,
1929 img->format, img->u.buf.size);
1930 }
1931 } else {
1932 pipe_resource_reference(&shs->image[start_slot + i].res, NULL);
1933 pipe_resource_reference(&shs->image[start_slot + i].surface_state.res,
1934 NULL);
1935 fill_default_image_param(&shs->image[start_slot + i].param);
1936 }
1937 }
1938
1939 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
1940
1941 /* Broadwell also needs brw_image_params re-uploaded */
1942 if (GEN_GEN < 9) {
1943 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
1944 shs->cbuf0_needs_upload = true;
1945 }
1946 }
1947
1948
1949 /**
1950 * The pipe->set_sampler_views() driver hook.
1951 */
1952 static void
1953 iris_set_sampler_views(struct pipe_context *ctx,
1954 enum pipe_shader_type p_stage,
1955 unsigned start, unsigned count,
1956 struct pipe_sampler_view **views)
1957 {
1958 struct iris_context *ice = (struct iris_context *) ctx;
1959 gl_shader_stage stage = stage_from_pipe(p_stage);
1960 struct iris_shader_state *shs = &ice->state.shaders[stage];
1961
1962 shs->bound_sampler_views &= ~u_bit_consecutive(start, count);
1963
1964 for (unsigned i = 0; i < count; i++) {
1965 pipe_sampler_view_reference((struct pipe_sampler_view **)
1966 &shs->textures[start + i], views[i]);
1967 struct iris_sampler_view *view = (void *) views[i];
1968 if (view) {
1969 view->res->bind_history |= PIPE_BIND_SAMPLER_VIEW;
1970 shs->bound_sampler_views |= 1 << (start + i);
1971 }
1972 }
1973
1974 ice->state.dirty |= (IRIS_DIRTY_BINDINGS_VS << stage);
1975 }
1976
1977 /**
1978 * The pipe->set_tess_state() driver hook.
1979 */
1980 static void
1981 iris_set_tess_state(struct pipe_context *ctx,
1982 const float default_outer_level[4],
1983 const float default_inner_level[2])
1984 {
1985 struct iris_context *ice = (struct iris_context *) ctx;
1986
1987 memcpy(&ice->state.default_outer_level[0], &default_outer_level[0], 4 * sizeof(float));
1988 memcpy(&ice->state.default_inner_level[0], &default_inner_level[0], 2 * sizeof(float));
1989
1990 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_TCS;
1991 }
1992
1993 static void
1994 iris_surface_destroy(struct pipe_context *ctx, struct pipe_surface *p_surf)
1995 {
1996 struct iris_surface *surf = (void *) p_surf;
1997 pipe_resource_reference(&p_surf->texture, NULL);
1998 pipe_resource_reference(&surf->surface_state.res, NULL);
1999 free(surf);
2000 }
2001
2002 static void
2003 iris_set_clip_state(struct pipe_context *ctx,
2004 const struct pipe_clip_state *state)
2005 {
2006 struct iris_context *ice = (struct iris_context *) ctx;
2007 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_VERTEX];
2008
2009 memcpy(&ice->state.clip_planes, state, sizeof(*state));
2010
2011 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS;
2012 shs->cbuf0_needs_upload = true;
2013 }
2014
2015 /**
2016 * The pipe->set_polygon_stipple() driver hook.
2017 */
2018 static void
2019 iris_set_polygon_stipple(struct pipe_context *ctx,
2020 const struct pipe_poly_stipple *state)
2021 {
2022 struct iris_context *ice = (struct iris_context *) ctx;
2023 memcpy(&ice->state.poly_stipple, state, sizeof(*state));
2024 ice->state.dirty |= IRIS_DIRTY_POLYGON_STIPPLE;
2025 }
2026
2027 /**
2028 * The pipe->set_sample_mask() driver hook.
2029 */
2030 static void
2031 iris_set_sample_mask(struct pipe_context *ctx, unsigned sample_mask)
2032 {
2033 struct iris_context *ice = (struct iris_context *) ctx;
2034
2035 /* We only support 16x MSAA, so we have 16 bits of sample maks.
2036 * st/mesa may pass us 0xffffffff though, meaning "enable all samples".
2037 */
2038 ice->state.sample_mask = sample_mask & 0xffff;
2039 ice->state.dirty |= IRIS_DIRTY_SAMPLE_MASK;
2040 }
2041
2042 /**
2043 * The pipe->set_scissor_states() driver hook.
2044 *
2045 * This corresponds to our SCISSOR_RECT state structures. It's an
2046 * exact match, so we just store them, and memcpy them out later.
2047 */
2048 static void
2049 iris_set_scissor_states(struct pipe_context *ctx,
2050 unsigned start_slot,
2051 unsigned num_scissors,
2052 const struct pipe_scissor_state *rects)
2053 {
2054 struct iris_context *ice = (struct iris_context *) ctx;
2055
2056 for (unsigned i = 0; i < num_scissors; i++) {
2057 if (rects[i].minx == rects[i].maxx || rects[i].miny == rects[i].maxy) {
2058 /* If the scissor was out of bounds and got clamped to 0 width/height
2059 * at the bounds, the subtraction of 1 from maximums could produce a
2060 * negative number and thus not clip anything. Instead, just provide
2061 * a min > max scissor inside the bounds, which produces the expected
2062 * no rendering.
2063 */
2064 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
2065 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
2066 };
2067 } else {
2068 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
2069 .minx = rects[i].minx, .miny = rects[i].miny,
2070 .maxx = rects[i].maxx - 1, .maxy = rects[i].maxy - 1,
2071 };
2072 }
2073 }
2074
2075 ice->state.dirty |= IRIS_DIRTY_SCISSOR_RECT;
2076 }
2077
2078 /**
2079 * The pipe->set_stencil_ref() driver hook.
2080 *
2081 * This is added to 3DSTATE_WM_DEPTH_STENCIL dynamically at draw time.
2082 */
2083 static void
2084 iris_set_stencil_ref(struct pipe_context *ctx,
2085 const struct pipe_stencil_ref *state)
2086 {
2087 struct iris_context *ice = (struct iris_context *) ctx;
2088 memcpy(&ice->state.stencil_ref, state, sizeof(*state));
2089 if (GEN_GEN == 8)
2090 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
2091 else
2092 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
2093 }
2094
2095 static float
2096 viewport_extent(const struct pipe_viewport_state *state, int axis, float sign)
2097 {
2098 return copysignf(state->scale[axis], sign) + state->translate[axis];
2099 }
2100
2101 static void
2102 calculate_guardband_size(uint32_t fb_width, uint32_t fb_height,
2103 float m00, float m11, float m30, float m31,
2104 float *xmin, float *xmax,
2105 float *ymin, float *ymax)
2106 {
2107 /* According to the "Vertex X,Y Clamping and Quantization" section of the
2108 * Strips and Fans documentation:
2109 *
2110 * "The vertex X and Y screen-space coordinates are also /clamped/ to the
2111 * fixed-point "guardband" range supported by the rasterization hardware"
2112 *
2113 * and
2114 *
2115 * "In almost all circumstances, if an object’s vertices are actually
2116 * modified by this clamping (i.e., had X or Y coordinates outside of
2117 * the guardband extent the rendered object will not match the intended
2118 * result. Therefore software should take steps to ensure that this does
2119 * not happen - e.g., by clipping objects such that they do not exceed
2120 * these limits after the Drawing Rectangle is applied."
2121 *
2122 * I believe the fundamental restriction is that the rasterizer (in
2123 * the SF/WM stages) have a limit on the number of pixels that can be
2124 * rasterized. We need to ensure any coordinates beyond the rasterizer
2125 * limit are handled by the clipper. So effectively that limit becomes
2126 * the clipper's guardband size.
2127 *
2128 * It goes on to say:
2129 *
2130 * "In addition, in order to be correctly rendered, objects must have a
2131 * screenspace bounding box not exceeding 8K in the X or Y direction.
2132 * This additional restriction must also be comprehended by software,
2133 * i.e., enforced by use of clipping."
2134 *
2135 * This makes no sense. Gen7+ hardware supports 16K render targets,
2136 * and you definitely need to be able to draw polygons that fill the
2137 * surface. Our assumption is that the rasterizer was limited to 8K
2138 * on Sandybridge, which only supports 8K surfaces, and it was actually
2139 * increased to 16K on Ivybridge and later.
2140 *
2141 * So, limit the guardband to 16K on Gen7+ and 8K on Sandybridge.
2142 */
2143 const float gb_size = GEN_GEN >= 7 ? 16384.0f : 8192.0f;
2144
2145 if (m00 != 0 && m11 != 0) {
2146 /* First, we compute the screen-space render area */
2147 const float ss_ra_xmin = MIN3( 0, m30 + m00, m30 - m00);
2148 const float ss_ra_xmax = MAX3( fb_width, m30 + m00, m30 - m00);
2149 const float ss_ra_ymin = MIN3( 0, m31 + m11, m31 - m11);
2150 const float ss_ra_ymax = MAX3(fb_height, m31 + m11, m31 - m11);
2151
2152 /* We want the guardband to be centered on that */
2153 const float ss_gb_xmin = (ss_ra_xmin + ss_ra_xmax) / 2 - gb_size;
2154 const float ss_gb_xmax = (ss_ra_xmin + ss_ra_xmax) / 2 + gb_size;
2155 const float ss_gb_ymin = (ss_ra_ymin + ss_ra_ymax) / 2 - gb_size;
2156 const float ss_gb_ymax = (ss_ra_ymin + ss_ra_ymax) / 2 + gb_size;
2157
2158 /* Now we need it in native device coordinates */
2159 const float ndc_gb_xmin = (ss_gb_xmin - m30) / m00;
2160 const float ndc_gb_xmax = (ss_gb_xmax - m30) / m00;
2161 const float ndc_gb_ymin = (ss_gb_ymin - m31) / m11;
2162 const float ndc_gb_ymax = (ss_gb_ymax - m31) / m11;
2163
2164 /* Thanks to Y-flipping and ORIGIN_UPPER_LEFT, the Y coordinates may be
2165 * flipped upside-down. X should be fine though.
2166 */
2167 assert(ndc_gb_xmin <= ndc_gb_xmax);
2168 *xmin = ndc_gb_xmin;
2169 *xmax = ndc_gb_xmax;
2170 *ymin = MIN2(ndc_gb_ymin, ndc_gb_ymax);
2171 *ymax = MAX2(ndc_gb_ymin, ndc_gb_ymax);
2172 } else {
2173 /* The viewport scales to 0, so nothing will be rendered. */
2174 *xmin = 0.0f;
2175 *xmax = 0.0f;
2176 *ymin = 0.0f;
2177 *ymax = 0.0f;
2178 }
2179 }
2180
2181 /**
2182 * The pipe->set_viewport_states() driver hook.
2183 *
2184 * This corresponds to our SF_CLIP_VIEWPORT states. We can't calculate
2185 * the guardband yet, as we need the framebuffer dimensions, but we can
2186 * at least fill out the rest.
2187 */
2188 static void
2189 iris_set_viewport_states(struct pipe_context *ctx,
2190 unsigned start_slot,
2191 unsigned count,
2192 const struct pipe_viewport_state *states)
2193 {
2194 struct iris_context *ice = (struct iris_context *) ctx;
2195
2196 memcpy(&ice->state.viewports[start_slot], states, sizeof(*states) * count);
2197
2198 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2199
2200 if (ice->state.cso_rast && (!ice->state.cso_rast->depth_clip_near ||
2201 !ice->state.cso_rast->depth_clip_far))
2202 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
2203 }
2204
2205 /**
2206 * The pipe->set_framebuffer_state() driver hook.
2207 *
2208 * Sets the current draw FBO, including color render targets, depth,
2209 * and stencil buffers.
2210 */
2211 static void
2212 iris_set_framebuffer_state(struct pipe_context *ctx,
2213 const struct pipe_framebuffer_state *state)
2214 {
2215 struct iris_context *ice = (struct iris_context *) ctx;
2216 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2217 struct isl_device *isl_dev = &screen->isl_dev;
2218 struct pipe_framebuffer_state *cso = &ice->state.framebuffer;
2219 struct iris_resource *zres;
2220 struct iris_resource *stencil_res;
2221
2222 unsigned samples = util_framebuffer_get_num_samples(state);
2223 unsigned layers = util_framebuffer_get_num_layers(state);
2224
2225 if (cso->samples != samples) {
2226 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
2227 }
2228
2229 if (cso->nr_cbufs != state->nr_cbufs) {
2230 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
2231 }
2232
2233 if ((cso->layers == 0) != (layers == 0)) {
2234 ice->state.dirty |= IRIS_DIRTY_CLIP;
2235 }
2236
2237 if (cso->width != state->width || cso->height != state->height) {
2238 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2239 }
2240
2241 util_copy_framebuffer_state(cso, state);
2242 cso->samples = samples;
2243 cso->layers = layers;
2244
2245 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
2246
2247 struct isl_view view = {
2248 .base_level = 0,
2249 .levels = 1,
2250 .base_array_layer = 0,
2251 .array_len = 1,
2252 .swizzle = ISL_SWIZZLE_IDENTITY,
2253 };
2254
2255 struct isl_depth_stencil_hiz_emit_info info = { .view = &view };
2256
2257 if (cso->zsbuf) {
2258 iris_get_depth_stencil_resources(cso->zsbuf->texture, &zres,
2259 &stencil_res);
2260
2261 view.base_level = cso->zsbuf->u.tex.level;
2262 view.base_array_layer = cso->zsbuf->u.tex.first_layer;
2263 view.array_len =
2264 cso->zsbuf->u.tex.last_layer - cso->zsbuf->u.tex.first_layer + 1;
2265
2266 if (zres) {
2267 view.usage |= ISL_SURF_USAGE_DEPTH_BIT;
2268
2269 info.depth_surf = &zres->surf;
2270 info.depth_address = zres->bo->gtt_offset;
2271 info.mocs = mocs(zres->bo);
2272
2273 view.format = zres->surf.format;
2274
2275 if (iris_resource_level_has_hiz(zres, view.base_level)) {
2276 info.hiz_usage = ISL_AUX_USAGE_HIZ;
2277 info.hiz_surf = &zres->aux.surf;
2278 info.hiz_address = zres->aux.bo->gtt_offset;
2279 }
2280 }
2281
2282 if (stencil_res) {
2283 view.usage |= ISL_SURF_USAGE_STENCIL_BIT;
2284 info.stencil_surf = &stencil_res->surf;
2285 info.stencil_address = stencil_res->bo->gtt_offset;
2286 if (!zres) {
2287 view.format = stencil_res->surf.format;
2288 info.mocs = mocs(stencil_res->bo);
2289 }
2290 }
2291 }
2292
2293 isl_emit_depth_stencil_hiz_s(isl_dev, cso_z->packets, &info);
2294
2295 /* Make a null surface for unbound buffers */
2296 void *null_surf_map =
2297 upload_state(ice->state.surface_uploader, &ice->state.null_fb,
2298 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2299 isl_null_fill_state(&screen->isl_dev, null_surf_map,
2300 isl_extent3d(MAX2(cso->width, 1),
2301 MAX2(cso->height, 1),
2302 cso->layers ? cso->layers : 1));
2303 ice->state.null_fb.offset +=
2304 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.null_fb.res));
2305
2306 ice->state.dirty |= IRIS_DIRTY_DEPTH_BUFFER;
2307
2308 /* Render target change */
2309 ice->state.dirty |= IRIS_DIRTY_BINDINGS_FS;
2310
2311 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_FRAMEBUFFER];
2312
2313 #if GEN_GEN == 11
2314 // XXX: we may want to flag IRIS_DIRTY_MULTISAMPLE (or SAMPLE_MASK?)
2315 // XXX: see commit 979fc1bc9bcc64027ff2cfafd285676f31b930a6
2316
2317 /* The PIPE_CONTROL command description says:
2318 *
2319 * "Whenever a Binding Table Index (BTI) used by a Render Target Message
2320 * points to a different RENDER_SURFACE_STATE, SW must issue a Render
2321 * Target Cache Flush by enabling this bit. When render target flush
2322 * is set due to new association of BTI, PS Scoreboard Stall bit must
2323 * be set in this packet."
2324 */
2325 // XXX: does this need to happen at 3DSTATE_BTP_PS time?
2326 iris_emit_pipe_control_flush(&ice->batches[IRIS_BATCH_RENDER],
2327 PIPE_CONTROL_RENDER_TARGET_FLUSH |
2328 PIPE_CONTROL_STALL_AT_SCOREBOARD);
2329 #endif
2330 }
2331
2332 static void
2333 upload_ubo_surf_state(struct iris_context *ice,
2334 struct iris_const_buffer *cbuf,
2335 unsigned buffer_size)
2336 {
2337 struct pipe_context *ctx = &ice->ctx;
2338 struct iris_screen *screen = (struct iris_screen *) ctx->screen;
2339
2340 // XXX: these are not retained forever, use a separate uploader?
2341 void *map =
2342 upload_state(ice->state.surface_uploader, &cbuf->surface_state,
2343 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2344 if (!unlikely(map)) {
2345 pipe_resource_reference(&cbuf->data.res, NULL);
2346 return;
2347 }
2348
2349 struct iris_resource *res = (void *) cbuf->data.res;
2350 struct iris_bo *surf_bo = iris_resource_bo(cbuf->surface_state.res);
2351 cbuf->surface_state.offset += iris_bo_offset_from_base_address(surf_bo);
2352
2353 isl_buffer_fill_state(&screen->isl_dev, map,
2354 .address = res->bo->gtt_offset + cbuf->data.offset,
2355 .size_B = MIN2(buffer_size,
2356 res->bo->size - cbuf->data.offset),
2357 .format = ISL_FORMAT_R32G32B32A32_FLOAT,
2358 .swizzle = ISL_SWIZZLE_IDENTITY,
2359 .stride_B = 1,
2360 .mocs = mocs(res->bo))
2361 }
2362
2363 /**
2364 * The pipe->set_constant_buffer() driver hook.
2365 *
2366 * This uploads any constant data in user buffers, and references
2367 * any UBO resources containing constant data.
2368 */
2369 static void
2370 iris_set_constant_buffer(struct pipe_context *ctx,
2371 enum pipe_shader_type p_stage, unsigned index,
2372 const struct pipe_constant_buffer *input)
2373 {
2374 struct iris_context *ice = (struct iris_context *) ctx;
2375 gl_shader_stage stage = stage_from_pipe(p_stage);
2376 struct iris_shader_state *shs = &ice->state.shaders[stage];
2377 struct iris_const_buffer *cbuf = &shs->constbuf[index];
2378
2379 if (input && input->buffer) {
2380 assert(index > 0);
2381
2382 pipe_resource_reference(&cbuf->data.res, input->buffer);
2383 cbuf->data.offset = input->buffer_offset;
2384
2385 struct iris_resource *res = (void *) cbuf->data.res;
2386 res->bind_history |= PIPE_BIND_CONSTANT_BUFFER;
2387
2388 upload_ubo_surf_state(ice, cbuf, input->buffer_size);
2389 } else {
2390 pipe_resource_reference(&cbuf->data.res, NULL);
2391 pipe_resource_reference(&cbuf->surface_state.res, NULL);
2392 }
2393
2394 if (index == 0) {
2395 if (input)
2396 memcpy(&shs->cbuf0, input, sizeof(shs->cbuf0));
2397 else
2398 memset(&shs->cbuf0, 0, sizeof(shs->cbuf0));
2399
2400 shs->cbuf0_needs_upload = true;
2401 }
2402
2403 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
2404 // XXX: maybe not necessary all the time...?
2405 // XXX: we need 3DS_BTP to commit these changes, and if we fell back to
2406 // XXX: pull model we may need actual new bindings...
2407 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2408 }
2409
2410 static void
2411 upload_uniforms(struct iris_context *ice,
2412 gl_shader_stage stage)
2413 {
2414 struct iris_shader_state *shs = &ice->state.shaders[stage];
2415 struct iris_const_buffer *cbuf = &shs->constbuf[0];
2416 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
2417
2418 unsigned upload_size = shader->num_system_values * sizeof(uint32_t) +
2419 shs->cbuf0.buffer_size;
2420
2421 if (upload_size == 0)
2422 return;
2423
2424 uint32_t *map =
2425 upload_state(ice->ctx.const_uploader, &cbuf->data, upload_size, 64);
2426
2427 for (int i = 0; i < shader->num_system_values; i++) {
2428 uint32_t sysval = shader->system_values[i];
2429 uint32_t value = 0;
2430
2431 if (BRW_PARAM_DOMAIN(sysval) == BRW_PARAM_DOMAIN_IMAGE) {
2432 unsigned img = BRW_PARAM_IMAGE_IDX(sysval);
2433 unsigned offset = BRW_PARAM_IMAGE_OFFSET(sysval);
2434 struct brw_image_param *param = &shs->image[img].param;
2435
2436 assert(offset < sizeof(struct brw_image_param));
2437 value = ((uint32_t *) param)[offset];
2438 } else if (sysval == BRW_PARAM_BUILTIN_ZERO) {
2439 value = 0;
2440 } else if (BRW_PARAM_BUILTIN_IS_CLIP_PLANE(sysval)) {
2441 int plane = BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(sysval);
2442 int comp = BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(sysval);
2443 value = fui(ice->state.clip_planes.ucp[plane][comp]);
2444 } else if (sysval == BRW_PARAM_BUILTIN_PATCH_VERTICES_IN) {
2445 if (stage == MESA_SHADER_TESS_CTRL) {
2446 value = ice->state.vertices_per_patch;
2447 } else {
2448 assert(stage == MESA_SHADER_TESS_EVAL);
2449 const struct shader_info *tcs_info =
2450 iris_get_shader_info(ice, MESA_SHADER_TESS_CTRL);
2451 assert(tcs_info);
2452
2453 value = tcs_info->tess.tcs_vertices_out;
2454 }
2455 } else {
2456 assert(!"unhandled system value");
2457 }
2458
2459 *map++ = value;
2460 }
2461
2462 if (shs->cbuf0.user_buffer) {
2463 memcpy(map, shs->cbuf0.user_buffer, shs->cbuf0.buffer_size);
2464 }
2465
2466 upload_ubo_surf_state(ice, cbuf, upload_size);
2467 }
2468
2469 /**
2470 * The pipe->set_shader_buffers() driver hook.
2471 *
2472 * This binds SSBOs and ABOs. Unfortunately, we need to stream out
2473 * SURFACE_STATE here, as the buffer offset may change each time.
2474 */
2475 static void
2476 iris_set_shader_buffers(struct pipe_context *ctx,
2477 enum pipe_shader_type p_stage,
2478 unsigned start_slot, unsigned count,
2479 const struct pipe_shader_buffer *buffers)
2480 {
2481 struct iris_context *ice = (struct iris_context *) ctx;
2482 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2483 gl_shader_stage stage = stage_from_pipe(p_stage);
2484 struct iris_shader_state *shs = &ice->state.shaders[stage];
2485
2486 for (unsigned i = 0; i < count; i++) {
2487 if (buffers && buffers[i].buffer) {
2488 const struct pipe_shader_buffer *buffer = &buffers[i];
2489 struct iris_resource *res = (void *) buffer->buffer;
2490 pipe_resource_reference(&shs->ssbo[start_slot + i], &res->base);
2491
2492 res->bind_history |= PIPE_BIND_SHADER_BUFFER;
2493
2494 // XXX: these are not retained forever, use a separate uploader?
2495 void *map =
2496 upload_state(ice->state.surface_uploader,
2497 &shs->ssbo_surface_state[start_slot + i],
2498 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2499 if (!unlikely(map)) {
2500 pipe_resource_reference(&shs->ssbo[start_slot + i], NULL);
2501 return;
2502 }
2503
2504 struct iris_bo *surf_state_bo =
2505 iris_resource_bo(shs->ssbo_surface_state[start_slot + i].res);
2506 shs->ssbo_surface_state[start_slot + i].offset +=
2507 iris_bo_offset_from_base_address(surf_state_bo);
2508
2509 isl_buffer_fill_state(&screen->isl_dev, map,
2510 .address =
2511 res->bo->gtt_offset + buffer->buffer_offset,
2512 .size_B =
2513 MIN2(buffer->buffer_size,
2514 res->bo->size - buffer->buffer_offset),
2515 .format = ISL_FORMAT_RAW,
2516 .swizzle = ISL_SWIZZLE_IDENTITY,
2517 .stride_B = 1,
2518 .mocs = mocs(res->bo));
2519 } else {
2520 pipe_resource_reference(&shs->ssbo[start_slot + i], NULL);
2521 pipe_resource_reference(&shs->ssbo_surface_state[start_slot + i].res,
2522 NULL);
2523 }
2524 }
2525
2526 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2527 }
2528
2529 static void
2530 iris_delete_state(struct pipe_context *ctx, void *state)
2531 {
2532 free(state);
2533 }
2534
2535 /**
2536 * The pipe->set_vertex_buffers() driver hook.
2537 *
2538 * This translates pipe_vertex_buffer to our 3DSTATE_VERTEX_BUFFERS packet.
2539 */
2540 static void
2541 iris_set_vertex_buffers(struct pipe_context *ctx,
2542 unsigned start_slot, unsigned count,
2543 const struct pipe_vertex_buffer *buffers)
2544 {
2545 struct iris_context *ice = (struct iris_context *) ctx;
2546 struct iris_genx_state *genx = ice->state.genx;
2547
2548 ice->state.bound_vertex_buffers &= ~u_bit_consecutive64(start_slot, count);
2549
2550 for (unsigned i = 0; i < count; i++) {
2551 const struct pipe_vertex_buffer *buffer = buffers ? &buffers[i] : NULL;
2552 struct iris_vertex_buffer_state *state =
2553 &genx->vertex_buffers[start_slot + i];
2554
2555 if (!buffer) {
2556 pipe_resource_reference(&state->resource, NULL);
2557 continue;
2558 }
2559
2560 assert(!buffer->is_user_buffer);
2561
2562 pipe_resource_reference(&state->resource, buffer->buffer.resource);
2563 struct iris_resource *res = (void *) state->resource;
2564
2565 if (res) {
2566 ice->state.bound_vertex_buffers |= 1ull << (start_slot + i);
2567 res->bind_history |= PIPE_BIND_VERTEX_BUFFER;
2568 }
2569
2570 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
2571 vb.VertexBufferIndex = start_slot + i;
2572 vb.AddressModifyEnable = true;
2573 vb.BufferPitch = buffer->stride;
2574 if (res) {
2575 vb.BufferSize = res->bo->size;
2576 vb.BufferStartingAddress =
2577 ro_bo(NULL, res->bo->gtt_offset + (int) buffer->buffer_offset);
2578 vb.MOCS = mocs(res->bo);
2579 } else {
2580 vb.NullVertexBuffer = true;
2581 }
2582 }
2583 }
2584
2585 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
2586 }
2587
2588 /**
2589 * Gallium CSO for vertex elements.
2590 */
2591 struct iris_vertex_element_state {
2592 uint32_t vertex_elements[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
2593 uint32_t vf_instancing[33 * GENX(3DSTATE_VF_INSTANCING_length)];
2594 uint32_t edgeflag_ve[GENX(VERTEX_ELEMENT_STATE_length)];
2595 uint32_t edgeflag_vfi[GENX(3DSTATE_VF_INSTANCING_length)];
2596 unsigned count;
2597 };
2598
2599 /**
2600 * The pipe->create_vertex_elements() driver hook.
2601 *
2602 * This translates pipe_vertex_element to our 3DSTATE_VERTEX_ELEMENTS
2603 * and 3DSTATE_VF_INSTANCING commands. The vertex_elements and vf_instancing
2604 * arrays are ready to be emitted at draw time if no EdgeFlag or SGVs are
2605 * needed. In these cases we will need information available at draw time.
2606 * We setup edgeflag_ve and edgeflag_vfi as alternatives last
2607 * 3DSTATE_VERTEX_ELEMENT and 3DSTATE_VF_INSTANCING that can be used at
2608 * draw time if we detect that EdgeFlag is needed by the Vertex Shader.
2609 */
2610 static void *
2611 iris_create_vertex_elements(struct pipe_context *ctx,
2612 unsigned count,
2613 const struct pipe_vertex_element *state)
2614 {
2615 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2616 const struct gen_device_info *devinfo = &screen->devinfo;
2617 struct iris_vertex_element_state *cso =
2618 malloc(sizeof(struct iris_vertex_element_state));
2619
2620 cso->count = count;
2621
2622 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS), cso->vertex_elements, ve) {
2623 ve.DWordLength =
2624 1 + GENX(VERTEX_ELEMENT_STATE_length) * MAX2(count, 1) - 2;
2625 }
2626
2627 uint32_t *ve_pack_dest = &cso->vertex_elements[1];
2628 uint32_t *vfi_pack_dest = cso->vf_instancing;
2629
2630 if (count == 0) {
2631 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
2632 ve.Valid = true;
2633 ve.SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT;
2634 ve.Component0Control = VFCOMP_STORE_0;
2635 ve.Component1Control = VFCOMP_STORE_0;
2636 ve.Component2Control = VFCOMP_STORE_0;
2637 ve.Component3Control = VFCOMP_STORE_1_FP;
2638 }
2639
2640 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
2641 }
2642 }
2643
2644 for (int i = 0; i < count; i++) {
2645 const struct iris_format_info fmt =
2646 iris_format_for_usage(devinfo, state[i].src_format, 0);
2647 unsigned comp[4] = { VFCOMP_STORE_SRC, VFCOMP_STORE_SRC,
2648 VFCOMP_STORE_SRC, VFCOMP_STORE_SRC };
2649
2650 switch (isl_format_get_num_channels(fmt.fmt)) {
2651 case 0: comp[0] = VFCOMP_STORE_0;
2652 case 1: comp[1] = VFCOMP_STORE_0;
2653 case 2: comp[2] = VFCOMP_STORE_0;
2654 case 3:
2655 comp[3] = isl_format_has_int_channel(fmt.fmt) ? VFCOMP_STORE_1_INT
2656 : VFCOMP_STORE_1_FP;
2657 break;
2658 }
2659 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
2660 ve.EdgeFlagEnable = false;
2661 ve.VertexBufferIndex = state[i].vertex_buffer_index;
2662 ve.Valid = true;
2663 ve.SourceElementOffset = state[i].src_offset;
2664 ve.SourceElementFormat = fmt.fmt;
2665 ve.Component0Control = comp[0];
2666 ve.Component1Control = comp[1];
2667 ve.Component2Control = comp[2];
2668 ve.Component3Control = comp[3];
2669 }
2670
2671 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
2672 vi.VertexElementIndex = i;
2673 vi.InstancingEnable = state[i].instance_divisor > 0;
2674 vi.InstanceDataStepRate = state[i].instance_divisor;
2675 }
2676
2677 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
2678 vfi_pack_dest += GENX(3DSTATE_VF_INSTANCING_length);
2679 }
2680
2681 /* An alternative version of the last VE and VFI is stored so it
2682 * can be used at draw time in case Vertex Shader uses EdgeFlag
2683 */
2684 if (count) {
2685 const unsigned edgeflag_index = count - 1;
2686 const struct iris_format_info fmt =
2687 iris_format_for_usage(devinfo, state[edgeflag_index].src_format, 0);
2688 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), cso->edgeflag_ve, ve) {
2689 ve.EdgeFlagEnable = true ;
2690 ve.VertexBufferIndex = state[edgeflag_index].vertex_buffer_index;
2691 ve.Valid = true;
2692 ve.SourceElementOffset = state[edgeflag_index].src_offset;
2693 ve.SourceElementFormat = fmt.fmt;
2694 ve.Component0Control = VFCOMP_STORE_SRC;
2695 ve.Component1Control = VFCOMP_STORE_0;
2696 ve.Component2Control = VFCOMP_STORE_0;
2697 ve.Component3Control = VFCOMP_STORE_0;
2698 }
2699 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), cso->edgeflag_vfi, vi) {
2700 /* The vi.VertexElementIndex of the EdgeFlag Vertex Element is filled
2701 * at draw time, as it should change if SGVs are emitted.
2702 */
2703 vi.InstancingEnable = state[edgeflag_index].instance_divisor > 0;
2704 vi.InstanceDataStepRate = state[edgeflag_index].instance_divisor;
2705 }
2706 }
2707
2708 return cso;
2709 }
2710
2711 /**
2712 * The pipe->bind_vertex_elements_state() driver hook.
2713 */
2714 static void
2715 iris_bind_vertex_elements_state(struct pipe_context *ctx, void *state)
2716 {
2717 struct iris_context *ice = (struct iris_context *) ctx;
2718 struct iris_vertex_element_state *old_cso = ice->state.cso_vertex_elements;
2719 struct iris_vertex_element_state *new_cso = state;
2720
2721 /* 3DSTATE_VF_SGVs overrides the last VE, so if the count is changing,
2722 * we need to re-emit it to ensure we're overriding the right one.
2723 */
2724 if (new_cso && cso_changed(count))
2725 ice->state.dirty |= IRIS_DIRTY_VF_SGVS;
2726
2727 ice->state.cso_vertex_elements = state;
2728 ice->state.dirty |= IRIS_DIRTY_VERTEX_ELEMENTS;
2729 }
2730
2731 /**
2732 * The pipe->create_stream_output_target() driver hook.
2733 *
2734 * "Target" here refers to a destination buffer. We translate this into
2735 * a 3DSTATE_SO_BUFFER packet. We can handle most fields, but don't yet
2736 * know which buffer this represents, or whether we ought to zero the
2737 * write-offsets, or append. Those are handled in the set() hook.
2738 */
2739 static struct pipe_stream_output_target *
2740 iris_create_stream_output_target(struct pipe_context *ctx,
2741 struct pipe_resource *p_res,
2742 unsigned buffer_offset,
2743 unsigned buffer_size)
2744 {
2745 struct iris_resource *res = (void *) p_res;
2746 struct iris_stream_output_target *cso = calloc(1, sizeof(*cso));
2747 if (!cso)
2748 return NULL;
2749
2750 res->bind_history |= PIPE_BIND_STREAM_OUTPUT;
2751
2752 pipe_reference_init(&cso->base.reference, 1);
2753 pipe_resource_reference(&cso->base.buffer, p_res);
2754 cso->base.buffer_offset = buffer_offset;
2755 cso->base.buffer_size = buffer_size;
2756 cso->base.context = ctx;
2757
2758 upload_state(ctx->stream_uploader, &cso->offset, sizeof(uint32_t), 4);
2759
2760 return &cso->base;
2761 }
2762
2763 static void
2764 iris_stream_output_target_destroy(struct pipe_context *ctx,
2765 struct pipe_stream_output_target *state)
2766 {
2767 struct iris_stream_output_target *cso = (void *) state;
2768
2769 pipe_resource_reference(&cso->base.buffer, NULL);
2770 pipe_resource_reference(&cso->offset.res, NULL);
2771
2772 free(cso);
2773 }
2774
2775 /**
2776 * The pipe->set_stream_output_targets() driver hook.
2777 *
2778 * At this point, we know which targets are bound to a particular index,
2779 * and also whether we want to append or start over. We can finish the
2780 * 3DSTATE_SO_BUFFER packets we started earlier.
2781 */
2782 static void
2783 iris_set_stream_output_targets(struct pipe_context *ctx,
2784 unsigned num_targets,
2785 struct pipe_stream_output_target **targets,
2786 const unsigned *offsets)
2787 {
2788 struct iris_context *ice = (struct iris_context *) ctx;
2789 struct iris_genx_state *genx = ice->state.genx;
2790 uint32_t *so_buffers = genx->so_buffers;
2791
2792 const bool active = num_targets > 0;
2793 if (ice->state.streamout_active != active) {
2794 ice->state.streamout_active = active;
2795 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
2796
2797 /* We only emit 3DSTATE_SO_DECL_LIST when streamout is active, because
2798 * it's a non-pipelined command. If we're switching streamout on, we
2799 * may have missed emitting it earlier, so do so now. (We're already
2800 * taking a stall to update 3DSTATE_SO_BUFFERS anyway...)
2801 */
2802 if (active)
2803 ice->state.dirty |= IRIS_DIRTY_SO_DECL_LIST;
2804 }
2805
2806 for (int i = 0; i < 4; i++) {
2807 pipe_so_target_reference(&ice->state.so_target[i],
2808 i < num_targets ? targets[i] : NULL);
2809 }
2810
2811 /* No need to update 3DSTATE_SO_BUFFER unless SOL is active. */
2812 if (!active)
2813 return;
2814
2815 for (unsigned i = 0; i < 4; i++,
2816 so_buffers += GENX(3DSTATE_SO_BUFFER_length)) {
2817
2818 if (i >= num_targets || !targets[i]) {
2819 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob)
2820 sob.SOBufferIndex = i;
2821 continue;
2822 }
2823
2824 struct iris_stream_output_target *tgt = (void *) targets[i];
2825 struct iris_resource *res = (void *) tgt->base.buffer;
2826
2827 /* Note that offsets[i] will either be 0, causing us to zero
2828 * the value in the buffer, or 0xFFFFFFFF, which happens to mean
2829 * "continue appending at the existing offset."
2830 */
2831 assert(offsets[i] == 0 || offsets[i] == 0xFFFFFFFF);
2832
2833 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob) {
2834 sob.SurfaceBaseAddress =
2835 rw_bo(NULL, res->bo->gtt_offset + tgt->base.buffer_offset);
2836 sob.SOBufferEnable = true;
2837 sob.StreamOffsetWriteEnable = true;
2838 sob.StreamOutputBufferOffsetAddressEnable = true;
2839 sob.MOCS = mocs(res->bo);
2840
2841 sob.SurfaceSize = MAX2(tgt->base.buffer_size / 4, 1) - 1;
2842
2843 sob.SOBufferIndex = i;
2844 sob.StreamOffset = offsets[i];
2845 sob.StreamOutputBufferOffsetAddress =
2846 rw_bo(NULL, iris_resource_bo(tgt->offset.res)->gtt_offset +
2847 tgt->offset.offset);
2848 }
2849 }
2850
2851 ice->state.dirty |= IRIS_DIRTY_SO_BUFFERS;
2852 }
2853
2854 /**
2855 * An iris-vtable helper for encoding the 3DSTATE_SO_DECL_LIST and
2856 * 3DSTATE_STREAMOUT packets.
2857 *
2858 * 3DSTATE_SO_DECL_LIST is a list of shader outputs we want the streamout
2859 * hardware to record. We can create it entirely based on the shader, with
2860 * no dynamic state dependencies.
2861 *
2862 * 3DSTATE_STREAMOUT is an annoying mix of shader-based information and
2863 * state-based settings. We capture the shader-related ones here, and merge
2864 * the rest in at draw time.
2865 */
2866 static uint32_t *
2867 iris_create_so_decl_list(const struct pipe_stream_output_info *info,
2868 const struct brw_vue_map *vue_map)
2869 {
2870 struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
2871 int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2872 int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2873 int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2874 int max_decls = 0;
2875 STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
2876
2877 memset(so_decl, 0, sizeof(so_decl));
2878
2879 /* Construct the list of SO_DECLs to be emitted. The formatting of the
2880 * command feels strange -- each dword pair contains a SO_DECL per stream.
2881 */
2882 for (unsigned i = 0; i < info->num_outputs; i++) {
2883 const struct pipe_stream_output *output = &info->output[i];
2884 const int buffer = output->output_buffer;
2885 const int varying = output->register_index;
2886 const unsigned stream_id = output->stream;
2887 assert(stream_id < MAX_VERTEX_STREAMS);
2888
2889 buffer_mask[stream_id] |= 1 << buffer;
2890
2891 assert(vue_map->varying_to_slot[varying] >= 0);
2892
2893 /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
2894 * array. Instead, it simply increments DstOffset for the following
2895 * input by the number of components that should be skipped.
2896 *
2897 * Our hardware is unusual in that it requires us to program SO_DECLs
2898 * for fake "hole" components, rather than simply taking the offset
2899 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
2900 * program as many size = 4 holes as we can, then a final hole to
2901 * accommodate the final 1, 2, or 3 remaining.
2902 */
2903 int skip_components = output->dst_offset - next_offset[buffer];
2904
2905 while (skip_components > 0) {
2906 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
2907 .HoleFlag = 1,
2908 .OutputBufferSlot = output->output_buffer,
2909 .ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
2910 };
2911 skip_components -= 4;
2912 }
2913
2914 next_offset[buffer] = output->dst_offset + output->num_components;
2915
2916 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
2917 .OutputBufferSlot = output->output_buffer,
2918 .RegisterIndex = vue_map->varying_to_slot[varying],
2919 .ComponentMask =
2920 ((1 << output->num_components) - 1) << output->start_component,
2921 };
2922
2923 if (decls[stream_id] > max_decls)
2924 max_decls = decls[stream_id];
2925 }
2926
2927 unsigned dwords = GENX(3DSTATE_STREAMOUT_length) + (3 + 2 * max_decls);
2928 uint32_t *map = ralloc_size(NULL, sizeof(uint32_t) * dwords);
2929 uint32_t *so_decl_map = map + GENX(3DSTATE_STREAMOUT_length);
2930
2931 iris_pack_command(GENX(3DSTATE_STREAMOUT), map, sol) {
2932 int urb_entry_read_offset = 0;
2933 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
2934 urb_entry_read_offset;
2935
2936 /* We always read the whole vertex. This could be reduced at some
2937 * point by reading less and offsetting the register index in the
2938 * SO_DECLs.
2939 */
2940 sol.Stream0VertexReadOffset = urb_entry_read_offset;
2941 sol.Stream0VertexReadLength = urb_entry_read_length - 1;
2942 sol.Stream1VertexReadOffset = urb_entry_read_offset;
2943 sol.Stream1VertexReadLength = urb_entry_read_length - 1;
2944 sol.Stream2VertexReadOffset = urb_entry_read_offset;
2945 sol.Stream2VertexReadLength = urb_entry_read_length - 1;
2946 sol.Stream3VertexReadOffset = urb_entry_read_offset;
2947 sol.Stream3VertexReadLength = urb_entry_read_length - 1;
2948
2949 /* Set buffer pitches; 0 means unbound. */
2950 sol.Buffer0SurfacePitch = 4 * info->stride[0];
2951 sol.Buffer1SurfacePitch = 4 * info->stride[1];
2952 sol.Buffer2SurfacePitch = 4 * info->stride[2];
2953 sol.Buffer3SurfacePitch = 4 * info->stride[3];
2954 }
2955
2956 iris_pack_command(GENX(3DSTATE_SO_DECL_LIST), so_decl_map, list) {
2957 list.DWordLength = 3 + 2 * max_decls - 2;
2958 list.StreamtoBufferSelects0 = buffer_mask[0];
2959 list.StreamtoBufferSelects1 = buffer_mask[1];
2960 list.StreamtoBufferSelects2 = buffer_mask[2];
2961 list.StreamtoBufferSelects3 = buffer_mask[3];
2962 list.NumEntries0 = decls[0];
2963 list.NumEntries1 = decls[1];
2964 list.NumEntries2 = decls[2];
2965 list.NumEntries3 = decls[3];
2966 }
2967
2968 for (int i = 0; i < max_decls; i++) {
2969 iris_pack_state(GENX(SO_DECL_ENTRY), so_decl_map + 3 + i * 2, entry) {
2970 entry.Stream0Decl = so_decl[0][i];
2971 entry.Stream1Decl = so_decl[1][i];
2972 entry.Stream2Decl = so_decl[2][i];
2973 entry.Stream3Decl = so_decl[3][i];
2974 }
2975 }
2976
2977 return map;
2978 }
2979
2980 static void
2981 iris_compute_sbe_urb_read_interval(uint64_t fs_input_slots,
2982 const struct brw_vue_map *last_vue_map,
2983 bool two_sided_color,
2984 unsigned *out_offset,
2985 unsigned *out_length)
2986 {
2987 /* The compiler computes the first URB slot without considering COL/BFC
2988 * swizzling (because it doesn't know whether it's enabled), so we need
2989 * to do that here too. This may result in a smaller offset, which
2990 * should be safe.
2991 */
2992 const unsigned first_slot =
2993 brw_compute_first_urb_slot_required(fs_input_slots, last_vue_map);
2994
2995 /* This becomes the URB read offset (counted in pairs of slots). */
2996 assert(first_slot % 2 == 0);
2997 *out_offset = first_slot / 2;
2998
2999 /* We need to adjust the inputs read to account for front/back color
3000 * swizzling, as it can make the URB length longer.
3001 */
3002 for (int c = 0; c <= 1; c++) {
3003 if (fs_input_slots & (VARYING_BIT_COL0 << c)) {
3004 /* If two sided color is enabled, the fragment shader's gl_Color
3005 * (COL0) input comes from either the gl_FrontColor (COL0) or
3006 * gl_BackColor (BFC0) input varyings. Mark BFC as used, too.
3007 */
3008 if (two_sided_color)
3009 fs_input_slots |= (VARYING_BIT_BFC0 << c);
3010
3011 /* If front color isn't written, we opt to give them back color
3012 * instead of an undefined value. Switch from COL to BFC.
3013 */
3014 if (last_vue_map->varying_to_slot[VARYING_SLOT_COL0 + c] == -1) {
3015 fs_input_slots &= ~(VARYING_BIT_COL0 << c);
3016 fs_input_slots |= (VARYING_BIT_BFC0 << c);
3017 }
3018 }
3019 }
3020
3021 /* Compute the minimum URB Read Length necessary for the FS inputs.
3022 *
3023 * From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
3024 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
3025 *
3026 * "This field should be set to the minimum length required to read the
3027 * maximum source attribute. The maximum source attribute is indicated
3028 * by the maximum value of the enabled Attribute # Source Attribute if
3029 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
3030 * enable is not set.
3031 * read_length = ceiling((max_source_attr + 1) / 2)
3032 *
3033 * [errata] Corruption/Hang possible if length programmed larger than
3034 * recommended"
3035 *
3036 * Similar text exists for Ivy Bridge.
3037 *
3038 * We find the last URB slot that's actually read by the FS.
3039 */
3040 unsigned last_read_slot = last_vue_map->num_slots - 1;
3041 while (last_read_slot > first_slot && !(fs_input_slots &
3042 (1ull << last_vue_map->slot_to_varying[last_read_slot])))
3043 --last_read_slot;
3044
3045 /* The URB read length is the difference of the two, counted in pairs. */
3046 *out_length = DIV_ROUND_UP(last_read_slot - first_slot + 1, 2);
3047 }
3048
3049 static void
3050 iris_emit_sbe_swiz(struct iris_batch *batch,
3051 const struct iris_context *ice,
3052 unsigned urb_read_offset,
3053 unsigned sprite_coord_enables)
3054 {
3055 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = {};
3056 const struct brw_wm_prog_data *wm_prog_data = (void *)
3057 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3058 const struct brw_vue_map *vue_map = ice->shaders.last_vue_map;
3059 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3060
3061 /* XXX: this should be generated when putting programs in place */
3062
3063 for (int fs_attr = 0; fs_attr < VARYING_SLOT_MAX; fs_attr++) {
3064 const int input_index = wm_prog_data->urb_setup[fs_attr];
3065 if (input_index < 0 || input_index >= 16)
3066 continue;
3067
3068 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr =
3069 &attr_overrides[input_index];
3070 int slot = vue_map->varying_to_slot[fs_attr];
3071
3072 /* Viewport and Layer are stored in the VUE header. We need to override
3073 * them to zero if earlier stages didn't write them, as GL requires that
3074 * they read back as zero when not explicitly set.
3075 */
3076 switch (fs_attr) {
3077 case VARYING_SLOT_VIEWPORT:
3078 case VARYING_SLOT_LAYER:
3079 attr->ComponentOverrideX = true;
3080 attr->ComponentOverrideW = true;
3081 attr->ConstantSource = CONST_0000;
3082
3083 if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
3084 attr->ComponentOverrideY = true;
3085 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
3086 attr->ComponentOverrideZ = true;
3087 continue;
3088
3089 case VARYING_SLOT_PRIMITIVE_ID:
3090 /* Override if the previous shader stage didn't write gl_PrimitiveID. */
3091 if (slot == -1) {
3092 attr->ComponentOverrideX = true;
3093 attr->ComponentOverrideY = true;
3094 attr->ComponentOverrideZ = true;
3095 attr->ComponentOverrideW = true;
3096 attr->ConstantSource = PRIM_ID;
3097 continue;
3098 }
3099
3100 default:
3101 break;
3102 }
3103
3104 if (sprite_coord_enables & (1 << input_index))
3105 continue;
3106
3107 /* If there was only a back color written but not front, use back
3108 * as the color instead of undefined.
3109 */
3110 if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
3111 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
3112 if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
3113 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
3114
3115 /* Not written by the previous stage - undefined. */
3116 if (slot == -1) {
3117 attr->ComponentOverrideX = true;
3118 attr->ComponentOverrideY = true;
3119 attr->ComponentOverrideZ = true;
3120 attr->ComponentOverrideW = true;
3121 attr->ConstantSource = CONST_0001_FLOAT;
3122 continue;
3123 }
3124
3125 /* Compute the location of the attribute relative to the read offset,
3126 * which is counted in 256-bit increments (two 128-bit VUE slots).
3127 */
3128 const int source_attr = slot - 2 * urb_read_offset;
3129 assert(source_attr >= 0 && source_attr <= 32);
3130 attr->SourceAttribute = source_attr;
3131
3132 /* If we are doing two-sided color, and the VUE slot following this one
3133 * represents a back-facing color, then we need to instruct the SF unit
3134 * to do back-facing swizzling.
3135 */
3136 if (cso_rast->light_twoside &&
3137 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
3138 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
3139 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
3140 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1)))
3141 attr->SwizzleSelect = INPUTATTR_FACING;
3142 }
3143
3144 iris_emit_cmd(batch, GENX(3DSTATE_SBE_SWIZ), sbes) {
3145 for (int i = 0; i < 16; i++)
3146 sbes.Attribute[i] = attr_overrides[i];
3147 }
3148 }
3149
3150 static unsigned
3151 iris_calculate_point_sprite_overrides(const struct brw_wm_prog_data *prog_data,
3152 const struct iris_rasterizer_state *cso)
3153 {
3154 unsigned overrides = 0;
3155
3156 if (prog_data->urb_setup[VARYING_SLOT_PNTC] != -1)
3157 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_PNTC];
3158
3159 for (int i = 0; i < 8; i++) {
3160 if ((cso->sprite_coord_enable & (1 << i)) &&
3161 prog_data->urb_setup[VARYING_SLOT_TEX0 + i] != -1)
3162 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_TEX0 + i];
3163 }
3164
3165 return overrides;
3166 }
3167
3168 static void
3169 iris_emit_sbe(struct iris_batch *batch, const struct iris_context *ice)
3170 {
3171 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3172 const struct brw_wm_prog_data *wm_prog_data = (void *)
3173 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3174 const struct shader_info *fs_info =
3175 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
3176
3177 unsigned urb_read_offset, urb_read_length;
3178 iris_compute_sbe_urb_read_interval(fs_info->inputs_read,
3179 ice->shaders.last_vue_map,
3180 cso_rast->light_twoside,
3181 &urb_read_offset, &urb_read_length);
3182
3183 unsigned sprite_coord_overrides =
3184 iris_calculate_point_sprite_overrides(wm_prog_data, cso_rast);
3185
3186 iris_emit_cmd(batch, GENX(3DSTATE_SBE), sbe) {
3187 sbe.AttributeSwizzleEnable = true;
3188 sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
3189 sbe.PointSpriteTextureCoordinateOrigin = cso_rast->sprite_coord_mode;
3190 sbe.VertexURBEntryReadOffset = urb_read_offset;
3191 sbe.VertexURBEntryReadLength = urb_read_length;
3192 sbe.ForceVertexURBEntryReadOffset = true;
3193 sbe.ForceVertexURBEntryReadLength = true;
3194 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
3195 sbe.PointSpriteTextureCoordinateEnable = sprite_coord_overrides;
3196 #if GEN_GEN >= 9
3197 for (int i = 0; i < 32; i++) {
3198 sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW;
3199 }
3200 #endif
3201 }
3202
3203 iris_emit_sbe_swiz(batch, ice, urb_read_offset, sprite_coord_overrides);
3204 }
3205
3206 /* ------------------------------------------------------------------- */
3207
3208 /**
3209 * Populate VS program key fields based on the current state.
3210 */
3211 static void
3212 iris_populate_vs_key(const struct iris_context *ice,
3213 const struct shader_info *info,
3214 struct brw_vs_prog_key *key)
3215 {
3216 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3217
3218 if (info->clip_distance_array_size == 0 &&
3219 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)))
3220 key->nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
3221 }
3222
3223 /**
3224 * Populate TCS program key fields based on the current state.
3225 */
3226 static void
3227 iris_populate_tcs_key(const struct iris_context *ice,
3228 struct brw_tcs_prog_key *key)
3229 {
3230 }
3231
3232 /**
3233 * Populate TES program key fields based on the current state.
3234 */
3235 static void
3236 iris_populate_tes_key(const struct iris_context *ice,
3237 struct brw_tes_prog_key *key)
3238 {
3239 }
3240
3241 /**
3242 * Populate GS program key fields based on the current state.
3243 */
3244 static void
3245 iris_populate_gs_key(const struct iris_context *ice,
3246 struct brw_gs_prog_key *key)
3247 {
3248 }
3249
3250 /**
3251 * Populate FS program key fields based on the current state.
3252 */
3253 static void
3254 iris_populate_fs_key(const struct iris_context *ice,
3255 struct brw_wm_prog_key *key)
3256 {
3257 const struct pipe_framebuffer_state *fb = &ice->state.framebuffer;
3258 const struct iris_depth_stencil_alpha_state *zsa = ice->state.cso_zsa;
3259 const struct iris_rasterizer_state *rast = ice->state.cso_rast;
3260 const struct iris_blend_state *blend = ice->state.cso_blend;
3261
3262 key->nr_color_regions = fb->nr_cbufs;
3263
3264 key->clamp_fragment_color = rast->clamp_fragment_color;
3265
3266 key->replicate_alpha = fb->nr_cbufs > 1 &&
3267 (zsa->alpha.enabled || blend->alpha_to_coverage);
3268
3269 /* XXX: only bother if COL0/1 are read */
3270 key->flat_shade = rast->flatshade;
3271
3272 key->persample_interp = rast->force_persample_interp;
3273 key->multisample_fbo = rast->multisample && fb->samples > 1;
3274
3275 key->coherent_fb_fetch = true;
3276
3277 /* TODO: support key->force_dual_color_blend for Unigine */
3278 /* TODO: Respect glHint for key->high_quality_derivatives */
3279 }
3280
3281 static void
3282 iris_populate_cs_key(const struct iris_context *ice,
3283 struct brw_cs_prog_key *key)
3284 {
3285 }
3286
3287 static uint64_t
3288 KSP(const struct iris_compiled_shader *shader)
3289 {
3290 struct iris_resource *res = (void *) shader->assembly.res;
3291 return iris_bo_offset_from_base_address(res->bo) + shader->assembly.offset;
3292 }
3293
3294 /* Gen11 workaround table #2056 WABTPPrefetchDisable suggests to disable
3295 * prefetching of binding tables in A0 and B0 steppings. XXX: Revisit
3296 * this WA on C0 stepping.
3297 *
3298 * TODO: Fill out SamplerCount for prefetching?
3299 */
3300
3301 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix, stage) \
3302 pkt.KernelStartPointer = KSP(shader); \
3303 pkt.BindingTableEntryCount = GEN_GEN == 11 ? 0 : \
3304 prog_data->binding_table.size_bytes / 4; \
3305 pkt.FloatingPointMode = prog_data->use_alt_mode; \
3306 \
3307 pkt.DispatchGRFStartRegisterForURBData = \
3308 prog_data->dispatch_grf_start_reg; \
3309 pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
3310 pkt.prefix##URBEntryReadOffset = 0; \
3311 \
3312 pkt.StatisticsEnable = true; \
3313 pkt.Enable = true; \
3314 \
3315 if (prog_data->total_scratch) { \
3316 struct iris_bo *bo = \
3317 iris_get_scratch_space(ice, prog_data->total_scratch, stage); \
3318 uint32_t scratch_addr = bo->gtt_offset; \
3319 pkt.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11; \
3320 pkt.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr); \
3321 }
3322
3323 /**
3324 * Encode most of 3DSTATE_VS based on the compiled shader.
3325 */
3326 static void
3327 iris_store_vs_state(struct iris_context *ice,
3328 const struct gen_device_info *devinfo,
3329 struct iris_compiled_shader *shader)
3330 {
3331 struct brw_stage_prog_data *prog_data = shader->prog_data;
3332 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3333
3334 iris_pack_command(GENX(3DSTATE_VS), shader->derived_data, vs) {
3335 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex, MESA_SHADER_VERTEX);
3336 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
3337 vs.SIMD8DispatchEnable = true;
3338 vs.UserClipDistanceCullTestEnableBitmask =
3339 vue_prog_data->cull_distance_mask;
3340 }
3341 }
3342
3343 /**
3344 * Encode most of 3DSTATE_HS based on the compiled shader.
3345 */
3346 static void
3347 iris_store_tcs_state(struct iris_context *ice,
3348 const struct gen_device_info *devinfo,
3349 struct iris_compiled_shader *shader)
3350 {
3351 struct brw_stage_prog_data *prog_data = shader->prog_data;
3352 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3353 struct brw_tcs_prog_data *tcs_prog_data = (void *) prog_data;
3354
3355 iris_pack_command(GENX(3DSTATE_HS), shader->derived_data, hs) {
3356 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex, MESA_SHADER_TESS_CTRL);
3357
3358 hs.InstanceCount = tcs_prog_data->instances - 1;
3359 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
3360 hs.IncludeVertexHandles = true;
3361 }
3362 }
3363
3364 /**
3365 * Encode 3DSTATE_TE and most of 3DSTATE_DS based on the compiled shader.
3366 */
3367 static void
3368 iris_store_tes_state(struct iris_context *ice,
3369 const struct gen_device_info *devinfo,
3370 struct iris_compiled_shader *shader)
3371 {
3372 struct brw_stage_prog_data *prog_data = shader->prog_data;
3373 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3374 struct brw_tes_prog_data *tes_prog_data = (void *) prog_data;
3375
3376 uint32_t *te_state = (void *) shader->derived_data;
3377 uint32_t *ds_state = te_state + GENX(3DSTATE_TE_length);
3378
3379 iris_pack_command(GENX(3DSTATE_TE), te_state, te) {
3380 te.Partitioning = tes_prog_data->partitioning;
3381 te.OutputTopology = tes_prog_data->output_topology;
3382 te.TEDomain = tes_prog_data->domain;
3383 te.TEEnable = true;
3384 te.MaximumTessellationFactorOdd = 63.0;
3385 te.MaximumTessellationFactorNotOdd = 64.0;
3386 }
3387
3388 iris_pack_command(GENX(3DSTATE_DS), ds_state, ds) {
3389 INIT_THREAD_DISPATCH_FIELDS(ds, Patch, MESA_SHADER_TESS_EVAL);
3390
3391 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
3392 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
3393 ds.ComputeWCoordinateEnable =
3394 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
3395
3396 ds.UserClipDistanceCullTestEnableBitmask =
3397 vue_prog_data->cull_distance_mask;
3398 }
3399
3400 }
3401
3402 /**
3403 * Encode most of 3DSTATE_GS based on the compiled shader.
3404 */
3405 static void
3406 iris_store_gs_state(struct iris_context *ice,
3407 const struct gen_device_info *devinfo,
3408 struct iris_compiled_shader *shader)
3409 {
3410 struct brw_stage_prog_data *prog_data = shader->prog_data;
3411 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3412 struct brw_gs_prog_data *gs_prog_data = (void *) prog_data;
3413
3414 iris_pack_command(GENX(3DSTATE_GS), shader->derived_data, gs) {
3415 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex, MESA_SHADER_GEOMETRY);
3416
3417 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
3418 gs.OutputTopology = gs_prog_data->output_topology;
3419 gs.ControlDataHeaderSize =
3420 gs_prog_data->control_data_header_size_hwords;
3421 gs.InstanceControl = gs_prog_data->invocations - 1;
3422 gs.DispatchMode = DISPATCH_MODE_SIMD8;
3423 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
3424 gs.ControlDataFormat = gs_prog_data->control_data_format;
3425 gs.ReorderMode = TRAILING;
3426 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
3427 gs.MaximumNumberofThreads =
3428 GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
3429 : (devinfo->max_gs_threads - 1);
3430
3431 if (gs_prog_data->static_vertex_count != -1) {
3432 gs.StaticOutput = true;
3433 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
3434 }
3435 gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
3436
3437 gs.UserClipDistanceCullTestEnableBitmask =
3438 vue_prog_data->cull_distance_mask;
3439
3440 const int urb_entry_write_offset = 1;
3441 const uint32_t urb_entry_output_length =
3442 DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
3443 urb_entry_write_offset;
3444
3445 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
3446 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
3447 }
3448 }
3449
3450 /**
3451 * Encode most of 3DSTATE_PS and 3DSTATE_PS_EXTRA based on the shader.
3452 */
3453 static void
3454 iris_store_fs_state(struct iris_context *ice,
3455 const struct gen_device_info *devinfo,
3456 struct iris_compiled_shader *shader)
3457 {
3458 struct brw_stage_prog_data *prog_data = shader->prog_data;
3459 struct brw_wm_prog_data *wm_prog_data = (void *) shader->prog_data;
3460
3461 uint32_t *ps_state = (void *) shader->derived_data;
3462 uint32_t *psx_state = ps_state + GENX(3DSTATE_PS_length);
3463
3464 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
3465 ps.VectorMaskEnable = true;
3466 // XXX: WABTPPrefetchDisable, see above, drop at C0
3467 ps.BindingTableEntryCount = GEN_GEN == 11 ? 0 :
3468 prog_data->binding_table.size_bytes / 4;
3469 ps.FloatingPointMode = prog_data->use_alt_mode;
3470 ps.MaximumNumberofThreadsPerPSD = 64 - (GEN_GEN == 8 ? 2 : 1);
3471
3472 ps.PushConstantEnable = prog_data->ubo_ranges[0].length > 0;
3473
3474 /* From the documentation for this packet:
3475 * "If the PS kernel does not need the Position XY Offsets to
3476 * compute a Position Value, then this field should be programmed
3477 * to POSOFFSET_NONE."
3478 *
3479 * "SW Recommendation: If the PS kernel needs the Position Offsets
3480 * to compute a Position XY value, this field should match Position
3481 * ZW Interpolation Mode to ensure a consistent position.xyzw
3482 * computation."
3483 *
3484 * We only require XY sample offsets. So, this recommendation doesn't
3485 * look useful at the moment. We might need this in future.
3486 */
3487 ps.PositionXYOffsetSelect =
3488 wm_prog_data->uses_pos_offset ? POSOFFSET_SAMPLE : POSOFFSET_NONE;
3489 ps._8PixelDispatchEnable = wm_prog_data->dispatch_8;
3490 ps._16PixelDispatchEnable = wm_prog_data->dispatch_16;
3491 ps._32PixelDispatchEnable = wm_prog_data->dispatch_32;
3492
3493 // XXX: Disable SIMD32 with 16x MSAA
3494
3495 ps.DispatchGRFStartRegisterForConstantSetupData0 =
3496 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
3497 ps.DispatchGRFStartRegisterForConstantSetupData1 =
3498 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
3499 ps.DispatchGRFStartRegisterForConstantSetupData2 =
3500 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
3501
3502 ps.KernelStartPointer0 =
3503 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
3504 ps.KernelStartPointer1 =
3505 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
3506 ps.KernelStartPointer2 =
3507 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
3508
3509 if (prog_data->total_scratch) {
3510 struct iris_bo *bo =
3511 iris_get_scratch_space(ice, prog_data->total_scratch,
3512 MESA_SHADER_FRAGMENT);
3513 uint32_t scratch_addr = bo->gtt_offset;
3514 ps.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
3515 ps.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr);
3516 }
3517 }
3518
3519 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
3520 psx.PixelShaderValid = true;
3521 psx.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
3522 psx.PixelShaderKillsPixel = wm_prog_data->uses_kill;
3523 psx.AttributeEnable = wm_prog_data->num_varying_inputs != 0;
3524 psx.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
3525 psx.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
3526 psx.PixelShaderIsPerSample = wm_prog_data->persample_dispatch;
3527 psx.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
3528
3529 #if GEN_GEN >= 9
3530 if (wm_prog_data->uses_sample_mask) {
3531 /* TODO: conservative rasterization */
3532 if (wm_prog_data->post_depth_coverage)
3533 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
3534 else
3535 psx.InputCoverageMaskState = ICMS_NORMAL;
3536 }
3537
3538 psx.PixelShaderPullsBary = wm_prog_data->pulls_bary;
3539 psx.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
3540 #else
3541 psx.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
3542 #endif
3543 // XXX: UAV bit
3544 }
3545 }
3546
3547 /**
3548 * Compute the size of the derived data (shader command packets).
3549 *
3550 * This must match the data written by the iris_store_xs_state() functions.
3551 */
3552 static void
3553 iris_store_cs_state(struct iris_context *ice,
3554 const struct gen_device_info *devinfo,
3555 struct iris_compiled_shader *shader)
3556 {
3557 struct brw_stage_prog_data *prog_data = shader->prog_data;
3558 struct brw_cs_prog_data *cs_prog_data = (void *) shader->prog_data;
3559 void *map = shader->derived_data;
3560
3561 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), map, desc) {
3562 desc.KernelStartPointer = KSP(shader);
3563 desc.ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs;
3564 desc.NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads;
3565 desc.SharedLocalMemorySize =
3566 encode_slm_size(GEN_GEN, prog_data->total_shared);
3567 desc.BarrierEnable = cs_prog_data->uses_barrier;
3568 desc.CrossThreadConstantDataReadLength =
3569 cs_prog_data->push.cross_thread.regs;
3570 }
3571 }
3572
3573 static unsigned
3574 iris_derived_program_state_size(enum iris_program_cache_id cache_id)
3575 {
3576 assert(cache_id <= IRIS_CACHE_BLORP);
3577
3578 static const unsigned dwords[] = {
3579 [IRIS_CACHE_VS] = GENX(3DSTATE_VS_length),
3580 [IRIS_CACHE_TCS] = GENX(3DSTATE_HS_length),
3581 [IRIS_CACHE_TES] = GENX(3DSTATE_TE_length) + GENX(3DSTATE_DS_length),
3582 [IRIS_CACHE_GS] = GENX(3DSTATE_GS_length),
3583 [IRIS_CACHE_FS] =
3584 GENX(3DSTATE_PS_length) + GENX(3DSTATE_PS_EXTRA_length),
3585 [IRIS_CACHE_CS] = GENX(INTERFACE_DESCRIPTOR_DATA_length),
3586 [IRIS_CACHE_BLORP] = 0,
3587 };
3588
3589 return sizeof(uint32_t) * dwords[cache_id];
3590 }
3591
3592 /**
3593 * Create any state packets corresponding to the given shader stage
3594 * (i.e. 3DSTATE_VS) and save them as "derived data" in the shader variant.
3595 * This means that we can look up a program in the in-memory cache and
3596 * get most of the state packet without having to reconstruct it.
3597 */
3598 static void
3599 iris_store_derived_program_state(struct iris_context *ice,
3600 enum iris_program_cache_id cache_id,
3601 struct iris_compiled_shader *shader)
3602 {
3603 struct iris_screen *screen = (void *) ice->ctx.screen;
3604 const struct gen_device_info *devinfo = &screen->devinfo;
3605
3606 switch (cache_id) {
3607 case IRIS_CACHE_VS:
3608 iris_store_vs_state(ice, devinfo, shader);
3609 break;
3610 case IRIS_CACHE_TCS:
3611 iris_store_tcs_state(ice, devinfo, shader);
3612 break;
3613 case IRIS_CACHE_TES:
3614 iris_store_tes_state(ice, devinfo, shader);
3615 break;
3616 case IRIS_CACHE_GS:
3617 iris_store_gs_state(ice, devinfo, shader);
3618 break;
3619 case IRIS_CACHE_FS:
3620 iris_store_fs_state(ice, devinfo, shader);
3621 break;
3622 case IRIS_CACHE_CS:
3623 iris_store_cs_state(ice, devinfo, shader);
3624 case IRIS_CACHE_BLORP:
3625 break;
3626 default:
3627 break;
3628 }
3629 }
3630
3631 /* ------------------------------------------------------------------- */
3632
3633 /**
3634 * Configure the URB.
3635 *
3636 * XXX: write a real comment.
3637 */
3638 static void
3639 iris_upload_urb_config(struct iris_context *ice, struct iris_batch *batch)
3640 {
3641 const struct gen_device_info *devinfo = &batch->screen->devinfo;
3642 const unsigned push_size_kB = 32;
3643 unsigned entries[4];
3644 unsigned start[4];
3645 unsigned size[4];
3646
3647 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
3648 if (!ice->shaders.prog[i]) {
3649 size[i] = 1;
3650 } else {
3651 struct brw_vue_prog_data *vue_prog_data =
3652 (void *) ice->shaders.prog[i]->prog_data;
3653 size[i] = vue_prog_data->urb_entry_size;
3654 }
3655 assert(size[i] != 0);
3656 }
3657
3658 gen_get_urb_config(devinfo, 1024 * push_size_kB,
3659 1024 * ice->shaders.urb_size,
3660 ice->shaders.prog[MESA_SHADER_TESS_EVAL] != NULL,
3661 ice->shaders.prog[MESA_SHADER_GEOMETRY] != NULL,
3662 size, entries, start);
3663
3664 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
3665 iris_emit_cmd(batch, GENX(3DSTATE_URB_VS), urb) {
3666 urb._3DCommandSubOpcode += i;
3667 urb.VSURBStartingAddress = start[i];
3668 urb.VSURBEntryAllocationSize = size[i] - 1;
3669 urb.VSNumberofURBEntries = entries[i];
3670 }
3671 }
3672 }
3673
3674 static const uint32_t push_constant_opcodes[] = {
3675 [MESA_SHADER_VERTEX] = 21,
3676 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
3677 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
3678 [MESA_SHADER_GEOMETRY] = 22,
3679 [MESA_SHADER_FRAGMENT] = 23,
3680 [MESA_SHADER_COMPUTE] = 0,
3681 };
3682
3683 static uint32_t
3684 use_null_surface(struct iris_batch *batch, struct iris_context *ice)
3685 {
3686 struct iris_bo *state_bo = iris_resource_bo(ice->state.unbound_tex.res);
3687
3688 iris_use_pinned_bo(batch, state_bo, false);
3689
3690 return ice->state.unbound_tex.offset;
3691 }
3692
3693 static uint32_t
3694 use_null_fb_surface(struct iris_batch *batch, struct iris_context *ice)
3695 {
3696 /* If set_framebuffer_state() was never called, fall back to 1x1x1 */
3697 if (!ice->state.null_fb.res)
3698 return use_null_surface(batch, ice);
3699
3700 struct iris_bo *state_bo = iris_resource_bo(ice->state.null_fb.res);
3701
3702 iris_use_pinned_bo(batch, state_bo, false);
3703
3704 return ice->state.null_fb.offset;
3705 }
3706
3707 static uint32_t
3708 surf_state_offset_for_aux(struct iris_resource *res,
3709 enum isl_aux_usage aux_usage)
3710 {
3711 return SURFACE_STATE_ALIGNMENT *
3712 util_bitcount(res->aux.possible_usages & ((1 << aux_usage) - 1));
3713 }
3714
3715 /**
3716 * Add a surface to the validation list, as well as the buffer containing
3717 * the corresponding SURFACE_STATE.
3718 *
3719 * Returns the binding table entry (offset to SURFACE_STATE).
3720 */
3721 static uint32_t
3722 use_surface(struct iris_batch *batch,
3723 struct pipe_surface *p_surf,
3724 bool writeable,
3725 enum isl_aux_usage aux_usage)
3726 {
3727 struct iris_surface *surf = (void *) p_surf;
3728 struct iris_resource *res = (void *) p_surf->texture;
3729
3730 iris_use_pinned_bo(batch, iris_resource_bo(p_surf->texture), writeable);
3731 iris_use_pinned_bo(batch, iris_resource_bo(surf->surface_state.res), false);
3732
3733 if (res->aux.bo)
3734 iris_use_pinned_bo(batch, res->aux.bo, writeable);
3735
3736 return surf->surface_state.offset +
3737 surf_state_offset_for_aux(res, aux_usage);
3738 }
3739
3740 static uint32_t
3741 use_sampler_view(struct iris_context *ice,
3742 struct iris_batch *batch,
3743 struct iris_sampler_view *isv)
3744 {
3745 // XXX: ASTC hacks
3746 enum isl_aux_usage aux_usage =
3747 iris_resource_texture_aux_usage(ice, isv->res, isv->view.format, 0);
3748
3749 iris_use_pinned_bo(batch, isv->res->bo, false);
3750 iris_use_pinned_bo(batch, iris_resource_bo(isv->surface_state.res), false);
3751
3752 if (isv->res->aux.bo)
3753 iris_use_pinned_bo(batch, isv->res->aux.bo, false);
3754
3755 return isv->surface_state.offset +
3756 surf_state_offset_for_aux(isv->res, aux_usage);
3757 }
3758
3759 static uint32_t
3760 use_const_buffer(struct iris_batch *batch,
3761 struct iris_context *ice,
3762 struct iris_const_buffer *cbuf)
3763 {
3764 if (!cbuf->surface_state.res)
3765 return use_null_surface(batch, ice);
3766
3767 iris_use_pinned_bo(batch, iris_resource_bo(cbuf->data.res), false);
3768 iris_use_pinned_bo(batch, iris_resource_bo(cbuf->surface_state.res), false);
3769
3770 return cbuf->surface_state.offset;
3771 }
3772
3773 static uint32_t
3774 use_ssbo(struct iris_batch *batch, struct iris_context *ice,
3775 struct iris_shader_state *shs, int i)
3776 {
3777 if (!shs->ssbo[i])
3778 return use_null_surface(batch, ice);
3779
3780 struct iris_state_ref *surf_state = &shs->ssbo_surface_state[i];
3781
3782 iris_use_pinned_bo(batch, iris_resource_bo(shs->ssbo[i]), true);
3783 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false);
3784
3785 return surf_state->offset;
3786 }
3787
3788 static uint32_t
3789 use_image(struct iris_batch *batch, struct iris_context *ice,
3790 struct iris_shader_state *shs, int i)
3791 {
3792 if (!shs->image[i].res)
3793 return use_null_surface(batch, ice);
3794
3795 struct iris_resource *res = (void *) shs->image[i].res;
3796 struct iris_state_ref *surf_state = &shs->image[i].surface_state;
3797 bool write = shs->image[i].access & PIPE_IMAGE_ACCESS_WRITE;
3798
3799 iris_use_pinned_bo(batch, res->bo, write);
3800 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false);
3801
3802 if (res->aux.bo)
3803 iris_use_pinned_bo(batch, res->aux.bo, write);
3804
3805 return surf_state->offset;
3806 }
3807
3808 #define push_bt_entry(addr) \
3809 assert(addr >= binder_addr); \
3810 assert(s < prog_data->binding_table.size_bytes / sizeof(uint32_t)); \
3811 if (!pin_only) bt_map[s++] = (addr) - binder_addr;
3812
3813 #define bt_assert(section, exists) \
3814 if (!pin_only) assert(prog_data->binding_table.section == \
3815 (exists) ? s : 0xd0d0d0d0)
3816
3817 /**
3818 * Populate the binding table for a given shader stage.
3819 *
3820 * This fills out the table of pointers to surfaces required by the shader,
3821 * and also adds those buffers to the validation list so the kernel can make
3822 * resident before running our batch.
3823 */
3824 static void
3825 iris_populate_binding_table(struct iris_context *ice,
3826 struct iris_batch *batch,
3827 gl_shader_stage stage,
3828 bool pin_only)
3829 {
3830 const struct iris_binder *binder = &ice->state.binder;
3831 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3832 if (!shader)
3833 return;
3834
3835 UNUSED struct brw_stage_prog_data *prog_data = shader->prog_data;
3836 struct iris_shader_state *shs = &ice->state.shaders[stage];
3837 uint32_t binder_addr = binder->bo->gtt_offset;
3838
3839 //struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
3840 uint32_t *bt_map = binder->map + binder->bt_offset[stage];
3841 int s = 0;
3842
3843 const struct shader_info *info = iris_get_shader_info(ice, stage);
3844 if (!info) {
3845 /* TCS passthrough doesn't need a binding table. */
3846 assert(stage == MESA_SHADER_TESS_CTRL);
3847 return;
3848 }
3849
3850 if (stage == MESA_SHADER_COMPUTE) {
3851 /* surface for gl_NumWorkGroups */
3852 struct iris_state_ref *grid_data = &ice->state.grid_size;
3853 struct iris_state_ref *grid_state = &ice->state.grid_surf_state;
3854 iris_use_pinned_bo(batch, iris_resource_bo(grid_data->res), false);
3855 iris_use_pinned_bo(batch, iris_resource_bo(grid_state->res), false);
3856 push_bt_entry(grid_state->offset);
3857 }
3858
3859 if (stage == MESA_SHADER_FRAGMENT) {
3860 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
3861 /* Note that cso_fb->nr_cbufs == fs_key->nr_color_regions. */
3862 if (cso_fb->nr_cbufs) {
3863 for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
3864 uint32_t addr;
3865 if (cso_fb->cbufs[i]) {
3866 addr = use_surface(batch, cso_fb->cbufs[i], true,
3867 ice->state.draw_aux_usage[i]);
3868 } else {
3869 addr = use_null_fb_surface(batch, ice);
3870 }
3871 push_bt_entry(addr);
3872 }
3873 } else {
3874 uint32_t addr = use_null_fb_surface(batch, ice);
3875 push_bt_entry(addr);
3876 }
3877 }
3878
3879 unsigned num_textures = util_last_bit(info->textures_used);
3880
3881 bt_assert(texture_start, num_textures > 0);
3882
3883 for (int i = 0; i < num_textures; i++) {
3884 struct iris_sampler_view *view = shs->textures[i];
3885 uint32_t addr = view ? use_sampler_view(ice, batch, view)
3886 : use_null_surface(batch, ice);
3887 push_bt_entry(addr);
3888 }
3889
3890 bt_assert(image_start, info->num_images > 0);
3891
3892 for (int i = 0; i < info->num_images; i++) {
3893 uint32_t addr = use_image(batch, ice, shs, i);
3894 push_bt_entry(addr);
3895 }
3896
3897 bt_assert(ubo_start, shader->num_cbufs > 0);
3898
3899 for (int i = 0; i < shader->num_cbufs; i++) {
3900 uint32_t addr = use_const_buffer(batch, ice, &shs->constbuf[i]);
3901 push_bt_entry(addr);
3902 }
3903
3904 bt_assert(ssbo_start, info->num_abos + info->num_ssbos > 0);
3905
3906 /* XXX: st is wasting 16 binding table slots for ABOs. Should add a cap
3907 * for changing nir_lower_atomics_to_ssbos setting and buffer_base offset
3908 * in st_atom_storagebuf.c so it'll compact them into one range, with
3909 * SSBOs starting at info->num_abos. Ideally it'd reset num_abos to 0 too
3910 */
3911 if (info->num_abos + info->num_ssbos > 0) {
3912 for (int i = 0; i < IRIS_MAX_ABOS + info->num_ssbos; i++) {
3913 uint32_t addr = use_ssbo(batch, ice, shs, i);
3914 push_bt_entry(addr);
3915 }
3916 }
3917
3918 #if 0
3919 /* XXX: YUV surfaces not implemented yet */
3920 bt_assert(plane_start[1], ...);
3921 bt_assert(plane_start[2], ...);
3922 #endif
3923 }
3924
3925 static void
3926 iris_use_optional_res(struct iris_batch *batch,
3927 struct pipe_resource *res,
3928 bool writeable)
3929 {
3930 if (res) {
3931 struct iris_bo *bo = iris_resource_bo(res);
3932 iris_use_pinned_bo(batch, bo, writeable);
3933 }
3934 }
3935
3936 /* ------------------------------------------------------------------- */
3937
3938 /**
3939 * Pin any BOs which were installed by a previous batch, and restored
3940 * via the hardware logical context mechanism.
3941 *
3942 * We don't need to re-emit all state every batch - the hardware context
3943 * mechanism will save and restore it for us. This includes pointers to
3944 * various BOs...which won't exist unless we ask the kernel to pin them
3945 * by adding them to the validation list.
3946 *
3947 * We can skip buffers if we've re-emitted those packets, as we're
3948 * overwriting those stale pointers with new ones, and don't actually
3949 * refer to the old BOs.
3950 */
3951 static void
3952 iris_restore_render_saved_bos(struct iris_context *ice,
3953 struct iris_batch *batch,
3954 const struct pipe_draw_info *draw)
3955 {
3956 struct iris_genx_state *genx = ice->state.genx;
3957
3958 const uint64_t clean = ~ice->state.dirty;
3959
3960 if (clean & IRIS_DIRTY_CC_VIEWPORT) {
3961 iris_use_optional_res(batch, ice->state.last_res.cc_vp, false);
3962 }
3963
3964 if (clean & IRIS_DIRTY_SF_CL_VIEWPORT) {
3965 iris_use_optional_res(batch, ice->state.last_res.sf_cl_vp, false);
3966 }
3967
3968 if (clean & IRIS_DIRTY_BLEND_STATE) {
3969 iris_use_optional_res(batch, ice->state.last_res.blend, false);
3970 }
3971
3972 if (clean & IRIS_DIRTY_COLOR_CALC_STATE) {
3973 iris_use_optional_res(batch, ice->state.last_res.color_calc, false);
3974 }
3975
3976 if (clean & IRIS_DIRTY_SCISSOR_RECT) {
3977 iris_use_optional_res(batch, ice->state.last_res.scissor, false);
3978 }
3979
3980 if (ice->state.streamout_active && (clean & IRIS_DIRTY_SO_BUFFERS)) {
3981 for (int i = 0; i < 4; i++) {
3982 struct iris_stream_output_target *tgt =
3983 (void *) ice->state.so_target[i];
3984 if (tgt) {
3985 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
3986 true);
3987 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
3988 true);
3989 }
3990 }
3991 }
3992
3993 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3994 if (!(clean & (IRIS_DIRTY_CONSTANTS_VS << stage)))
3995 continue;
3996
3997 struct iris_shader_state *shs = &ice->state.shaders[stage];
3998 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3999
4000 if (!shader)
4001 continue;
4002
4003 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4004
4005 for (int i = 0; i < 4; i++) {
4006 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4007
4008 if (range->length == 0)
4009 continue;
4010
4011 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
4012 struct iris_resource *res = (void *) cbuf->data.res;
4013
4014 if (res)
4015 iris_use_pinned_bo(batch, res->bo, false);
4016 else
4017 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
4018 }
4019 }
4020
4021 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4022 if (clean & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4023 /* Re-pin any buffers referred to by the binding table. */
4024 iris_populate_binding_table(ice, batch, stage, true);
4025 }
4026 }
4027
4028 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4029 struct iris_shader_state *shs = &ice->state.shaders[stage];
4030 struct pipe_resource *res = shs->sampler_table.res;
4031 if (res)
4032 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4033 }
4034
4035 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4036 if (clean & (IRIS_DIRTY_VS << stage)) {
4037 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4038
4039 if (shader) {
4040 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
4041 iris_use_pinned_bo(batch, bo, false);
4042
4043 struct brw_stage_prog_data *prog_data = shader->prog_data;
4044
4045 if (prog_data->total_scratch > 0) {
4046 struct iris_bo *bo =
4047 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4048 iris_use_pinned_bo(batch, bo, true);
4049 }
4050 }
4051 }
4052 }
4053
4054 if (clean & IRIS_DIRTY_DEPTH_BUFFER) {
4055 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4056
4057 if (cso_fb->zsbuf) {
4058 struct iris_resource *zres, *sres;
4059 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
4060 &zres, &sres);
4061 if (zres) {
4062 iris_cache_flush_for_depth(batch, zres->bo);
4063
4064 iris_use_pinned_bo(batch, zres->bo,
4065 ice->state.depth_writes_enabled);
4066 if (zres->aux.bo) {
4067 iris_use_pinned_bo(batch, zres->aux.bo,
4068 ice->state.depth_writes_enabled);
4069 }
4070 }
4071
4072 if (sres) {
4073 iris_cache_flush_for_depth(batch, sres->bo);
4074
4075 iris_use_pinned_bo(batch, sres->bo,
4076 ice->state.stencil_writes_enabled);
4077 }
4078 }
4079 }
4080
4081 if (draw->index_size == 0 && ice->state.last_res.index_buffer) {
4082 /* This draw didn't emit a new index buffer, so we are inheriting the
4083 * older index buffer. This draw didn't need it, but future ones may.
4084 */
4085 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
4086 iris_use_pinned_bo(batch, bo, false);
4087 }
4088
4089 if (clean & IRIS_DIRTY_VERTEX_BUFFERS) {
4090 uint64_t bound = ice->state.bound_vertex_buffers;
4091 while (bound) {
4092 const int i = u_bit_scan64(&bound);
4093 struct pipe_resource *res = genx->vertex_buffers[i].resource;
4094 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4095 }
4096 }
4097 }
4098
4099 static void
4100 iris_restore_compute_saved_bos(struct iris_context *ice,
4101 struct iris_batch *batch,
4102 const struct pipe_grid_info *grid)
4103 {
4104 const uint64_t clean = ~ice->state.dirty;
4105
4106 const int stage = MESA_SHADER_COMPUTE;
4107 struct iris_shader_state *shs = &ice->state.shaders[stage];
4108
4109 if (clean & IRIS_DIRTY_CONSTANTS_CS) {
4110 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4111
4112 if (shader) {
4113 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4114 const struct brw_ubo_range *range = &prog_data->ubo_ranges[0];
4115
4116 if (range->length > 0) {
4117 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
4118 struct iris_resource *res = (void *) cbuf->data.res;
4119
4120 if (res)
4121 iris_use_pinned_bo(batch, res->bo, false);
4122 else
4123 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
4124 }
4125 }
4126 }
4127
4128 if (clean & IRIS_DIRTY_BINDINGS_CS) {
4129 /* Re-pin any buffers referred to by the binding table. */
4130 iris_populate_binding_table(ice, batch, stage, true);
4131 }
4132
4133 struct pipe_resource *sampler_res = shs->sampler_table.res;
4134 if (sampler_res)
4135 iris_use_pinned_bo(batch, iris_resource_bo(sampler_res), false);
4136
4137 if (clean & IRIS_DIRTY_CS) {
4138 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4139
4140 if (shader) {
4141 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
4142 iris_use_pinned_bo(batch, bo, false);
4143
4144 struct brw_stage_prog_data *prog_data = shader->prog_data;
4145
4146 if (prog_data->total_scratch > 0) {
4147 struct iris_bo *bo =
4148 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4149 iris_use_pinned_bo(batch, bo, true);
4150 }
4151 }
4152 }
4153 }
4154
4155 /**
4156 * Possibly emit STATE_BASE_ADDRESS to update Surface State Base Address.
4157 */
4158 static void
4159 iris_update_surface_base_address(struct iris_batch *batch,
4160 struct iris_binder *binder)
4161 {
4162 if (batch->last_surface_base_address == binder->bo->gtt_offset)
4163 return;
4164
4165 flush_for_state_base_change(batch);
4166
4167 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
4168 sba.SurfaceStateMOCS = MOCS_WB;
4169 sba.SurfaceStateBaseAddressModifyEnable = true;
4170 sba.SurfaceStateBaseAddress = ro_bo(binder->bo, 0);
4171 }
4172
4173 batch->last_surface_base_address = binder->bo->gtt_offset;
4174 }
4175
4176 static void
4177 iris_upload_dirty_render_state(struct iris_context *ice,
4178 struct iris_batch *batch,
4179 const struct pipe_draw_info *draw)
4180 {
4181 const uint64_t dirty = ice->state.dirty;
4182
4183 if (!(dirty & IRIS_ALL_DIRTY_FOR_RENDER))
4184 return;
4185
4186 struct iris_genx_state *genx = ice->state.genx;
4187 struct iris_binder *binder = &ice->state.binder;
4188 struct brw_wm_prog_data *wm_prog_data = (void *)
4189 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
4190
4191 if (dirty & IRIS_DIRTY_CC_VIEWPORT) {
4192 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4193 uint32_t cc_vp_address;
4194
4195 /* XXX: could avoid streaming for depth_clip [0,1] case. */
4196 uint32_t *cc_vp_map =
4197 stream_state(batch, ice->state.dynamic_uploader,
4198 &ice->state.last_res.cc_vp,
4199 4 * ice->state.num_viewports *
4200 GENX(CC_VIEWPORT_length), 32, &cc_vp_address);
4201 for (int i = 0; i < ice->state.num_viewports; i++) {
4202 float zmin, zmax;
4203 util_viewport_zmin_zmax(&ice->state.viewports[i],
4204 cso_rast->clip_halfz, &zmin, &zmax);
4205 if (cso_rast->depth_clip_near)
4206 zmin = 0.0;
4207 if (cso_rast->depth_clip_far)
4208 zmax = 1.0;
4209
4210 iris_pack_state(GENX(CC_VIEWPORT), cc_vp_map, ccv) {
4211 ccv.MinimumDepth = zmin;
4212 ccv.MaximumDepth = zmax;
4213 }
4214
4215 cc_vp_map += GENX(CC_VIEWPORT_length);
4216 }
4217
4218 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
4219 ptr.CCViewportPointer = cc_vp_address;
4220 }
4221 }
4222
4223 if (dirty & IRIS_DIRTY_SF_CL_VIEWPORT) {
4224 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4225 uint32_t sf_cl_vp_address;
4226 uint32_t *vp_map =
4227 stream_state(batch, ice->state.dynamic_uploader,
4228 &ice->state.last_res.sf_cl_vp,
4229 4 * ice->state.num_viewports *
4230 GENX(SF_CLIP_VIEWPORT_length), 64, &sf_cl_vp_address);
4231
4232 for (unsigned i = 0; i < ice->state.num_viewports; i++) {
4233 const struct pipe_viewport_state *state = &ice->state.viewports[i];
4234 float gb_xmin, gb_xmax, gb_ymin, gb_ymax;
4235
4236 float vp_xmin = viewport_extent(state, 0, -1.0f);
4237 float vp_xmax = viewport_extent(state, 0, 1.0f);
4238 float vp_ymin = viewport_extent(state, 1, -1.0f);
4239 float vp_ymax = viewport_extent(state, 1, 1.0f);
4240
4241 calculate_guardband_size(cso_fb->width, cso_fb->height,
4242 state->scale[0], state->scale[1],
4243 state->translate[0], state->translate[1],
4244 &gb_xmin, &gb_xmax, &gb_ymin, &gb_ymax);
4245
4246 iris_pack_state(GENX(SF_CLIP_VIEWPORT), vp_map, vp) {
4247 vp.ViewportMatrixElementm00 = state->scale[0];
4248 vp.ViewportMatrixElementm11 = state->scale[1];
4249 vp.ViewportMatrixElementm22 = state->scale[2];
4250 vp.ViewportMatrixElementm30 = state->translate[0];
4251 vp.ViewportMatrixElementm31 = state->translate[1];
4252 vp.ViewportMatrixElementm32 = state->translate[2];
4253 vp.XMinClipGuardband = gb_xmin;
4254 vp.XMaxClipGuardband = gb_xmax;
4255 vp.YMinClipGuardband = gb_ymin;
4256 vp.YMaxClipGuardband = gb_ymax;
4257 vp.XMinViewPort = MAX2(vp_xmin, 0);
4258 vp.XMaxViewPort = MIN2(vp_xmax, cso_fb->width) - 1;
4259 vp.YMinViewPort = MAX2(vp_ymin, 0);
4260 vp.YMaxViewPort = MIN2(vp_ymax, cso_fb->height) - 1;
4261 }
4262
4263 vp_map += GENX(SF_CLIP_VIEWPORT_length);
4264 }
4265
4266 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
4267 ptr.SFClipViewportPointer = sf_cl_vp_address;
4268 }
4269 }
4270
4271 if (dirty & IRIS_DIRTY_URB) {
4272 iris_upload_urb_config(ice, batch);
4273 }
4274
4275 if (dirty & IRIS_DIRTY_BLEND_STATE) {
4276 struct iris_blend_state *cso_blend = ice->state.cso_blend;
4277 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4278 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
4279 const int header_dwords = GENX(BLEND_STATE_length);
4280
4281 /* Always write at least one BLEND_STATE - the final RT message will
4282 * reference BLEND_STATE[0] even if there aren't color writes. There
4283 * may still be alpha testing, computed depth, and so on.
4284 */
4285 const int rt_dwords =
4286 MAX2(cso_fb->nr_cbufs, 1) * GENX(BLEND_STATE_ENTRY_length);
4287
4288 uint32_t blend_offset;
4289 uint32_t *blend_map =
4290 stream_state(batch, ice->state.dynamic_uploader,
4291 &ice->state.last_res.blend,
4292 4 * (header_dwords + rt_dwords), 64, &blend_offset);
4293
4294 uint32_t blend_state_header;
4295 iris_pack_state(GENX(BLEND_STATE), &blend_state_header, bs) {
4296 bs.AlphaTestEnable = cso_zsa->alpha.enabled;
4297 bs.AlphaTestFunction = translate_compare_func(cso_zsa->alpha.func);
4298 }
4299
4300 blend_map[0] = blend_state_header | cso_blend->blend_state[0];
4301 memcpy(&blend_map[1], &cso_blend->blend_state[1], 4 * rt_dwords);
4302
4303 iris_emit_cmd(batch, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
4304 ptr.BlendStatePointer = blend_offset;
4305 ptr.BlendStatePointerValid = true;
4306 }
4307 }
4308
4309 if (dirty & IRIS_DIRTY_COLOR_CALC_STATE) {
4310 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
4311 #if GEN_GEN == 8
4312 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
4313 #endif
4314 uint32_t cc_offset;
4315 void *cc_map =
4316 stream_state(batch, ice->state.dynamic_uploader,
4317 &ice->state.last_res.color_calc,
4318 sizeof(uint32_t) * GENX(COLOR_CALC_STATE_length),
4319 64, &cc_offset);
4320 iris_pack_state(GENX(COLOR_CALC_STATE), cc_map, cc) {
4321 cc.AlphaTestFormat = ALPHATEST_FLOAT32;
4322 cc.AlphaReferenceValueAsFLOAT32 = cso->alpha.ref_value;
4323 cc.BlendConstantColorRed = ice->state.blend_color.color[0];
4324 cc.BlendConstantColorGreen = ice->state.blend_color.color[1];
4325 cc.BlendConstantColorBlue = ice->state.blend_color.color[2];
4326 cc.BlendConstantColorAlpha = ice->state.blend_color.color[3];
4327 #if GEN_GEN == 8
4328 cc.StencilReferenceValue = p_stencil_refs->ref_value[0];
4329 cc.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
4330 #endif
4331 }
4332 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
4333 ptr.ColorCalcStatePointer = cc_offset;
4334 ptr.ColorCalcStatePointerValid = true;
4335 }
4336 }
4337
4338 /* Upload constants for TCS passthrough. */
4339 if ((dirty & IRIS_DIRTY_CONSTANTS_TCS) &&
4340 ice->shaders.prog[MESA_SHADER_TESS_CTRL] &&
4341 !ice->shaders.uncompiled[MESA_SHADER_TESS_CTRL]) {
4342 struct iris_compiled_shader *tes_shader = ice->shaders.prog[MESA_SHADER_TESS_EVAL];
4343 assert(tes_shader);
4344
4345 /* Passthrough always copies 2 vec4s, so when uploading data we ensure
4346 * it is in the right layout for TES.
4347 */
4348 float hdr[8] = {};
4349 struct brw_tes_prog_data *tes_prog_data = (void *) tes_shader->prog_data;
4350 switch (tes_prog_data->domain) {
4351 case BRW_TESS_DOMAIN_QUAD:
4352 for (int i = 0; i < 4; i++)
4353 hdr[7 - i] = ice->state.default_outer_level[i];
4354 hdr[3] = ice->state.default_inner_level[0];
4355 hdr[2] = ice->state.default_inner_level[1];
4356 break;
4357 case BRW_TESS_DOMAIN_TRI:
4358 for (int i = 0; i < 3; i++)
4359 hdr[7 - i] = ice->state.default_outer_level[i];
4360 hdr[4] = ice->state.default_inner_level[0];
4361 break;
4362 case BRW_TESS_DOMAIN_ISOLINE:
4363 hdr[7] = ice->state.default_outer_level[1];
4364 hdr[6] = ice->state.default_outer_level[0];
4365 break;
4366 }
4367
4368 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_TESS_CTRL];
4369 struct iris_const_buffer *cbuf = &shs->constbuf[0];
4370 u_upload_data(ice->ctx.const_uploader, 0, sizeof(hdr), 32,
4371 &hdr[0], &cbuf->data.offset,
4372 &cbuf->data.res);
4373 }
4374
4375 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4376 if (!(dirty & (IRIS_DIRTY_CONSTANTS_VS << stage)))
4377 continue;
4378
4379 struct iris_shader_state *shs = &ice->state.shaders[stage];
4380 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4381
4382 if (!shader)
4383 continue;
4384
4385 if (shs->cbuf0_needs_upload)
4386 upload_uniforms(ice, stage);
4387
4388 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4389
4390 iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_VS), pkt) {
4391 pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
4392 if (prog_data) {
4393 /* The Skylake PRM contains the following restriction:
4394 *
4395 * "The driver must ensure The following case does not occur
4396 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
4397 * buffer 3 read length equal to zero committed followed by a
4398 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
4399 * zero committed."
4400 *
4401 * To avoid this, we program the buffers in the highest slots.
4402 * This way, slot 0 is only used if slot 3 is also used.
4403 */
4404 int n = 3;
4405
4406 for (int i = 3; i >= 0; i--) {
4407 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4408
4409 if (range->length == 0)
4410 continue;
4411
4412 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
4413 struct iris_resource *res = (void *) cbuf->data.res;
4414
4415 assert(cbuf->data.offset % 32 == 0);
4416
4417 pkt.ConstantBody.ReadLength[n] = range->length;
4418 pkt.ConstantBody.Buffer[n] =
4419 res ? ro_bo(res->bo, range->start * 32 + cbuf->data.offset)
4420 : ro_bo(batch->screen->workaround_bo, 0);
4421 n--;
4422 }
4423 }
4424 }
4425 }
4426
4427 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4428 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4429 iris_emit_cmd(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), ptr) {
4430 ptr._3DCommandSubOpcode = 38 + stage;
4431 ptr.PointertoVSBindingTable = binder->bt_offset[stage];
4432 }
4433 }
4434 }
4435
4436 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4437 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4438 iris_populate_binding_table(ice, batch, stage, false);
4439 }
4440 }
4441
4442 if (ice->state.need_border_colors)
4443 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
4444
4445 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4446 if (!(dirty & (IRIS_DIRTY_SAMPLER_STATES_VS << stage)) ||
4447 !ice->shaders.prog[stage])
4448 continue;
4449
4450 struct iris_shader_state *shs = &ice->state.shaders[stage];
4451 struct pipe_resource *res = shs->sampler_table.res;
4452 if (res)
4453 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4454
4455 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
4456 ptr._3DCommandSubOpcode = 43 + stage;
4457 ptr.PointertoVSSamplerState = shs->sampler_table.offset;
4458 }
4459 }
4460
4461 if (dirty & IRIS_DIRTY_MULTISAMPLE) {
4462 iris_emit_cmd(batch, GENX(3DSTATE_MULTISAMPLE), ms) {
4463 ms.PixelLocation =
4464 ice->state.cso_rast->half_pixel_center ? CENTER : UL_CORNER;
4465 if (ice->state.framebuffer.samples > 0)
4466 ms.NumberofMultisamples = ffs(ice->state.framebuffer.samples) - 1;
4467 }
4468 }
4469
4470 if (dirty & IRIS_DIRTY_SAMPLE_MASK) {
4471 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_MASK), ms) {
4472 ms.SampleMask = ice->state.sample_mask;
4473 }
4474 }
4475
4476 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4477 if (!(dirty & (IRIS_DIRTY_VS << stage)))
4478 continue;
4479
4480 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4481
4482 if (shader) {
4483 struct iris_resource *cache = (void *) shader->assembly.res;
4484 iris_use_pinned_bo(batch, cache->bo, false);
4485 iris_batch_emit(batch, shader->derived_data,
4486 iris_derived_program_state_size(stage));
4487 } else {
4488 if (stage == MESA_SHADER_TESS_EVAL) {
4489 iris_emit_cmd(batch, GENX(3DSTATE_HS), hs);
4490 iris_emit_cmd(batch, GENX(3DSTATE_TE), te);
4491 iris_emit_cmd(batch, GENX(3DSTATE_DS), ds);
4492 } else if (stage == MESA_SHADER_GEOMETRY) {
4493 iris_emit_cmd(batch, GENX(3DSTATE_GS), gs);
4494 }
4495 }
4496 }
4497
4498 if (ice->state.streamout_active) {
4499 if (dirty & IRIS_DIRTY_SO_BUFFERS) {
4500 iris_batch_emit(batch, genx->so_buffers,
4501 4 * 4 * GENX(3DSTATE_SO_BUFFER_length));
4502 for (int i = 0; i < 4; i++) {
4503 struct iris_stream_output_target *tgt =
4504 (void *) ice->state.so_target[i];
4505 if (tgt) {
4506 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
4507 true);
4508 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
4509 true);
4510 }
4511 }
4512 }
4513
4514 if ((dirty & IRIS_DIRTY_SO_DECL_LIST) && ice->state.streamout) {
4515 uint32_t *decl_list =
4516 ice->state.streamout + GENX(3DSTATE_STREAMOUT_length);
4517 iris_batch_emit(batch, decl_list, 4 * ((decl_list[0] & 0xff) + 2));
4518 }
4519
4520 if (dirty & IRIS_DIRTY_STREAMOUT) {
4521 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4522
4523 uint32_t dynamic_sol[GENX(3DSTATE_STREAMOUT_length)];
4524 iris_pack_command(GENX(3DSTATE_STREAMOUT), dynamic_sol, sol) {
4525 sol.SOFunctionEnable = true;
4526 sol.SOStatisticsEnable = true;
4527
4528 sol.RenderingDisable = cso_rast->rasterizer_discard &&
4529 !ice->state.prims_generated_query_active;
4530 sol.ReorderMode = cso_rast->flatshade_first ? LEADING : TRAILING;
4531 }
4532
4533 assert(ice->state.streamout);
4534
4535 iris_emit_merge(batch, ice->state.streamout, dynamic_sol,
4536 GENX(3DSTATE_STREAMOUT_length));
4537 }
4538 } else {
4539 if (dirty & IRIS_DIRTY_STREAMOUT) {
4540 iris_emit_cmd(batch, GENX(3DSTATE_STREAMOUT), sol);
4541 }
4542 }
4543
4544 if (dirty & IRIS_DIRTY_CLIP) {
4545 struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4546 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4547
4548 uint32_t dynamic_clip[GENX(3DSTATE_CLIP_length)];
4549 iris_pack_command(GENX(3DSTATE_CLIP), &dynamic_clip, cl) {
4550 cl.StatisticsEnable = ice->state.statistics_counters_enabled;
4551 cl.ClipMode = cso_rast->rasterizer_discard ? CLIPMODE_REJECT_ALL
4552 : CLIPMODE_NORMAL;
4553 if (wm_prog_data->barycentric_interp_modes &
4554 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
4555 cl.NonPerspectiveBarycentricEnable = true;
4556
4557 cl.ForceZeroRTAIndexEnable = cso_fb->layers == 0;
4558 cl.MaximumVPIndex = ice->state.num_viewports - 1;
4559 }
4560 iris_emit_merge(batch, cso_rast->clip, dynamic_clip,
4561 ARRAY_SIZE(cso_rast->clip));
4562 }
4563
4564 if (dirty & IRIS_DIRTY_RASTER) {
4565 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4566 iris_batch_emit(batch, cso->raster, sizeof(cso->raster));
4567 iris_batch_emit(batch, cso->sf, sizeof(cso->sf));
4568
4569 }
4570
4571 if (dirty & IRIS_DIRTY_WM) {
4572 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4573 uint32_t dynamic_wm[GENX(3DSTATE_WM_length)];
4574
4575 iris_pack_command(GENX(3DSTATE_WM), &dynamic_wm, wm) {
4576 wm.StatisticsEnable = ice->state.statistics_counters_enabled;
4577
4578 wm.BarycentricInterpolationMode =
4579 wm_prog_data->barycentric_interp_modes;
4580
4581 if (wm_prog_data->early_fragment_tests)
4582 wm.EarlyDepthStencilControl = EDSC_PREPS;
4583 else if (wm_prog_data->has_side_effects)
4584 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
4585
4586 /* We could skip this bit if color writes are enabled. */
4587 if (wm_prog_data->has_side_effects || wm_prog_data->uses_kill)
4588 wm.ForceThreadDispatchEnable = ForceON;
4589 }
4590 iris_emit_merge(batch, cso->wm, dynamic_wm, ARRAY_SIZE(cso->wm));
4591 }
4592
4593 if (dirty & IRIS_DIRTY_SBE) {
4594 iris_emit_sbe(batch, ice);
4595 }
4596
4597 if (dirty & IRIS_DIRTY_PS_BLEND) {
4598 struct iris_blend_state *cso_blend = ice->state.cso_blend;
4599 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
4600 const struct shader_info *fs_info =
4601 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
4602
4603 uint32_t dynamic_pb[GENX(3DSTATE_PS_BLEND_length)];
4604 iris_pack_command(GENX(3DSTATE_PS_BLEND), &dynamic_pb, pb) {
4605 pb.HasWriteableRT = has_writeable_rt(cso_blend, fs_info);
4606 pb.AlphaTestEnable = cso_zsa->alpha.enabled;
4607 }
4608
4609 iris_emit_merge(batch, cso_blend->ps_blend, dynamic_pb,
4610 ARRAY_SIZE(cso_blend->ps_blend));
4611 }
4612
4613 if (dirty & IRIS_DIRTY_WM_DEPTH_STENCIL) {
4614 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
4615 #if GEN_GEN >= 9
4616 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
4617 uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
4618 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
4619 wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
4620 wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
4621 }
4622 iris_emit_merge(batch, cso->wmds, stencil_refs, ARRAY_SIZE(cso->wmds));
4623 #else
4624 iris_batch_emit(batch, cso->wmds, sizeof(cso->wmds));
4625 #endif
4626 }
4627
4628 if (dirty & IRIS_DIRTY_SCISSOR_RECT) {
4629 uint32_t scissor_offset =
4630 emit_state(batch, ice->state.dynamic_uploader,
4631 &ice->state.last_res.scissor,
4632 ice->state.scissors,
4633 sizeof(struct pipe_scissor_state) *
4634 ice->state.num_viewports, 32);
4635
4636 iris_emit_cmd(batch, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
4637 ptr.ScissorRectPointer = scissor_offset;
4638 }
4639 }
4640
4641 if (dirty & IRIS_DIRTY_DEPTH_BUFFER) {
4642 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4643 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
4644
4645 iris_batch_emit(batch, cso_z->packets, sizeof(cso_z->packets));
4646
4647 if (cso_fb->zsbuf) {
4648 struct iris_resource *zres, *sres;
4649 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
4650 &zres, &sres);
4651 if (zres) {
4652 iris_use_pinned_bo(batch, zres->bo,
4653 ice->state.depth_writes_enabled);
4654 if (zres->aux.bo) {
4655 iris_use_pinned_bo(batch, zres->aux.bo,
4656 ice->state.depth_writes_enabled);
4657 }
4658 }
4659
4660 if (sres) {
4661 iris_use_pinned_bo(batch, sres->bo,
4662 ice->state.stencil_writes_enabled);
4663 }
4664 }
4665 }
4666
4667 if (dirty & IRIS_DIRTY_POLYGON_STIPPLE) {
4668 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
4669 for (int i = 0; i < 32; i++) {
4670 poly.PatternRow[i] = ice->state.poly_stipple.stipple[i];
4671 }
4672 }
4673 }
4674
4675 if (dirty & IRIS_DIRTY_LINE_STIPPLE) {
4676 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4677 iris_batch_emit(batch, cso->line_stipple, sizeof(cso->line_stipple));
4678 }
4679
4680 if (dirty & IRIS_DIRTY_VF_TOPOLOGY) {
4681 iris_emit_cmd(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
4682 topo.PrimitiveTopologyType =
4683 translate_prim_type(draw->mode, draw->vertices_per_patch);
4684 }
4685 }
4686
4687 if (dirty & IRIS_DIRTY_VERTEX_BUFFERS) {
4688 int count = util_bitcount64(ice->state.bound_vertex_buffers);
4689 int dynamic_bound = ice->state.bound_vertex_buffers;
4690
4691 if (ice->state.vs_uses_draw_params) {
4692 if (ice->draw.draw_params_offset == 0) {
4693 u_upload_data(ice->state.dynamic_uploader, 0, sizeof(ice->draw.params),
4694 4, &ice->draw.params, &ice->draw.draw_params_offset,
4695 &ice->draw.draw_params_res);
4696 }
4697 assert(ice->draw.draw_params_res);
4698
4699 struct iris_vertex_buffer_state *state =
4700 &(ice->state.genx->vertex_buffers[count]);
4701 pipe_resource_reference(&state->resource, ice->draw.draw_params_res);
4702 struct iris_resource *res = (void *) state->resource;
4703
4704 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
4705 vb.VertexBufferIndex = count;
4706 vb.AddressModifyEnable = true;
4707 vb.BufferPitch = 0;
4708 vb.BufferSize = res->bo->size - ice->draw.draw_params_offset;
4709 vb.BufferStartingAddress =
4710 ro_bo(NULL, res->bo->gtt_offset +
4711 (int) ice->draw.draw_params_offset);
4712 vb.MOCS = mocs(res->bo);
4713 }
4714 dynamic_bound |= 1ull << count;
4715 count++;
4716 }
4717
4718 if (ice->state.vs_uses_derived_draw_params) {
4719 u_upload_data(ice->state.dynamic_uploader, 0,
4720 sizeof(ice->draw.derived_params), 4,
4721 &ice->draw.derived_params,
4722 &ice->draw.derived_draw_params_offset,
4723 &ice->draw.derived_draw_params_res);
4724
4725 struct iris_vertex_buffer_state *state =
4726 &(ice->state.genx->vertex_buffers[count]);
4727 pipe_resource_reference(&state->resource,
4728 ice->draw.derived_draw_params_res);
4729 struct iris_resource *res = (void *) ice->draw.derived_draw_params_res;
4730
4731 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
4732 vb.VertexBufferIndex = count;
4733 vb.AddressModifyEnable = true;
4734 vb.BufferPitch = 0;
4735 vb.BufferSize =
4736 res->bo->size - ice->draw.derived_draw_params_offset;
4737 vb.BufferStartingAddress =
4738 ro_bo(NULL, res->bo->gtt_offset +
4739 (int) ice->draw.derived_draw_params_offset);
4740 vb.MOCS = mocs(res->bo);
4741 }
4742 dynamic_bound |= 1ull << count;
4743 count++;
4744 }
4745
4746 if (count) {
4747 /* The VF cache designers cut corners, and made the cache key's
4748 * <VertexBufferIndex, Memory Address> tuple only consider the bottom
4749 * 32 bits of the address. If you have two vertex buffers which get
4750 * placed exactly 4 GiB apart and use them in back-to-back draw calls,
4751 * you can get collisions (even within a single batch).
4752 *
4753 * So, we need to do a VF cache invalidate if the buffer for a VB
4754 * slot slot changes [48:32] address bits from the previous time.
4755 */
4756 unsigned flush_flags = 0;
4757
4758 uint64_t bound = dynamic_bound;
4759 while (bound) {
4760 const int i = u_bit_scan64(&bound);
4761 uint16_t high_bits = 0;
4762
4763 struct iris_resource *res =
4764 (void *) genx->vertex_buffers[i].resource;
4765 if (res) {
4766 iris_use_pinned_bo(batch, res->bo, false);
4767
4768 high_bits = res->bo->gtt_offset >> 32ull;
4769 if (high_bits != ice->state.last_vbo_high_bits[i]) {
4770 flush_flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE |
4771 PIPE_CONTROL_CS_STALL;
4772 ice->state.last_vbo_high_bits[i] = high_bits;
4773 }
4774
4775 /* If the buffer was written to by streamout, we may need
4776 * to stall so those writes land and become visible to the
4777 * vertex fetcher.
4778 *
4779 * TODO: This may stall more than necessary.
4780 */
4781 if (res->bind_history & PIPE_BIND_STREAM_OUTPUT)
4782 flush_flags |= PIPE_CONTROL_CS_STALL;
4783 }
4784 }
4785
4786 if (flush_flags)
4787 iris_emit_pipe_control_flush(batch, flush_flags);
4788
4789 const unsigned vb_dwords = GENX(VERTEX_BUFFER_STATE_length);
4790
4791 uint32_t *map =
4792 iris_get_command_space(batch, 4 * (1 + vb_dwords * count));
4793 _iris_pack_command(batch, GENX(3DSTATE_VERTEX_BUFFERS), map, vb) {
4794 vb.DWordLength = (vb_dwords * count + 1) - 2;
4795 }
4796 map += 1;
4797
4798 bound = dynamic_bound;
4799 while (bound) {
4800 const int i = u_bit_scan64(&bound);
4801 memcpy(map, genx->vertex_buffers[i].state,
4802 sizeof(uint32_t) * vb_dwords);
4803 map += vb_dwords;
4804 }
4805 }
4806 }
4807
4808 if (dirty & IRIS_DIRTY_VERTEX_ELEMENTS) {
4809 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
4810 const unsigned entries = MAX2(cso->count, 1);
4811 if (!(ice->state.vs_needs_sgvs_element ||
4812 ice->state.vs_uses_derived_draw_params ||
4813 ice->state.vs_needs_edge_flag)) {
4814 iris_batch_emit(batch, cso->vertex_elements, sizeof(uint32_t) *
4815 (1 + entries * GENX(VERTEX_ELEMENT_STATE_length)));
4816 } else {
4817 uint32_t dynamic_ves[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
4818 const unsigned dyn_count = cso->count +
4819 ice->state.vs_needs_sgvs_element +
4820 ice->state.vs_uses_derived_draw_params;
4821
4822 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS),
4823 &dynamic_ves, ve) {
4824 ve.DWordLength =
4825 1 + GENX(VERTEX_ELEMENT_STATE_length) * dyn_count - 2;
4826 }
4827 memcpy(&dynamic_ves[1], &cso->vertex_elements[1],
4828 (cso->count - ice->state.vs_needs_edge_flag) *
4829 GENX(VERTEX_ELEMENT_STATE_length) * sizeof(uint32_t));
4830 uint32_t *ve_pack_dest =
4831 &dynamic_ves[1 + (cso->count - ice->state.vs_needs_edge_flag) *
4832 GENX(VERTEX_ELEMENT_STATE_length)];
4833
4834 if (ice->state.vs_needs_sgvs_element) {
4835 uint32_t base_ctrl = ice->state.vs_uses_draw_params ?
4836 VFCOMP_STORE_SRC : VFCOMP_STORE_0;
4837 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
4838 ve.Valid = true;
4839 ve.VertexBufferIndex =
4840 util_bitcount64(ice->state.bound_vertex_buffers);
4841 ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
4842 ve.Component0Control = base_ctrl;
4843 ve.Component1Control = base_ctrl;
4844 ve.Component2Control = VFCOMP_STORE_0;
4845 ve.Component3Control = VFCOMP_STORE_0;
4846 }
4847 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
4848 }
4849 if (ice->state.vs_uses_derived_draw_params) {
4850 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
4851 ve.Valid = true;
4852 ve.VertexBufferIndex =
4853 util_bitcount64(ice->state.bound_vertex_buffers) +
4854 ice->state.vs_uses_draw_params;
4855 ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
4856 ve.Component0Control = VFCOMP_STORE_SRC;
4857 ve.Component1Control = VFCOMP_STORE_SRC;
4858 ve.Component2Control = VFCOMP_STORE_0;
4859 ve.Component3Control = VFCOMP_STORE_0;
4860 }
4861 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
4862 }
4863 if (ice->state.vs_needs_edge_flag) {
4864 for (int i = 0; i < GENX(VERTEX_ELEMENT_STATE_length); i++)
4865 ve_pack_dest[i] = cso->edgeflag_ve[i];
4866 }
4867
4868 iris_batch_emit(batch, &dynamic_ves, sizeof(uint32_t) *
4869 (1 + dyn_count * GENX(VERTEX_ELEMENT_STATE_length)));
4870 }
4871
4872 if (!ice->state.vs_needs_edge_flag) {
4873 iris_batch_emit(batch, cso->vf_instancing, sizeof(uint32_t) *
4874 entries * GENX(3DSTATE_VF_INSTANCING_length));
4875 } else {
4876 assert(cso->count > 0);
4877 const unsigned edgeflag_index = cso->count - 1;
4878 uint32_t dynamic_vfi[33 * GENX(3DSTATE_VF_INSTANCING_length)];
4879 memcpy(&dynamic_vfi[0], cso->vf_instancing, edgeflag_index *
4880 GENX(3DSTATE_VF_INSTANCING_length) * sizeof(uint32_t));
4881
4882 uint32_t *vfi_pack_dest = &dynamic_vfi[0] +
4883 edgeflag_index * GENX(3DSTATE_VF_INSTANCING_length);
4884 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
4885 vi.VertexElementIndex = edgeflag_index +
4886 ice->state.vs_needs_sgvs_element +
4887 ice->state.vs_uses_derived_draw_params;
4888 }
4889 for (int i = 0; i < GENX(3DSTATE_VF_INSTANCING_length); i++)
4890 vfi_pack_dest[i] |= cso->edgeflag_vfi[i];
4891
4892 iris_batch_emit(batch, &dynamic_vfi[0], sizeof(uint32_t) *
4893 entries * GENX(3DSTATE_VF_INSTANCING_length));
4894 }
4895 }
4896
4897 if (dirty & IRIS_DIRTY_VF_SGVS) {
4898 const struct brw_vs_prog_data *vs_prog_data = (void *)
4899 ice->shaders.prog[MESA_SHADER_VERTEX]->prog_data;
4900 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
4901
4902 iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS), sgv) {
4903 if (vs_prog_data->uses_vertexid) {
4904 sgv.VertexIDEnable = true;
4905 sgv.VertexIDComponentNumber = 2;
4906 sgv.VertexIDElementOffset =
4907 cso->count - ice->state.vs_needs_edge_flag;
4908 }
4909
4910 if (vs_prog_data->uses_instanceid) {
4911 sgv.InstanceIDEnable = true;
4912 sgv.InstanceIDComponentNumber = 3;
4913 sgv.InstanceIDElementOffset =
4914 cso->count - ice->state.vs_needs_edge_flag;
4915 }
4916 }
4917 }
4918
4919 if (dirty & IRIS_DIRTY_VF) {
4920 iris_emit_cmd(batch, GENX(3DSTATE_VF), vf) {
4921 if (draw->primitive_restart) {
4922 vf.IndexedDrawCutIndexEnable = true;
4923 vf.CutIndex = draw->restart_index;
4924 }
4925 }
4926 }
4927
4928 /* TODO: Gen8 PMA fix */
4929 }
4930
4931 static void
4932 iris_upload_render_state(struct iris_context *ice,
4933 struct iris_batch *batch,
4934 const struct pipe_draw_info *draw)
4935 {
4936 /* Always pin the binder. If we're emitting new binding table pointers,
4937 * we need it. If not, we're probably inheriting old tables via the
4938 * context, and need it anyway. Since true zero-bindings cases are
4939 * practically non-existent, just pin it and avoid last_res tracking.
4940 */
4941 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
4942
4943 if (!batch->contains_draw) {
4944 iris_restore_render_saved_bos(ice, batch, draw);
4945 batch->contains_draw = true;
4946 }
4947
4948 iris_upload_dirty_render_state(ice, batch, draw);
4949
4950 if (draw->index_size > 0) {
4951 unsigned offset;
4952
4953 if (draw->has_user_indices) {
4954 u_upload_data(ice->ctx.stream_uploader, 0,
4955 draw->count * draw->index_size, 4, draw->index.user,
4956 &offset, &ice->state.last_res.index_buffer);
4957 } else {
4958 struct iris_resource *res = (void *) draw->index.resource;
4959 res->bind_history |= PIPE_BIND_INDEX_BUFFER;
4960
4961 pipe_resource_reference(&ice->state.last_res.index_buffer,
4962 draw->index.resource);
4963 offset = 0;
4964 }
4965
4966 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
4967
4968 iris_emit_cmd(batch, GENX(3DSTATE_INDEX_BUFFER), ib) {
4969 ib.IndexFormat = draw->index_size >> 1;
4970 ib.MOCS = mocs(bo);
4971 ib.BufferSize = bo->size;
4972 ib.BufferStartingAddress = ro_bo(bo, offset);
4973 }
4974
4975 /* The VF cache key only uses 32-bits, see vertex buffer comment above */
4976 uint16_t high_bits = bo->gtt_offset >> 32ull;
4977 if (high_bits != ice->state.last_index_bo_high_bits) {
4978 iris_emit_pipe_control_flush(batch, PIPE_CONTROL_VF_CACHE_INVALIDATE |
4979 PIPE_CONTROL_CS_STALL);
4980 ice->state.last_index_bo_high_bits = high_bits;
4981 }
4982 }
4983
4984 #define _3DPRIM_END_OFFSET 0x2420
4985 #define _3DPRIM_START_VERTEX 0x2430
4986 #define _3DPRIM_VERTEX_COUNT 0x2434
4987 #define _3DPRIM_INSTANCE_COUNT 0x2438
4988 #define _3DPRIM_START_INSTANCE 0x243C
4989 #define _3DPRIM_BASE_VERTEX 0x2440
4990
4991 if (draw->indirect) {
4992 /* We don't support this MultidrawIndirect. */
4993 assert(!draw->indirect->indirect_draw_count);
4994
4995 struct iris_bo *bo = iris_resource_bo(draw->indirect->buffer);
4996 assert(bo);
4997
4998 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4999 lrm.RegisterAddress = _3DPRIM_VERTEX_COUNT;
5000 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 0);
5001 }
5002 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5003 lrm.RegisterAddress = _3DPRIM_INSTANCE_COUNT;
5004 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 4);
5005 }
5006 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5007 lrm.RegisterAddress = _3DPRIM_START_VERTEX;
5008 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 8);
5009 }
5010 if (draw->index_size) {
5011 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5012 lrm.RegisterAddress = _3DPRIM_BASE_VERTEX;
5013 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
5014 }
5015 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5016 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
5017 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 16);
5018 }
5019 } else {
5020 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5021 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
5022 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
5023 }
5024 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
5025 lri.RegisterOffset = _3DPRIM_BASE_VERTEX;
5026 lri.DataDWord = 0;
5027 }
5028 }
5029 } else if (draw->count_from_stream_output) {
5030 struct iris_stream_output_target *so =
5031 (void *) draw->count_from_stream_output;
5032
5033 /* XXX: Replace with actual cache tracking */
5034 iris_emit_pipe_control_flush(batch, PIPE_CONTROL_CS_STALL);
5035
5036 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5037 lrm.RegisterAddress = CS_GPR(0);
5038 lrm.MemoryAddress =
5039 ro_bo(iris_resource_bo(so->offset.res), so->offset.offset);
5040 }
5041 iris_math_div32_gpr0(ice, batch, so->stride);
5042 _iris_emit_lrr(batch, _3DPRIM_VERTEX_COUNT, CS_GPR(0));
5043
5044 _iris_emit_lri(batch, _3DPRIM_START_VERTEX, 0);
5045 _iris_emit_lri(batch, _3DPRIM_BASE_VERTEX, 0);
5046 _iris_emit_lri(batch, _3DPRIM_START_INSTANCE, 0);
5047 _iris_emit_lri(batch, _3DPRIM_INSTANCE_COUNT, draw->instance_count);
5048 }
5049
5050 iris_emit_cmd(batch, GENX(3DPRIMITIVE), prim) {
5051 prim.VertexAccessType = draw->index_size > 0 ? RANDOM : SEQUENTIAL;
5052 prim.PredicateEnable =
5053 ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT;
5054
5055 if (draw->indirect || draw->count_from_stream_output) {
5056 prim.IndirectParameterEnable = true;
5057 } else {
5058 prim.StartInstanceLocation = draw->start_instance;
5059 prim.InstanceCount = draw->instance_count;
5060 prim.VertexCountPerInstance = draw->count;
5061
5062 // XXX: this is probably bonkers.
5063 prim.StartVertexLocation = draw->start;
5064
5065 if (draw->index_size) {
5066 prim.BaseVertexLocation += draw->index_bias;
5067 } else {
5068 prim.StartVertexLocation += draw->index_bias;
5069 }
5070
5071 //prim.BaseVertexLocation = ...;
5072 }
5073 }
5074 }
5075
5076 static void
5077 iris_upload_compute_state(struct iris_context *ice,
5078 struct iris_batch *batch,
5079 const struct pipe_grid_info *grid)
5080 {
5081 const uint64_t dirty = ice->state.dirty;
5082 struct iris_screen *screen = batch->screen;
5083 const struct gen_device_info *devinfo = &screen->devinfo;
5084 struct iris_binder *binder = &ice->state.binder;
5085 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
5086 struct iris_compiled_shader *shader =
5087 ice->shaders.prog[MESA_SHADER_COMPUTE];
5088 struct brw_stage_prog_data *prog_data = shader->prog_data;
5089 struct brw_cs_prog_data *cs_prog_data = (void *) prog_data;
5090
5091 /* Always pin the binder. If we're emitting new binding table pointers,
5092 * we need it. If not, we're probably inheriting old tables via the
5093 * context, and need it anyway. Since true zero-bindings cases are
5094 * practically non-existent, just pin it and avoid last_res tracking.
5095 */
5096 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
5097
5098 if ((dirty & IRIS_DIRTY_CONSTANTS_CS) && shs->cbuf0_needs_upload)
5099 upload_uniforms(ice, MESA_SHADER_COMPUTE);
5100
5101 if (dirty & IRIS_DIRTY_BINDINGS_CS)
5102 iris_populate_binding_table(ice, batch, MESA_SHADER_COMPUTE, false);
5103
5104 iris_use_optional_res(batch, shs->sampler_table.res, false);
5105 iris_use_pinned_bo(batch, iris_resource_bo(shader->assembly.res), false);
5106
5107 if (ice->state.need_border_colors)
5108 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
5109
5110 if (dirty & IRIS_DIRTY_CS) {
5111 /* The MEDIA_VFE_STATE documentation for Gen8+ says:
5112 *
5113 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
5114 * the only bits that are changed are scoreboard related: Scoreboard
5115 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard Delta. For
5116 * these scoreboard related states, a MEDIA_STATE_FLUSH is
5117 * sufficient."
5118 */
5119 iris_emit_pipe_control_flush(batch, PIPE_CONTROL_CS_STALL);
5120
5121 iris_emit_cmd(batch, GENX(MEDIA_VFE_STATE), vfe) {
5122 if (prog_data->total_scratch) {
5123 struct iris_bo *bo =
5124 iris_get_scratch_space(ice, prog_data->total_scratch,
5125 MESA_SHADER_COMPUTE);
5126 vfe.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
5127 vfe.ScratchSpaceBasePointer = rw_bo(bo, 0);
5128 }
5129
5130 vfe.MaximumNumberofThreads =
5131 devinfo->max_cs_threads * screen->subslice_total - 1;
5132 #if GEN_GEN < 11
5133 vfe.ResetGatewayTimer =
5134 Resettingrelativetimerandlatchingtheglobaltimestamp;
5135 #endif
5136 #if GEN_GEN == 8
5137 vfe.BypassGatewayControl = true;
5138 #endif
5139 vfe.NumberofURBEntries = 2;
5140 vfe.URBEntryAllocationSize = 2;
5141
5142 vfe.CURBEAllocationSize =
5143 ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
5144 cs_prog_data->push.cross_thread.regs, 2);
5145 }
5146 }
5147
5148 /* TODO: Combine subgroup-id with cbuf0 so we can push regular uniforms */
5149 uint32_t curbe_data_offset = 0;
5150 assert(cs_prog_data->push.cross_thread.dwords == 0 &&
5151 cs_prog_data->push.per_thread.dwords == 1 &&
5152 cs_prog_data->base.param[0] == BRW_PARAM_BUILTIN_SUBGROUP_ID);
5153 struct pipe_resource *curbe_data_res = NULL;
5154 uint32_t *curbe_data_map =
5155 stream_state(batch, ice->state.dynamic_uploader, &curbe_data_res,
5156 ALIGN(cs_prog_data->push.total.size, 64), 64,
5157 &curbe_data_offset);
5158 assert(curbe_data_map);
5159 memset(curbe_data_map, 0x5a, ALIGN(cs_prog_data->push.total.size, 64));
5160 iris_fill_cs_push_const_buffer(cs_prog_data, curbe_data_map);
5161
5162 if (dirty & IRIS_DIRTY_CONSTANTS_CS) {
5163 iris_emit_cmd(batch, GENX(MEDIA_CURBE_LOAD), curbe) {
5164 curbe.CURBETotalDataLength =
5165 ALIGN(cs_prog_data->push.total.size, 64);
5166 curbe.CURBEDataStartAddress = curbe_data_offset;
5167 }
5168 }
5169
5170 if (dirty & (IRIS_DIRTY_SAMPLER_STATES_CS |
5171 IRIS_DIRTY_BINDINGS_CS |
5172 IRIS_DIRTY_CONSTANTS_CS |
5173 IRIS_DIRTY_CS)) {
5174 struct pipe_resource *desc_res = NULL;
5175 uint32_t desc[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
5176
5177 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), desc, idd) {
5178 idd.SamplerStatePointer = shs->sampler_table.offset;
5179 idd.BindingTablePointer = binder->bt_offset[MESA_SHADER_COMPUTE];
5180 }
5181
5182 for (int i = 0; i < GENX(INTERFACE_DESCRIPTOR_DATA_length); i++)
5183 desc[i] |= ((uint32_t *) shader->derived_data)[i];
5184
5185 iris_emit_cmd(batch, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
5186 load.InterfaceDescriptorTotalLength =
5187 GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
5188 load.InterfaceDescriptorDataStartAddress =
5189 emit_state(batch, ice->state.dynamic_uploader,
5190 &desc_res, desc, sizeof(desc), 32);
5191 }
5192
5193 pipe_resource_reference(&desc_res, NULL);
5194 }
5195
5196 uint32_t group_size = grid->block[0] * grid->block[1] * grid->block[2];
5197 uint32_t remainder = group_size & (cs_prog_data->simd_size - 1);
5198 uint32_t right_mask;
5199
5200 if (remainder > 0)
5201 right_mask = ~0u >> (32 - remainder);
5202 else
5203 right_mask = ~0u >> (32 - cs_prog_data->simd_size);
5204
5205 #define GPGPU_DISPATCHDIMX 0x2500
5206 #define GPGPU_DISPATCHDIMY 0x2504
5207 #define GPGPU_DISPATCHDIMZ 0x2508
5208
5209 if (grid->indirect) {
5210 struct iris_state_ref *grid_size = &ice->state.grid_size;
5211 struct iris_bo *bo = iris_resource_bo(grid_size->res);
5212 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5213 lrm.RegisterAddress = GPGPU_DISPATCHDIMX;
5214 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 0);
5215 }
5216 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5217 lrm.RegisterAddress = GPGPU_DISPATCHDIMY;
5218 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 4);
5219 }
5220 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5221 lrm.RegisterAddress = GPGPU_DISPATCHDIMZ;
5222 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 8);
5223 }
5224 }
5225
5226 iris_emit_cmd(batch, GENX(GPGPU_WALKER), ggw) {
5227 ggw.IndirectParameterEnable = grid->indirect != NULL;
5228 ggw.SIMDSize = cs_prog_data->simd_size / 16;
5229 ggw.ThreadDepthCounterMaximum = 0;
5230 ggw.ThreadHeightCounterMaximum = 0;
5231 ggw.ThreadWidthCounterMaximum = cs_prog_data->threads - 1;
5232 ggw.ThreadGroupIDXDimension = grid->grid[0];
5233 ggw.ThreadGroupIDYDimension = grid->grid[1];
5234 ggw.ThreadGroupIDZDimension = grid->grid[2];
5235 ggw.RightExecutionMask = right_mask;
5236 ggw.BottomExecutionMask = 0xffffffff;
5237 }
5238
5239 iris_emit_cmd(batch, GENX(MEDIA_STATE_FLUSH), msf);
5240
5241 if (!batch->contains_draw) {
5242 iris_restore_compute_saved_bos(ice, batch, grid);
5243 batch->contains_draw = true;
5244 }
5245 }
5246
5247 /**
5248 * State module teardown.
5249 */
5250 static void
5251 iris_destroy_state(struct iris_context *ice)
5252 {
5253 struct iris_genx_state *genx = ice->state.genx;
5254
5255 uint64_t bound_vbs = ice->state.bound_vertex_buffers;
5256 while (bound_vbs) {
5257 const int i = u_bit_scan64(&bound_vbs);
5258 pipe_resource_reference(&genx->vertex_buffers[i].resource, NULL);
5259 }
5260 free(ice->state.genx);
5261
5262 for (unsigned i = 0; i < ice->state.framebuffer.nr_cbufs; i++) {
5263 pipe_surface_reference(&ice->state.framebuffer.cbufs[i], NULL);
5264 }
5265 pipe_surface_reference(&ice->state.framebuffer.zsbuf, NULL);
5266
5267 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
5268 struct iris_shader_state *shs = &ice->state.shaders[stage];
5269 pipe_resource_reference(&shs->sampler_table.res, NULL);
5270 for (int i = 0; i < PIPE_MAX_CONSTANT_BUFFERS; i++) {
5271 pipe_resource_reference(&shs->constbuf[i].data.res, NULL);
5272 pipe_resource_reference(&shs->constbuf[i].surface_state.res, NULL);
5273 }
5274 for (int i = 0; i < PIPE_MAX_SHADER_IMAGES; i++) {
5275 pipe_resource_reference(&shs->image[i].res, NULL);
5276 pipe_resource_reference(&shs->image[i].surface_state.res, NULL);
5277 }
5278 for (int i = 0; i < PIPE_MAX_SHADER_BUFFERS; i++) {
5279 pipe_resource_reference(&shs->ssbo[i], NULL);
5280 pipe_resource_reference(&shs->ssbo_surface_state[i].res, NULL);
5281 }
5282 for (int i = 0; i < IRIS_MAX_TEXTURE_SAMPLERS; i++) {
5283 pipe_sampler_view_reference((struct pipe_sampler_view **)
5284 &shs->textures[i], NULL);
5285 }
5286 }
5287
5288 pipe_resource_reference(&ice->state.grid_size.res, NULL);
5289 pipe_resource_reference(&ice->state.grid_surf_state.res, NULL);
5290
5291 pipe_resource_reference(&ice->state.null_fb.res, NULL);
5292 pipe_resource_reference(&ice->state.unbound_tex.res, NULL);
5293
5294 pipe_resource_reference(&ice->state.last_res.cc_vp, NULL);
5295 pipe_resource_reference(&ice->state.last_res.sf_cl_vp, NULL);
5296 pipe_resource_reference(&ice->state.last_res.color_calc, NULL);
5297 pipe_resource_reference(&ice->state.last_res.scissor, NULL);
5298 pipe_resource_reference(&ice->state.last_res.blend, NULL);
5299 pipe_resource_reference(&ice->state.last_res.index_buffer, NULL);
5300 }
5301
5302 /* ------------------------------------------------------------------- */
5303
5304 static void
5305 iris_load_register_reg32(struct iris_batch *batch, uint32_t dst,
5306 uint32_t src)
5307 {
5308 _iris_emit_lrr(batch, dst, src);
5309 }
5310
5311 static void
5312 iris_load_register_reg64(struct iris_batch *batch, uint32_t dst,
5313 uint32_t src)
5314 {
5315 _iris_emit_lrr(batch, dst, src);
5316 _iris_emit_lrr(batch, dst + 4, src + 4);
5317 }
5318
5319 static void
5320 iris_load_register_imm32(struct iris_batch *batch, uint32_t reg,
5321 uint32_t val)
5322 {
5323 _iris_emit_lri(batch, reg, val);
5324 }
5325
5326 static void
5327 iris_load_register_imm64(struct iris_batch *batch, uint32_t reg,
5328 uint64_t val)
5329 {
5330 _iris_emit_lri(batch, reg + 0, val & 0xffffffff);
5331 _iris_emit_lri(batch, reg + 4, val >> 32);
5332 }
5333
5334 /**
5335 * Emit MI_LOAD_REGISTER_MEM to load a 32-bit MMIO register from a buffer.
5336 */
5337 static void
5338 iris_load_register_mem32(struct iris_batch *batch, uint32_t reg,
5339 struct iris_bo *bo, uint32_t offset)
5340 {
5341 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5342 lrm.RegisterAddress = reg;
5343 lrm.MemoryAddress = ro_bo(bo, offset);
5344 }
5345 }
5346
5347 /**
5348 * Load a 64-bit value from a buffer into a MMIO register via
5349 * two MI_LOAD_REGISTER_MEM commands.
5350 */
5351 static void
5352 iris_load_register_mem64(struct iris_batch *batch, uint32_t reg,
5353 struct iris_bo *bo, uint32_t offset)
5354 {
5355 iris_load_register_mem32(batch, reg + 0, bo, offset + 0);
5356 iris_load_register_mem32(batch, reg + 4, bo, offset + 4);
5357 }
5358
5359 static void
5360 iris_store_register_mem32(struct iris_batch *batch, uint32_t reg,
5361 struct iris_bo *bo, uint32_t offset,
5362 bool predicated)
5363 {
5364 iris_emit_cmd(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
5365 srm.RegisterAddress = reg;
5366 srm.MemoryAddress = rw_bo(bo, offset);
5367 srm.PredicateEnable = predicated;
5368 }
5369 }
5370
5371 static void
5372 iris_store_register_mem64(struct iris_batch *batch, uint32_t reg,
5373 struct iris_bo *bo, uint32_t offset,
5374 bool predicated)
5375 {
5376 iris_store_register_mem32(batch, reg + 0, bo, offset + 0, predicated);
5377 iris_store_register_mem32(batch, reg + 4, bo, offset + 4, predicated);
5378 }
5379
5380 static void
5381 iris_store_data_imm32(struct iris_batch *batch,
5382 struct iris_bo *bo, uint32_t offset,
5383 uint32_t imm)
5384 {
5385 iris_emit_cmd(batch, GENX(MI_STORE_DATA_IMM), sdi) {
5386 sdi.Address = rw_bo(bo, offset);
5387 sdi.ImmediateData = imm;
5388 }
5389 }
5390
5391 static void
5392 iris_store_data_imm64(struct iris_batch *batch,
5393 struct iris_bo *bo, uint32_t offset,
5394 uint64_t imm)
5395 {
5396 /* Can't use iris_emit_cmd because MI_STORE_DATA_IMM has a length of
5397 * 2 in genxml but it's actually variable length and we need 5 DWords.
5398 */
5399 void *map = iris_get_command_space(batch, 4 * 5);
5400 _iris_pack_command(batch, GENX(MI_STORE_DATA_IMM), map, sdi) {
5401 sdi.DWordLength = 5 - 2;
5402 sdi.Address = rw_bo(bo, offset);
5403 sdi.ImmediateData = imm;
5404 }
5405 }
5406
5407 static void
5408 iris_copy_mem_mem(struct iris_batch *batch,
5409 struct iris_bo *dst_bo, uint32_t dst_offset,
5410 struct iris_bo *src_bo, uint32_t src_offset,
5411 unsigned bytes)
5412 {
5413 /* MI_COPY_MEM_MEM operates on DWords. */
5414 assert(bytes % 4 == 0);
5415 assert(dst_offset % 4 == 0);
5416 assert(src_offset % 4 == 0);
5417
5418 for (unsigned i = 0; i < bytes; i += 4) {
5419 iris_emit_cmd(batch, GENX(MI_COPY_MEM_MEM), cp) {
5420 cp.DestinationMemoryAddress = rw_bo(dst_bo, dst_offset + i);
5421 cp.SourceMemoryAddress = ro_bo(src_bo, src_offset + i);
5422 }
5423 }
5424 }
5425
5426 /* ------------------------------------------------------------------- */
5427
5428 static unsigned
5429 flags_to_post_sync_op(uint32_t flags)
5430 {
5431 if (flags & PIPE_CONTROL_WRITE_IMMEDIATE)
5432 return WriteImmediateData;
5433
5434 if (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT)
5435 return WritePSDepthCount;
5436
5437 if (flags & PIPE_CONTROL_WRITE_TIMESTAMP)
5438 return WriteTimestamp;
5439
5440 return 0;
5441 }
5442
5443 /**
5444 * Do the given flags have a Post Sync or LRI Post Sync operation?
5445 */
5446 static enum pipe_control_flags
5447 get_post_sync_flags(enum pipe_control_flags flags)
5448 {
5449 flags &= PIPE_CONTROL_WRITE_IMMEDIATE |
5450 PIPE_CONTROL_WRITE_DEPTH_COUNT |
5451 PIPE_CONTROL_WRITE_TIMESTAMP |
5452 PIPE_CONTROL_LRI_POST_SYNC_OP;
5453
5454 /* Only one "Post Sync Op" is allowed, and it's mutually exclusive with
5455 * "LRI Post Sync Operation". So more than one bit set would be illegal.
5456 */
5457 assert(util_bitcount(flags) <= 1);
5458
5459 return flags;
5460 }
5461
5462 #define IS_COMPUTE_PIPELINE(batch) (batch->name == IRIS_BATCH_COMPUTE)
5463
5464 /**
5465 * Emit a series of PIPE_CONTROL commands, taking into account any
5466 * workarounds necessary to actually accomplish the caller's request.
5467 *
5468 * Unless otherwise noted, spec quotations in this function come from:
5469 *
5470 * Synchronization of the 3D Pipeline > PIPE_CONTROL Command > Programming
5471 * Restrictions for PIPE_CONTROL.
5472 *
5473 * You should not use this function directly. Use the helpers in
5474 * iris_pipe_control.c instead, which may split the pipe control further.
5475 */
5476 static void
5477 iris_emit_raw_pipe_control(struct iris_batch *batch, uint32_t flags,
5478 struct iris_bo *bo, uint32_t offset, uint64_t imm)
5479 {
5480 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
5481 enum pipe_control_flags post_sync_flags = get_post_sync_flags(flags);
5482 enum pipe_control_flags non_lri_post_sync_flags =
5483 post_sync_flags & ~PIPE_CONTROL_LRI_POST_SYNC_OP;
5484
5485 /* Recursive PIPE_CONTROL workarounds --------------------------------
5486 * (http://knowyourmeme.com/memes/xzibit-yo-dawg)
5487 *
5488 * We do these first because we want to look at the original operation,
5489 * rather than any workarounds we set.
5490 */
5491 if (GEN_GEN == 9 && (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE)) {
5492 /* The PIPE_CONTROL "VF Cache Invalidation Enable" bit description
5493 * lists several workarounds:
5494 *
5495 * "Project: SKL, KBL, BXT
5496 *
5497 * If the VF Cache Invalidation Enable is set to a 1 in a
5498 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields
5499 * sets to 0, with the VF Cache Invalidation Enable set to 0
5500 * needs to be sent prior to the PIPE_CONTROL with VF Cache
5501 * Invalidation Enable set to a 1."
5502 */
5503 iris_emit_raw_pipe_control(batch, 0, NULL, 0, 0);
5504 }
5505
5506 if (GEN_GEN == 9 && IS_COMPUTE_PIPELINE(batch) && post_sync_flags) {
5507 /* Project: SKL / Argument: LRI Post Sync Operation [23]
5508 *
5509 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
5510 * programmed prior to programming a PIPECONTROL command with "LRI
5511 * Post Sync Operation" in GPGPU mode of operation (i.e when
5512 * PIPELINE_SELECT command is set to GPGPU mode of operation)."
5513 *
5514 * The same text exists a few rows below for Post Sync Op.
5515 */
5516 iris_emit_raw_pipe_control(batch, PIPE_CONTROL_CS_STALL, bo, offset, imm);
5517 }
5518
5519 if (GEN_GEN == 10 && (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH)) {
5520 /* Cannonlake:
5521 * "Before sending a PIPE_CONTROL command with bit 12 set, SW must issue
5522 * another PIPE_CONTROL with Render Target Cache Flush Enable (bit 12)
5523 * = 0 and Pipe Control Flush Enable (bit 7) = 1"
5524 */
5525 iris_emit_raw_pipe_control(batch, PIPE_CONTROL_FLUSH_ENABLE, bo,
5526 offset, imm);
5527 }
5528
5529 /* "Flush Types" workarounds ---------------------------------------------
5530 * We do these now because they may add post-sync operations or CS stalls.
5531 */
5532
5533 if (GEN_GEN < 11 && flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) {
5534 /* Project: BDW, SKL+ (stopping at CNL) / Argument: VF Invalidate
5535 *
5536 * "'Post Sync Operation' must be enabled to 'Write Immediate Data' or
5537 * 'Write PS Depth Count' or 'Write Timestamp'."
5538 */
5539 if (!bo) {
5540 flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
5541 post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
5542 non_lri_post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
5543 bo = batch->screen->workaround_bo;
5544 }
5545 }
5546
5547 /* #1130 from Gen10 workarounds page:
5548 *
5549 * "Enable Depth Stall on every Post Sync Op if Render target Cache
5550 * Flush is not enabled in same PIPE CONTROL and Enable Pixel score
5551 * board stall if Render target cache flush is enabled."
5552 *
5553 * Applicable to CNL B0 and C0 steppings only.
5554 *
5555 * The wording here is unclear, and this workaround doesn't look anything
5556 * like the internal bug report recommendations, but leave it be for now...
5557 */
5558 if (GEN_GEN == 10) {
5559 if (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) {
5560 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
5561 } else if (flags & non_lri_post_sync_flags) {
5562 flags |= PIPE_CONTROL_DEPTH_STALL;
5563 }
5564 }
5565
5566 if (flags & PIPE_CONTROL_DEPTH_STALL) {
5567 /* From the PIPE_CONTROL instruction table, bit 13 (Depth Stall Enable):
5568 *
5569 * "This bit must be DISABLED for operations other than writing
5570 * PS_DEPTH_COUNT."
5571 *
5572 * This seems like nonsense. An Ivybridge workaround requires us to
5573 * emit a PIPE_CONTROL with a depth stall and write immediate post-sync
5574 * operation. Gen8+ requires us to emit depth stalls and depth cache
5575 * flushes together. So, it's hard to imagine this means anything other
5576 * than "we originally intended this to be used for PS_DEPTH_COUNT".
5577 *
5578 * We ignore the supposed restriction and do nothing.
5579 */
5580 }
5581
5582 if (flags & (PIPE_CONTROL_RENDER_TARGET_FLUSH |
5583 PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
5584 /* From the PIPE_CONTROL instruction table, bit 12 and bit 1:
5585 *
5586 * "This bit must be DISABLED for End-of-pipe (Read) fences,
5587 * PS_DEPTH_COUNT or TIMESTAMP queries."
5588 *
5589 * TODO: Implement end-of-pipe checking.
5590 */
5591 assert(!(post_sync_flags & (PIPE_CONTROL_WRITE_DEPTH_COUNT |
5592 PIPE_CONTROL_WRITE_TIMESTAMP)));
5593 }
5594
5595 if (GEN_GEN < 11 && (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
5596 /* From the PIPE_CONTROL instruction table, bit 1:
5597 *
5598 * "This bit is ignored if Depth Stall Enable is set.
5599 * Further, the render cache is not flushed even if Write Cache
5600 * Flush Enable bit is set."
5601 *
5602 * We assert that the caller doesn't do this combination, to try and
5603 * prevent mistakes. It shouldn't hurt the GPU, though.
5604 *
5605 * We skip this check on Gen11+ as the "Stall at Pixel Scoreboard"
5606 * and "Render Target Flush" combo is explicitly required for BTI
5607 * update workarounds.
5608 */
5609 assert(!(flags & (PIPE_CONTROL_DEPTH_STALL |
5610 PIPE_CONTROL_RENDER_TARGET_FLUSH)));
5611 }
5612
5613 /* PIPE_CONTROL page workarounds ------------------------------------- */
5614
5615 if (GEN_GEN <= 8 && (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE)) {
5616 /* From the PIPE_CONTROL page itself:
5617 *
5618 * "IVB, HSW, BDW
5619 * Restriction: Pipe_control with CS-stall bit set must be issued
5620 * before a pipe-control command that has the State Cache
5621 * Invalidate bit set."
5622 */
5623 flags |= PIPE_CONTROL_CS_STALL;
5624 }
5625
5626 if (flags & PIPE_CONTROL_FLUSH_LLC) {
5627 /* From the PIPE_CONTROL instruction table, bit 26 (Flush LLC):
5628 *
5629 * "Project: ALL
5630 * SW must always program Post-Sync Operation to "Write Immediate
5631 * Data" when Flush LLC is set."
5632 *
5633 * For now, we just require the caller to do it.
5634 */
5635 assert(flags & PIPE_CONTROL_WRITE_IMMEDIATE);
5636 }
5637
5638 /* "Post-Sync Operation" workarounds -------------------------------- */
5639
5640 /* Project: All / Argument: Global Snapshot Count Reset [19]
5641 *
5642 * "This bit must not be exercised on any product.
5643 * Requires stall bit ([20] of DW1) set."
5644 *
5645 * We don't use this, so we just assert that it isn't used. The
5646 * PIPE_CONTROL instruction page indicates that they intended this
5647 * as a debug feature and don't think it is useful in production,
5648 * but it may actually be usable, should we ever want to.
5649 */
5650 assert((flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) == 0);
5651
5652 if (flags & (PIPE_CONTROL_MEDIA_STATE_CLEAR |
5653 PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE)) {
5654 /* Project: All / Arguments:
5655 *
5656 * - Generic Media State Clear [16]
5657 * - Indirect State Pointers Disable [16]
5658 *
5659 * "Requires stall bit ([20] of DW1) set."
5660 *
5661 * Also, the PIPE_CONTROL instruction table, bit 16 (Generic Media
5662 * State Clear) says:
5663 *
5664 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
5665 * programmed prior to programming a PIPECONTROL command with "Media
5666 * State Clear" set in GPGPU mode of operation"
5667 *
5668 * This is a subset of the earlier rule, so there's nothing to do.
5669 */
5670 flags |= PIPE_CONTROL_CS_STALL;
5671 }
5672
5673 if (flags & PIPE_CONTROL_STORE_DATA_INDEX) {
5674 /* Project: All / Argument: Store Data Index
5675 *
5676 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
5677 * than '0'."
5678 *
5679 * For now, we just assert that the caller does this. We might want to
5680 * automatically add a write to the workaround BO...
5681 */
5682 assert(non_lri_post_sync_flags != 0);
5683 }
5684
5685 if (flags & PIPE_CONTROL_SYNC_GFDT) {
5686 /* Project: All / Argument: Sync GFDT
5687 *
5688 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
5689 * than '0' or 0x2520[13] must be set."
5690 *
5691 * For now, we just assert that the caller does this.
5692 */
5693 assert(non_lri_post_sync_flags != 0);
5694 }
5695
5696 if (flags & PIPE_CONTROL_TLB_INVALIDATE) {
5697 /* Project: IVB+ / Argument: TLB inv
5698 *
5699 * "Requires stall bit ([20] of DW1) set."
5700 *
5701 * Also, from the PIPE_CONTROL instruction table:
5702 *
5703 * "Project: SKL+
5704 * Post Sync Operation or CS stall must be set to ensure a TLB
5705 * invalidation occurs. Otherwise no cycle will occur to the TLB
5706 * cache to invalidate."
5707 *
5708 * This is not a subset of the earlier rule, so there's nothing to do.
5709 */
5710 flags |= PIPE_CONTROL_CS_STALL;
5711 }
5712
5713 if (GEN_GEN == 9 && devinfo->gt == 4) {
5714 /* TODO: The big Skylake GT4 post sync op workaround */
5715 }
5716
5717 /* "GPGPU specific workarounds" (both post-sync and flush) ------------ */
5718
5719 if (IS_COMPUTE_PIPELINE(batch)) {
5720 if (GEN_GEN >= 9 && (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE)) {
5721 /* Project: SKL+ / Argument: Tex Invalidate
5722 * "Requires stall bit ([20] of DW) set for all GPGPU Workloads."
5723 */
5724 flags |= PIPE_CONTROL_CS_STALL;
5725 }
5726
5727 if (GEN_GEN == 8 && (post_sync_flags ||
5728 (flags & (PIPE_CONTROL_NOTIFY_ENABLE |
5729 PIPE_CONTROL_DEPTH_STALL |
5730 PIPE_CONTROL_RENDER_TARGET_FLUSH |
5731 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
5732 PIPE_CONTROL_DATA_CACHE_FLUSH)))) {
5733 /* Project: BDW / Arguments:
5734 *
5735 * - LRI Post Sync Operation [23]
5736 * - Post Sync Op [15:14]
5737 * - Notify En [8]
5738 * - Depth Stall [13]
5739 * - Render Target Cache Flush [12]
5740 * - Depth Cache Flush [0]
5741 * - DC Flush Enable [5]
5742 *
5743 * "Requires stall bit ([20] of DW) set for all GPGPU and Media
5744 * Workloads."
5745 */
5746 flags |= PIPE_CONTROL_CS_STALL;
5747
5748 /* Also, from the PIPE_CONTROL instruction table, bit 20:
5749 *
5750 * "Project: BDW
5751 * This bit must be always set when PIPE_CONTROL command is
5752 * programmed by GPGPU and MEDIA workloads, except for the cases
5753 * when only Read Only Cache Invalidation bits are set (State
5754 * Cache Invalidation Enable, Instruction cache Invalidation
5755 * Enable, Texture Cache Invalidation Enable, Constant Cache
5756 * Invalidation Enable). This is to WA FFDOP CG issue, this WA
5757 * need not implemented when FF_DOP_CG is disable via "Fixed
5758 * Function DOP Clock Gate Disable" bit in RC_PSMI_CTRL register."
5759 *
5760 * It sounds like we could avoid CS stalls in some cases, but we
5761 * don't currently bother. This list isn't exactly the list above,
5762 * either...
5763 */
5764 }
5765 }
5766
5767 /* "Stall" workarounds ----------------------------------------------
5768 * These have to come after the earlier ones because we may have added
5769 * some additional CS stalls above.
5770 */
5771
5772 if (GEN_GEN < 9 && (flags & PIPE_CONTROL_CS_STALL)) {
5773 /* Project: PRE-SKL, VLV, CHV
5774 *
5775 * "[All Stepping][All SKUs]:
5776 *
5777 * One of the following must also be set:
5778 *
5779 * - Render Target Cache Flush Enable ([12] of DW1)
5780 * - Depth Cache Flush Enable ([0] of DW1)
5781 * - Stall at Pixel Scoreboard ([1] of DW1)
5782 * - Depth Stall ([13] of DW1)
5783 * - Post-Sync Operation ([13] of DW1)
5784 * - DC Flush Enable ([5] of DW1)"
5785 *
5786 * If we don't already have one of those bits set, we choose to add
5787 * "Stall at Pixel Scoreboard". Some of the other bits require a
5788 * CS stall as a workaround (see above), which would send us into
5789 * an infinite recursion of PIPE_CONTROLs. "Stall at Pixel Scoreboard"
5790 * appears to be safe, so we choose that.
5791 */
5792 const uint32_t wa_bits = PIPE_CONTROL_RENDER_TARGET_FLUSH |
5793 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
5794 PIPE_CONTROL_WRITE_IMMEDIATE |
5795 PIPE_CONTROL_WRITE_DEPTH_COUNT |
5796 PIPE_CONTROL_WRITE_TIMESTAMP |
5797 PIPE_CONTROL_STALL_AT_SCOREBOARD |
5798 PIPE_CONTROL_DEPTH_STALL |
5799 PIPE_CONTROL_DATA_CACHE_FLUSH;
5800 if (!(flags & wa_bits))
5801 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
5802 }
5803
5804 /* Emit --------------------------------------------------------------- */
5805
5806 iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
5807 pc.LRIPostSyncOperation = NoLRIOperation;
5808 pc.PipeControlFlushEnable = flags & PIPE_CONTROL_FLUSH_ENABLE;
5809 pc.DCFlushEnable = flags & PIPE_CONTROL_DATA_CACHE_FLUSH;
5810 pc.StoreDataIndex = 0;
5811 pc.CommandStreamerStallEnable = flags & PIPE_CONTROL_CS_STALL;
5812 pc.GlobalSnapshotCountReset =
5813 flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET;
5814 pc.TLBInvalidate = flags & PIPE_CONTROL_TLB_INVALIDATE;
5815 pc.GenericMediaStateClear = flags & PIPE_CONTROL_MEDIA_STATE_CLEAR;
5816 pc.StallAtPixelScoreboard = flags & PIPE_CONTROL_STALL_AT_SCOREBOARD;
5817 pc.RenderTargetCacheFlushEnable =
5818 flags & PIPE_CONTROL_RENDER_TARGET_FLUSH;
5819 pc.DepthCacheFlushEnable = flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH;
5820 pc.StateCacheInvalidationEnable =
5821 flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE;
5822 pc.VFCacheInvalidationEnable = flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
5823 pc.ConstantCacheInvalidationEnable =
5824 flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE;
5825 pc.PostSyncOperation = flags_to_post_sync_op(flags);
5826 pc.DepthStallEnable = flags & PIPE_CONTROL_DEPTH_STALL;
5827 pc.InstructionCacheInvalidateEnable =
5828 flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE;
5829 pc.NotifyEnable = flags & PIPE_CONTROL_NOTIFY_ENABLE;
5830 pc.IndirectStatePointersDisable =
5831 flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE;
5832 pc.TextureCacheInvalidationEnable =
5833 flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
5834 pc.Address = rw_bo(bo, offset);
5835 pc.ImmediateData = imm;
5836 }
5837 }
5838
5839 void
5840 genX(init_state)(struct iris_context *ice)
5841 {
5842 struct pipe_context *ctx = &ice->ctx;
5843 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
5844
5845 ctx->create_blend_state = iris_create_blend_state;
5846 ctx->create_depth_stencil_alpha_state = iris_create_zsa_state;
5847 ctx->create_rasterizer_state = iris_create_rasterizer_state;
5848 ctx->create_sampler_state = iris_create_sampler_state;
5849 ctx->create_sampler_view = iris_create_sampler_view;
5850 ctx->create_surface = iris_create_surface;
5851 ctx->create_vertex_elements_state = iris_create_vertex_elements;
5852 ctx->bind_blend_state = iris_bind_blend_state;
5853 ctx->bind_depth_stencil_alpha_state = iris_bind_zsa_state;
5854 ctx->bind_sampler_states = iris_bind_sampler_states;
5855 ctx->bind_rasterizer_state = iris_bind_rasterizer_state;
5856 ctx->bind_vertex_elements_state = iris_bind_vertex_elements_state;
5857 ctx->delete_blend_state = iris_delete_state;
5858 ctx->delete_depth_stencil_alpha_state = iris_delete_state;
5859 ctx->delete_rasterizer_state = iris_delete_state;
5860 ctx->delete_sampler_state = iris_delete_state;
5861 ctx->delete_vertex_elements_state = iris_delete_state;
5862 ctx->set_blend_color = iris_set_blend_color;
5863 ctx->set_clip_state = iris_set_clip_state;
5864 ctx->set_constant_buffer = iris_set_constant_buffer;
5865 ctx->set_shader_buffers = iris_set_shader_buffers;
5866 ctx->set_shader_images = iris_set_shader_images;
5867 ctx->set_sampler_views = iris_set_sampler_views;
5868 ctx->set_tess_state = iris_set_tess_state;
5869 ctx->set_framebuffer_state = iris_set_framebuffer_state;
5870 ctx->set_polygon_stipple = iris_set_polygon_stipple;
5871 ctx->set_sample_mask = iris_set_sample_mask;
5872 ctx->set_scissor_states = iris_set_scissor_states;
5873 ctx->set_stencil_ref = iris_set_stencil_ref;
5874 ctx->set_vertex_buffers = iris_set_vertex_buffers;
5875 ctx->set_viewport_states = iris_set_viewport_states;
5876 ctx->sampler_view_destroy = iris_sampler_view_destroy;
5877 ctx->surface_destroy = iris_surface_destroy;
5878 ctx->draw_vbo = iris_draw_vbo;
5879 ctx->launch_grid = iris_launch_grid;
5880 ctx->create_stream_output_target = iris_create_stream_output_target;
5881 ctx->stream_output_target_destroy = iris_stream_output_target_destroy;
5882 ctx->set_stream_output_targets = iris_set_stream_output_targets;
5883
5884 ice->vtbl.destroy_state = iris_destroy_state;
5885 ice->vtbl.init_render_context = iris_init_render_context;
5886 ice->vtbl.init_compute_context = iris_init_compute_context;
5887 ice->vtbl.upload_render_state = iris_upload_render_state;
5888 ice->vtbl.update_surface_base_address = iris_update_surface_base_address;
5889 ice->vtbl.upload_compute_state = iris_upload_compute_state;
5890 ice->vtbl.emit_raw_pipe_control = iris_emit_raw_pipe_control;
5891 ice->vtbl.load_register_reg32 = iris_load_register_reg32;
5892 ice->vtbl.load_register_reg64 = iris_load_register_reg64;
5893 ice->vtbl.load_register_imm32 = iris_load_register_imm32;
5894 ice->vtbl.load_register_imm64 = iris_load_register_imm64;
5895 ice->vtbl.load_register_mem32 = iris_load_register_mem32;
5896 ice->vtbl.load_register_mem64 = iris_load_register_mem64;
5897 ice->vtbl.store_register_mem32 = iris_store_register_mem32;
5898 ice->vtbl.store_register_mem64 = iris_store_register_mem64;
5899 ice->vtbl.store_data_imm32 = iris_store_data_imm32;
5900 ice->vtbl.store_data_imm64 = iris_store_data_imm64;
5901 ice->vtbl.copy_mem_mem = iris_copy_mem_mem;
5902 ice->vtbl.derived_program_state_size = iris_derived_program_state_size;
5903 ice->vtbl.store_derived_program_state = iris_store_derived_program_state;
5904 ice->vtbl.create_so_decl_list = iris_create_so_decl_list;
5905 ice->vtbl.populate_vs_key = iris_populate_vs_key;
5906 ice->vtbl.populate_tcs_key = iris_populate_tcs_key;
5907 ice->vtbl.populate_tes_key = iris_populate_tes_key;
5908 ice->vtbl.populate_gs_key = iris_populate_gs_key;
5909 ice->vtbl.populate_fs_key = iris_populate_fs_key;
5910 ice->vtbl.populate_cs_key = iris_populate_cs_key;
5911 ice->vtbl.mocs = mocs;
5912
5913 ice->state.dirty = ~0ull;
5914
5915 ice->state.statistics_counters_enabled = true;
5916
5917 ice->state.sample_mask = 0xffff;
5918 ice->state.num_viewports = 1;
5919 ice->state.genx = calloc(1, sizeof(struct iris_genx_state));
5920
5921 /* Make a 1x1x1 null surface for unbound textures */
5922 void *null_surf_map =
5923 upload_state(ice->state.surface_uploader, &ice->state.unbound_tex,
5924 4 * GENX(RENDER_SURFACE_STATE_length), 64);
5925 isl_null_fill_state(&screen->isl_dev, null_surf_map, isl_extent3d(1, 1, 1));
5926 ice->state.unbound_tex.offset +=
5927 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.unbound_tex.res));
5928
5929 /* Default all scissor rectangles to be empty regions. */
5930 for (int i = 0; i < IRIS_MAX_VIEWPORTS; i++) {
5931 ice->state.scissors[i] = (struct pipe_scissor_state) {
5932 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
5933 };
5934 }
5935 }