iris: Unreference some more things on state module teardown
[mesa.git] / src / gallium / drivers / iris / iris_state.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included
12 * in all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
21 */
22
23 /**
24 * @file iris_state.c
25 *
26 * ============================= GENXML CODE =============================
27 * [This file is compiled once per generation.]
28 * =======================================================================
29 *
30 * This is the main state upload code.
31 *
32 * Gallium uses Constant State Objects, or CSOs, for most state. Large,
33 * complex, or highly reusable state can be created once, and bound and
34 * rebound multiple times. This is modeled with the pipe->create_*_state()
35 * and pipe->bind_*_state() hooks. Highly dynamic or inexpensive state is
36 * streamed out on the fly, via pipe->set_*_state() hooks.
37 *
38 * OpenGL involves frequently mutating context state, which is mirrored in
39 * core Mesa by highly mutable data structures. However, most applications
40 * typically draw the same things over and over - from frame to frame, most
41 * of the same objects are still visible and need to be redrawn. So, rather
42 * than inventing new state all the time, applications usually mutate to swap
43 * between known states that we've seen before.
44 *
45 * Gallium isolates us from this mutation by tracking API state, and
46 * distilling it into a set of Constant State Objects, or CSOs. Large,
47 * complex, or typically reusable state can be created once, then reused
48 * multiple times. Drivers can create and store their own associated data.
49 * This create/bind model corresponds to the pipe->create_*_state() and
50 * pipe->bind_*_state() driver hooks.
51 *
52 * Some state is cheap to create, or expected to be highly dynamic. Rather
53 * than creating and caching piles of CSOs for these, Gallium simply streams
54 * them out, via the pipe->set_*_state() driver hooks.
55 *
56 * To reduce draw time overhead, we try to compute as much state at create
57 * time as possible. Wherever possible, we translate the Gallium pipe state
58 * to 3DSTATE commands, and store those commands in the CSO. At draw time,
59 * we can simply memcpy them into a batch buffer.
60 *
61 * No hardware matches the abstraction perfectly, so some commands require
62 * information from multiple CSOs. In this case, we can store two copies
63 * of the packet (one in each CSO), and simply | together their DWords at
64 * draw time. Sometimes the second set is trivial (one or two fields), so
65 * we simply pack it at draw time.
66 *
67 * There are two main components in the file below. First, the CSO hooks
68 * create/bind/track state. The second are the draw-time upload functions,
69 * iris_upload_render_state() and iris_upload_compute_state(), which read
70 * the context state and emit the commands into the actual batch.
71 */
72
73 #include <stdio.h>
74 #include <errno.h>
75
76 #if HAVE_VALGRIND
77 #include <valgrind.h>
78 #include <memcheck.h>
79 #define VG(x) x
80 #ifndef NDEBUG
81 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
82 #endif
83 #else
84 #define VG(x)
85 #endif
86
87 #include "pipe/p_defines.h"
88 #include "pipe/p_state.h"
89 #include "pipe/p_context.h"
90 #include "pipe/p_screen.h"
91 #include "util/u_inlines.h"
92 #include "util/u_format.h"
93 #include "util/u_framebuffer.h"
94 #include "util/u_transfer.h"
95 #include "util/u_upload_mgr.h"
96 #include "util/u_viewport.h"
97 #include "i915_drm.h"
98 #include "nir.h"
99 #include "intel/compiler/brw_compiler.h"
100 #include "intel/common/gen_l3_config.h"
101 #include "intel/common/gen_sample_positions.h"
102 #include "iris_batch.h"
103 #include "iris_context.h"
104 #include "iris_defines.h"
105 #include "iris_pipe.h"
106 #include "iris_resource.h"
107
108 #define __gen_address_type struct iris_address
109 #define __gen_user_data struct iris_batch
110
111 #define ARRAY_BYTES(x) (sizeof(uint32_t) * ARRAY_SIZE(x))
112
113 static uint64_t
114 __gen_combine_address(struct iris_batch *batch, void *location,
115 struct iris_address addr, uint32_t delta)
116 {
117 uint64_t result = addr.offset + delta;
118
119 if (addr.bo) {
120 iris_use_pinned_bo(batch, addr.bo, addr.write);
121 /* Assume this is a general address, not relative to a base. */
122 result += addr.bo->gtt_offset;
123 }
124
125 return result;
126 }
127
128 #define __genxml_cmd_length(cmd) cmd ## _length
129 #define __genxml_cmd_length_bias(cmd) cmd ## _length_bias
130 #define __genxml_cmd_header(cmd) cmd ## _header
131 #define __genxml_cmd_pack(cmd) cmd ## _pack
132
133 #define _iris_pack_command(batch, cmd, dst, name) \
134 for (struct cmd name = { __genxml_cmd_header(cmd) }, \
135 *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
136 ({ __genxml_cmd_pack(cmd)(batch, (void *)_dst, &name); \
137 _dst = NULL; \
138 }))
139
140 #define iris_pack_command(cmd, dst, name) \
141 _iris_pack_command(NULL, cmd, dst, name)
142
143 #define iris_pack_state(cmd, dst, name) \
144 for (struct cmd name = {}, \
145 *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
146 __genxml_cmd_pack(cmd)(NULL, (void *)_dst, &name), \
147 _dst = NULL)
148
149 #define iris_emit_cmd(batch, cmd, name) \
150 _iris_pack_command(batch, cmd, iris_get_command_space(batch, 4 * __genxml_cmd_length(cmd)), name)
151
152 #define iris_emit_merge(batch, dwords0, dwords1, num_dwords) \
153 do { \
154 uint32_t *dw = iris_get_command_space(batch, 4 * num_dwords); \
155 for (uint32_t i = 0; i < num_dwords; i++) \
156 dw[i] = (dwords0)[i] | (dwords1)[i]; \
157 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, num_dwords)); \
158 } while (0)
159
160 #include "genxml/genX_pack.h"
161 #include "genxml/gen_macros.h"
162 #include "genxml/genX_bits.h"
163
164 #if GEN_GEN == 8
165 #define MOCS_PTE 0x18
166 #define MOCS_WB 0x78
167 #else
168 #define MOCS_PTE (1 << 1)
169 #define MOCS_WB (2 << 1)
170 #endif
171
172 static uint32_t
173 mocs(struct iris_bo *bo)
174 {
175 return bo && bo->external ? MOCS_PTE : MOCS_WB;
176 }
177
178 /**
179 * Statically assert that PIPE_* enums match the hardware packets.
180 * (As long as they match, we don't need to translate them.)
181 */
182 UNUSED static void pipe_asserts()
183 {
184 #define PIPE_ASSERT(x) STATIC_ASSERT((int)x)
185
186 /* pipe_logicop happens to match the hardware. */
187 PIPE_ASSERT(PIPE_LOGICOP_CLEAR == LOGICOP_CLEAR);
188 PIPE_ASSERT(PIPE_LOGICOP_NOR == LOGICOP_NOR);
189 PIPE_ASSERT(PIPE_LOGICOP_AND_INVERTED == LOGICOP_AND_INVERTED);
190 PIPE_ASSERT(PIPE_LOGICOP_COPY_INVERTED == LOGICOP_COPY_INVERTED);
191 PIPE_ASSERT(PIPE_LOGICOP_AND_REVERSE == LOGICOP_AND_REVERSE);
192 PIPE_ASSERT(PIPE_LOGICOP_INVERT == LOGICOP_INVERT);
193 PIPE_ASSERT(PIPE_LOGICOP_XOR == LOGICOP_XOR);
194 PIPE_ASSERT(PIPE_LOGICOP_NAND == LOGICOP_NAND);
195 PIPE_ASSERT(PIPE_LOGICOP_AND == LOGICOP_AND);
196 PIPE_ASSERT(PIPE_LOGICOP_EQUIV == LOGICOP_EQUIV);
197 PIPE_ASSERT(PIPE_LOGICOP_NOOP == LOGICOP_NOOP);
198 PIPE_ASSERT(PIPE_LOGICOP_OR_INVERTED == LOGICOP_OR_INVERTED);
199 PIPE_ASSERT(PIPE_LOGICOP_COPY == LOGICOP_COPY);
200 PIPE_ASSERT(PIPE_LOGICOP_OR_REVERSE == LOGICOP_OR_REVERSE);
201 PIPE_ASSERT(PIPE_LOGICOP_OR == LOGICOP_OR);
202 PIPE_ASSERT(PIPE_LOGICOP_SET == LOGICOP_SET);
203
204 /* pipe_blend_func happens to match the hardware. */
205 PIPE_ASSERT(PIPE_BLENDFACTOR_ONE == BLENDFACTOR_ONE);
206 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_COLOR == BLENDFACTOR_SRC_COLOR);
207 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA == BLENDFACTOR_SRC_ALPHA);
208 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_ALPHA == BLENDFACTOR_DST_ALPHA);
209 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_COLOR == BLENDFACTOR_DST_COLOR);
210 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE == BLENDFACTOR_SRC_ALPHA_SATURATE);
211 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_COLOR == BLENDFACTOR_CONST_COLOR);
212 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_ALPHA == BLENDFACTOR_CONST_ALPHA);
213 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_COLOR == BLENDFACTOR_SRC1_COLOR);
214 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_ALPHA == BLENDFACTOR_SRC1_ALPHA);
215 PIPE_ASSERT(PIPE_BLENDFACTOR_ZERO == BLENDFACTOR_ZERO);
216 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_COLOR == BLENDFACTOR_INV_SRC_COLOR);
217 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_ALPHA == BLENDFACTOR_INV_SRC_ALPHA);
218 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_ALPHA == BLENDFACTOR_INV_DST_ALPHA);
219 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_COLOR == BLENDFACTOR_INV_DST_COLOR);
220 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_COLOR == BLENDFACTOR_INV_CONST_COLOR);
221 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_ALPHA == BLENDFACTOR_INV_CONST_ALPHA);
222 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_COLOR == BLENDFACTOR_INV_SRC1_COLOR);
223 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_ALPHA == BLENDFACTOR_INV_SRC1_ALPHA);
224
225 /* pipe_blend_func happens to match the hardware. */
226 PIPE_ASSERT(PIPE_BLEND_ADD == BLENDFUNCTION_ADD);
227 PIPE_ASSERT(PIPE_BLEND_SUBTRACT == BLENDFUNCTION_SUBTRACT);
228 PIPE_ASSERT(PIPE_BLEND_REVERSE_SUBTRACT == BLENDFUNCTION_REVERSE_SUBTRACT);
229 PIPE_ASSERT(PIPE_BLEND_MIN == BLENDFUNCTION_MIN);
230 PIPE_ASSERT(PIPE_BLEND_MAX == BLENDFUNCTION_MAX);
231
232 /* pipe_stencil_op happens to match the hardware. */
233 PIPE_ASSERT(PIPE_STENCIL_OP_KEEP == STENCILOP_KEEP);
234 PIPE_ASSERT(PIPE_STENCIL_OP_ZERO == STENCILOP_ZERO);
235 PIPE_ASSERT(PIPE_STENCIL_OP_REPLACE == STENCILOP_REPLACE);
236 PIPE_ASSERT(PIPE_STENCIL_OP_INCR == STENCILOP_INCRSAT);
237 PIPE_ASSERT(PIPE_STENCIL_OP_DECR == STENCILOP_DECRSAT);
238 PIPE_ASSERT(PIPE_STENCIL_OP_INCR_WRAP == STENCILOP_INCR);
239 PIPE_ASSERT(PIPE_STENCIL_OP_DECR_WRAP == STENCILOP_DECR);
240 PIPE_ASSERT(PIPE_STENCIL_OP_INVERT == STENCILOP_INVERT);
241
242 /* pipe_sprite_coord_mode happens to match 3DSTATE_SBE */
243 PIPE_ASSERT(PIPE_SPRITE_COORD_UPPER_LEFT == UPPERLEFT);
244 PIPE_ASSERT(PIPE_SPRITE_COORD_LOWER_LEFT == LOWERLEFT);
245 #undef PIPE_ASSERT
246 }
247
248 static unsigned
249 translate_prim_type(enum pipe_prim_type prim, uint8_t verts_per_patch)
250 {
251 static const unsigned map[] = {
252 [PIPE_PRIM_POINTS] = _3DPRIM_POINTLIST,
253 [PIPE_PRIM_LINES] = _3DPRIM_LINELIST,
254 [PIPE_PRIM_LINE_LOOP] = _3DPRIM_LINELOOP,
255 [PIPE_PRIM_LINE_STRIP] = _3DPRIM_LINESTRIP,
256 [PIPE_PRIM_TRIANGLES] = _3DPRIM_TRILIST,
257 [PIPE_PRIM_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
258 [PIPE_PRIM_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
259 [PIPE_PRIM_QUADS] = _3DPRIM_QUADLIST,
260 [PIPE_PRIM_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
261 [PIPE_PRIM_POLYGON] = _3DPRIM_POLYGON,
262 [PIPE_PRIM_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
263 [PIPE_PRIM_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
264 [PIPE_PRIM_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
265 [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
266 [PIPE_PRIM_PATCHES] = _3DPRIM_PATCHLIST_1 - 1,
267 };
268
269 return map[prim] + (prim == PIPE_PRIM_PATCHES ? verts_per_patch : 0);
270 }
271
272 static unsigned
273 translate_compare_func(enum pipe_compare_func pipe_func)
274 {
275 static const unsigned map[] = {
276 [PIPE_FUNC_NEVER] = COMPAREFUNCTION_NEVER,
277 [PIPE_FUNC_LESS] = COMPAREFUNCTION_LESS,
278 [PIPE_FUNC_EQUAL] = COMPAREFUNCTION_EQUAL,
279 [PIPE_FUNC_LEQUAL] = COMPAREFUNCTION_LEQUAL,
280 [PIPE_FUNC_GREATER] = COMPAREFUNCTION_GREATER,
281 [PIPE_FUNC_NOTEQUAL] = COMPAREFUNCTION_NOTEQUAL,
282 [PIPE_FUNC_GEQUAL] = COMPAREFUNCTION_GEQUAL,
283 [PIPE_FUNC_ALWAYS] = COMPAREFUNCTION_ALWAYS,
284 };
285 return map[pipe_func];
286 }
287
288 static unsigned
289 translate_shadow_func(enum pipe_compare_func pipe_func)
290 {
291 /* Gallium specifies the result of shadow comparisons as:
292 *
293 * 1 if ref <op> texel,
294 * 0 otherwise.
295 *
296 * The hardware does:
297 *
298 * 0 if texel <op> ref,
299 * 1 otherwise.
300 *
301 * So we need to flip the operator and also negate.
302 */
303 static const unsigned map[] = {
304 [PIPE_FUNC_NEVER] = PREFILTEROPALWAYS,
305 [PIPE_FUNC_LESS] = PREFILTEROPLEQUAL,
306 [PIPE_FUNC_EQUAL] = PREFILTEROPNOTEQUAL,
307 [PIPE_FUNC_LEQUAL] = PREFILTEROPLESS,
308 [PIPE_FUNC_GREATER] = PREFILTEROPGEQUAL,
309 [PIPE_FUNC_NOTEQUAL] = PREFILTEROPEQUAL,
310 [PIPE_FUNC_GEQUAL] = PREFILTEROPGREATER,
311 [PIPE_FUNC_ALWAYS] = PREFILTEROPNEVER,
312 };
313 return map[pipe_func];
314 }
315
316 static unsigned
317 translate_cull_mode(unsigned pipe_face)
318 {
319 static const unsigned map[4] = {
320 [PIPE_FACE_NONE] = CULLMODE_NONE,
321 [PIPE_FACE_FRONT] = CULLMODE_FRONT,
322 [PIPE_FACE_BACK] = CULLMODE_BACK,
323 [PIPE_FACE_FRONT_AND_BACK] = CULLMODE_BOTH,
324 };
325 return map[pipe_face];
326 }
327
328 static unsigned
329 translate_fill_mode(unsigned pipe_polymode)
330 {
331 static const unsigned map[4] = {
332 [PIPE_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
333 [PIPE_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
334 [PIPE_POLYGON_MODE_POINT] = FILL_MODE_POINT,
335 [PIPE_POLYGON_MODE_FILL_RECTANGLE] = FILL_MODE_SOLID,
336 };
337 return map[pipe_polymode];
338 }
339
340 static unsigned
341 translate_mip_filter(enum pipe_tex_mipfilter pipe_mip)
342 {
343 static const unsigned map[] = {
344 [PIPE_TEX_MIPFILTER_NEAREST] = MIPFILTER_NEAREST,
345 [PIPE_TEX_MIPFILTER_LINEAR] = MIPFILTER_LINEAR,
346 [PIPE_TEX_MIPFILTER_NONE] = MIPFILTER_NONE,
347 };
348 return map[pipe_mip];
349 }
350
351 static uint32_t
352 translate_wrap(unsigned pipe_wrap)
353 {
354 static const unsigned map[] = {
355 [PIPE_TEX_WRAP_REPEAT] = TCM_WRAP,
356 [PIPE_TEX_WRAP_CLAMP] = TCM_HALF_BORDER,
357 [PIPE_TEX_WRAP_CLAMP_TO_EDGE] = TCM_CLAMP,
358 [PIPE_TEX_WRAP_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER,
359 [PIPE_TEX_WRAP_MIRROR_REPEAT] = TCM_MIRROR,
360 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE,
361
362 /* These are unsupported. */
363 [PIPE_TEX_WRAP_MIRROR_CLAMP] = -1,
364 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER] = -1,
365 };
366 return map[pipe_wrap];
367 }
368
369 static struct iris_address
370 ro_bo(struct iris_bo *bo, uint64_t offset)
371 {
372 /* CSOs must pass NULL for bo! Otherwise it will add the BO to the
373 * validation list at CSO creation time, instead of draw time.
374 */
375 return (struct iris_address) { .bo = bo, .offset = offset };
376 }
377
378 static struct iris_address
379 rw_bo(struct iris_bo *bo, uint64_t offset)
380 {
381 /* CSOs must pass NULL for bo! Otherwise it will add the BO to the
382 * validation list at CSO creation time, instead of draw time.
383 */
384 return (struct iris_address) { .bo = bo, .offset = offset, .write = true };
385 }
386
387 /**
388 * Allocate space for some indirect state.
389 *
390 * Return a pointer to the map (to fill it out) and a state ref (for
391 * referring to the state in GPU commands).
392 */
393 static void *
394 upload_state(struct u_upload_mgr *uploader,
395 struct iris_state_ref *ref,
396 unsigned size,
397 unsigned alignment)
398 {
399 void *p = NULL;
400 u_upload_alloc(uploader, 0, size, alignment, &ref->offset, &ref->res, &p);
401 return p;
402 }
403
404 /**
405 * Stream out temporary/short-lived state.
406 *
407 * This allocates space, pins the BO, and includes the BO address in the
408 * returned offset (which works because all state lives in 32-bit memory
409 * zones).
410 */
411 static uint32_t *
412 stream_state(struct iris_batch *batch,
413 struct u_upload_mgr *uploader,
414 struct pipe_resource **out_res,
415 unsigned size,
416 unsigned alignment,
417 uint32_t *out_offset)
418 {
419 void *ptr = NULL;
420
421 u_upload_alloc(uploader, 0, size, alignment, out_offset, out_res, &ptr);
422
423 struct iris_bo *bo = iris_resource_bo(*out_res);
424 iris_use_pinned_bo(batch, bo, false);
425
426 *out_offset += iris_bo_offset_from_base_address(bo);
427
428 return ptr;
429 }
430
431 /**
432 * stream_state() + memcpy.
433 */
434 static uint32_t
435 emit_state(struct iris_batch *batch,
436 struct u_upload_mgr *uploader,
437 struct pipe_resource **out_res,
438 const void *data,
439 unsigned size,
440 unsigned alignment)
441 {
442 unsigned offset = 0;
443 uint32_t *map =
444 stream_state(batch, uploader, out_res, size, alignment, &offset);
445
446 if (map)
447 memcpy(map, data, size);
448
449 return offset;
450 }
451
452 /**
453 * Did field 'x' change between 'old_cso' and 'new_cso'?
454 *
455 * (If so, we may want to set some dirty flags.)
456 */
457 #define cso_changed(x) (!old_cso || (old_cso->x != new_cso->x))
458 #define cso_changed_memcmp(x) \
459 (!old_cso || memcmp(old_cso->x, new_cso->x, sizeof(old_cso->x)) != 0)
460
461 static void
462 flush_for_state_base_change(struct iris_batch *batch)
463 {
464 /* Flush before emitting STATE_BASE_ADDRESS.
465 *
466 * This isn't documented anywhere in the PRM. However, it seems to be
467 * necessary prior to changing the surface state base adress. We've
468 * seen issues in Vulkan where we get GPU hangs when using multi-level
469 * command buffers which clear depth, reset state base address, and then
470 * go render stuff.
471 *
472 * Normally, in GL, we would trust the kernel to do sufficient stalls
473 * and flushes prior to executing our batch. However, it doesn't seem
474 * as if the kernel's flushing is always sufficient and we don't want to
475 * rely on it.
476 *
477 * We make this an end-of-pipe sync instead of a normal flush because we
478 * do not know the current status of the GPU. On Haswell at least,
479 * having a fast-clear operation in flight at the same time as a normal
480 * rendering operation can cause hangs. Since the kernel's flushing is
481 * insufficient, we need to ensure that any rendering operations from
482 * other processes are definitely complete before we try to do our own
483 * rendering. It's a bit of a big hammer but it appears to work.
484 */
485 iris_emit_end_of_pipe_sync(batch,
486 PIPE_CONTROL_RENDER_TARGET_FLUSH |
487 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
488 PIPE_CONTROL_DATA_CACHE_FLUSH);
489 }
490
491 static void
492 _iris_emit_lri(struct iris_batch *batch, uint32_t reg, uint32_t val)
493 {
494 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
495 lri.RegisterOffset = reg;
496 lri.DataDWord = val;
497 }
498 }
499 #define iris_emit_lri(b, r, v) _iris_emit_lri(b, GENX(r##_num), v)
500
501 static void
502 _iris_emit_lrr(struct iris_batch *batch, uint32_t dst, uint32_t src)
503 {
504 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
505 lrr.SourceRegisterAddress = src;
506 lrr.DestinationRegisterAddress = dst;
507 }
508 }
509
510 static void
511 emit_pipeline_select(struct iris_batch *batch, uint32_t pipeline)
512 {
513 #if GEN_GEN >= 8 && GEN_GEN < 10
514 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
515 *
516 * Software must clear the COLOR_CALC_STATE Valid field in
517 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
518 * with Pipeline Select set to GPGPU.
519 *
520 * The internal hardware docs recommend the same workaround for Gen9
521 * hardware too.
522 */
523 if (pipeline == GPGPU)
524 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
525 #endif
526
527
528 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
529 * PIPELINE_SELECT [DevBWR+]":
530 *
531 * "Project: DEVSNB+
532 *
533 * Software must ensure all the write caches are flushed through a
534 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
535 * command to invalidate read only caches prior to programming
536 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode."
537 */
538 iris_emit_pipe_control_flush(batch,
539 PIPE_CONTROL_RENDER_TARGET_FLUSH |
540 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
541 PIPE_CONTROL_DATA_CACHE_FLUSH |
542 PIPE_CONTROL_CS_STALL);
543
544 iris_emit_pipe_control_flush(batch,
545 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
546 PIPE_CONTROL_CONST_CACHE_INVALIDATE |
547 PIPE_CONTROL_STATE_CACHE_INVALIDATE |
548 PIPE_CONTROL_INSTRUCTION_INVALIDATE);
549
550 iris_emit_cmd(batch, GENX(PIPELINE_SELECT), sel) {
551 #if GEN_GEN >= 9
552 sel.MaskBits = 3;
553 #endif
554 sel.PipelineSelection = pipeline;
555 }
556 }
557
558 UNUSED static void
559 init_glk_barrier_mode(struct iris_batch *batch, uint32_t value)
560 {
561 #if GEN_GEN == 9
562 /* Project: DevGLK
563 *
564 * "This chicken bit works around a hardware issue with barrier
565 * logic encountered when switching between GPGPU and 3D pipelines.
566 * To workaround the issue, this mode bit should be set after a
567 * pipeline is selected."
568 */
569 uint32_t reg_val;
570 iris_pack_state(GENX(SLICE_COMMON_ECO_CHICKEN1), &reg_val, reg) {
571 reg.GLKBarrierMode = value;
572 reg.GLKBarrierModeMask = 1;
573 }
574 iris_emit_lri(batch, SLICE_COMMON_ECO_CHICKEN1, reg_val);
575 #endif
576 }
577
578 static void
579 init_state_base_address(struct iris_batch *batch)
580 {
581 flush_for_state_base_change(batch);
582
583 /* We program most base addresses once at context initialization time.
584 * Each base address points at a 4GB memory zone, and never needs to
585 * change. See iris_bufmgr.h for a description of the memory zones.
586 *
587 * The one exception is Surface State Base Address, which needs to be
588 * updated occasionally. See iris_binder.c for the details there.
589 */
590 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
591 sba.GeneralStateMOCS = MOCS_WB;
592 sba.StatelessDataPortAccessMOCS = MOCS_WB;
593 sba.DynamicStateMOCS = MOCS_WB;
594 sba.IndirectObjectMOCS = MOCS_WB;
595 sba.InstructionMOCS = MOCS_WB;
596
597 sba.GeneralStateBaseAddressModifyEnable = true;
598 sba.DynamicStateBaseAddressModifyEnable = true;
599 sba.IndirectObjectBaseAddressModifyEnable = true;
600 sba.InstructionBaseAddressModifyEnable = true;
601 sba.GeneralStateBufferSizeModifyEnable = true;
602 sba.DynamicStateBufferSizeModifyEnable = true;
603 #if (GEN_GEN >= 9)
604 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
605 sba.BindlessSurfaceStateMOCS = MOCS_WB;
606 #endif
607 sba.IndirectObjectBufferSizeModifyEnable = true;
608 sba.InstructionBuffersizeModifyEnable = true;
609
610 sba.InstructionBaseAddress = ro_bo(NULL, IRIS_MEMZONE_SHADER_START);
611 sba.DynamicStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_DYNAMIC_START);
612
613 sba.GeneralStateBufferSize = 0xfffff;
614 sba.IndirectObjectBufferSize = 0xfffff;
615 sba.InstructionBufferSize = 0xfffff;
616 sba.DynamicStateBufferSize = 0xfffff;
617 }
618 }
619
620 /**
621 * Upload the initial GPU state for a render context.
622 *
623 * This sets some invariant state that needs to be programmed a particular
624 * way, but we never actually change.
625 */
626 static void
627 iris_init_render_context(struct iris_screen *screen,
628 struct iris_batch *batch,
629 struct iris_vtable *vtbl,
630 struct pipe_debug_callback *dbg)
631 {
632 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
633 uint32_t reg_val;
634
635 emit_pipeline_select(batch, _3D);
636
637 init_state_base_address(batch);
638
639 #if GEN_GEN >= 9
640 // XXX: INSTPM on Gen8
641 iris_pack_state(GENX(CS_DEBUG_MODE2), &reg_val, reg) {
642 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
643 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
644 }
645 iris_emit_lri(batch, CS_DEBUG_MODE2, reg_val);
646 #else
647 iris_pack_state(GENX(INSTPM), &reg_val, reg) {
648 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
649 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
650 }
651 iris_emit_lri(batch, INSTPM, reg_val);
652 #endif
653
654 #if GEN_GEN == 9
655 iris_pack_state(GENX(CACHE_MODE_1), &reg_val, reg) {
656 reg.FloatBlendOptimizationEnable = true;
657 reg.FloatBlendOptimizationEnableMask = true;
658 reg.PartialResolveDisableInVC = true;
659 reg.PartialResolveDisableInVCMask = true;
660 }
661 iris_emit_lri(batch, CACHE_MODE_1, reg_val);
662
663 if (devinfo->is_geminilake)
664 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_3D_HULL);
665 #endif
666
667 #if GEN_GEN == 11
668 iris_pack_state(GENX(SAMPLER_MODE), &reg_val, reg) {
669 reg.HeaderlessMessageforPreemptableContexts = 1;
670 reg.HeaderlessMessageforPreemptableContextsMask = 1;
671 }
672 iris_emit_lri(batch, SAMPLER_MODE, reg_val);
673
674 // XXX: 3D_MODE?
675 #endif
676
677 /* 3DSTATE_DRAWING_RECTANGLE is non-pipelined, so we want to avoid
678 * changing it dynamically. We set it to the maximum size here, and
679 * instead include the render target dimensions in the viewport, so
680 * viewport extents clipping takes care of pruning stray geometry.
681 */
682 iris_emit_cmd(batch, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
683 rect.ClippedDrawingRectangleXMax = UINT16_MAX;
684 rect.ClippedDrawingRectangleYMax = UINT16_MAX;
685 }
686
687 /* Set the initial MSAA sample positions. */
688 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_PATTERN), pat) {
689 GEN_SAMPLE_POS_1X(pat._1xSample);
690 GEN_SAMPLE_POS_2X(pat._2xSample);
691 GEN_SAMPLE_POS_4X(pat._4xSample);
692 GEN_SAMPLE_POS_8X(pat._8xSample);
693 #if GEN_GEN >= 9
694 GEN_SAMPLE_POS_16X(pat._16xSample);
695 #endif
696 }
697
698 /* Use the legacy AA line coverage computation. */
699 iris_emit_cmd(batch, GENX(3DSTATE_AA_LINE_PARAMETERS), foo);
700
701 /* Disable chromakeying (it's for media) */
702 iris_emit_cmd(batch, GENX(3DSTATE_WM_CHROMAKEY), foo);
703
704 /* We want regular rendering, not special HiZ operations. */
705 iris_emit_cmd(batch, GENX(3DSTATE_WM_HZ_OP), foo);
706
707 /* No polygon stippling offsets are necessary. */
708 // XXX: may need to set an offset for origin-UL framebuffers
709 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_OFFSET), foo);
710
711 /* Set a static partitioning of the push constant area. */
712 // XXX: this may be a bad idea...could starve the push ringbuffers...
713 for (int i = 0; i <= MESA_SHADER_FRAGMENT; i++) {
714 iris_emit_cmd(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
715 alloc._3DCommandSubOpcode = 18 + i;
716 alloc.ConstantBufferOffset = 6 * i;
717 alloc.ConstantBufferSize = i == MESA_SHADER_FRAGMENT ? 8 : 6;
718 }
719 }
720 }
721
722 static void
723 iris_init_compute_context(struct iris_screen *screen,
724 struct iris_batch *batch,
725 struct iris_vtable *vtbl,
726 struct pipe_debug_callback *dbg)
727 {
728 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
729
730 emit_pipeline_select(batch, GPGPU);
731
732 const bool has_slm = true;
733 const bool wants_dc_cache = true;
734
735 const struct gen_l3_weights w =
736 gen_get_default_l3_weights(devinfo, wants_dc_cache, has_slm);
737 const struct gen_l3_config *cfg = gen_get_l3_config(devinfo, w);
738
739 uint32_t reg_val;
740 iris_pack_state(GENX(L3CNTLREG), &reg_val, reg) {
741 reg.SLMEnable = has_slm;
742 #if GEN_GEN == 11
743 /* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set
744 * in L3CNTLREG register. The default setting of the bit is not the
745 * desirable behavior.
746 */
747 reg.ErrorDetectionBehaviorControl = true;
748 #endif
749 reg.URBAllocation = cfg->n[GEN_L3P_URB];
750 reg.ROAllocation = cfg->n[GEN_L3P_RO];
751 reg.DCAllocation = cfg->n[GEN_L3P_DC];
752 reg.AllAllocation = cfg->n[GEN_L3P_ALL];
753 }
754 iris_emit_lri(batch, L3CNTLREG, reg_val);
755
756 init_state_base_address(batch);
757
758 #if GEN_GEN == 9
759 if (devinfo->is_geminilake)
760 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_GPGPU);
761 #endif
762 }
763
764 struct iris_vertex_buffer_state {
765 /** The VERTEX_BUFFER_STATE hardware structure. */
766 uint32_t state[GENX(VERTEX_BUFFER_STATE_length)];
767
768 /** The resource to source vertex data from. */
769 struct pipe_resource *resource;
770 };
771
772 struct iris_depth_buffer_state {
773 /* Depth/HiZ/Stencil related hardware packets. */
774 uint32_t packets[GENX(3DSTATE_DEPTH_BUFFER_length) +
775 GENX(3DSTATE_STENCIL_BUFFER_length) +
776 GENX(3DSTATE_HIER_DEPTH_BUFFER_length) +
777 GENX(3DSTATE_CLEAR_PARAMS_length)];
778 };
779
780 /**
781 * Generation-specific context state (ice->state.genx->...).
782 *
783 * Most state can go in iris_context directly, but these encode hardware
784 * packets which vary by generation.
785 */
786 struct iris_genx_state {
787 struct iris_vertex_buffer_state vertex_buffers[33];
788
789 struct iris_depth_buffer_state depth_buffer;
790
791 uint32_t so_buffers[4 * GENX(3DSTATE_SO_BUFFER_length)];
792 };
793
794 /**
795 * The pipe->set_blend_color() driver hook.
796 *
797 * This corresponds to our COLOR_CALC_STATE.
798 */
799 static void
800 iris_set_blend_color(struct pipe_context *ctx,
801 const struct pipe_blend_color *state)
802 {
803 struct iris_context *ice = (struct iris_context *) ctx;
804
805 /* Our COLOR_CALC_STATE is exactly pipe_blend_color, so just memcpy */
806 memcpy(&ice->state.blend_color, state, sizeof(struct pipe_blend_color));
807 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
808 }
809
810 /**
811 * Gallium CSO for blend state (see pipe_blend_state).
812 */
813 struct iris_blend_state {
814 /** Partial 3DSTATE_PS_BLEND */
815 uint32_t ps_blend[GENX(3DSTATE_PS_BLEND_length)];
816
817 /** Partial BLEND_STATE */
818 uint32_t blend_state[GENX(BLEND_STATE_length) +
819 BRW_MAX_DRAW_BUFFERS * GENX(BLEND_STATE_ENTRY_length)];
820
821 bool alpha_to_coverage; /* for shader key */
822
823 /** Bitfield of whether blending is enabled for RT[i] - for aux resolves */
824 uint8_t blend_enables;
825 };
826
827 static enum pipe_blendfactor
828 fix_blendfactor(enum pipe_blendfactor f, bool alpha_to_one)
829 {
830 if (alpha_to_one) {
831 if (f == PIPE_BLENDFACTOR_SRC1_ALPHA)
832 return PIPE_BLENDFACTOR_ONE;
833
834 if (f == PIPE_BLENDFACTOR_INV_SRC1_ALPHA)
835 return PIPE_BLENDFACTOR_ZERO;
836 }
837
838 return f;
839 }
840
841 /**
842 * The pipe->create_blend_state() driver hook.
843 *
844 * Translates a pipe_blend_state into iris_blend_state.
845 */
846 static void *
847 iris_create_blend_state(struct pipe_context *ctx,
848 const struct pipe_blend_state *state)
849 {
850 struct iris_blend_state *cso = malloc(sizeof(struct iris_blend_state));
851 uint32_t *blend_entry = cso->blend_state + GENX(BLEND_STATE_length);
852
853 cso->blend_enables = 0;
854 STATIC_ASSERT(BRW_MAX_DRAW_BUFFERS <= 8);
855
856 cso->alpha_to_coverage = state->alpha_to_coverage;
857
858 bool indep_alpha_blend = false;
859
860 for (int i = 0; i < BRW_MAX_DRAW_BUFFERS; i++) {
861 const struct pipe_rt_blend_state *rt =
862 &state->rt[state->independent_blend_enable ? i : 0];
863
864 enum pipe_blendfactor src_rgb =
865 fix_blendfactor(rt->rgb_src_factor, state->alpha_to_one);
866 enum pipe_blendfactor src_alpha =
867 fix_blendfactor(rt->alpha_src_factor, state->alpha_to_one);
868 enum pipe_blendfactor dst_rgb =
869 fix_blendfactor(rt->rgb_dst_factor, state->alpha_to_one);
870 enum pipe_blendfactor dst_alpha =
871 fix_blendfactor(rt->alpha_dst_factor, state->alpha_to_one);
872
873 if (rt->rgb_func != rt->alpha_func ||
874 src_rgb != src_alpha || dst_rgb != dst_alpha)
875 indep_alpha_blend = true;
876
877 if (rt->blend_enable)
878 cso->blend_enables |= 1u << i;
879
880 iris_pack_state(GENX(BLEND_STATE_ENTRY), blend_entry, be) {
881 be.LogicOpEnable = state->logicop_enable;
882 be.LogicOpFunction = state->logicop_func;
883
884 be.PreBlendSourceOnlyClampEnable = false;
885 be.ColorClampRange = COLORCLAMP_RTFORMAT;
886 be.PreBlendColorClampEnable = true;
887 be.PostBlendColorClampEnable = true;
888
889 be.ColorBufferBlendEnable = rt->blend_enable;
890
891 be.ColorBlendFunction = rt->rgb_func;
892 be.AlphaBlendFunction = rt->alpha_func;
893 be.SourceBlendFactor = src_rgb;
894 be.SourceAlphaBlendFactor = src_alpha;
895 be.DestinationBlendFactor = dst_rgb;
896 be.DestinationAlphaBlendFactor = dst_alpha;
897
898 be.WriteDisableRed = !(rt->colormask & PIPE_MASK_R);
899 be.WriteDisableGreen = !(rt->colormask & PIPE_MASK_G);
900 be.WriteDisableBlue = !(rt->colormask & PIPE_MASK_B);
901 be.WriteDisableAlpha = !(rt->colormask & PIPE_MASK_A);
902 }
903 blend_entry += GENX(BLEND_STATE_ENTRY_length);
904 }
905
906 iris_pack_command(GENX(3DSTATE_PS_BLEND), cso->ps_blend, pb) {
907 /* pb.HasWriteableRT is filled in at draw time. */
908 /* pb.AlphaTestEnable is filled in at draw time. */
909 pb.AlphaToCoverageEnable = state->alpha_to_coverage;
910 pb.IndependentAlphaBlendEnable = indep_alpha_blend;
911
912 pb.ColorBufferBlendEnable = state->rt[0].blend_enable;
913
914 pb.SourceBlendFactor =
915 fix_blendfactor(state->rt[0].rgb_src_factor, state->alpha_to_one);
916 pb.SourceAlphaBlendFactor =
917 fix_blendfactor(state->rt[0].alpha_src_factor, state->alpha_to_one);
918 pb.DestinationBlendFactor =
919 fix_blendfactor(state->rt[0].rgb_dst_factor, state->alpha_to_one);
920 pb.DestinationAlphaBlendFactor =
921 fix_blendfactor(state->rt[0].alpha_dst_factor, state->alpha_to_one);
922 }
923
924 iris_pack_state(GENX(BLEND_STATE), cso->blend_state, bs) {
925 bs.AlphaToCoverageEnable = state->alpha_to_coverage;
926 bs.IndependentAlphaBlendEnable = indep_alpha_blend;
927 bs.AlphaToOneEnable = state->alpha_to_one;
928 bs.AlphaToCoverageDitherEnable = state->alpha_to_coverage;
929 bs.ColorDitherEnable = state->dither;
930 /* bl.AlphaTestEnable and bs.AlphaTestFunction are filled in later. */
931 }
932
933
934 return cso;
935 }
936
937 /**
938 * The pipe->bind_blend_state() driver hook.
939 *
940 * Bind a blending CSO and flag related dirty bits.
941 */
942 static void
943 iris_bind_blend_state(struct pipe_context *ctx, void *state)
944 {
945 struct iris_context *ice = (struct iris_context *) ctx;
946 struct iris_blend_state *cso = state;
947
948 ice->state.cso_blend = cso;
949 ice->state.blend_enables = cso ? cso->blend_enables : 0;
950
951 ice->state.dirty |= IRIS_DIRTY_PS_BLEND;
952 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
953 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_BLEND];
954 }
955
956 /**
957 * Gallium CSO for depth, stencil, and alpha testing state.
958 */
959 struct iris_depth_stencil_alpha_state {
960 /** Partial 3DSTATE_WM_DEPTH_STENCIL. */
961 uint32_t wmds[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
962
963 /** Outbound to BLEND_STATE, 3DSTATE_PS_BLEND, COLOR_CALC_STATE. */
964 struct pipe_alpha_state alpha;
965
966 /** Outbound to resolve and cache set tracking. */
967 bool depth_writes_enabled;
968 bool stencil_writes_enabled;
969 };
970
971 /**
972 * The pipe->create_depth_stencil_alpha_state() driver hook.
973 *
974 * We encode most of 3DSTATE_WM_DEPTH_STENCIL, and just save off the alpha
975 * testing state since we need pieces of it in a variety of places.
976 */
977 static void *
978 iris_create_zsa_state(struct pipe_context *ctx,
979 const struct pipe_depth_stencil_alpha_state *state)
980 {
981 struct iris_depth_stencil_alpha_state *cso =
982 malloc(sizeof(struct iris_depth_stencil_alpha_state));
983
984 bool two_sided_stencil = state->stencil[1].enabled;
985
986 cso->alpha = state->alpha;
987 cso->depth_writes_enabled = state->depth.writemask;
988 cso->stencil_writes_enabled =
989 state->stencil[0].writemask != 0 ||
990 (two_sided_stencil && state->stencil[1].writemask != 1);
991
992 /* The state tracker needs to optimize away EQUAL writes for us. */
993 assert(!(state->depth.func == PIPE_FUNC_EQUAL && state->depth.writemask));
994
995 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), cso->wmds, wmds) {
996 wmds.StencilFailOp = state->stencil[0].fail_op;
997 wmds.StencilPassDepthFailOp = state->stencil[0].zfail_op;
998 wmds.StencilPassDepthPassOp = state->stencil[0].zpass_op;
999 wmds.StencilTestFunction =
1000 translate_compare_func(state->stencil[0].func);
1001 wmds.BackfaceStencilFailOp = state->stencil[1].fail_op;
1002 wmds.BackfaceStencilPassDepthFailOp = state->stencil[1].zfail_op;
1003 wmds.BackfaceStencilPassDepthPassOp = state->stencil[1].zpass_op;
1004 wmds.BackfaceStencilTestFunction =
1005 translate_compare_func(state->stencil[1].func);
1006 wmds.DepthTestFunction = translate_compare_func(state->depth.func);
1007 wmds.DoubleSidedStencilEnable = two_sided_stencil;
1008 wmds.StencilTestEnable = state->stencil[0].enabled;
1009 wmds.StencilBufferWriteEnable =
1010 state->stencil[0].writemask != 0 ||
1011 (two_sided_stencil && state->stencil[1].writemask != 0);
1012 wmds.DepthTestEnable = state->depth.enabled;
1013 wmds.DepthBufferWriteEnable = state->depth.writemask;
1014 wmds.StencilTestMask = state->stencil[0].valuemask;
1015 wmds.StencilWriteMask = state->stencil[0].writemask;
1016 wmds.BackfaceStencilTestMask = state->stencil[1].valuemask;
1017 wmds.BackfaceStencilWriteMask = state->stencil[1].writemask;
1018 /* wmds.[Backface]StencilReferenceValue are merged later */
1019 }
1020
1021 return cso;
1022 }
1023
1024 /**
1025 * The pipe->bind_depth_stencil_alpha_state() driver hook.
1026 *
1027 * Bind a depth/stencil/alpha CSO and flag related dirty bits.
1028 */
1029 static void
1030 iris_bind_zsa_state(struct pipe_context *ctx, void *state)
1031 {
1032 struct iris_context *ice = (struct iris_context *) ctx;
1033 struct iris_depth_stencil_alpha_state *old_cso = ice->state.cso_zsa;
1034 struct iris_depth_stencil_alpha_state *new_cso = state;
1035
1036 if (new_cso) {
1037 if (cso_changed(alpha.ref_value))
1038 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
1039
1040 if (cso_changed(alpha.enabled))
1041 ice->state.dirty |= IRIS_DIRTY_PS_BLEND | IRIS_DIRTY_BLEND_STATE;
1042
1043 if (cso_changed(alpha.func))
1044 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1045
1046 ice->state.depth_writes_enabled = new_cso->depth_writes_enabled;
1047 ice->state.stencil_writes_enabled = new_cso->stencil_writes_enabled;
1048 }
1049
1050 ice->state.cso_zsa = new_cso;
1051 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1052 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
1053 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_DEPTH_STENCIL_ALPHA];
1054 }
1055
1056 /**
1057 * Gallium CSO for rasterizer state.
1058 */
1059 struct iris_rasterizer_state {
1060 uint32_t sf[GENX(3DSTATE_SF_length)];
1061 uint32_t clip[GENX(3DSTATE_CLIP_length)];
1062 uint32_t raster[GENX(3DSTATE_RASTER_length)];
1063 uint32_t wm[GENX(3DSTATE_WM_length)];
1064 uint32_t line_stipple[GENX(3DSTATE_LINE_STIPPLE_length)];
1065
1066 uint8_t num_clip_plane_consts;
1067 bool clip_halfz; /* for CC_VIEWPORT */
1068 bool depth_clip_near; /* for CC_VIEWPORT */
1069 bool depth_clip_far; /* for CC_VIEWPORT */
1070 bool flatshade; /* for shader state */
1071 bool flatshade_first; /* for stream output */
1072 bool clamp_fragment_color; /* for shader state */
1073 bool light_twoside; /* for shader state */
1074 bool rasterizer_discard; /* for 3DSTATE_STREAMOUT and 3DSTATE_CLIP */
1075 bool half_pixel_center; /* for 3DSTATE_MULTISAMPLE */
1076 bool line_stipple_enable;
1077 bool poly_stipple_enable;
1078 bool multisample;
1079 bool force_persample_interp;
1080 enum pipe_sprite_coord_mode sprite_coord_mode; /* PIPE_SPRITE_* */
1081 uint16_t sprite_coord_enable;
1082 };
1083
1084 static float
1085 get_line_width(const struct pipe_rasterizer_state *state)
1086 {
1087 float line_width = state->line_width;
1088
1089 /* From the OpenGL 4.4 spec:
1090 *
1091 * "The actual width of non-antialiased lines is determined by rounding
1092 * the supplied width to the nearest integer, then clamping it to the
1093 * implementation-dependent maximum non-antialiased line width."
1094 */
1095 if (!state->multisample && !state->line_smooth)
1096 line_width = roundf(state->line_width);
1097
1098 if (!state->multisample && state->line_smooth && line_width < 1.5f) {
1099 /* For 1 pixel line thickness or less, the general anti-aliasing
1100 * algorithm gives up, and a garbage line is generated. Setting a
1101 * Line Width of 0.0 specifies the rasterization of the "thinnest"
1102 * (one-pixel-wide), non-antialiased lines.
1103 *
1104 * Lines rendered with zero Line Width are rasterized using the
1105 * "Grid Intersection Quantization" rules as specified by the
1106 * "Zero-Width (Cosmetic) Line Rasterization" section of the docs.
1107 */
1108 line_width = 0.0f;
1109 }
1110
1111 return line_width;
1112 }
1113
1114 /**
1115 * The pipe->create_rasterizer_state() driver hook.
1116 */
1117 static void *
1118 iris_create_rasterizer_state(struct pipe_context *ctx,
1119 const struct pipe_rasterizer_state *state)
1120 {
1121 struct iris_rasterizer_state *cso =
1122 malloc(sizeof(struct iris_rasterizer_state));
1123
1124 #if 0
1125 not necessary?
1126 {
1127 poly_smooth
1128 bottom_edge_rule
1129
1130 offset_units_unscaled - cap not exposed
1131 }
1132 #endif
1133
1134 // XXX: it may make more sense just to store the pipe_rasterizer_state,
1135 // we're copying a lot of booleans here. But we don't need all of them...
1136
1137 cso->multisample = state->multisample;
1138 cso->force_persample_interp = state->force_persample_interp;
1139 cso->clip_halfz = state->clip_halfz;
1140 cso->depth_clip_near = state->depth_clip_near;
1141 cso->depth_clip_far = state->depth_clip_far;
1142 cso->flatshade = state->flatshade;
1143 cso->flatshade_first = state->flatshade_first;
1144 cso->clamp_fragment_color = state->clamp_fragment_color;
1145 cso->light_twoside = state->light_twoside;
1146 cso->rasterizer_discard = state->rasterizer_discard;
1147 cso->half_pixel_center = state->half_pixel_center;
1148 cso->sprite_coord_mode = state->sprite_coord_mode;
1149 cso->sprite_coord_enable = state->sprite_coord_enable;
1150 cso->line_stipple_enable = state->line_stipple_enable;
1151 cso->poly_stipple_enable = state->poly_stipple_enable;
1152
1153 if (state->clip_plane_enable != 0)
1154 cso->num_clip_plane_consts = util_logbase2(state->clip_plane_enable) + 1;
1155 else
1156 cso->num_clip_plane_consts = 0;
1157
1158 float line_width = get_line_width(state);
1159
1160 iris_pack_command(GENX(3DSTATE_SF), cso->sf, sf) {
1161 sf.StatisticsEnable = true;
1162 sf.ViewportTransformEnable = true;
1163 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
1164 sf.LineEndCapAntialiasingRegionWidth =
1165 state->line_smooth ? _10pixels : _05pixels;
1166 sf.LastPixelEnable = state->line_last_pixel;
1167 sf.LineWidth = line_width;
1168 sf.SmoothPointEnable = (state->point_smooth || state->multisample) &&
1169 !state->point_quad_rasterization;
1170 sf.PointWidthSource = state->point_size_per_vertex ? Vertex : State;
1171 sf.PointWidth = state->point_size;
1172
1173 if (state->flatshade_first) {
1174 sf.TriangleFanProvokingVertexSelect = 1;
1175 } else {
1176 sf.TriangleStripListProvokingVertexSelect = 2;
1177 sf.TriangleFanProvokingVertexSelect = 2;
1178 sf.LineStripListProvokingVertexSelect = 1;
1179 }
1180 }
1181
1182 iris_pack_command(GENX(3DSTATE_RASTER), cso->raster, rr) {
1183 rr.FrontWinding = state->front_ccw ? CounterClockwise : Clockwise;
1184 rr.CullMode = translate_cull_mode(state->cull_face);
1185 rr.FrontFaceFillMode = translate_fill_mode(state->fill_front);
1186 rr.BackFaceFillMode = translate_fill_mode(state->fill_back);
1187 rr.DXMultisampleRasterizationEnable = state->multisample;
1188 rr.GlobalDepthOffsetEnableSolid = state->offset_tri;
1189 rr.GlobalDepthOffsetEnableWireframe = state->offset_line;
1190 rr.GlobalDepthOffsetEnablePoint = state->offset_point;
1191 rr.GlobalDepthOffsetConstant = state->offset_units * 2;
1192 rr.GlobalDepthOffsetScale = state->offset_scale;
1193 rr.GlobalDepthOffsetClamp = state->offset_clamp;
1194 rr.SmoothPointEnable = state->point_smooth;
1195 rr.AntialiasingEnable = state->line_smooth;
1196 rr.ScissorRectangleEnable = state->scissor;
1197 #if GEN_GEN >= 9
1198 rr.ViewportZNearClipTestEnable = state->depth_clip_near;
1199 rr.ViewportZFarClipTestEnable = state->depth_clip_far;
1200 #else
1201 rr.ViewportZClipTestEnable = (state->depth_clip_near || state->depth_clip_far);
1202 #endif
1203 //rr.ConservativeRasterizationEnable = not yet supported by Gallium...
1204 }
1205
1206 iris_pack_command(GENX(3DSTATE_CLIP), cso->clip, cl) {
1207 /* cl.NonPerspectiveBarycentricEnable is filled in at draw time from
1208 * the FS program; cl.ForceZeroRTAIndexEnable is filled in from the FB.
1209 */
1210 cl.EarlyCullEnable = true;
1211 cl.UserClipDistanceClipTestEnableBitmask = state->clip_plane_enable;
1212 cl.ForceUserClipDistanceClipTestEnableBitmask = true;
1213 cl.APIMode = state->clip_halfz ? APIMODE_D3D : APIMODE_OGL;
1214 cl.GuardbandClipTestEnable = true;
1215 cl.ClipEnable = true;
1216 cl.ViewportXYClipTestEnable = state->point_tri_clip;
1217 cl.MinimumPointWidth = 0.125;
1218 cl.MaximumPointWidth = 255.875;
1219
1220 if (state->flatshade_first) {
1221 cl.TriangleFanProvokingVertexSelect = 1;
1222 } else {
1223 cl.TriangleStripListProvokingVertexSelect = 2;
1224 cl.TriangleFanProvokingVertexSelect = 2;
1225 cl.LineStripListProvokingVertexSelect = 1;
1226 }
1227 }
1228
1229 iris_pack_command(GENX(3DSTATE_WM), cso->wm, wm) {
1230 /* wm.BarycentricInterpolationMode and wm.EarlyDepthStencilControl are
1231 * filled in at draw time from the FS program.
1232 */
1233 wm.LineAntialiasingRegionWidth = _10pixels;
1234 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1235 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1236 wm.LineStippleEnable = state->line_stipple_enable;
1237 wm.PolygonStippleEnable = state->poly_stipple_enable;
1238 }
1239
1240 /* Remap from 0..255 back to 1..256 */
1241 const unsigned line_stipple_factor = state->line_stipple_factor + 1;
1242
1243 iris_pack_command(GENX(3DSTATE_LINE_STIPPLE), cso->line_stipple, line) {
1244 line.LineStipplePattern = state->line_stipple_pattern;
1245 line.LineStippleInverseRepeatCount = 1.0f / line_stipple_factor;
1246 line.LineStippleRepeatCount = line_stipple_factor;
1247 }
1248
1249 return cso;
1250 }
1251
1252 /**
1253 * The pipe->bind_rasterizer_state() driver hook.
1254 *
1255 * Bind a rasterizer CSO and flag related dirty bits.
1256 */
1257 static void
1258 iris_bind_rasterizer_state(struct pipe_context *ctx, void *state)
1259 {
1260 struct iris_context *ice = (struct iris_context *) ctx;
1261 struct iris_rasterizer_state *old_cso = ice->state.cso_rast;
1262 struct iris_rasterizer_state *new_cso = state;
1263
1264 if (new_cso) {
1265 /* Try to avoid re-emitting 3DSTATE_LINE_STIPPLE, it's non-pipelined */
1266 if (cso_changed_memcmp(line_stipple))
1267 ice->state.dirty |= IRIS_DIRTY_LINE_STIPPLE;
1268
1269 if (cso_changed(half_pixel_center))
1270 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
1271
1272 if (cso_changed(line_stipple_enable) || cso_changed(poly_stipple_enable))
1273 ice->state.dirty |= IRIS_DIRTY_WM;
1274
1275 if (cso_changed(rasterizer_discard))
1276 ice->state.dirty |= IRIS_DIRTY_STREAMOUT | IRIS_DIRTY_CLIP;
1277
1278 if (cso_changed(flatshade_first))
1279 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
1280
1281 if (cso_changed(depth_clip_near) || cso_changed(depth_clip_far) ||
1282 cso_changed(clip_halfz))
1283 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1284
1285 if (cso_changed(sprite_coord_enable) ||
1286 cso_changed(sprite_coord_mode) ||
1287 cso_changed(light_twoside))
1288 ice->state.dirty |= IRIS_DIRTY_SBE;
1289 }
1290
1291 ice->state.cso_rast = new_cso;
1292 ice->state.dirty |= IRIS_DIRTY_RASTER;
1293 ice->state.dirty |= IRIS_DIRTY_CLIP;
1294 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_RASTERIZER];
1295 }
1296
1297 /**
1298 * Return true if the given wrap mode requires the border color to exist.
1299 *
1300 * (We can skip uploading it if the sampler isn't going to use it.)
1301 */
1302 static bool
1303 wrap_mode_needs_border_color(unsigned wrap_mode)
1304 {
1305 return wrap_mode == TCM_CLAMP_BORDER || wrap_mode == TCM_HALF_BORDER;
1306 }
1307
1308 /**
1309 * Gallium CSO for sampler state.
1310 */
1311 struct iris_sampler_state {
1312 union pipe_color_union border_color;
1313 bool needs_border_color;
1314
1315 uint32_t sampler_state[GENX(SAMPLER_STATE_length)];
1316 };
1317
1318 /**
1319 * The pipe->create_sampler_state() driver hook.
1320 *
1321 * We fill out SAMPLER_STATE (except for the border color pointer), and
1322 * store that on the CPU. It doesn't make sense to upload it to a GPU
1323 * buffer object yet, because 3DSTATE_SAMPLER_STATE_POINTERS requires
1324 * all bound sampler states to be in contiguous memor.
1325 */
1326 static void *
1327 iris_create_sampler_state(struct pipe_context *ctx,
1328 const struct pipe_sampler_state *state)
1329 {
1330 struct iris_sampler_state *cso = CALLOC_STRUCT(iris_sampler_state);
1331
1332 if (!cso)
1333 return NULL;
1334
1335 STATIC_ASSERT(PIPE_TEX_FILTER_NEAREST == MAPFILTER_NEAREST);
1336 STATIC_ASSERT(PIPE_TEX_FILTER_LINEAR == MAPFILTER_LINEAR);
1337
1338 unsigned wrap_s = translate_wrap(state->wrap_s);
1339 unsigned wrap_t = translate_wrap(state->wrap_t);
1340 unsigned wrap_r = translate_wrap(state->wrap_r);
1341
1342 memcpy(&cso->border_color, &state->border_color, sizeof(cso->border_color));
1343
1344 cso->needs_border_color = wrap_mode_needs_border_color(wrap_s) ||
1345 wrap_mode_needs_border_color(wrap_t) ||
1346 wrap_mode_needs_border_color(wrap_r);
1347
1348 float min_lod = state->min_lod;
1349 unsigned mag_img_filter = state->mag_img_filter;
1350
1351 // XXX: explain this code ported from ilo...I don't get it at all...
1352 if (state->min_mip_filter == PIPE_TEX_MIPFILTER_NONE &&
1353 state->min_lod > 0.0f) {
1354 min_lod = 0.0f;
1355 mag_img_filter = state->min_img_filter;
1356 }
1357
1358 iris_pack_state(GENX(SAMPLER_STATE), cso->sampler_state, samp) {
1359 samp.TCXAddressControlMode = wrap_s;
1360 samp.TCYAddressControlMode = wrap_t;
1361 samp.TCZAddressControlMode = wrap_r;
1362 samp.CubeSurfaceControlMode = state->seamless_cube_map;
1363 samp.NonnormalizedCoordinateEnable = !state->normalized_coords;
1364 samp.MinModeFilter = state->min_img_filter;
1365 samp.MagModeFilter = mag_img_filter;
1366 samp.MipModeFilter = translate_mip_filter(state->min_mip_filter);
1367 samp.MaximumAnisotropy = RATIO21;
1368
1369 if (state->max_anisotropy >= 2) {
1370 if (state->min_img_filter == PIPE_TEX_FILTER_LINEAR) {
1371 samp.MinModeFilter = MAPFILTER_ANISOTROPIC;
1372 samp.AnisotropicAlgorithm = EWAApproximation;
1373 }
1374
1375 if (state->mag_img_filter == PIPE_TEX_FILTER_LINEAR)
1376 samp.MagModeFilter = MAPFILTER_ANISOTROPIC;
1377
1378 samp.MaximumAnisotropy =
1379 MIN2((state->max_anisotropy - 2) / 2, RATIO161);
1380 }
1381
1382 /* Set address rounding bits if not using nearest filtering. */
1383 if (state->min_img_filter != PIPE_TEX_FILTER_NEAREST) {
1384 samp.UAddressMinFilterRoundingEnable = true;
1385 samp.VAddressMinFilterRoundingEnable = true;
1386 samp.RAddressMinFilterRoundingEnable = true;
1387 }
1388
1389 if (state->mag_img_filter != PIPE_TEX_FILTER_NEAREST) {
1390 samp.UAddressMagFilterRoundingEnable = true;
1391 samp.VAddressMagFilterRoundingEnable = true;
1392 samp.RAddressMagFilterRoundingEnable = true;
1393 }
1394
1395 if (state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE)
1396 samp.ShadowFunction = translate_shadow_func(state->compare_func);
1397
1398 const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
1399
1400 samp.LODPreClampMode = CLAMP_MODE_OGL;
1401 samp.MinLOD = CLAMP(min_lod, 0, hw_max_lod);
1402 samp.MaxLOD = CLAMP(state->max_lod, 0, hw_max_lod);
1403 samp.TextureLODBias = CLAMP(state->lod_bias, -16, 15);
1404
1405 /* .BorderColorPointer is filled in by iris_bind_sampler_states. */
1406 }
1407
1408 return cso;
1409 }
1410
1411 /**
1412 * The pipe->bind_sampler_states() driver hook.
1413 *
1414 * Now that we know all the sampler states, we upload them all into a
1415 * contiguous area of GPU memory, for 3DSTATE_SAMPLER_STATE_POINTERS_*.
1416 * We also fill out the border color state pointers at this point.
1417 *
1418 * We could defer this work to draw time, but we assume that binding
1419 * will be less frequent than drawing.
1420 */
1421 // XXX: this may be a bad idea, need to make sure that st/mesa calls us
1422 // XXX: with the complete set of shaders. If it makes multiple calls to
1423 // XXX: things one at a time, we could waste a lot of time assembling things.
1424 // XXX: it doesn't even BUY us anything to do it here, because we only flag
1425 // XXX: IRIS_DIRTY_SAMPLER_STATE when this is called...
1426 static void
1427 iris_bind_sampler_states(struct pipe_context *ctx,
1428 enum pipe_shader_type p_stage,
1429 unsigned start, unsigned count,
1430 void **states)
1431 {
1432 struct iris_context *ice = (struct iris_context *) ctx;
1433 gl_shader_stage stage = stage_from_pipe(p_stage);
1434 struct iris_shader_state *shs = &ice->state.shaders[stage];
1435
1436 assert(start + count <= IRIS_MAX_TEXTURE_SAMPLERS);
1437
1438 for (int i = 0; i < count; i++) {
1439 shs->samplers[start + i] = states[i];
1440 }
1441
1442 /* Assemble the SAMPLER_STATEs into a contiguous table that lives
1443 * in the dynamic state memory zone, so we can point to it via the
1444 * 3DSTATE_SAMPLER_STATE_POINTERS_* commands.
1445 */
1446 uint32_t *map =
1447 upload_state(ice->state.dynamic_uploader, &shs->sampler_table,
1448 count * 4 * GENX(SAMPLER_STATE_length), 32);
1449 if (unlikely(!map))
1450 return;
1451
1452 struct pipe_resource *res = shs->sampler_table.res;
1453 shs->sampler_table.offset +=
1454 iris_bo_offset_from_base_address(iris_resource_bo(res));
1455
1456 /* Make sure all land in the same BO */
1457 iris_border_color_pool_reserve(ice, IRIS_MAX_TEXTURE_SAMPLERS);
1458
1459 for (int i = 0; i < count; i++) {
1460 struct iris_sampler_state *state = shs->samplers[i];
1461
1462 if (!state) {
1463 memset(map, 0, 4 * GENX(SAMPLER_STATE_length));
1464 } else if (!state->needs_border_color) {
1465 memcpy(map, state->sampler_state, 4 * GENX(SAMPLER_STATE_length));
1466 } else {
1467 ice->state.need_border_colors = true;
1468
1469 /* Stream out the border color and merge the pointer. */
1470 uint32_t offset =
1471 iris_upload_border_color(ice, &state->border_color);
1472
1473 uint32_t dynamic[GENX(SAMPLER_STATE_length)];
1474 iris_pack_state(GENX(SAMPLER_STATE), dynamic, dyns) {
1475 dyns.BorderColorPointer = offset;
1476 }
1477
1478 for (uint32_t j = 0; j < GENX(SAMPLER_STATE_length); j++)
1479 map[j] = state->sampler_state[j] | dynamic[j];
1480 }
1481
1482 map += GENX(SAMPLER_STATE_length);
1483 }
1484
1485 ice->state.dirty |= IRIS_DIRTY_SAMPLER_STATES_VS << stage;
1486 }
1487
1488 static enum isl_channel_select
1489 fmt_swizzle(const struct iris_format_info *fmt, enum pipe_swizzle swz)
1490 {
1491 switch (swz) {
1492 case PIPE_SWIZZLE_X: return fmt->swizzle.r;
1493 case PIPE_SWIZZLE_Y: return fmt->swizzle.g;
1494 case PIPE_SWIZZLE_Z: return fmt->swizzle.b;
1495 case PIPE_SWIZZLE_W: return fmt->swizzle.a;
1496 case PIPE_SWIZZLE_1: return SCS_ONE;
1497 case PIPE_SWIZZLE_0: return SCS_ZERO;
1498 default: unreachable("invalid swizzle");
1499 }
1500 }
1501
1502 static void
1503 fill_buffer_surface_state(struct isl_device *isl_dev,
1504 struct iris_bo *bo,
1505 void *map,
1506 enum isl_format format,
1507 unsigned offset,
1508 unsigned size)
1509 {
1510 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
1511 const unsigned cpp = format == ISL_FORMAT_RAW ? 1 : fmtl->bpb / 8;
1512
1513 /* The ARB_texture_buffer_specification says:
1514 *
1515 * "The number of texels in the buffer texture's texel array is given by
1516 *
1517 * floor(<buffer_size> / (<components> * sizeof(<base_type>)),
1518 *
1519 * where <buffer_size> is the size of the buffer object, in basic
1520 * machine units and <components> and <base_type> are the element count
1521 * and base data type for elements, as specified in Table X.1. The
1522 * number of texels in the texel array is then clamped to the
1523 * implementation-dependent limit MAX_TEXTURE_BUFFER_SIZE_ARB."
1524 *
1525 * We need to clamp the size in bytes to MAX_TEXTURE_BUFFER_SIZE * stride,
1526 * so that when ISL divides by stride to obtain the number of texels, that
1527 * texel count is clamped to MAX_TEXTURE_BUFFER_SIZE.
1528 */
1529 unsigned final_size =
1530 MIN3(size, bo->size - offset, IRIS_MAX_TEXTURE_BUFFER_SIZE * cpp);
1531
1532 isl_buffer_fill_state(isl_dev, map,
1533 .address = bo->gtt_offset + offset,
1534 .size_B = final_size,
1535 .format = format,
1536 .stride_B = cpp,
1537 .mocs = mocs(bo));
1538 }
1539
1540 /**
1541 * Allocate a SURFACE_STATE structure.
1542 */
1543 static void *
1544 alloc_surface_states(struct u_upload_mgr *mgr,
1545 struct iris_state_ref *ref)
1546 {
1547 const unsigned surf_size = 4 * GENX(RENDER_SURFACE_STATE_length);
1548
1549 void *map = upload_state(mgr, ref, surf_size, 64);
1550
1551 ref->offset += iris_bo_offset_from_base_address(iris_resource_bo(ref->res));
1552
1553 return map;
1554 }
1555
1556 static void
1557 fill_surface_state(struct isl_device *isl_dev,
1558 void *map,
1559 struct iris_resource *res,
1560 struct isl_view *view)
1561 {
1562 struct isl_surf_fill_state_info f = {
1563 .surf = &res->surf,
1564 .view = view,
1565 .mocs = mocs(res->bo),
1566 .address = res->bo->gtt_offset,
1567 };
1568
1569 isl_surf_fill_state_s(isl_dev, map, &f);
1570 }
1571
1572 /**
1573 * The pipe->create_sampler_view() driver hook.
1574 */
1575 static struct pipe_sampler_view *
1576 iris_create_sampler_view(struct pipe_context *ctx,
1577 struct pipe_resource *tex,
1578 const struct pipe_sampler_view *tmpl)
1579 {
1580 struct iris_context *ice = (struct iris_context *) ctx;
1581 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1582 const struct gen_device_info *devinfo = &screen->devinfo;
1583 struct iris_sampler_view *isv = calloc(1, sizeof(struct iris_sampler_view));
1584
1585 if (!isv)
1586 return NULL;
1587
1588 /* initialize base object */
1589 isv->base = *tmpl;
1590 isv->base.context = ctx;
1591 isv->base.texture = NULL;
1592 pipe_reference_init(&isv->base.reference, 1);
1593 pipe_resource_reference(&isv->base.texture, tex);
1594
1595 void *map = alloc_surface_states(ice->state.surface_uploader,
1596 &isv->surface_state);
1597 if (!unlikely(map))
1598 return NULL;
1599
1600 if (util_format_is_depth_or_stencil(tmpl->format)) {
1601 struct iris_resource *zres, *sres;
1602 const struct util_format_description *desc =
1603 util_format_description(tmpl->format);
1604
1605 iris_get_depth_stencil_resources(tex, &zres, &sres);
1606
1607 tex = util_format_has_depth(desc) ? &zres->base : &sres->base;
1608 }
1609
1610 isv->res = (struct iris_resource *) tex;
1611
1612 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_TEXTURE_BIT;
1613
1614 if (isv->base.target == PIPE_TEXTURE_CUBE ||
1615 isv->base.target == PIPE_TEXTURE_CUBE_ARRAY)
1616 usage |= ISL_SURF_USAGE_CUBE_BIT;
1617
1618 const struct iris_format_info fmt =
1619 iris_format_for_usage(devinfo, tmpl->format, usage);
1620
1621 isv->view = (struct isl_view) {
1622 .format = fmt.fmt,
1623 .swizzle = (struct isl_swizzle) {
1624 .r = fmt_swizzle(&fmt, tmpl->swizzle_r),
1625 .g = fmt_swizzle(&fmt, tmpl->swizzle_g),
1626 .b = fmt_swizzle(&fmt, tmpl->swizzle_b),
1627 .a = fmt_swizzle(&fmt, tmpl->swizzle_a),
1628 },
1629 .usage = usage,
1630 };
1631
1632 /* Fill out SURFACE_STATE for this view. */
1633 if (tmpl->target != PIPE_BUFFER) {
1634 isv->view.base_level = tmpl->u.tex.first_level;
1635 isv->view.levels = tmpl->u.tex.last_level - tmpl->u.tex.first_level + 1;
1636 // XXX: do I need to port f9fd0cf4790cb2a530e75d1a2206dbb9d8af7cb2?
1637 isv->view.base_array_layer = tmpl->u.tex.first_layer;
1638 isv->view.array_len =
1639 tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
1640
1641 fill_surface_state(&screen->isl_dev, map, isv->res, &isv->view);
1642 } else {
1643 fill_buffer_surface_state(&screen->isl_dev, isv->res->bo, map,
1644 isv->view.format, tmpl->u.buf.offset,
1645 tmpl->u.buf.size);
1646 }
1647
1648 return &isv->base;
1649 }
1650
1651 static void
1652 iris_sampler_view_destroy(struct pipe_context *ctx,
1653 struct pipe_sampler_view *state)
1654 {
1655 struct iris_sampler_view *isv = (void *) state;
1656 pipe_resource_reference(&state->texture, NULL);
1657 pipe_resource_reference(&isv->surface_state.res, NULL);
1658 free(isv);
1659 }
1660
1661 /**
1662 * The pipe->create_surface() driver hook.
1663 *
1664 * In Gallium nomenclature, "surfaces" are a view of a resource that
1665 * can be bound as a render target or depth/stencil buffer.
1666 */
1667 static struct pipe_surface *
1668 iris_create_surface(struct pipe_context *ctx,
1669 struct pipe_resource *tex,
1670 const struct pipe_surface *tmpl)
1671 {
1672 struct iris_context *ice = (struct iris_context *) ctx;
1673 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1674 const struct gen_device_info *devinfo = &screen->devinfo;
1675 struct iris_surface *surf = calloc(1, sizeof(struct iris_surface));
1676 struct pipe_surface *psurf = &surf->base;
1677 struct iris_resource *res = (struct iris_resource *) tex;
1678
1679 if (!surf)
1680 return NULL;
1681
1682 pipe_reference_init(&psurf->reference, 1);
1683 pipe_resource_reference(&psurf->texture, tex);
1684 psurf->context = ctx;
1685 psurf->format = tmpl->format;
1686 psurf->width = tex->width0;
1687 psurf->height = tex->height0;
1688 psurf->texture = tex;
1689 psurf->u.tex.first_layer = tmpl->u.tex.first_layer;
1690 psurf->u.tex.last_layer = tmpl->u.tex.last_layer;
1691 psurf->u.tex.level = tmpl->u.tex.level;
1692
1693 isl_surf_usage_flags_t usage = 0;
1694 if (tmpl->writable)
1695 usage = ISL_SURF_USAGE_STORAGE_BIT;
1696 else if (util_format_is_depth_or_stencil(tmpl->format))
1697 usage = ISL_SURF_USAGE_DEPTH_BIT;
1698 else
1699 usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
1700
1701 const struct iris_format_info fmt =
1702 iris_format_for_usage(devinfo, psurf->format, usage);
1703
1704 if ((usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) &&
1705 !isl_format_supports_rendering(devinfo, fmt.fmt)) {
1706 /* Framebuffer validation will reject this invalid case, but it
1707 * hasn't had the opportunity yet. In the meantime, we need to
1708 * avoid hitting ISL asserts about unsupported formats below.
1709 */
1710 free(surf);
1711 return NULL;
1712 }
1713
1714 surf->view = (struct isl_view) {
1715 .format = fmt.fmt,
1716 .base_level = tmpl->u.tex.level,
1717 .levels = 1,
1718 .base_array_layer = tmpl->u.tex.first_layer,
1719 .array_len = tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1,
1720 .swizzle = ISL_SWIZZLE_IDENTITY,
1721 .usage = usage,
1722 };
1723
1724 /* Bail early for depth/stencil - we don't want SURFACE_STATE for them. */
1725 if (res->surf.usage & (ISL_SURF_USAGE_DEPTH_BIT |
1726 ISL_SURF_USAGE_STENCIL_BIT))
1727 return psurf;
1728
1729
1730 void *map = alloc_surface_states(ice->state.surface_uploader,
1731 &surf->surface_state);
1732 if (!unlikely(map))
1733 return NULL;
1734
1735 fill_surface_state(&screen->isl_dev, map, res, &surf->view);
1736
1737 return psurf;
1738 }
1739
1740 #if GEN_GEN < 9
1741 static void
1742 fill_default_image_param(struct brw_image_param *param)
1743 {
1744 memset(param, 0, sizeof(*param));
1745 /* Set the swizzling shifts to all-ones to effectively disable swizzling --
1746 * See emit_address_calculation() in brw_fs_surface_builder.cpp for a more
1747 * detailed explanation of these parameters.
1748 */
1749 param->swizzling[0] = 0xff;
1750 param->swizzling[1] = 0xff;
1751 }
1752
1753 static void
1754 fill_buffer_image_param(struct brw_image_param *param,
1755 enum pipe_format pfmt,
1756 unsigned size)
1757 {
1758 const unsigned cpp = util_format_get_blocksize(pfmt);
1759
1760 fill_default_image_param(param);
1761 param->size[0] = size / cpp;
1762 param->stride[0] = cpp;
1763 }
1764 #else
1765 #define isl_surf_fill_image_param(x, ...)
1766 #define fill_default_image_param(x, ...)
1767 #define fill_buffer_image_param(x, ...)
1768 #endif
1769
1770 /**
1771 * The pipe->set_shader_images() driver hook.
1772 */
1773 static void
1774 iris_set_shader_images(struct pipe_context *ctx,
1775 enum pipe_shader_type p_stage,
1776 unsigned start_slot, unsigned count,
1777 const struct pipe_image_view *p_images)
1778 {
1779 struct iris_context *ice = (struct iris_context *) ctx;
1780 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1781 const struct gen_device_info *devinfo = &screen->devinfo;
1782 gl_shader_stage stage = stage_from_pipe(p_stage);
1783 struct iris_shader_state *shs = &ice->state.shaders[stage];
1784
1785 shs->bound_image_views &= ~u_bit_consecutive(start_slot, count);
1786
1787 for (unsigned i = 0; i < count; i++) {
1788 if (p_images && p_images[i].resource) {
1789 const struct pipe_image_view *img = &p_images[i];
1790 struct iris_resource *res = (void *) img->resource;
1791 pipe_resource_reference(&shs->image[start_slot + i].res, &res->base);
1792
1793 shs->bound_image_views |= 1 << (start_slot + i);
1794
1795 res->bind_history |= PIPE_BIND_SHADER_IMAGE;
1796
1797 // XXX: these are not retained forever, use a separate uploader?
1798 void *map =
1799 alloc_surface_states(ice->state.surface_uploader,
1800 &shs->image[start_slot + i].surface_state);
1801 if (!unlikely(map)) {
1802 pipe_resource_reference(&shs->image[start_slot + i].res, NULL);
1803 return;
1804 }
1805
1806 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_STORAGE_BIT;
1807 enum isl_format isl_fmt =
1808 iris_format_for_usage(devinfo, img->format, usage).fmt;
1809
1810 bool untyped_fallback = false;
1811
1812 if (img->shader_access & PIPE_IMAGE_ACCESS_READ) {
1813 /* On Gen8, try to use typed surfaces reads (which support a
1814 * limited number of formats), and if not possible, fall back
1815 * to untyped reads.
1816 */
1817 untyped_fallback = GEN_GEN == 8 &&
1818 !isl_has_matching_typed_storage_image_format(devinfo, isl_fmt);
1819
1820 if (untyped_fallback)
1821 isl_fmt = ISL_FORMAT_RAW;
1822 else
1823 isl_fmt = isl_lower_storage_image_format(devinfo, isl_fmt);
1824 }
1825
1826 shs->image[start_slot + i].access = img->shader_access;
1827
1828 if (res->base.target != PIPE_BUFFER) {
1829 struct isl_view view = {
1830 .format = isl_fmt,
1831 .base_level = img->u.tex.level,
1832 .levels = 1,
1833 .base_array_layer = img->u.tex.first_layer,
1834 .array_len = img->u.tex.last_layer - img->u.tex.first_layer + 1,
1835 .swizzle = ISL_SWIZZLE_IDENTITY,
1836 .usage = usage,
1837 };
1838
1839 if (untyped_fallback) {
1840 fill_buffer_surface_state(&screen->isl_dev, res->bo, map,
1841 isl_fmt, 0, res->bo->size);
1842 } else {
1843 fill_surface_state(&screen->isl_dev, map, res, &view);
1844 }
1845
1846 isl_surf_fill_image_param(&screen->isl_dev,
1847 &shs->image[start_slot + i].param,
1848 &res->surf, &view);
1849 } else {
1850 fill_buffer_surface_state(&screen->isl_dev, res->bo, map,
1851 isl_fmt, img->u.buf.offset,
1852 img->u.buf.size);
1853 fill_buffer_image_param(&shs->image[start_slot + i].param,
1854 img->format, img->u.buf.size);
1855 }
1856 } else {
1857 pipe_resource_reference(&shs->image[start_slot + i].res, NULL);
1858 pipe_resource_reference(&shs->image[start_slot + i].surface_state.res,
1859 NULL);
1860 fill_default_image_param(&shs->image[start_slot + i].param);
1861 }
1862 }
1863
1864 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
1865
1866 /* Broadwell also needs brw_image_params re-uploaded */
1867 if (GEN_GEN < 9) {
1868 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
1869 shs->cbuf0_needs_upload = true;
1870 }
1871 }
1872
1873
1874 /**
1875 * The pipe->set_sampler_views() driver hook.
1876 */
1877 static void
1878 iris_set_sampler_views(struct pipe_context *ctx,
1879 enum pipe_shader_type p_stage,
1880 unsigned start, unsigned count,
1881 struct pipe_sampler_view **views)
1882 {
1883 struct iris_context *ice = (struct iris_context *) ctx;
1884 gl_shader_stage stage = stage_from_pipe(p_stage);
1885 struct iris_shader_state *shs = &ice->state.shaders[stage];
1886
1887 shs->bound_sampler_views &= ~u_bit_consecutive(start, count);
1888
1889 for (unsigned i = 0; i < count; i++) {
1890 pipe_sampler_view_reference((struct pipe_sampler_view **)
1891 &shs->textures[start + i], views[i]);
1892 struct iris_sampler_view *view = (void *) views[i];
1893 if (view) {
1894 view->res->bind_history |= PIPE_BIND_SAMPLER_VIEW;
1895 shs->bound_sampler_views |= 1 << (start + i);
1896 }
1897 }
1898
1899 ice->state.dirty |= (IRIS_DIRTY_BINDINGS_VS << stage);
1900 }
1901
1902 /**
1903 * The pipe->set_tess_state() driver hook.
1904 */
1905 static void
1906 iris_set_tess_state(struct pipe_context *ctx,
1907 const float default_outer_level[4],
1908 const float default_inner_level[2])
1909 {
1910 struct iris_context *ice = (struct iris_context *) ctx;
1911
1912 memcpy(&ice->state.default_outer_level[0], &default_outer_level[0], 4 * sizeof(float));
1913 memcpy(&ice->state.default_inner_level[0], &default_inner_level[0], 2 * sizeof(float));
1914
1915 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_TCS;
1916 }
1917
1918 static void
1919 iris_surface_destroy(struct pipe_context *ctx, struct pipe_surface *p_surf)
1920 {
1921 struct iris_surface *surf = (void *) p_surf;
1922 pipe_resource_reference(&p_surf->texture, NULL);
1923 pipe_resource_reference(&surf->surface_state.res, NULL);
1924 free(surf);
1925 }
1926
1927 static void
1928 iris_set_clip_state(struct pipe_context *ctx,
1929 const struct pipe_clip_state *state)
1930 {
1931 struct iris_context *ice = (struct iris_context *) ctx;
1932 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_VERTEX];
1933
1934 memcpy(&ice->state.clip_planes, state, sizeof(*state));
1935
1936 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS;
1937 shs->cbuf0_needs_upload = true;
1938 }
1939
1940 /**
1941 * The pipe->set_polygon_stipple() driver hook.
1942 */
1943 static void
1944 iris_set_polygon_stipple(struct pipe_context *ctx,
1945 const struct pipe_poly_stipple *state)
1946 {
1947 struct iris_context *ice = (struct iris_context *) ctx;
1948 memcpy(&ice->state.poly_stipple, state, sizeof(*state));
1949 ice->state.dirty |= IRIS_DIRTY_POLYGON_STIPPLE;
1950 }
1951
1952 /**
1953 * The pipe->set_sample_mask() driver hook.
1954 */
1955 static void
1956 iris_set_sample_mask(struct pipe_context *ctx, unsigned sample_mask)
1957 {
1958 struct iris_context *ice = (struct iris_context *) ctx;
1959
1960 /* We only support 16x MSAA, so we have 16 bits of sample maks.
1961 * st/mesa may pass us 0xffffffff though, meaning "enable all samples".
1962 */
1963 ice->state.sample_mask = sample_mask & 0xffff;
1964 ice->state.dirty |= IRIS_DIRTY_SAMPLE_MASK;
1965 }
1966
1967 /**
1968 * The pipe->set_scissor_states() driver hook.
1969 *
1970 * This corresponds to our SCISSOR_RECT state structures. It's an
1971 * exact match, so we just store them, and memcpy them out later.
1972 */
1973 static void
1974 iris_set_scissor_states(struct pipe_context *ctx,
1975 unsigned start_slot,
1976 unsigned num_scissors,
1977 const struct pipe_scissor_state *rects)
1978 {
1979 struct iris_context *ice = (struct iris_context *) ctx;
1980
1981 for (unsigned i = 0; i < num_scissors; i++) {
1982 if (rects[i].minx == rects[i].maxx || rects[i].miny == rects[i].maxy) {
1983 /* If the scissor was out of bounds and got clamped to 0 width/height
1984 * at the bounds, the subtraction of 1 from maximums could produce a
1985 * negative number and thus not clip anything. Instead, just provide
1986 * a min > max scissor inside the bounds, which produces the expected
1987 * no rendering.
1988 */
1989 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
1990 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
1991 };
1992 } else {
1993 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
1994 .minx = rects[i].minx, .miny = rects[i].miny,
1995 .maxx = rects[i].maxx - 1, .maxy = rects[i].maxy - 1,
1996 };
1997 }
1998 }
1999
2000 ice->state.dirty |= IRIS_DIRTY_SCISSOR_RECT;
2001 }
2002
2003 /**
2004 * The pipe->set_stencil_ref() driver hook.
2005 *
2006 * This is added to 3DSTATE_WM_DEPTH_STENCIL dynamically at draw time.
2007 */
2008 static void
2009 iris_set_stencil_ref(struct pipe_context *ctx,
2010 const struct pipe_stencil_ref *state)
2011 {
2012 struct iris_context *ice = (struct iris_context *) ctx;
2013 memcpy(&ice->state.stencil_ref, state, sizeof(*state));
2014 if (GEN_GEN == 8)
2015 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
2016 else
2017 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
2018 }
2019
2020 static float
2021 viewport_extent(const struct pipe_viewport_state *state, int axis, float sign)
2022 {
2023 return copysignf(state->scale[axis], sign) + state->translate[axis];
2024 }
2025
2026 static void
2027 calculate_guardband_size(uint32_t fb_width, uint32_t fb_height,
2028 float m00, float m11, float m30, float m31,
2029 float *xmin, float *xmax,
2030 float *ymin, float *ymax)
2031 {
2032 /* According to the "Vertex X,Y Clamping and Quantization" section of the
2033 * Strips and Fans documentation:
2034 *
2035 * "The vertex X and Y screen-space coordinates are also /clamped/ to the
2036 * fixed-point "guardband" range supported by the rasterization hardware"
2037 *
2038 * and
2039 *
2040 * "In almost all circumstances, if an object’s vertices are actually
2041 * modified by this clamping (i.e., had X or Y coordinates outside of
2042 * the guardband extent the rendered object will not match the intended
2043 * result. Therefore software should take steps to ensure that this does
2044 * not happen - e.g., by clipping objects such that they do not exceed
2045 * these limits after the Drawing Rectangle is applied."
2046 *
2047 * I believe the fundamental restriction is that the rasterizer (in
2048 * the SF/WM stages) have a limit on the number of pixels that can be
2049 * rasterized. We need to ensure any coordinates beyond the rasterizer
2050 * limit are handled by the clipper. So effectively that limit becomes
2051 * the clipper's guardband size.
2052 *
2053 * It goes on to say:
2054 *
2055 * "In addition, in order to be correctly rendered, objects must have a
2056 * screenspace bounding box not exceeding 8K in the X or Y direction.
2057 * This additional restriction must also be comprehended by software,
2058 * i.e., enforced by use of clipping."
2059 *
2060 * This makes no sense. Gen7+ hardware supports 16K render targets,
2061 * and you definitely need to be able to draw polygons that fill the
2062 * surface. Our assumption is that the rasterizer was limited to 8K
2063 * on Sandybridge, which only supports 8K surfaces, and it was actually
2064 * increased to 16K on Ivybridge and later.
2065 *
2066 * So, limit the guardband to 16K on Gen7+ and 8K on Sandybridge.
2067 */
2068 const float gb_size = GEN_GEN >= 7 ? 16384.0f : 8192.0f;
2069
2070 if (m00 != 0 && m11 != 0) {
2071 /* First, we compute the screen-space render area */
2072 const float ss_ra_xmin = MIN3( 0, m30 + m00, m30 - m00);
2073 const float ss_ra_xmax = MAX3( fb_width, m30 + m00, m30 - m00);
2074 const float ss_ra_ymin = MIN3( 0, m31 + m11, m31 - m11);
2075 const float ss_ra_ymax = MAX3(fb_height, m31 + m11, m31 - m11);
2076
2077 /* We want the guardband to be centered on that */
2078 const float ss_gb_xmin = (ss_ra_xmin + ss_ra_xmax) / 2 - gb_size;
2079 const float ss_gb_xmax = (ss_ra_xmin + ss_ra_xmax) / 2 + gb_size;
2080 const float ss_gb_ymin = (ss_ra_ymin + ss_ra_ymax) / 2 - gb_size;
2081 const float ss_gb_ymax = (ss_ra_ymin + ss_ra_ymax) / 2 + gb_size;
2082
2083 /* Now we need it in native device coordinates */
2084 const float ndc_gb_xmin = (ss_gb_xmin - m30) / m00;
2085 const float ndc_gb_xmax = (ss_gb_xmax - m30) / m00;
2086 const float ndc_gb_ymin = (ss_gb_ymin - m31) / m11;
2087 const float ndc_gb_ymax = (ss_gb_ymax - m31) / m11;
2088
2089 /* Thanks to Y-flipping and ORIGIN_UPPER_LEFT, the Y coordinates may be
2090 * flipped upside-down. X should be fine though.
2091 */
2092 assert(ndc_gb_xmin <= ndc_gb_xmax);
2093 *xmin = ndc_gb_xmin;
2094 *xmax = ndc_gb_xmax;
2095 *ymin = MIN2(ndc_gb_ymin, ndc_gb_ymax);
2096 *ymax = MAX2(ndc_gb_ymin, ndc_gb_ymax);
2097 } else {
2098 /* The viewport scales to 0, so nothing will be rendered. */
2099 *xmin = 0.0f;
2100 *xmax = 0.0f;
2101 *ymin = 0.0f;
2102 *ymax = 0.0f;
2103 }
2104 }
2105
2106 /**
2107 * The pipe->set_viewport_states() driver hook.
2108 *
2109 * This corresponds to our SF_CLIP_VIEWPORT states. We can't calculate
2110 * the guardband yet, as we need the framebuffer dimensions, but we can
2111 * at least fill out the rest.
2112 */
2113 static void
2114 iris_set_viewport_states(struct pipe_context *ctx,
2115 unsigned start_slot,
2116 unsigned count,
2117 const struct pipe_viewport_state *states)
2118 {
2119 struct iris_context *ice = (struct iris_context *) ctx;
2120
2121 memcpy(&ice->state.viewports[start_slot], states, sizeof(*states) * count);
2122
2123 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2124
2125 if (ice->state.cso_rast && (!ice->state.cso_rast->depth_clip_near ||
2126 !ice->state.cso_rast->depth_clip_far))
2127 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
2128 }
2129
2130 /**
2131 * The pipe->set_framebuffer_state() driver hook.
2132 *
2133 * Sets the current draw FBO, including color render targets, depth,
2134 * and stencil buffers.
2135 */
2136 static void
2137 iris_set_framebuffer_state(struct pipe_context *ctx,
2138 const struct pipe_framebuffer_state *state)
2139 {
2140 struct iris_context *ice = (struct iris_context *) ctx;
2141 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2142 struct isl_device *isl_dev = &screen->isl_dev;
2143 struct pipe_framebuffer_state *cso = &ice->state.framebuffer;
2144 struct iris_resource *zres;
2145 struct iris_resource *stencil_res;
2146
2147 unsigned samples = util_framebuffer_get_num_samples(state);
2148 unsigned layers = util_framebuffer_get_num_layers(state);
2149
2150 if (cso->samples != samples) {
2151 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
2152 }
2153
2154 if (cso->nr_cbufs != state->nr_cbufs) {
2155 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
2156 }
2157
2158 if ((cso->layers == 0) != (layers == 0)) {
2159 ice->state.dirty |= IRIS_DIRTY_CLIP;
2160 }
2161
2162 if (cso->width != state->width || cso->height != state->height) {
2163 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2164 }
2165
2166 util_copy_framebuffer_state(cso, state);
2167 cso->samples = samples;
2168 cso->layers = layers;
2169
2170 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
2171
2172 struct isl_view view = {
2173 .base_level = 0,
2174 .levels = 1,
2175 .base_array_layer = 0,
2176 .array_len = 1,
2177 .swizzle = ISL_SWIZZLE_IDENTITY,
2178 };
2179
2180 struct isl_depth_stencil_hiz_emit_info info = { .view = &view };
2181
2182 if (cso->zsbuf) {
2183 iris_get_depth_stencil_resources(cso->zsbuf->texture, &zres,
2184 &stencil_res);
2185
2186 view.base_level = cso->zsbuf->u.tex.level;
2187 view.base_array_layer = cso->zsbuf->u.tex.first_layer;
2188 view.array_len =
2189 cso->zsbuf->u.tex.last_layer - cso->zsbuf->u.tex.first_layer + 1;
2190
2191 if (zres) {
2192 view.usage |= ISL_SURF_USAGE_DEPTH_BIT;
2193
2194 info.depth_surf = &zres->surf;
2195 info.depth_address = zres->bo->gtt_offset;
2196 info.mocs = mocs(zres->bo);
2197
2198 view.format = zres->surf.format;
2199 }
2200
2201 if (stencil_res) {
2202 view.usage |= ISL_SURF_USAGE_STENCIL_BIT;
2203 info.stencil_surf = &stencil_res->surf;
2204 info.stencil_address = stencil_res->bo->gtt_offset;
2205 if (!zres) {
2206 view.format = stencil_res->surf.format;
2207 info.mocs = mocs(stencil_res->bo);
2208 }
2209 }
2210 }
2211
2212 isl_emit_depth_stencil_hiz_s(isl_dev, cso_z->packets, &info);
2213
2214 /* Make a null surface for unbound buffers */
2215 void *null_surf_map =
2216 upload_state(ice->state.surface_uploader, &ice->state.null_fb,
2217 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2218 isl_null_fill_state(&screen->isl_dev, null_surf_map,
2219 isl_extent3d(MAX2(cso->width, 1),
2220 MAX2(cso->height, 1),
2221 cso->layers ? cso->layers : 1));
2222 ice->state.null_fb.offset +=
2223 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.null_fb.res));
2224
2225 ice->state.dirty |= IRIS_DIRTY_DEPTH_BUFFER;
2226
2227 /* Render target change */
2228 ice->state.dirty |= IRIS_DIRTY_BINDINGS_FS;
2229
2230 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_FRAMEBUFFER];
2231
2232 #if GEN_GEN == 11
2233 // XXX: we may want to flag IRIS_DIRTY_MULTISAMPLE (or SAMPLE_MASK?)
2234 // XXX: see commit 979fc1bc9bcc64027ff2cfafd285676f31b930a6
2235
2236 /* The PIPE_CONTROL command description says:
2237 *
2238 * "Whenever a Binding Table Index (BTI) used by a Render Target Message
2239 * points to a different RENDER_SURFACE_STATE, SW must issue a Render
2240 * Target Cache Flush by enabling this bit. When render target flush
2241 * is set due to new association of BTI, PS Scoreboard Stall bit must
2242 * be set in this packet."
2243 */
2244 // XXX: does this need to happen at 3DSTATE_BTP_PS time?
2245 iris_emit_pipe_control_flush(&ice->batches[IRIS_BATCH_RENDER],
2246 PIPE_CONTROL_RENDER_TARGET_FLUSH |
2247 PIPE_CONTROL_STALL_AT_SCOREBOARD);
2248 #endif
2249 }
2250
2251 static void
2252 upload_ubo_surf_state(struct iris_context *ice,
2253 struct iris_const_buffer *cbuf,
2254 unsigned buffer_size)
2255 {
2256 struct pipe_context *ctx = &ice->ctx;
2257 struct iris_screen *screen = (struct iris_screen *) ctx->screen;
2258
2259 // XXX: these are not retained forever, use a separate uploader?
2260 void *map =
2261 upload_state(ice->state.surface_uploader, &cbuf->surface_state,
2262 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2263 if (!unlikely(map)) {
2264 pipe_resource_reference(&cbuf->data.res, NULL);
2265 return;
2266 }
2267
2268 struct iris_resource *res = (void *) cbuf->data.res;
2269 struct iris_bo *surf_bo = iris_resource_bo(cbuf->surface_state.res);
2270 cbuf->surface_state.offset += iris_bo_offset_from_base_address(surf_bo);
2271
2272 isl_buffer_fill_state(&screen->isl_dev, map,
2273 .address = res->bo->gtt_offset + cbuf->data.offset,
2274 .size_B = MIN2(buffer_size,
2275 res->bo->size - cbuf->data.offset),
2276 .format = ISL_FORMAT_R32G32B32A32_FLOAT,
2277 .stride_B = 1,
2278 .mocs = mocs(res->bo))
2279 }
2280
2281 /**
2282 * The pipe->set_constant_buffer() driver hook.
2283 *
2284 * This uploads any constant data in user buffers, and references
2285 * any UBO resources containing constant data.
2286 */
2287 static void
2288 iris_set_constant_buffer(struct pipe_context *ctx,
2289 enum pipe_shader_type p_stage, unsigned index,
2290 const struct pipe_constant_buffer *input)
2291 {
2292 struct iris_context *ice = (struct iris_context *) ctx;
2293 gl_shader_stage stage = stage_from_pipe(p_stage);
2294 struct iris_shader_state *shs = &ice->state.shaders[stage];
2295 struct iris_const_buffer *cbuf = &shs->constbuf[index];
2296
2297 if (input && input->buffer) {
2298 assert(index > 0);
2299
2300 pipe_resource_reference(&cbuf->data.res, input->buffer);
2301 cbuf->data.offset = input->buffer_offset;
2302
2303 struct iris_resource *res = (void *) cbuf->data.res;
2304 res->bind_history |= PIPE_BIND_CONSTANT_BUFFER;
2305
2306 upload_ubo_surf_state(ice, cbuf, input->buffer_size);
2307 } else {
2308 pipe_resource_reference(&cbuf->data.res, NULL);
2309 pipe_resource_reference(&cbuf->surface_state.res, NULL);
2310 }
2311
2312 if (index == 0) {
2313 if (input)
2314 memcpy(&shs->cbuf0, input, sizeof(shs->cbuf0));
2315 else
2316 memset(&shs->cbuf0, 0, sizeof(shs->cbuf0));
2317
2318 shs->cbuf0_needs_upload = true;
2319 }
2320
2321 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
2322 // XXX: maybe not necessary all the time...?
2323 // XXX: we need 3DS_BTP to commit these changes, and if we fell back to
2324 // XXX: pull model we may need actual new bindings...
2325 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2326 }
2327
2328 static void
2329 upload_uniforms(struct iris_context *ice,
2330 gl_shader_stage stage)
2331 {
2332 struct iris_shader_state *shs = &ice->state.shaders[stage];
2333 struct iris_const_buffer *cbuf = &shs->constbuf[0];
2334 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
2335
2336 unsigned upload_size = shader->num_system_values * sizeof(uint32_t) +
2337 shs->cbuf0.buffer_size;
2338
2339 if (upload_size == 0)
2340 return;
2341
2342 uint32_t *map =
2343 upload_state(ice->ctx.const_uploader, &cbuf->data, upload_size, 64);
2344
2345 for (int i = 0; i < shader->num_system_values; i++) {
2346 uint32_t sysval = shader->system_values[i];
2347 uint32_t value = 0;
2348
2349 if (BRW_PARAM_DOMAIN(sysval) == BRW_PARAM_DOMAIN_IMAGE) {
2350 unsigned img = BRW_PARAM_IMAGE_IDX(sysval);
2351 unsigned offset = BRW_PARAM_IMAGE_OFFSET(sysval);
2352 struct brw_image_param *param = &shs->image[img].param;
2353
2354 assert(offset < sizeof(struct brw_image_param));
2355 value = ((uint32_t *) param)[offset];
2356 } else if (sysval == BRW_PARAM_BUILTIN_ZERO) {
2357 value = 0;
2358 } else if (BRW_PARAM_BUILTIN_IS_CLIP_PLANE(sysval)) {
2359 int plane = BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(sysval);
2360 int comp = BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(sysval);
2361 value = fui(ice->state.clip_planes.ucp[plane][comp]);
2362 } else if (sysval == BRW_PARAM_BUILTIN_PATCH_VERTICES_IN) {
2363 if (stage == MESA_SHADER_TESS_CTRL) {
2364 value = ice->state.vertices_per_patch;
2365 } else {
2366 assert(stage == MESA_SHADER_TESS_EVAL);
2367 const struct shader_info *tcs_info =
2368 iris_get_shader_info(ice, MESA_SHADER_TESS_CTRL);
2369 assert(tcs_info);
2370
2371 value = tcs_info->tess.tcs_vertices_out;
2372 }
2373 } else {
2374 assert(!"unhandled system value");
2375 }
2376
2377 *map++ = value;
2378 }
2379
2380 if (shs->cbuf0.user_buffer) {
2381 memcpy(map, shs->cbuf0.user_buffer, shs->cbuf0.buffer_size);
2382 }
2383
2384 upload_ubo_surf_state(ice, cbuf, upload_size);
2385 }
2386
2387 /**
2388 * The pipe->set_shader_buffers() driver hook.
2389 *
2390 * This binds SSBOs and ABOs. Unfortunately, we need to stream out
2391 * SURFACE_STATE here, as the buffer offset may change each time.
2392 */
2393 static void
2394 iris_set_shader_buffers(struct pipe_context *ctx,
2395 enum pipe_shader_type p_stage,
2396 unsigned start_slot, unsigned count,
2397 const struct pipe_shader_buffer *buffers)
2398 {
2399 struct iris_context *ice = (struct iris_context *) ctx;
2400 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2401 gl_shader_stage stage = stage_from_pipe(p_stage);
2402 struct iris_shader_state *shs = &ice->state.shaders[stage];
2403
2404 for (unsigned i = 0; i < count; i++) {
2405 if (buffers && buffers[i].buffer) {
2406 const struct pipe_shader_buffer *buffer = &buffers[i];
2407 struct iris_resource *res = (void *) buffer->buffer;
2408 pipe_resource_reference(&shs->ssbo[start_slot + i], &res->base);
2409
2410 res->bind_history |= PIPE_BIND_SHADER_BUFFER;
2411
2412 // XXX: these are not retained forever, use a separate uploader?
2413 void *map =
2414 upload_state(ice->state.surface_uploader,
2415 &shs->ssbo_surface_state[start_slot + i],
2416 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2417 if (!unlikely(map)) {
2418 pipe_resource_reference(&shs->ssbo[start_slot + i], NULL);
2419 return;
2420 }
2421
2422 struct iris_bo *surf_state_bo =
2423 iris_resource_bo(shs->ssbo_surface_state[start_slot + i].res);
2424 shs->ssbo_surface_state[start_slot + i].offset +=
2425 iris_bo_offset_from_base_address(surf_state_bo);
2426
2427 isl_buffer_fill_state(&screen->isl_dev, map,
2428 .address =
2429 res->bo->gtt_offset + buffer->buffer_offset,
2430 .size_B =
2431 MIN2(buffer->buffer_size,
2432 res->bo->size - buffer->buffer_offset),
2433 .format = ISL_FORMAT_RAW,
2434 .stride_B = 1,
2435 .mocs = mocs(res->bo));
2436 } else {
2437 pipe_resource_reference(&shs->ssbo[start_slot + i], NULL);
2438 pipe_resource_reference(&shs->ssbo_surface_state[start_slot + i].res,
2439 NULL);
2440 }
2441 }
2442
2443 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2444 }
2445
2446 static void
2447 iris_delete_state(struct pipe_context *ctx, void *state)
2448 {
2449 free(state);
2450 }
2451
2452 /**
2453 * The pipe->set_vertex_buffers() driver hook.
2454 *
2455 * This translates pipe_vertex_buffer to our 3DSTATE_VERTEX_BUFFERS packet.
2456 */
2457 static void
2458 iris_set_vertex_buffers(struct pipe_context *ctx,
2459 unsigned start_slot, unsigned count,
2460 const struct pipe_vertex_buffer *buffers)
2461 {
2462 struct iris_context *ice = (struct iris_context *) ctx;
2463 struct iris_genx_state *genx = ice->state.genx;
2464
2465 ice->state.bound_vertex_buffers &= ~u_bit_consecutive64(start_slot, count);
2466
2467 for (unsigned i = 0; i < count; i++) {
2468 const struct pipe_vertex_buffer *buffer = buffers ? &buffers[i] : NULL;
2469 struct iris_vertex_buffer_state *state =
2470 &genx->vertex_buffers[start_slot + i];
2471
2472 if (!buffer) {
2473 pipe_resource_reference(&state->resource, NULL);
2474 continue;
2475 }
2476
2477 assert(!buffer->is_user_buffer);
2478
2479 ice->state.bound_vertex_buffers |= 1ull << (start_slot + i);
2480
2481 pipe_resource_reference(&state->resource, buffer->buffer.resource);
2482 struct iris_resource *res = (void *) state->resource;
2483
2484 if (res)
2485 res->bind_history |= PIPE_BIND_VERTEX_BUFFER;
2486
2487 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
2488 vb.VertexBufferIndex = start_slot + i;
2489 vb.AddressModifyEnable = true;
2490 vb.BufferPitch = buffer->stride;
2491 if (res) {
2492 vb.BufferSize = res->bo->size;
2493 vb.BufferStartingAddress =
2494 ro_bo(NULL, res->bo->gtt_offset + (int) buffer->buffer_offset);
2495 vb.MOCS = mocs(res->bo);
2496 } else {
2497 vb.NullVertexBuffer = true;
2498 }
2499 }
2500 }
2501
2502 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
2503 }
2504
2505 /**
2506 * Gallium CSO for vertex elements.
2507 */
2508 struct iris_vertex_element_state {
2509 uint32_t vertex_elements[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
2510 uint32_t vf_instancing[33 * GENX(3DSTATE_VF_INSTANCING_length)];
2511 unsigned count;
2512 };
2513
2514 /**
2515 * The pipe->create_vertex_elements() driver hook.
2516 *
2517 * This translates pipe_vertex_element to our 3DSTATE_VERTEX_ELEMENTS
2518 * and 3DSTATE_VF_INSTANCING commands. SGVs are handled at draw time.
2519 */
2520 static void *
2521 iris_create_vertex_elements(struct pipe_context *ctx,
2522 unsigned count,
2523 const struct pipe_vertex_element *state)
2524 {
2525 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2526 const struct gen_device_info *devinfo = &screen->devinfo;
2527 struct iris_vertex_element_state *cso =
2528 malloc(sizeof(struct iris_vertex_element_state));
2529
2530 cso->count = count;
2531
2532 /* TODO:
2533 * - create edge flag one
2534 * - create SGV ones
2535 * - if those are necessary, use count + 1/2/3... OR in the length
2536 */
2537 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS), cso->vertex_elements, ve) {
2538 ve.DWordLength =
2539 1 + GENX(VERTEX_ELEMENT_STATE_length) * MAX2(count, 1) - 2;
2540 }
2541
2542 uint32_t *ve_pack_dest = &cso->vertex_elements[1];
2543 uint32_t *vfi_pack_dest = cso->vf_instancing;
2544
2545 if (count == 0) {
2546 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
2547 ve.Valid = true;
2548 ve.SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT;
2549 ve.Component0Control = VFCOMP_STORE_0;
2550 ve.Component1Control = VFCOMP_STORE_0;
2551 ve.Component2Control = VFCOMP_STORE_0;
2552 ve.Component3Control = VFCOMP_STORE_1_FP;
2553 }
2554
2555 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
2556 }
2557 }
2558
2559 for (int i = 0; i < count; i++) {
2560 const struct iris_format_info fmt =
2561 iris_format_for_usage(devinfo, state[i].src_format, 0);
2562 unsigned comp[4] = { VFCOMP_STORE_SRC, VFCOMP_STORE_SRC,
2563 VFCOMP_STORE_SRC, VFCOMP_STORE_SRC };
2564
2565 switch (isl_format_get_num_channels(fmt.fmt)) {
2566 case 0: comp[0] = VFCOMP_STORE_0;
2567 case 1: comp[1] = VFCOMP_STORE_0;
2568 case 2: comp[2] = VFCOMP_STORE_0;
2569 case 3:
2570 comp[3] = isl_format_has_int_channel(fmt.fmt) ? VFCOMP_STORE_1_INT
2571 : VFCOMP_STORE_1_FP;
2572 break;
2573 }
2574 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
2575 ve.VertexBufferIndex = state[i].vertex_buffer_index;
2576 ve.Valid = true;
2577 ve.SourceElementOffset = state[i].src_offset;
2578 ve.SourceElementFormat = fmt.fmt;
2579 ve.Component0Control = comp[0];
2580 ve.Component1Control = comp[1];
2581 ve.Component2Control = comp[2];
2582 ve.Component3Control = comp[3];
2583 }
2584
2585 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
2586 vi.VertexElementIndex = i;
2587 vi.InstancingEnable = state[i].instance_divisor > 0;
2588 vi.InstanceDataStepRate = state[i].instance_divisor;
2589 }
2590
2591 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
2592 vfi_pack_dest += GENX(3DSTATE_VF_INSTANCING_length);
2593 }
2594
2595 return cso;
2596 }
2597
2598 /**
2599 * The pipe->bind_vertex_elements_state() driver hook.
2600 */
2601 static void
2602 iris_bind_vertex_elements_state(struct pipe_context *ctx, void *state)
2603 {
2604 struct iris_context *ice = (struct iris_context *) ctx;
2605 struct iris_vertex_element_state *old_cso = ice->state.cso_vertex_elements;
2606 struct iris_vertex_element_state *new_cso = state;
2607
2608 /* 3DSTATE_VF_SGVs overrides the last VE, so if the count is changing,
2609 * we need to re-emit it to ensure we're overriding the right one.
2610 */
2611 if (new_cso && cso_changed(count))
2612 ice->state.dirty |= IRIS_DIRTY_VF_SGVS;
2613
2614 ice->state.cso_vertex_elements = state;
2615 ice->state.dirty |= IRIS_DIRTY_VERTEX_ELEMENTS;
2616 }
2617
2618 /**
2619 * The pipe->create_stream_output_target() driver hook.
2620 *
2621 * "Target" here refers to a destination buffer. We translate this into
2622 * a 3DSTATE_SO_BUFFER packet. We can handle most fields, but don't yet
2623 * know which buffer this represents, or whether we ought to zero the
2624 * write-offsets, or append. Those are handled in the set() hook.
2625 */
2626 static struct pipe_stream_output_target *
2627 iris_create_stream_output_target(struct pipe_context *ctx,
2628 struct pipe_resource *p_res,
2629 unsigned buffer_offset,
2630 unsigned buffer_size)
2631 {
2632 struct iris_resource *res = (void *) p_res;
2633 struct iris_stream_output_target *cso = calloc(1, sizeof(*cso));
2634 if (!cso)
2635 return NULL;
2636
2637 res->bind_history |= PIPE_BIND_STREAM_OUTPUT;
2638
2639 pipe_reference_init(&cso->base.reference, 1);
2640 pipe_resource_reference(&cso->base.buffer, p_res);
2641 cso->base.buffer_offset = buffer_offset;
2642 cso->base.buffer_size = buffer_size;
2643 cso->base.context = ctx;
2644
2645 upload_state(ctx->stream_uploader, &cso->offset, sizeof(uint32_t), 4);
2646
2647 return &cso->base;
2648 }
2649
2650 static void
2651 iris_stream_output_target_destroy(struct pipe_context *ctx,
2652 struct pipe_stream_output_target *state)
2653 {
2654 struct iris_stream_output_target *cso = (void *) state;
2655
2656 pipe_resource_reference(&cso->base.buffer, NULL);
2657 pipe_resource_reference(&cso->offset.res, NULL);
2658
2659 free(cso);
2660 }
2661
2662 /**
2663 * The pipe->set_stream_output_targets() driver hook.
2664 *
2665 * At this point, we know which targets are bound to a particular index,
2666 * and also whether we want to append or start over. We can finish the
2667 * 3DSTATE_SO_BUFFER packets we started earlier.
2668 */
2669 static void
2670 iris_set_stream_output_targets(struct pipe_context *ctx,
2671 unsigned num_targets,
2672 struct pipe_stream_output_target **targets,
2673 const unsigned *offsets)
2674 {
2675 struct iris_context *ice = (struct iris_context *) ctx;
2676 struct iris_genx_state *genx = ice->state.genx;
2677 uint32_t *so_buffers = genx->so_buffers;
2678
2679 const bool active = num_targets > 0;
2680 if (ice->state.streamout_active != active) {
2681 ice->state.streamout_active = active;
2682 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
2683
2684 /* We only emit 3DSTATE_SO_DECL_LIST when streamout is active, because
2685 * it's a non-pipelined command. If we're switching streamout on, we
2686 * may have missed emitting it earlier, so do so now. (We're already
2687 * taking a stall to update 3DSTATE_SO_BUFFERS anyway...)
2688 */
2689 if (active)
2690 ice->state.dirty |= IRIS_DIRTY_SO_DECL_LIST;
2691 }
2692
2693 for (int i = 0; i < 4; i++) {
2694 pipe_so_target_reference(&ice->state.so_target[i],
2695 i < num_targets ? targets[i] : NULL);
2696 }
2697
2698 /* No need to update 3DSTATE_SO_BUFFER unless SOL is active. */
2699 if (!active)
2700 return;
2701
2702 for (unsigned i = 0; i < 4; i++,
2703 so_buffers += GENX(3DSTATE_SO_BUFFER_length)) {
2704
2705 if (i >= num_targets || !targets[i]) {
2706 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob)
2707 sob.SOBufferIndex = i;
2708 continue;
2709 }
2710
2711 struct iris_stream_output_target *tgt = (void *) targets[i];
2712 struct iris_resource *res = (void *) tgt->base.buffer;
2713
2714 /* Note that offsets[i] will either be 0, causing us to zero
2715 * the value in the buffer, or 0xFFFFFFFF, which happens to mean
2716 * "continue appending at the existing offset."
2717 */
2718 assert(offsets[i] == 0 || offsets[i] == 0xFFFFFFFF);
2719
2720 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob) {
2721 sob.SurfaceBaseAddress =
2722 rw_bo(NULL, res->bo->gtt_offset + tgt->base.buffer_offset);
2723 sob.SOBufferEnable = true;
2724 sob.StreamOffsetWriteEnable = true;
2725 sob.StreamOutputBufferOffsetAddressEnable = true;
2726 sob.MOCS = mocs(res->bo);
2727
2728 sob.SurfaceSize = MAX2(tgt->base.buffer_size / 4, 1) - 1;
2729
2730 sob.SOBufferIndex = i;
2731 sob.StreamOffset = offsets[i];
2732 sob.StreamOutputBufferOffsetAddress =
2733 rw_bo(NULL, iris_resource_bo(tgt->offset.res)->gtt_offset +
2734 tgt->offset.offset);
2735 }
2736 }
2737
2738 ice->state.dirty |= IRIS_DIRTY_SO_BUFFERS;
2739 }
2740
2741 /**
2742 * An iris-vtable helper for encoding the 3DSTATE_SO_DECL_LIST and
2743 * 3DSTATE_STREAMOUT packets.
2744 *
2745 * 3DSTATE_SO_DECL_LIST is a list of shader outputs we want the streamout
2746 * hardware to record. We can create it entirely based on the shader, with
2747 * no dynamic state dependencies.
2748 *
2749 * 3DSTATE_STREAMOUT is an annoying mix of shader-based information and
2750 * state-based settings. We capture the shader-related ones here, and merge
2751 * the rest in at draw time.
2752 */
2753 static uint32_t *
2754 iris_create_so_decl_list(const struct pipe_stream_output_info *info,
2755 const struct brw_vue_map *vue_map)
2756 {
2757 struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
2758 int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2759 int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2760 int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2761 int max_decls = 0;
2762 STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
2763
2764 memset(so_decl, 0, sizeof(so_decl));
2765
2766 /* Construct the list of SO_DECLs to be emitted. The formatting of the
2767 * command feels strange -- each dword pair contains a SO_DECL per stream.
2768 */
2769 for (unsigned i = 0; i < info->num_outputs; i++) {
2770 const struct pipe_stream_output *output = &info->output[i];
2771 const int buffer = output->output_buffer;
2772 const int varying = output->register_index;
2773 const unsigned stream_id = output->stream;
2774 assert(stream_id < MAX_VERTEX_STREAMS);
2775
2776 buffer_mask[stream_id] |= 1 << buffer;
2777
2778 assert(vue_map->varying_to_slot[varying] >= 0);
2779
2780 /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
2781 * array. Instead, it simply increments DstOffset for the following
2782 * input by the number of components that should be skipped.
2783 *
2784 * Our hardware is unusual in that it requires us to program SO_DECLs
2785 * for fake "hole" components, rather than simply taking the offset
2786 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
2787 * program as many size = 4 holes as we can, then a final hole to
2788 * accommodate the final 1, 2, or 3 remaining.
2789 */
2790 int skip_components = output->dst_offset - next_offset[buffer];
2791
2792 while (skip_components > 0) {
2793 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
2794 .HoleFlag = 1,
2795 .OutputBufferSlot = output->output_buffer,
2796 .ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
2797 };
2798 skip_components -= 4;
2799 }
2800
2801 next_offset[buffer] = output->dst_offset + output->num_components;
2802
2803 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
2804 .OutputBufferSlot = output->output_buffer,
2805 .RegisterIndex = vue_map->varying_to_slot[varying],
2806 .ComponentMask =
2807 ((1 << output->num_components) - 1) << output->start_component,
2808 };
2809
2810 if (decls[stream_id] > max_decls)
2811 max_decls = decls[stream_id];
2812 }
2813
2814 unsigned dwords = GENX(3DSTATE_STREAMOUT_length) + (3 + 2 * max_decls);
2815 uint32_t *map = ralloc_size(NULL, sizeof(uint32_t) * dwords);
2816 uint32_t *so_decl_map = map + GENX(3DSTATE_STREAMOUT_length);
2817
2818 iris_pack_command(GENX(3DSTATE_STREAMOUT), map, sol) {
2819 int urb_entry_read_offset = 0;
2820 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
2821 urb_entry_read_offset;
2822
2823 /* We always read the whole vertex. This could be reduced at some
2824 * point by reading less and offsetting the register index in the
2825 * SO_DECLs.
2826 */
2827 sol.Stream0VertexReadOffset = urb_entry_read_offset;
2828 sol.Stream0VertexReadLength = urb_entry_read_length - 1;
2829 sol.Stream1VertexReadOffset = urb_entry_read_offset;
2830 sol.Stream1VertexReadLength = urb_entry_read_length - 1;
2831 sol.Stream2VertexReadOffset = urb_entry_read_offset;
2832 sol.Stream2VertexReadLength = urb_entry_read_length - 1;
2833 sol.Stream3VertexReadOffset = urb_entry_read_offset;
2834 sol.Stream3VertexReadLength = urb_entry_read_length - 1;
2835
2836 /* Set buffer pitches; 0 means unbound. */
2837 sol.Buffer0SurfacePitch = 4 * info->stride[0];
2838 sol.Buffer1SurfacePitch = 4 * info->stride[1];
2839 sol.Buffer2SurfacePitch = 4 * info->stride[2];
2840 sol.Buffer3SurfacePitch = 4 * info->stride[3];
2841 }
2842
2843 iris_pack_command(GENX(3DSTATE_SO_DECL_LIST), so_decl_map, list) {
2844 list.DWordLength = 3 + 2 * max_decls - 2;
2845 list.StreamtoBufferSelects0 = buffer_mask[0];
2846 list.StreamtoBufferSelects1 = buffer_mask[1];
2847 list.StreamtoBufferSelects2 = buffer_mask[2];
2848 list.StreamtoBufferSelects3 = buffer_mask[3];
2849 list.NumEntries0 = decls[0];
2850 list.NumEntries1 = decls[1];
2851 list.NumEntries2 = decls[2];
2852 list.NumEntries3 = decls[3];
2853 }
2854
2855 for (int i = 0; i < max_decls; i++) {
2856 iris_pack_state(GENX(SO_DECL_ENTRY), so_decl_map + 3 + i * 2, entry) {
2857 entry.Stream0Decl = so_decl[0][i];
2858 entry.Stream1Decl = so_decl[1][i];
2859 entry.Stream2Decl = so_decl[2][i];
2860 entry.Stream3Decl = so_decl[3][i];
2861 }
2862 }
2863
2864 return map;
2865 }
2866
2867 static void
2868 iris_compute_sbe_urb_read_interval(uint64_t fs_input_slots,
2869 const struct brw_vue_map *last_vue_map,
2870 bool two_sided_color,
2871 unsigned *out_offset,
2872 unsigned *out_length)
2873 {
2874 /* The compiler computes the first URB slot without considering COL/BFC
2875 * swizzling (because it doesn't know whether it's enabled), so we need
2876 * to do that here too. This may result in a smaller offset, which
2877 * should be safe.
2878 */
2879 const unsigned first_slot =
2880 brw_compute_first_urb_slot_required(fs_input_slots, last_vue_map);
2881
2882 /* This becomes the URB read offset (counted in pairs of slots). */
2883 assert(first_slot % 2 == 0);
2884 *out_offset = first_slot / 2;
2885
2886 /* We need to adjust the inputs read to account for front/back color
2887 * swizzling, as it can make the URB length longer.
2888 */
2889 for (int c = 0; c <= 1; c++) {
2890 if (fs_input_slots & (VARYING_BIT_COL0 << c)) {
2891 /* If two sided color is enabled, the fragment shader's gl_Color
2892 * (COL0) input comes from either the gl_FrontColor (COL0) or
2893 * gl_BackColor (BFC0) input varyings. Mark BFC as used, too.
2894 */
2895 if (two_sided_color)
2896 fs_input_slots |= (VARYING_BIT_BFC0 << c);
2897
2898 /* If front color isn't written, we opt to give them back color
2899 * instead of an undefined value. Switch from COL to BFC.
2900 */
2901 if (last_vue_map->varying_to_slot[VARYING_SLOT_COL0 + c] == -1) {
2902 fs_input_slots &= ~(VARYING_BIT_COL0 << c);
2903 fs_input_slots |= (VARYING_BIT_BFC0 << c);
2904 }
2905 }
2906 }
2907
2908 /* Compute the minimum URB Read Length necessary for the FS inputs.
2909 *
2910 * From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
2911 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
2912 *
2913 * "This field should be set to the minimum length required to read the
2914 * maximum source attribute. The maximum source attribute is indicated
2915 * by the maximum value of the enabled Attribute # Source Attribute if
2916 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
2917 * enable is not set.
2918 * read_length = ceiling((max_source_attr + 1) / 2)
2919 *
2920 * [errata] Corruption/Hang possible if length programmed larger than
2921 * recommended"
2922 *
2923 * Similar text exists for Ivy Bridge.
2924 *
2925 * We find the last URB slot that's actually read by the FS.
2926 */
2927 unsigned last_read_slot = last_vue_map->num_slots - 1;
2928 while (last_read_slot > first_slot && !(fs_input_slots &
2929 (1ull << last_vue_map->slot_to_varying[last_read_slot])))
2930 --last_read_slot;
2931
2932 /* The URB read length is the difference of the two, counted in pairs. */
2933 *out_length = DIV_ROUND_UP(last_read_slot - first_slot + 1, 2);
2934 }
2935
2936 static void
2937 iris_emit_sbe_swiz(struct iris_batch *batch,
2938 const struct iris_context *ice,
2939 unsigned urb_read_offset,
2940 unsigned sprite_coord_enables)
2941 {
2942 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = {};
2943 const struct brw_wm_prog_data *wm_prog_data = (void *)
2944 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
2945 const struct brw_vue_map *vue_map = ice->shaders.last_vue_map;
2946 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
2947
2948 /* XXX: this should be generated when putting programs in place */
2949
2950 for (int fs_attr = 0; fs_attr < VARYING_SLOT_MAX; fs_attr++) {
2951 const int input_index = wm_prog_data->urb_setup[fs_attr];
2952 if (input_index < 0 || input_index >= 16)
2953 continue;
2954
2955 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr =
2956 &attr_overrides[input_index];
2957 int slot = vue_map->varying_to_slot[fs_attr];
2958
2959 /* Viewport and Layer are stored in the VUE header. We need to override
2960 * them to zero if earlier stages didn't write them, as GL requires that
2961 * they read back as zero when not explicitly set.
2962 */
2963 switch (fs_attr) {
2964 case VARYING_SLOT_VIEWPORT:
2965 case VARYING_SLOT_LAYER:
2966 attr->ComponentOverrideX = true;
2967 attr->ComponentOverrideW = true;
2968 attr->ConstantSource = CONST_0000;
2969
2970 if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
2971 attr->ComponentOverrideY = true;
2972 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
2973 attr->ComponentOverrideZ = true;
2974 continue;
2975
2976 case VARYING_SLOT_PRIMITIVE_ID:
2977 /* Override if the previous shader stage didn't write gl_PrimitiveID. */
2978 if (slot == -1) {
2979 attr->ComponentOverrideX = true;
2980 attr->ComponentOverrideY = true;
2981 attr->ComponentOverrideZ = true;
2982 attr->ComponentOverrideW = true;
2983 attr->ConstantSource = PRIM_ID;
2984 continue;
2985 }
2986
2987 default:
2988 break;
2989 }
2990
2991 if (sprite_coord_enables & (1 << input_index))
2992 continue;
2993
2994 /* If there was only a back color written but not front, use back
2995 * as the color instead of undefined.
2996 */
2997 if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
2998 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
2999 if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
3000 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
3001
3002 /* Not written by the previous stage - undefined. */
3003 if (slot == -1) {
3004 attr->ComponentOverrideX = true;
3005 attr->ComponentOverrideY = true;
3006 attr->ComponentOverrideZ = true;
3007 attr->ComponentOverrideW = true;
3008 attr->ConstantSource = CONST_0001_FLOAT;
3009 continue;
3010 }
3011
3012 /* Compute the location of the attribute relative to the read offset,
3013 * which is counted in 256-bit increments (two 128-bit VUE slots).
3014 */
3015 const int source_attr = slot - 2 * urb_read_offset;
3016 assert(source_attr >= 0 && source_attr <= 32);
3017 attr->SourceAttribute = source_attr;
3018
3019 /* If we are doing two-sided color, and the VUE slot following this one
3020 * represents a back-facing color, then we need to instruct the SF unit
3021 * to do back-facing swizzling.
3022 */
3023 if (cso_rast->light_twoside &&
3024 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
3025 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
3026 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
3027 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1)))
3028 attr->SwizzleSelect = INPUTATTR_FACING;
3029 }
3030
3031 iris_emit_cmd(batch, GENX(3DSTATE_SBE_SWIZ), sbes) {
3032 for (int i = 0; i < 16; i++)
3033 sbes.Attribute[i] = attr_overrides[i];
3034 }
3035 }
3036
3037 static unsigned
3038 iris_calculate_point_sprite_overrides(const struct brw_wm_prog_data *prog_data,
3039 const struct iris_rasterizer_state *cso)
3040 {
3041 unsigned overrides = 0;
3042
3043 if (prog_data->urb_setup[VARYING_SLOT_PNTC] != -1)
3044 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_PNTC];
3045
3046 for (int i = 0; i < 8; i++) {
3047 if ((cso->sprite_coord_enable & (1 << i)) &&
3048 prog_data->urb_setup[VARYING_SLOT_TEX0 + i] != -1)
3049 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_TEX0 + i];
3050 }
3051
3052 return overrides;
3053 }
3054
3055 static void
3056 iris_emit_sbe(struct iris_batch *batch, const struct iris_context *ice)
3057 {
3058 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3059 const struct brw_wm_prog_data *wm_prog_data = (void *)
3060 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3061 const struct shader_info *fs_info =
3062 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
3063
3064 unsigned urb_read_offset, urb_read_length;
3065 iris_compute_sbe_urb_read_interval(fs_info->inputs_read,
3066 ice->shaders.last_vue_map,
3067 cso_rast->light_twoside,
3068 &urb_read_offset, &urb_read_length);
3069
3070 unsigned sprite_coord_overrides =
3071 iris_calculate_point_sprite_overrides(wm_prog_data, cso_rast);
3072
3073 iris_emit_cmd(batch, GENX(3DSTATE_SBE), sbe) {
3074 sbe.AttributeSwizzleEnable = true;
3075 sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
3076 sbe.PointSpriteTextureCoordinateOrigin = cso_rast->sprite_coord_mode;
3077 sbe.VertexURBEntryReadOffset = urb_read_offset;
3078 sbe.VertexURBEntryReadLength = urb_read_length;
3079 sbe.ForceVertexURBEntryReadOffset = true;
3080 sbe.ForceVertexURBEntryReadLength = true;
3081 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
3082 sbe.PointSpriteTextureCoordinateEnable = sprite_coord_overrides;
3083 #if GEN_GEN >= 9
3084 for (int i = 0; i < 32; i++) {
3085 sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW;
3086 }
3087 #endif
3088 }
3089
3090 iris_emit_sbe_swiz(batch, ice, urb_read_offset, sprite_coord_overrides);
3091 }
3092
3093 /* ------------------------------------------------------------------- */
3094
3095 /**
3096 * Populate VS program key fields based on the current state.
3097 */
3098 static void
3099 iris_populate_vs_key(const struct iris_context *ice,
3100 const struct shader_info *info,
3101 struct brw_vs_prog_key *key)
3102 {
3103 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3104
3105 if (info->clip_distance_array_size == 0 &&
3106 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)))
3107 key->nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
3108 }
3109
3110 /**
3111 * Populate TCS program key fields based on the current state.
3112 */
3113 static void
3114 iris_populate_tcs_key(const struct iris_context *ice,
3115 struct brw_tcs_prog_key *key)
3116 {
3117 }
3118
3119 /**
3120 * Populate TES program key fields based on the current state.
3121 */
3122 static void
3123 iris_populate_tes_key(const struct iris_context *ice,
3124 struct brw_tes_prog_key *key)
3125 {
3126 }
3127
3128 /**
3129 * Populate GS program key fields based on the current state.
3130 */
3131 static void
3132 iris_populate_gs_key(const struct iris_context *ice,
3133 struct brw_gs_prog_key *key)
3134 {
3135 }
3136
3137 /**
3138 * Populate FS program key fields based on the current state.
3139 */
3140 static void
3141 iris_populate_fs_key(const struct iris_context *ice,
3142 struct brw_wm_prog_key *key)
3143 {
3144 const struct pipe_framebuffer_state *fb = &ice->state.framebuffer;
3145 const struct iris_depth_stencil_alpha_state *zsa = ice->state.cso_zsa;
3146 const struct iris_rasterizer_state *rast = ice->state.cso_rast;
3147 const struct iris_blend_state *blend = ice->state.cso_blend;
3148
3149 key->nr_color_regions = fb->nr_cbufs;
3150
3151 key->clamp_fragment_color = rast->clamp_fragment_color;
3152
3153 key->replicate_alpha = fb->nr_cbufs > 1 &&
3154 (zsa->alpha.enabled || blend->alpha_to_coverage);
3155
3156 /* XXX: only bother if COL0/1 are read */
3157 key->flat_shade = rast->flatshade;
3158
3159 key->persample_interp = rast->force_persample_interp;
3160 key->multisample_fbo = rast->multisample && fb->samples > 1;
3161
3162 key->coherent_fb_fetch = true;
3163
3164 // XXX: key->force_dual_color_blend for unigine
3165 // XXX: respect hint for high_quality_derivatives:1;
3166 }
3167
3168 static void
3169 iris_populate_cs_key(const struct iris_context *ice,
3170 struct brw_cs_prog_key *key)
3171 {
3172 }
3173
3174 #if 0
3175 // XXX: these need to go in INIT_THREAD_DISPATCH_FIELDS
3176 pkt.SamplerCount = \
3177 DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4); \
3178
3179 #endif
3180
3181 static uint64_t
3182 KSP(const struct iris_compiled_shader *shader)
3183 {
3184 struct iris_resource *res = (void *) shader->assembly.res;
3185 return iris_bo_offset_from_base_address(res->bo) + shader->assembly.offset;
3186 }
3187
3188 // Gen11 workaround table #2056 WABTPPrefetchDisable suggests to disable
3189 // prefetching of binding tables in A0 and B0 steppings. XXX: Revisit
3190 // this WA on C0 stepping.
3191
3192 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix, stage) \
3193 pkt.KernelStartPointer = KSP(shader); \
3194 pkt.BindingTableEntryCount = GEN_GEN == 11 ? 0 : \
3195 prog_data->binding_table.size_bytes / 4; \
3196 pkt.FloatingPointMode = prog_data->use_alt_mode; \
3197 \
3198 pkt.DispatchGRFStartRegisterForURBData = \
3199 prog_data->dispatch_grf_start_reg; \
3200 pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
3201 pkt.prefix##URBEntryReadOffset = 0; \
3202 \
3203 pkt.StatisticsEnable = true; \
3204 pkt.Enable = true; \
3205 \
3206 if (prog_data->total_scratch) { \
3207 struct iris_bo *bo = \
3208 iris_get_scratch_space(ice, prog_data->total_scratch, stage); \
3209 uint32_t scratch_addr = bo->gtt_offset; \
3210 pkt.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11; \
3211 pkt.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr); \
3212 }
3213
3214 /**
3215 * Encode most of 3DSTATE_VS based on the compiled shader.
3216 */
3217 static void
3218 iris_store_vs_state(struct iris_context *ice,
3219 const struct gen_device_info *devinfo,
3220 struct iris_compiled_shader *shader)
3221 {
3222 struct brw_stage_prog_data *prog_data = shader->prog_data;
3223 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3224
3225 iris_pack_command(GENX(3DSTATE_VS), shader->derived_data, vs) {
3226 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex, MESA_SHADER_VERTEX);
3227 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
3228 vs.SIMD8DispatchEnable = true;
3229 vs.UserClipDistanceCullTestEnableBitmask =
3230 vue_prog_data->cull_distance_mask;
3231 }
3232 }
3233
3234 /**
3235 * Encode most of 3DSTATE_HS based on the compiled shader.
3236 */
3237 static void
3238 iris_store_tcs_state(struct iris_context *ice,
3239 const struct gen_device_info *devinfo,
3240 struct iris_compiled_shader *shader)
3241 {
3242 struct brw_stage_prog_data *prog_data = shader->prog_data;
3243 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3244 struct brw_tcs_prog_data *tcs_prog_data = (void *) prog_data;
3245
3246 iris_pack_command(GENX(3DSTATE_HS), shader->derived_data, hs) {
3247 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex, MESA_SHADER_TESS_CTRL);
3248
3249 hs.InstanceCount = tcs_prog_data->instances - 1;
3250 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
3251 hs.IncludeVertexHandles = true;
3252 }
3253 }
3254
3255 /**
3256 * Encode 3DSTATE_TE and most of 3DSTATE_DS based on the compiled shader.
3257 */
3258 static void
3259 iris_store_tes_state(struct iris_context *ice,
3260 const struct gen_device_info *devinfo,
3261 struct iris_compiled_shader *shader)
3262 {
3263 struct brw_stage_prog_data *prog_data = shader->prog_data;
3264 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3265 struct brw_tes_prog_data *tes_prog_data = (void *) prog_data;
3266
3267 uint32_t *te_state = (void *) shader->derived_data;
3268 uint32_t *ds_state = te_state + GENX(3DSTATE_TE_length);
3269
3270 iris_pack_command(GENX(3DSTATE_TE), te_state, te) {
3271 te.Partitioning = tes_prog_data->partitioning;
3272 te.OutputTopology = tes_prog_data->output_topology;
3273 te.TEDomain = tes_prog_data->domain;
3274 te.TEEnable = true;
3275 te.MaximumTessellationFactorOdd = 63.0;
3276 te.MaximumTessellationFactorNotOdd = 64.0;
3277 }
3278
3279 iris_pack_command(GENX(3DSTATE_DS), ds_state, ds) {
3280 INIT_THREAD_DISPATCH_FIELDS(ds, Patch, MESA_SHADER_TESS_EVAL);
3281
3282 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
3283 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
3284 ds.ComputeWCoordinateEnable =
3285 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
3286
3287 ds.UserClipDistanceCullTestEnableBitmask =
3288 vue_prog_data->cull_distance_mask;
3289 }
3290
3291 }
3292
3293 /**
3294 * Encode most of 3DSTATE_GS based on the compiled shader.
3295 */
3296 static void
3297 iris_store_gs_state(struct iris_context *ice,
3298 const struct gen_device_info *devinfo,
3299 struct iris_compiled_shader *shader)
3300 {
3301 struct brw_stage_prog_data *prog_data = shader->prog_data;
3302 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3303 struct brw_gs_prog_data *gs_prog_data = (void *) prog_data;
3304
3305 iris_pack_command(GENX(3DSTATE_GS), shader->derived_data, gs) {
3306 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex, MESA_SHADER_GEOMETRY);
3307
3308 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
3309 gs.OutputTopology = gs_prog_data->output_topology;
3310 gs.ControlDataHeaderSize =
3311 gs_prog_data->control_data_header_size_hwords;
3312 gs.InstanceControl = gs_prog_data->invocations - 1;
3313 gs.DispatchMode = DISPATCH_MODE_SIMD8;
3314 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
3315 gs.ControlDataFormat = gs_prog_data->control_data_format;
3316 gs.ReorderMode = TRAILING;
3317 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
3318 gs.MaximumNumberofThreads =
3319 GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
3320 : (devinfo->max_gs_threads - 1);
3321
3322 if (gs_prog_data->static_vertex_count != -1) {
3323 gs.StaticOutput = true;
3324 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
3325 }
3326 gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
3327
3328 gs.UserClipDistanceCullTestEnableBitmask =
3329 vue_prog_data->cull_distance_mask;
3330
3331 const int urb_entry_write_offset = 1;
3332 const uint32_t urb_entry_output_length =
3333 DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
3334 urb_entry_write_offset;
3335
3336 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
3337 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
3338 }
3339 }
3340
3341 /**
3342 * Encode most of 3DSTATE_PS and 3DSTATE_PS_EXTRA based on the shader.
3343 */
3344 static void
3345 iris_store_fs_state(struct iris_context *ice,
3346 const struct gen_device_info *devinfo,
3347 struct iris_compiled_shader *shader)
3348 {
3349 struct brw_stage_prog_data *prog_data = shader->prog_data;
3350 struct brw_wm_prog_data *wm_prog_data = (void *) shader->prog_data;
3351
3352 uint32_t *ps_state = (void *) shader->derived_data;
3353 uint32_t *psx_state = ps_state + GENX(3DSTATE_PS_length);
3354
3355 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
3356 ps.VectorMaskEnable = true;
3357 //ps.SamplerCount = ...
3358 // XXX: WABTPPrefetchDisable, see above, drop at C0
3359 ps.BindingTableEntryCount = GEN_GEN == 11 ? 0 :
3360 prog_data->binding_table.size_bytes / 4;
3361 ps.FloatingPointMode = prog_data->use_alt_mode;
3362 ps.MaximumNumberofThreadsPerPSD = 64 - (GEN_GEN == 8 ? 2 : 1);
3363
3364 ps.PushConstantEnable = prog_data->ubo_ranges[0].length > 0;
3365
3366 /* From the documentation for this packet:
3367 * "If the PS kernel does not need the Position XY Offsets to
3368 * compute a Position Value, then this field should be programmed
3369 * to POSOFFSET_NONE."
3370 *
3371 * "SW Recommendation: If the PS kernel needs the Position Offsets
3372 * to compute a Position XY value, this field should match Position
3373 * ZW Interpolation Mode to ensure a consistent position.xyzw
3374 * computation."
3375 *
3376 * We only require XY sample offsets. So, this recommendation doesn't
3377 * look useful at the moment. We might need this in future.
3378 */
3379 ps.PositionXYOffsetSelect =
3380 wm_prog_data->uses_pos_offset ? POSOFFSET_SAMPLE : POSOFFSET_NONE;
3381 ps._8PixelDispatchEnable = wm_prog_data->dispatch_8;
3382 ps._16PixelDispatchEnable = wm_prog_data->dispatch_16;
3383 ps._32PixelDispatchEnable = wm_prog_data->dispatch_32;
3384
3385 // XXX: Disable SIMD32 with 16x MSAA
3386
3387 ps.DispatchGRFStartRegisterForConstantSetupData0 =
3388 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
3389 ps.DispatchGRFStartRegisterForConstantSetupData1 =
3390 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
3391 ps.DispatchGRFStartRegisterForConstantSetupData2 =
3392 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
3393
3394 ps.KernelStartPointer0 =
3395 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
3396 ps.KernelStartPointer1 =
3397 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
3398 ps.KernelStartPointer2 =
3399 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
3400
3401 if (prog_data->total_scratch) {
3402 struct iris_bo *bo =
3403 iris_get_scratch_space(ice, prog_data->total_scratch,
3404 MESA_SHADER_FRAGMENT);
3405 uint32_t scratch_addr = bo->gtt_offset;
3406 ps.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
3407 ps.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr);
3408 }
3409 }
3410
3411 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
3412 psx.PixelShaderValid = true;
3413 psx.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
3414 // XXX: alpha test / alpha to coverage :/
3415 psx.PixelShaderKillsPixel = wm_prog_data->uses_kill ||
3416 wm_prog_data->uses_omask;
3417 psx.AttributeEnable = wm_prog_data->num_varying_inputs != 0;
3418 psx.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
3419 psx.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
3420 psx.PixelShaderIsPerSample = wm_prog_data->persample_dispatch;
3421 psx.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
3422
3423 #if GEN_GEN >= 9
3424 if (wm_prog_data->uses_sample_mask) {
3425 /* TODO: conservative rasterization */
3426 if (wm_prog_data->post_depth_coverage)
3427 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
3428 else
3429 psx.InputCoverageMaskState = ICMS_NORMAL;
3430 }
3431
3432 psx.PixelShaderPullsBary = wm_prog_data->pulls_bary;
3433 psx.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
3434 #else
3435 psx.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
3436 #endif
3437 // XXX: UAV bit
3438 }
3439 }
3440
3441 /**
3442 * Compute the size of the derived data (shader command packets).
3443 *
3444 * This must match the data written by the iris_store_xs_state() functions.
3445 */
3446 static void
3447 iris_store_cs_state(struct iris_context *ice,
3448 const struct gen_device_info *devinfo,
3449 struct iris_compiled_shader *shader)
3450 {
3451 struct brw_stage_prog_data *prog_data = shader->prog_data;
3452 struct brw_cs_prog_data *cs_prog_data = (void *) shader->prog_data;
3453 void *map = shader->derived_data;
3454
3455 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), map, desc) {
3456 desc.KernelStartPointer = KSP(shader);
3457 desc.ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs;
3458 desc.NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads;
3459 desc.SharedLocalMemorySize =
3460 encode_slm_size(GEN_GEN, prog_data->total_shared);
3461 desc.BarrierEnable = cs_prog_data->uses_barrier;
3462 desc.CrossThreadConstantDataReadLength =
3463 cs_prog_data->push.cross_thread.regs;
3464 }
3465 }
3466
3467 static unsigned
3468 iris_derived_program_state_size(enum iris_program_cache_id cache_id)
3469 {
3470 assert(cache_id <= IRIS_CACHE_BLORP);
3471
3472 static const unsigned dwords[] = {
3473 [IRIS_CACHE_VS] = GENX(3DSTATE_VS_length),
3474 [IRIS_CACHE_TCS] = GENX(3DSTATE_HS_length),
3475 [IRIS_CACHE_TES] = GENX(3DSTATE_TE_length) + GENX(3DSTATE_DS_length),
3476 [IRIS_CACHE_GS] = GENX(3DSTATE_GS_length),
3477 [IRIS_CACHE_FS] =
3478 GENX(3DSTATE_PS_length) + GENX(3DSTATE_PS_EXTRA_length),
3479 [IRIS_CACHE_CS] = GENX(INTERFACE_DESCRIPTOR_DATA_length),
3480 [IRIS_CACHE_BLORP] = 0,
3481 };
3482
3483 return sizeof(uint32_t) * dwords[cache_id];
3484 }
3485
3486 /**
3487 * Create any state packets corresponding to the given shader stage
3488 * (i.e. 3DSTATE_VS) and save them as "derived data" in the shader variant.
3489 * This means that we can look up a program in the in-memory cache and
3490 * get most of the state packet without having to reconstruct it.
3491 */
3492 static void
3493 iris_store_derived_program_state(struct iris_context *ice,
3494 enum iris_program_cache_id cache_id,
3495 struct iris_compiled_shader *shader)
3496 {
3497 struct iris_screen *screen = (void *) ice->ctx.screen;
3498 const struct gen_device_info *devinfo = &screen->devinfo;
3499
3500 switch (cache_id) {
3501 case IRIS_CACHE_VS:
3502 iris_store_vs_state(ice, devinfo, shader);
3503 break;
3504 case IRIS_CACHE_TCS:
3505 iris_store_tcs_state(ice, devinfo, shader);
3506 break;
3507 case IRIS_CACHE_TES:
3508 iris_store_tes_state(ice, devinfo, shader);
3509 break;
3510 case IRIS_CACHE_GS:
3511 iris_store_gs_state(ice, devinfo, shader);
3512 break;
3513 case IRIS_CACHE_FS:
3514 iris_store_fs_state(ice, devinfo, shader);
3515 break;
3516 case IRIS_CACHE_CS:
3517 iris_store_cs_state(ice, devinfo, shader);
3518 case IRIS_CACHE_BLORP:
3519 break;
3520 default:
3521 break;
3522 }
3523 }
3524
3525 /* ------------------------------------------------------------------- */
3526
3527 /**
3528 * Configure the URB.
3529 *
3530 * XXX: write a real comment.
3531 */
3532 static void
3533 iris_upload_urb_config(struct iris_context *ice, struct iris_batch *batch)
3534 {
3535 const struct gen_device_info *devinfo = &batch->screen->devinfo;
3536 const unsigned push_size_kB = 32;
3537 unsigned entries[4];
3538 unsigned start[4];
3539 unsigned size[4];
3540
3541 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
3542 if (!ice->shaders.prog[i]) {
3543 size[i] = 1;
3544 } else {
3545 struct brw_vue_prog_data *vue_prog_data =
3546 (void *) ice->shaders.prog[i]->prog_data;
3547 size[i] = vue_prog_data->urb_entry_size;
3548 }
3549 assert(size[i] != 0);
3550 }
3551
3552 gen_get_urb_config(devinfo, 1024 * push_size_kB,
3553 1024 * ice->shaders.urb_size,
3554 ice->shaders.prog[MESA_SHADER_TESS_EVAL] != NULL,
3555 ice->shaders.prog[MESA_SHADER_GEOMETRY] != NULL,
3556 size, entries, start);
3557
3558 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
3559 iris_emit_cmd(batch, GENX(3DSTATE_URB_VS), urb) {
3560 urb._3DCommandSubOpcode += i;
3561 urb.VSURBStartingAddress = start[i];
3562 urb.VSURBEntryAllocationSize = size[i] - 1;
3563 urb.VSNumberofURBEntries = entries[i];
3564 }
3565 }
3566 }
3567
3568 static const uint32_t push_constant_opcodes[] = {
3569 [MESA_SHADER_VERTEX] = 21,
3570 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
3571 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
3572 [MESA_SHADER_GEOMETRY] = 22,
3573 [MESA_SHADER_FRAGMENT] = 23,
3574 [MESA_SHADER_COMPUTE] = 0,
3575 };
3576
3577 static uint32_t
3578 use_null_surface(struct iris_batch *batch, struct iris_context *ice)
3579 {
3580 struct iris_bo *state_bo = iris_resource_bo(ice->state.unbound_tex.res);
3581
3582 iris_use_pinned_bo(batch, state_bo, false);
3583
3584 return ice->state.unbound_tex.offset;
3585 }
3586
3587 static uint32_t
3588 use_null_fb_surface(struct iris_batch *batch, struct iris_context *ice)
3589 {
3590 /* If set_framebuffer_state() was never called, fall back to 1x1x1 */
3591 if (!ice->state.null_fb.res)
3592 return use_null_surface(batch, ice);
3593
3594 struct iris_bo *state_bo = iris_resource_bo(ice->state.null_fb.res);
3595
3596 iris_use_pinned_bo(batch, state_bo, false);
3597
3598 return ice->state.null_fb.offset;
3599 }
3600
3601 /**
3602 * Add a surface to the validation list, as well as the buffer containing
3603 * the corresponding SURFACE_STATE.
3604 *
3605 * Returns the binding table entry (offset to SURFACE_STATE).
3606 */
3607 static uint32_t
3608 use_surface(struct iris_batch *batch,
3609 struct pipe_surface *p_surf,
3610 bool writeable)
3611 {
3612 struct iris_surface *surf = (void *) p_surf;
3613
3614 iris_use_pinned_bo(batch, iris_resource_bo(p_surf->texture), writeable);
3615 iris_use_pinned_bo(batch, iris_resource_bo(surf->surface_state.res), false);
3616
3617 return surf->surface_state.offset;
3618 }
3619
3620 static uint32_t
3621 use_sampler_view(struct iris_batch *batch, struct iris_sampler_view *isv)
3622 {
3623 iris_use_pinned_bo(batch, isv->res->bo, false);
3624 iris_use_pinned_bo(batch, iris_resource_bo(isv->surface_state.res), false);
3625
3626 return isv->surface_state.offset;
3627 }
3628
3629 static uint32_t
3630 use_const_buffer(struct iris_batch *batch,
3631 struct iris_context *ice,
3632 struct iris_const_buffer *cbuf)
3633 {
3634 if (!cbuf->surface_state.res)
3635 return use_null_surface(batch, ice);
3636
3637 iris_use_pinned_bo(batch, iris_resource_bo(cbuf->data.res), false);
3638 iris_use_pinned_bo(batch, iris_resource_bo(cbuf->surface_state.res), false);
3639
3640 return cbuf->surface_state.offset;
3641 }
3642
3643 static uint32_t
3644 use_ssbo(struct iris_batch *batch, struct iris_context *ice,
3645 struct iris_shader_state *shs, int i)
3646 {
3647 if (!shs->ssbo[i])
3648 return use_null_surface(batch, ice);
3649
3650 struct iris_state_ref *surf_state = &shs->ssbo_surface_state[i];
3651
3652 iris_use_pinned_bo(batch, iris_resource_bo(shs->ssbo[i]), true);
3653 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false);
3654
3655 return surf_state->offset;
3656 }
3657
3658 static uint32_t
3659 use_image(struct iris_batch *batch, struct iris_context *ice,
3660 struct iris_shader_state *shs, int i)
3661 {
3662 if (!shs->image[i].res)
3663 return use_null_surface(batch, ice);
3664
3665 struct iris_state_ref *surf_state = &shs->image[i].surface_state;
3666
3667 iris_use_pinned_bo(batch, iris_resource_bo(shs->image[i].res),
3668 shs->image[i].access & PIPE_IMAGE_ACCESS_WRITE);
3669 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false);
3670
3671 return surf_state->offset;
3672 }
3673
3674 #define push_bt_entry(addr) \
3675 assert(addr >= binder_addr); \
3676 assert(s < prog_data->binding_table.size_bytes / sizeof(uint32_t)); \
3677 if (!pin_only) bt_map[s++] = (addr) - binder_addr;
3678
3679 #define bt_assert(section, exists) \
3680 if (!pin_only) assert(prog_data->binding_table.section == \
3681 (exists) ? s : 0xd0d0d0d0)
3682
3683 /**
3684 * Populate the binding table for a given shader stage.
3685 *
3686 * This fills out the table of pointers to surfaces required by the shader,
3687 * and also adds those buffers to the validation list so the kernel can make
3688 * resident before running our batch.
3689 */
3690 static void
3691 iris_populate_binding_table(struct iris_context *ice,
3692 struct iris_batch *batch,
3693 gl_shader_stage stage,
3694 bool pin_only)
3695 {
3696 const struct iris_binder *binder = &ice->state.binder;
3697 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3698 if (!shader)
3699 return;
3700
3701 UNUSED struct brw_stage_prog_data *prog_data = shader->prog_data;
3702 struct iris_shader_state *shs = &ice->state.shaders[stage];
3703 uint32_t binder_addr = binder->bo->gtt_offset;
3704
3705 //struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
3706 uint32_t *bt_map = binder->map + binder->bt_offset[stage];
3707 int s = 0;
3708
3709 const struct shader_info *info = iris_get_shader_info(ice, stage);
3710 if (!info) {
3711 /* TCS passthrough doesn't need a binding table. */
3712 assert(stage == MESA_SHADER_TESS_CTRL);
3713 return;
3714 }
3715
3716 if (stage == MESA_SHADER_COMPUTE) {
3717 /* surface for gl_NumWorkGroups */
3718 struct iris_state_ref *grid_data = &ice->state.grid_size;
3719 struct iris_state_ref *grid_state = &ice->state.grid_surf_state;
3720 iris_use_pinned_bo(batch, iris_resource_bo(grid_data->res), false);
3721 iris_use_pinned_bo(batch, iris_resource_bo(grid_state->res), false);
3722 push_bt_entry(grid_state->offset);
3723 }
3724
3725 if (stage == MESA_SHADER_FRAGMENT) {
3726 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
3727 /* Note that cso_fb->nr_cbufs == fs_key->nr_color_regions. */
3728 if (cso_fb->nr_cbufs) {
3729 for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
3730 uint32_t addr =
3731 cso_fb->cbufs[i] ? use_surface(batch, cso_fb->cbufs[i], true)
3732 : use_null_fb_surface(batch, ice);
3733 push_bt_entry(addr);
3734 }
3735 } else {
3736 uint32_t addr = use_null_fb_surface(batch, ice);
3737 push_bt_entry(addr);
3738 }
3739 }
3740
3741 bt_assert(texture_start, info->num_textures > 0);
3742
3743 for (int i = 0; i < info->num_textures; i++) {
3744 struct iris_sampler_view *view = shs->textures[i];
3745 uint32_t addr = view ? use_sampler_view(batch, view)
3746 : use_null_surface(batch, ice);
3747 push_bt_entry(addr);
3748 }
3749
3750 bt_assert(image_start, info->num_images > 0);
3751
3752 for (int i = 0; i < info->num_images; i++) {
3753 uint32_t addr = use_image(batch, ice, shs, i);
3754 push_bt_entry(addr);
3755 }
3756
3757 bt_assert(ubo_start, shader->num_cbufs > 0);
3758
3759 for (int i = 0; i < shader->num_cbufs; i++) {
3760 uint32_t addr = use_const_buffer(batch, ice, &shs->constbuf[i]);
3761 push_bt_entry(addr);
3762 }
3763
3764 bt_assert(ssbo_start, info->num_abos + info->num_ssbos > 0);
3765
3766 /* XXX: st is wasting 16 binding table slots for ABOs. Should add a cap
3767 * for changing nir_lower_atomics_to_ssbos setting and buffer_base offset
3768 * in st_atom_storagebuf.c so it'll compact them into one range, with
3769 * SSBOs starting at info->num_abos. Ideally it'd reset num_abos to 0 too
3770 */
3771 if (info->num_abos + info->num_ssbos > 0) {
3772 for (int i = 0; i < IRIS_MAX_ABOS + info->num_ssbos; i++) {
3773 uint32_t addr = use_ssbo(batch, ice, shs, i);
3774 push_bt_entry(addr);
3775 }
3776 }
3777
3778 #if 0
3779 // XXX: not implemented yet
3780 bt_assert(plane_start[1], ...);
3781 bt_assert(plane_start[2], ...);
3782 #endif
3783 }
3784
3785 static void
3786 iris_use_optional_res(struct iris_batch *batch,
3787 struct pipe_resource *res,
3788 bool writeable)
3789 {
3790 if (res) {
3791 struct iris_bo *bo = iris_resource_bo(res);
3792 iris_use_pinned_bo(batch, bo, writeable);
3793 }
3794 }
3795
3796 /* ------------------------------------------------------------------- */
3797
3798 /**
3799 * Pin any BOs which were installed by a previous batch, and restored
3800 * via the hardware logical context mechanism.
3801 *
3802 * We don't need to re-emit all state every batch - the hardware context
3803 * mechanism will save and restore it for us. This includes pointers to
3804 * various BOs...which won't exist unless we ask the kernel to pin them
3805 * by adding them to the validation list.
3806 *
3807 * We can skip buffers if we've re-emitted those packets, as we're
3808 * overwriting those stale pointers with new ones, and don't actually
3809 * refer to the old BOs.
3810 */
3811 static void
3812 iris_restore_render_saved_bos(struct iris_context *ice,
3813 struct iris_batch *batch,
3814 const struct pipe_draw_info *draw)
3815 {
3816 struct iris_genx_state *genx = ice->state.genx;
3817
3818 const uint64_t clean = ~ice->state.dirty;
3819
3820 if (clean & IRIS_DIRTY_CC_VIEWPORT) {
3821 iris_use_optional_res(batch, ice->state.last_res.cc_vp, false);
3822 }
3823
3824 if (clean & IRIS_DIRTY_SF_CL_VIEWPORT) {
3825 iris_use_optional_res(batch, ice->state.last_res.sf_cl_vp, false);
3826 }
3827
3828 if (clean & IRIS_DIRTY_BLEND_STATE) {
3829 iris_use_optional_res(batch, ice->state.last_res.blend, false);
3830 }
3831
3832 if (clean & IRIS_DIRTY_COLOR_CALC_STATE) {
3833 iris_use_optional_res(batch, ice->state.last_res.color_calc, false);
3834 }
3835
3836 if (clean & IRIS_DIRTY_SCISSOR_RECT) {
3837 iris_use_optional_res(batch, ice->state.last_res.scissor, false);
3838 }
3839
3840 if (ice->state.streamout_active && (clean & IRIS_DIRTY_SO_BUFFERS)) {
3841 for (int i = 0; i < 4; i++) {
3842 struct iris_stream_output_target *tgt =
3843 (void *) ice->state.so_target[i];
3844 if (tgt) {
3845 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
3846 true);
3847 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
3848 true);
3849 }
3850 }
3851 }
3852
3853 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3854 if (!(clean & (IRIS_DIRTY_CONSTANTS_VS << stage)))
3855 continue;
3856
3857 struct iris_shader_state *shs = &ice->state.shaders[stage];
3858 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3859
3860 if (!shader)
3861 continue;
3862
3863 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
3864
3865 for (int i = 0; i < 4; i++) {
3866 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
3867
3868 if (range->length == 0)
3869 continue;
3870
3871 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
3872 struct iris_resource *res = (void *) cbuf->data.res;
3873
3874 if (res)
3875 iris_use_pinned_bo(batch, res->bo, false);
3876 else
3877 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
3878 }
3879 }
3880
3881 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3882 if (clean & (IRIS_DIRTY_BINDINGS_VS << stage)) {
3883 /* Re-pin any buffers referred to by the binding table. */
3884 iris_populate_binding_table(ice, batch, stage, true);
3885 }
3886 }
3887
3888 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3889 struct iris_shader_state *shs = &ice->state.shaders[stage];
3890 struct pipe_resource *res = shs->sampler_table.res;
3891 if (res)
3892 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
3893 }
3894
3895 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3896 if (clean & (IRIS_DIRTY_VS << stage)) {
3897 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3898
3899 if (shader) {
3900 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
3901 iris_use_pinned_bo(batch, bo, false);
3902
3903 struct brw_stage_prog_data *prog_data = shader->prog_data;
3904
3905 if (prog_data->total_scratch > 0) {
3906 struct iris_bo *bo =
3907 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
3908 iris_use_pinned_bo(batch, bo, true);
3909 }
3910 }
3911 }
3912 }
3913
3914 if (clean & IRIS_DIRTY_DEPTH_BUFFER) {
3915 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
3916
3917 if (cso_fb->zsbuf) {
3918 struct iris_resource *zres, *sres;
3919 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
3920 &zres, &sres);
3921 if (zres) {
3922 iris_use_pinned_bo(batch, zres->bo,
3923 ice->state.depth_writes_enabled);
3924 }
3925 if (sres) {
3926 iris_use_pinned_bo(batch, sres->bo,
3927 ice->state.stencil_writes_enabled);
3928 }
3929 }
3930 }
3931
3932 if (draw->index_size == 0 && ice->state.last_res.index_buffer) {
3933 /* This draw didn't emit a new index buffer, so we are inheriting the
3934 * older index buffer. This draw didn't need it, but future ones may.
3935 */
3936 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
3937 iris_use_pinned_bo(batch, bo, false);
3938 }
3939
3940 if (clean & IRIS_DIRTY_VERTEX_BUFFERS) {
3941 uint64_t bound = ice->state.bound_vertex_buffers;
3942 while (bound) {
3943 const int i = u_bit_scan64(&bound);
3944 struct pipe_resource *res = genx->vertex_buffers[i].resource;
3945 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
3946 }
3947 }
3948 }
3949
3950 static void
3951 iris_restore_compute_saved_bos(struct iris_context *ice,
3952 struct iris_batch *batch,
3953 const struct pipe_grid_info *grid)
3954 {
3955 const uint64_t clean = ~ice->state.dirty;
3956
3957 const int stage = MESA_SHADER_COMPUTE;
3958 struct iris_shader_state *shs = &ice->state.shaders[stage];
3959
3960 if (clean & IRIS_DIRTY_CONSTANTS_CS) {
3961 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3962
3963 if (shader) {
3964 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
3965 const struct brw_ubo_range *range = &prog_data->ubo_ranges[0];
3966
3967 if (range->length > 0) {
3968 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
3969 struct iris_resource *res = (void *) cbuf->data.res;
3970
3971 if (res)
3972 iris_use_pinned_bo(batch, res->bo, false);
3973 else
3974 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
3975 }
3976 }
3977 }
3978
3979 if (clean & IRIS_DIRTY_BINDINGS_CS) {
3980 /* Re-pin any buffers referred to by the binding table. */
3981 iris_populate_binding_table(ice, batch, stage, true);
3982 }
3983
3984 struct pipe_resource *sampler_res = shs->sampler_table.res;
3985 if (sampler_res)
3986 iris_use_pinned_bo(batch, iris_resource_bo(sampler_res), false);
3987
3988 if (clean & IRIS_DIRTY_CS) {
3989 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3990
3991 if (shader) {
3992 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
3993 iris_use_pinned_bo(batch, bo, false);
3994
3995 struct brw_stage_prog_data *prog_data = shader->prog_data;
3996
3997 if (prog_data->total_scratch > 0) {
3998 struct iris_bo *bo =
3999 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4000 iris_use_pinned_bo(batch, bo, true);
4001 }
4002 }
4003 }
4004 }
4005
4006 /**
4007 * Possibly emit STATE_BASE_ADDRESS to update Surface State Base Address.
4008 */
4009 static void
4010 iris_update_surface_base_address(struct iris_batch *batch,
4011 struct iris_binder *binder)
4012 {
4013 if (batch->last_surface_base_address == binder->bo->gtt_offset)
4014 return;
4015
4016 flush_for_state_base_change(batch);
4017
4018 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
4019 sba.SurfaceStateMOCS = MOCS_WB;
4020 sba.SurfaceStateBaseAddressModifyEnable = true;
4021 sba.SurfaceStateBaseAddress = ro_bo(binder->bo, 0);
4022 }
4023
4024 batch->last_surface_base_address = binder->bo->gtt_offset;
4025 }
4026
4027 static void
4028 iris_upload_dirty_render_state(struct iris_context *ice,
4029 struct iris_batch *batch,
4030 const struct pipe_draw_info *draw)
4031 {
4032 const uint64_t dirty = ice->state.dirty;
4033
4034 if (!(dirty & IRIS_ALL_DIRTY_FOR_RENDER))
4035 return;
4036
4037 struct iris_genx_state *genx = ice->state.genx;
4038 struct iris_binder *binder = &ice->state.binder;
4039 struct brw_wm_prog_data *wm_prog_data = (void *)
4040 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
4041
4042 if (dirty & IRIS_DIRTY_CC_VIEWPORT) {
4043 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4044 uint32_t cc_vp_address;
4045
4046 /* XXX: could avoid streaming for depth_clip [0,1] case. */
4047 uint32_t *cc_vp_map =
4048 stream_state(batch, ice->state.dynamic_uploader,
4049 &ice->state.last_res.cc_vp,
4050 4 * ice->state.num_viewports *
4051 GENX(CC_VIEWPORT_length), 32, &cc_vp_address);
4052 for (int i = 0; i < ice->state.num_viewports; i++) {
4053 float zmin, zmax;
4054 util_viewport_zmin_zmax(&ice->state.viewports[i],
4055 cso_rast->clip_halfz, &zmin, &zmax);
4056 if (cso_rast->depth_clip_near)
4057 zmin = 0.0;
4058 if (cso_rast->depth_clip_far)
4059 zmax = 1.0;
4060
4061 iris_pack_state(GENX(CC_VIEWPORT), cc_vp_map, ccv) {
4062 ccv.MinimumDepth = zmin;
4063 ccv.MaximumDepth = zmax;
4064 }
4065
4066 cc_vp_map += GENX(CC_VIEWPORT_length);
4067 }
4068
4069 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
4070 ptr.CCViewportPointer = cc_vp_address;
4071 }
4072 }
4073
4074 if (dirty & IRIS_DIRTY_SF_CL_VIEWPORT) {
4075 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4076 uint32_t sf_cl_vp_address;
4077 uint32_t *vp_map =
4078 stream_state(batch, ice->state.dynamic_uploader,
4079 &ice->state.last_res.sf_cl_vp,
4080 4 * ice->state.num_viewports *
4081 GENX(SF_CLIP_VIEWPORT_length), 64, &sf_cl_vp_address);
4082
4083 for (unsigned i = 0; i < ice->state.num_viewports; i++) {
4084 const struct pipe_viewport_state *state = &ice->state.viewports[i];
4085 float gb_xmin, gb_xmax, gb_ymin, gb_ymax;
4086
4087 float vp_xmin = viewport_extent(state, 0, -1.0f);
4088 float vp_xmax = viewport_extent(state, 0, 1.0f);
4089 float vp_ymin = viewport_extent(state, 1, -1.0f);
4090 float vp_ymax = viewport_extent(state, 1, 1.0f);
4091
4092 calculate_guardband_size(cso_fb->width, cso_fb->height,
4093 state->scale[0], state->scale[1],
4094 state->translate[0], state->translate[1],
4095 &gb_xmin, &gb_xmax, &gb_ymin, &gb_ymax);
4096
4097 iris_pack_state(GENX(SF_CLIP_VIEWPORT), vp_map, vp) {
4098 vp.ViewportMatrixElementm00 = state->scale[0];
4099 vp.ViewportMatrixElementm11 = state->scale[1];
4100 vp.ViewportMatrixElementm22 = state->scale[2];
4101 vp.ViewportMatrixElementm30 = state->translate[0];
4102 vp.ViewportMatrixElementm31 = state->translate[1];
4103 vp.ViewportMatrixElementm32 = state->translate[2];
4104 vp.XMinClipGuardband = gb_xmin;
4105 vp.XMaxClipGuardband = gb_xmax;
4106 vp.YMinClipGuardband = gb_ymin;
4107 vp.YMaxClipGuardband = gb_ymax;
4108 vp.XMinViewPort = MAX2(vp_xmin, 0);
4109 vp.XMaxViewPort = MIN2(vp_xmax, cso_fb->width) - 1;
4110 vp.YMinViewPort = MAX2(vp_ymin, 0);
4111 vp.YMaxViewPort = MIN2(vp_ymax, cso_fb->height) - 1;
4112 }
4113
4114 vp_map += GENX(SF_CLIP_VIEWPORT_length);
4115 }
4116
4117 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
4118 ptr.SFClipViewportPointer = sf_cl_vp_address;
4119 }
4120 }
4121
4122 if (dirty & IRIS_DIRTY_URB) {
4123 iris_upload_urb_config(ice, batch);
4124 }
4125
4126 if (dirty & IRIS_DIRTY_BLEND_STATE) {
4127 struct iris_blend_state *cso_blend = ice->state.cso_blend;
4128 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4129 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
4130 const int header_dwords = GENX(BLEND_STATE_length);
4131 const int rt_dwords = cso_fb->nr_cbufs * GENX(BLEND_STATE_ENTRY_length);
4132 uint32_t blend_offset;
4133 uint32_t *blend_map =
4134 stream_state(batch, ice->state.dynamic_uploader,
4135 &ice->state.last_res.blend,
4136 4 * (header_dwords + rt_dwords), 64, &blend_offset);
4137
4138 uint32_t blend_state_header;
4139 iris_pack_state(GENX(BLEND_STATE), &blend_state_header, bs) {
4140 bs.AlphaTestEnable = cso_zsa->alpha.enabled;
4141 bs.AlphaTestFunction = translate_compare_func(cso_zsa->alpha.func);
4142 }
4143
4144 blend_map[0] = blend_state_header | cso_blend->blend_state[0];
4145 memcpy(&blend_map[1], &cso_blend->blend_state[1], 4 * rt_dwords);
4146
4147 iris_emit_cmd(batch, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
4148 ptr.BlendStatePointer = blend_offset;
4149 ptr.BlendStatePointerValid = true;
4150 }
4151 }
4152
4153 if (dirty & IRIS_DIRTY_COLOR_CALC_STATE) {
4154 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
4155 #if GEN_GEN == 8
4156 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
4157 #endif
4158 uint32_t cc_offset;
4159 void *cc_map =
4160 stream_state(batch, ice->state.dynamic_uploader,
4161 &ice->state.last_res.color_calc,
4162 sizeof(uint32_t) * GENX(COLOR_CALC_STATE_length),
4163 64, &cc_offset);
4164 iris_pack_state(GENX(COLOR_CALC_STATE), cc_map, cc) {
4165 cc.AlphaTestFormat = ALPHATEST_FLOAT32;
4166 cc.AlphaReferenceValueAsFLOAT32 = cso->alpha.ref_value;
4167 cc.BlendConstantColorRed = ice->state.blend_color.color[0];
4168 cc.BlendConstantColorGreen = ice->state.blend_color.color[1];
4169 cc.BlendConstantColorBlue = ice->state.blend_color.color[2];
4170 cc.BlendConstantColorAlpha = ice->state.blend_color.color[3];
4171 #if GEN_GEN == 8
4172 cc.StencilReferenceValue = p_stencil_refs->ref_value[0];
4173 cc.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
4174 #endif
4175 }
4176 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
4177 ptr.ColorCalcStatePointer = cc_offset;
4178 ptr.ColorCalcStatePointerValid = true;
4179 }
4180 }
4181
4182 /* Upload constants for TCS passthrough. */
4183 if ((dirty & IRIS_DIRTY_CONSTANTS_TCS) &&
4184 ice->shaders.prog[MESA_SHADER_TESS_CTRL] &&
4185 !ice->shaders.uncompiled[MESA_SHADER_TESS_CTRL]) {
4186 struct iris_compiled_shader *tes_shader = ice->shaders.prog[MESA_SHADER_TESS_EVAL];
4187 assert(tes_shader);
4188
4189 /* Passthrough always copies 2 vec4s, so when uploading data we ensure
4190 * it is in the right layout for TES.
4191 */
4192 float hdr[8] = {};
4193 struct brw_tes_prog_data *tes_prog_data = (void *) tes_shader->prog_data;
4194 switch (tes_prog_data->domain) {
4195 case BRW_TESS_DOMAIN_QUAD:
4196 for (int i = 0; i < 4; i++)
4197 hdr[7 - i] = ice->state.default_outer_level[i];
4198 hdr[3] = ice->state.default_inner_level[0];
4199 hdr[2] = ice->state.default_inner_level[1];
4200 break;
4201 case BRW_TESS_DOMAIN_TRI:
4202 for (int i = 0; i < 3; i++)
4203 hdr[7 - i] = ice->state.default_outer_level[i];
4204 hdr[4] = ice->state.default_inner_level[0];
4205 break;
4206 case BRW_TESS_DOMAIN_ISOLINE:
4207 hdr[7] = ice->state.default_outer_level[1];
4208 hdr[6] = ice->state.default_outer_level[0];
4209 break;
4210 }
4211
4212 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_TESS_CTRL];
4213 struct iris_const_buffer *cbuf = &shs->constbuf[0];
4214 u_upload_data(ice->ctx.const_uploader, 0, sizeof(hdr), 32,
4215 &hdr[0], &cbuf->data.offset,
4216 &cbuf->data.res);
4217 }
4218
4219 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4220 if (!(dirty & (IRIS_DIRTY_CONSTANTS_VS << stage)))
4221 continue;
4222
4223 struct iris_shader_state *shs = &ice->state.shaders[stage];
4224 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4225
4226 if (!shader)
4227 continue;
4228
4229 if (shs->cbuf0_needs_upload)
4230 upload_uniforms(ice, stage);
4231
4232 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4233
4234 iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_VS), pkt) {
4235 pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
4236 if (prog_data) {
4237 /* The Skylake PRM contains the following restriction:
4238 *
4239 * "The driver must ensure The following case does not occur
4240 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
4241 * buffer 3 read length equal to zero committed followed by a
4242 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
4243 * zero committed."
4244 *
4245 * To avoid this, we program the buffers in the highest slots.
4246 * This way, slot 0 is only used if slot 3 is also used.
4247 */
4248 int n = 3;
4249
4250 for (int i = 3; i >= 0; i--) {
4251 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4252
4253 if (range->length == 0)
4254 continue;
4255
4256 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
4257 struct iris_resource *res = (void *) cbuf->data.res;
4258
4259 assert(cbuf->data.offset % 32 == 0);
4260
4261 pkt.ConstantBody.ReadLength[n] = range->length;
4262 pkt.ConstantBody.Buffer[n] =
4263 res ? ro_bo(res->bo, range->start * 32 + cbuf->data.offset)
4264 : ro_bo(batch->screen->workaround_bo, 0);
4265 n--;
4266 }
4267 }
4268 }
4269 }
4270
4271 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4272 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4273 iris_emit_cmd(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), ptr) {
4274 ptr._3DCommandSubOpcode = 38 + stage;
4275 ptr.PointertoVSBindingTable = binder->bt_offset[stage];
4276 }
4277 }
4278 }
4279
4280 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4281 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4282 iris_populate_binding_table(ice, batch, stage, false);
4283 }
4284 }
4285
4286 if (ice->state.need_border_colors)
4287 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
4288
4289 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4290 if (!(dirty & (IRIS_DIRTY_SAMPLER_STATES_VS << stage)) ||
4291 !ice->shaders.prog[stage])
4292 continue;
4293
4294 struct iris_shader_state *shs = &ice->state.shaders[stage];
4295 struct pipe_resource *res = shs->sampler_table.res;
4296 if (res)
4297 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4298
4299 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
4300 ptr._3DCommandSubOpcode = 43 + stage;
4301 ptr.PointertoVSSamplerState = shs->sampler_table.offset;
4302 }
4303 }
4304
4305 if (dirty & IRIS_DIRTY_MULTISAMPLE) {
4306 iris_emit_cmd(batch, GENX(3DSTATE_MULTISAMPLE), ms) {
4307 ms.PixelLocation =
4308 ice->state.cso_rast->half_pixel_center ? CENTER : UL_CORNER;
4309 if (ice->state.framebuffer.samples > 0)
4310 ms.NumberofMultisamples = ffs(ice->state.framebuffer.samples) - 1;
4311 }
4312 }
4313
4314 if (dirty & IRIS_DIRTY_SAMPLE_MASK) {
4315 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_MASK), ms) {
4316 ms.SampleMask = ice->state.sample_mask;
4317 }
4318 }
4319
4320 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4321 if (!(dirty & (IRIS_DIRTY_VS << stage)))
4322 continue;
4323
4324 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4325
4326 if (shader) {
4327 struct iris_resource *cache = (void *) shader->assembly.res;
4328 iris_use_pinned_bo(batch, cache->bo, false);
4329 iris_batch_emit(batch, shader->derived_data,
4330 iris_derived_program_state_size(stage));
4331 } else {
4332 if (stage == MESA_SHADER_TESS_EVAL) {
4333 iris_emit_cmd(batch, GENX(3DSTATE_HS), hs);
4334 iris_emit_cmd(batch, GENX(3DSTATE_TE), te);
4335 iris_emit_cmd(batch, GENX(3DSTATE_DS), ds);
4336 } else if (stage == MESA_SHADER_GEOMETRY) {
4337 iris_emit_cmd(batch, GENX(3DSTATE_GS), gs);
4338 }
4339 }
4340 }
4341
4342 if (ice->state.streamout_active) {
4343 if (dirty & IRIS_DIRTY_SO_BUFFERS) {
4344 iris_batch_emit(batch, genx->so_buffers,
4345 4 * 4 * GENX(3DSTATE_SO_BUFFER_length));
4346 for (int i = 0; i < 4; i++) {
4347 struct iris_stream_output_target *tgt =
4348 (void *) ice->state.so_target[i];
4349 if (tgt) {
4350 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
4351 true);
4352 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
4353 true);
4354 }
4355 }
4356 }
4357
4358 if ((dirty & IRIS_DIRTY_SO_DECL_LIST) && ice->state.streamout) {
4359 uint32_t *decl_list =
4360 ice->state.streamout + GENX(3DSTATE_STREAMOUT_length);
4361 iris_batch_emit(batch, decl_list, 4 * ((decl_list[0] & 0xff) + 2));
4362 }
4363
4364 if (dirty & IRIS_DIRTY_STREAMOUT) {
4365 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4366
4367 uint32_t dynamic_sol[GENX(3DSTATE_STREAMOUT_length)];
4368 iris_pack_command(GENX(3DSTATE_STREAMOUT), dynamic_sol, sol) {
4369 sol.SOFunctionEnable = true;
4370 sol.SOStatisticsEnable = true;
4371
4372 sol.RenderingDisable = cso_rast->rasterizer_discard &&
4373 !ice->state.prims_generated_query_active;
4374 sol.ReorderMode = cso_rast->flatshade_first ? LEADING : TRAILING;
4375 }
4376
4377 assert(ice->state.streamout);
4378
4379 iris_emit_merge(batch, ice->state.streamout, dynamic_sol,
4380 GENX(3DSTATE_STREAMOUT_length));
4381 }
4382 } else {
4383 if (dirty & IRIS_DIRTY_STREAMOUT) {
4384 iris_emit_cmd(batch, GENX(3DSTATE_STREAMOUT), sol);
4385 }
4386 }
4387
4388 if (dirty & IRIS_DIRTY_CLIP) {
4389 struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4390 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4391
4392 uint32_t dynamic_clip[GENX(3DSTATE_CLIP_length)];
4393 iris_pack_command(GENX(3DSTATE_CLIP), &dynamic_clip, cl) {
4394 cl.StatisticsEnable = ice->state.statistics_counters_enabled;
4395 cl.ClipMode = cso_rast->rasterizer_discard ? CLIPMODE_REJECT_ALL
4396 : CLIPMODE_NORMAL;
4397 if (wm_prog_data->barycentric_interp_modes &
4398 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
4399 cl.NonPerspectiveBarycentricEnable = true;
4400
4401 cl.ForceZeroRTAIndexEnable = cso_fb->layers == 0;
4402 cl.MaximumVPIndex = ice->state.num_viewports - 1;
4403 }
4404 iris_emit_merge(batch, cso_rast->clip, dynamic_clip,
4405 ARRAY_SIZE(cso_rast->clip));
4406 }
4407
4408 if (dirty & IRIS_DIRTY_RASTER) {
4409 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4410 iris_batch_emit(batch, cso->raster, sizeof(cso->raster));
4411 iris_batch_emit(batch, cso->sf, sizeof(cso->sf));
4412
4413 }
4414
4415 if (dirty & IRIS_DIRTY_WM) {
4416 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4417 uint32_t dynamic_wm[GENX(3DSTATE_WM_length)];
4418
4419 iris_pack_command(GENX(3DSTATE_WM), &dynamic_wm, wm) {
4420 wm.StatisticsEnable = ice->state.statistics_counters_enabled;
4421
4422 wm.BarycentricInterpolationMode =
4423 wm_prog_data->barycentric_interp_modes;
4424
4425 if (wm_prog_data->early_fragment_tests)
4426 wm.EarlyDepthStencilControl = EDSC_PREPS;
4427 else if (wm_prog_data->has_side_effects)
4428 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
4429 }
4430 iris_emit_merge(batch, cso->wm, dynamic_wm, ARRAY_SIZE(cso->wm));
4431 }
4432
4433 if (dirty & IRIS_DIRTY_SBE) {
4434 iris_emit_sbe(batch, ice);
4435 }
4436
4437 if (dirty & IRIS_DIRTY_PS_BLEND) {
4438 struct iris_blend_state *cso_blend = ice->state.cso_blend;
4439 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
4440 uint32_t dynamic_pb[GENX(3DSTATE_PS_BLEND_length)];
4441 iris_pack_command(GENX(3DSTATE_PS_BLEND), &dynamic_pb, pb) {
4442 pb.HasWriteableRT = true; // XXX: comes from somewhere :(
4443 pb.AlphaTestEnable = cso_zsa->alpha.enabled;
4444 }
4445
4446 iris_emit_merge(batch, cso_blend->ps_blend, dynamic_pb,
4447 ARRAY_SIZE(cso_blend->ps_blend));
4448 }
4449
4450 if (dirty & IRIS_DIRTY_WM_DEPTH_STENCIL) {
4451 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
4452 #if GEN_GEN >= 9
4453 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
4454 uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
4455 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
4456 wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
4457 wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
4458 }
4459 iris_emit_merge(batch, cso->wmds, stencil_refs, ARRAY_SIZE(cso->wmds));
4460 #else
4461 iris_batch_emit(batch, cso->wmds, sizeof(cso->wmds));
4462 #endif
4463 }
4464
4465 if (dirty & IRIS_DIRTY_SCISSOR_RECT) {
4466 uint32_t scissor_offset =
4467 emit_state(batch, ice->state.dynamic_uploader,
4468 &ice->state.last_res.scissor,
4469 ice->state.scissors,
4470 sizeof(struct pipe_scissor_state) *
4471 ice->state.num_viewports, 32);
4472
4473 iris_emit_cmd(batch, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
4474 ptr.ScissorRectPointer = scissor_offset;
4475 }
4476 }
4477
4478 if (dirty & IRIS_DIRTY_DEPTH_BUFFER) {
4479 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4480 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
4481
4482 iris_batch_emit(batch, cso_z->packets, sizeof(cso_z->packets));
4483
4484 if (cso_fb->zsbuf) {
4485 struct iris_resource *zres, *sres;
4486 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
4487 &zres, &sres);
4488 if (zres) {
4489 iris_use_pinned_bo(batch, zres->bo,
4490 ice->state.depth_writes_enabled);
4491 }
4492
4493 if (sres) {
4494 iris_use_pinned_bo(batch, sres->bo,
4495 ice->state.stencil_writes_enabled);
4496 }
4497 }
4498 }
4499
4500 if (dirty & IRIS_DIRTY_POLYGON_STIPPLE) {
4501 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
4502 for (int i = 0; i < 32; i++) {
4503 poly.PatternRow[i] = ice->state.poly_stipple.stipple[i];
4504 }
4505 }
4506 }
4507
4508 if (dirty & IRIS_DIRTY_LINE_STIPPLE) {
4509 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4510 iris_batch_emit(batch, cso->line_stipple, sizeof(cso->line_stipple));
4511 }
4512
4513 if (dirty & IRIS_DIRTY_VF_TOPOLOGY) {
4514 iris_emit_cmd(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
4515 topo.PrimitiveTopologyType =
4516 translate_prim_type(draw->mode, draw->vertices_per_patch);
4517 }
4518 }
4519
4520 if (dirty & IRIS_DIRTY_VERTEX_BUFFERS) {
4521 int count = util_bitcount64(ice->state.bound_vertex_buffers);
4522
4523 if (count) {
4524 /* The VF cache designers cut corners, and made the cache key's
4525 * <VertexBufferIndex, Memory Address> tuple only consider the bottom
4526 * 32 bits of the address. If you have two vertex buffers which get
4527 * placed exactly 4 GiB apart and use them in back-to-back draw calls,
4528 * you can get collisions (even within a single batch).
4529 *
4530 * So, we need to do a VF cache invalidate if the buffer for a VB
4531 * slot slot changes [48:32] address bits from the previous time.
4532 */
4533 unsigned flush_flags = 0;
4534
4535 uint64_t bound = ice->state.bound_vertex_buffers;
4536 while (bound) {
4537 const int i = u_bit_scan64(&bound);
4538 uint16_t high_bits = 0;
4539
4540 struct iris_resource *res =
4541 (void *) genx->vertex_buffers[i].resource;
4542 if (res) {
4543 iris_use_pinned_bo(batch, res->bo, false);
4544
4545 high_bits = res->bo->gtt_offset >> 32ull;
4546 if (high_bits != ice->state.last_vbo_high_bits[i]) {
4547 flush_flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE |
4548 PIPE_CONTROL_CS_STALL;
4549 ice->state.last_vbo_high_bits[i] = high_bits;
4550 }
4551
4552 /* If the buffer was written to by streamout, we may need
4553 * to stall so those writes land and become visible to the
4554 * vertex fetcher.
4555 *
4556 * TODO: This may stall more than necessary.
4557 */
4558 if (res->bind_history & PIPE_BIND_STREAM_OUTPUT)
4559 flush_flags |= PIPE_CONTROL_CS_STALL;
4560 }
4561 }
4562
4563 if (flush_flags)
4564 iris_emit_pipe_control_flush(batch, flush_flags);
4565
4566 const unsigned vb_dwords = GENX(VERTEX_BUFFER_STATE_length);
4567
4568 uint32_t *map =
4569 iris_get_command_space(batch, 4 * (1 + vb_dwords * count));
4570 _iris_pack_command(batch, GENX(3DSTATE_VERTEX_BUFFERS), map, vb) {
4571 vb.DWordLength = (vb_dwords * count + 1) - 2;
4572 }
4573 map += 1;
4574
4575 bound = ice->state.bound_vertex_buffers;
4576 while (bound) {
4577 const int i = u_bit_scan64(&bound);
4578 memcpy(map, genx->vertex_buffers[i].state,
4579 sizeof(uint32_t) * vb_dwords);
4580 map += vb_dwords;
4581 }
4582 }
4583 }
4584
4585 if (dirty & IRIS_DIRTY_VERTEX_ELEMENTS) {
4586 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
4587 const unsigned entries = MAX2(cso->count, 1);
4588 iris_batch_emit(batch, cso->vertex_elements, sizeof(uint32_t) *
4589 (1 + entries * GENX(VERTEX_ELEMENT_STATE_length)));
4590 iris_batch_emit(batch, cso->vf_instancing, sizeof(uint32_t) *
4591 entries * GENX(3DSTATE_VF_INSTANCING_length));
4592 }
4593
4594 if (dirty & IRIS_DIRTY_VF_SGVS) {
4595 const struct brw_vs_prog_data *vs_prog_data = (void *)
4596 ice->shaders.prog[MESA_SHADER_VERTEX]->prog_data;
4597 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
4598
4599 iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS), sgv) {
4600 if (vs_prog_data->uses_vertexid) {
4601 sgv.VertexIDEnable = true;
4602 sgv.VertexIDComponentNumber = 2;
4603 sgv.VertexIDElementOffset = cso->count;
4604 }
4605
4606 if (vs_prog_data->uses_instanceid) {
4607 sgv.InstanceIDEnable = true;
4608 sgv.InstanceIDComponentNumber = 3;
4609 sgv.InstanceIDElementOffset = cso->count;
4610 }
4611 }
4612 }
4613
4614 if (dirty & IRIS_DIRTY_VF) {
4615 iris_emit_cmd(batch, GENX(3DSTATE_VF), vf) {
4616 if (draw->primitive_restart) {
4617 vf.IndexedDrawCutIndexEnable = true;
4618 vf.CutIndex = draw->restart_index;
4619 }
4620 }
4621 }
4622
4623 // XXX: Gen8 - PMA fix
4624 }
4625
4626 static void
4627 iris_upload_render_state(struct iris_context *ice,
4628 struct iris_batch *batch,
4629 const struct pipe_draw_info *draw)
4630 {
4631 /* Always pin the binder. If we're emitting new binding table pointers,
4632 * we need it. If not, we're probably inheriting old tables via the
4633 * context, and need it anyway. Since true zero-bindings cases are
4634 * practically non-existent, just pin it and avoid last_res tracking.
4635 */
4636 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
4637
4638 if (!batch->contains_draw) {
4639 iris_restore_render_saved_bos(ice, batch, draw);
4640 batch->contains_draw = true;
4641 }
4642
4643 iris_upload_dirty_render_state(ice, batch, draw);
4644
4645 if (draw->index_size > 0) {
4646 unsigned offset;
4647
4648 if (draw->has_user_indices) {
4649 u_upload_data(ice->ctx.stream_uploader, 0,
4650 draw->count * draw->index_size, 4, draw->index.user,
4651 &offset, &ice->state.last_res.index_buffer);
4652 } else {
4653 struct iris_resource *res = (void *) draw->index.resource;
4654 res->bind_history |= PIPE_BIND_INDEX_BUFFER;
4655
4656 pipe_resource_reference(&ice->state.last_res.index_buffer,
4657 draw->index.resource);
4658 offset = 0;
4659 }
4660
4661 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
4662
4663 iris_emit_cmd(batch, GENX(3DSTATE_INDEX_BUFFER), ib) {
4664 ib.IndexFormat = draw->index_size >> 1;
4665 ib.MOCS = mocs(bo);
4666 ib.BufferSize = bo->size;
4667 ib.BufferStartingAddress = ro_bo(bo, offset);
4668 }
4669
4670 /* The VF cache key only uses 32-bits, see vertex buffer comment above */
4671 uint16_t high_bits = bo->gtt_offset >> 32ull;
4672 if (high_bits != ice->state.last_index_bo_high_bits) {
4673 iris_emit_pipe_control_flush(batch, PIPE_CONTROL_VF_CACHE_INVALIDATE |
4674 PIPE_CONTROL_CS_STALL);
4675 ice->state.last_index_bo_high_bits = high_bits;
4676 }
4677 }
4678
4679 #define _3DPRIM_END_OFFSET 0x2420
4680 #define _3DPRIM_START_VERTEX 0x2430
4681 #define _3DPRIM_VERTEX_COUNT 0x2434
4682 #define _3DPRIM_INSTANCE_COUNT 0x2438
4683 #define _3DPRIM_START_INSTANCE 0x243C
4684 #define _3DPRIM_BASE_VERTEX 0x2440
4685
4686 if (draw->indirect) {
4687 /* We don't support this MultidrawIndirect. */
4688 assert(!draw->indirect->indirect_draw_count);
4689
4690 struct iris_bo *bo = iris_resource_bo(draw->indirect->buffer);
4691 assert(bo);
4692
4693 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4694 lrm.RegisterAddress = _3DPRIM_VERTEX_COUNT;
4695 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 0);
4696 }
4697 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4698 lrm.RegisterAddress = _3DPRIM_INSTANCE_COUNT;
4699 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 4);
4700 }
4701 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4702 lrm.RegisterAddress = _3DPRIM_START_VERTEX;
4703 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 8);
4704 }
4705 if (draw->index_size) {
4706 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4707 lrm.RegisterAddress = _3DPRIM_BASE_VERTEX;
4708 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
4709 }
4710 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4711 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
4712 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 16);
4713 }
4714 } else {
4715 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4716 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
4717 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
4718 }
4719 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
4720 lri.RegisterOffset = _3DPRIM_BASE_VERTEX;
4721 lri.DataDWord = 0;
4722 }
4723 }
4724 } else if (draw->count_from_stream_output) {
4725 struct iris_stream_output_target *so =
4726 (void *) draw->count_from_stream_output;
4727
4728 // XXX: avoid if possible
4729 iris_emit_pipe_control_flush(batch, PIPE_CONTROL_CS_STALL);
4730
4731 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4732 lrm.RegisterAddress = CS_GPR(0);
4733 lrm.MemoryAddress =
4734 ro_bo(iris_resource_bo(so->offset.res), so->offset.offset);
4735 }
4736 iris_math_div32_gpr0(ice, batch, so->stride);
4737 _iris_emit_lrr(batch, _3DPRIM_VERTEX_COUNT, CS_GPR(0));
4738
4739 _iris_emit_lri(batch, _3DPRIM_START_VERTEX, 0);
4740 _iris_emit_lri(batch, _3DPRIM_BASE_VERTEX, 0);
4741 _iris_emit_lri(batch, _3DPRIM_START_INSTANCE, 0);
4742 _iris_emit_lri(batch, _3DPRIM_INSTANCE_COUNT, draw->instance_count);
4743 }
4744
4745 iris_emit_cmd(batch, GENX(3DPRIMITIVE), prim) {
4746 prim.VertexAccessType = draw->index_size > 0 ? RANDOM : SEQUENTIAL;
4747 prim.PredicateEnable =
4748 ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT;
4749
4750 if (draw->indirect || draw->count_from_stream_output) {
4751 prim.IndirectParameterEnable = true;
4752 } else {
4753 prim.StartInstanceLocation = draw->start_instance;
4754 prim.InstanceCount = draw->instance_count;
4755 prim.VertexCountPerInstance = draw->count;
4756
4757 // XXX: this is probably bonkers.
4758 prim.StartVertexLocation = draw->start;
4759
4760 if (draw->index_size) {
4761 prim.BaseVertexLocation += draw->index_bias;
4762 } else {
4763 prim.StartVertexLocation += draw->index_bias;
4764 }
4765
4766 //prim.BaseVertexLocation = ...;
4767 }
4768 }
4769 }
4770
4771 static void
4772 iris_upload_compute_state(struct iris_context *ice,
4773 struct iris_batch *batch,
4774 const struct pipe_grid_info *grid)
4775 {
4776 const uint64_t dirty = ice->state.dirty;
4777 struct iris_screen *screen = batch->screen;
4778 const struct gen_device_info *devinfo = &screen->devinfo;
4779 struct iris_binder *binder = &ice->state.binder;
4780 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
4781 struct iris_compiled_shader *shader =
4782 ice->shaders.prog[MESA_SHADER_COMPUTE];
4783 struct brw_stage_prog_data *prog_data = shader->prog_data;
4784 struct brw_cs_prog_data *cs_prog_data = (void *) prog_data;
4785
4786 /* Always pin the binder. If we're emitting new binding table pointers,
4787 * we need it. If not, we're probably inheriting old tables via the
4788 * context, and need it anyway. Since true zero-bindings cases are
4789 * practically non-existent, just pin it and avoid last_res tracking.
4790 */
4791 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
4792
4793 if ((dirty & IRIS_DIRTY_CONSTANTS_CS) && shs->cbuf0_needs_upload)
4794 upload_uniforms(ice, MESA_SHADER_COMPUTE);
4795
4796 if (dirty & IRIS_DIRTY_BINDINGS_CS)
4797 iris_populate_binding_table(ice, batch, MESA_SHADER_COMPUTE, false);
4798
4799 iris_use_optional_res(batch, shs->sampler_table.res, false);
4800 iris_use_pinned_bo(batch, iris_resource_bo(shader->assembly.res), false);
4801
4802 if (ice->state.need_border_colors)
4803 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
4804
4805 if (dirty & IRIS_DIRTY_CS) {
4806 /* The MEDIA_VFE_STATE documentation for Gen8+ says:
4807 *
4808 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
4809 * the only bits that are changed are scoreboard related: Scoreboard
4810 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard Delta. For
4811 * these scoreboard related states, a MEDIA_STATE_FLUSH is
4812 * sufficient."
4813 */
4814 iris_emit_pipe_control_flush(batch, PIPE_CONTROL_CS_STALL);
4815
4816 iris_emit_cmd(batch, GENX(MEDIA_VFE_STATE), vfe) {
4817 if (prog_data->total_scratch) {
4818 struct iris_bo *bo =
4819 iris_get_scratch_space(ice, prog_data->total_scratch,
4820 MESA_SHADER_COMPUTE);
4821 vfe.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
4822 vfe.ScratchSpaceBasePointer = rw_bo(bo, 0);
4823 }
4824
4825 vfe.MaximumNumberofThreads =
4826 devinfo->max_cs_threads * screen->subslice_total - 1;
4827 #if GEN_GEN < 11
4828 vfe.ResetGatewayTimer =
4829 Resettingrelativetimerandlatchingtheglobaltimestamp;
4830 #endif
4831 #if GEN_GEN == 8
4832 vfe.BypassGatewayControl = true;
4833 #endif
4834 vfe.NumberofURBEntries = 2;
4835 vfe.URBEntryAllocationSize = 2;
4836
4837 // XXX: Use Indirect Payload Storage?
4838 vfe.CURBEAllocationSize =
4839 ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
4840 cs_prog_data->push.cross_thread.regs, 2);
4841 }
4842 }
4843
4844 // XXX: hack iris_set_constant_buffers to upload these thread counts
4845 // XXX: along with regular uniforms for compute shaders, somehow.
4846
4847 uint32_t curbe_data_offset = 0;
4848 // TODO: Move subgroup-id into uniforms ubo so we can push uniforms
4849 assert(cs_prog_data->push.cross_thread.dwords == 0 &&
4850 cs_prog_data->push.per_thread.dwords == 1 &&
4851 cs_prog_data->base.param[0] == BRW_PARAM_BUILTIN_SUBGROUP_ID);
4852 struct pipe_resource *curbe_data_res = NULL;
4853 uint32_t *curbe_data_map =
4854 stream_state(batch, ice->state.dynamic_uploader, &curbe_data_res,
4855 ALIGN(cs_prog_data->push.total.size, 64), 64,
4856 &curbe_data_offset);
4857 assert(curbe_data_map);
4858 memset(curbe_data_map, 0x5a, ALIGN(cs_prog_data->push.total.size, 64));
4859 iris_fill_cs_push_const_buffer(cs_prog_data, curbe_data_map);
4860
4861 if (dirty & IRIS_DIRTY_CONSTANTS_CS) {
4862 iris_emit_cmd(batch, GENX(MEDIA_CURBE_LOAD), curbe) {
4863 curbe.CURBETotalDataLength =
4864 ALIGN(cs_prog_data->push.total.size, 64);
4865 curbe.CURBEDataStartAddress = curbe_data_offset;
4866 }
4867 }
4868
4869 if (dirty & (IRIS_DIRTY_SAMPLER_STATES_CS |
4870 IRIS_DIRTY_BINDINGS_CS |
4871 IRIS_DIRTY_CONSTANTS_CS |
4872 IRIS_DIRTY_CS)) {
4873 struct pipe_resource *desc_res = NULL;
4874 uint32_t desc[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
4875
4876 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), desc, idd) {
4877 idd.SamplerStatePointer = shs->sampler_table.offset;
4878 idd.BindingTablePointer = binder->bt_offset[MESA_SHADER_COMPUTE];
4879 }
4880
4881 for (int i = 0; i < GENX(INTERFACE_DESCRIPTOR_DATA_length); i++)
4882 desc[i] |= ((uint32_t *) shader->derived_data)[i];
4883
4884 iris_emit_cmd(batch, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
4885 load.InterfaceDescriptorTotalLength =
4886 GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
4887 load.InterfaceDescriptorDataStartAddress =
4888 emit_state(batch, ice->state.dynamic_uploader,
4889 &desc_res, desc, sizeof(desc), 32);
4890 }
4891
4892 pipe_resource_reference(&desc_res, NULL);
4893 }
4894
4895 uint32_t group_size = grid->block[0] * grid->block[1] * grid->block[2];
4896 uint32_t remainder = group_size & (cs_prog_data->simd_size - 1);
4897 uint32_t right_mask;
4898
4899 if (remainder > 0)
4900 right_mask = ~0u >> (32 - remainder);
4901 else
4902 right_mask = ~0u >> (32 - cs_prog_data->simd_size);
4903
4904 #define GPGPU_DISPATCHDIMX 0x2500
4905 #define GPGPU_DISPATCHDIMY 0x2504
4906 #define GPGPU_DISPATCHDIMZ 0x2508
4907
4908 if (grid->indirect) {
4909 struct iris_state_ref *grid_size = &ice->state.grid_size;
4910 struct iris_bo *bo = iris_resource_bo(grid_size->res);
4911 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4912 lrm.RegisterAddress = GPGPU_DISPATCHDIMX;
4913 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 0);
4914 }
4915 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4916 lrm.RegisterAddress = GPGPU_DISPATCHDIMY;
4917 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 4);
4918 }
4919 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4920 lrm.RegisterAddress = GPGPU_DISPATCHDIMZ;
4921 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 8);
4922 }
4923 }
4924
4925 iris_emit_cmd(batch, GENX(GPGPU_WALKER), ggw) {
4926 ggw.IndirectParameterEnable = grid->indirect != NULL;
4927 ggw.SIMDSize = cs_prog_data->simd_size / 16;
4928 ggw.ThreadDepthCounterMaximum = 0;
4929 ggw.ThreadHeightCounterMaximum = 0;
4930 ggw.ThreadWidthCounterMaximum = cs_prog_data->threads - 1;
4931 ggw.ThreadGroupIDXDimension = grid->grid[0];
4932 ggw.ThreadGroupIDYDimension = grid->grid[1];
4933 ggw.ThreadGroupIDZDimension = grid->grid[2];
4934 ggw.RightExecutionMask = right_mask;
4935 ggw.BottomExecutionMask = 0xffffffff;
4936 }
4937
4938 iris_emit_cmd(batch, GENX(MEDIA_STATE_FLUSH), msf);
4939
4940 if (!batch->contains_draw) {
4941 iris_restore_compute_saved_bos(ice, batch, grid);
4942 batch->contains_draw = true;
4943 }
4944 }
4945
4946 /**
4947 * State module teardown.
4948 */
4949 static void
4950 iris_destroy_state(struct iris_context *ice)
4951 {
4952 struct iris_genx_state *genx = ice->state.genx;
4953
4954 uint64_t bound_vbs = ice->state.bound_vertex_buffers;
4955 while (bound_vbs) {
4956 const int i = u_bit_scan64(&bound_vbs);
4957 pipe_resource_reference(&genx->vertex_buffers[i].resource, NULL);
4958 }
4959 free(ice->state.genx);
4960
4961 for (unsigned i = 0; i < ice->state.framebuffer.nr_cbufs; i++) {
4962 pipe_surface_reference(&ice->state.framebuffer.cbufs[i], NULL);
4963 }
4964 pipe_surface_reference(&ice->state.framebuffer.zsbuf, NULL);
4965
4966 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4967 struct iris_shader_state *shs = &ice->state.shaders[stage];
4968 pipe_resource_reference(&shs->sampler_table.res, NULL);
4969 for (int i = 0; i < PIPE_MAX_CONSTANT_BUFFERS; i++) {
4970 pipe_resource_reference(&shs->constbuf[i].data.res, NULL);
4971 pipe_resource_reference(&shs->constbuf[i].surface_state.res, NULL);
4972 }
4973 for (int i = 0; i < PIPE_MAX_SHADER_IMAGES; i++) {
4974 pipe_resource_reference(&shs->image[i].res, NULL);
4975 pipe_resource_reference(&shs->image[i].surface_state.res, NULL);
4976 }
4977 for (int i = 0; i < PIPE_MAX_SHADER_BUFFERS; i++) {
4978 pipe_resource_reference(&shs->ssbo[i], NULL);
4979 pipe_resource_reference(&shs->ssbo_surface_state[i].res, NULL);
4980 }
4981 for (int i = 0; i < IRIS_MAX_TEXTURE_SAMPLERS; i++) {
4982 pipe_sampler_view_reference((struct pipe_sampler_view **)
4983 &shs->textures[i], NULL);
4984 }
4985 }
4986
4987 pipe_resource_reference(&ice->state.grid_size.res, NULL);
4988 pipe_resource_reference(&ice->state.grid_surf_state.res, NULL);
4989
4990 pipe_resource_reference(&ice->state.null_fb.res, NULL);
4991 pipe_resource_reference(&ice->state.unbound_tex.res, NULL);
4992
4993 pipe_resource_reference(&ice->state.last_res.cc_vp, NULL);
4994 pipe_resource_reference(&ice->state.last_res.sf_cl_vp, NULL);
4995 pipe_resource_reference(&ice->state.last_res.color_calc, NULL);
4996 pipe_resource_reference(&ice->state.last_res.scissor, NULL);
4997 pipe_resource_reference(&ice->state.last_res.blend, NULL);
4998 pipe_resource_reference(&ice->state.last_res.index_buffer, NULL);
4999 }
5000
5001 /* ------------------------------------------------------------------- */
5002
5003 static void
5004 iris_load_register_reg32(struct iris_batch *batch, uint32_t dst,
5005 uint32_t src)
5006 {
5007 _iris_emit_lrr(batch, dst, src);
5008 }
5009
5010 static void
5011 iris_load_register_reg64(struct iris_batch *batch, uint32_t dst,
5012 uint32_t src)
5013 {
5014 _iris_emit_lrr(batch, dst, src);
5015 _iris_emit_lrr(batch, dst + 4, src + 4);
5016 }
5017
5018 static void
5019 iris_load_register_imm32(struct iris_batch *batch, uint32_t reg,
5020 uint32_t val)
5021 {
5022 _iris_emit_lri(batch, reg, val);
5023 }
5024
5025 static void
5026 iris_load_register_imm64(struct iris_batch *batch, uint32_t reg,
5027 uint64_t val)
5028 {
5029 _iris_emit_lri(batch, reg + 0, val & 0xffffffff);
5030 _iris_emit_lri(batch, reg + 4, val >> 32);
5031 }
5032
5033 /**
5034 * Emit MI_LOAD_REGISTER_MEM to load a 32-bit MMIO register from a buffer.
5035 */
5036 static void
5037 iris_load_register_mem32(struct iris_batch *batch, uint32_t reg,
5038 struct iris_bo *bo, uint32_t offset)
5039 {
5040 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5041 lrm.RegisterAddress = reg;
5042 lrm.MemoryAddress = ro_bo(bo, offset);
5043 }
5044 }
5045
5046 /**
5047 * Load a 64-bit value from a buffer into a MMIO register via
5048 * two MI_LOAD_REGISTER_MEM commands.
5049 */
5050 static void
5051 iris_load_register_mem64(struct iris_batch *batch, uint32_t reg,
5052 struct iris_bo *bo, uint32_t offset)
5053 {
5054 iris_load_register_mem32(batch, reg + 0, bo, offset + 0);
5055 iris_load_register_mem32(batch, reg + 4, bo, offset + 4);
5056 }
5057
5058 static void
5059 iris_store_register_mem32(struct iris_batch *batch, uint32_t reg,
5060 struct iris_bo *bo, uint32_t offset,
5061 bool predicated)
5062 {
5063 iris_emit_cmd(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
5064 srm.RegisterAddress = reg;
5065 srm.MemoryAddress = rw_bo(bo, offset);
5066 srm.PredicateEnable = predicated;
5067 }
5068 }
5069
5070 static void
5071 iris_store_register_mem64(struct iris_batch *batch, uint32_t reg,
5072 struct iris_bo *bo, uint32_t offset,
5073 bool predicated)
5074 {
5075 iris_store_register_mem32(batch, reg + 0, bo, offset + 0, predicated);
5076 iris_store_register_mem32(batch, reg + 4, bo, offset + 4, predicated);
5077 }
5078
5079 static void
5080 iris_store_data_imm32(struct iris_batch *batch,
5081 struct iris_bo *bo, uint32_t offset,
5082 uint32_t imm)
5083 {
5084 iris_emit_cmd(batch, GENX(MI_STORE_DATA_IMM), sdi) {
5085 sdi.Address = rw_bo(bo, offset);
5086 sdi.ImmediateData = imm;
5087 }
5088 }
5089
5090 static void
5091 iris_store_data_imm64(struct iris_batch *batch,
5092 struct iris_bo *bo, uint32_t offset,
5093 uint64_t imm)
5094 {
5095 /* Can't use iris_emit_cmd because MI_STORE_DATA_IMM has a length of
5096 * 2 in genxml but it's actually variable length and we need 5 DWords.
5097 */
5098 void *map = iris_get_command_space(batch, 4 * 5);
5099 _iris_pack_command(batch, GENX(MI_STORE_DATA_IMM), map, sdi) {
5100 sdi.DWordLength = 5 - 2;
5101 sdi.Address = rw_bo(bo, offset);
5102 sdi.ImmediateData = imm;
5103 }
5104 }
5105
5106 static void
5107 iris_copy_mem_mem(struct iris_batch *batch,
5108 struct iris_bo *dst_bo, uint32_t dst_offset,
5109 struct iris_bo *src_bo, uint32_t src_offset,
5110 unsigned bytes)
5111 {
5112 /* MI_COPY_MEM_MEM operates on DWords. */
5113 assert(bytes % 4 == 0);
5114 assert(dst_offset % 4 == 0);
5115 assert(src_offset % 4 == 0);
5116
5117 for (unsigned i = 0; i < bytes; i += 4) {
5118 iris_emit_cmd(batch, GENX(MI_COPY_MEM_MEM), cp) {
5119 cp.DestinationMemoryAddress = rw_bo(dst_bo, dst_offset + i);
5120 cp.SourceMemoryAddress = ro_bo(src_bo, src_offset + i);
5121 }
5122 }
5123 }
5124
5125 /* ------------------------------------------------------------------- */
5126
5127 static unsigned
5128 flags_to_post_sync_op(uint32_t flags)
5129 {
5130 if (flags & PIPE_CONTROL_WRITE_IMMEDIATE)
5131 return WriteImmediateData;
5132
5133 if (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT)
5134 return WritePSDepthCount;
5135
5136 if (flags & PIPE_CONTROL_WRITE_TIMESTAMP)
5137 return WriteTimestamp;
5138
5139 return 0;
5140 }
5141
5142 /**
5143 * Do the given flags have a Post Sync or LRI Post Sync operation?
5144 */
5145 static enum pipe_control_flags
5146 get_post_sync_flags(enum pipe_control_flags flags)
5147 {
5148 flags &= PIPE_CONTROL_WRITE_IMMEDIATE |
5149 PIPE_CONTROL_WRITE_DEPTH_COUNT |
5150 PIPE_CONTROL_WRITE_TIMESTAMP |
5151 PIPE_CONTROL_LRI_POST_SYNC_OP;
5152
5153 /* Only one "Post Sync Op" is allowed, and it's mutually exclusive with
5154 * "LRI Post Sync Operation". So more than one bit set would be illegal.
5155 */
5156 assert(util_bitcount(flags) <= 1);
5157
5158 return flags;
5159 }
5160
5161 #define IS_COMPUTE_PIPELINE(batch) (batch->name == IRIS_BATCH_COMPUTE)
5162
5163 /**
5164 * Emit a series of PIPE_CONTROL commands, taking into account any
5165 * workarounds necessary to actually accomplish the caller's request.
5166 *
5167 * Unless otherwise noted, spec quotations in this function come from:
5168 *
5169 * Synchronization of the 3D Pipeline > PIPE_CONTROL Command > Programming
5170 * Restrictions for PIPE_CONTROL.
5171 *
5172 * You should not use this function directly. Use the helpers in
5173 * iris_pipe_control.c instead, which may split the pipe control further.
5174 */
5175 static void
5176 iris_emit_raw_pipe_control(struct iris_batch *batch, uint32_t flags,
5177 struct iris_bo *bo, uint32_t offset, uint64_t imm)
5178 {
5179 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
5180 enum pipe_control_flags post_sync_flags = get_post_sync_flags(flags);
5181 enum pipe_control_flags non_lri_post_sync_flags =
5182 post_sync_flags & ~PIPE_CONTROL_LRI_POST_SYNC_OP;
5183
5184 /* Recursive PIPE_CONTROL workarounds --------------------------------
5185 * (http://knowyourmeme.com/memes/xzibit-yo-dawg)
5186 *
5187 * We do these first because we want to look at the original operation,
5188 * rather than any workarounds we set.
5189 */
5190 if (GEN_GEN == 9 && (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE)) {
5191 /* The PIPE_CONTROL "VF Cache Invalidation Enable" bit description
5192 * lists several workarounds:
5193 *
5194 * "Project: SKL, KBL, BXT
5195 *
5196 * If the VF Cache Invalidation Enable is set to a 1 in a
5197 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields
5198 * sets to 0, with the VF Cache Invalidation Enable set to 0
5199 * needs to be sent prior to the PIPE_CONTROL with VF Cache
5200 * Invalidation Enable set to a 1."
5201 */
5202 iris_emit_raw_pipe_control(batch, 0, NULL, 0, 0);
5203 }
5204
5205 if (GEN_GEN == 9 && IS_COMPUTE_PIPELINE(batch) && post_sync_flags) {
5206 /* Project: SKL / Argument: LRI Post Sync Operation [23]
5207 *
5208 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
5209 * programmed prior to programming a PIPECONTROL command with "LRI
5210 * Post Sync Operation" in GPGPU mode of operation (i.e when
5211 * PIPELINE_SELECT command is set to GPGPU mode of operation)."
5212 *
5213 * The same text exists a few rows below for Post Sync Op.
5214 */
5215 iris_emit_raw_pipe_control(batch, PIPE_CONTROL_CS_STALL, bo, offset, imm);
5216 }
5217
5218 if (GEN_GEN == 10 && (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH)) {
5219 /* Cannonlake:
5220 * "Before sending a PIPE_CONTROL command with bit 12 set, SW must issue
5221 * another PIPE_CONTROL with Render Target Cache Flush Enable (bit 12)
5222 * = 0 and Pipe Control Flush Enable (bit 7) = 1"
5223 */
5224 iris_emit_raw_pipe_control(batch, PIPE_CONTROL_FLUSH_ENABLE, bo,
5225 offset, imm);
5226 }
5227
5228 /* "Flush Types" workarounds ---------------------------------------------
5229 * We do these now because they may add post-sync operations or CS stalls.
5230 */
5231
5232 if (GEN_GEN < 11 && flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) {
5233 /* Project: BDW, SKL+ (stopping at CNL) / Argument: VF Invalidate
5234 *
5235 * "'Post Sync Operation' must be enabled to 'Write Immediate Data' or
5236 * 'Write PS Depth Count' or 'Write Timestamp'."
5237 */
5238 if (!bo) {
5239 flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
5240 post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
5241 non_lri_post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
5242 bo = batch->screen->workaround_bo;
5243 }
5244 }
5245
5246 /* #1130 from Gen10 workarounds page:
5247 *
5248 * "Enable Depth Stall on every Post Sync Op if Render target Cache
5249 * Flush is not enabled in same PIPE CONTROL and Enable Pixel score
5250 * board stall if Render target cache flush is enabled."
5251 *
5252 * Applicable to CNL B0 and C0 steppings only.
5253 *
5254 * The wording here is unclear, and this workaround doesn't look anything
5255 * like the internal bug report recommendations, but leave it be for now...
5256 */
5257 if (GEN_GEN == 10) {
5258 if (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) {
5259 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
5260 } else if (flags & non_lri_post_sync_flags) {
5261 flags |= PIPE_CONTROL_DEPTH_STALL;
5262 }
5263 }
5264
5265 if (flags & PIPE_CONTROL_DEPTH_STALL) {
5266 /* From the PIPE_CONTROL instruction table, bit 13 (Depth Stall Enable):
5267 *
5268 * "This bit must be DISABLED for operations other than writing
5269 * PS_DEPTH_COUNT."
5270 *
5271 * This seems like nonsense. An Ivybridge workaround requires us to
5272 * emit a PIPE_CONTROL with a depth stall and write immediate post-sync
5273 * operation. Gen8+ requires us to emit depth stalls and depth cache
5274 * flushes together. So, it's hard to imagine this means anything other
5275 * than "we originally intended this to be used for PS_DEPTH_COUNT".
5276 *
5277 * We ignore the supposed restriction and do nothing.
5278 */
5279 }
5280
5281 if (flags & (PIPE_CONTROL_RENDER_TARGET_FLUSH |
5282 PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
5283 /* From the PIPE_CONTROL instruction table, bit 12 and bit 1:
5284 *
5285 * "This bit must be DISABLED for End-of-pipe (Read) fences,
5286 * PS_DEPTH_COUNT or TIMESTAMP queries."
5287 *
5288 * TODO: Implement end-of-pipe checking.
5289 */
5290 assert(!(post_sync_flags & (PIPE_CONTROL_WRITE_DEPTH_COUNT |
5291 PIPE_CONTROL_WRITE_TIMESTAMP)));
5292 }
5293
5294 if (GEN_GEN < 11 && (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
5295 /* From the PIPE_CONTROL instruction table, bit 1:
5296 *
5297 * "This bit is ignored if Depth Stall Enable is set.
5298 * Further, the render cache is not flushed even if Write Cache
5299 * Flush Enable bit is set."
5300 *
5301 * We assert that the caller doesn't do this combination, to try and
5302 * prevent mistakes. It shouldn't hurt the GPU, though.
5303 *
5304 * We skip this check on Gen11+ as the "Stall at Pixel Scoreboard"
5305 * and "Render Target Flush" combo is explicitly required for BTI
5306 * update workarounds.
5307 */
5308 assert(!(flags & (PIPE_CONTROL_DEPTH_STALL |
5309 PIPE_CONTROL_RENDER_TARGET_FLUSH)));
5310 }
5311
5312 /* PIPE_CONTROL page workarounds ------------------------------------- */
5313
5314 if (GEN_GEN <= 8 && (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE)) {
5315 /* From the PIPE_CONTROL page itself:
5316 *
5317 * "IVB, HSW, BDW
5318 * Restriction: Pipe_control with CS-stall bit set must be issued
5319 * before a pipe-control command that has the State Cache
5320 * Invalidate bit set."
5321 */
5322 flags |= PIPE_CONTROL_CS_STALL;
5323 }
5324
5325 if (flags & PIPE_CONTROL_FLUSH_LLC) {
5326 /* From the PIPE_CONTROL instruction table, bit 26 (Flush LLC):
5327 *
5328 * "Project: ALL
5329 * SW must always program Post-Sync Operation to "Write Immediate
5330 * Data" when Flush LLC is set."
5331 *
5332 * For now, we just require the caller to do it.
5333 */
5334 assert(flags & PIPE_CONTROL_WRITE_IMMEDIATE);
5335 }
5336
5337 /* "Post-Sync Operation" workarounds -------------------------------- */
5338
5339 /* Project: All / Argument: Global Snapshot Count Reset [19]
5340 *
5341 * "This bit must not be exercised on any product.
5342 * Requires stall bit ([20] of DW1) set."
5343 *
5344 * We don't use this, so we just assert that it isn't used. The
5345 * PIPE_CONTROL instruction page indicates that they intended this
5346 * as a debug feature and don't think it is useful in production,
5347 * but it may actually be usable, should we ever want to.
5348 */
5349 assert((flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) == 0);
5350
5351 if (flags & (PIPE_CONTROL_MEDIA_STATE_CLEAR |
5352 PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE)) {
5353 /* Project: All / Arguments:
5354 *
5355 * - Generic Media State Clear [16]
5356 * - Indirect State Pointers Disable [16]
5357 *
5358 * "Requires stall bit ([20] of DW1) set."
5359 *
5360 * Also, the PIPE_CONTROL instruction table, bit 16 (Generic Media
5361 * State Clear) says:
5362 *
5363 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
5364 * programmed prior to programming a PIPECONTROL command with "Media
5365 * State Clear" set in GPGPU mode of operation"
5366 *
5367 * This is a subset of the earlier rule, so there's nothing to do.
5368 */
5369 flags |= PIPE_CONTROL_CS_STALL;
5370 }
5371
5372 if (flags & PIPE_CONTROL_STORE_DATA_INDEX) {
5373 /* Project: All / Argument: Store Data Index
5374 *
5375 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
5376 * than '0'."
5377 *
5378 * For now, we just assert that the caller does this. We might want to
5379 * automatically add a write to the workaround BO...
5380 */
5381 assert(non_lri_post_sync_flags != 0);
5382 }
5383
5384 if (flags & PIPE_CONTROL_SYNC_GFDT) {
5385 /* Project: All / Argument: Sync GFDT
5386 *
5387 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
5388 * than '0' or 0x2520[13] must be set."
5389 *
5390 * For now, we just assert that the caller does this.
5391 */
5392 assert(non_lri_post_sync_flags != 0);
5393 }
5394
5395 if (flags & PIPE_CONTROL_TLB_INVALIDATE) {
5396 /* Project: IVB+ / Argument: TLB inv
5397 *
5398 * "Requires stall bit ([20] of DW1) set."
5399 *
5400 * Also, from the PIPE_CONTROL instruction table:
5401 *
5402 * "Project: SKL+
5403 * Post Sync Operation or CS stall must be set to ensure a TLB
5404 * invalidation occurs. Otherwise no cycle will occur to the TLB
5405 * cache to invalidate."
5406 *
5407 * This is not a subset of the earlier rule, so there's nothing to do.
5408 */
5409 flags |= PIPE_CONTROL_CS_STALL;
5410 }
5411
5412 if (GEN_GEN == 9 && devinfo->gt == 4) {
5413 /* TODO: The big Skylake GT4 post sync op workaround */
5414 }
5415
5416 /* "GPGPU specific workarounds" (both post-sync and flush) ------------ */
5417
5418 if (IS_COMPUTE_PIPELINE(batch)) {
5419 if (GEN_GEN >= 9 && (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE)) {
5420 /* Project: SKL+ / Argument: Tex Invalidate
5421 * "Requires stall bit ([20] of DW) set for all GPGPU Workloads."
5422 */
5423 flags |= PIPE_CONTROL_CS_STALL;
5424 }
5425
5426 if (GEN_GEN == 8 && (post_sync_flags ||
5427 (flags & (PIPE_CONTROL_NOTIFY_ENABLE |
5428 PIPE_CONTROL_DEPTH_STALL |
5429 PIPE_CONTROL_RENDER_TARGET_FLUSH |
5430 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
5431 PIPE_CONTROL_DATA_CACHE_FLUSH)))) {
5432 /* Project: BDW / Arguments:
5433 *
5434 * - LRI Post Sync Operation [23]
5435 * - Post Sync Op [15:14]
5436 * - Notify En [8]
5437 * - Depth Stall [13]
5438 * - Render Target Cache Flush [12]
5439 * - Depth Cache Flush [0]
5440 * - DC Flush Enable [5]
5441 *
5442 * "Requires stall bit ([20] of DW) set for all GPGPU and Media
5443 * Workloads."
5444 */
5445 flags |= PIPE_CONTROL_CS_STALL;
5446
5447 /* Also, from the PIPE_CONTROL instruction table, bit 20:
5448 *
5449 * "Project: BDW
5450 * This bit must be always set when PIPE_CONTROL command is
5451 * programmed by GPGPU and MEDIA workloads, except for the cases
5452 * when only Read Only Cache Invalidation bits are set (State
5453 * Cache Invalidation Enable, Instruction cache Invalidation
5454 * Enable, Texture Cache Invalidation Enable, Constant Cache
5455 * Invalidation Enable). This is to WA FFDOP CG issue, this WA
5456 * need not implemented when FF_DOP_CG is disable via "Fixed
5457 * Function DOP Clock Gate Disable" bit in RC_PSMI_CTRL register."
5458 *
5459 * It sounds like we could avoid CS stalls in some cases, but we
5460 * don't currently bother. This list isn't exactly the list above,
5461 * either...
5462 */
5463 }
5464 }
5465
5466 /* "Stall" workarounds ----------------------------------------------
5467 * These have to come after the earlier ones because we may have added
5468 * some additional CS stalls above.
5469 */
5470
5471 if (GEN_GEN < 9 && (flags & PIPE_CONTROL_CS_STALL)) {
5472 /* Project: PRE-SKL, VLV, CHV
5473 *
5474 * "[All Stepping][All SKUs]:
5475 *
5476 * One of the following must also be set:
5477 *
5478 * - Render Target Cache Flush Enable ([12] of DW1)
5479 * - Depth Cache Flush Enable ([0] of DW1)
5480 * - Stall at Pixel Scoreboard ([1] of DW1)
5481 * - Depth Stall ([13] of DW1)
5482 * - Post-Sync Operation ([13] of DW1)
5483 * - DC Flush Enable ([5] of DW1)"
5484 *
5485 * If we don't already have one of those bits set, we choose to add
5486 * "Stall at Pixel Scoreboard". Some of the other bits require a
5487 * CS stall as a workaround (see above), which would send us into
5488 * an infinite recursion of PIPE_CONTROLs. "Stall at Pixel Scoreboard"
5489 * appears to be safe, so we choose that.
5490 */
5491 const uint32_t wa_bits = PIPE_CONTROL_RENDER_TARGET_FLUSH |
5492 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
5493 PIPE_CONTROL_WRITE_IMMEDIATE |
5494 PIPE_CONTROL_WRITE_DEPTH_COUNT |
5495 PIPE_CONTROL_WRITE_TIMESTAMP |
5496 PIPE_CONTROL_STALL_AT_SCOREBOARD |
5497 PIPE_CONTROL_DEPTH_STALL |
5498 PIPE_CONTROL_DATA_CACHE_FLUSH;
5499 if (!(flags & wa_bits))
5500 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
5501 }
5502
5503 /* Emit --------------------------------------------------------------- */
5504
5505 iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
5506 pc.LRIPostSyncOperation = NoLRIOperation;
5507 pc.PipeControlFlushEnable = flags & PIPE_CONTROL_FLUSH_ENABLE;
5508 pc.DCFlushEnable = flags & PIPE_CONTROL_DATA_CACHE_FLUSH;
5509 pc.StoreDataIndex = 0;
5510 pc.CommandStreamerStallEnable = flags & PIPE_CONTROL_CS_STALL;
5511 pc.GlobalSnapshotCountReset =
5512 flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET;
5513 pc.TLBInvalidate = flags & PIPE_CONTROL_TLB_INVALIDATE;
5514 pc.GenericMediaStateClear = flags & PIPE_CONTROL_MEDIA_STATE_CLEAR;
5515 pc.StallAtPixelScoreboard = flags & PIPE_CONTROL_STALL_AT_SCOREBOARD;
5516 pc.RenderTargetCacheFlushEnable =
5517 flags & PIPE_CONTROL_RENDER_TARGET_FLUSH;
5518 pc.DepthCacheFlushEnable = flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH;
5519 pc.StateCacheInvalidationEnable =
5520 flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE;
5521 pc.VFCacheInvalidationEnable = flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
5522 pc.ConstantCacheInvalidationEnable =
5523 flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE;
5524 pc.PostSyncOperation = flags_to_post_sync_op(flags);
5525 pc.DepthStallEnable = flags & PIPE_CONTROL_DEPTH_STALL;
5526 pc.InstructionCacheInvalidateEnable =
5527 flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE;
5528 pc.NotifyEnable = flags & PIPE_CONTROL_NOTIFY_ENABLE;
5529 pc.IndirectStatePointersDisable =
5530 flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE;
5531 pc.TextureCacheInvalidationEnable =
5532 flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
5533 pc.Address = rw_bo(bo, offset);
5534 pc.ImmediateData = imm;
5535 }
5536 }
5537
5538 void
5539 genX(init_state)(struct iris_context *ice)
5540 {
5541 struct pipe_context *ctx = &ice->ctx;
5542 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
5543
5544 ctx->create_blend_state = iris_create_blend_state;
5545 ctx->create_depth_stencil_alpha_state = iris_create_zsa_state;
5546 ctx->create_rasterizer_state = iris_create_rasterizer_state;
5547 ctx->create_sampler_state = iris_create_sampler_state;
5548 ctx->create_sampler_view = iris_create_sampler_view;
5549 ctx->create_surface = iris_create_surface;
5550 ctx->create_vertex_elements_state = iris_create_vertex_elements;
5551 ctx->bind_blend_state = iris_bind_blend_state;
5552 ctx->bind_depth_stencil_alpha_state = iris_bind_zsa_state;
5553 ctx->bind_sampler_states = iris_bind_sampler_states;
5554 ctx->bind_rasterizer_state = iris_bind_rasterizer_state;
5555 ctx->bind_vertex_elements_state = iris_bind_vertex_elements_state;
5556 ctx->delete_blend_state = iris_delete_state;
5557 ctx->delete_depth_stencil_alpha_state = iris_delete_state;
5558 ctx->delete_rasterizer_state = iris_delete_state;
5559 ctx->delete_sampler_state = iris_delete_state;
5560 ctx->delete_vertex_elements_state = iris_delete_state;
5561 ctx->set_blend_color = iris_set_blend_color;
5562 ctx->set_clip_state = iris_set_clip_state;
5563 ctx->set_constant_buffer = iris_set_constant_buffer;
5564 ctx->set_shader_buffers = iris_set_shader_buffers;
5565 ctx->set_shader_images = iris_set_shader_images;
5566 ctx->set_sampler_views = iris_set_sampler_views;
5567 ctx->set_tess_state = iris_set_tess_state;
5568 ctx->set_framebuffer_state = iris_set_framebuffer_state;
5569 ctx->set_polygon_stipple = iris_set_polygon_stipple;
5570 ctx->set_sample_mask = iris_set_sample_mask;
5571 ctx->set_scissor_states = iris_set_scissor_states;
5572 ctx->set_stencil_ref = iris_set_stencil_ref;
5573 ctx->set_vertex_buffers = iris_set_vertex_buffers;
5574 ctx->set_viewport_states = iris_set_viewport_states;
5575 ctx->sampler_view_destroy = iris_sampler_view_destroy;
5576 ctx->surface_destroy = iris_surface_destroy;
5577 ctx->draw_vbo = iris_draw_vbo;
5578 ctx->launch_grid = iris_launch_grid;
5579 ctx->create_stream_output_target = iris_create_stream_output_target;
5580 ctx->stream_output_target_destroy = iris_stream_output_target_destroy;
5581 ctx->set_stream_output_targets = iris_set_stream_output_targets;
5582
5583 ice->vtbl.destroy_state = iris_destroy_state;
5584 ice->vtbl.init_render_context = iris_init_render_context;
5585 ice->vtbl.init_compute_context = iris_init_compute_context;
5586 ice->vtbl.upload_render_state = iris_upload_render_state;
5587 ice->vtbl.update_surface_base_address = iris_update_surface_base_address;
5588 ice->vtbl.upload_compute_state = iris_upload_compute_state;
5589 ice->vtbl.emit_raw_pipe_control = iris_emit_raw_pipe_control;
5590 ice->vtbl.load_register_reg32 = iris_load_register_reg32;
5591 ice->vtbl.load_register_reg64 = iris_load_register_reg64;
5592 ice->vtbl.load_register_imm32 = iris_load_register_imm32;
5593 ice->vtbl.load_register_imm64 = iris_load_register_imm64;
5594 ice->vtbl.load_register_mem32 = iris_load_register_mem32;
5595 ice->vtbl.load_register_mem64 = iris_load_register_mem64;
5596 ice->vtbl.store_register_mem32 = iris_store_register_mem32;
5597 ice->vtbl.store_register_mem64 = iris_store_register_mem64;
5598 ice->vtbl.store_data_imm32 = iris_store_data_imm32;
5599 ice->vtbl.store_data_imm64 = iris_store_data_imm64;
5600 ice->vtbl.copy_mem_mem = iris_copy_mem_mem;
5601 ice->vtbl.derived_program_state_size = iris_derived_program_state_size;
5602 ice->vtbl.store_derived_program_state = iris_store_derived_program_state;
5603 ice->vtbl.create_so_decl_list = iris_create_so_decl_list;
5604 ice->vtbl.populate_vs_key = iris_populate_vs_key;
5605 ice->vtbl.populate_tcs_key = iris_populate_tcs_key;
5606 ice->vtbl.populate_tes_key = iris_populate_tes_key;
5607 ice->vtbl.populate_gs_key = iris_populate_gs_key;
5608 ice->vtbl.populate_fs_key = iris_populate_fs_key;
5609 ice->vtbl.populate_cs_key = iris_populate_cs_key;
5610
5611 ice->state.dirty = ~0ull;
5612
5613 ice->state.statistics_counters_enabled = true;
5614
5615 ice->state.sample_mask = 0xffff;
5616 ice->state.num_viewports = 1;
5617 ice->state.genx = calloc(1, sizeof(struct iris_genx_state));
5618
5619 /* Make a 1x1x1 null surface for unbound textures */
5620 void *null_surf_map =
5621 upload_state(ice->state.surface_uploader, &ice->state.unbound_tex,
5622 4 * GENX(RENDER_SURFACE_STATE_length), 64);
5623 isl_null_fill_state(&screen->isl_dev, null_surf_map, isl_extent3d(1, 1, 1));
5624 ice->state.unbound_tex.offset +=
5625 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.unbound_tex.res));
5626
5627 /* Default all scissor rectangles to be empty regions. */
5628 for (int i = 0; i < IRIS_MAX_VIEWPORTS; i++) {
5629 ice->state.scissors[i] = (struct pipe_scissor_state) {
5630 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
5631 };
5632 }
5633 }