iris: update a todo comment
[mesa.git] / src / gallium / drivers / iris / iris_state.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * on the rights to use, copy, modify, merge, publish, distribute, sub
8 * license, and/or sell copies of the Software, and to permit persons to whom
9 * the Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 */
23 #include <stdio.h>
24 #include <errno.h>
25
26 #if HAVE_VALGRIND
27 #include <valgrind.h>
28 #include <memcheck.h>
29 #define VG(x) x
30 #ifndef NDEBUG
31 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
32 #endif
33 #else
34 #define VG(x)
35 #endif
36
37 #include "pipe/p_defines.h"
38 #include "pipe/p_state.h"
39 #include "pipe/p_context.h"
40 #include "pipe/p_screen.h"
41 #include "util/u_inlines.h"
42 #include "util/u_format.h"
43 #include "util/u_framebuffer.h"
44 #include "util/u_transfer.h"
45 #include "util/u_upload_mgr.h"
46 #include "util/u_viewport.h"
47 #include "i915_drm.h"
48 #include "nir.h"
49 #include "intel/compiler/brw_compiler.h"
50 #include "intel/common/gen_l3_config.h"
51 #include "intel/common/gen_sample_positions.h"
52 #include "iris_batch.h"
53 #include "iris_context.h"
54 #include "iris_pipe.h"
55 #include "iris_resource.h"
56
57 #define __gen_address_type struct iris_address
58 #define __gen_user_data struct iris_batch
59
60 #define ARRAY_BYTES(x) (sizeof(uint32_t) * ARRAY_SIZE(x))
61
62 static uint64_t
63 __gen_combine_address(struct iris_batch *batch, void *location,
64 struct iris_address addr, uint32_t delta)
65 {
66 uint64_t result = addr.offset + delta;
67
68 if (addr.bo) {
69 iris_use_pinned_bo(batch, addr.bo, addr.write);
70 /* Assume this is a general address, not relative to a base. */
71 result += addr.bo->gtt_offset;
72 }
73
74 return result;
75 }
76
77 #define __genxml_cmd_length(cmd) cmd ## _length
78 #define __genxml_cmd_length_bias(cmd) cmd ## _length_bias
79 #define __genxml_cmd_header(cmd) cmd ## _header
80 #define __genxml_cmd_pack(cmd) cmd ## _pack
81
82 #define _iris_pack_command(batch, cmd, dst, name) \
83 for (struct cmd name = { __genxml_cmd_header(cmd) }, \
84 *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
85 ({ __genxml_cmd_pack(cmd)(batch, (void *)_dst, &name); \
86 _dst = NULL; \
87 }))
88
89 #define iris_pack_command(cmd, dst, name) \
90 _iris_pack_command(NULL, cmd, dst, name)
91
92 #define iris_pack_state(cmd, dst, name) \
93 for (struct cmd name = {}, \
94 *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
95 __genxml_cmd_pack(cmd)(NULL, (void *)_dst, &name), \
96 _dst = NULL)
97
98 #define iris_emit_cmd(batch, cmd, name) \
99 _iris_pack_command(batch, cmd, iris_get_command_space(batch, 4 * __genxml_cmd_length(cmd)), name)
100
101 #define iris_emit_merge(batch, dwords0, dwords1, num_dwords) \
102 do { \
103 uint32_t *dw = iris_get_command_space(batch, 4 * num_dwords); \
104 for (uint32_t i = 0; i < num_dwords; i++) \
105 dw[i] = (dwords0)[i] | (dwords1)[i]; \
106 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, num_dwords)); \
107 } while (0)
108
109 #include "genxml/genX_pack.h"
110 #include "genxml/gen_macros.h"
111 #include "genxml/genX_bits.h"
112
113 #define MOCS_WB (2 << 1)
114
115 UNUSED static void pipe_asserts()
116 {
117 #define PIPE_ASSERT(x) STATIC_ASSERT((int)x)
118
119 /* pipe_logicop happens to match the hardware. */
120 PIPE_ASSERT(PIPE_LOGICOP_CLEAR == LOGICOP_CLEAR);
121 PIPE_ASSERT(PIPE_LOGICOP_NOR == LOGICOP_NOR);
122 PIPE_ASSERT(PIPE_LOGICOP_AND_INVERTED == LOGICOP_AND_INVERTED);
123 PIPE_ASSERT(PIPE_LOGICOP_COPY_INVERTED == LOGICOP_COPY_INVERTED);
124 PIPE_ASSERT(PIPE_LOGICOP_AND_REVERSE == LOGICOP_AND_REVERSE);
125 PIPE_ASSERT(PIPE_LOGICOP_INVERT == LOGICOP_INVERT);
126 PIPE_ASSERT(PIPE_LOGICOP_XOR == LOGICOP_XOR);
127 PIPE_ASSERT(PIPE_LOGICOP_NAND == LOGICOP_NAND);
128 PIPE_ASSERT(PIPE_LOGICOP_AND == LOGICOP_AND);
129 PIPE_ASSERT(PIPE_LOGICOP_EQUIV == LOGICOP_EQUIV);
130 PIPE_ASSERT(PIPE_LOGICOP_NOOP == LOGICOP_NOOP);
131 PIPE_ASSERT(PIPE_LOGICOP_OR_INVERTED == LOGICOP_OR_INVERTED);
132 PIPE_ASSERT(PIPE_LOGICOP_COPY == LOGICOP_COPY);
133 PIPE_ASSERT(PIPE_LOGICOP_OR_REVERSE == LOGICOP_OR_REVERSE);
134 PIPE_ASSERT(PIPE_LOGICOP_OR == LOGICOP_OR);
135 PIPE_ASSERT(PIPE_LOGICOP_SET == LOGICOP_SET);
136
137 /* pipe_blend_func happens to match the hardware. */
138 PIPE_ASSERT(PIPE_BLENDFACTOR_ONE == BLENDFACTOR_ONE);
139 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_COLOR == BLENDFACTOR_SRC_COLOR);
140 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA == BLENDFACTOR_SRC_ALPHA);
141 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_ALPHA == BLENDFACTOR_DST_ALPHA);
142 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_COLOR == BLENDFACTOR_DST_COLOR);
143 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE == BLENDFACTOR_SRC_ALPHA_SATURATE);
144 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_COLOR == BLENDFACTOR_CONST_COLOR);
145 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_ALPHA == BLENDFACTOR_CONST_ALPHA);
146 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_COLOR == BLENDFACTOR_SRC1_COLOR);
147 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_ALPHA == BLENDFACTOR_SRC1_ALPHA);
148 PIPE_ASSERT(PIPE_BLENDFACTOR_ZERO == BLENDFACTOR_ZERO);
149 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_COLOR == BLENDFACTOR_INV_SRC_COLOR);
150 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_ALPHA == BLENDFACTOR_INV_SRC_ALPHA);
151 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_ALPHA == BLENDFACTOR_INV_DST_ALPHA);
152 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_COLOR == BLENDFACTOR_INV_DST_COLOR);
153 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_COLOR == BLENDFACTOR_INV_CONST_COLOR);
154 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_ALPHA == BLENDFACTOR_INV_CONST_ALPHA);
155 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_COLOR == BLENDFACTOR_INV_SRC1_COLOR);
156 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_ALPHA == BLENDFACTOR_INV_SRC1_ALPHA);
157
158 /* pipe_blend_func happens to match the hardware. */
159 PIPE_ASSERT(PIPE_BLEND_ADD == BLENDFUNCTION_ADD);
160 PIPE_ASSERT(PIPE_BLEND_SUBTRACT == BLENDFUNCTION_SUBTRACT);
161 PIPE_ASSERT(PIPE_BLEND_REVERSE_SUBTRACT == BLENDFUNCTION_REVERSE_SUBTRACT);
162 PIPE_ASSERT(PIPE_BLEND_MIN == BLENDFUNCTION_MIN);
163 PIPE_ASSERT(PIPE_BLEND_MAX == BLENDFUNCTION_MAX);
164
165 /* pipe_stencil_op happens to match the hardware. */
166 PIPE_ASSERT(PIPE_STENCIL_OP_KEEP == STENCILOP_KEEP);
167 PIPE_ASSERT(PIPE_STENCIL_OP_ZERO == STENCILOP_ZERO);
168 PIPE_ASSERT(PIPE_STENCIL_OP_REPLACE == STENCILOP_REPLACE);
169 PIPE_ASSERT(PIPE_STENCIL_OP_INCR == STENCILOP_INCRSAT);
170 PIPE_ASSERT(PIPE_STENCIL_OP_DECR == STENCILOP_DECRSAT);
171 PIPE_ASSERT(PIPE_STENCIL_OP_INCR_WRAP == STENCILOP_INCR);
172 PIPE_ASSERT(PIPE_STENCIL_OP_DECR_WRAP == STENCILOP_DECR);
173 PIPE_ASSERT(PIPE_STENCIL_OP_INVERT == STENCILOP_INVERT);
174
175 /* pipe_sprite_coord_mode happens to match 3DSTATE_SBE */
176 PIPE_ASSERT(PIPE_SPRITE_COORD_UPPER_LEFT == UPPERLEFT);
177 PIPE_ASSERT(PIPE_SPRITE_COORD_LOWER_LEFT == LOWERLEFT);
178 #undef PIPE_ASSERT
179 }
180
181 static unsigned
182 translate_prim_type(enum pipe_prim_type prim, uint8_t verts_per_patch)
183 {
184 static const unsigned map[] = {
185 [PIPE_PRIM_POINTS] = _3DPRIM_POINTLIST,
186 [PIPE_PRIM_LINES] = _3DPRIM_LINELIST,
187 [PIPE_PRIM_LINE_LOOP] = _3DPRIM_LINELOOP,
188 [PIPE_PRIM_LINE_STRIP] = _3DPRIM_LINESTRIP,
189 [PIPE_PRIM_TRIANGLES] = _3DPRIM_TRILIST,
190 [PIPE_PRIM_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
191 [PIPE_PRIM_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
192 [PIPE_PRIM_QUADS] = _3DPRIM_QUADLIST,
193 [PIPE_PRIM_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
194 [PIPE_PRIM_POLYGON] = _3DPRIM_POLYGON,
195 [PIPE_PRIM_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
196 [PIPE_PRIM_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
197 [PIPE_PRIM_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
198 [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
199 [PIPE_PRIM_PATCHES] = _3DPRIM_PATCHLIST_1 - 1,
200 };
201
202 return map[prim] + (prim == PIPE_PRIM_PATCHES ? verts_per_patch : 0);
203 }
204
205 static unsigned
206 translate_compare_func(enum pipe_compare_func pipe_func)
207 {
208 static const unsigned map[] = {
209 [PIPE_FUNC_NEVER] = COMPAREFUNCTION_NEVER,
210 [PIPE_FUNC_LESS] = COMPAREFUNCTION_LESS,
211 [PIPE_FUNC_EQUAL] = COMPAREFUNCTION_EQUAL,
212 [PIPE_FUNC_LEQUAL] = COMPAREFUNCTION_LEQUAL,
213 [PIPE_FUNC_GREATER] = COMPAREFUNCTION_GREATER,
214 [PIPE_FUNC_NOTEQUAL] = COMPAREFUNCTION_NOTEQUAL,
215 [PIPE_FUNC_GEQUAL] = COMPAREFUNCTION_GEQUAL,
216 [PIPE_FUNC_ALWAYS] = COMPAREFUNCTION_ALWAYS,
217 };
218 return map[pipe_func];
219 }
220
221 static unsigned
222 translate_shadow_func(enum pipe_compare_func pipe_func)
223 {
224 /* Gallium specifies the result of shadow comparisons as:
225 *
226 * 1 if ref <op> texel,
227 * 0 otherwise.
228 *
229 * The hardware does:
230 *
231 * 0 if texel <op> ref,
232 * 1 otherwise.
233 *
234 * So we need to flip the operator and also negate.
235 */
236 static const unsigned map[] = {
237 [PIPE_FUNC_NEVER] = PREFILTEROPALWAYS,
238 [PIPE_FUNC_LESS] = PREFILTEROPLEQUAL,
239 [PIPE_FUNC_EQUAL] = PREFILTEROPNOTEQUAL,
240 [PIPE_FUNC_LEQUAL] = PREFILTEROPLESS,
241 [PIPE_FUNC_GREATER] = PREFILTEROPGEQUAL,
242 [PIPE_FUNC_NOTEQUAL] = PREFILTEROPEQUAL,
243 [PIPE_FUNC_GEQUAL] = PREFILTEROPGREATER,
244 [PIPE_FUNC_ALWAYS] = PREFILTEROPNEVER,
245 };
246 return map[pipe_func];
247 }
248
249 static unsigned
250 translate_cull_mode(unsigned pipe_face)
251 {
252 static const unsigned map[4] = {
253 [PIPE_FACE_NONE] = CULLMODE_NONE,
254 [PIPE_FACE_FRONT] = CULLMODE_FRONT,
255 [PIPE_FACE_BACK] = CULLMODE_BACK,
256 [PIPE_FACE_FRONT_AND_BACK] = CULLMODE_BOTH,
257 };
258 return map[pipe_face];
259 }
260
261 static unsigned
262 translate_fill_mode(unsigned pipe_polymode)
263 {
264 static const unsigned map[4] = {
265 [PIPE_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
266 [PIPE_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
267 [PIPE_POLYGON_MODE_POINT] = FILL_MODE_POINT,
268 [PIPE_POLYGON_MODE_FILL_RECTANGLE] = FILL_MODE_SOLID,
269 };
270 return map[pipe_polymode];
271 }
272
273 static struct iris_address
274 ro_bo(struct iris_bo *bo, uint64_t offset)
275 {
276 /* Not for CSOs! */
277 return (struct iris_address) { .bo = bo, .offset = offset };
278 }
279
280 static struct iris_address
281 rw_bo(struct iris_bo *bo, uint64_t offset)
282 {
283 /* Not for CSOs! */
284 return (struct iris_address) { .bo = bo, .offset = offset, .write = true };
285 }
286
287 static void *
288 upload_state(struct u_upload_mgr *uploader,
289 struct iris_state_ref *ref,
290 unsigned size,
291 unsigned alignment)
292 {
293 void *p = NULL;
294 u_upload_alloc(uploader, 0, size, alignment, &ref->offset, &ref->res, &p);
295 return p;
296 }
297
298 static uint32_t *
299 stream_state(struct iris_batch *batch,
300 struct u_upload_mgr *uploader,
301 struct pipe_resource **out_res,
302 unsigned size,
303 unsigned alignment,
304 uint32_t *out_offset)
305 {
306 void *ptr = NULL;
307
308 u_upload_alloc(uploader, 0, size, alignment, out_offset, out_res, &ptr);
309
310 struct iris_bo *bo = iris_resource_bo(*out_res);
311 iris_use_pinned_bo(batch, bo, false);
312
313 *out_offset += iris_bo_offset_from_base_address(bo);
314
315 return ptr;
316 }
317
318 static uint32_t
319 emit_state(struct iris_batch *batch,
320 struct u_upload_mgr *uploader,
321 struct pipe_resource **out_res,
322 const void *data,
323 unsigned size,
324 unsigned alignment)
325 {
326 unsigned offset = 0;
327 uint32_t *map =
328 stream_state(batch, uploader, out_res, size, alignment, &offset);
329
330 if (map)
331 memcpy(map, data, size);
332
333 return offset;
334 }
335
336 #define cso_changed(x) (!old_cso || (old_cso->x != new_cso->x))
337 #define cso_changed_memcmp(x) \
338 (!old_cso || memcmp(old_cso->x, new_cso->x, sizeof(old_cso->x)) != 0)
339
340 static void
341 iris_init_render_context(struct iris_screen *screen,
342 struct iris_batch *batch,
343 struct iris_vtable *vtbl,
344 struct pipe_debug_callback *dbg)
345 {
346 iris_init_batch(batch, screen, vtbl, dbg, I915_EXEC_RENDER);
347
348 /* XXX: PIPE_CONTROLs */
349
350 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
351 #if 0
352 // XXX: MOCS is stupid for this.
353 sba.GeneralStateMemoryObjectControlState = MOCS_WB;
354 sba.StatelessDataPortAccessMemoryObjectControlState = MOCS_WB;
355 sba.SurfaceStateMemoryObjectControlState = MOCS_WB;
356 sba.DynamicStateMemoryObjectControlState = MOCS_WB;
357 sba.IndirectObjectMemoryObjectControlState = MOCS_WB;
358 sba.InstructionMemoryObjectControlState = MOCS_WB;
359 sba.BindlessSurfaceStateMemoryObjectControlState = MOCS_WB;
360 #endif
361
362 sba.GeneralStateBaseAddressModifyEnable = true;
363 sba.SurfaceStateBaseAddressModifyEnable = true;
364 sba.DynamicStateBaseAddressModifyEnable = true;
365 sba.IndirectObjectBaseAddressModifyEnable = true;
366 sba.InstructionBaseAddressModifyEnable = true;
367 sba.GeneralStateBufferSizeModifyEnable = true;
368 sba.DynamicStateBufferSizeModifyEnable = true;
369 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
370 sba.IndirectObjectBufferSizeModifyEnable = true;
371 sba.InstructionBuffersizeModifyEnable = true;
372
373 sba.InstructionBaseAddress = ro_bo(NULL, IRIS_MEMZONE_SHADER_START);
374 sba.SurfaceStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_SURFACE_START);
375 sba.DynamicStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_DYNAMIC_START);
376
377 sba.GeneralStateBufferSize = 0xfffff;
378 sba.IndirectObjectBufferSize = 0xfffff;
379 sba.InstructionBufferSize = 0xfffff;
380 sba.DynamicStateBufferSize = 0xfffff;
381 }
382
383 iris_emit_cmd(batch, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
384 rect.ClippedDrawingRectangleXMax = UINT16_MAX;
385 rect.ClippedDrawingRectangleYMax = UINT16_MAX;
386 }
387 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_PATTERN), pat) {
388 GEN_SAMPLE_POS_1X(pat._1xSample);
389 GEN_SAMPLE_POS_2X(pat._2xSample);
390 GEN_SAMPLE_POS_4X(pat._4xSample);
391 GEN_SAMPLE_POS_8X(pat._8xSample);
392 GEN_SAMPLE_POS_16X(pat._16xSample);
393 }
394 iris_emit_cmd(batch, GENX(3DSTATE_AA_LINE_PARAMETERS), foo);
395 iris_emit_cmd(batch, GENX(3DSTATE_WM_CHROMAKEY), foo);
396 iris_emit_cmd(batch, GENX(3DSTATE_WM_HZ_OP), foo);
397 /* XXX: may need to set an offset for origin-UL framebuffers */
398 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_OFFSET), foo);
399
400 /* Just assign a static partitioning. */
401 for (int i = 0; i <= MESA_SHADER_FRAGMENT; i++) {
402 iris_emit_cmd(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
403 alloc._3DCommandSubOpcode = 18 + i;
404 alloc.ConstantBufferOffset = 6 * i;
405 alloc.ConstantBufferSize = i == MESA_SHADER_FRAGMENT ? 8 : 6;
406 }
407 }
408 }
409
410 struct iris_vertex_buffer_state {
411 uint32_t vertex_buffers[1 + 33 * GENX(VERTEX_BUFFER_STATE_length)];
412 struct pipe_resource *resources[33];
413 unsigned num_buffers;
414 };
415
416 struct iris_depth_buffer_state {
417 uint32_t packets[GENX(3DSTATE_DEPTH_BUFFER_length) +
418 GENX(3DSTATE_STENCIL_BUFFER_length) +
419 GENX(3DSTATE_HIER_DEPTH_BUFFER_length) +
420 GENX(3DSTATE_CLEAR_PARAMS_length)];
421 };
422
423 /**
424 * State that can't be stored directly in iris_context because the data
425 * layout varies per generation.
426 */
427 struct iris_genx_state {
428 /** SF_CLIP_VIEWPORT */
429 uint32_t sf_cl_vp[GENX(SF_CLIP_VIEWPORT_length) * IRIS_MAX_VIEWPORTS];
430
431 struct iris_vertex_buffer_state vertex_buffers;
432 struct iris_depth_buffer_state depth_buffer;
433
434 uint32_t so_buffers[4 * GENX(3DSTATE_SO_BUFFER_length)];
435 uint32_t streamout[4 * GENX(3DSTATE_STREAMOUT_length)];
436 };
437
438 static void
439 iris_launch_grid(struct pipe_context *ctx, const struct pipe_grid_info *info)
440 {
441 }
442
443 static void
444 iris_set_blend_color(struct pipe_context *ctx,
445 const struct pipe_blend_color *state)
446 {
447 struct iris_context *ice = (struct iris_context *) ctx;
448
449 memcpy(&ice->state.blend_color, state, sizeof(struct pipe_blend_color));
450 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
451 }
452
453 struct iris_blend_state {
454 /** Partial 3DSTATE_PS_BLEND */
455 uint32_t ps_blend[GENX(3DSTATE_PS_BLEND_length)];
456
457 /** Partial BLEND_STATE */
458 uint32_t blend_state[GENX(BLEND_STATE_length) +
459 BRW_MAX_DRAW_BUFFERS * GENX(BLEND_STATE_ENTRY_length)];
460
461 bool alpha_to_coverage; /* for shader key */
462 };
463
464 static void *
465 iris_create_blend_state(struct pipe_context *ctx,
466 const struct pipe_blend_state *state)
467 {
468 struct iris_blend_state *cso = malloc(sizeof(struct iris_blend_state));
469 uint32_t *blend_state = cso->blend_state;
470
471 cso->alpha_to_coverage = state->alpha_to_coverage;
472
473 iris_pack_command(GENX(3DSTATE_PS_BLEND), cso->ps_blend, pb) {
474 /* pb.HasWriteableRT is filled in at draw time. */
475 /* pb.AlphaTestEnable is filled in at draw time. */
476 pb.AlphaToCoverageEnable = state->alpha_to_coverage;
477 pb.IndependentAlphaBlendEnable = state->independent_blend_enable;
478
479 pb.ColorBufferBlendEnable = state->rt[0].blend_enable;
480
481 pb.SourceBlendFactor = state->rt[0].rgb_src_factor;
482 pb.SourceAlphaBlendFactor = state->rt[0].alpha_func;
483 pb.DestinationBlendFactor = state->rt[0].rgb_dst_factor;
484 pb.DestinationAlphaBlendFactor = state->rt[0].alpha_dst_factor;
485 }
486
487 iris_pack_state(GENX(BLEND_STATE), blend_state, bs) {
488 bs.AlphaToCoverageEnable = state->alpha_to_coverage;
489 bs.IndependentAlphaBlendEnable = state->independent_blend_enable;
490 bs.AlphaToOneEnable = state->alpha_to_one;
491 bs.AlphaToCoverageDitherEnable = state->alpha_to_coverage;
492 bs.ColorDitherEnable = state->dither;
493 /* bl.AlphaTestEnable and bs.AlphaTestFunction are filled in later. */
494 }
495
496 blend_state += GENX(BLEND_STATE_length);
497
498 for (int i = 0; i < BRW_MAX_DRAW_BUFFERS; i++) {
499 iris_pack_state(GENX(BLEND_STATE_ENTRY), blend_state, be) {
500 be.LogicOpEnable = state->logicop_enable;
501 be.LogicOpFunction = state->logicop_func;
502
503 be.PreBlendSourceOnlyClampEnable = false;
504 be.ColorClampRange = COLORCLAMP_RTFORMAT;
505 be.PreBlendColorClampEnable = true;
506 be.PostBlendColorClampEnable = true;
507
508 be.ColorBufferBlendEnable = state->rt[i].blend_enable;
509
510 be.ColorBlendFunction = state->rt[i].rgb_func;
511 be.AlphaBlendFunction = state->rt[i].alpha_func;
512 be.SourceBlendFactor = state->rt[i].rgb_src_factor;
513 be.SourceAlphaBlendFactor = state->rt[i].alpha_func;
514 be.DestinationBlendFactor = state->rt[i].rgb_dst_factor;
515 be.DestinationAlphaBlendFactor = state->rt[i].alpha_dst_factor;
516
517 be.WriteDisableRed = !(state->rt[i].colormask & PIPE_MASK_R);
518 be.WriteDisableGreen = !(state->rt[i].colormask & PIPE_MASK_G);
519 be.WriteDisableBlue = !(state->rt[i].colormask & PIPE_MASK_B);
520 be.WriteDisableAlpha = !(state->rt[i].colormask & PIPE_MASK_A);
521 }
522 blend_state += GENX(BLEND_STATE_ENTRY_length);
523 }
524
525 return cso;
526 }
527
528 static void
529 iris_bind_blend_state(struct pipe_context *ctx, void *state)
530 {
531 struct iris_context *ice = (struct iris_context *) ctx;
532 ice->state.cso_blend = state;
533 ice->state.dirty |= IRIS_DIRTY_PS_BLEND;
534 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
535 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_BLEND];
536 }
537
538 struct iris_depth_stencil_alpha_state {
539 /** Partial 3DSTATE_WM_DEPTH_STENCIL */
540 uint32_t wmds[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
541
542 /** Outbound to BLEND_STATE, 3DSTATE_PS_BLEND, COLOR_CALC_STATE */
543 struct pipe_alpha_state alpha;
544 };
545
546 static void *
547 iris_create_zsa_state(struct pipe_context *ctx,
548 const struct pipe_depth_stencil_alpha_state *state)
549 {
550 struct iris_depth_stencil_alpha_state *cso =
551 malloc(sizeof(struct iris_depth_stencil_alpha_state));
552
553 cso->alpha = state->alpha;
554
555 bool two_sided_stencil = state->stencil[1].enabled;
556
557 /* The state tracker needs to optimize away EQUAL writes for us. */
558 assert(!(state->depth.func == PIPE_FUNC_EQUAL && state->depth.writemask));
559
560 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), cso->wmds, wmds) {
561 wmds.StencilFailOp = state->stencil[0].fail_op;
562 wmds.StencilPassDepthFailOp = state->stencil[0].zfail_op;
563 wmds.StencilPassDepthPassOp = state->stencil[0].zpass_op;
564 wmds.StencilTestFunction =
565 translate_compare_func(state->stencil[0].func);
566 wmds.BackfaceStencilFailOp = state->stencil[1].fail_op;
567 wmds.BackfaceStencilPassDepthFailOp = state->stencil[1].zfail_op;
568 wmds.BackfaceStencilPassDepthPassOp = state->stencil[1].zpass_op;
569 wmds.BackfaceStencilTestFunction =
570 translate_compare_func(state->stencil[1].func);
571 wmds.DepthTestFunction = translate_compare_func(state->depth.func);
572 wmds.DoubleSidedStencilEnable = two_sided_stencil;
573 wmds.StencilTestEnable = state->stencil[0].enabled;
574 wmds.StencilBufferWriteEnable =
575 state->stencil[0].writemask != 0 ||
576 (two_sided_stencil && state->stencil[1].writemask != 0);
577 wmds.DepthTestEnable = state->depth.enabled;
578 wmds.DepthBufferWriteEnable = state->depth.writemask;
579 wmds.StencilTestMask = state->stencil[0].valuemask;
580 wmds.StencilWriteMask = state->stencil[0].writemask;
581 wmds.BackfaceStencilTestMask = state->stencil[1].valuemask;
582 wmds.BackfaceStencilWriteMask = state->stencil[1].writemask;
583 /* wmds.[Backface]StencilReferenceValue are merged later */
584 }
585
586 return cso;
587 }
588
589 static void
590 iris_bind_zsa_state(struct pipe_context *ctx, void *state)
591 {
592 struct iris_context *ice = (struct iris_context *) ctx;
593 struct iris_depth_stencil_alpha_state *old_cso = ice->state.cso_zsa;
594 struct iris_depth_stencil_alpha_state *new_cso = state;
595
596 if (new_cso) {
597 if (cso_changed(alpha.ref_value))
598 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
599
600 if (cso_changed(alpha.enabled))
601 ice->state.dirty |= IRIS_DIRTY_PS_BLEND | IRIS_DIRTY_BLEND_STATE;
602
603 if (cso_changed(alpha.func))
604 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
605 }
606
607 ice->state.cso_zsa = new_cso;
608 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
609 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
610 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_DEPTH_STENCIL_ALPHA];
611 }
612
613 struct iris_rasterizer_state {
614 uint32_t sf[GENX(3DSTATE_SF_length)];
615 uint32_t clip[GENX(3DSTATE_CLIP_length)];
616 uint32_t raster[GENX(3DSTATE_RASTER_length)];
617 uint32_t wm[GENX(3DSTATE_WM_length)];
618 uint32_t line_stipple[GENX(3DSTATE_LINE_STIPPLE_length)];
619
620 bool clip_halfz; /* for CC_VIEWPORT */
621 bool depth_clip_near; /* for CC_VIEWPORT */
622 bool depth_clip_far; /* for CC_VIEWPORT */
623 bool flatshade; /* for shader state */
624 bool flatshade_first; /* for stream output */
625 bool clamp_fragment_color; /* for shader state */
626 bool light_twoside; /* for shader state */
627 bool rasterizer_discard; /* for 3DSTATE_STREAMOUT */
628 bool half_pixel_center; /* for 3DSTATE_MULTISAMPLE */
629 bool line_stipple_enable;
630 bool poly_stipple_enable;
631 bool multisample;
632 bool force_persample_interp;
633 enum pipe_sprite_coord_mode sprite_coord_mode; /* PIPE_SPRITE_* */
634 uint16_t sprite_coord_enable;
635 };
636
637 static void *
638 iris_create_rasterizer_state(struct pipe_context *ctx,
639 const struct pipe_rasterizer_state *state)
640 {
641 struct iris_rasterizer_state *cso =
642 malloc(sizeof(struct iris_rasterizer_state));
643
644 #if 0
645 point_quad_rasterization -> SBE?
646
647 not necessary?
648 {
649 poly_smooth
650 force_persample_interp - ?
651 bottom_edge_rule
652
653 offset_units_unscaled - cap not exposed
654 }
655 #endif
656
657 cso->multisample = state->multisample;
658 cso->force_persample_interp = state->force_persample_interp;
659 cso->clip_halfz = state->clip_halfz;
660 cso->depth_clip_near = state->depth_clip_near;
661 cso->depth_clip_far = state->depth_clip_far;
662 cso->flatshade = state->flatshade;
663 cso->flatshade_first = state->flatshade_first;
664 cso->clamp_fragment_color = state->clamp_fragment_color;
665 cso->light_twoside = state->light_twoside;
666 cso->rasterizer_discard = state->rasterizer_discard;
667 cso->half_pixel_center = state->half_pixel_center;
668 cso->sprite_coord_mode = state->sprite_coord_mode;
669 cso->sprite_coord_enable = state->sprite_coord_enable;
670 cso->line_stipple_enable = state->line_stipple_enable;
671 cso->poly_stipple_enable = state->poly_stipple_enable;
672
673 iris_pack_command(GENX(3DSTATE_SF), cso->sf, sf) {
674 sf.StatisticsEnable = true;
675 sf.ViewportTransformEnable = true;
676 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
677 sf.LineEndCapAntialiasingRegionWidth =
678 state->line_smooth ? _10pixels : _05pixels;
679 sf.LastPixelEnable = state->line_last_pixel;
680 sf.LineWidth = state->line_width;
681 sf.SmoothPointEnable = state->point_smooth;
682 sf.PointWidthSource = state->point_size_per_vertex ? Vertex : State;
683 sf.PointWidth = state->point_size;
684
685 if (state->flatshade_first) {
686 sf.TriangleFanProvokingVertexSelect = 1;
687 } else {
688 sf.TriangleStripListProvokingVertexSelect = 2;
689 sf.TriangleFanProvokingVertexSelect = 2;
690 sf.LineStripListProvokingVertexSelect = 1;
691 }
692 }
693
694 iris_pack_command(GENX(3DSTATE_RASTER), cso->raster, rr) {
695 rr.FrontWinding = state->front_ccw ? CounterClockwise : Clockwise;
696 rr.CullMode = translate_cull_mode(state->cull_face);
697 rr.FrontFaceFillMode = translate_fill_mode(state->fill_front);
698 rr.BackFaceFillMode = translate_fill_mode(state->fill_back);
699 rr.DXMultisampleRasterizationEnable = state->multisample;
700 rr.GlobalDepthOffsetEnableSolid = state->offset_tri;
701 rr.GlobalDepthOffsetEnableWireframe = state->offset_line;
702 rr.GlobalDepthOffsetEnablePoint = state->offset_point;
703 rr.GlobalDepthOffsetConstant = state->offset_units * 2;
704 rr.GlobalDepthOffsetScale = state->offset_scale;
705 rr.GlobalDepthOffsetClamp = state->offset_clamp;
706 rr.SmoothPointEnable = state->point_smooth;
707 rr.AntialiasingEnable = state->line_smooth;
708 rr.ScissorRectangleEnable = state->scissor;
709 rr.ViewportZNearClipTestEnable = state->depth_clip_near;
710 rr.ViewportZFarClipTestEnable = state->depth_clip_far;
711 //rr.ConservativeRasterizationEnable = not yet supported by Gallium...
712 }
713
714 iris_pack_command(GENX(3DSTATE_CLIP), cso->clip, cl) {
715 /* cl.NonPerspectiveBarycentricEnable is filled in at draw time from
716 * the FS program; cl.ForceZeroRTAIndexEnable is filled in from the FB.
717 */
718 cl.StatisticsEnable = true;
719 cl.EarlyCullEnable = true;
720 cl.UserClipDistanceClipTestEnableBitmask = state->clip_plane_enable;
721 cl.ForceUserClipDistanceClipTestEnableBitmask = true;
722 cl.APIMode = state->clip_halfz ? APIMODE_D3D : APIMODE_OGL;
723 cl.GuardbandClipTestEnable = true;
724 cl.ClipMode = CLIPMODE_NORMAL;
725 cl.ClipEnable = true;
726 cl.ViewportXYClipTestEnable = state->point_tri_clip;
727 cl.MinimumPointWidth = 0.125;
728 cl.MaximumPointWidth = 255.875;
729
730 if (state->flatshade_first) {
731 cl.TriangleFanProvokingVertexSelect = 1;
732 } else {
733 cl.TriangleStripListProvokingVertexSelect = 2;
734 cl.TriangleFanProvokingVertexSelect = 2;
735 cl.LineStripListProvokingVertexSelect = 1;
736 }
737 }
738
739 iris_pack_command(GENX(3DSTATE_WM), cso->wm, wm) {
740 /* wm.BarycentricInterpolationMode and wm.EarlyDepthStencilControl are
741 * filled in at draw time from the FS program.
742 */
743 wm.LineAntialiasingRegionWidth = _10pixels;
744 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
745 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
746 wm.StatisticsEnable = true;
747 wm.LineStippleEnable = state->line_stipple_enable;
748 wm.PolygonStippleEnable = state->poly_stipple_enable;
749 }
750
751 /* Remap from 0..255 back to 1..256 */
752 const unsigned line_stipple_factor = state->line_stipple_factor + 1;
753
754 iris_pack_command(GENX(3DSTATE_LINE_STIPPLE), cso->line_stipple, line) {
755 line.LineStipplePattern = state->line_stipple_pattern;
756 line.LineStippleInverseRepeatCount = 1.0f / line_stipple_factor;
757 line.LineStippleRepeatCount = line_stipple_factor;
758 }
759
760 return cso;
761 }
762
763 static void
764 iris_bind_rasterizer_state(struct pipe_context *ctx, void *state)
765 {
766 struct iris_context *ice = (struct iris_context *) ctx;
767 struct iris_rasterizer_state *old_cso = ice->state.cso_rast;
768 struct iris_rasterizer_state *new_cso = state;
769
770 if (new_cso) {
771 /* Try to avoid re-emitting 3DSTATE_LINE_STIPPLE, it's non-pipelined */
772 if (cso_changed_memcmp(line_stipple))
773 ice->state.dirty |= IRIS_DIRTY_LINE_STIPPLE;
774
775 if (cso_changed(half_pixel_center))
776 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
777
778 if (cso_changed(line_stipple_enable) || cso_changed(poly_stipple_enable))
779 ice->state.dirty |= IRIS_DIRTY_WM;
780
781 if (cso_changed(rasterizer_discard) || cso_changed(flatshade_first))
782 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
783
784 if (cso_changed(depth_clip_near) || cso_changed(depth_clip_far) ||
785 cso_changed(clip_halfz))
786 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
787
788 if (cso_changed(sprite_coord_enable))
789 ice->state.dirty |= IRIS_DIRTY_SBE;
790 }
791
792 ice->state.cso_rast = new_cso;
793 ice->state.dirty |= IRIS_DIRTY_RASTER;
794 ice->state.dirty |= IRIS_DIRTY_CLIP;
795 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_RASTERIZER];
796 }
797
798 static uint32_t
799 translate_wrap(unsigned pipe_wrap)
800 {
801 static const unsigned map[] = {
802 [PIPE_TEX_WRAP_REPEAT] = TCM_WRAP,
803 [PIPE_TEX_WRAP_CLAMP] = TCM_HALF_BORDER,
804 [PIPE_TEX_WRAP_CLAMP_TO_EDGE] = TCM_CLAMP,
805 [PIPE_TEX_WRAP_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER,
806 [PIPE_TEX_WRAP_MIRROR_REPEAT] = TCM_MIRROR,
807 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE,
808
809 /* These are unsupported. */
810 [PIPE_TEX_WRAP_MIRROR_CLAMP] = -1,
811 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER] = -1,
812 };
813 return map[pipe_wrap];
814 }
815
816 /**
817 * Return true if the given wrap mode requires the border color to exist.
818 */
819 static bool
820 wrap_mode_needs_border_color(unsigned wrap_mode)
821 {
822 return wrap_mode == TCM_CLAMP_BORDER || wrap_mode == TCM_HALF_BORDER;
823 }
824
825 static unsigned
826 translate_mip_filter(enum pipe_tex_mipfilter pipe_mip)
827 {
828 static const unsigned map[] = {
829 [PIPE_TEX_MIPFILTER_NEAREST] = MIPFILTER_NEAREST,
830 [PIPE_TEX_MIPFILTER_LINEAR] = MIPFILTER_LINEAR,
831 [PIPE_TEX_MIPFILTER_NONE] = MIPFILTER_NONE,
832 };
833 return map[pipe_mip];
834 }
835
836 struct iris_sampler_state {
837 struct pipe_sampler_state base;
838
839 bool needs_border_color;
840
841 uint32_t sampler_state[GENX(SAMPLER_STATE_length)];
842 };
843
844 static void *
845 iris_create_sampler_state(struct pipe_context *ctx,
846 const struct pipe_sampler_state *state)
847 {
848 struct iris_sampler_state *cso = CALLOC_STRUCT(iris_sampler_state);
849
850 if (!cso)
851 return NULL;
852
853 memcpy(&cso->base, state, sizeof(*state));
854
855 STATIC_ASSERT(PIPE_TEX_FILTER_NEAREST == MAPFILTER_NEAREST);
856 STATIC_ASSERT(PIPE_TEX_FILTER_LINEAR == MAPFILTER_LINEAR);
857
858 unsigned wrap_s = translate_wrap(state->wrap_s);
859 unsigned wrap_t = translate_wrap(state->wrap_t);
860 unsigned wrap_r = translate_wrap(state->wrap_r);
861
862 cso->needs_border_color = wrap_mode_needs_border_color(wrap_s) ||
863 wrap_mode_needs_border_color(wrap_t) ||
864 wrap_mode_needs_border_color(wrap_r);
865
866 iris_pack_state(GENX(SAMPLER_STATE), cso->sampler_state, samp) {
867 samp.TCXAddressControlMode = wrap_s;
868 samp.TCYAddressControlMode = wrap_t;
869 samp.TCZAddressControlMode = wrap_r;
870 samp.CubeSurfaceControlMode = state->seamless_cube_map;
871 samp.NonnormalizedCoordinateEnable = !state->normalized_coords;
872 samp.MinModeFilter = state->min_img_filter;
873 samp.MagModeFilter = state->mag_img_filter;
874 samp.MipModeFilter = translate_mip_filter(state->min_mip_filter);
875 samp.MaximumAnisotropy = RATIO21;
876
877 if (state->max_anisotropy >= 2) {
878 if (state->min_img_filter == PIPE_TEX_FILTER_LINEAR) {
879 samp.MinModeFilter = MAPFILTER_ANISOTROPIC;
880 samp.AnisotropicAlgorithm = EWAApproximation;
881 }
882
883 if (state->mag_img_filter == PIPE_TEX_FILTER_LINEAR)
884 samp.MagModeFilter = MAPFILTER_ANISOTROPIC;
885
886 samp.MaximumAnisotropy =
887 MIN2((state->max_anisotropy - 2) / 2, RATIO161);
888 }
889
890 /* Set address rounding bits if not using nearest filtering. */
891 if (state->min_img_filter != PIPE_TEX_FILTER_NEAREST) {
892 samp.UAddressMinFilterRoundingEnable = true;
893 samp.VAddressMinFilterRoundingEnable = true;
894 samp.RAddressMinFilterRoundingEnable = true;
895 }
896
897 if (state->mag_img_filter != PIPE_TEX_FILTER_NEAREST) {
898 samp.UAddressMagFilterRoundingEnable = true;
899 samp.VAddressMagFilterRoundingEnable = true;
900 samp.RAddressMagFilterRoundingEnable = true;
901 }
902
903 if (state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE)
904 samp.ShadowFunction = translate_shadow_func(state->compare_func);
905
906 const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
907
908 samp.LODPreClampMode = CLAMP_MODE_OGL;
909 samp.MinLOD = CLAMP(state->min_lod, 0, hw_max_lod);
910 samp.MaxLOD = CLAMP(state->max_lod, 0, hw_max_lod);
911 samp.TextureLODBias = CLAMP(state->lod_bias, -16, 15);
912
913 /* .BorderColorPointer is filled in by iris_bind_sampler_states. */
914 }
915
916 return cso;
917 }
918
919 static void
920 iris_bind_sampler_states(struct pipe_context *ctx,
921 enum pipe_shader_type p_stage,
922 unsigned start, unsigned count,
923 void **states)
924 {
925 struct iris_context *ice = (struct iris_context *) ctx;
926 gl_shader_stage stage = stage_from_pipe(p_stage);
927
928 assert(start + count <= IRIS_MAX_TEXTURE_SAMPLERS);
929 ice->state.num_samplers[stage] =
930 MAX2(ice->state.num_samplers[stage], start + count);
931
932 for (int i = 0; i < count; i++) {
933 ice->state.samplers[stage][start + i] = states[i];
934 }
935
936 /* Assemble the SAMPLER_STATEs into a contiguous table that lives
937 * in the dynamic state memory zone, so we can point to it via the
938 * 3DSTATE_SAMPLER_STATE_POINTERS_* commands.
939 */
940 void *map = upload_state(ice->state.dynamic_uploader,
941 &ice->state.sampler_table[stage],
942 count * 4 * GENX(SAMPLER_STATE_length), 32);
943 if (unlikely(!map))
944 return;
945
946 struct pipe_resource *res = ice->state.sampler_table[stage].res;
947 ice->state.sampler_table[stage].offset +=
948 iris_bo_offset_from_base_address(iris_resource_bo(res));
949
950 /* Make sure all land in the same BO */
951 iris_border_color_pool_reserve(ice, IRIS_MAX_TEXTURE_SAMPLERS);
952
953 for (int i = 0; i < count; i++) {
954 struct iris_sampler_state *state = ice->state.samplers[stage][i];
955
956 /* Save a pointer to the iris_sampler_state, a few fields need
957 * to inform draw-time decisions.
958 */
959 ice->state.samplers[stage][start + i] = state;
960
961 if (!state) {
962 memset(map, 0, 4 * GENX(SAMPLER_STATE_length));
963 } else if (!state->needs_border_color) {
964 memcpy(map, state->sampler_state, 4 * GENX(SAMPLER_STATE_length));
965 } else {
966 ice->state.need_border_colors = true;
967
968 /* Stream out the border color and merge the pointer. */
969 uint32_t offset =
970 iris_upload_border_color(ice, &state->base.border_color);
971
972 uint32_t dynamic[GENX(SAMPLER_STATE_length)];
973 iris_pack_state(GENX(SAMPLER_STATE), dynamic, dyns) {
974 dyns.BorderColorPointer = offset;
975 }
976
977 for (uint32_t j = 0; j < GENX(SAMPLER_STATE_length); j++)
978 ((uint32_t *) map)[j] = state->sampler_state[j] | dynamic[j];
979 }
980
981 map += GENX(SAMPLER_STATE_length);
982 }
983
984 ice->state.dirty |= IRIS_DIRTY_SAMPLER_STATES_VS << stage;
985 }
986
987 struct iris_sampler_view {
988 struct pipe_sampler_view pipe;
989 struct isl_view view;
990
991 /** The resource (BO) holding our SURFACE_STATE. */
992 struct iris_state_ref surface_state;
993 };
994
995 /**
996 * Convert an swizzle enumeration (i.e. PIPE_SWIZZLE_X) to one of the Gen7.5+
997 * "Shader Channel Select" enumerations (i.e. HSW_SCS_RED). The mappings are
998 *
999 * SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W, SWIZZLE_ZERO, SWIZZLE_ONE
1000 * 0 1 2 3 4 5
1001 * 4 5 6 7 0 1
1002 * SCS_RED, SCS_GREEN, SCS_BLUE, SCS_ALPHA, SCS_ZERO, SCS_ONE
1003 *
1004 * which is simply adding 4 then modding by 8 (or anding with 7).
1005 *
1006 * We then may need to apply workarounds for textureGather hardware bugs.
1007 */
1008 static enum isl_channel_select
1009 pipe_swizzle_to_isl_channel(enum pipe_swizzle swizzle)
1010 {
1011 return (swizzle + 4) & 7;
1012 }
1013
1014 static struct pipe_sampler_view *
1015 iris_create_sampler_view(struct pipe_context *ctx,
1016 struct pipe_resource *tex,
1017 const struct pipe_sampler_view *tmpl)
1018 {
1019 struct iris_context *ice = (struct iris_context *) ctx;
1020 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1021 struct iris_resource *itex = (struct iris_resource *) tex;
1022 struct iris_sampler_view *isv = calloc(1, sizeof(struct iris_sampler_view));
1023
1024 if (!isv)
1025 return NULL;
1026
1027 /* initialize base object */
1028 isv->pipe = *tmpl;
1029 isv->pipe.context = ctx;
1030 isv->pipe.texture = NULL;
1031 pipe_reference_init(&isv->pipe.reference, 1);
1032 pipe_resource_reference(&isv->pipe.texture, tex);
1033
1034 void *map = upload_state(ice->state.surface_uploader, &isv->surface_state,
1035 4 * GENX(RENDER_SURFACE_STATE_length), 64);
1036 if (!unlikely(map))
1037 return NULL;
1038
1039 struct iris_bo *state_bo = iris_resource_bo(isv->surface_state.res);
1040 isv->surface_state.offset += iris_bo_offset_from_base_address(state_bo);
1041
1042 /* XXX: do we need brw_get_texture_swizzle hacks here? */
1043 isv->view = (struct isl_view) {
1044 .format = iris_isl_format_for_pipe_format(tmpl->format),
1045 .swizzle = (struct isl_swizzle) {
1046 .r = pipe_swizzle_to_isl_channel(tmpl->swizzle_r),
1047 .g = pipe_swizzle_to_isl_channel(tmpl->swizzle_g),
1048 .b = pipe_swizzle_to_isl_channel(tmpl->swizzle_b),
1049 .a = pipe_swizzle_to_isl_channel(tmpl->swizzle_a),
1050 },
1051 .usage = ISL_SURF_USAGE_TEXTURE_BIT |
1052 (itex->surf.usage & ISL_SURF_USAGE_CUBE_BIT),
1053 };
1054
1055 if (tmpl->target != PIPE_BUFFER) {
1056 isv->view.base_level = tmpl->u.tex.first_level;
1057 isv->view.levels = tmpl->u.tex.last_level - tmpl->u.tex.first_level + 1;
1058 isv->view.base_array_layer = tmpl->u.tex.first_layer;
1059 isv->view.array_len =
1060 tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
1061
1062 isl_surf_fill_state(&screen->isl_dev, map,
1063 .surf = &itex->surf, .view = &isv->view,
1064 .mocs = MOCS_WB,
1065 .address = itex->bo->gtt_offset);
1066 // .aux_surf =
1067 // .clear_color = clear_color,
1068 } else {
1069 // XXX: what to do about isv->view? other drivers don't use it for bufs
1070 const struct isl_format_layout *fmtl =
1071 isl_format_get_layout(isv->view.format);
1072 const unsigned cpp = fmtl->bpb / 8;
1073
1074 isl_buffer_fill_state(&screen->isl_dev, map,
1075 .address = itex->bo->gtt_offset +
1076 tmpl->u.buf.offset,
1077 // XXX: buffer_texture_range_size from i965?
1078 .size_B = tmpl->u.buf.size,
1079 .format = isv->view.format,
1080 .stride_B = cpp,
1081 .mocs = MOCS_WB);
1082 }
1083
1084 return &isv->pipe;
1085 }
1086
1087 static struct pipe_surface *
1088 iris_create_surface(struct pipe_context *ctx,
1089 struct pipe_resource *tex,
1090 const struct pipe_surface *tmpl)
1091 {
1092 struct iris_context *ice = (struct iris_context *) ctx;
1093 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1094 struct iris_surface *surf = calloc(1, sizeof(struct iris_surface));
1095 struct pipe_surface *psurf = &surf->pipe;
1096 struct iris_resource *res = (struct iris_resource *) tex;
1097
1098 if (!surf)
1099 return NULL;
1100
1101 pipe_reference_init(&psurf->reference, 1);
1102 pipe_resource_reference(&psurf->texture, tex);
1103 psurf->context = ctx;
1104 psurf->format = tmpl->format;
1105 psurf->width = tex->width0;
1106 psurf->height = tex->height0;
1107 psurf->texture = tex;
1108 psurf->u.tex.first_layer = tmpl->u.tex.first_layer;
1109 psurf->u.tex.last_layer = tmpl->u.tex.last_layer;
1110 psurf->u.tex.level = tmpl->u.tex.level;
1111
1112 unsigned usage = 0;
1113 if (tmpl->writable)
1114 usage = ISL_SURF_USAGE_STORAGE_BIT;
1115 else if (util_format_is_depth_or_stencil(tmpl->format))
1116 usage = ISL_SURF_USAGE_DEPTH_BIT;
1117 else
1118 usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
1119
1120 surf->view = (struct isl_view) {
1121 .format = iris_isl_format_for_pipe_format(tmpl->format),
1122 .base_level = tmpl->u.tex.level,
1123 .levels = 1,
1124 .base_array_layer = tmpl->u.tex.first_layer,
1125 .array_len = tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1,
1126 .swizzle = ISL_SWIZZLE_IDENTITY,
1127 .usage = usage,
1128 };
1129
1130 /* Bail early for depth/stencil */
1131 if (res->surf.usage & (ISL_SURF_USAGE_DEPTH_BIT |
1132 ISL_SURF_USAGE_STENCIL_BIT))
1133 return psurf;
1134
1135
1136 void *map = upload_state(ice->state.surface_uploader, &surf->surface_state,
1137 4 * GENX(RENDER_SURFACE_STATE_length), 64);
1138 if (!unlikely(map))
1139 return NULL;
1140
1141 struct iris_bo *state_bo = iris_resource_bo(surf->surface_state.res);
1142 surf->surface_state.offset += iris_bo_offset_from_base_address(state_bo);
1143
1144 isl_surf_fill_state(&screen->isl_dev, map,
1145 .surf = &res->surf, .view = &surf->view,
1146 .mocs = MOCS_WB,
1147 .address = res->bo->gtt_offset);
1148 // .aux_surf =
1149 // .clear_color = clear_color,
1150
1151 return psurf;
1152 }
1153
1154 static void
1155 iris_set_sampler_views(struct pipe_context *ctx,
1156 enum pipe_shader_type p_stage,
1157 unsigned start, unsigned count,
1158 struct pipe_sampler_view **views)
1159 {
1160 struct iris_context *ice = (struct iris_context *) ctx;
1161 gl_shader_stage stage = stage_from_pipe(p_stage);
1162
1163 unsigned i;
1164 for (i = 0; i < count; i++) {
1165 pipe_sampler_view_reference((struct pipe_sampler_view **)
1166 &ice->state.textures[stage][i], views[i]);
1167 }
1168 for (; i < ice->state.num_textures[stage]; i++) {
1169 pipe_sampler_view_reference((struct pipe_sampler_view **)
1170 &ice->state.textures[stage][i], NULL);
1171 }
1172
1173 ice->state.num_textures[stage] = count;
1174
1175 ice->state.dirty |= (IRIS_DIRTY_BINDINGS_VS << stage);
1176 }
1177
1178 static void
1179 iris_set_clip_state(struct pipe_context *ctx,
1180 const struct pipe_clip_state *state)
1181 {
1182 }
1183
1184 static void
1185 iris_set_polygon_stipple(struct pipe_context *ctx,
1186 const struct pipe_poly_stipple *state)
1187 {
1188 struct iris_context *ice = (struct iris_context *) ctx;
1189 memcpy(&ice->state.poly_stipple, state, sizeof(*state));
1190 ice->state.dirty |= IRIS_DIRTY_POLYGON_STIPPLE;
1191 }
1192
1193 static void
1194 iris_set_sample_mask(struct pipe_context *ctx, unsigned sample_mask)
1195 {
1196 struct iris_context *ice = (struct iris_context *) ctx;
1197
1198 ice->state.sample_mask = sample_mask == 0xffffffff ? 1 : sample_mask;
1199 ice->state.dirty |= IRIS_DIRTY_SAMPLE_MASK;
1200 }
1201
1202 static void
1203 iris_set_scissor_states(struct pipe_context *ctx,
1204 unsigned start_slot,
1205 unsigned num_scissors,
1206 const struct pipe_scissor_state *states)
1207 {
1208 struct iris_context *ice = (struct iris_context *) ctx;
1209
1210 for (unsigned i = 0; i < num_scissors; i++) {
1211 ice->state.scissors[start_slot + i] = states[i];
1212 }
1213
1214 ice->state.dirty |= IRIS_DIRTY_SCISSOR_RECT;
1215 }
1216
1217 static void
1218 iris_set_stencil_ref(struct pipe_context *ctx,
1219 const struct pipe_stencil_ref *state)
1220 {
1221 struct iris_context *ice = (struct iris_context *) ctx;
1222 memcpy(&ice->state.stencil_ref, state, sizeof(*state));
1223 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
1224 }
1225
1226 static float
1227 viewport_extent(const struct pipe_viewport_state *state, int axis, float sign)
1228 {
1229 return copysignf(state->scale[axis], sign) + state->translate[axis];
1230 }
1231
1232 #if 0
1233 static void
1234 calculate_guardband_size(uint32_t fb_width, uint32_t fb_height,
1235 float m00, float m11, float m30, float m31,
1236 float *xmin, float *xmax,
1237 float *ymin, float *ymax)
1238 {
1239 /* According to the "Vertex X,Y Clamping and Quantization" section of the
1240 * Strips and Fans documentation:
1241 *
1242 * "The vertex X and Y screen-space coordinates are also /clamped/ to the
1243 * fixed-point "guardband" range supported by the rasterization hardware"
1244 *
1245 * and
1246 *
1247 * "In almost all circumstances, if an object’s vertices are actually
1248 * modified by this clamping (i.e., had X or Y coordinates outside of
1249 * the guardband extent the rendered object will not match the intended
1250 * result. Therefore software should take steps to ensure that this does
1251 * not happen - e.g., by clipping objects such that they do not exceed
1252 * these limits after the Drawing Rectangle is applied."
1253 *
1254 * I believe the fundamental restriction is that the rasterizer (in
1255 * the SF/WM stages) have a limit on the number of pixels that can be
1256 * rasterized. We need to ensure any coordinates beyond the rasterizer
1257 * limit are handled by the clipper. So effectively that limit becomes
1258 * the clipper's guardband size.
1259 *
1260 * It goes on to say:
1261 *
1262 * "In addition, in order to be correctly rendered, objects must have a
1263 * screenspace bounding box not exceeding 8K in the X or Y direction.
1264 * This additional restriction must also be comprehended by software,
1265 * i.e., enforced by use of clipping."
1266 *
1267 * This makes no sense. Gen7+ hardware supports 16K render targets,
1268 * and you definitely need to be able to draw polygons that fill the
1269 * surface. Our assumption is that the rasterizer was limited to 8K
1270 * on Sandybridge, which only supports 8K surfaces, and it was actually
1271 * increased to 16K on Ivybridge and later.
1272 *
1273 * So, limit the guardband to 16K on Gen7+ and 8K on Sandybridge.
1274 */
1275 const float gb_size = GEN_GEN >= 7 ? 16384.0f : 8192.0f;
1276
1277 if (m00 != 0 && m11 != 0) {
1278 /* First, we compute the screen-space render area */
1279 const float ss_ra_xmin = MIN3( 0, m30 + m00, m30 - m00);
1280 const float ss_ra_xmax = MAX3( fb_width, m30 + m00, m30 - m00);
1281 const float ss_ra_ymin = MIN3( 0, m31 + m11, m31 - m11);
1282 const float ss_ra_ymax = MAX3(fb_height, m31 + m11, m31 - m11);
1283
1284 /* We want the guardband to be centered on that */
1285 const float ss_gb_xmin = (ss_ra_xmin + ss_ra_xmax) / 2 - gb_size;
1286 const float ss_gb_xmax = (ss_ra_xmin + ss_ra_xmax) / 2 + gb_size;
1287 const float ss_gb_ymin = (ss_ra_ymin + ss_ra_ymax) / 2 - gb_size;
1288 const float ss_gb_ymax = (ss_ra_ymin + ss_ra_ymax) / 2 + gb_size;
1289
1290 /* Now we need it in native device coordinates */
1291 const float ndc_gb_xmin = (ss_gb_xmin - m30) / m00;
1292 const float ndc_gb_xmax = (ss_gb_xmax - m30) / m00;
1293 const float ndc_gb_ymin = (ss_gb_ymin - m31) / m11;
1294 const float ndc_gb_ymax = (ss_gb_ymax - m31) / m11;
1295
1296 /* Thanks to Y-flipping and ORIGIN_UPPER_LEFT, the Y coordinates may be
1297 * flipped upside-down. X should be fine though.
1298 */
1299 assert(ndc_gb_xmin <= ndc_gb_xmax);
1300 *xmin = ndc_gb_xmin;
1301 *xmax = ndc_gb_xmax;
1302 *ymin = MIN2(ndc_gb_ymin, ndc_gb_ymax);
1303 *ymax = MAX2(ndc_gb_ymin, ndc_gb_ymax);
1304 } else {
1305 /* The viewport scales to 0, so nothing will be rendered. */
1306 *xmin = 0.0f;
1307 *xmax = 0.0f;
1308 *ymin = 0.0f;
1309 *ymax = 0.0f;
1310 }
1311 }
1312 #endif
1313
1314 static void
1315 iris_set_viewport_states(struct pipe_context *ctx,
1316 unsigned start_slot,
1317 unsigned count,
1318 const struct pipe_viewport_state *states)
1319 {
1320 struct iris_context *ice = (struct iris_context *) ctx;
1321 struct iris_genx_state *genx = ice->state.genx;
1322 uint32_t *vp_map = &genx->sf_cl_vp[start_slot];
1323
1324 for (unsigned i = 0; i < count; i++) {
1325 const struct pipe_viewport_state *state = &states[i];
1326
1327 memcpy(&ice->state.viewports[start_slot + i], state, sizeof(*state));
1328
1329 iris_pack_state(GENX(SF_CLIP_VIEWPORT), vp_map, vp) {
1330 vp.ViewportMatrixElementm00 = state->scale[0];
1331 vp.ViewportMatrixElementm11 = state->scale[1];
1332 vp.ViewportMatrixElementm22 = state->scale[2];
1333 vp.ViewportMatrixElementm30 = state->translate[0];
1334 vp.ViewportMatrixElementm31 = state->translate[1];
1335 vp.ViewportMatrixElementm32 = state->translate[2];
1336 /* XXX: in i965 this is computed based on the drawbuffer size,
1337 * but we don't have that here...
1338 */
1339 vp.XMinClipGuardband = -1.0;
1340 vp.XMaxClipGuardband = 1.0;
1341 vp.YMinClipGuardband = -1.0;
1342 vp.YMaxClipGuardband = 1.0;
1343 vp.XMinViewPort = viewport_extent(state, 0, -1.0f);
1344 vp.XMaxViewPort = viewport_extent(state, 0, 1.0f) - 1;
1345 vp.YMinViewPort = viewport_extent(state, 1, -1.0f);
1346 vp.YMaxViewPort = viewport_extent(state, 1, 1.0f) - 1;
1347 }
1348
1349 vp_map += GENX(SF_CLIP_VIEWPORT_length);
1350 }
1351
1352 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
1353
1354 if (ice->state.cso_rast && (!ice->state.cso_rast->depth_clip_near ||
1355 !ice->state.cso_rast->depth_clip_far))
1356 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1357 }
1358
1359 static void
1360 iris_set_framebuffer_state(struct pipe_context *ctx,
1361 const struct pipe_framebuffer_state *state)
1362 {
1363 struct iris_context *ice = (struct iris_context *) ctx;
1364 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1365 struct isl_device *isl_dev = &screen->isl_dev;
1366 struct pipe_framebuffer_state *cso = &ice->state.framebuffer;
1367
1368 unsigned samples = util_framebuffer_get_num_samples(state);
1369
1370 if (cso->samples != samples) {
1371 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
1372 }
1373
1374 if (cso->nr_cbufs != state->nr_cbufs) {
1375 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1376 }
1377
1378 if ((cso->layers == 0) != (state->layers == 0)) {
1379 ice->state.dirty |= IRIS_DIRTY_CLIP;
1380 }
1381
1382 util_copy_framebuffer_state(cso, state);
1383 cso->samples = samples;
1384
1385 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
1386
1387 struct isl_view view = {
1388 .base_level = 0,
1389 .levels = 1,
1390 .base_array_layer = 0,
1391 .array_len = 1,
1392 .swizzle = ISL_SWIZZLE_IDENTITY,
1393 };
1394
1395 struct isl_depth_stencil_hiz_emit_info info = {
1396 .view = &view,
1397 .mocs = MOCS_WB,
1398 };
1399
1400 struct iris_resource *zres =
1401 (void *) (cso->zsbuf ? cso->zsbuf->texture : NULL);
1402
1403 if (zres) {
1404 view.usage |= ISL_SURF_USAGE_DEPTH_BIT;
1405
1406 info.depth_surf = &zres->surf;
1407 info.depth_address = zres->bo->gtt_offset;
1408
1409 view.format = zres->surf.format;
1410
1411 view.base_level = cso->zsbuf->u.tex.level;
1412 view.base_array_layer = cso->zsbuf->u.tex.first_layer;
1413 view.array_len =
1414 cso->zsbuf->u.tex.last_layer - cso->zsbuf->u.tex.first_layer + 1;
1415
1416 info.hiz_usage = ISL_AUX_USAGE_NONE;
1417 }
1418
1419 #if 0
1420 if (stencil_mt) {
1421 view.usage |= ISL_SURF_USAGE_STENCIL_BIT;
1422 info.stencil_surf = &stencil_mt->surf;
1423
1424 if (!depth_mt) {
1425 view.base_level = stencil_irb->mt_level - stencil_irb->mt->first_level;
1426 view.base_array_layer = stencil_irb->mt_layer;
1427 view.array_len = MAX2(stencil_irb->layer_count, 1);
1428 view.format = stencil_mt->surf.format;
1429 }
1430
1431 uint32_t stencil_offset = 0;
1432 info.stencil_address = stencil_mt->bo->gtt_offset + stencil_mt->offset;
1433 }
1434 #endif
1435
1436 isl_emit_depth_stencil_hiz_s(isl_dev, cso_z->packets, &info);
1437
1438 ice->state.dirty |= IRIS_DIRTY_DEPTH_BUFFER;
1439
1440 /* Render target change */
1441 ice->state.dirty |= IRIS_DIRTY_BINDINGS_FS;
1442
1443 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_FRAMEBUFFER];
1444 }
1445
1446 static void
1447 iris_set_constant_buffer(struct pipe_context *ctx,
1448 enum pipe_shader_type p_stage, unsigned index,
1449 const struct pipe_constant_buffer *input)
1450 {
1451 struct iris_context *ice = (struct iris_context *) ctx;
1452 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1453 gl_shader_stage stage = stage_from_pipe(p_stage);
1454 struct iris_shader_state *shs = &ice->shaders.state[stage];
1455 struct iris_const_buffer *cbuf = &shs->constbuf[index];
1456
1457 if (input && (input->buffer || input->user_buffer)) {
1458 if (input->user_buffer) {
1459 u_upload_data(ctx->const_uploader, 0, input->buffer_size, 32,
1460 input->user_buffer, &cbuf->data.offset,
1461 &cbuf->data.res);
1462 } else {
1463 pipe_resource_reference(&cbuf->data.res, input->buffer);
1464 }
1465
1466 // XXX: these are not retained forever, use a separate uploader?
1467 void *map =
1468 upload_state(ice->state.surface_uploader, &cbuf->surface_state,
1469 4 * GENX(RENDER_SURFACE_STATE_length), 64);
1470 if (!unlikely(map)) {
1471 pipe_resource_reference(&cbuf->data.res, NULL);
1472 return;
1473 }
1474
1475 struct iris_resource *res = (void *) cbuf->data.res;
1476 struct iris_bo *surf_bo = iris_resource_bo(cbuf->surface_state.res);
1477 cbuf->surface_state.offset += iris_bo_offset_from_base_address(surf_bo);
1478
1479 isl_buffer_fill_state(&screen->isl_dev, map,
1480 .address = res->bo->gtt_offset + cbuf->data.offset,
1481 .size_B = input->buffer_size,
1482 .format = ISL_FORMAT_R32G32B32A32_FLOAT,
1483 .stride_B = 1,
1484 .mocs = MOCS_WB)
1485 } else {
1486 pipe_resource_reference(&cbuf->data.res, NULL);
1487 pipe_resource_reference(&cbuf->surface_state.res, NULL);
1488 }
1489
1490 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
1491 // XXX: maybe not necessary all the time...?
1492 // XXX: we need 3DS_BTP to commit these changes, and if we fell back to
1493 // XXX: pull model we may need actual new bindings...
1494 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
1495 }
1496
1497 static void
1498 iris_set_shader_buffers(struct pipe_context *ctx,
1499 enum pipe_shader_type p_stage,
1500 unsigned start_slot, unsigned count,
1501 const struct pipe_shader_buffer *buffers)
1502 {
1503 struct iris_context *ice = (struct iris_context *) ctx;
1504 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1505 gl_shader_stage stage = stage_from_pipe(p_stage);
1506 struct iris_shader_state *shs = &ice->shaders.state[stage];
1507
1508 for (unsigned i = 0; i < count; i++) {
1509 if (buffers && buffers[i].buffer) {
1510 const struct pipe_shader_buffer *buffer = &buffers[i];
1511 struct iris_resource *res = (void *) buffer->buffer;
1512 pipe_resource_reference(&shs->ssbo[start_slot + i], &res->base);
1513
1514 // XXX: these are not retained forever, use a separate uploader?
1515 void *map =
1516 upload_state(ice->state.surface_uploader,
1517 &shs->ssbo_surface_state[start_slot + i],
1518 4 * GENX(RENDER_SURFACE_STATE_length), 64);
1519 if (!unlikely(map)) {
1520 pipe_resource_reference(&shs->ssbo[start_slot + i], NULL);
1521 return;
1522 }
1523
1524 struct iris_bo *surf_state_bo =
1525 iris_resource_bo(shs->ssbo_surface_state[start_slot + i].res);
1526 shs->ssbo_surface_state[start_slot + i].offset +=
1527 iris_bo_offset_from_base_address(surf_state_bo);
1528
1529 isl_buffer_fill_state(&screen->isl_dev, map,
1530 .address =
1531 res->bo->gtt_offset + buffer->buffer_offset,
1532 .size_B = buffer->buffer_size,
1533 .format = ISL_FORMAT_RAW,
1534 .stride_B = 1,
1535 .mocs = MOCS_WB);
1536 } else {
1537 pipe_resource_reference(&shs->ssbo[start_slot + i], NULL);
1538 pipe_resource_reference(&shs->ssbo_surface_state[start_slot + i].res,
1539 NULL);
1540 }
1541 }
1542
1543 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
1544 }
1545
1546 static void
1547 iris_sampler_view_destroy(struct pipe_context *ctx,
1548 struct pipe_sampler_view *state)
1549 {
1550 struct iris_sampler_view *isv = (void *) state;
1551 pipe_resource_reference(&state->texture, NULL);
1552 pipe_resource_reference(&isv->surface_state.res, NULL);
1553 free(isv);
1554 }
1555
1556
1557 static void
1558 iris_surface_destroy(struct pipe_context *ctx, struct pipe_surface *p_surf)
1559 {
1560 struct iris_surface *surf = (void *) p_surf;
1561 pipe_resource_reference(&p_surf->texture, NULL);
1562 pipe_resource_reference(&surf->surface_state.res, NULL);
1563 free(surf);
1564 }
1565
1566 static void
1567 iris_delete_state(struct pipe_context *ctx, void *state)
1568 {
1569 free(state);
1570 }
1571
1572 static void
1573 iris_free_vertex_buffers(struct iris_vertex_buffer_state *cso)
1574 {
1575 for (unsigned i = 0; i < cso->num_buffers; i++)
1576 pipe_resource_reference(&cso->resources[i], NULL);
1577 }
1578
1579 static void
1580 iris_set_vertex_buffers(struct pipe_context *ctx,
1581 unsigned start_slot, unsigned count,
1582 const struct pipe_vertex_buffer *buffers)
1583 {
1584 struct iris_context *ice = (struct iris_context *) ctx;
1585 struct iris_vertex_buffer_state *cso = &ice->state.genx->vertex_buffers;
1586
1587 iris_free_vertex_buffers(&ice->state.genx->vertex_buffers);
1588
1589 if (!buffers)
1590 count = 0;
1591
1592 cso->num_buffers = count;
1593
1594 iris_pack_command(GENX(3DSTATE_VERTEX_BUFFERS), cso->vertex_buffers, vb) {
1595 vb.DWordLength = 4 * MAX2(cso->num_buffers, 1) - 1;
1596 }
1597
1598 uint32_t *vb_pack_dest = &cso->vertex_buffers[1];
1599
1600 if (count == 0) {
1601 iris_pack_state(GENX(VERTEX_BUFFER_STATE), vb_pack_dest, vb) {
1602 vb.VertexBufferIndex = start_slot;
1603 vb.NullVertexBuffer = true;
1604 vb.AddressModifyEnable = true;
1605 }
1606 }
1607
1608 for (unsigned i = 0; i < count; i++) {
1609 assert(!buffers[i].is_user_buffer);
1610
1611 pipe_resource_reference(&cso->resources[i], buffers[i].buffer.resource);
1612 struct iris_resource *res = (void *) cso->resources[i];
1613
1614 iris_pack_state(GENX(VERTEX_BUFFER_STATE), vb_pack_dest, vb) {
1615 vb.VertexBufferIndex = start_slot + i;
1616 vb.MOCS = MOCS_WB;
1617 vb.AddressModifyEnable = true;
1618 vb.BufferPitch = buffers[i].stride;
1619 vb.BufferSize = res->bo->size;
1620 vb.BufferStartingAddress =
1621 ro_bo(NULL, res->bo->gtt_offset + buffers[i].buffer_offset);
1622 }
1623
1624 vb_pack_dest += GENX(VERTEX_BUFFER_STATE_length);
1625 }
1626
1627 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
1628 }
1629
1630 struct iris_vertex_element_state {
1631 uint32_t vertex_elements[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
1632 uint32_t vf_instancing[33 * GENX(3DSTATE_VF_INSTANCING_length)];
1633 unsigned count;
1634 };
1635
1636 static void *
1637 iris_create_vertex_elements(struct pipe_context *ctx,
1638 unsigned count,
1639 const struct pipe_vertex_element *state)
1640 {
1641 struct iris_vertex_element_state *cso =
1642 malloc(sizeof(struct iris_vertex_element_state));
1643
1644 cso->count = count;
1645
1646 /* TODO:
1647 * - create edge flag one
1648 * - create SGV ones
1649 * - if those are necessary, use count + 1/2/3... OR in the length
1650 */
1651 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS), cso->vertex_elements, ve) {
1652 ve.DWordLength =
1653 1 + GENX(VERTEX_ELEMENT_STATE_length) * MAX2(count, 1) - 2;
1654 }
1655
1656 uint32_t *ve_pack_dest = &cso->vertex_elements[1];
1657 uint32_t *vfi_pack_dest = cso->vf_instancing;
1658
1659 if (count == 0) {
1660 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
1661 ve.Valid = true;
1662 ve.SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT;
1663 ve.Component0Control = VFCOMP_STORE_0;
1664 ve.Component1Control = VFCOMP_STORE_0;
1665 ve.Component2Control = VFCOMP_STORE_0;
1666 ve.Component3Control = VFCOMP_STORE_1_FP;
1667 }
1668
1669 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
1670 }
1671 }
1672
1673 for (int i = 0; i < count; i++) {
1674 enum isl_format isl_format =
1675 iris_isl_format_for_pipe_format(state[i].src_format);
1676 unsigned comp[4] = { VFCOMP_STORE_SRC, VFCOMP_STORE_SRC,
1677 VFCOMP_STORE_SRC, VFCOMP_STORE_SRC };
1678
1679 switch (isl_format_get_num_channels(isl_format)) {
1680 case 0: comp[0] = VFCOMP_STORE_0;
1681 case 1: comp[1] = VFCOMP_STORE_0;
1682 case 2: comp[2] = VFCOMP_STORE_0;
1683 case 3:
1684 comp[3] = isl_format_has_int_channel(isl_format) ? VFCOMP_STORE_1_INT
1685 : VFCOMP_STORE_1_FP;
1686 break;
1687 }
1688 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
1689 ve.VertexBufferIndex = state[i].vertex_buffer_index;
1690 ve.Valid = true;
1691 ve.SourceElementOffset = state[i].src_offset;
1692 ve.SourceElementFormat = isl_format;
1693 ve.Component0Control = comp[0];
1694 ve.Component1Control = comp[1];
1695 ve.Component2Control = comp[2];
1696 ve.Component3Control = comp[3];
1697 }
1698
1699 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
1700 vi.VertexElementIndex = i;
1701 vi.InstancingEnable = state[i].instance_divisor > 0;
1702 vi.InstanceDataStepRate = state[i].instance_divisor;
1703 }
1704
1705 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
1706 vfi_pack_dest += GENX(3DSTATE_VF_INSTANCING_length);
1707 }
1708
1709 return cso;
1710 }
1711
1712 static void
1713 iris_bind_vertex_elements_state(struct pipe_context *ctx, void *state)
1714 {
1715 struct iris_context *ice = (struct iris_context *) ctx;
1716 struct iris_vertex_element_state *old_cso = ice->state.cso_vertex_elements;
1717 struct iris_vertex_element_state *new_cso = state;
1718
1719 if (new_cso && cso_changed(count))
1720 ice->state.dirty |= IRIS_DIRTY_VF_SGVS;
1721
1722 ice->state.cso_vertex_elements = state;
1723 ice->state.dirty |= IRIS_DIRTY_VERTEX_ELEMENTS;
1724 }
1725
1726 static void *
1727 iris_create_compute_state(struct pipe_context *ctx,
1728 const struct pipe_compute_state *state)
1729 {
1730 return malloc(1);
1731 }
1732
1733 struct iris_stream_output_target {
1734 struct pipe_stream_output_target base;
1735
1736 uint32_t so_buffer[GENX(3DSTATE_SO_BUFFER_length)];
1737
1738 struct iris_state_ref offset;
1739 };
1740
1741 static struct pipe_stream_output_target *
1742 iris_create_stream_output_target(struct pipe_context *ctx,
1743 struct pipe_resource *res,
1744 unsigned buffer_offset,
1745 unsigned buffer_size)
1746 {
1747 struct iris_stream_output_target *cso = calloc(1, sizeof(*cso));
1748 if (!cso)
1749 return NULL;
1750
1751 pipe_reference_init(&cso->base.reference, 1);
1752 pipe_resource_reference(&cso->base.buffer, res);
1753 cso->base.buffer_offset = buffer_offset;
1754 cso->base.buffer_size = buffer_size;
1755 cso->base.context = ctx;
1756
1757 upload_state(ctx->stream_uploader, &cso->offset, 4, 4);
1758
1759 iris_pack_command(GENX(3DSTATE_SO_BUFFER), cso->so_buffer, sob) {
1760 sob.SurfaceBaseAddress =
1761 rw_bo(NULL, iris_resource_bo(res)->gtt_offset + buffer_offset);
1762 sob.SOBufferEnable = true;
1763 sob.StreamOffsetWriteEnable = true;
1764 sob.StreamOutputBufferOffsetAddressEnable = true;
1765 sob.MOCS = MOCS_WB; // XXX: MOCS
1766
1767 sob.SurfaceSize = MAX2(buffer_size / 4, 1) - 1;
1768 sob.StreamOutputBufferOffsetAddress =
1769 rw_bo(NULL, iris_resource_bo(cso->offset.res)->gtt_offset + cso->offset.offset);
1770
1771 /* .SOBufferIndex and .StreamOffset are filled in later */
1772 }
1773
1774 return &cso->base;
1775 }
1776
1777 static void
1778 iris_stream_output_target_destroy(struct pipe_context *ctx,
1779 struct pipe_stream_output_target *state)
1780 {
1781 struct iris_stream_output_target *cso = (void *) state;
1782
1783 pipe_resource_reference(&cso->base.buffer, NULL);
1784 pipe_resource_reference(&cso->offset.res, NULL);
1785
1786 free(cso);
1787 }
1788
1789 static void
1790 iris_set_stream_output_targets(struct pipe_context *ctx,
1791 unsigned num_targets,
1792 struct pipe_stream_output_target **targets,
1793 const unsigned *offsets)
1794 {
1795 struct iris_context *ice = (struct iris_context *) ctx;
1796 struct iris_genx_state *genx = ice->state.genx;
1797 uint32_t *so_buffers = genx->so_buffers;
1798
1799 const bool active = num_targets > 0;
1800 if (ice->state.streamout_active != active) {
1801 ice->state.streamout_active = active;
1802 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
1803 }
1804
1805 for (int i = 0; i < 4; i++) {
1806 pipe_so_target_reference(&ice->state.so_target[i],
1807 i < num_targets ? targets[i] : NULL);
1808 }
1809
1810 /* No need to update 3DSTATE_SO_BUFFER unless SOL is active. */
1811 if (!active)
1812 return;
1813
1814 for (unsigned i = 0; i < 4; i++,
1815 so_buffers += GENX(3DSTATE_SO_BUFFER_length)) {
1816
1817 if (i >= num_targets || !targets[i]) {
1818 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob)
1819 sob.SOBufferIndex = i;
1820 continue;
1821 }
1822
1823 /* Note that offsets[i] will either be 0, causing us to zero
1824 * the value in the buffer, or 0xFFFFFFFF, which happens to mean
1825 * "continue appending at the existing offset."
1826 */
1827 assert(offsets[i] == 0 || offsets[i] == 0xFFFFFFFF);
1828
1829 uint32_t dynamic[GENX(3DSTATE_SO_BUFFER_length)];
1830 iris_pack_state(GENX(3DSTATE_SO_BUFFER), dynamic, dyns) {
1831 dyns.SOBufferIndex = i;
1832 dyns.StreamOffset = offsets[i];
1833 }
1834
1835 struct iris_stream_output_target *tgt = (void *) targets[i];
1836 for (uint32_t j = 0; j < GENX(3DSTATE_SO_BUFFER_length); j++) {
1837 so_buffers[j] = tgt->so_buffer[j] | dynamic[j];
1838 }
1839 }
1840
1841 ice->state.dirty |= IRIS_DIRTY_SO_BUFFERS;
1842 }
1843
1844 static uint32_t *
1845 iris_create_so_decl_list(const struct pipe_stream_output_info *info,
1846 const struct brw_vue_map *vue_map)
1847 {
1848 struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
1849 int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
1850 int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
1851 int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
1852 int max_decls = 0;
1853 STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
1854
1855 memset(so_decl, 0, sizeof(so_decl));
1856
1857 /* Construct the list of SO_DECLs to be emitted. The formatting of the
1858 * command feels strange -- each dword pair contains a SO_DECL per stream.
1859 */
1860 for (unsigned i = 0; i < info->num_outputs; i++) {
1861 const struct pipe_stream_output *output = &info->output[i];
1862 const int buffer = output->output_buffer;
1863 const int varying = output->register_index;
1864 const unsigned stream_id = output->stream;
1865 assert(stream_id < MAX_VERTEX_STREAMS);
1866
1867 buffer_mask[stream_id] |= 1 << buffer;
1868
1869 assert(vue_map->varying_to_slot[varying] >= 0);
1870
1871 /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
1872 * array. Instead, it simply increments DstOffset for the following
1873 * input by the number of components that should be skipped.
1874 *
1875 * Our hardware is unusual in that it requires us to program SO_DECLs
1876 * for fake "hole" components, rather than simply taking the offset
1877 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
1878 * program as many size = 4 holes as we can, then a final hole to
1879 * accommodate the final 1, 2, or 3 remaining.
1880 */
1881 int skip_components = output->dst_offset - next_offset[buffer];
1882
1883 while (skip_components > 0) {
1884 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
1885 .HoleFlag = 1,
1886 .OutputBufferSlot = output->output_buffer,
1887 .ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
1888 };
1889 skip_components -= 4;
1890 }
1891
1892 next_offset[buffer] = output->dst_offset + output->num_components;
1893
1894 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
1895 .OutputBufferSlot = output->output_buffer,
1896 .RegisterIndex = vue_map->varying_to_slot[varying],
1897 .ComponentMask =
1898 ((1 << output->num_components) - 1) << output->start_component,
1899 };
1900
1901 if (decls[stream_id] > max_decls)
1902 max_decls = decls[stream_id];
1903 }
1904
1905 unsigned dwords = GENX(3DSTATE_STREAMOUT_length) + (3 + 2 * max_decls);
1906 uint32_t *map = ralloc_size(NULL, sizeof(uint32_t) * dwords);
1907 uint32_t *so_decl_map = map + GENX(3DSTATE_STREAMOUT_length);
1908
1909 iris_pack_command(GENX(3DSTATE_STREAMOUT), map, sol) {
1910 int urb_entry_read_offset = 0;
1911 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
1912 urb_entry_read_offset;
1913
1914 /* We always read the whole vertex. This could be reduced at some
1915 * point by reading less and offsetting the register index in the
1916 * SO_DECLs.
1917 */
1918 sol.Stream0VertexReadOffset = urb_entry_read_offset;
1919 sol.Stream0VertexReadLength = urb_entry_read_length - 1;
1920 sol.Stream1VertexReadOffset = urb_entry_read_offset;
1921 sol.Stream1VertexReadLength = urb_entry_read_length - 1;
1922 sol.Stream2VertexReadOffset = urb_entry_read_offset;
1923 sol.Stream2VertexReadLength = urb_entry_read_length - 1;
1924 sol.Stream3VertexReadOffset = urb_entry_read_offset;
1925 sol.Stream3VertexReadLength = urb_entry_read_length - 1;
1926
1927 /* Set buffer pitches; 0 means unbound. */
1928 sol.Buffer0SurfacePitch = 4 * info->stride[0];
1929 sol.Buffer1SurfacePitch = 4 * info->stride[1];
1930 sol.Buffer2SurfacePitch = 4 * info->stride[2];
1931 sol.Buffer3SurfacePitch = 4 * info->stride[3];
1932 }
1933
1934 iris_pack_command(GENX(3DSTATE_SO_DECL_LIST), so_decl_map, list) {
1935 list.DWordLength = 3 + 2 * max_decls - 2;
1936 list.StreamtoBufferSelects0 = buffer_mask[0];
1937 list.StreamtoBufferSelects1 = buffer_mask[1];
1938 list.StreamtoBufferSelects2 = buffer_mask[2];
1939 list.StreamtoBufferSelects3 = buffer_mask[3];
1940 list.NumEntries0 = decls[0];
1941 list.NumEntries1 = decls[1];
1942 list.NumEntries2 = decls[2];
1943 list.NumEntries3 = decls[3];
1944 }
1945
1946 for (int i = 0; i < max_decls; i++) {
1947 iris_pack_state(GENX(SO_DECL_ENTRY), so_decl_map + 3 + i * 2, entry) {
1948 entry.Stream0Decl = so_decl[0][i];
1949 entry.Stream1Decl = so_decl[1][i];
1950 entry.Stream2Decl = so_decl[2][i];
1951 entry.Stream3Decl = so_decl[3][i];
1952 }
1953 }
1954
1955 return map;
1956 }
1957
1958 static void
1959 iris_compute_sbe_urb_read_interval(uint64_t fs_input_slots,
1960 const struct brw_vue_map *last_vue_map,
1961 bool two_sided_color,
1962 unsigned *out_offset,
1963 unsigned *out_length)
1964 {
1965 /* The compiler computes the first URB slot without considering COL/BFC
1966 * swizzling (because it doesn't know whether it's enabled), so we need
1967 * to do that here too. This may result in a smaller offset, which
1968 * should be safe.
1969 */
1970 const unsigned first_slot =
1971 brw_compute_first_urb_slot_required(fs_input_slots, last_vue_map);
1972
1973 /* This becomes the URB read offset (counted in pairs of slots). */
1974 assert(first_slot % 2 == 0);
1975 *out_offset = first_slot / 2;
1976
1977 /* We need to adjust the inputs read to account for front/back color
1978 * swizzling, as it can make the URB length longer.
1979 */
1980 for (int c = 0; c <= 1; c++) {
1981 if (fs_input_slots & (VARYING_BIT_COL0 << c)) {
1982 /* If two sided color is enabled, the fragment shader's gl_Color
1983 * (COL0) input comes from either the gl_FrontColor (COL0) or
1984 * gl_BackColor (BFC0) input varyings. Mark BFC as used, too.
1985 */
1986 if (two_sided_color)
1987 fs_input_slots |= (VARYING_BIT_BFC0 << c);
1988
1989 /* If front color isn't written, we opt to give them back color
1990 * instead of an undefined value. Switch from COL to BFC.
1991 */
1992 if (last_vue_map->varying_to_slot[VARYING_SLOT_COL0 + c] == -1) {
1993 fs_input_slots &= ~(VARYING_BIT_COL0 << c);
1994 fs_input_slots |= (VARYING_BIT_BFC0 << c);
1995 }
1996 }
1997 }
1998
1999 /* Compute the minimum URB Read Length necessary for the FS inputs.
2000 *
2001 * From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
2002 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
2003 *
2004 * "This field should be set to the minimum length required to read the
2005 * maximum source attribute. The maximum source attribute is indicated
2006 * by the maximum value of the enabled Attribute # Source Attribute if
2007 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
2008 * enable is not set.
2009 * read_length = ceiling((max_source_attr + 1) / 2)
2010 *
2011 * [errata] Corruption/Hang possible if length programmed larger than
2012 * recommended"
2013 *
2014 * Similar text exists for Ivy Bridge.
2015 *
2016 * We find the last URB slot that's actually read by the FS.
2017 */
2018 unsigned last_read_slot = last_vue_map->num_slots - 1;
2019 while (last_read_slot > first_slot && !(fs_input_slots &
2020 (1ull << last_vue_map->slot_to_varying[last_read_slot])))
2021 --last_read_slot;
2022
2023 /* The URB read length is the difference of the two, counted in pairs. */
2024 *out_length = DIV_ROUND_UP(last_read_slot - first_slot + 1, 2);
2025 }
2026
2027 static void
2028 iris_emit_sbe_swiz(struct iris_batch *batch,
2029 const struct iris_context *ice,
2030 unsigned urb_read_offset,
2031 unsigned sprite_coord_enables)
2032 {
2033 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = {};
2034 const struct brw_wm_prog_data *wm_prog_data = (void *)
2035 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
2036 const struct brw_vue_map *vue_map = ice->shaders.last_vue_map;
2037 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
2038
2039 /* XXX: this should be generated when putting programs in place */
2040
2041 // XXX: raster->sprite_coord_enable
2042
2043 for (int fs_attr = 0; fs_attr < VARYING_SLOT_MAX; fs_attr++) {
2044 const int input_index = wm_prog_data->urb_setup[fs_attr];
2045 if (input_index < 0 || input_index >= 16)
2046 continue;
2047
2048 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr =
2049 &attr_overrides[input_index];
2050
2051 /* Viewport and Layer are stored in the VUE header. We need to override
2052 * them to zero if earlier stages didn't write them, as GL requires that
2053 * they read back as zero when not explicitly set.
2054 */
2055 switch (fs_attr) {
2056 case VARYING_SLOT_VIEWPORT:
2057 case VARYING_SLOT_LAYER:
2058 attr->ComponentOverrideX = true;
2059 attr->ComponentOverrideW = true;
2060 attr->ConstantSource = CONST_0000;
2061
2062 if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
2063 attr->ComponentOverrideY = true;
2064 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
2065 attr->ComponentOverrideZ = true;
2066 continue;
2067
2068 case VARYING_SLOT_PRIMITIVE_ID:
2069 attr->ComponentOverrideX = true;
2070 attr->ComponentOverrideY = true;
2071 attr->ComponentOverrideZ = true;
2072 attr->ComponentOverrideW = true;
2073 attr->ConstantSource = PRIM_ID;
2074 continue;
2075
2076 default:
2077 break;
2078 }
2079
2080 if (sprite_coord_enables & (1 << input_index))
2081 continue;
2082
2083 int slot = vue_map->varying_to_slot[fs_attr];
2084
2085 /* If there was only a back color written but not front, use back
2086 * as the color instead of undefined.
2087 */
2088 if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
2089 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
2090 if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
2091 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
2092
2093 /* Not written by the previous stage - undefined. */
2094 if (slot == -1) {
2095 attr->ComponentOverrideX = true;
2096 attr->ComponentOverrideY = true;
2097 attr->ComponentOverrideZ = true;
2098 attr->ComponentOverrideW = true;
2099 attr->ConstantSource = CONST_0001_FLOAT;
2100 continue;
2101 }
2102
2103 /* Compute the location of the attribute relative to the read offset,
2104 * which is counted in 256-bit increments (two 128-bit VUE slots).
2105 */
2106 const int source_attr = slot - 2 * urb_read_offset;
2107 assert(source_attr >= 0 && source_attr <= 32);
2108 attr->SourceAttribute = source_attr;
2109
2110 /* If we are doing two-sided color, and the VUE slot following this one
2111 * represents a back-facing color, then we need to instruct the SF unit
2112 * to do back-facing swizzling.
2113 */
2114 if (cso_rast->light_twoside &&
2115 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
2116 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
2117 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
2118 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1)))
2119 attr->SwizzleSelect = INPUTATTR_FACING;
2120 }
2121
2122 iris_emit_cmd(batch, GENX(3DSTATE_SBE_SWIZ), sbes) {
2123 for (int i = 0; i < 16; i++)
2124 sbes.Attribute[i] = attr_overrides[i];
2125 }
2126 }
2127
2128 static unsigned
2129 iris_calculate_point_sprite_overrides(const struct brw_wm_prog_data *prog_data,
2130 const struct iris_rasterizer_state *cso)
2131 {
2132 unsigned overrides = 0;
2133
2134 if (prog_data->urb_setup[VARYING_SLOT_PNTC] != -1)
2135 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_PNTC];
2136
2137 for (int i = 0; i < 8; i++) {
2138 if ((cso->sprite_coord_enable & (1 << i)) &&
2139 prog_data->urb_setup[VARYING_SLOT_TEX0 + i] != -1)
2140 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_TEX0 + i];
2141 }
2142
2143 return overrides;
2144 }
2145
2146 static void
2147 iris_emit_sbe(struct iris_batch *batch, const struct iris_context *ice)
2148 {
2149 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
2150 const struct brw_wm_prog_data *wm_prog_data = (void *)
2151 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
2152 struct pipe_shader_state *p_fs =
2153 (void *) ice->shaders.uncompiled[MESA_SHADER_FRAGMENT];
2154 assert(p_fs->type == PIPE_SHADER_IR_NIR);
2155 nir_shader *fs_nir = p_fs->ir.nir;
2156
2157 unsigned urb_read_offset, urb_read_length;
2158 iris_compute_sbe_urb_read_interval(fs_nir->info.inputs_read,
2159 ice->shaders.last_vue_map,
2160 cso_rast->light_twoside,
2161 &urb_read_offset, &urb_read_length);
2162
2163 unsigned sprite_coord_overrides =
2164 iris_calculate_point_sprite_overrides(wm_prog_data, cso_rast);
2165
2166 iris_emit_cmd(batch, GENX(3DSTATE_SBE), sbe) {
2167 sbe.AttributeSwizzleEnable = true;
2168 sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
2169 sbe.PointSpriteTextureCoordinateOrigin = cso_rast->sprite_coord_mode;
2170 sbe.VertexURBEntryReadOffset = urb_read_offset;
2171 sbe.VertexURBEntryReadLength = urb_read_length;
2172 sbe.ForceVertexURBEntryReadOffset = true;
2173 sbe.ForceVertexURBEntryReadLength = true;
2174 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
2175 sbe.PointSpriteTextureCoordinateEnable = sprite_coord_overrides;
2176
2177 for (int i = 0; i < 32; i++) {
2178 sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW;
2179 }
2180 }
2181
2182 iris_emit_sbe_swiz(batch, ice, urb_read_offset, sprite_coord_overrides);
2183 }
2184
2185 static void
2186 iris_bind_compute_state(struct pipe_context *ctx, void *state)
2187 {
2188 }
2189
2190 static void
2191 iris_populate_sampler_key(const struct iris_context *ice,
2192 struct brw_sampler_prog_key_data *key)
2193 {
2194 for (int i = 0; i < MAX_SAMPLERS; i++) {
2195 key->swizzles[i] = 0x688; /* XYZW */
2196 }
2197 }
2198
2199 static void
2200 iris_populate_vs_key(const struct iris_context *ice,
2201 struct brw_vs_prog_key *key)
2202 {
2203 iris_populate_sampler_key(ice, &key->tex);
2204 }
2205
2206 static void
2207 iris_populate_tcs_key(const struct iris_context *ice,
2208 struct brw_tcs_prog_key *key)
2209 {
2210 iris_populate_sampler_key(ice, &key->tex);
2211 }
2212
2213 static void
2214 iris_populate_tes_key(const struct iris_context *ice,
2215 struct brw_tes_prog_key *key)
2216 {
2217 iris_populate_sampler_key(ice, &key->tex);
2218 }
2219
2220 static void
2221 iris_populate_gs_key(const struct iris_context *ice,
2222 struct brw_gs_prog_key *key)
2223 {
2224 iris_populate_sampler_key(ice, &key->tex);
2225 }
2226
2227 static void
2228 iris_populate_fs_key(const struct iris_context *ice,
2229 struct brw_wm_prog_key *key)
2230 {
2231 iris_populate_sampler_key(ice, &key->tex);
2232
2233 /* XXX: dirty flags? */
2234 const struct pipe_framebuffer_state *fb = &ice->state.framebuffer;
2235 const struct iris_depth_stencil_alpha_state *zsa = ice->state.cso_zsa;
2236 const struct iris_rasterizer_state *rast = ice->state.cso_rast;
2237 const struct iris_blend_state *blend = ice->state.cso_blend;
2238
2239 key->nr_color_regions = fb->nr_cbufs;
2240
2241 key->clamp_fragment_color = rast->clamp_fragment_color;
2242
2243 key->replicate_alpha = fb->nr_cbufs > 1 &&
2244 (zsa->alpha.enabled || blend->alpha_to_coverage);
2245
2246 /* XXX: only bother if COL0/1 are read */
2247 key->flat_shade = rast->flatshade;
2248
2249 key->persample_interp = rast->force_persample_interp;
2250 key->multisample_fbo = rast->multisample && fb->samples > 1;
2251
2252 key->coherent_fb_fetch = true;
2253
2254 // XXX: uint64_t input_slots_valid; - for >16 inputs
2255
2256 // XXX: key->force_dual_color_blend for unigine
2257 // XXX: respect hint for high_quality_derivatives:1;
2258 }
2259
2260 #if 0
2261 // XXX: these need to go in INIT_THREAD_DISPATCH_FIELDS
2262 pkt.SamplerCount = \
2263 DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4); \
2264 pkt.PerThreadScratchSpace = prog_data->total_scratch == 0 ? 0 : \
2265 ffs(stage_state->per_thread_scratch) - 11; \
2266
2267 #endif
2268
2269 static uint64_t
2270 KSP(const struct iris_compiled_shader *shader)
2271 {
2272 struct iris_resource *res = (void *) shader->assembly.res;
2273 return iris_bo_offset_from_base_address(res->bo) + shader->assembly.offset;
2274 }
2275
2276 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix) \
2277 pkt.KernelStartPointer = KSP(shader); \
2278 pkt.BindingTableEntryCount = prog_data->binding_table.size_bytes / 4; \
2279 pkt.FloatingPointMode = prog_data->use_alt_mode; \
2280 \
2281 pkt.DispatchGRFStartRegisterForURBData = \
2282 prog_data->dispatch_grf_start_reg; \
2283 pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
2284 pkt.prefix##URBEntryReadOffset = 0; \
2285 \
2286 pkt.StatisticsEnable = true; \
2287 pkt.Enable = true;
2288
2289 static void
2290 iris_store_vs_state(const struct gen_device_info *devinfo,
2291 struct iris_compiled_shader *shader)
2292 {
2293 struct brw_stage_prog_data *prog_data = shader->prog_data;
2294 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
2295
2296 iris_pack_command(GENX(3DSTATE_VS), shader->derived_data, vs) {
2297 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex);
2298 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
2299 vs.SIMD8DispatchEnable = true;
2300 vs.UserClipDistanceCullTestEnableBitmask =
2301 vue_prog_data->cull_distance_mask;
2302 }
2303 }
2304
2305 static void
2306 iris_store_tcs_state(const struct gen_device_info *devinfo,
2307 struct iris_compiled_shader *shader)
2308 {
2309 struct brw_stage_prog_data *prog_data = shader->prog_data;
2310 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
2311 struct brw_tcs_prog_data *tcs_prog_data = (void *) prog_data;
2312
2313 iris_pack_command(GENX(3DSTATE_HS), shader->derived_data, hs) {
2314 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex);
2315
2316 hs.InstanceCount = tcs_prog_data->instances - 1;
2317 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
2318 hs.IncludeVertexHandles = true;
2319 }
2320 }
2321
2322 static void
2323 iris_store_tes_state(const struct gen_device_info *devinfo,
2324 struct iris_compiled_shader *shader)
2325 {
2326 struct brw_stage_prog_data *prog_data = shader->prog_data;
2327 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
2328 struct brw_tes_prog_data *tes_prog_data = (void *) prog_data;
2329
2330 uint32_t *te_state = (void *) shader->derived_data;
2331 uint32_t *ds_state = te_state + GENX(3DSTATE_TE_length);
2332
2333 iris_pack_command(GENX(3DSTATE_TE), te_state, te) {
2334 te.Partitioning = tes_prog_data->partitioning;
2335 te.OutputTopology = tes_prog_data->output_topology;
2336 te.TEDomain = tes_prog_data->domain;
2337 te.TEEnable = true;
2338 te.MaximumTessellationFactorOdd = 63.0;
2339 te.MaximumTessellationFactorNotOdd = 64.0;
2340 }
2341
2342 iris_pack_command(GENX(3DSTATE_DS), ds_state, ds) {
2343 INIT_THREAD_DISPATCH_FIELDS(ds, Patch);
2344
2345 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
2346 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
2347 ds.ComputeWCoordinateEnable =
2348 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
2349
2350 ds.UserClipDistanceCullTestEnableBitmask =
2351 vue_prog_data->cull_distance_mask;
2352 }
2353
2354 }
2355
2356 static void
2357 iris_store_gs_state(const struct gen_device_info *devinfo,
2358 struct iris_compiled_shader *shader)
2359 {
2360 struct brw_stage_prog_data *prog_data = shader->prog_data;
2361 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
2362 struct brw_gs_prog_data *gs_prog_data = (void *) prog_data;
2363
2364 iris_pack_command(GENX(3DSTATE_GS), shader->derived_data, gs) {
2365 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex);
2366
2367 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
2368 gs.OutputTopology = gs_prog_data->output_topology;
2369 gs.ControlDataHeaderSize =
2370 gs_prog_data->control_data_header_size_hwords;
2371 gs.InstanceControl = gs_prog_data->invocations - 1;
2372 gs.DispatchMode = DISPATCH_MODE_SIMD8;
2373 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
2374 gs.ControlDataFormat = gs_prog_data->control_data_format;
2375 gs.ReorderMode = TRAILING;
2376 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
2377 gs.MaximumNumberofThreads =
2378 GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
2379 : (devinfo->max_gs_threads - 1);
2380
2381 if (gs_prog_data->static_vertex_count != -1) {
2382 gs.StaticOutput = true;
2383 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
2384 }
2385 gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
2386
2387 gs.UserClipDistanceCullTestEnableBitmask =
2388 vue_prog_data->cull_distance_mask;
2389
2390 const int urb_entry_write_offset = 1;
2391 const uint32_t urb_entry_output_length =
2392 DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
2393 urb_entry_write_offset;
2394
2395 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
2396 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
2397 }
2398 }
2399
2400 static void
2401 iris_store_fs_state(const struct gen_device_info *devinfo,
2402 struct iris_compiled_shader *shader)
2403 {
2404 struct brw_stage_prog_data *prog_data = shader->prog_data;
2405 struct brw_wm_prog_data *wm_prog_data = (void *) shader->prog_data;
2406
2407 uint32_t *ps_state = (void *) shader->derived_data;
2408 uint32_t *psx_state = ps_state + GENX(3DSTATE_PS_length);
2409
2410 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
2411 ps.VectorMaskEnable = true;
2412 //ps.SamplerCount = ...
2413 ps.BindingTableEntryCount = prog_data->binding_table.size_bytes / 4;
2414 ps.FloatingPointMode = prog_data->use_alt_mode;
2415 ps.MaximumNumberofThreadsPerPSD = 64 - (GEN_GEN == 8 ? 2 : 1);
2416
2417 ps.PushConstantEnable = prog_data->nr_params > 0 ||
2418 prog_data->ubo_ranges[0].length > 0;
2419
2420 /* From the documentation for this packet:
2421 * "If the PS kernel does not need the Position XY Offsets to
2422 * compute a Position Value, then this field should be programmed
2423 * to POSOFFSET_NONE."
2424 *
2425 * "SW Recommendation: If the PS kernel needs the Position Offsets
2426 * to compute a Position XY value, this field should match Position
2427 * ZW Interpolation Mode to ensure a consistent position.xyzw
2428 * computation."
2429 *
2430 * We only require XY sample offsets. So, this recommendation doesn't
2431 * look useful at the moment. We might need this in future.
2432 */
2433 ps.PositionXYOffsetSelect =
2434 wm_prog_data->uses_pos_offset ? POSOFFSET_SAMPLE : POSOFFSET_NONE;
2435 ps._8PixelDispatchEnable = wm_prog_data->dispatch_8;
2436 ps._16PixelDispatchEnable = wm_prog_data->dispatch_16;
2437 ps._32PixelDispatchEnable = wm_prog_data->dispatch_32;
2438
2439 // XXX: Disable SIMD32 with 16x MSAA
2440
2441 ps.DispatchGRFStartRegisterForConstantSetupData0 =
2442 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
2443 ps.DispatchGRFStartRegisterForConstantSetupData1 =
2444 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
2445 ps.DispatchGRFStartRegisterForConstantSetupData2 =
2446 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
2447
2448 ps.KernelStartPointer0 =
2449 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
2450 ps.KernelStartPointer1 =
2451 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
2452 ps.KernelStartPointer2 =
2453 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
2454 }
2455
2456 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
2457 psx.PixelShaderValid = true;
2458 psx.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
2459 psx.PixelShaderKillsPixel = wm_prog_data->uses_kill;
2460 psx.AttributeEnable = wm_prog_data->num_varying_inputs != 0;
2461 psx.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
2462 psx.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
2463 psx.PixelShaderIsPerSample = wm_prog_data->persample_dispatch;
2464
2465 if (wm_prog_data->uses_sample_mask) {
2466 /* TODO: conservative rasterization */
2467 if (wm_prog_data->post_depth_coverage)
2468 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
2469 else
2470 psx.InputCoverageMaskState = ICMS_NORMAL;
2471 }
2472
2473 psx.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
2474 psx.PixelShaderPullsBary = wm_prog_data->pulls_bary;
2475 psx.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
2476
2477 // XXX: UAV bit
2478 }
2479 }
2480
2481 static unsigned
2482 iris_derived_program_state_size(enum iris_program_cache_id cache_id)
2483 {
2484 assert(cache_id <= IRIS_CACHE_BLORP);
2485
2486 static const unsigned dwords[] = {
2487 [IRIS_CACHE_VS] = GENX(3DSTATE_VS_length),
2488 [IRIS_CACHE_TCS] = GENX(3DSTATE_HS_length),
2489 [IRIS_CACHE_TES] = GENX(3DSTATE_TE_length) + GENX(3DSTATE_DS_length),
2490 [IRIS_CACHE_GS] = GENX(3DSTATE_GS_length),
2491 [IRIS_CACHE_FS] =
2492 GENX(3DSTATE_PS_length) + GENX(3DSTATE_PS_EXTRA_length),
2493 [IRIS_CACHE_CS] = 0,
2494 [IRIS_CACHE_BLORP] = 0,
2495 };
2496
2497 return sizeof(uint32_t) * dwords[cache_id];
2498 }
2499
2500 static void
2501 iris_store_derived_program_state(const struct gen_device_info *devinfo,
2502 enum iris_program_cache_id cache_id,
2503 struct iris_compiled_shader *shader)
2504 {
2505 switch (cache_id) {
2506 case IRIS_CACHE_VS:
2507 iris_store_vs_state(devinfo, shader);
2508 break;
2509 case IRIS_CACHE_TCS:
2510 iris_store_tcs_state(devinfo, shader);
2511 break;
2512 case IRIS_CACHE_TES:
2513 iris_store_tes_state(devinfo, shader);
2514 break;
2515 case IRIS_CACHE_GS:
2516 iris_store_gs_state(devinfo, shader);
2517 break;
2518 case IRIS_CACHE_FS:
2519 iris_store_fs_state(devinfo, shader);
2520 break;
2521 case IRIS_CACHE_CS:
2522 case IRIS_CACHE_BLORP:
2523 break;
2524 default:
2525 break;
2526 }
2527 }
2528
2529 static void
2530 iris_upload_urb_config(struct iris_context *ice, struct iris_batch *batch)
2531 {
2532 const struct gen_device_info *devinfo = &batch->screen->devinfo;
2533 const unsigned push_size_kB = 32;
2534 unsigned entries[4];
2535 unsigned start[4];
2536 unsigned size[4];
2537
2538 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
2539 if (!ice->shaders.prog[i]) {
2540 size[i] = 1;
2541 } else {
2542 struct brw_vue_prog_data *vue_prog_data =
2543 (void *) ice->shaders.prog[i]->prog_data;
2544 size[i] = vue_prog_data->urb_entry_size;
2545 }
2546 assert(size[i] != 0);
2547 }
2548
2549 gen_get_urb_config(devinfo, 1024 * push_size_kB,
2550 1024 * ice->shaders.urb_size,
2551 ice->shaders.prog[MESA_SHADER_TESS_EVAL] != NULL,
2552 ice->shaders.prog[MESA_SHADER_GEOMETRY] != NULL,
2553 size, entries, start);
2554
2555 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
2556 iris_emit_cmd(batch, GENX(3DSTATE_URB_VS), urb) {
2557 urb._3DCommandSubOpcode += i;
2558 urb.VSURBStartingAddress = start[i];
2559 urb.VSURBEntryAllocationSize = size[i] - 1;
2560 urb.VSNumberofURBEntries = entries[i];
2561 }
2562 }
2563 }
2564
2565 static const uint32_t push_constant_opcodes[] = {
2566 [MESA_SHADER_VERTEX] = 21,
2567 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
2568 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
2569 [MESA_SHADER_GEOMETRY] = 22,
2570 [MESA_SHADER_FRAGMENT] = 23,
2571 [MESA_SHADER_COMPUTE] = 0,
2572 };
2573
2574 /**
2575 * Add a surface to the validation list, as well as the buffer containing
2576 * the corresponding SURFACE_STATE.
2577 *
2578 * Returns the binding table entry (offset to SURFACE_STATE).
2579 */
2580 static uint32_t
2581 use_surface(struct iris_batch *batch,
2582 struct pipe_surface *p_surf,
2583 bool writeable)
2584 {
2585 struct iris_surface *surf = (void *) p_surf;
2586
2587 iris_use_pinned_bo(batch, iris_resource_bo(p_surf->texture), writeable);
2588 iris_use_pinned_bo(batch, iris_resource_bo(surf->surface_state.res), false);
2589
2590 return surf->surface_state.offset;
2591 }
2592
2593 static uint32_t
2594 use_sampler_view(struct iris_batch *batch, struct iris_sampler_view *isv)
2595 {
2596 iris_use_pinned_bo(batch, iris_resource_bo(isv->pipe.texture), false);
2597 iris_use_pinned_bo(batch, iris_resource_bo(isv->surface_state.res), false);
2598
2599 return isv->surface_state.offset;
2600 }
2601
2602 static uint32_t
2603 use_const_buffer(struct iris_batch *batch, struct iris_const_buffer *cbuf)
2604 {
2605 iris_use_pinned_bo(batch, iris_resource_bo(cbuf->data.res), false);
2606 iris_use_pinned_bo(batch, iris_resource_bo(cbuf->surface_state.res), false);
2607
2608 return cbuf->surface_state.offset;
2609 }
2610
2611 static uint32_t
2612 use_null_surface(struct iris_batch *batch, struct iris_context *ice)
2613 {
2614 struct iris_bo *state_bo = iris_resource_bo(ice->state.unbound_tex.res);
2615
2616 iris_use_pinned_bo(batch, state_bo, false);
2617
2618 return ice->state.unbound_tex.offset;
2619 }
2620
2621 static uint32_t
2622 use_ssbo(struct iris_batch *batch, struct iris_context *ice,
2623 struct iris_shader_state *shs, int i)
2624 {
2625 if (!shs->ssbo[i])
2626 return use_null_surface(batch, ice);
2627
2628 struct iris_state_ref *surf_state = &shs->ssbo_surface_state[i];
2629
2630 iris_use_pinned_bo(batch, iris_resource_bo(shs->ssbo[i]), true);
2631 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false);
2632
2633 return surf_state->offset;
2634 }
2635
2636 static void
2637 iris_populate_binding_table(struct iris_context *ice,
2638 struct iris_batch *batch,
2639 gl_shader_stage stage)
2640 {
2641 const struct iris_binder *binder = &batch->binder;
2642 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
2643 if (!shader)
2644 return;
2645
2646 const struct shader_info *info = iris_get_shader_info(ice, stage);
2647 struct iris_shader_state *shs = &ice->shaders.state[stage];
2648
2649 // Surfaces:
2650 // - pull constants
2651 // - ubos/ssbos/abos
2652 // - images
2653 // - textures
2654 // - render targets - write and read
2655
2656 //struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
2657 uint32_t *bt_map = binder->map + binder->bt_offset[stage];
2658 int s = 0;
2659
2660 if (stage == MESA_SHADER_FRAGMENT) {
2661 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
2662 for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
2663 bt_map[s++] = use_surface(batch, cso_fb->cbufs[i], true);
2664 }
2665 }
2666
2667 //assert(prog_data->binding_table.texture_start ==
2668 //(ice->state.num_textures[stage] ? s : 0xd0d0d0d0));
2669
2670 for (int i = 0; i < ice->state.num_textures[stage]; i++) {
2671 struct iris_sampler_view *view = ice->state.textures[stage][i];
2672 bt_map[s++] = view ? use_sampler_view(batch, view)
2673 : use_null_surface(batch, ice);
2674 }
2675
2676 for (int i = 0; i < 1 + info->num_ubos; i++) {
2677 struct iris_const_buffer *cbuf = &shs->constbuf[i];
2678 if (!cbuf->surface_state.res)
2679 break;
2680
2681 bt_map[s++] = use_const_buffer(batch, cbuf);
2682 }
2683
2684 /* XXX: st is wasting 16 binding table slots for ABOs. Should add a cap
2685 * for changing nir_lower_atomics_to_ssbos setting and buffer_base offset
2686 * in st_atom_storagebuf.c so it'll compact them into one range, with
2687 * SSBOs starting at info->num_abos. Ideally it'd reset num_abos to 0 too
2688 */
2689 if (info->num_abos + info->num_ssbos > 0) {
2690 for (int i = 0; i < IRIS_MAX_ABOS + info->num_ssbos; i++) {
2691 bt_map[s++] = use_ssbo(batch, ice, shs, i);
2692 }
2693 }
2694
2695 #if 0
2696 // XXX: not implemented yet
2697 assert(prog_data->binding_table.pull_constants_start == 0xd0d0d0d0);
2698 assert(prog_data->binding_table.ubo_start == 0xd0d0d0d0);
2699 assert(prog_data->binding_table.ssbo_start == 0xd0d0d0d0);
2700 assert(prog_data->binding_table.image_start == 0xd0d0d0d0);
2701 assert(prog_data->binding_table.shader_time_start == 0xd0d0d0d0);
2702 //assert(prog_data->binding_table.plane_start[1] == 0xd0d0d0d0);
2703 //assert(prog_data->binding_table.plane_start[2] == 0xd0d0d0d0);
2704 #endif
2705 }
2706
2707 static void
2708 iris_use_optional_res(struct iris_batch *batch,
2709 struct pipe_resource *res,
2710 bool writeable)
2711 {
2712 if (res) {
2713 struct iris_bo *bo = iris_resource_bo(res);
2714 iris_use_pinned_bo(batch, bo, writeable);
2715 }
2716 }
2717
2718
2719 /**
2720 * Pin any BOs which were installed by a previous batch, and restored
2721 * via the hardware logical context mechanism.
2722 *
2723 * We don't need to re-emit all state every batch - the hardware context
2724 * mechanism will save and restore it for us. This includes pointers to
2725 * various BOs...which won't exist unless we ask the kernel to pin them
2726 * by adding them to the validation list.
2727 *
2728 * We can skip buffers if we've re-emitted those packets, as we're
2729 * overwriting those stale pointers with new ones, and don't actually
2730 * refer to the old BOs.
2731 */
2732 static void
2733 iris_restore_context_saved_bos(struct iris_context *ice,
2734 struct iris_batch *batch,
2735 const struct pipe_draw_info *draw)
2736 {
2737 // XXX: whack IRIS_SHADER_DIRTY_BINDING_TABLE on new batch
2738
2739 const uint64_t clean = ~ice->state.dirty;
2740
2741 if (clean & IRIS_DIRTY_CC_VIEWPORT) {
2742 iris_use_optional_res(batch, ice->state.last_res.cc_vp, false);
2743 }
2744
2745 if (clean & IRIS_DIRTY_SF_CL_VIEWPORT) {
2746 iris_use_optional_res(batch, ice->state.last_res.sf_cl_vp, false);
2747 }
2748
2749 if (clean & IRIS_DIRTY_BLEND_STATE) {
2750 iris_use_optional_res(batch, ice->state.last_res.blend, false);
2751 }
2752
2753 if (clean & IRIS_DIRTY_COLOR_CALC_STATE) {
2754 iris_use_optional_res(batch, ice->state.last_res.color_calc, false);
2755 }
2756
2757 if (clean & IRIS_DIRTY_SCISSOR_RECT) {
2758 iris_use_optional_res(batch, ice->state.last_res.scissor, false);
2759 }
2760
2761 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
2762 if (clean & (IRIS_DIRTY_CONSTANTS_VS << stage))
2763 continue;
2764
2765 struct iris_shader_state *shs = &ice->shaders.state[stage];
2766 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
2767
2768 if (!shader)
2769 continue;
2770
2771 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
2772
2773 for (int i = 0; i < 4; i++) {
2774 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
2775
2776 if (range->length == 0)
2777 continue;
2778
2779 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
2780 struct iris_resource *res = (void *) cbuf->data.res;
2781
2782 if (res)
2783 iris_use_pinned_bo(batch, res->bo, false);
2784 else
2785 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
2786 }
2787 }
2788
2789 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
2790 struct pipe_resource *res = ice->state.sampler_table[stage].res;
2791 if (res)
2792 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
2793 }
2794
2795 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
2796 if (clean & (IRIS_DIRTY_VS << stage)) {
2797 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
2798 if (shader) {
2799 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
2800 iris_use_pinned_bo(batch, bo, false);
2801 }
2802
2803 // XXX: scratch buffer
2804 }
2805 }
2806
2807 if (clean & IRIS_DIRTY_DEPTH_BUFFER) {
2808 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
2809
2810 if (cso_fb->zsbuf) {
2811 struct iris_resource *zres = (void *) cso_fb->zsbuf->texture;
2812 // XXX: depth might not be writable...
2813 iris_use_pinned_bo(batch, zres->bo, true);
2814 }
2815 }
2816
2817 if (draw->index_size > 0) {
2818 // XXX: index buffer
2819 }
2820
2821 if (clean & IRIS_DIRTY_VERTEX_BUFFERS) {
2822 struct iris_vertex_buffer_state *cso = &ice->state.genx->vertex_buffers;
2823 for (unsigned i = 0; i < cso->num_buffers; i++) {
2824 struct iris_resource *res = (void *) cso->resources[i];
2825 iris_use_pinned_bo(batch, res->bo, false);
2826 }
2827 }
2828 }
2829
2830 static void
2831 iris_upload_render_state(struct iris_context *ice,
2832 struct iris_batch *batch,
2833 const struct pipe_draw_info *draw)
2834 {
2835 const uint64_t dirty = ice->state.dirty;
2836
2837 struct iris_genx_state *genx = ice->state.genx;
2838 struct brw_wm_prog_data *wm_prog_data = (void *)
2839 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
2840
2841 if (dirty & IRIS_DIRTY_CC_VIEWPORT) {
2842 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
2843 uint32_t cc_vp_address;
2844
2845 /* XXX: could avoid streaming for depth_clip [0,1] case. */
2846 uint32_t *cc_vp_map =
2847 stream_state(batch, ice->state.dynamic_uploader,
2848 &ice->state.last_res.cc_vp,
2849 4 * ice->state.num_viewports *
2850 GENX(CC_VIEWPORT_length), 32, &cc_vp_address);
2851 for (int i = 0; i < ice->state.num_viewports; i++) {
2852 float zmin, zmax;
2853 util_viewport_zmin_zmax(&ice->state.viewports[i],
2854 cso_rast->clip_halfz, &zmin, &zmax);
2855 if (cso_rast->depth_clip_near)
2856 zmin = 0.0;
2857 if (cso_rast->depth_clip_far)
2858 zmax = 1.0;
2859
2860 iris_pack_state(GENX(CC_VIEWPORT), cc_vp_map, ccv) {
2861 ccv.MinimumDepth = zmin;
2862 ccv.MaximumDepth = zmax;
2863 }
2864
2865 cc_vp_map += GENX(CC_VIEWPORT_length);
2866 }
2867
2868 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
2869 ptr.CCViewportPointer = cc_vp_address;
2870 }
2871 }
2872
2873 if (dirty & IRIS_DIRTY_SF_CL_VIEWPORT) {
2874 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
2875 ptr.SFClipViewportPointer =
2876 emit_state(batch, ice->state.dynamic_uploader,
2877 &ice->state.last_res.sf_cl_vp,
2878 genx->sf_cl_vp, 4 * GENX(SF_CLIP_VIEWPORT_length) *
2879 ice->state.num_viewports, 64);
2880 }
2881 }
2882
2883 /* XXX: L3 State */
2884
2885 // XXX: this is only flagged at setup, we assume a static configuration
2886 if (dirty & IRIS_DIRTY_URB) {
2887 iris_upload_urb_config(ice, batch);
2888 }
2889
2890 if (dirty & IRIS_DIRTY_BLEND_STATE) {
2891 struct iris_blend_state *cso_blend = ice->state.cso_blend;
2892 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
2893 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
2894 const int num_dwords = 4 * (GENX(BLEND_STATE_length) +
2895 cso_fb->nr_cbufs * GENX(BLEND_STATE_ENTRY_length));
2896 uint32_t blend_offset;
2897 uint32_t *blend_map =
2898 stream_state(batch, ice->state.dynamic_uploader,
2899 &ice->state.last_res.blend,
2900 4 * num_dwords, 64, &blend_offset);
2901
2902 uint32_t blend_state_header;
2903 iris_pack_state(GENX(BLEND_STATE), &blend_state_header, bs) {
2904 bs.AlphaTestEnable = cso_zsa->alpha.enabled;
2905 bs.AlphaTestFunction = translate_compare_func(cso_zsa->alpha.func);
2906 }
2907
2908 blend_map[0] = blend_state_header | cso_blend->blend_state[0];
2909 memcpy(&blend_map[1], &cso_blend->blend_state[1],
2910 sizeof(cso_blend->blend_state) - sizeof(uint32_t));
2911
2912 iris_emit_cmd(batch, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
2913 ptr.BlendStatePointer = blend_offset;
2914 ptr.BlendStatePointerValid = true;
2915 }
2916 }
2917
2918 if (dirty & IRIS_DIRTY_COLOR_CALC_STATE) {
2919 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
2920 uint32_t cc_offset;
2921 void *cc_map =
2922 stream_state(batch, ice->state.dynamic_uploader,
2923 &ice->state.last_res.color_calc,
2924 sizeof(uint32_t) * GENX(COLOR_CALC_STATE_length),
2925 64, &cc_offset);
2926 iris_pack_state(GENX(COLOR_CALC_STATE), cc_map, cc) {
2927 cc.AlphaTestFormat = ALPHATEST_FLOAT32;
2928 cc.AlphaReferenceValueAsFLOAT32 = cso->alpha.ref_value;
2929 cc.BlendConstantColorRed = ice->state.blend_color.color[0];
2930 cc.BlendConstantColorGreen = ice->state.blend_color.color[1];
2931 cc.BlendConstantColorBlue = ice->state.blend_color.color[2];
2932 cc.BlendConstantColorAlpha = ice->state.blend_color.color[3];
2933 }
2934 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
2935 ptr.ColorCalcStatePointer = cc_offset;
2936 ptr.ColorCalcStatePointerValid = true;
2937 }
2938 }
2939
2940 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
2941 // XXX: wrong dirty tracking...
2942 if (!(dirty & (IRIS_DIRTY_CONSTANTS_VS << stage)))
2943 continue;
2944
2945 struct iris_shader_state *shs = &ice->shaders.state[stage];
2946 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
2947
2948 if (!shader)
2949 continue;
2950
2951 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
2952
2953 iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_VS), pkt) {
2954 pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
2955 if (prog_data) {
2956 /* The Skylake PRM contains the following restriction:
2957 *
2958 * "The driver must ensure The following case does not occur
2959 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
2960 * buffer 3 read length equal to zero committed followed by a
2961 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
2962 * zero committed."
2963 *
2964 * To avoid this, we program the buffers in the highest slots.
2965 * This way, slot 0 is only used if slot 3 is also used.
2966 */
2967 int n = 3;
2968
2969 for (int i = 3; i >= 0; i--) {
2970 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
2971
2972 if (range->length == 0)
2973 continue;
2974
2975 // XXX: is range->block a constbuf index? it would be nice
2976 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
2977 struct iris_resource *res = (void *) cbuf->data.res;
2978
2979 assert(cbuf->data.offset % 32 == 0);
2980
2981 pkt.ConstantBody.ReadLength[n] = range->length;
2982 pkt.ConstantBody.Buffer[n] =
2983 res ? ro_bo(res->bo, range->start * 32 + cbuf->data.offset)
2984 : ro_bo(batch->screen->workaround_bo, 0);
2985 n--;
2986 }
2987 }
2988 }
2989 }
2990
2991 struct iris_binder *binder = &batch->binder;
2992
2993 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
2994 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
2995 iris_emit_cmd(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), ptr) {
2996 ptr._3DCommandSubOpcode = 38 + stage;
2997 ptr.PointertoVSBindingTable = binder->bt_offset[stage];
2998 }
2999 }
3000 }
3001
3002 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3003 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
3004 iris_populate_binding_table(ice, batch, stage);
3005 }
3006 }
3007
3008 if (ice->state.need_border_colors)
3009 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
3010
3011 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3012 if (!(dirty & (IRIS_DIRTY_SAMPLER_STATES_VS << stage)) ||
3013 !ice->shaders.prog[stage])
3014 continue;
3015
3016 struct pipe_resource *res = ice->state.sampler_table[stage].res;
3017 if (res)
3018 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
3019
3020 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
3021 ptr._3DCommandSubOpcode = 43 + stage;
3022 ptr.PointertoVSSamplerState = ice->state.sampler_table[stage].offset;
3023 }
3024 }
3025
3026 if (dirty & IRIS_DIRTY_MULTISAMPLE) {
3027 iris_emit_cmd(batch, GENX(3DSTATE_MULTISAMPLE), ms) {
3028 ms.PixelLocation =
3029 ice->state.cso_rast->half_pixel_center ? CENTER : UL_CORNER;
3030 if (ice->state.framebuffer.samples > 0)
3031 ms.NumberofMultisamples = ffs(ice->state.framebuffer.samples) - 1;
3032 }
3033 }
3034
3035 if (dirty & IRIS_DIRTY_SAMPLE_MASK) {
3036 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_MASK), ms) {
3037 ms.SampleMask = MAX2(ice->state.sample_mask, 1);
3038 }
3039 }
3040
3041 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3042 if (!(dirty & (IRIS_DIRTY_VS << stage)))
3043 continue;
3044
3045 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3046
3047 if (shader) {
3048 struct iris_resource *cache = (void *) shader->assembly.res;
3049 iris_use_pinned_bo(batch, cache->bo, false);
3050 iris_batch_emit(batch, shader->derived_data,
3051 iris_derived_program_state_size(stage));
3052 } else {
3053 if (stage == MESA_SHADER_TESS_EVAL) {
3054 iris_emit_cmd(batch, GENX(3DSTATE_HS), hs);
3055 iris_emit_cmd(batch, GENX(3DSTATE_TE), te);
3056 iris_emit_cmd(batch, GENX(3DSTATE_DS), ds);
3057 } else if (stage == MESA_SHADER_GEOMETRY) {
3058 iris_emit_cmd(batch, GENX(3DSTATE_GS), gs);
3059 }
3060 }
3061 }
3062
3063 if (ice->state.streamout_active) {
3064 if (dirty & IRIS_DIRTY_SO_BUFFERS) {
3065 iris_batch_emit(batch, genx->so_buffers,
3066 4 * 4 * GENX(3DSTATE_SO_BUFFER_length));
3067 for (int i = 0; i < 4; i++) {
3068 struct iris_stream_output_target *tgt =
3069 (void *) ice->state.so_target[i];
3070 if (tgt) {
3071 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
3072 true);
3073 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
3074 true);
3075 }
3076 }
3077 }
3078
3079 if ((dirty & IRIS_DIRTY_SO_DECL_LIST) && ice->state.streamout) {
3080 uint32_t *decl_list =
3081 ice->state.streamout + GENX(3DSTATE_STREAMOUT_length);
3082 iris_batch_emit(batch, decl_list, 4 * ((decl_list[0] & 0xff) + 2));
3083 }
3084
3085 if (dirty & IRIS_DIRTY_STREAMOUT) {
3086 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3087
3088 uint32_t dynamic_sol[GENX(3DSTATE_STREAMOUT_length)];
3089 iris_pack_command(GENX(3DSTATE_STREAMOUT), dynamic_sol, sol) {
3090 sol.SOFunctionEnable = true;
3091 sol.SOStatisticsEnable = true;
3092
3093 // XXX: GL_PRIMITIVES_GENERATED query
3094 sol.RenderingDisable = cso_rast->rasterizer_discard;
3095 sol.ReorderMode = cso_rast->flatshade_first ? LEADING : TRAILING;
3096 }
3097
3098 assert(ice->state.streamout);
3099
3100 iris_emit_merge(batch, ice->state.streamout, dynamic_sol,
3101 GENX(3DSTATE_STREAMOUT_length));
3102 }
3103 } else {
3104 if (dirty & IRIS_DIRTY_STREAMOUT) {
3105 iris_emit_cmd(batch, GENX(3DSTATE_STREAMOUT), sol);
3106 }
3107 }
3108
3109 if (dirty & IRIS_DIRTY_CLIP) {
3110 struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3111 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
3112
3113 uint32_t dynamic_clip[GENX(3DSTATE_CLIP_length)];
3114 iris_pack_command(GENX(3DSTATE_CLIP), &dynamic_clip, cl) {
3115 if (wm_prog_data->barycentric_interp_modes &
3116 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
3117 cl.NonPerspectiveBarycentricEnable = true;
3118
3119 cl.ForceZeroRTAIndexEnable = cso_fb->layers == 0;
3120 cl.MaximumVPIndex = ice->state.num_viewports - 1;
3121 }
3122 iris_emit_merge(batch, cso_rast->clip, dynamic_clip,
3123 ARRAY_SIZE(cso_rast->clip));
3124 }
3125
3126 if (dirty & IRIS_DIRTY_RASTER) {
3127 struct iris_rasterizer_state *cso = ice->state.cso_rast;
3128 iris_batch_emit(batch, cso->raster, sizeof(cso->raster));
3129 iris_batch_emit(batch, cso->sf, sizeof(cso->sf));
3130
3131 }
3132
3133 /* XXX: FS program updates needs to flag IRIS_DIRTY_WM */
3134 if (dirty & IRIS_DIRTY_WM) {
3135 struct iris_rasterizer_state *cso = ice->state.cso_rast;
3136 uint32_t dynamic_wm[GENX(3DSTATE_WM_length)];
3137
3138 iris_pack_command(GENX(3DSTATE_WM), &dynamic_wm, wm) {
3139 wm.BarycentricInterpolationMode =
3140 wm_prog_data->barycentric_interp_modes;
3141
3142 if (wm_prog_data->early_fragment_tests)
3143 wm.EarlyDepthStencilControl = EDSC_PREPS;
3144 else if (wm_prog_data->has_side_effects)
3145 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
3146 }
3147 iris_emit_merge(batch, cso->wm, dynamic_wm, ARRAY_SIZE(cso->wm));
3148 }
3149
3150 if (1) {
3151 // XXX: 3DSTATE_SBE, 3DSTATE_SBE_SWIZ
3152 // -> iris_raster_state (point sprite texture coordinate origin)
3153 // -> bunch of shader state...
3154 iris_emit_sbe(batch, ice);
3155 }
3156
3157 if (dirty & IRIS_DIRTY_PS_BLEND) {
3158 struct iris_blend_state *cso_blend = ice->state.cso_blend;
3159 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
3160 uint32_t dynamic_pb[GENX(3DSTATE_PS_BLEND_length)];
3161 iris_pack_command(GENX(3DSTATE_PS_BLEND), &dynamic_pb, pb) {
3162 pb.HasWriteableRT = true; // XXX: comes from somewhere :(
3163 pb.AlphaTestEnable = cso_zsa->alpha.enabled;
3164 }
3165
3166 iris_emit_merge(batch, cso_blend->ps_blend, dynamic_pb,
3167 ARRAY_SIZE(cso_blend->ps_blend));
3168 }
3169
3170 if (dirty & IRIS_DIRTY_WM_DEPTH_STENCIL) {
3171 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
3172 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
3173
3174 uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
3175 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
3176 wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
3177 wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
3178 }
3179 iris_emit_merge(batch, cso->wmds, stencil_refs, ARRAY_SIZE(cso->wmds));
3180 }
3181
3182 if (dirty & IRIS_DIRTY_SCISSOR_RECT) {
3183 uint32_t scissor_offset =
3184 emit_state(batch, ice->state.dynamic_uploader,
3185 &ice->state.last_res.scissor,
3186 ice->state.scissors,
3187 sizeof(struct pipe_scissor_state) *
3188 ice->state.num_viewports, 32);
3189
3190 iris_emit_cmd(batch, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
3191 ptr.ScissorRectPointer = scissor_offset;
3192 }
3193 }
3194
3195 if (dirty & IRIS_DIRTY_DEPTH_BUFFER) {
3196 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
3197 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
3198
3199 iris_batch_emit(batch, cso_z->packets, sizeof(cso_z->packets));
3200
3201 if (cso_fb->zsbuf) {
3202 struct iris_resource *zres = (void *) cso_fb->zsbuf->texture;
3203 // XXX: depth might not be writable...
3204 iris_use_pinned_bo(batch, zres->bo, true);
3205 }
3206 }
3207
3208 if (dirty & IRIS_DIRTY_POLYGON_STIPPLE) {
3209 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
3210 for (int i = 0; i < 32; i++) {
3211 poly.PatternRow[i] = ice->state.poly_stipple.stipple[i];
3212 }
3213 }
3214 }
3215
3216 if (dirty & IRIS_DIRTY_LINE_STIPPLE) {
3217 struct iris_rasterizer_state *cso = ice->state.cso_rast;
3218 iris_batch_emit(batch, cso->line_stipple, sizeof(cso->line_stipple));
3219 }
3220
3221 if (1) {
3222 iris_emit_cmd(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
3223 topo.PrimitiveTopologyType =
3224 translate_prim_type(draw->mode, draw->vertices_per_patch);
3225 }
3226 }
3227
3228 if (draw->index_size > 0) {
3229 struct iris_resource *res = NULL;
3230 unsigned offset;
3231
3232 if (draw->has_user_indices) {
3233 u_upload_data(ice->ctx.stream_uploader, 0,
3234 draw->count * draw->index_size, 4, draw->index.user,
3235 &offset, (struct pipe_resource **) &res);
3236 } else {
3237 res = (struct iris_resource *) draw->index.resource;
3238 offset = 0;
3239 }
3240
3241 iris_emit_cmd(batch, GENX(3DSTATE_INDEX_BUFFER), ib) {
3242 ib.IndexFormat = draw->index_size >> 1;
3243 ib.MOCS = MOCS_WB;
3244 ib.BufferSize = res->bo->size;
3245 ib.BufferStartingAddress = ro_bo(res->bo, offset);
3246 }
3247 }
3248
3249 if (dirty & IRIS_DIRTY_VERTEX_BUFFERS) {
3250 struct iris_vertex_buffer_state *cso = &ice->state.genx->vertex_buffers;
3251 const unsigned vb_dwords = GENX(VERTEX_BUFFER_STATE_length);
3252
3253 if (cso->num_buffers > 0) {
3254 iris_batch_emit(batch, cso->vertex_buffers, sizeof(uint32_t) *
3255 (1 + vb_dwords * cso->num_buffers));
3256
3257 for (unsigned i = 0; i < cso->num_buffers; i++) {
3258 struct iris_resource *res = (void *) cso->resources[i];
3259 iris_use_pinned_bo(batch, res->bo, false);
3260 }
3261 }
3262 }
3263
3264 if (dirty & IRIS_DIRTY_VERTEX_ELEMENTS) {
3265 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
3266 const unsigned entries = MAX2(cso->count, 1);
3267 iris_batch_emit(batch, cso->vertex_elements, sizeof(uint32_t) *
3268 (1 + entries * GENX(VERTEX_ELEMENT_STATE_length)));
3269 iris_batch_emit(batch, cso->vf_instancing, sizeof(uint32_t) *
3270 entries * GENX(3DSTATE_VF_INSTANCING_length));
3271 }
3272
3273 if (dirty & IRIS_DIRTY_VF_SGVS) {
3274 const struct brw_vs_prog_data *vs_prog_data = (void *)
3275 ice->shaders.prog[MESA_SHADER_VERTEX]->prog_data;
3276 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
3277
3278 iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS), sgv) {
3279 if (vs_prog_data->uses_vertexid) {
3280 sgv.VertexIDEnable = true;
3281 sgv.VertexIDComponentNumber = 2;
3282 sgv.VertexIDElementOffset = cso->count;
3283 }
3284
3285 if (vs_prog_data->uses_instanceid) {
3286 sgv.InstanceIDEnable = true;
3287 sgv.InstanceIDComponentNumber = 3;
3288 sgv.InstanceIDElementOffset = cso->count;
3289 }
3290 }
3291 }
3292
3293 if (1) {
3294 iris_emit_cmd(batch, GENX(3DSTATE_VF), vf) {
3295 if (draw->primitive_restart) {
3296 vf.IndexedDrawCutIndexEnable = true;
3297 vf.CutIndex = draw->restart_index;
3298 }
3299 }
3300 }
3301
3302 // XXX: Gen8 - PMA fix
3303
3304 #define _3DPRIM_END_OFFSET 0x2420
3305 #define _3DPRIM_START_VERTEX 0x2430
3306 #define _3DPRIM_VERTEX_COUNT 0x2434
3307 #define _3DPRIM_INSTANCE_COUNT 0x2438
3308 #define _3DPRIM_START_INSTANCE 0x243C
3309 #define _3DPRIM_BASE_VERTEX 0x2440
3310
3311 if (draw->indirect) {
3312 /* We don't support this MultidrawIndirect. */
3313 assert(!draw->indirect->indirect_draw_count);
3314
3315 struct iris_bo *bo = iris_resource_bo(draw->indirect->buffer);
3316 assert(bo);
3317
3318 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
3319 lrm.RegisterAddress = _3DPRIM_VERTEX_COUNT;
3320 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 0);
3321 }
3322 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
3323 lrm.RegisterAddress = _3DPRIM_INSTANCE_COUNT;
3324 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 4);
3325 }
3326 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
3327 lrm.RegisterAddress = _3DPRIM_START_VERTEX;
3328 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 8);
3329 }
3330 if (draw->index_size) {
3331 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
3332 lrm.RegisterAddress = _3DPRIM_BASE_VERTEX;
3333 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
3334 }
3335 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
3336 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
3337 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 16);
3338 }
3339 } else {
3340 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
3341 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
3342 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
3343 }
3344 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
3345 lri.RegisterOffset = _3DPRIM_BASE_VERTEX;
3346 lri.DataDWord = 0;
3347 }
3348 }
3349 }
3350
3351 iris_emit_cmd(batch, GENX(3DPRIMITIVE), prim) {
3352 prim.StartInstanceLocation = draw->start_instance;
3353 prim.InstanceCount = draw->instance_count;
3354 prim.VertexCountPerInstance = draw->count;
3355 prim.VertexAccessType = draw->index_size > 0 ? RANDOM : SEQUENTIAL;
3356
3357 // XXX: this is probably bonkers.
3358 prim.StartVertexLocation = draw->start;
3359
3360 prim.IndirectParameterEnable = draw->indirect != NULL;
3361
3362 if (draw->index_size) {
3363 prim.BaseVertexLocation += draw->index_bias;
3364 } else {
3365 prim.StartVertexLocation += draw->index_bias;
3366 }
3367
3368 //prim.BaseVertexLocation = ...;
3369 }
3370
3371 if (!batch->contains_draw) {
3372 iris_restore_context_saved_bos(ice, batch, draw);
3373 batch->contains_draw = true;
3374 }
3375 }
3376
3377 /**
3378 * State module teardown.
3379 */
3380 static void
3381 iris_destroy_state(struct iris_context *ice)
3382 {
3383 iris_free_vertex_buffers(&ice->state.genx->vertex_buffers);
3384
3385 // XXX: unreference resources/surfaces.
3386 for (unsigned i = 0; i < ice->state.framebuffer.nr_cbufs; i++) {
3387 pipe_surface_reference(&ice->state.framebuffer.cbufs[i], NULL);
3388 }
3389 pipe_surface_reference(&ice->state.framebuffer.zsbuf, NULL);
3390
3391 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
3392 pipe_resource_reference(&ice->state.sampler_table[stage].res, NULL);
3393 }
3394 free(ice->state.genx);
3395
3396 pipe_resource_reference(&ice->state.last_res.cc_vp, NULL);
3397 pipe_resource_reference(&ice->state.last_res.sf_cl_vp, NULL);
3398 pipe_resource_reference(&ice->state.last_res.color_calc, NULL);
3399 pipe_resource_reference(&ice->state.last_res.scissor, NULL);
3400 pipe_resource_reference(&ice->state.last_res.blend, NULL);
3401 }
3402
3403 static unsigned
3404 flags_to_post_sync_op(uint32_t flags)
3405 {
3406 if (flags & PIPE_CONTROL_WRITE_IMMEDIATE)
3407 return WriteImmediateData;
3408
3409 if (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT)
3410 return WritePSDepthCount;
3411
3412 if (flags & PIPE_CONTROL_WRITE_TIMESTAMP)
3413 return WriteTimestamp;
3414
3415 return 0;
3416 }
3417
3418 /**
3419 * Do the given flags have a Post Sync or LRI Post Sync operation?
3420 */
3421 static enum pipe_control_flags
3422 get_post_sync_flags(enum pipe_control_flags flags)
3423 {
3424 flags &= PIPE_CONTROL_WRITE_IMMEDIATE |
3425 PIPE_CONTROL_WRITE_DEPTH_COUNT |
3426 PIPE_CONTROL_WRITE_TIMESTAMP |
3427 PIPE_CONTROL_LRI_POST_SYNC_OP;
3428
3429 /* Only one "Post Sync Op" is allowed, and it's mutually exclusive with
3430 * "LRI Post Sync Operation". So more than one bit set would be illegal.
3431 */
3432 assert(util_bitcount(flags) <= 1);
3433
3434 return flags;
3435 }
3436
3437 // XXX: compute support
3438 #define IS_COMPUTE_PIPELINE(batch) (batch->ring != I915_EXEC_RENDER)
3439
3440 /**
3441 * Emit a series of PIPE_CONTROL commands, taking into account any
3442 * workarounds necessary to actually accomplish the caller's request.
3443 *
3444 * Unless otherwise noted, spec quotations in this function come from:
3445 *
3446 * Synchronization of the 3D Pipeline > PIPE_CONTROL Command > Programming
3447 * Restrictions for PIPE_CONTROL.
3448 */
3449 static void
3450 iris_emit_raw_pipe_control(struct iris_batch *batch, uint32_t flags,
3451 struct iris_bo *bo, uint32_t offset, uint64_t imm)
3452 {
3453 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
3454 enum pipe_control_flags post_sync_flags = get_post_sync_flags(flags);
3455 enum pipe_control_flags non_lri_post_sync_flags =
3456 post_sync_flags & ~PIPE_CONTROL_LRI_POST_SYNC_OP;
3457
3458 /* Recursive PIPE_CONTROL workarounds --------------------------------
3459 * (http://knowyourmeme.com/memes/xzibit-yo-dawg)
3460 *
3461 * We do these first because we want to look at the original operation,
3462 * rather than any workarounds we set.
3463 */
3464 if (GEN_GEN == 9 && (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE)) {
3465 /* The PIPE_CONTROL "VF Cache Invalidation Enable" bit description
3466 * lists several workarounds:
3467 *
3468 * "Project: SKL, KBL, BXT
3469 *
3470 * If the VF Cache Invalidation Enable is set to a 1 in a
3471 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields
3472 * sets to 0, with the VF Cache Invalidation Enable set to 0
3473 * needs to be sent prior to the PIPE_CONTROL with VF Cache
3474 * Invalidation Enable set to a 1."
3475 */
3476 iris_emit_raw_pipe_control(batch, 0, NULL, 0, 0);
3477 }
3478
3479 if (GEN_GEN == 9 && IS_COMPUTE_PIPELINE(batch) && post_sync_flags) {
3480 /* Project: SKL / Argument: LRI Post Sync Operation [23]
3481 *
3482 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
3483 * programmed prior to programming a PIPECONTROL command with "LRI
3484 * Post Sync Operation" in GPGPU mode of operation (i.e when
3485 * PIPELINE_SELECT command is set to GPGPU mode of operation)."
3486 *
3487 * The same text exists a few rows below for Post Sync Op.
3488 */
3489 iris_emit_raw_pipe_control(batch, PIPE_CONTROL_CS_STALL, bo, offset, imm);
3490 }
3491
3492 if (GEN_GEN == 10 && (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH)) {
3493 /* Cannonlake:
3494 * "Before sending a PIPE_CONTROL command with bit 12 set, SW must issue
3495 * another PIPE_CONTROL with Render Target Cache Flush Enable (bit 12)
3496 * = 0 and Pipe Control Flush Enable (bit 7) = 1"
3497 */
3498 iris_emit_raw_pipe_control(batch, PIPE_CONTROL_FLUSH_ENABLE, bo,
3499 offset, imm);
3500 }
3501
3502 /* "Flush Types" workarounds ---------------------------------------------
3503 * We do these now because they may add post-sync operations or CS stalls.
3504 */
3505
3506 if (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) {
3507 /* Project: BDW, SKL+ (stopping at CNL) / Argument: VF Invalidate
3508 *
3509 * "'Post Sync Operation' must be enabled to 'Write Immediate Data' or
3510 * 'Write PS Depth Count' or 'Write Timestamp'."
3511 */
3512 if (!bo) {
3513 flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
3514 post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
3515 non_lri_post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
3516 bo = batch->screen->workaround_bo;
3517 }
3518 }
3519
3520 /* #1130 from Gen10 workarounds page:
3521 *
3522 * "Enable Depth Stall on every Post Sync Op if Render target Cache
3523 * Flush is not enabled in same PIPE CONTROL and Enable Pixel score
3524 * board stall if Render target cache flush is enabled."
3525 *
3526 * Applicable to CNL B0 and C0 steppings only.
3527 *
3528 * The wording here is unclear, and this workaround doesn't look anything
3529 * like the internal bug report recommendations, but leave it be for now...
3530 */
3531 if (GEN_GEN == 10) {
3532 if (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) {
3533 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
3534 } else if (flags & non_lri_post_sync_flags) {
3535 flags |= PIPE_CONTROL_DEPTH_STALL;
3536 }
3537 }
3538
3539 if (flags & PIPE_CONTROL_DEPTH_STALL) {
3540 /* From the PIPE_CONTROL instruction table, bit 13 (Depth Stall Enable):
3541 *
3542 * "This bit must be DISABLED for operations other than writing
3543 * PS_DEPTH_COUNT."
3544 *
3545 * This seems like nonsense. An Ivybridge workaround requires us to
3546 * emit a PIPE_CONTROL with a depth stall and write immediate post-sync
3547 * operation. Gen8+ requires us to emit depth stalls and depth cache
3548 * flushes together. So, it's hard to imagine this means anything other
3549 * than "we originally intended this to be used for PS_DEPTH_COUNT".
3550 *
3551 * We ignore the supposed restriction and do nothing.
3552 */
3553 }
3554
3555 if (flags & (PIPE_CONTROL_RENDER_TARGET_FLUSH |
3556 PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
3557 /* From the PIPE_CONTROL instruction table, bit 12 and bit 1:
3558 *
3559 * "This bit must be DISABLED for End-of-pipe (Read) fences,
3560 * PS_DEPTH_COUNT or TIMESTAMP queries."
3561 *
3562 * TODO: Implement end-of-pipe checking.
3563 */
3564 assert(!(post_sync_flags & (PIPE_CONTROL_WRITE_DEPTH_COUNT |
3565 PIPE_CONTROL_WRITE_TIMESTAMP)));
3566 }
3567
3568 if (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD) {
3569 /* From the PIPE_CONTROL instruction table, bit 1:
3570 *
3571 * "This bit is ignored if Depth Stall Enable is set.
3572 * Further, the render cache is not flushed even if Write Cache
3573 * Flush Enable bit is set."
3574 *
3575 * We assert that the caller doesn't do this combination, to try and
3576 * prevent mistakes. It shouldn't hurt the GPU, though.
3577 */
3578 assert(!(flags & (PIPE_CONTROL_DEPTH_STALL |
3579 PIPE_CONTROL_RENDER_TARGET_FLUSH)));
3580 }
3581
3582 /* PIPE_CONTROL page workarounds ------------------------------------- */
3583
3584 if (GEN_GEN <= 8 && (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE)) {
3585 /* From the PIPE_CONTROL page itself:
3586 *
3587 * "IVB, HSW, BDW
3588 * Restriction: Pipe_control with CS-stall bit set must be issued
3589 * before a pipe-control command that has the State Cache
3590 * Invalidate bit set."
3591 */
3592 flags |= PIPE_CONTROL_CS_STALL;
3593 }
3594
3595 if (flags & PIPE_CONTROL_FLUSH_LLC) {
3596 /* From the PIPE_CONTROL instruction table, bit 26 (Flush LLC):
3597 *
3598 * "Project: ALL
3599 * SW must always program Post-Sync Operation to "Write Immediate
3600 * Data" when Flush LLC is set."
3601 *
3602 * For now, we just require the caller to do it.
3603 */
3604 assert(flags & PIPE_CONTROL_WRITE_IMMEDIATE);
3605 }
3606
3607 /* "Post-Sync Operation" workarounds -------------------------------- */
3608
3609 /* Project: All / Argument: Global Snapshot Count Reset [19]
3610 *
3611 * "This bit must not be exercised on any product.
3612 * Requires stall bit ([20] of DW1) set."
3613 *
3614 * We don't use this, so we just assert that it isn't used. The
3615 * PIPE_CONTROL instruction page indicates that they intended this
3616 * as a debug feature and don't think it is useful in production,
3617 * but it may actually be usable, should we ever want to.
3618 */
3619 assert((flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) == 0);
3620
3621 if (flags & (PIPE_CONTROL_MEDIA_STATE_CLEAR |
3622 PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE)) {
3623 /* Project: All / Arguments:
3624 *
3625 * - Generic Media State Clear [16]
3626 * - Indirect State Pointers Disable [16]
3627 *
3628 * "Requires stall bit ([20] of DW1) set."
3629 *
3630 * Also, the PIPE_CONTROL instruction table, bit 16 (Generic Media
3631 * State Clear) says:
3632 *
3633 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
3634 * programmed prior to programming a PIPECONTROL command with "Media
3635 * State Clear" set in GPGPU mode of operation"
3636 *
3637 * This is a subset of the earlier rule, so there's nothing to do.
3638 */
3639 flags |= PIPE_CONTROL_CS_STALL;
3640 }
3641
3642 if (flags & PIPE_CONTROL_STORE_DATA_INDEX) {
3643 /* Project: All / Argument: Store Data Index
3644 *
3645 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
3646 * than '0'."
3647 *
3648 * For now, we just assert that the caller does this. We might want to
3649 * automatically add a write to the workaround BO...
3650 */
3651 assert(non_lri_post_sync_flags != 0);
3652 }
3653
3654 if (flags & PIPE_CONTROL_SYNC_GFDT) {
3655 /* Project: All / Argument: Sync GFDT
3656 *
3657 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
3658 * than '0' or 0x2520[13] must be set."
3659 *
3660 * For now, we just assert that the caller does this.
3661 */
3662 assert(non_lri_post_sync_flags != 0);
3663 }
3664
3665 if (flags & PIPE_CONTROL_TLB_INVALIDATE) {
3666 /* Project: IVB+ / Argument: TLB inv
3667 *
3668 * "Requires stall bit ([20] of DW1) set."
3669 *
3670 * Also, from the PIPE_CONTROL instruction table:
3671 *
3672 * "Project: SKL+
3673 * Post Sync Operation or CS stall must be set to ensure a TLB
3674 * invalidation occurs. Otherwise no cycle will occur to the TLB
3675 * cache to invalidate."
3676 *
3677 * This is not a subset of the earlier rule, so there's nothing to do.
3678 */
3679 flags |= PIPE_CONTROL_CS_STALL;
3680 }
3681
3682 if (GEN_GEN == 9 && devinfo->gt == 4) {
3683 /* TODO: The big Skylake GT4 post sync op workaround */
3684 }
3685
3686 /* "GPGPU specific workarounds" (both post-sync and flush) ------------ */
3687
3688 if (IS_COMPUTE_PIPELINE(batch)) {
3689 if (GEN_GEN >= 9 && (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE)) {
3690 /* Project: SKL+ / Argument: Tex Invalidate
3691 * "Requires stall bit ([20] of DW) set for all GPGPU Workloads."
3692 */
3693 flags |= PIPE_CONTROL_CS_STALL;
3694 }
3695
3696 if (GEN_GEN == 8 && (post_sync_flags ||
3697 (flags & (PIPE_CONTROL_NOTIFY_ENABLE |
3698 PIPE_CONTROL_DEPTH_STALL |
3699 PIPE_CONTROL_RENDER_TARGET_FLUSH |
3700 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
3701 PIPE_CONTROL_DATA_CACHE_FLUSH)))) {
3702 /* Project: BDW / Arguments:
3703 *
3704 * - LRI Post Sync Operation [23]
3705 * - Post Sync Op [15:14]
3706 * - Notify En [8]
3707 * - Depth Stall [13]
3708 * - Render Target Cache Flush [12]
3709 * - Depth Cache Flush [0]
3710 * - DC Flush Enable [5]
3711 *
3712 * "Requires stall bit ([20] of DW) set for all GPGPU and Media
3713 * Workloads."
3714 */
3715 flags |= PIPE_CONTROL_CS_STALL;
3716
3717 /* Also, from the PIPE_CONTROL instruction table, bit 20:
3718 *
3719 * "Project: BDW
3720 * This bit must be always set when PIPE_CONTROL command is
3721 * programmed by GPGPU and MEDIA workloads, except for the cases
3722 * when only Read Only Cache Invalidation bits are set (State
3723 * Cache Invalidation Enable, Instruction cache Invalidation
3724 * Enable, Texture Cache Invalidation Enable, Constant Cache
3725 * Invalidation Enable). This is to WA FFDOP CG issue, this WA
3726 * need not implemented when FF_DOP_CG is disable via "Fixed
3727 * Function DOP Clock Gate Disable" bit in RC_PSMI_CTRL register."
3728 *
3729 * It sounds like we could avoid CS stalls in some cases, but we
3730 * don't currently bother. This list isn't exactly the list above,
3731 * either...
3732 */
3733 }
3734 }
3735
3736 /* "Stall" workarounds ----------------------------------------------
3737 * These have to come after the earlier ones because we may have added
3738 * some additional CS stalls above.
3739 */
3740
3741 if (GEN_GEN < 9 && (flags & PIPE_CONTROL_CS_STALL)) {
3742 /* Project: PRE-SKL, VLV, CHV
3743 *
3744 * "[All Stepping][All SKUs]:
3745 *
3746 * One of the following must also be set:
3747 *
3748 * - Render Target Cache Flush Enable ([12] of DW1)
3749 * - Depth Cache Flush Enable ([0] of DW1)
3750 * - Stall at Pixel Scoreboard ([1] of DW1)
3751 * - Depth Stall ([13] of DW1)
3752 * - Post-Sync Operation ([13] of DW1)
3753 * - DC Flush Enable ([5] of DW1)"
3754 *
3755 * If we don't already have one of those bits set, we choose to add
3756 * "Stall at Pixel Scoreboard". Some of the other bits require a
3757 * CS stall as a workaround (see above), which would send us into
3758 * an infinite recursion of PIPE_CONTROLs. "Stall at Pixel Scoreboard"
3759 * appears to be safe, so we choose that.
3760 */
3761 const uint32_t wa_bits = PIPE_CONTROL_RENDER_TARGET_FLUSH |
3762 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
3763 PIPE_CONTROL_WRITE_IMMEDIATE |
3764 PIPE_CONTROL_WRITE_DEPTH_COUNT |
3765 PIPE_CONTROL_WRITE_TIMESTAMP |
3766 PIPE_CONTROL_STALL_AT_SCOREBOARD |
3767 PIPE_CONTROL_DEPTH_STALL |
3768 PIPE_CONTROL_DATA_CACHE_FLUSH;
3769 if (!(flags & wa_bits))
3770 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
3771 }
3772
3773 /* Emit --------------------------------------------------------------- */
3774
3775 iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
3776 pc.LRIPostSyncOperation = NoLRIOperation;
3777 pc.PipeControlFlushEnable = flags & PIPE_CONTROL_FLUSH_ENABLE;
3778 pc.DCFlushEnable = flags & PIPE_CONTROL_DATA_CACHE_FLUSH;
3779 pc.StoreDataIndex = 0;
3780 pc.CommandStreamerStallEnable = flags & PIPE_CONTROL_CS_STALL;
3781 pc.GlobalSnapshotCountReset =
3782 flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET;
3783 pc.TLBInvalidate = flags & PIPE_CONTROL_TLB_INVALIDATE;
3784 pc.GenericMediaStateClear = flags & PIPE_CONTROL_MEDIA_STATE_CLEAR;
3785 pc.StallAtPixelScoreboard = flags & PIPE_CONTROL_STALL_AT_SCOREBOARD;
3786 pc.RenderTargetCacheFlushEnable =
3787 flags & PIPE_CONTROL_RENDER_TARGET_FLUSH;
3788 pc.DepthCacheFlushEnable = flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH;
3789 pc.StateCacheInvalidationEnable =
3790 flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE;
3791 pc.VFCacheInvalidationEnable = flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
3792 pc.ConstantCacheInvalidationEnable =
3793 flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE;
3794 pc.PostSyncOperation = flags_to_post_sync_op(flags);
3795 pc.DepthStallEnable = flags & PIPE_CONTROL_DEPTH_STALL;
3796 pc.InstructionCacheInvalidateEnable =
3797 flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE;
3798 pc.NotifyEnable = flags & PIPE_CONTROL_NOTIFY_ENABLE;
3799 pc.IndirectStatePointersDisable =
3800 flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE;
3801 pc.TextureCacheInvalidationEnable =
3802 flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
3803 pc.Address = ro_bo(bo, offset);
3804 pc.ImmediateData = imm;
3805 }
3806 }
3807
3808 void
3809 genX(init_state)(struct iris_context *ice)
3810 {
3811 struct pipe_context *ctx = &ice->ctx;
3812 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
3813
3814 ctx->create_blend_state = iris_create_blend_state;
3815 ctx->create_depth_stencil_alpha_state = iris_create_zsa_state;
3816 ctx->create_rasterizer_state = iris_create_rasterizer_state;
3817 ctx->create_sampler_state = iris_create_sampler_state;
3818 ctx->create_sampler_view = iris_create_sampler_view;
3819 ctx->create_surface = iris_create_surface;
3820 ctx->create_vertex_elements_state = iris_create_vertex_elements;
3821 ctx->create_compute_state = iris_create_compute_state;
3822 ctx->bind_blend_state = iris_bind_blend_state;
3823 ctx->bind_depth_stencil_alpha_state = iris_bind_zsa_state;
3824 ctx->bind_sampler_states = iris_bind_sampler_states;
3825 ctx->bind_rasterizer_state = iris_bind_rasterizer_state;
3826 ctx->bind_vertex_elements_state = iris_bind_vertex_elements_state;
3827 ctx->bind_compute_state = iris_bind_compute_state;
3828 ctx->delete_blend_state = iris_delete_state;
3829 ctx->delete_depth_stencil_alpha_state = iris_delete_state;
3830 ctx->delete_fs_state = iris_delete_state;
3831 ctx->delete_rasterizer_state = iris_delete_state;
3832 ctx->delete_sampler_state = iris_delete_state;
3833 ctx->delete_vertex_elements_state = iris_delete_state;
3834 ctx->delete_compute_state = iris_delete_state;
3835 ctx->delete_tcs_state = iris_delete_state;
3836 ctx->delete_tes_state = iris_delete_state;
3837 ctx->delete_gs_state = iris_delete_state;
3838 ctx->delete_vs_state = iris_delete_state;
3839 ctx->set_blend_color = iris_set_blend_color;
3840 ctx->set_clip_state = iris_set_clip_state;
3841 ctx->set_constant_buffer = iris_set_constant_buffer;
3842 ctx->set_shader_buffers = iris_set_shader_buffers;
3843 ctx->set_sampler_views = iris_set_sampler_views;
3844 ctx->set_framebuffer_state = iris_set_framebuffer_state;
3845 ctx->set_polygon_stipple = iris_set_polygon_stipple;
3846 ctx->set_sample_mask = iris_set_sample_mask;
3847 ctx->set_scissor_states = iris_set_scissor_states;
3848 ctx->set_stencil_ref = iris_set_stencil_ref;
3849 ctx->set_vertex_buffers = iris_set_vertex_buffers;
3850 ctx->set_viewport_states = iris_set_viewport_states;
3851 ctx->sampler_view_destroy = iris_sampler_view_destroy;
3852 ctx->surface_destroy = iris_surface_destroy;
3853 ctx->draw_vbo = iris_draw_vbo;
3854 ctx->launch_grid = iris_launch_grid;
3855 ctx->create_stream_output_target = iris_create_stream_output_target;
3856 ctx->stream_output_target_destroy = iris_stream_output_target_destroy;
3857 ctx->set_stream_output_targets = iris_set_stream_output_targets;
3858
3859 ice->vtbl.destroy_state = iris_destroy_state;
3860 ice->vtbl.init_render_context = iris_init_render_context;
3861 ice->vtbl.upload_render_state = iris_upload_render_state;
3862 ice->vtbl.emit_raw_pipe_control = iris_emit_raw_pipe_control;
3863 ice->vtbl.derived_program_state_size = iris_derived_program_state_size;
3864 ice->vtbl.store_derived_program_state = iris_store_derived_program_state;
3865 ice->vtbl.create_so_decl_list = iris_create_so_decl_list;
3866 ice->vtbl.populate_vs_key = iris_populate_vs_key;
3867 ice->vtbl.populate_tcs_key = iris_populate_tcs_key;
3868 ice->vtbl.populate_tes_key = iris_populate_tes_key;
3869 ice->vtbl.populate_gs_key = iris_populate_gs_key;
3870 ice->vtbl.populate_fs_key = iris_populate_fs_key;
3871
3872 ice->state.dirty = ~0ull;
3873
3874 ice->state.num_viewports = 1;
3875 ice->state.genx = calloc(1, sizeof(struct iris_genx_state));
3876
3877 /* Make a 1x1x1 null surface for unbound textures */
3878 void *null_surf_map =
3879 upload_state(ice->state.surface_uploader, &ice->state.unbound_tex,
3880 4 * GENX(RENDER_SURFACE_STATE_length), 64);
3881 isl_null_fill_state(&screen->isl_dev, null_surf_map, isl_extent3d(1, 1, 1));
3882 }