iris: Make a alloc_surface_state helper
[mesa.git] / src / gallium / drivers / iris / iris_state.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included
12 * in all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
21 */
22
23 /**
24 * @file iris_state.c
25 *
26 * ============================= GENXML CODE =============================
27 * [This file is compiled once per generation.]
28 * =======================================================================
29 *
30 * This is the main state upload code.
31 *
32 * Gallium uses Constant State Objects, or CSOs, for most state. Large,
33 * complex, or highly reusable state can be created once, and bound and
34 * rebound multiple times. This is modeled with the pipe->create_*_state()
35 * and pipe->bind_*_state() hooks. Highly dynamic or inexpensive state is
36 * streamed out on the fly, via pipe->set_*_state() hooks.
37 *
38 * OpenGL involves frequently mutating context state, which is mirrored in
39 * core Mesa by highly mutable data structures. However, most applications
40 * typically draw the same things over and over - from frame to frame, most
41 * of the same objects are still visible and need to be redrawn. So, rather
42 * than inventing new state all the time, applications usually mutate to swap
43 * between known states that we've seen before.
44 *
45 * Gallium isolates us from this mutation by tracking API state, and
46 * distilling it into a set of Constant State Objects, or CSOs. Large,
47 * complex, or typically reusable state can be created once, then reused
48 * multiple times. Drivers can create and store their own associated data.
49 * This create/bind model corresponds to the pipe->create_*_state() and
50 * pipe->bind_*_state() driver hooks.
51 *
52 * Some state is cheap to create, or expected to be highly dynamic. Rather
53 * than creating and caching piles of CSOs for these, Gallium simply streams
54 * them out, via the pipe->set_*_state() driver hooks.
55 *
56 * To reduce draw time overhead, we try to compute as much state at create
57 * time as possible. Wherever possible, we translate the Gallium pipe state
58 * to 3DSTATE commands, and store those commands in the CSO. At draw time,
59 * we can simply memcpy them into a batch buffer.
60 *
61 * No hardware matches the abstraction perfectly, so some commands require
62 * information from multiple CSOs. In this case, we can store two copies
63 * of the packet (one in each CSO), and simply | together their DWords at
64 * draw time. Sometimes the second set is trivial (one or two fields), so
65 * we simply pack it at draw time.
66 *
67 * There are two main components in the file below. First, the CSO hooks
68 * create/bind/track state. The second are the draw-time upload functions,
69 * iris_upload_render_state() and iris_upload_compute_state(), which read
70 * the context state and emit the commands into the actual batch.
71 */
72
73 #include <stdio.h>
74 #include <errno.h>
75
76 #if HAVE_VALGRIND
77 #include <valgrind.h>
78 #include <memcheck.h>
79 #define VG(x) x
80 #ifndef NDEBUG
81 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
82 #endif
83 #else
84 #define VG(x)
85 #endif
86
87 #include "pipe/p_defines.h"
88 #include "pipe/p_state.h"
89 #include "pipe/p_context.h"
90 #include "pipe/p_screen.h"
91 #include "util/u_inlines.h"
92 #include "util/u_format.h"
93 #include "util/u_framebuffer.h"
94 #include "util/u_transfer.h"
95 #include "util/u_upload_mgr.h"
96 #include "util/u_viewport.h"
97 #include "i915_drm.h"
98 #include "nir.h"
99 #include "intel/compiler/brw_compiler.h"
100 #include "intel/common/gen_l3_config.h"
101 #include "intel/common/gen_sample_positions.h"
102 #include "iris_batch.h"
103 #include "iris_context.h"
104 #include "iris_defines.h"
105 #include "iris_pipe.h"
106 #include "iris_resource.h"
107
108 #define __gen_address_type struct iris_address
109 #define __gen_user_data struct iris_batch
110
111 #define ARRAY_BYTES(x) (sizeof(uint32_t) * ARRAY_SIZE(x))
112
113 static uint64_t
114 __gen_combine_address(struct iris_batch *batch, void *location,
115 struct iris_address addr, uint32_t delta)
116 {
117 uint64_t result = addr.offset + delta;
118
119 if (addr.bo) {
120 iris_use_pinned_bo(batch, addr.bo, addr.write);
121 /* Assume this is a general address, not relative to a base. */
122 result += addr.bo->gtt_offset;
123 }
124
125 return result;
126 }
127
128 #define __genxml_cmd_length(cmd) cmd ## _length
129 #define __genxml_cmd_length_bias(cmd) cmd ## _length_bias
130 #define __genxml_cmd_header(cmd) cmd ## _header
131 #define __genxml_cmd_pack(cmd) cmd ## _pack
132
133 #define _iris_pack_command(batch, cmd, dst, name) \
134 for (struct cmd name = { __genxml_cmd_header(cmd) }, \
135 *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
136 ({ __genxml_cmd_pack(cmd)(batch, (void *)_dst, &name); \
137 _dst = NULL; \
138 }))
139
140 #define iris_pack_command(cmd, dst, name) \
141 _iris_pack_command(NULL, cmd, dst, name)
142
143 #define iris_pack_state(cmd, dst, name) \
144 for (struct cmd name = {}, \
145 *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
146 __genxml_cmd_pack(cmd)(NULL, (void *)_dst, &name), \
147 _dst = NULL)
148
149 #define iris_emit_cmd(batch, cmd, name) \
150 _iris_pack_command(batch, cmd, iris_get_command_space(batch, 4 * __genxml_cmd_length(cmd)), name)
151
152 #define iris_emit_merge(batch, dwords0, dwords1, num_dwords) \
153 do { \
154 uint32_t *dw = iris_get_command_space(batch, 4 * num_dwords); \
155 for (uint32_t i = 0; i < num_dwords; i++) \
156 dw[i] = (dwords0)[i] | (dwords1)[i]; \
157 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, num_dwords)); \
158 } while (0)
159
160 #include "genxml/genX_pack.h"
161 #include "genxml/gen_macros.h"
162 #include "genxml/genX_bits.h"
163
164 #define MOCS_WB (2 << 1)
165
166 /**
167 * Statically assert that PIPE_* enums match the hardware packets.
168 * (As long as they match, we don't need to translate them.)
169 */
170 UNUSED static void pipe_asserts()
171 {
172 #define PIPE_ASSERT(x) STATIC_ASSERT((int)x)
173
174 /* pipe_logicop happens to match the hardware. */
175 PIPE_ASSERT(PIPE_LOGICOP_CLEAR == LOGICOP_CLEAR);
176 PIPE_ASSERT(PIPE_LOGICOP_NOR == LOGICOP_NOR);
177 PIPE_ASSERT(PIPE_LOGICOP_AND_INVERTED == LOGICOP_AND_INVERTED);
178 PIPE_ASSERT(PIPE_LOGICOP_COPY_INVERTED == LOGICOP_COPY_INVERTED);
179 PIPE_ASSERT(PIPE_LOGICOP_AND_REVERSE == LOGICOP_AND_REVERSE);
180 PIPE_ASSERT(PIPE_LOGICOP_INVERT == LOGICOP_INVERT);
181 PIPE_ASSERT(PIPE_LOGICOP_XOR == LOGICOP_XOR);
182 PIPE_ASSERT(PIPE_LOGICOP_NAND == LOGICOP_NAND);
183 PIPE_ASSERT(PIPE_LOGICOP_AND == LOGICOP_AND);
184 PIPE_ASSERT(PIPE_LOGICOP_EQUIV == LOGICOP_EQUIV);
185 PIPE_ASSERT(PIPE_LOGICOP_NOOP == LOGICOP_NOOP);
186 PIPE_ASSERT(PIPE_LOGICOP_OR_INVERTED == LOGICOP_OR_INVERTED);
187 PIPE_ASSERT(PIPE_LOGICOP_COPY == LOGICOP_COPY);
188 PIPE_ASSERT(PIPE_LOGICOP_OR_REVERSE == LOGICOP_OR_REVERSE);
189 PIPE_ASSERT(PIPE_LOGICOP_OR == LOGICOP_OR);
190 PIPE_ASSERT(PIPE_LOGICOP_SET == LOGICOP_SET);
191
192 /* pipe_blend_func happens to match the hardware. */
193 PIPE_ASSERT(PIPE_BLENDFACTOR_ONE == BLENDFACTOR_ONE);
194 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_COLOR == BLENDFACTOR_SRC_COLOR);
195 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA == BLENDFACTOR_SRC_ALPHA);
196 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_ALPHA == BLENDFACTOR_DST_ALPHA);
197 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_COLOR == BLENDFACTOR_DST_COLOR);
198 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE == BLENDFACTOR_SRC_ALPHA_SATURATE);
199 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_COLOR == BLENDFACTOR_CONST_COLOR);
200 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_ALPHA == BLENDFACTOR_CONST_ALPHA);
201 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_COLOR == BLENDFACTOR_SRC1_COLOR);
202 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_ALPHA == BLENDFACTOR_SRC1_ALPHA);
203 PIPE_ASSERT(PIPE_BLENDFACTOR_ZERO == BLENDFACTOR_ZERO);
204 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_COLOR == BLENDFACTOR_INV_SRC_COLOR);
205 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_ALPHA == BLENDFACTOR_INV_SRC_ALPHA);
206 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_ALPHA == BLENDFACTOR_INV_DST_ALPHA);
207 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_COLOR == BLENDFACTOR_INV_DST_COLOR);
208 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_COLOR == BLENDFACTOR_INV_CONST_COLOR);
209 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_ALPHA == BLENDFACTOR_INV_CONST_ALPHA);
210 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_COLOR == BLENDFACTOR_INV_SRC1_COLOR);
211 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_ALPHA == BLENDFACTOR_INV_SRC1_ALPHA);
212
213 /* pipe_blend_func happens to match the hardware. */
214 PIPE_ASSERT(PIPE_BLEND_ADD == BLENDFUNCTION_ADD);
215 PIPE_ASSERT(PIPE_BLEND_SUBTRACT == BLENDFUNCTION_SUBTRACT);
216 PIPE_ASSERT(PIPE_BLEND_REVERSE_SUBTRACT == BLENDFUNCTION_REVERSE_SUBTRACT);
217 PIPE_ASSERT(PIPE_BLEND_MIN == BLENDFUNCTION_MIN);
218 PIPE_ASSERT(PIPE_BLEND_MAX == BLENDFUNCTION_MAX);
219
220 /* pipe_stencil_op happens to match the hardware. */
221 PIPE_ASSERT(PIPE_STENCIL_OP_KEEP == STENCILOP_KEEP);
222 PIPE_ASSERT(PIPE_STENCIL_OP_ZERO == STENCILOP_ZERO);
223 PIPE_ASSERT(PIPE_STENCIL_OP_REPLACE == STENCILOP_REPLACE);
224 PIPE_ASSERT(PIPE_STENCIL_OP_INCR == STENCILOP_INCRSAT);
225 PIPE_ASSERT(PIPE_STENCIL_OP_DECR == STENCILOP_DECRSAT);
226 PIPE_ASSERT(PIPE_STENCIL_OP_INCR_WRAP == STENCILOP_INCR);
227 PIPE_ASSERT(PIPE_STENCIL_OP_DECR_WRAP == STENCILOP_DECR);
228 PIPE_ASSERT(PIPE_STENCIL_OP_INVERT == STENCILOP_INVERT);
229
230 /* pipe_sprite_coord_mode happens to match 3DSTATE_SBE */
231 PIPE_ASSERT(PIPE_SPRITE_COORD_UPPER_LEFT == UPPERLEFT);
232 PIPE_ASSERT(PIPE_SPRITE_COORD_LOWER_LEFT == LOWERLEFT);
233 #undef PIPE_ASSERT
234 }
235
236 static unsigned
237 translate_prim_type(enum pipe_prim_type prim, uint8_t verts_per_patch)
238 {
239 static const unsigned map[] = {
240 [PIPE_PRIM_POINTS] = _3DPRIM_POINTLIST,
241 [PIPE_PRIM_LINES] = _3DPRIM_LINELIST,
242 [PIPE_PRIM_LINE_LOOP] = _3DPRIM_LINELOOP,
243 [PIPE_PRIM_LINE_STRIP] = _3DPRIM_LINESTRIP,
244 [PIPE_PRIM_TRIANGLES] = _3DPRIM_TRILIST,
245 [PIPE_PRIM_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
246 [PIPE_PRIM_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
247 [PIPE_PRIM_QUADS] = _3DPRIM_QUADLIST,
248 [PIPE_PRIM_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
249 [PIPE_PRIM_POLYGON] = _3DPRIM_POLYGON,
250 [PIPE_PRIM_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
251 [PIPE_PRIM_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
252 [PIPE_PRIM_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
253 [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
254 [PIPE_PRIM_PATCHES] = _3DPRIM_PATCHLIST_1 - 1,
255 };
256
257 return map[prim] + (prim == PIPE_PRIM_PATCHES ? verts_per_patch : 0);
258 }
259
260 static unsigned
261 translate_compare_func(enum pipe_compare_func pipe_func)
262 {
263 static const unsigned map[] = {
264 [PIPE_FUNC_NEVER] = COMPAREFUNCTION_NEVER,
265 [PIPE_FUNC_LESS] = COMPAREFUNCTION_LESS,
266 [PIPE_FUNC_EQUAL] = COMPAREFUNCTION_EQUAL,
267 [PIPE_FUNC_LEQUAL] = COMPAREFUNCTION_LEQUAL,
268 [PIPE_FUNC_GREATER] = COMPAREFUNCTION_GREATER,
269 [PIPE_FUNC_NOTEQUAL] = COMPAREFUNCTION_NOTEQUAL,
270 [PIPE_FUNC_GEQUAL] = COMPAREFUNCTION_GEQUAL,
271 [PIPE_FUNC_ALWAYS] = COMPAREFUNCTION_ALWAYS,
272 };
273 return map[pipe_func];
274 }
275
276 static unsigned
277 translate_shadow_func(enum pipe_compare_func pipe_func)
278 {
279 /* Gallium specifies the result of shadow comparisons as:
280 *
281 * 1 if ref <op> texel,
282 * 0 otherwise.
283 *
284 * The hardware does:
285 *
286 * 0 if texel <op> ref,
287 * 1 otherwise.
288 *
289 * So we need to flip the operator and also negate.
290 */
291 static const unsigned map[] = {
292 [PIPE_FUNC_NEVER] = PREFILTEROPALWAYS,
293 [PIPE_FUNC_LESS] = PREFILTEROPLEQUAL,
294 [PIPE_FUNC_EQUAL] = PREFILTEROPNOTEQUAL,
295 [PIPE_FUNC_LEQUAL] = PREFILTEROPLESS,
296 [PIPE_FUNC_GREATER] = PREFILTEROPGEQUAL,
297 [PIPE_FUNC_NOTEQUAL] = PREFILTEROPEQUAL,
298 [PIPE_FUNC_GEQUAL] = PREFILTEROPGREATER,
299 [PIPE_FUNC_ALWAYS] = PREFILTEROPNEVER,
300 };
301 return map[pipe_func];
302 }
303
304 static unsigned
305 translate_cull_mode(unsigned pipe_face)
306 {
307 static const unsigned map[4] = {
308 [PIPE_FACE_NONE] = CULLMODE_NONE,
309 [PIPE_FACE_FRONT] = CULLMODE_FRONT,
310 [PIPE_FACE_BACK] = CULLMODE_BACK,
311 [PIPE_FACE_FRONT_AND_BACK] = CULLMODE_BOTH,
312 };
313 return map[pipe_face];
314 }
315
316 static unsigned
317 translate_fill_mode(unsigned pipe_polymode)
318 {
319 static const unsigned map[4] = {
320 [PIPE_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
321 [PIPE_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
322 [PIPE_POLYGON_MODE_POINT] = FILL_MODE_POINT,
323 [PIPE_POLYGON_MODE_FILL_RECTANGLE] = FILL_MODE_SOLID,
324 };
325 return map[pipe_polymode];
326 }
327
328 static unsigned
329 translate_mip_filter(enum pipe_tex_mipfilter pipe_mip)
330 {
331 static const unsigned map[] = {
332 [PIPE_TEX_MIPFILTER_NEAREST] = MIPFILTER_NEAREST,
333 [PIPE_TEX_MIPFILTER_LINEAR] = MIPFILTER_LINEAR,
334 [PIPE_TEX_MIPFILTER_NONE] = MIPFILTER_NONE,
335 };
336 return map[pipe_mip];
337 }
338
339 static uint32_t
340 translate_wrap(unsigned pipe_wrap)
341 {
342 static const unsigned map[] = {
343 [PIPE_TEX_WRAP_REPEAT] = TCM_WRAP,
344 [PIPE_TEX_WRAP_CLAMP] = TCM_HALF_BORDER,
345 [PIPE_TEX_WRAP_CLAMP_TO_EDGE] = TCM_CLAMP,
346 [PIPE_TEX_WRAP_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER,
347 [PIPE_TEX_WRAP_MIRROR_REPEAT] = TCM_MIRROR,
348 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE,
349
350 /* These are unsupported. */
351 [PIPE_TEX_WRAP_MIRROR_CLAMP] = -1,
352 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER] = -1,
353 };
354 return map[pipe_wrap];
355 }
356
357 static struct iris_address
358 ro_bo(struct iris_bo *bo, uint64_t offset)
359 {
360 /* CSOs must pass NULL for bo! Otherwise it will add the BO to the
361 * validation list at CSO creation time, instead of draw time.
362 */
363 return (struct iris_address) { .bo = bo, .offset = offset };
364 }
365
366 static struct iris_address
367 rw_bo(struct iris_bo *bo, uint64_t offset)
368 {
369 /* CSOs must pass NULL for bo! Otherwise it will add the BO to the
370 * validation list at CSO creation time, instead of draw time.
371 */
372 return (struct iris_address) { .bo = bo, .offset = offset, .write = true };
373 }
374
375 /**
376 * Allocate space for some indirect state.
377 *
378 * Return a pointer to the map (to fill it out) and a state ref (for
379 * referring to the state in GPU commands).
380 */
381 static void *
382 upload_state(struct u_upload_mgr *uploader,
383 struct iris_state_ref *ref,
384 unsigned size,
385 unsigned alignment)
386 {
387 void *p = NULL;
388 u_upload_alloc(uploader, 0, size, alignment, &ref->offset, &ref->res, &p);
389 return p;
390 }
391
392 /**
393 * Stream out temporary/short-lived state.
394 *
395 * This allocates space, pins the BO, and includes the BO address in the
396 * returned offset (which works because all state lives in 32-bit memory
397 * zones).
398 */
399 static uint32_t *
400 stream_state(struct iris_batch *batch,
401 struct u_upload_mgr *uploader,
402 struct pipe_resource **out_res,
403 unsigned size,
404 unsigned alignment,
405 uint32_t *out_offset)
406 {
407 void *ptr = NULL;
408
409 u_upload_alloc(uploader, 0, size, alignment, out_offset, out_res, &ptr);
410
411 struct iris_bo *bo = iris_resource_bo(*out_res);
412 iris_use_pinned_bo(batch, bo, false);
413
414 *out_offset += iris_bo_offset_from_base_address(bo);
415
416 return ptr;
417 }
418
419 /**
420 * stream_state() + memcpy.
421 */
422 static uint32_t
423 emit_state(struct iris_batch *batch,
424 struct u_upload_mgr *uploader,
425 struct pipe_resource **out_res,
426 const void *data,
427 unsigned size,
428 unsigned alignment)
429 {
430 unsigned offset = 0;
431 uint32_t *map =
432 stream_state(batch, uploader, out_res, size, alignment, &offset);
433
434 if (map)
435 memcpy(map, data, size);
436
437 return offset;
438 }
439
440 /**
441 * Did field 'x' change between 'old_cso' and 'new_cso'?
442 *
443 * (If so, we may want to set some dirty flags.)
444 */
445 #define cso_changed(x) (!old_cso || (old_cso->x != new_cso->x))
446 #define cso_changed_memcmp(x) \
447 (!old_cso || memcmp(old_cso->x, new_cso->x, sizeof(old_cso->x)) != 0)
448
449 static void
450 flush_for_state_base_change(struct iris_batch *batch)
451 {
452 /* Flush before emitting STATE_BASE_ADDRESS.
453 *
454 * This isn't documented anywhere in the PRM. However, it seems to be
455 * necessary prior to changing the surface state base adress. We've
456 * seen issues in Vulkan where we get GPU hangs when using multi-level
457 * command buffers which clear depth, reset state base address, and then
458 * go render stuff.
459 *
460 * Normally, in GL, we would trust the kernel to do sufficient stalls
461 * and flushes prior to executing our batch. However, it doesn't seem
462 * as if the kernel's flushing is always sufficient and we don't want to
463 * rely on it.
464 *
465 * We make this an end-of-pipe sync instead of a normal flush because we
466 * do not know the current status of the GPU. On Haswell at least,
467 * having a fast-clear operation in flight at the same time as a normal
468 * rendering operation can cause hangs. Since the kernel's flushing is
469 * insufficient, we need to ensure that any rendering operations from
470 * other processes are definitely complete before we try to do our own
471 * rendering. It's a bit of a big hammer but it appears to work.
472 */
473 iris_emit_end_of_pipe_sync(batch,
474 PIPE_CONTROL_RENDER_TARGET_FLUSH |
475 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
476 PIPE_CONTROL_DATA_CACHE_FLUSH);
477 }
478
479 static void
480 _iris_emit_lri(struct iris_batch *batch, uint32_t reg, uint32_t val)
481 {
482 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
483 lri.RegisterOffset = reg;
484 lri.DataDWord = val;
485 }
486 }
487 #define iris_emit_lri(b, r, v) _iris_emit_lri(b, GENX(r##_num), v)
488
489 static void
490 _iris_emit_lrr(struct iris_batch *batch, uint32_t dst, uint32_t src)
491 {
492 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
493 lrr.SourceRegisterAddress = src;
494 lrr.DestinationRegisterAddress = dst;
495 }
496 }
497
498 static void
499 emit_pipeline_select(struct iris_batch *batch, uint32_t pipeline)
500 {
501 #if GEN_GEN >= 8 && GEN_GEN < 10
502 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
503 *
504 * Software must clear the COLOR_CALC_STATE Valid field in
505 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
506 * with Pipeline Select set to GPGPU.
507 *
508 * The internal hardware docs recommend the same workaround for Gen9
509 * hardware too.
510 */
511 if (pipeline == GPGPU)
512 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
513 #endif
514
515
516 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
517 * PIPELINE_SELECT [DevBWR+]":
518 *
519 * "Project: DEVSNB+
520 *
521 * Software must ensure all the write caches are flushed through a
522 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
523 * command to invalidate read only caches prior to programming
524 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode."
525 */
526 iris_emit_pipe_control_flush(batch,
527 PIPE_CONTROL_RENDER_TARGET_FLUSH |
528 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
529 PIPE_CONTROL_DATA_CACHE_FLUSH |
530 PIPE_CONTROL_CS_STALL);
531
532 iris_emit_pipe_control_flush(batch,
533 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
534 PIPE_CONTROL_CONST_CACHE_INVALIDATE |
535 PIPE_CONTROL_STATE_CACHE_INVALIDATE |
536 PIPE_CONTROL_INSTRUCTION_INVALIDATE);
537
538 iris_emit_cmd(batch, GENX(PIPELINE_SELECT), sel) {
539 #if GEN_GEN >= 9
540 sel.MaskBits = 3;
541 #endif
542 sel.PipelineSelection = pipeline;
543 }
544 }
545
546 UNUSED static void
547 init_glk_barrier_mode(struct iris_batch *batch, uint32_t value)
548 {
549 #if GEN_GEN == 9
550 /* Project: DevGLK
551 *
552 * "This chicken bit works around a hardware issue with barrier
553 * logic encountered when switching between GPGPU and 3D pipelines.
554 * To workaround the issue, this mode bit should be set after a
555 * pipeline is selected."
556 */
557 uint32_t reg_val;
558 iris_pack_state(GENX(SLICE_COMMON_ECO_CHICKEN1), &reg_val, reg) {
559 reg.GLKBarrierMode = value;
560 reg.GLKBarrierModeMask = 1;
561 }
562 iris_emit_lri(batch, SLICE_COMMON_ECO_CHICKEN1, reg_val);
563 #endif
564 }
565
566 static void
567 init_state_base_address(struct iris_batch *batch)
568 {
569 flush_for_state_base_change(batch);
570
571 /* We program most base addresses once at context initialization time.
572 * Each base address points at a 4GB memory zone, and never needs to
573 * change. See iris_bufmgr.h for a description of the memory zones.
574 *
575 * The one exception is Surface State Base Address, which needs to be
576 * updated occasionally. See iris_binder.c for the details there.
577 */
578 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
579 #if 0
580 // XXX: MOCS is stupid for this.
581 sba.GeneralStateMemoryObjectControlState = MOCS_WB;
582 sba.StatelessDataPortAccessMemoryObjectControlState = MOCS_WB;
583 sba.DynamicStateMemoryObjectControlState = MOCS_WB;
584 sba.IndirectObjectMemoryObjectControlState = MOCS_WB;
585 sba.InstructionMemoryObjectControlState = MOCS_WB;
586 sba.BindlessSurfaceStateMemoryObjectControlState = MOCS_WB;
587 #endif
588
589 sba.GeneralStateBaseAddressModifyEnable = true;
590 sba.DynamicStateBaseAddressModifyEnable = true;
591 sba.IndirectObjectBaseAddressModifyEnable = true;
592 sba.InstructionBaseAddressModifyEnable = true;
593 sba.GeneralStateBufferSizeModifyEnable = true;
594 sba.DynamicStateBufferSizeModifyEnable = true;
595 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
596 sba.IndirectObjectBufferSizeModifyEnable = true;
597 sba.InstructionBuffersizeModifyEnable = true;
598
599 sba.InstructionBaseAddress = ro_bo(NULL, IRIS_MEMZONE_SHADER_START);
600 sba.DynamicStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_DYNAMIC_START);
601
602 sba.GeneralStateBufferSize = 0xfffff;
603 sba.IndirectObjectBufferSize = 0xfffff;
604 sba.InstructionBufferSize = 0xfffff;
605 sba.DynamicStateBufferSize = 0xfffff;
606 }
607 }
608
609 /**
610 * Upload the initial GPU state for a render context.
611 *
612 * This sets some invariant state that needs to be programmed a particular
613 * way, but we never actually change.
614 */
615 static void
616 iris_init_render_context(struct iris_screen *screen,
617 struct iris_batch *batch,
618 struct iris_vtable *vtbl,
619 struct pipe_debug_callback *dbg)
620 {
621 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
622 uint32_t reg_val;
623
624 emit_pipeline_select(batch, _3D);
625
626 init_state_base_address(batch);
627
628 // XXX: INSTPM on Gen8
629 iris_pack_state(GENX(CS_DEBUG_MODE2), &reg_val, reg) {
630 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
631 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
632 }
633 iris_emit_lri(batch, CS_DEBUG_MODE2, reg_val);
634
635 #if GEN_GEN == 9
636 iris_pack_state(GENX(CACHE_MODE_1), &reg_val, reg) {
637 reg.FloatBlendOptimizationEnable = true;
638 reg.FloatBlendOptimizationEnableMask = true;
639 reg.PartialResolveDisableInVC = true;
640 reg.PartialResolveDisableInVCMask = true;
641 }
642 iris_emit_lri(batch, CACHE_MODE_1, reg_val);
643
644 if (devinfo->is_geminilake)
645 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_3D_HULL);
646 #endif
647
648 #if GEN_GEN == 11
649 iris_pack_state(GENX(SAMPLER_MODE), &reg_val, reg) {
650 reg.HeaderlessMessageforPreemptableContexts = 1;
651 reg.HeaderlessMessageforPreemptableContextsMask = 1;
652 }
653 iris_emit_lri(batch, SAMPLER_MODE, reg_val);
654
655 // XXX: 3D_MODE?
656 #endif
657
658 /* 3DSTATE_DRAWING_RECTANGLE is non-pipelined, so we want to avoid
659 * changing it dynamically. We set it to the maximum size here, and
660 * instead include the render target dimensions in the viewport, so
661 * viewport extents clipping takes care of pruning stray geometry.
662 */
663 iris_emit_cmd(batch, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
664 rect.ClippedDrawingRectangleXMax = UINT16_MAX;
665 rect.ClippedDrawingRectangleYMax = UINT16_MAX;
666 }
667
668 /* Set the initial MSAA sample positions. */
669 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_PATTERN), pat) {
670 GEN_SAMPLE_POS_1X(pat._1xSample);
671 GEN_SAMPLE_POS_2X(pat._2xSample);
672 GEN_SAMPLE_POS_4X(pat._4xSample);
673 GEN_SAMPLE_POS_8X(pat._8xSample);
674 GEN_SAMPLE_POS_16X(pat._16xSample);
675 }
676
677 /* Use the legacy AA line coverage computation. */
678 iris_emit_cmd(batch, GENX(3DSTATE_AA_LINE_PARAMETERS), foo);
679
680 /* Disable chromakeying (it's for media) */
681 iris_emit_cmd(batch, GENX(3DSTATE_WM_CHROMAKEY), foo);
682
683 /* We want regular rendering, not special HiZ operations. */
684 iris_emit_cmd(batch, GENX(3DSTATE_WM_HZ_OP), foo);
685
686 /* No polygon stippling offsets are necessary. */
687 // XXX: may need to set an offset for origin-UL framebuffers
688 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_OFFSET), foo);
689
690 /* Set a static partitioning of the push constant area. */
691 // XXX: this may be a bad idea...could starve the push ringbuffers...
692 for (int i = 0; i <= MESA_SHADER_FRAGMENT; i++) {
693 iris_emit_cmd(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
694 alloc._3DCommandSubOpcode = 18 + i;
695 alloc.ConstantBufferOffset = 6 * i;
696 alloc.ConstantBufferSize = i == MESA_SHADER_FRAGMENT ? 8 : 6;
697 }
698 }
699 }
700
701 static void
702 iris_init_compute_context(struct iris_screen *screen,
703 struct iris_batch *batch,
704 struct iris_vtable *vtbl,
705 struct pipe_debug_callback *dbg)
706 {
707 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
708
709 emit_pipeline_select(batch, GPGPU);
710
711 const bool has_slm = true;
712 const bool wants_dc_cache = true;
713
714 const struct gen_l3_weights w =
715 gen_get_default_l3_weights(devinfo, wants_dc_cache, has_slm);
716 const struct gen_l3_config *cfg = gen_get_l3_config(devinfo, w);
717
718 uint32_t reg_val;
719 iris_pack_state(GENX(L3CNTLREG), &reg_val, reg) {
720 reg.SLMEnable = has_slm;
721 #if GEN_GEN == 11
722 /* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set
723 * in L3CNTLREG register. The default setting of the bit is not the
724 * desirable behavior.
725 */
726 reg.ErrorDetectionBehaviorControl = true;
727 #endif
728 reg.URBAllocation = cfg->n[GEN_L3P_URB];
729 reg.ROAllocation = cfg->n[GEN_L3P_RO];
730 reg.DCAllocation = cfg->n[GEN_L3P_DC];
731 reg.AllAllocation = cfg->n[GEN_L3P_ALL];
732 }
733 iris_emit_lri(batch, L3CNTLREG, reg_val);
734
735 init_state_base_address(batch);
736
737 #if GEN_GEN == 9
738 if (devinfo->is_geminilake)
739 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_GPGPU);
740 #endif
741 }
742
743 struct iris_vertex_buffer_state {
744 /** The VERTEX_BUFFER_STATE hardware structure. */
745 uint32_t state[GENX(VERTEX_BUFFER_STATE_length)];
746
747 /** The resource to source vertex data from. */
748 struct pipe_resource *resource;
749 };
750
751 struct iris_depth_buffer_state {
752 /* Depth/HiZ/Stencil related hardware packets. */
753 uint32_t packets[GENX(3DSTATE_DEPTH_BUFFER_length) +
754 GENX(3DSTATE_STENCIL_BUFFER_length) +
755 GENX(3DSTATE_HIER_DEPTH_BUFFER_length) +
756 GENX(3DSTATE_CLEAR_PARAMS_length)];
757 };
758
759 /**
760 * Generation-specific context state (ice->state.genx->...).
761 *
762 * Most state can go in iris_context directly, but these encode hardware
763 * packets which vary by generation.
764 */
765 struct iris_genx_state {
766 struct iris_vertex_buffer_state vertex_buffers[33];
767
768 /** The number of bound vertex buffers. */
769 uint64_t bound_vertex_buffers;
770
771 struct iris_depth_buffer_state depth_buffer;
772
773 uint32_t so_buffers[4 * GENX(3DSTATE_SO_BUFFER_length)];
774 };
775
776 /**
777 * The pipe->set_blend_color() driver hook.
778 *
779 * This corresponds to our COLOR_CALC_STATE.
780 */
781 static void
782 iris_set_blend_color(struct pipe_context *ctx,
783 const struct pipe_blend_color *state)
784 {
785 struct iris_context *ice = (struct iris_context *) ctx;
786
787 /* Our COLOR_CALC_STATE is exactly pipe_blend_color, so just memcpy */
788 memcpy(&ice->state.blend_color, state, sizeof(struct pipe_blend_color));
789 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
790 }
791
792 /**
793 * Gallium CSO for blend state (see pipe_blend_state).
794 */
795 struct iris_blend_state {
796 /** Partial 3DSTATE_PS_BLEND */
797 uint32_t ps_blend[GENX(3DSTATE_PS_BLEND_length)];
798
799 /** Partial BLEND_STATE */
800 uint32_t blend_state[GENX(BLEND_STATE_length) +
801 BRW_MAX_DRAW_BUFFERS * GENX(BLEND_STATE_ENTRY_length)];
802
803 bool alpha_to_coverage; /* for shader key */
804 };
805
806 static enum pipe_blendfactor
807 fix_blendfactor(enum pipe_blendfactor f, bool alpha_to_one)
808 {
809 if (alpha_to_one) {
810 if (f == PIPE_BLENDFACTOR_SRC1_ALPHA)
811 return PIPE_BLENDFACTOR_ONE;
812
813 if (f == PIPE_BLENDFACTOR_INV_SRC1_ALPHA)
814 return PIPE_BLENDFACTOR_ZERO;
815 }
816
817 return f;
818 }
819
820 /**
821 * The pipe->create_blend_state() driver hook.
822 *
823 * Translates a pipe_blend_state into iris_blend_state.
824 */
825 static void *
826 iris_create_blend_state(struct pipe_context *ctx,
827 const struct pipe_blend_state *state)
828 {
829 struct iris_blend_state *cso = malloc(sizeof(struct iris_blend_state));
830 uint32_t *blend_entry = cso->blend_state + GENX(BLEND_STATE_length);
831
832 cso->alpha_to_coverage = state->alpha_to_coverage;
833
834 bool indep_alpha_blend = false;
835
836 for (int i = 0; i < BRW_MAX_DRAW_BUFFERS; i++) {
837 const struct pipe_rt_blend_state *rt =
838 &state->rt[state->independent_blend_enable ? i : 0];
839
840 enum pipe_blendfactor src_rgb =
841 fix_blendfactor(rt->rgb_src_factor, state->alpha_to_one);
842 enum pipe_blendfactor src_alpha =
843 fix_blendfactor(rt->alpha_src_factor, state->alpha_to_one);
844 enum pipe_blendfactor dst_rgb =
845 fix_blendfactor(rt->rgb_dst_factor, state->alpha_to_one);
846 enum pipe_blendfactor dst_alpha =
847 fix_blendfactor(rt->alpha_dst_factor, state->alpha_to_one);
848
849 if (rt->rgb_func != rt->alpha_func ||
850 src_rgb != src_alpha || dst_rgb != dst_alpha)
851 indep_alpha_blend = true;
852
853 iris_pack_state(GENX(BLEND_STATE_ENTRY), blend_entry, be) {
854 be.LogicOpEnable = state->logicop_enable;
855 be.LogicOpFunction = state->logicop_func;
856
857 be.PreBlendSourceOnlyClampEnable = false;
858 be.ColorClampRange = COLORCLAMP_RTFORMAT;
859 be.PreBlendColorClampEnable = true;
860 be.PostBlendColorClampEnable = true;
861
862 be.ColorBufferBlendEnable = rt->blend_enable;
863
864 be.ColorBlendFunction = rt->rgb_func;
865 be.AlphaBlendFunction = rt->alpha_func;
866 be.SourceBlendFactor = src_rgb;
867 be.SourceAlphaBlendFactor = src_alpha;
868 be.DestinationBlendFactor = dst_rgb;
869 be.DestinationAlphaBlendFactor = dst_alpha;
870
871 be.WriteDisableRed = !(rt->colormask & PIPE_MASK_R);
872 be.WriteDisableGreen = !(rt->colormask & PIPE_MASK_G);
873 be.WriteDisableBlue = !(rt->colormask & PIPE_MASK_B);
874 be.WriteDisableAlpha = !(rt->colormask & PIPE_MASK_A);
875 }
876 blend_entry += GENX(BLEND_STATE_ENTRY_length);
877 }
878
879 iris_pack_command(GENX(3DSTATE_PS_BLEND), cso->ps_blend, pb) {
880 /* pb.HasWriteableRT is filled in at draw time. */
881 /* pb.AlphaTestEnable is filled in at draw time. */
882 pb.AlphaToCoverageEnable = state->alpha_to_coverage;
883 pb.IndependentAlphaBlendEnable = indep_alpha_blend;
884
885 pb.ColorBufferBlendEnable = state->rt[0].blend_enable;
886
887 pb.SourceBlendFactor =
888 fix_blendfactor(state->rt[0].rgb_src_factor, state->alpha_to_one);
889 pb.SourceAlphaBlendFactor =
890 fix_blendfactor(state->rt[0].alpha_src_factor, state->alpha_to_one);
891 pb.DestinationBlendFactor =
892 fix_blendfactor(state->rt[0].rgb_dst_factor, state->alpha_to_one);
893 pb.DestinationAlphaBlendFactor =
894 fix_blendfactor(state->rt[0].alpha_dst_factor, state->alpha_to_one);
895 }
896
897 iris_pack_state(GENX(BLEND_STATE), cso->blend_state, bs) {
898 bs.AlphaToCoverageEnable = state->alpha_to_coverage;
899 bs.IndependentAlphaBlendEnable = indep_alpha_blend;
900 bs.AlphaToOneEnable = state->alpha_to_one;
901 bs.AlphaToCoverageDitherEnable = state->alpha_to_coverage;
902 bs.ColorDitherEnable = state->dither;
903 /* bl.AlphaTestEnable and bs.AlphaTestFunction are filled in later. */
904 }
905
906
907 return cso;
908 }
909
910 /**
911 * The pipe->bind_blend_state() driver hook.
912 *
913 * Bind a blending CSO and flag related dirty bits.
914 */
915 static void
916 iris_bind_blend_state(struct pipe_context *ctx, void *state)
917 {
918 struct iris_context *ice = (struct iris_context *) ctx;
919 ice->state.cso_blend = state;
920 ice->state.dirty |= IRIS_DIRTY_PS_BLEND;
921 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
922 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_BLEND];
923 }
924
925 /**
926 * Gallium CSO for depth, stencil, and alpha testing state.
927 */
928 struct iris_depth_stencil_alpha_state {
929 /** Partial 3DSTATE_WM_DEPTH_STENCIL. */
930 uint32_t wmds[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
931
932 /** Outbound to BLEND_STATE, 3DSTATE_PS_BLEND, COLOR_CALC_STATE. */
933 struct pipe_alpha_state alpha;
934
935 /** Outbound to resolve and cache set tracking. */
936 bool depth_writes_enabled;
937 bool stencil_writes_enabled;
938 };
939
940 /**
941 * The pipe->create_depth_stencil_alpha_state() driver hook.
942 *
943 * We encode most of 3DSTATE_WM_DEPTH_STENCIL, and just save off the alpha
944 * testing state since we need pieces of it in a variety of places.
945 */
946 static void *
947 iris_create_zsa_state(struct pipe_context *ctx,
948 const struct pipe_depth_stencil_alpha_state *state)
949 {
950 struct iris_depth_stencil_alpha_state *cso =
951 malloc(sizeof(struct iris_depth_stencil_alpha_state));
952
953 bool two_sided_stencil = state->stencil[1].enabled;
954
955 cso->alpha = state->alpha;
956 cso->depth_writes_enabled = state->depth.writemask;
957 cso->stencil_writes_enabled =
958 state->stencil[0].writemask != 0 ||
959 (two_sided_stencil && state->stencil[1].writemask != 1);
960
961 /* The state tracker needs to optimize away EQUAL writes for us. */
962 assert(!(state->depth.func == PIPE_FUNC_EQUAL && state->depth.writemask));
963
964 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), cso->wmds, wmds) {
965 wmds.StencilFailOp = state->stencil[0].fail_op;
966 wmds.StencilPassDepthFailOp = state->stencil[0].zfail_op;
967 wmds.StencilPassDepthPassOp = state->stencil[0].zpass_op;
968 wmds.StencilTestFunction =
969 translate_compare_func(state->stencil[0].func);
970 wmds.BackfaceStencilFailOp = state->stencil[1].fail_op;
971 wmds.BackfaceStencilPassDepthFailOp = state->stencil[1].zfail_op;
972 wmds.BackfaceStencilPassDepthPassOp = state->stencil[1].zpass_op;
973 wmds.BackfaceStencilTestFunction =
974 translate_compare_func(state->stencil[1].func);
975 wmds.DepthTestFunction = translate_compare_func(state->depth.func);
976 wmds.DoubleSidedStencilEnable = two_sided_stencil;
977 wmds.StencilTestEnable = state->stencil[0].enabled;
978 wmds.StencilBufferWriteEnable =
979 state->stencil[0].writemask != 0 ||
980 (two_sided_stencil && state->stencil[1].writemask != 0);
981 wmds.DepthTestEnable = state->depth.enabled;
982 wmds.DepthBufferWriteEnable = state->depth.writemask;
983 wmds.StencilTestMask = state->stencil[0].valuemask;
984 wmds.StencilWriteMask = state->stencil[0].writemask;
985 wmds.BackfaceStencilTestMask = state->stencil[1].valuemask;
986 wmds.BackfaceStencilWriteMask = state->stencil[1].writemask;
987 /* wmds.[Backface]StencilReferenceValue are merged later */
988 }
989
990 return cso;
991 }
992
993 /**
994 * The pipe->bind_depth_stencil_alpha_state() driver hook.
995 *
996 * Bind a depth/stencil/alpha CSO and flag related dirty bits.
997 */
998 static void
999 iris_bind_zsa_state(struct pipe_context *ctx, void *state)
1000 {
1001 struct iris_context *ice = (struct iris_context *) ctx;
1002 struct iris_depth_stencil_alpha_state *old_cso = ice->state.cso_zsa;
1003 struct iris_depth_stencil_alpha_state *new_cso = state;
1004
1005 if (new_cso) {
1006 if (cso_changed(alpha.ref_value))
1007 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
1008
1009 if (cso_changed(alpha.enabled))
1010 ice->state.dirty |= IRIS_DIRTY_PS_BLEND | IRIS_DIRTY_BLEND_STATE;
1011
1012 if (cso_changed(alpha.func))
1013 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1014
1015 ice->state.depth_writes_enabled = new_cso->depth_writes_enabled;
1016 ice->state.stencil_writes_enabled = new_cso->stencil_writes_enabled;
1017 }
1018
1019 ice->state.cso_zsa = new_cso;
1020 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1021 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
1022 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_DEPTH_STENCIL_ALPHA];
1023 }
1024
1025 /**
1026 * Gallium CSO for rasterizer state.
1027 */
1028 struct iris_rasterizer_state {
1029 uint32_t sf[GENX(3DSTATE_SF_length)];
1030 uint32_t clip[GENX(3DSTATE_CLIP_length)];
1031 uint32_t raster[GENX(3DSTATE_RASTER_length)];
1032 uint32_t wm[GENX(3DSTATE_WM_length)];
1033 uint32_t line_stipple[GENX(3DSTATE_LINE_STIPPLE_length)];
1034
1035 uint8_t num_clip_plane_consts;
1036 bool clip_halfz; /* for CC_VIEWPORT */
1037 bool depth_clip_near; /* for CC_VIEWPORT */
1038 bool depth_clip_far; /* for CC_VIEWPORT */
1039 bool flatshade; /* for shader state */
1040 bool flatshade_first; /* for stream output */
1041 bool clamp_fragment_color; /* for shader state */
1042 bool light_twoside; /* for shader state */
1043 bool rasterizer_discard; /* for 3DSTATE_STREAMOUT and 3DSTATE_CLIP */
1044 bool half_pixel_center; /* for 3DSTATE_MULTISAMPLE */
1045 bool line_stipple_enable;
1046 bool poly_stipple_enable;
1047 bool multisample;
1048 bool force_persample_interp;
1049 enum pipe_sprite_coord_mode sprite_coord_mode; /* PIPE_SPRITE_* */
1050 uint16_t sprite_coord_enable;
1051 };
1052
1053 static float
1054 get_line_width(const struct pipe_rasterizer_state *state)
1055 {
1056 float line_width = state->line_width;
1057
1058 /* From the OpenGL 4.4 spec:
1059 *
1060 * "The actual width of non-antialiased lines is determined by rounding
1061 * the supplied width to the nearest integer, then clamping it to the
1062 * implementation-dependent maximum non-antialiased line width."
1063 */
1064 if (!state->multisample && !state->line_smooth)
1065 line_width = roundf(state->line_width);
1066
1067 if (!state->multisample && state->line_smooth && line_width < 1.5f) {
1068 /* For 1 pixel line thickness or less, the general anti-aliasing
1069 * algorithm gives up, and a garbage line is generated. Setting a
1070 * Line Width of 0.0 specifies the rasterization of the "thinnest"
1071 * (one-pixel-wide), non-antialiased lines.
1072 *
1073 * Lines rendered with zero Line Width are rasterized using the
1074 * "Grid Intersection Quantization" rules as specified by the
1075 * "Zero-Width (Cosmetic) Line Rasterization" section of the docs.
1076 */
1077 line_width = 0.0f;
1078 }
1079
1080 return line_width;
1081 }
1082
1083 /**
1084 * The pipe->create_rasterizer_state() driver hook.
1085 */
1086 static void *
1087 iris_create_rasterizer_state(struct pipe_context *ctx,
1088 const struct pipe_rasterizer_state *state)
1089 {
1090 struct iris_rasterizer_state *cso =
1091 malloc(sizeof(struct iris_rasterizer_state));
1092
1093 #if 0
1094 point_quad_rasterization -> SBE?
1095
1096 not necessary?
1097 {
1098 poly_smooth
1099 bottom_edge_rule
1100
1101 offset_units_unscaled - cap not exposed
1102 }
1103 #endif
1104
1105 // XXX: it may make more sense just to store the pipe_rasterizer_state,
1106 // we're copying a lot of booleans here. But we don't need all of them...
1107
1108 cso->multisample = state->multisample;
1109 cso->force_persample_interp = state->force_persample_interp;
1110 cso->clip_halfz = state->clip_halfz;
1111 cso->depth_clip_near = state->depth_clip_near;
1112 cso->depth_clip_far = state->depth_clip_far;
1113 cso->flatshade = state->flatshade;
1114 cso->flatshade_first = state->flatshade_first;
1115 cso->clamp_fragment_color = state->clamp_fragment_color;
1116 cso->light_twoside = state->light_twoside;
1117 cso->rasterizer_discard = state->rasterizer_discard;
1118 cso->half_pixel_center = state->half_pixel_center;
1119 cso->sprite_coord_mode = state->sprite_coord_mode;
1120 cso->sprite_coord_enable = state->sprite_coord_enable;
1121 cso->line_stipple_enable = state->line_stipple_enable;
1122 cso->poly_stipple_enable = state->poly_stipple_enable;
1123
1124 if (state->clip_plane_enable != 0)
1125 cso->num_clip_plane_consts = util_logbase2(state->clip_plane_enable) + 1;
1126 else
1127 cso->num_clip_plane_consts = 0;
1128
1129 float line_width = get_line_width(state);
1130
1131 iris_pack_command(GENX(3DSTATE_SF), cso->sf, sf) {
1132 sf.StatisticsEnable = true;
1133 sf.ViewportTransformEnable = true;
1134 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
1135 sf.LineEndCapAntialiasingRegionWidth =
1136 state->line_smooth ? _10pixels : _05pixels;
1137 sf.LastPixelEnable = state->line_last_pixel;
1138 sf.LineWidth = line_width;
1139 sf.SmoothPointEnable = state->point_smooth || state->multisample;
1140 sf.PointWidthSource = state->point_size_per_vertex ? Vertex : State;
1141 sf.PointWidth = state->point_size;
1142
1143 if (state->flatshade_first) {
1144 sf.TriangleFanProvokingVertexSelect = 1;
1145 } else {
1146 sf.TriangleStripListProvokingVertexSelect = 2;
1147 sf.TriangleFanProvokingVertexSelect = 2;
1148 sf.LineStripListProvokingVertexSelect = 1;
1149 }
1150 }
1151
1152 iris_pack_command(GENX(3DSTATE_RASTER), cso->raster, rr) {
1153 rr.FrontWinding = state->front_ccw ? CounterClockwise : Clockwise;
1154 rr.CullMode = translate_cull_mode(state->cull_face);
1155 rr.FrontFaceFillMode = translate_fill_mode(state->fill_front);
1156 rr.BackFaceFillMode = translate_fill_mode(state->fill_back);
1157 rr.DXMultisampleRasterizationEnable = state->multisample;
1158 rr.GlobalDepthOffsetEnableSolid = state->offset_tri;
1159 rr.GlobalDepthOffsetEnableWireframe = state->offset_line;
1160 rr.GlobalDepthOffsetEnablePoint = state->offset_point;
1161 rr.GlobalDepthOffsetConstant = state->offset_units * 2;
1162 rr.GlobalDepthOffsetScale = state->offset_scale;
1163 rr.GlobalDepthOffsetClamp = state->offset_clamp;
1164 rr.SmoothPointEnable = state->point_smooth || state->multisample;
1165 rr.AntialiasingEnable = state->line_smooth;
1166 rr.ScissorRectangleEnable = state->scissor;
1167 rr.ViewportZNearClipTestEnable = state->depth_clip_near;
1168 rr.ViewportZFarClipTestEnable = state->depth_clip_far;
1169 //rr.ConservativeRasterizationEnable = not yet supported by Gallium...
1170 }
1171
1172 iris_pack_command(GENX(3DSTATE_CLIP), cso->clip, cl) {
1173 /* cl.NonPerspectiveBarycentricEnable is filled in at draw time from
1174 * the FS program; cl.ForceZeroRTAIndexEnable is filled in from the FB.
1175 */
1176 cl.EarlyCullEnable = true;
1177 cl.UserClipDistanceClipTestEnableBitmask = state->clip_plane_enable;
1178 cl.ForceUserClipDistanceClipTestEnableBitmask = true;
1179 cl.APIMode = state->clip_halfz ? APIMODE_D3D : APIMODE_OGL;
1180 cl.GuardbandClipTestEnable = true;
1181 cl.ClipEnable = true;
1182 cl.ViewportXYClipTestEnable = state->point_tri_clip;
1183 cl.MinimumPointWidth = 0.125;
1184 cl.MaximumPointWidth = 255.875;
1185
1186 if (state->flatshade_first) {
1187 cl.TriangleFanProvokingVertexSelect = 1;
1188 } else {
1189 cl.TriangleStripListProvokingVertexSelect = 2;
1190 cl.TriangleFanProvokingVertexSelect = 2;
1191 cl.LineStripListProvokingVertexSelect = 1;
1192 }
1193 }
1194
1195 iris_pack_command(GENX(3DSTATE_WM), cso->wm, wm) {
1196 /* wm.BarycentricInterpolationMode and wm.EarlyDepthStencilControl are
1197 * filled in at draw time from the FS program.
1198 */
1199 wm.LineAntialiasingRegionWidth = _10pixels;
1200 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1201 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1202 wm.LineStippleEnable = state->line_stipple_enable;
1203 wm.PolygonStippleEnable = state->poly_stipple_enable;
1204 }
1205
1206 /* Remap from 0..255 back to 1..256 */
1207 const unsigned line_stipple_factor = state->line_stipple_factor + 1;
1208
1209 iris_pack_command(GENX(3DSTATE_LINE_STIPPLE), cso->line_stipple, line) {
1210 line.LineStipplePattern = state->line_stipple_pattern;
1211 line.LineStippleInverseRepeatCount = 1.0f / line_stipple_factor;
1212 line.LineStippleRepeatCount = line_stipple_factor;
1213 }
1214
1215 return cso;
1216 }
1217
1218 /**
1219 * The pipe->bind_rasterizer_state() driver hook.
1220 *
1221 * Bind a rasterizer CSO and flag related dirty bits.
1222 */
1223 static void
1224 iris_bind_rasterizer_state(struct pipe_context *ctx, void *state)
1225 {
1226 struct iris_context *ice = (struct iris_context *) ctx;
1227 struct iris_rasterizer_state *old_cso = ice->state.cso_rast;
1228 struct iris_rasterizer_state *new_cso = state;
1229
1230 if (new_cso) {
1231 /* Try to avoid re-emitting 3DSTATE_LINE_STIPPLE, it's non-pipelined */
1232 if (cso_changed_memcmp(line_stipple))
1233 ice->state.dirty |= IRIS_DIRTY_LINE_STIPPLE;
1234
1235 if (cso_changed(half_pixel_center))
1236 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
1237
1238 if (cso_changed(line_stipple_enable) || cso_changed(poly_stipple_enable))
1239 ice->state.dirty |= IRIS_DIRTY_WM;
1240
1241 if (cso_changed(rasterizer_discard))
1242 ice->state.dirty |= IRIS_DIRTY_STREAMOUT | IRIS_DIRTY_CLIP;
1243
1244 if (cso_changed(flatshade_first))
1245 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
1246
1247 if (cso_changed(depth_clip_near) || cso_changed(depth_clip_far) ||
1248 cso_changed(clip_halfz))
1249 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1250
1251 if (cso_changed(sprite_coord_enable) ||
1252 cso_changed(sprite_coord_mode) ||
1253 cso_changed(light_twoside))
1254 ice->state.dirty |= IRIS_DIRTY_SBE;
1255 }
1256
1257 ice->state.cso_rast = new_cso;
1258 ice->state.dirty |= IRIS_DIRTY_RASTER;
1259 ice->state.dirty |= IRIS_DIRTY_CLIP;
1260 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_RASTERIZER];
1261 }
1262
1263 /**
1264 * Return true if the given wrap mode requires the border color to exist.
1265 *
1266 * (We can skip uploading it if the sampler isn't going to use it.)
1267 */
1268 static bool
1269 wrap_mode_needs_border_color(unsigned wrap_mode)
1270 {
1271 return wrap_mode == TCM_CLAMP_BORDER || wrap_mode == TCM_HALF_BORDER;
1272 }
1273
1274 /**
1275 * Gallium CSO for sampler state.
1276 */
1277 struct iris_sampler_state {
1278 union pipe_color_union border_color;
1279 bool needs_border_color;
1280
1281 uint32_t sampler_state[GENX(SAMPLER_STATE_length)];
1282 };
1283
1284 /**
1285 * The pipe->create_sampler_state() driver hook.
1286 *
1287 * We fill out SAMPLER_STATE (except for the border color pointer), and
1288 * store that on the CPU. It doesn't make sense to upload it to a GPU
1289 * buffer object yet, because 3DSTATE_SAMPLER_STATE_POINTERS requires
1290 * all bound sampler states to be in contiguous memor.
1291 */
1292 static void *
1293 iris_create_sampler_state(struct pipe_context *ctx,
1294 const struct pipe_sampler_state *state)
1295 {
1296 struct iris_sampler_state *cso = CALLOC_STRUCT(iris_sampler_state);
1297
1298 if (!cso)
1299 return NULL;
1300
1301 STATIC_ASSERT(PIPE_TEX_FILTER_NEAREST == MAPFILTER_NEAREST);
1302 STATIC_ASSERT(PIPE_TEX_FILTER_LINEAR == MAPFILTER_LINEAR);
1303
1304 unsigned wrap_s = translate_wrap(state->wrap_s);
1305 unsigned wrap_t = translate_wrap(state->wrap_t);
1306 unsigned wrap_r = translate_wrap(state->wrap_r);
1307
1308 memcpy(&cso->border_color, &state->border_color, sizeof(cso->border_color));
1309
1310 cso->needs_border_color = wrap_mode_needs_border_color(wrap_s) ||
1311 wrap_mode_needs_border_color(wrap_t) ||
1312 wrap_mode_needs_border_color(wrap_r);
1313
1314 float min_lod = state->min_lod;
1315 unsigned mag_img_filter = state->mag_img_filter;
1316
1317 // XXX: explain this code ported from ilo...I don't get it at all...
1318 if (state->min_mip_filter == PIPE_TEX_MIPFILTER_NONE &&
1319 state->min_lod > 0.0f) {
1320 min_lod = 0.0f;
1321 mag_img_filter = state->min_img_filter;
1322 }
1323
1324 iris_pack_state(GENX(SAMPLER_STATE), cso->sampler_state, samp) {
1325 samp.TCXAddressControlMode = wrap_s;
1326 samp.TCYAddressControlMode = wrap_t;
1327 samp.TCZAddressControlMode = wrap_r;
1328 samp.CubeSurfaceControlMode = state->seamless_cube_map;
1329 samp.NonnormalizedCoordinateEnable = !state->normalized_coords;
1330 samp.MinModeFilter = state->min_img_filter;
1331 samp.MagModeFilter = mag_img_filter;
1332 samp.MipModeFilter = translate_mip_filter(state->min_mip_filter);
1333 samp.MaximumAnisotropy = RATIO21;
1334
1335 if (state->max_anisotropy >= 2) {
1336 if (state->min_img_filter == PIPE_TEX_FILTER_LINEAR) {
1337 samp.MinModeFilter = MAPFILTER_ANISOTROPIC;
1338 samp.AnisotropicAlgorithm = EWAApproximation;
1339 }
1340
1341 if (state->mag_img_filter == PIPE_TEX_FILTER_LINEAR)
1342 samp.MagModeFilter = MAPFILTER_ANISOTROPIC;
1343
1344 samp.MaximumAnisotropy =
1345 MIN2((state->max_anisotropy - 2) / 2, RATIO161);
1346 }
1347
1348 /* Set address rounding bits if not using nearest filtering. */
1349 if (state->min_img_filter != PIPE_TEX_FILTER_NEAREST) {
1350 samp.UAddressMinFilterRoundingEnable = true;
1351 samp.VAddressMinFilterRoundingEnable = true;
1352 samp.RAddressMinFilterRoundingEnable = true;
1353 }
1354
1355 if (state->mag_img_filter != PIPE_TEX_FILTER_NEAREST) {
1356 samp.UAddressMagFilterRoundingEnable = true;
1357 samp.VAddressMagFilterRoundingEnable = true;
1358 samp.RAddressMagFilterRoundingEnable = true;
1359 }
1360
1361 if (state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE)
1362 samp.ShadowFunction = translate_shadow_func(state->compare_func);
1363
1364 const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
1365
1366 samp.LODPreClampMode = CLAMP_MODE_OGL;
1367 samp.MinLOD = CLAMP(min_lod, 0, hw_max_lod);
1368 samp.MaxLOD = CLAMP(state->max_lod, 0, hw_max_lod);
1369 samp.TextureLODBias = CLAMP(state->lod_bias, -16, 15);
1370
1371 /* .BorderColorPointer is filled in by iris_bind_sampler_states. */
1372 }
1373
1374 return cso;
1375 }
1376
1377 /**
1378 * The pipe->bind_sampler_states() driver hook.
1379 *
1380 * Now that we know all the sampler states, we upload them all into a
1381 * contiguous area of GPU memory, for 3DSTATE_SAMPLER_STATE_POINTERS_*.
1382 * We also fill out the border color state pointers at this point.
1383 *
1384 * We could defer this work to draw time, but we assume that binding
1385 * will be less frequent than drawing.
1386 */
1387 // XXX: this may be a bad idea, need to make sure that st/mesa calls us
1388 // XXX: with the complete set of shaders. If it makes multiple calls to
1389 // XXX: things one at a time, we could waste a lot of time assembling things.
1390 // XXX: it doesn't even BUY us anything to do it here, because we only flag
1391 // XXX: IRIS_DIRTY_SAMPLER_STATE when this is called...
1392 static void
1393 iris_bind_sampler_states(struct pipe_context *ctx,
1394 enum pipe_shader_type p_stage,
1395 unsigned start, unsigned count,
1396 void **states)
1397 {
1398 struct iris_context *ice = (struct iris_context *) ctx;
1399 gl_shader_stage stage = stage_from_pipe(p_stage);
1400 struct iris_shader_state *shs = &ice->state.shaders[stage];
1401
1402 assert(start + count <= IRIS_MAX_TEXTURE_SAMPLERS);
1403
1404 for (int i = 0; i < count; i++) {
1405 shs->samplers[start + i] = states[i];
1406 }
1407
1408 /* Assemble the SAMPLER_STATEs into a contiguous table that lives
1409 * in the dynamic state memory zone, so we can point to it via the
1410 * 3DSTATE_SAMPLER_STATE_POINTERS_* commands.
1411 */
1412 uint32_t *map =
1413 upload_state(ice->state.dynamic_uploader, &shs->sampler_table,
1414 count * 4 * GENX(SAMPLER_STATE_length), 32);
1415 if (unlikely(!map))
1416 return;
1417
1418 struct pipe_resource *res = shs->sampler_table.res;
1419 shs->sampler_table.offset +=
1420 iris_bo_offset_from_base_address(iris_resource_bo(res));
1421
1422 /* Make sure all land in the same BO */
1423 iris_border_color_pool_reserve(ice, IRIS_MAX_TEXTURE_SAMPLERS);
1424
1425 for (int i = 0; i < count; i++) {
1426 struct iris_sampler_state *state = shs->samplers[i];
1427
1428 if (!state) {
1429 memset(map, 0, 4 * GENX(SAMPLER_STATE_length));
1430 } else if (!state->needs_border_color) {
1431 memcpy(map, state->sampler_state, 4 * GENX(SAMPLER_STATE_length));
1432 } else {
1433 ice->state.need_border_colors = true;
1434
1435 /* Stream out the border color and merge the pointer. */
1436 uint32_t offset =
1437 iris_upload_border_color(ice, &state->border_color);
1438
1439 uint32_t dynamic[GENX(SAMPLER_STATE_length)];
1440 iris_pack_state(GENX(SAMPLER_STATE), dynamic, dyns) {
1441 dyns.BorderColorPointer = offset;
1442 }
1443
1444 for (uint32_t j = 0; j < GENX(SAMPLER_STATE_length); j++)
1445 map[j] = state->sampler_state[j] | dynamic[j];
1446 }
1447
1448 map += GENX(SAMPLER_STATE_length);
1449 }
1450
1451 ice->state.dirty |= IRIS_DIRTY_SAMPLER_STATES_VS << stage;
1452 }
1453
1454 static enum isl_channel_select
1455 fmt_swizzle(const struct iris_format_info *fmt, enum pipe_swizzle swz)
1456 {
1457 switch (swz) {
1458 case PIPE_SWIZZLE_X: return fmt->swizzle.r;
1459 case PIPE_SWIZZLE_Y: return fmt->swizzle.g;
1460 case PIPE_SWIZZLE_Z: return fmt->swizzle.b;
1461 case PIPE_SWIZZLE_W: return fmt->swizzle.a;
1462 case PIPE_SWIZZLE_1: return SCS_ONE;
1463 case PIPE_SWIZZLE_0: return SCS_ZERO;
1464 default: unreachable("invalid swizzle");
1465 }
1466 }
1467
1468 static void
1469 fill_buffer_surface_state(struct isl_device *isl_dev,
1470 struct iris_bo *bo,
1471 void *map,
1472 enum isl_format format,
1473 unsigned offset,
1474 unsigned size)
1475 {
1476 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
1477 const unsigned cpp = fmtl->bpb / 8;
1478
1479 /* The ARB_texture_buffer_specification says:
1480 *
1481 * "The number of texels in the buffer texture's texel array is given by
1482 *
1483 * floor(<buffer_size> / (<components> * sizeof(<base_type>)),
1484 *
1485 * where <buffer_size> is the size of the buffer object, in basic
1486 * machine units and <components> and <base_type> are the element count
1487 * and base data type for elements, as specified in Table X.1. The
1488 * number of texels in the texel array is then clamped to the
1489 * implementation-dependent limit MAX_TEXTURE_BUFFER_SIZE_ARB."
1490 *
1491 * We need to clamp the size in bytes to MAX_TEXTURE_BUFFER_SIZE * stride,
1492 * so that when ISL divides by stride to obtain the number of texels, that
1493 * texel count is clamped to MAX_TEXTURE_BUFFER_SIZE.
1494 */
1495 unsigned final_size =
1496 MIN3(size, bo->size - offset, IRIS_MAX_TEXTURE_BUFFER_SIZE * cpp);
1497
1498 isl_buffer_fill_state(isl_dev, map,
1499 .address = bo->gtt_offset + offset,
1500 .size_B = final_size,
1501 .format = format,
1502 .stride_B = cpp,
1503 .mocs = MOCS_WB);
1504 }
1505
1506 /**
1507 * Allocate a SURFACE_STATE structure.
1508 */
1509 static void *
1510 alloc_surface_states(struct u_upload_mgr *mgr,
1511 struct iris_state_ref *ref)
1512 {
1513 const unsigned surf_size = 4 * GENX(RENDER_SURFACE_STATE_length);
1514
1515 void *map = upload_state(mgr, ref, surf_size, 64);
1516
1517 ref->offset += iris_bo_offset_from_base_address(iris_resource_bo(ref->res));
1518
1519 return map;
1520 }
1521
1522 static void
1523 fill_surface_state(struct isl_device *isl_dev,
1524 void *map,
1525 struct iris_resource *res,
1526 struct isl_view *view)
1527 {
1528 struct isl_surf_fill_state_info f = {
1529 .surf = &res->surf,
1530 .view = view,
1531 .mocs = MOCS_WB,
1532 .address = res->bo->gtt_offset,
1533 };
1534
1535 isl_surf_fill_state_s(isl_dev, map, &f);
1536 }
1537
1538 /**
1539 * The pipe->create_sampler_view() driver hook.
1540 */
1541 static struct pipe_sampler_view *
1542 iris_create_sampler_view(struct pipe_context *ctx,
1543 struct pipe_resource *tex,
1544 const struct pipe_sampler_view *tmpl)
1545 {
1546 struct iris_context *ice = (struct iris_context *) ctx;
1547 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1548 const struct gen_device_info *devinfo = &screen->devinfo;
1549 struct iris_sampler_view *isv = calloc(1, sizeof(struct iris_sampler_view));
1550
1551 if (!isv)
1552 return NULL;
1553
1554 /* initialize base object */
1555 isv->base = *tmpl;
1556 isv->base.context = ctx;
1557 isv->base.texture = NULL;
1558 pipe_reference_init(&isv->base.reference, 1);
1559 pipe_resource_reference(&isv->base.texture, tex);
1560
1561 void *map = alloc_surface_states(ice->state.surface_uploader,
1562 &isv->surface_state);
1563 if (!unlikely(map))
1564 return NULL;
1565
1566 if (util_format_is_depth_or_stencil(tmpl->format)) {
1567 struct iris_resource *zres, *sres;
1568 const struct util_format_description *desc =
1569 util_format_description(tmpl->format);
1570
1571 iris_get_depth_stencil_resources(tex, &zres, &sres);
1572
1573 tex = util_format_has_depth(desc) ? &zres->base : &sres->base;
1574 }
1575
1576 isv->res = (struct iris_resource *) tex;
1577
1578 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_TEXTURE_BIT;
1579
1580 if (isv->base.target == PIPE_TEXTURE_CUBE ||
1581 isv->base.target == PIPE_TEXTURE_CUBE_ARRAY)
1582 usage |= ISL_SURF_USAGE_CUBE_BIT;
1583
1584 const struct iris_format_info fmt =
1585 iris_format_for_usage(devinfo, tmpl->format, usage);
1586
1587 isv->view = (struct isl_view) {
1588 .format = fmt.fmt,
1589 .swizzle = (struct isl_swizzle) {
1590 .r = fmt_swizzle(&fmt, tmpl->swizzle_r),
1591 .g = fmt_swizzle(&fmt, tmpl->swizzle_g),
1592 .b = fmt_swizzle(&fmt, tmpl->swizzle_b),
1593 .a = fmt_swizzle(&fmt, tmpl->swizzle_a),
1594 },
1595 .usage = usage,
1596 };
1597
1598 /* Fill out SURFACE_STATE for this view. */
1599 if (tmpl->target != PIPE_BUFFER) {
1600 isv->view.base_level = tmpl->u.tex.first_level;
1601 isv->view.levels = tmpl->u.tex.last_level - tmpl->u.tex.first_level + 1;
1602 // XXX: do I need to port f9fd0cf4790cb2a530e75d1a2206dbb9d8af7cb2?
1603 isv->view.base_array_layer = tmpl->u.tex.first_layer;
1604 isv->view.array_len =
1605 tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
1606
1607 fill_surface_state(&screen->isl_dev, map, isv->res, &isv->view);
1608 } else {
1609 fill_buffer_surface_state(&screen->isl_dev, isv->res->bo, map,
1610 isv->view.format, tmpl->u.buf.offset,
1611 tmpl->u.buf.size);
1612 }
1613
1614 return &isv->base;
1615 }
1616
1617 static void
1618 iris_sampler_view_destroy(struct pipe_context *ctx,
1619 struct pipe_sampler_view *state)
1620 {
1621 struct iris_sampler_view *isv = (void *) state;
1622 pipe_resource_reference(&state->texture, NULL);
1623 pipe_resource_reference(&isv->surface_state.res, NULL);
1624 free(isv);
1625 }
1626
1627 /**
1628 * The pipe->create_surface() driver hook.
1629 *
1630 * In Gallium nomenclature, "surfaces" are a view of a resource that
1631 * can be bound as a render target or depth/stencil buffer.
1632 */
1633 static struct pipe_surface *
1634 iris_create_surface(struct pipe_context *ctx,
1635 struct pipe_resource *tex,
1636 const struct pipe_surface *tmpl)
1637 {
1638 struct iris_context *ice = (struct iris_context *) ctx;
1639 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1640 const struct gen_device_info *devinfo = &screen->devinfo;
1641 struct iris_surface *surf = calloc(1, sizeof(struct iris_surface));
1642 struct pipe_surface *psurf = &surf->base;
1643 struct iris_resource *res = (struct iris_resource *) tex;
1644
1645 if (!surf)
1646 return NULL;
1647
1648 pipe_reference_init(&psurf->reference, 1);
1649 pipe_resource_reference(&psurf->texture, tex);
1650 psurf->context = ctx;
1651 psurf->format = tmpl->format;
1652 psurf->width = tex->width0;
1653 psurf->height = tex->height0;
1654 psurf->texture = tex;
1655 psurf->u.tex.first_layer = tmpl->u.tex.first_layer;
1656 psurf->u.tex.last_layer = tmpl->u.tex.last_layer;
1657 psurf->u.tex.level = tmpl->u.tex.level;
1658
1659 isl_surf_usage_flags_t usage = 0;
1660 if (tmpl->writable)
1661 usage = ISL_SURF_USAGE_STORAGE_BIT;
1662 else if (util_format_is_depth_or_stencil(tmpl->format))
1663 usage = ISL_SURF_USAGE_DEPTH_BIT;
1664 else
1665 usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
1666
1667 const struct iris_format_info fmt =
1668 iris_format_for_usage(devinfo, psurf->format, usage);
1669
1670 if ((usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) &&
1671 !isl_format_supports_rendering(devinfo, fmt.fmt)) {
1672 /* Framebuffer validation will reject this invalid case, but it
1673 * hasn't had the opportunity yet. In the meantime, we need to
1674 * avoid hitting ISL asserts about unsupported formats below.
1675 */
1676 free(surf);
1677 return NULL;
1678 }
1679
1680 surf->view = (struct isl_view) {
1681 .format = fmt.fmt,
1682 .base_level = tmpl->u.tex.level,
1683 .levels = 1,
1684 .base_array_layer = tmpl->u.tex.first_layer,
1685 .array_len = tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1,
1686 .swizzle = ISL_SWIZZLE_IDENTITY,
1687 .usage = usage,
1688 };
1689
1690 /* Bail early for depth/stencil - we don't want SURFACE_STATE for them. */
1691 if (res->surf.usage & (ISL_SURF_USAGE_DEPTH_BIT |
1692 ISL_SURF_USAGE_STENCIL_BIT))
1693 return psurf;
1694
1695
1696 void *map = alloc_surface_states(ice->state.surface_uploader,
1697 &surf->surface_state);
1698 if (!unlikely(map))
1699 return NULL;
1700
1701 fill_surface_state(&screen->isl_dev, map, res, &surf->view);
1702
1703 return psurf;
1704 }
1705
1706 /**
1707 * The pipe->set_shader_images() driver hook.
1708 */
1709 static void
1710 iris_set_shader_images(struct pipe_context *ctx,
1711 enum pipe_shader_type p_stage,
1712 unsigned start_slot, unsigned count,
1713 const struct pipe_image_view *p_images)
1714 {
1715 struct iris_context *ice = (struct iris_context *) ctx;
1716 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1717 const struct gen_device_info *devinfo = &screen->devinfo;
1718 gl_shader_stage stage = stage_from_pipe(p_stage);
1719 struct iris_shader_state *shs = &ice->state.shaders[stage];
1720
1721 shs->bound_image_views &= ~u_bit_consecutive(start_slot, count);
1722
1723 for (unsigned i = 0; i < count; i++) {
1724 if (p_images && p_images[i].resource) {
1725 const struct pipe_image_view *img = &p_images[i];
1726 struct iris_resource *res = (void *) img->resource;
1727 pipe_resource_reference(&shs->image[start_slot + i].res, &res->base);
1728
1729 shs->bound_image_views |= 1 << (start_slot + i);
1730
1731 res->bind_history |= PIPE_BIND_SHADER_IMAGE;
1732
1733 // XXX: these are not retained forever, use a separate uploader?
1734 void *map =
1735 alloc_surface_states(ice->state.surface_uploader,
1736 &shs->image[start_slot + i].surface_state);
1737 if (!unlikely(map)) {
1738 pipe_resource_reference(&shs->image[start_slot + i].res, NULL);
1739 return;
1740 }
1741
1742 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_STORAGE_BIT;
1743 enum isl_format isl_format =
1744 iris_format_for_usage(devinfo, img->format, usage).fmt;
1745
1746 if (img->shader_access & PIPE_IMAGE_ACCESS_READ)
1747 isl_format = isl_lower_storage_image_format(devinfo, isl_format);
1748
1749 shs->image[start_slot + i].access = img->shader_access;
1750
1751 if (res->base.target != PIPE_BUFFER) {
1752 struct isl_view view = {
1753 .format = isl_format,
1754 .base_level = img->u.tex.level,
1755 .levels = 1,
1756 .base_array_layer = img->u.tex.first_layer,
1757 .array_len = img->u.tex.last_layer - img->u.tex.first_layer + 1,
1758 .swizzle = ISL_SWIZZLE_IDENTITY,
1759 .usage = usage,
1760 };
1761
1762 fill_surface_state(&screen->isl_dev, map, res, &view);
1763 } else {
1764 fill_buffer_surface_state(&screen->isl_dev, res->bo, map,
1765 isl_format, img->u.buf.offset,
1766 img->u.buf.size);
1767 }
1768 } else {
1769 pipe_resource_reference(&shs->image[start_slot + i].res, NULL);
1770 pipe_resource_reference(&shs->image[start_slot + i].surface_state.res,
1771 NULL);
1772 }
1773 }
1774
1775 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
1776 }
1777
1778
1779 /**
1780 * The pipe->set_sampler_views() driver hook.
1781 */
1782 static void
1783 iris_set_sampler_views(struct pipe_context *ctx,
1784 enum pipe_shader_type p_stage,
1785 unsigned start, unsigned count,
1786 struct pipe_sampler_view **views)
1787 {
1788 struct iris_context *ice = (struct iris_context *) ctx;
1789 gl_shader_stage stage = stage_from_pipe(p_stage);
1790 struct iris_shader_state *shs = &ice->state.shaders[stage];
1791
1792 shs->bound_sampler_views &= ~u_bit_consecutive(start, count);
1793
1794 for (unsigned i = 0; i < count; i++) {
1795 pipe_sampler_view_reference((struct pipe_sampler_view **)
1796 &shs->textures[start + i], views[i]);
1797 struct iris_sampler_view *view = (void *) views[i];
1798 if (view) {
1799 view->res->bind_history |= PIPE_BIND_SAMPLER_VIEW;
1800 shs->bound_sampler_views |= 1 << (start + i);
1801 }
1802 }
1803
1804 ice->state.dirty |= (IRIS_DIRTY_BINDINGS_VS << stage);
1805 }
1806
1807 /**
1808 * The pipe->set_tess_state() driver hook.
1809 */
1810 static void
1811 iris_set_tess_state(struct pipe_context *ctx,
1812 const float default_outer_level[4],
1813 const float default_inner_level[2])
1814 {
1815 struct iris_context *ice = (struct iris_context *) ctx;
1816
1817 memcpy(&ice->state.default_outer_level[0], &default_outer_level[0], 4 * sizeof(float));
1818 memcpy(&ice->state.default_inner_level[0], &default_inner_level[0], 2 * sizeof(float));
1819
1820 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_TCS;
1821 }
1822
1823 static void
1824 iris_surface_destroy(struct pipe_context *ctx, struct pipe_surface *p_surf)
1825 {
1826 struct iris_surface *surf = (void *) p_surf;
1827 pipe_resource_reference(&p_surf->texture, NULL);
1828 pipe_resource_reference(&surf->surface_state.res, NULL);
1829 free(surf);
1830 }
1831
1832 static void
1833 iris_set_clip_state(struct pipe_context *ctx,
1834 const struct pipe_clip_state *state)
1835 {
1836 struct iris_context *ice = (struct iris_context *) ctx;
1837 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_VERTEX];
1838
1839 memcpy(&ice->state.clip_planes, state, sizeof(*state));
1840
1841 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS;
1842 shs->cbuf0_needs_upload = true;
1843 }
1844
1845 /**
1846 * The pipe->set_polygon_stipple() driver hook.
1847 */
1848 static void
1849 iris_set_polygon_stipple(struct pipe_context *ctx,
1850 const struct pipe_poly_stipple *state)
1851 {
1852 struct iris_context *ice = (struct iris_context *) ctx;
1853 memcpy(&ice->state.poly_stipple, state, sizeof(*state));
1854 ice->state.dirty |= IRIS_DIRTY_POLYGON_STIPPLE;
1855 }
1856
1857 /**
1858 * The pipe->set_sample_mask() driver hook.
1859 */
1860 static void
1861 iris_set_sample_mask(struct pipe_context *ctx, unsigned sample_mask)
1862 {
1863 struct iris_context *ice = (struct iris_context *) ctx;
1864
1865 /* We only support 16x MSAA, so we have 16 bits of sample maks.
1866 * st/mesa may pass us 0xffffffff though, meaning "enable all samples".
1867 */
1868 ice->state.sample_mask = sample_mask & 0xffff;
1869 ice->state.dirty |= IRIS_DIRTY_SAMPLE_MASK;
1870 }
1871
1872 /**
1873 * The pipe->set_scissor_states() driver hook.
1874 *
1875 * This corresponds to our SCISSOR_RECT state structures. It's an
1876 * exact match, so we just store them, and memcpy them out later.
1877 */
1878 static void
1879 iris_set_scissor_states(struct pipe_context *ctx,
1880 unsigned start_slot,
1881 unsigned num_scissors,
1882 const struct pipe_scissor_state *rects)
1883 {
1884 struct iris_context *ice = (struct iris_context *) ctx;
1885
1886 for (unsigned i = 0; i < num_scissors; i++) {
1887 if (rects[i].minx == rects[i].maxx || rects[i].miny == rects[i].maxy) {
1888 /* If the scissor was out of bounds and got clamped to 0 width/height
1889 * at the bounds, the subtraction of 1 from maximums could produce a
1890 * negative number and thus not clip anything. Instead, just provide
1891 * a min > max scissor inside the bounds, which produces the expected
1892 * no rendering.
1893 */
1894 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
1895 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
1896 };
1897 } else {
1898 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
1899 .minx = rects[i].minx, .miny = rects[i].miny,
1900 .maxx = rects[i].maxx - 1, .maxy = rects[i].maxy - 1,
1901 };
1902 }
1903 }
1904
1905 ice->state.dirty |= IRIS_DIRTY_SCISSOR_RECT;
1906 }
1907
1908 /**
1909 * The pipe->set_stencil_ref() driver hook.
1910 *
1911 * This is added to 3DSTATE_WM_DEPTH_STENCIL dynamically at draw time.
1912 */
1913 static void
1914 iris_set_stencil_ref(struct pipe_context *ctx,
1915 const struct pipe_stencil_ref *state)
1916 {
1917 struct iris_context *ice = (struct iris_context *) ctx;
1918 memcpy(&ice->state.stencil_ref, state, sizeof(*state));
1919 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
1920 }
1921
1922 static float
1923 viewport_extent(const struct pipe_viewport_state *state, int axis, float sign)
1924 {
1925 return copysignf(state->scale[axis], sign) + state->translate[axis];
1926 }
1927
1928 static void
1929 calculate_guardband_size(uint32_t fb_width, uint32_t fb_height,
1930 float m00, float m11, float m30, float m31,
1931 float *xmin, float *xmax,
1932 float *ymin, float *ymax)
1933 {
1934 /* According to the "Vertex X,Y Clamping and Quantization" section of the
1935 * Strips and Fans documentation:
1936 *
1937 * "The vertex X and Y screen-space coordinates are also /clamped/ to the
1938 * fixed-point "guardband" range supported by the rasterization hardware"
1939 *
1940 * and
1941 *
1942 * "In almost all circumstances, if an object’s vertices are actually
1943 * modified by this clamping (i.e., had X or Y coordinates outside of
1944 * the guardband extent the rendered object will not match the intended
1945 * result. Therefore software should take steps to ensure that this does
1946 * not happen - e.g., by clipping objects such that they do not exceed
1947 * these limits after the Drawing Rectangle is applied."
1948 *
1949 * I believe the fundamental restriction is that the rasterizer (in
1950 * the SF/WM stages) have a limit on the number of pixels that can be
1951 * rasterized. We need to ensure any coordinates beyond the rasterizer
1952 * limit are handled by the clipper. So effectively that limit becomes
1953 * the clipper's guardband size.
1954 *
1955 * It goes on to say:
1956 *
1957 * "In addition, in order to be correctly rendered, objects must have a
1958 * screenspace bounding box not exceeding 8K in the X or Y direction.
1959 * This additional restriction must also be comprehended by software,
1960 * i.e., enforced by use of clipping."
1961 *
1962 * This makes no sense. Gen7+ hardware supports 16K render targets,
1963 * and you definitely need to be able to draw polygons that fill the
1964 * surface. Our assumption is that the rasterizer was limited to 8K
1965 * on Sandybridge, which only supports 8K surfaces, and it was actually
1966 * increased to 16K on Ivybridge and later.
1967 *
1968 * So, limit the guardband to 16K on Gen7+ and 8K on Sandybridge.
1969 */
1970 const float gb_size = GEN_GEN >= 7 ? 16384.0f : 8192.0f;
1971
1972 if (m00 != 0 && m11 != 0) {
1973 /* First, we compute the screen-space render area */
1974 const float ss_ra_xmin = MIN3( 0, m30 + m00, m30 - m00);
1975 const float ss_ra_xmax = MAX3( fb_width, m30 + m00, m30 - m00);
1976 const float ss_ra_ymin = MIN3( 0, m31 + m11, m31 - m11);
1977 const float ss_ra_ymax = MAX3(fb_height, m31 + m11, m31 - m11);
1978
1979 /* We want the guardband to be centered on that */
1980 const float ss_gb_xmin = (ss_ra_xmin + ss_ra_xmax) / 2 - gb_size;
1981 const float ss_gb_xmax = (ss_ra_xmin + ss_ra_xmax) / 2 + gb_size;
1982 const float ss_gb_ymin = (ss_ra_ymin + ss_ra_ymax) / 2 - gb_size;
1983 const float ss_gb_ymax = (ss_ra_ymin + ss_ra_ymax) / 2 + gb_size;
1984
1985 /* Now we need it in native device coordinates */
1986 const float ndc_gb_xmin = (ss_gb_xmin - m30) / m00;
1987 const float ndc_gb_xmax = (ss_gb_xmax - m30) / m00;
1988 const float ndc_gb_ymin = (ss_gb_ymin - m31) / m11;
1989 const float ndc_gb_ymax = (ss_gb_ymax - m31) / m11;
1990
1991 /* Thanks to Y-flipping and ORIGIN_UPPER_LEFT, the Y coordinates may be
1992 * flipped upside-down. X should be fine though.
1993 */
1994 assert(ndc_gb_xmin <= ndc_gb_xmax);
1995 *xmin = ndc_gb_xmin;
1996 *xmax = ndc_gb_xmax;
1997 *ymin = MIN2(ndc_gb_ymin, ndc_gb_ymax);
1998 *ymax = MAX2(ndc_gb_ymin, ndc_gb_ymax);
1999 } else {
2000 /* The viewport scales to 0, so nothing will be rendered. */
2001 *xmin = 0.0f;
2002 *xmax = 0.0f;
2003 *ymin = 0.0f;
2004 *ymax = 0.0f;
2005 }
2006 }
2007
2008 /**
2009 * The pipe->set_viewport_states() driver hook.
2010 *
2011 * This corresponds to our SF_CLIP_VIEWPORT states. We can't calculate
2012 * the guardband yet, as we need the framebuffer dimensions, but we can
2013 * at least fill out the rest.
2014 */
2015 static void
2016 iris_set_viewport_states(struct pipe_context *ctx,
2017 unsigned start_slot,
2018 unsigned count,
2019 const struct pipe_viewport_state *states)
2020 {
2021 struct iris_context *ice = (struct iris_context *) ctx;
2022
2023 memcpy(&ice->state.viewports[start_slot], states, sizeof(*states) * count);
2024
2025 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2026
2027 if (ice->state.cso_rast && (!ice->state.cso_rast->depth_clip_near ||
2028 !ice->state.cso_rast->depth_clip_far))
2029 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
2030 }
2031
2032 /**
2033 * The pipe->set_framebuffer_state() driver hook.
2034 *
2035 * Sets the current draw FBO, including color render targets, depth,
2036 * and stencil buffers.
2037 */
2038 static void
2039 iris_set_framebuffer_state(struct pipe_context *ctx,
2040 const struct pipe_framebuffer_state *state)
2041 {
2042 struct iris_context *ice = (struct iris_context *) ctx;
2043 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2044 struct isl_device *isl_dev = &screen->isl_dev;
2045 struct pipe_framebuffer_state *cso = &ice->state.framebuffer;
2046 struct iris_resource *zres;
2047 struct iris_resource *stencil_res;
2048
2049 unsigned samples = util_framebuffer_get_num_samples(state);
2050
2051 if (cso->samples != samples) {
2052 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
2053 }
2054
2055 if (cso->nr_cbufs != state->nr_cbufs) {
2056 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
2057 }
2058
2059 if ((cso->layers == 0) != (state->layers == 0)) {
2060 ice->state.dirty |= IRIS_DIRTY_CLIP;
2061 }
2062
2063 if (cso->width != state->width || cso->height != state->height) {
2064 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2065 }
2066
2067 util_copy_framebuffer_state(cso, state);
2068 cso->samples = samples;
2069
2070 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
2071
2072 struct isl_view view = {
2073 .base_level = 0,
2074 .levels = 1,
2075 .base_array_layer = 0,
2076 .array_len = 1,
2077 .swizzle = ISL_SWIZZLE_IDENTITY,
2078 };
2079
2080 struct isl_depth_stencil_hiz_emit_info info = {
2081 .view = &view,
2082 .mocs = MOCS_WB,
2083 };
2084
2085 if (cso->zsbuf) {
2086 iris_get_depth_stencil_resources(cso->zsbuf->texture, &zres,
2087 &stencil_res);
2088
2089 view.base_level = cso->zsbuf->u.tex.level;
2090 view.base_array_layer = cso->zsbuf->u.tex.first_layer;
2091 view.array_len =
2092 cso->zsbuf->u.tex.last_layer - cso->zsbuf->u.tex.first_layer + 1;
2093
2094 if (zres) {
2095 view.usage |= ISL_SURF_USAGE_DEPTH_BIT;
2096
2097 info.depth_surf = &zres->surf;
2098 info.depth_address = zres->bo->gtt_offset;
2099 info.hiz_usage = ISL_AUX_USAGE_NONE;
2100
2101 view.format = zres->surf.format;
2102 }
2103
2104 if (stencil_res) {
2105 view.usage |= ISL_SURF_USAGE_STENCIL_BIT;
2106 info.stencil_surf = &stencil_res->surf;
2107 info.stencil_address = stencil_res->bo->gtt_offset;
2108 if (!zres)
2109 view.format = stencil_res->surf.format;
2110 }
2111 }
2112
2113 isl_emit_depth_stencil_hiz_s(isl_dev, cso_z->packets, &info);
2114
2115 /* Make a null surface for unbound buffers */
2116 void *null_surf_map =
2117 upload_state(ice->state.surface_uploader, &ice->state.null_fb,
2118 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2119 isl_null_fill_state(&screen->isl_dev, null_surf_map,
2120 isl_extent3d(MAX2(cso->width, 1),
2121 MAX2(cso->height, 1),
2122 cso->layers ? cso->layers : 1));
2123 ice->state.null_fb.offset +=
2124 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.null_fb.res));
2125
2126 ice->state.dirty |= IRIS_DIRTY_DEPTH_BUFFER;
2127
2128 /* Render target change */
2129 ice->state.dirty |= IRIS_DIRTY_BINDINGS_FS;
2130
2131 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_FRAMEBUFFER];
2132
2133 #if GEN_GEN == 11
2134 // XXX: we may want to flag IRIS_DIRTY_MULTISAMPLE (or SAMPLE_MASK?)
2135 // XXX: see commit 979fc1bc9bcc64027ff2cfafd285676f31b930a6
2136
2137 /* The PIPE_CONTROL command description says:
2138 *
2139 * "Whenever a Binding Table Index (BTI) used by a Render Target Message
2140 * points to a different RENDER_SURFACE_STATE, SW must issue a Render
2141 * Target Cache Flush by enabling this bit. When render target flush
2142 * is set due to new association of BTI, PS Scoreboard Stall bit must
2143 * be set in this packet."
2144 */
2145 // XXX: does this need to happen at 3DSTATE_BTP_PS time?
2146 iris_emit_pipe_control_flush(&ice->batches[IRIS_BATCH_RENDER],
2147 PIPE_CONTROL_RENDER_TARGET_FLUSH |
2148 PIPE_CONTROL_STALL_AT_SCOREBOARD);
2149 #endif
2150 }
2151
2152 static void
2153 upload_ubo_surf_state(struct iris_context *ice,
2154 struct iris_const_buffer *cbuf,
2155 unsigned buffer_size)
2156 {
2157 struct pipe_context *ctx = &ice->ctx;
2158 struct iris_screen *screen = (struct iris_screen *) ctx->screen;
2159
2160 // XXX: these are not retained forever, use a separate uploader?
2161 void *map =
2162 upload_state(ice->state.surface_uploader, &cbuf->surface_state,
2163 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2164 if (!unlikely(map)) {
2165 pipe_resource_reference(&cbuf->data.res, NULL);
2166 return;
2167 }
2168
2169 struct iris_resource *res = (void *) cbuf->data.res;
2170 struct iris_bo *surf_bo = iris_resource_bo(cbuf->surface_state.res);
2171 cbuf->surface_state.offset += iris_bo_offset_from_base_address(surf_bo);
2172
2173 isl_buffer_fill_state(&screen->isl_dev, map,
2174 .address = res->bo->gtt_offset + cbuf->data.offset,
2175 .size_B = MIN2(buffer_size,
2176 res->bo->size - cbuf->data.offset),
2177 .format = ISL_FORMAT_R32G32B32A32_FLOAT,
2178 .stride_B = 1,
2179 .mocs = MOCS_WB)
2180 }
2181
2182 /**
2183 * The pipe->set_constant_buffer() driver hook.
2184 *
2185 * This uploads any constant data in user buffers, and references
2186 * any UBO resources containing constant data.
2187 */
2188 static void
2189 iris_set_constant_buffer(struct pipe_context *ctx,
2190 enum pipe_shader_type p_stage, unsigned index,
2191 const struct pipe_constant_buffer *input)
2192 {
2193 struct iris_context *ice = (struct iris_context *) ctx;
2194 gl_shader_stage stage = stage_from_pipe(p_stage);
2195 struct iris_shader_state *shs = &ice->state.shaders[stage];
2196 struct iris_const_buffer *cbuf = &shs->constbuf[index];
2197
2198 if (input && input->buffer) {
2199 assert(index > 0);
2200
2201 pipe_resource_reference(&cbuf->data.res, input->buffer);
2202 cbuf->data.offset = input->buffer_offset;
2203
2204 struct iris_resource *res = (void *) cbuf->data.res;
2205 res->bind_history |= PIPE_BIND_CONSTANT_BUFFER;
2206
2207 upload_ubo_surf_state(ice, cbuf, input->buffer_size);
2208 } else {
2209 pipe_resource_reference(&cbuf->data.res, NULL);
2210 pipe_resource_reference(&cbuf->surface_state.res, NULL);
2211 }
2212
2213 if (index == 0) {
2214 if (input)
2215 memcpy(&shs->cbuf0, input, sizeof(shs->cbuf0));
2216 else
2217 memset(&shs->cbuf0, 0, sizeof(shs->cbuf0));
2218
2219 shs->cbuf0_needs_upload = true;
2220 }
2221
2222 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
2223 // XXX: maybe not necessary all the time...?
2224 // XXX: we need 3DS_BTP to commit these changes, and if we fell back to
2225 // XXX: pull model we may need actual new bindings...
2226 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2227 }
2228
2229 static void
2230 upload_uniforms(struct iris_context *ice,
2231 gl_shader_stage stage)
2232 {
2233 struct iris_shader_state *shs = &ice->state.shaders[stage];
2234 struct iris_const_buffer *cbuf = &shs->constbuf[0];
2235 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
2236
2237 unsigned upload_size = shader->num_system_values * sizeof(uint32_t) +
2238 shs->cbuf0.buffer_size;
2239
2240 if (upload_size == 0)
2241 return;
2242
2243 uint32_t *map =
2244 upload_state(ice->ctx.const_uploader, &cbuf->data, upload_size, 64);
2245
2246 for (int i = 0; i < shader->num_system_values; i++) {
2247 uint32_t sysval = shader->system_values[i];
2248 uint32_t value = 0;
2249
2250 if (BRW_PARAM_BUILTIN_IS_CLIP_PLANE(sysval)) {
2251 int plane = BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(sysval);
2252 int comp = BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(sysval);
2253 value = fui(ice->state.clip_planes.ucp[plane][comp]);
2254 } else if (sysval == BRW_PARAM_BUILTIN_PATCH_VERTICES_IN) {
2255 if (stage == MESA_SHADER_TESS_CTRL) {
2256 value = ice->state.vertices_per_patch;
2257 } else {
2258 assert(stage == MESA_SHADER_TESS_EVAL);
2259 const struct shader_info *tcs_info =
2260 iris_get_shader_info(ice, MESA_SHADER_TESS_CTRL);
2261 assert(tcs_info);
2262
2263 value = tcs_info->tess.tcs_vertices_out;
2264 }
2265 } else {
2266 assert(!"unhandled system value");
2267 }
2268
2269 *map++ = value;
2270 }
2271
2272 if (shs->cbuf0.user_buffer) {
2273 memcpy(map, shs->cbuf0.user_buffer, shs->cbuf0.buffer_size);
2274 }
2275
2276 upload_ubo_surf_state(ice, cbuf, upload_size);
2277 }
2278
2279 /**
2280 * The pipe->set_shader_buffers() driver hook.
2281 *
2282 * This binds SSBOs and ABOs. Unfortunately, we need to stream out
2283 * SURFACE_STATE here, as the buffer offset may change each time.
2284 */
2285 static void
2286 iris_set_shader_buffers(struct pipe_context *ctx,
2287 enum pipe_shader_type p_stage,
2288 unsigned start_slot, unsigned count,
2289 const struct pipe_shader_buffer *buffers)
2290 {
2291 struct iris_context *ice = (struct iris_context *) ctx;
2292 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2293 gl_shader_stage stage = stage_from_pipe(p_stage);
2294 struct iris_shader_state *shs = &ice->state.shaders[stage];
2295
2296 for (unsigned i = 0; i < count; i++) {
2297 if (buffers && buffers[i].buffer) {
2298 const struct pipe_shader_buffer *buffer = &buffers[i];
2299 struct iris_resource *res = (void *) buffer->buffer;
2300 pipe_resource_reference(&shs->ssbo[start_slot + i], &res->base);
2301
2302 res->bind_history |= PIPE_BIND_SHADER_BUFFER;
2303
2304 // XXX: these are not retained forever, use a separate uploader?
2305 void *map =
2306 upload_state(ice->state.surface_uploader,
2307 &shs->ssbo_surface_state[start_slot + i],
2308 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2309 if (!unlikely(map)) {
2310 pipe_resource_reference(&shs->ssbo[start_slot + i], NULL);
2311 return;
2312 }
2313
2314 struct iris_bo *surf_state_bo =
2315 iris_resource_bo(shs->ssbo_surface_state[start_slot + i].res);
2316 shs->ssbo_surface_state[start_slot + i].offset +=
2317 iris_bo_offset_from_base_address(surf_state_bo);
2318
2319 isl_buffer_fill_state(&screen->isl_dev, map,
2320 .address =
2321 res->bo->gtt_offset + buffer->buffer_offset,
2322 .size_B =
2323 MIN2(buffer->buffer_size,
2324 res->bo->size - buffer->buffer_offset),
2325 .format = ISL_FORMAT_RAW,
2326 .stride_B = 1,
2327 .mocs = MOCS_WB);
2328 } else {
2329 pipe_resource_reference(&shs->ssbo[start_slot + i], NULL);
2330 pipe_resource_reference(&shs->ssbo_surface_state[start_slot + i].res,
2331 NULL);
2332 }
2333 }
2334
2335 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2336 }
2337
2338 static void
2339 iris_delete_state(struct pipe_context *ctx, void *state)
2340 {
2341 free(state);
2342 }
2343
2344 /**
2345 * The pipe->set_vertex_buffers() driver hook.
2346 *
2347 * This translates pipe_vertex_buffer to our 3DSTATE_VERTEX_BUFFERS packet.
2348 */
2349 static void
2350 iris_set_vertex_buffers(struct pipe_context *ctx,
2351 unsigned start_slot, unsigned count,
2352 const struct pipe_vertex_buffer *buffers)
2353 {
2354 struct iris_context *ice = (struct iris_context *) ctx;
2355 struct iris_genx_state *genx = ice->state.genx;
2356
2357 ice->state.bound_vertex_buffers &= ~u_bit_consecutive64(start_slot, count);
2358
2359 for (unsigned i = 0; i < count; i++) {
2360 const struct pipe_vertex_buffer *buffer = buffers ? &buffers[i] : NULL;
2361 struct iris_vertex_buffer_state *state =
2362 &genx->vertex_buffers[start_slot + i];
2363
2364 if (!buffer) {
2365 pipe_resource_reference(&state->resource, NULL);
2366 continue;
2367 }
2368
2369 assert(!buffer->is_user_buffer);
2370
2371 ice->state.bound_vertex_buffers |= 1ull << (start_slot + i);
2372
2373 pipe_resource_reference(&state->resource, buffer->buffer.resource);
2374 struct iris_resource *res = (void *) state->resource;
2375
2376 if (res)
2377 res->bind_history |= PIPE_BIND_VERTEX_BUFFER;
2378
2379 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
2380 vb.VertexBufferIndex = start_slot + i;
2381 vb.MOCS = MOCS_WB;
2382 vb.AddressModifyEnable = true;
2383 vb.BufferPitch = buffer->stride;
2384 if (res) {
2385 vb.BufferSize = res->bo->size;
2386 vb.BufferStartingAddress =
2387 ro_bo(NULL, res->bo->gtt_offset + (int) buffer->buffer_offset);
2388 } else {
2389 vb.NullVertexBuffer = true;
2390 }
2391 }
2392 }
2393
2394 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
2395 }
2396
2397 /**
2398 * Gallium CSO for vertex elements.
2399 */
2400 struct iris_vertex_element_state {
2401 uint32_t vertex_elements[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
2402 uint32_t vf_instancing[33 * GENX(3DSTATE_VF_INSTANCING_length)];
2403 unsigned count;
2404 };
2405
2406 /**
2407 * The pipe->create_vertex_elements() driver hook.
2408 *
2409 * This translates pipe_vertex_element to our 3DSTATE_VERTEX_ELEMENTS
2410 * and 3DSTATE_VF_INSTANCING commands. SGVs are handled at draw time.
2411 */
2412 static void *
2413 iris_create_vertex_elements(struct pipe_context *ctx,
2414 unsigned count,
2415 const struct pipe_vertex_element *state)
2416 {
2417 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2418 const struct gen_device_info *devinfo = &screen->devinfo;
2419 struct iris_vertex_element_state *cso =
2420 malloc(sizeof(struct iris_vertex_element_state));
2421
2422 cso->count = count;
2423
2424 /* TODO:
2425 * - create edge flag one
2426 * - create SGV ones
2427 * - if those are necessary, use count + 1/2/3... OR in the length
2428 */
2429 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS), cso->vertex_elements, ve) {
2430 ve.DWordLength =
2431 1 + GENX(VERTEX_ELEMENT_STATE_length) * MAX2(count, 1) - 2;
2432 }
2433
2434 uint32_t *ve_pack_dest = &cso->vertex_elements[1];
2435 uint32_t *vfi_pack_dest = cso->vf_instancing;
2436
2437 if (count == 0) {
2438 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
2439 ve.Valid = true;
2440 ve.SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT;
2441 ve.Component0Control = VFCOMP_STORE_0;
2442 ve.Component1Control = VFCOMP_STORE_0;
2443 ve.Component2Control = VFCOMP_STORE_0;
2444 ve.Component3Control = VFCOMP_STORE_1_FP;
2445 }
2446
2447 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
2448 }
2449 }
2450
2451 for (int i = 0; i < count; i++) {
2452 const struct iris_format_info fmt =
2453 iris_format_for_usage(devinfo, state[i].src_format, 0);
2454 unsigned comp[4] = { VFCOMP_STORE_SRC, VFCOMP_STORE_SRC,
2455 VFCOMP_STORE_SRC, VFCOMP_STORE_SRC };
2456
2457 switch (isl_format_get_num_channels(fmt.fmt)) {
2458 case 0: comp[0] = VFCOMP_STORE_0;
2459 case 1: comp[1] = VFCOMP_STORE_0;
2460 case 2: comp[2] = VFCOMP_STORE_0;
2461 case 3:
2462 comp[3] = isl_format_has_int_channel(fmt.fmt) ? VFCOMP_STORE_1_INT
2463 : VFCOMP_STORE_1_FP;
2464 break;
2465 }
2466 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
2467 ve.VertexBufferIndex = state[i].vertex_buffer_index;
2468 ve.Valid = true;
2469 ve.SourceElementOffset = state[i].src_offset;
2470 ve.SourceElementFormat = fmt.fmt;
2471 ve.Component0Control = comp[0];
2472 ve.Component1Control = comp[1];
2473 ve.Component2Control = comp[2];
2474 ve.Component3Control = comp[3];
2475 }
2476
2477 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
2478 vi.VertexElementIndex = i;
2479 vi.InstancingEnable = state[i].instance_divisor > 0;
2480 vi.InstanceDataStepRate = state[i].instance_divisor;
2481 }
2482
2483 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
2484 vfi_pack_dest += GENX(3DSTATE_VF_INSTANCING_length);
2485 }
2486
2487 return cso;
2488 }
2489
2490 /**
2491 * The pipe->bind_vertex_elements_state() driver hook.
2492 */
2493 static void
2494 iris_bind_vertex_elements_state(struct pipe_context *ctx, void *state)
2495 {
2496 struct iris_context *ice = (struct iris_context *) ctx;
2497 struct iris_vertex_element_state *old_cso = ice->state.cso_vertex_elements;
2498 struct iris_vertex_element_state *new_cso = state;
2499
2500 /* 3DSTATE_VF_SGVs overrides the last VE, so if the count is changing,
2501 * we need to re-emit it to ensure we're overriding the right one.
2502 */
2503 if (new_cso && cso_changed(count))
2504 ice->state.dirty |= IRIS_DIRTY_VF_SGVS;
2505
2506 ice->state.cso_vertex_elements = state;
2507 ice->state.dirty |= IRIS_DIRTY_VERTEX_ELEMENTS;
2508 }
2509
2510 /**
2511 * The pipe->create_stream_output_target() driver hook.
2512 *
2513 * "Target" here refers to a destination buffer. We translate this into
2514 * a 3DSTATE_SO_BUFFER packet. We can handle most fields, but don't yet
2515 * know which buffer this represents, or whether we ought to zero the
2516 * write-offsets, or append. Those are handled in the set() hook.
2517 */
2518 static struct pipe_stream_output_target *
2519 iris_create_stream_output_target(struct pipe_context *ctx,
2520 struct pipe_resource *p_res,
2521 unsigned buffer_offset,
2522 unsigned buffer_size)
2523 {
2524 struct iris_resource *res = (void *) p_res;
2525 struct iris_stream_output_target *cso = calloc(1, sizeof(*cso));
2526 if (!cso)
2527 return NULL;
2528
2529 res->bind_history |= PIPE_BIND_STREAM_OUTPUT;
2530
2531 pipe_reference_init(&cso->base.reference, 1);
2532 pipe_resource_reference(&cso->base.buffer, p_res);
2533 cso->base.buffer_offset = buffer_offset;
2534 cso->base.buffer_size = buffer_size;
2535 cso->base.context = ctx;
2536
2537 upload_state(ctx->stream_uploader, &cso->offset, sizeof(uint32_t), 4);
2538
2539 return &cso->base;
2540 }
2541
2542 static void
2543 iris_stream_output_target_destroy(struct pipe_context *ctx,
2544 struct pipe_stream_output_target *state)
2545 {
2546 struct iris_stream_output_target *cso = (void *) state;
2547
2548 pipe_resource_reference(&cso->base.buffer, NULL);
2549 pipe_resource_reference(&cso->offset.res, NULL);
2550
2551 free(cso);
2552 }
2553
2554 /**
2555 * The pipe->set_stream_output_targets() driver hook.
2556 *
2557 * At this point, we know which targets are bound to a particular index,
2558 * and also whether we want to append or start over. We can finish the
2559 * 3DSTATE_SO_BUFFER packets we started earlier.
2560 */
2561 static void
2562 iris_set_stream_output_targets(struct pipe_context *ctx,
2563 unsigned num_targets,
2564 struct pipe_stream_output_target **targets,
2565 const unsigned *offsets)
2566 {
2567 struct iris_context *ice = (struct iris_context *) ctx;
2568 struct iris_genx_state *genx = ice->state.genx;
2569 uint32_t *so_buffers = genx->so_buffers;
2570
2571 const bool active = num_targets > 0;
2572 if (ice->state.streamout_active != active) {
2573 ice->state.streamout_active = active;
2574 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
2575
2576 /* We only emit 3DSTATE_SO_DECL_LIST when streamout is active, because
2577 * it's a non-pipelined command. If we're switching streamout on, we
2578 * may have missed emitting it earlier, so do so now. (We're already
2579 * taking a stall to update 3DSTATE_SO_BUFFERS anyway...)
2580 */
2581 if (active)
2582 ice->state.dirty |= IRIS_DIRTY_SO_DECL_LIST;
2583 }
2584
2585 for (int i = 0; i < 4; i++) {
2586 pipe_so_target_reference(&ice->state.so_target[i],
2587 i < num_targets ? targets[i] : NULL);
2588 }
2589
2590 /* No need to update 3DSTATE_SO_BUFFER unless SOL is active. */
2591 if (!active)
2592 return;
2593
2594 for (unsigned i = 0; i < 4; i++,
2595 so_buffers += GENX(3DSTATE_SO_BUFFER_length)) {
2596
2597 if (i >= num_targets || !targets[i]) {
2598 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob)
2599 sob.SOBufferIndex = i;
2600 continue;
2601 }
2602
2603 struct iris_stream_output_target *tgt = (void *) targets[i];
2604 struct iris_resource *res = (void *) tgt->base.buffer;
2605
2606 /* Note that offsets[i] will either be 0, causing us to zero
2607 * the value in the buffer, or 0xFFFFFFFF, which happens to mean
2608 * "continue appending at the existing offset."
2609 */
2610 assert(offsets[i] == 0 || offsets[i] == 0xFFFFFFFF);
2611
2612 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob) {
2613 sob.SurfaceBaseAddress =
2614 rw_bo(NULL, res->bo->gtt_offset + tgt->base.buffer_offset);
2615 sob.SOBufferEnable = true;
2616 sob.StreamOffsetWriteEnable = true;
2617 sob.StreamOutputBufferOffsetAddressEnable = true;
2618 sob.MOCS = MOCS_WB; // XXX: MOCS
2619
2620 sob.SurfaceSize = MAX2(tgt->base.buffer_size / 4, 1) - 1;
2621
2622 sob.SOBufferIndex = i;
2623 sob.StreamOffset = offsets[i];
2624 sob.StreamOutputBufferOffsetAddress =
2625 rw_bo(NULL, iris_resource_bo(tgt->offset.res)->gtt_offset +
2626 tgt->offset.offset);
2627 }
2628 }
2629
2630 ice->state.dirty |= IRIS_DIRTY_SO_BUFFERS;
2631 }
2632
2633 /**
2634 * An iris-vtable helper for encoding the 3DSTATE_SO_DECL_LIST and
2635 * 3DSTATE_STREAMOUT packets.
2636 *
2637 * 3DSTATE_SO_DECL_LIST is a list of shader outputs we want the streamout
2638 * hardware to record. We can create it entirely based on the shader, with
2639 * no dynamic state dependencies.
2640 *
2641 * 3DSTATE_STREAMOUT is an annoying mix of shader-based information and
2642 * state-based settings. We capture the shader-related ones here, and merge
2643 * the rest in at draw time.
2644 */
2645 static uint32_t *
2646 iris_create_so_decl_list(const struct pipe_stream_output_info *info,
2647 const struct brw_vue_map *vue_map)
2648 {
2649 struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
2650 int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2651 int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2652 int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2653 int max_decls = 0;
2654 STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
2655
2656 memset(so_decl, 0, sizeof(so_decl));
2657
2658 /* Construct the list of SO_DECLs to be emitted. The formatting of the
2659 * command feels strange -- each dword pair contains a SO_DECL per stream.
2660 */
2661 for (unsigned i = 0; i < info->num_outputs; i++) {
2662 const struct pipe_stream_output *output = &info->output[i];
2663 const int buffer = output->output_buffer;
2664 const int varying = output->register_index;
2665 const unsigned stream_id = output->stream;
2666 assert(stream_id < MAX_VERTEX_STREAMS);
2667
2668 buffer_mask[stream_id] |= 1 << buffer;
2669
2670 assert(vue_map->varying_to_slot[varying] >= 0);
2671
2672 /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
2673 * array. Instead, it simply increments DstOffset for the following
2674 * input by the number of components that should be skipped.
2675 *
2676 * Our hardware is unusual in that it requires us to program SO_DECLs
2677 * for fake "hole" components, rather than simply taking the offset
2678 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
2679 * program as many size = 4 holes as we can, then a final hole to
2680 * accommodate the final 1, 2, or 3 remaining.
2681 */
2682 int skip_components = output->dst_offset - next_offset[buffer];
2683
2684 while (skip_components > 0) {
2685 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
2686 .HoleFlag = 1,
2687 .OutputBufferSlot = output->output_buffer,
2688 .ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
2689 };
2690 skip_components -= 4;
2691 }
2692
2693 next_offset[buffer] = output->dst_offset + output->num_components;
2694
2695 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
2696 .OutputBufferSlot = output->output_buffer,
2697 .RegisterIndex = vue_map->varying_to_slot[varying],
2698 .ComponentMask =
2699 ((1 << output->num_components) - 1) << output->start_component,
2700 };
2701
2702 if (decls[stream_id] > max_decls)
2703 max_decls = decls[stream_id];
2704 }
2705
2706 unsigned dwords = GENX(3DSTATE_STREAMOUT_length) + (3 + 2 * max_decls);
2707 uint32_t *map = ralloc_size(NULL, sizeof(uint32_t) * dwords);
2708 uint32_t *so_decl_map = map + GENX(3DSTATE_STREAMOUT_length);
2709
2710 iris_pack_command(GENX(3DSTATE_STREAMOUT), map, sol) {
2711 int urb_entry_read_offset = 0;
2712 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
2713 urb_entry_read_offset;
2714
2715 /* We always read the whole vertex. This could be reduced at some
2716 * point by reading less and offsetting the register index in the
2717 * SO_DECLs.
2718 */
2719 sol.Stream0VertexReadOffset = urb_entry_read_offset;
2720 sol.Stream0VertexReadLength = urb_entry_read_length - 1;
2721 sol.Stream1VertexReadOffset = urb_entry_read_offset;
2722 sol.Stream1VertexReadLength = urb_entry_read_length - 1;
2723 sol.Stream2VertexReadOffset = urb_entry_read_offset;
2724 sol.Stream2VertexReadLength = urb_entry_read_length - 1;
2725 sol.Stream3VertexReadOffset = urb_entry_read_offset;
2726 sol.Stream3VertexReadLength = urb_entry_read_length - 1;
2727
2728 /* Set buffer pitches; 0 means unbound. */
2729 sol.Buffer0SurfacePitch = 4 * info->stride[0];
2730 sol.Buffer1SurfacePitch = 4 * info->stride[1];
2731 sol.Buffer2SurfacePitch = 4 * info->stride[2];
2732 sol.Buffer3SurfacePitch = 4 * info->stride[3];
2733 }
2734
2735 iris_pack_command(GENX(3DSTATE_SO_DECL_LIST), so_decl_map, list) {
2736 list.DWordLength = 3 + 2 * max_decls - 2;
2737 list.StreamtoBufferSelects0 = buffer_mask[0];
2738 list.StreamtoBufferSelects1 = buffer_mask[1];
2739 list.StreamtoBufferSelects2 = buffer_mask[2];
2740 list.StreamtoBufferSelects3 = buffer_mask[3];
2741 list.NumEntries0 = decls[0];
2742 list.NumEntries1 = decls[1];
2743 list.NumEntries2 = decls[2];
2744 list.NumEntries3 = decls[3];
2745 }
2746
2747 for (int i = 0; i < max_decls; i++) {
2748 iris_pack_state(GENX(SO_DECL_ENTRY), so_decl_map + 3 + i * 2, entry) {
2749 entry.Stream0Decl = so_decl[0][i];
2750 entry.Stream1Decl = so_decl[1][i];
2751 entry.Stream2Decl = so_decl[2][i];
2752 entry.Stream3Decl = so_decl[3][i];
2753 }
2754 }
2755
2756 return map;
2757 }
2758
2759 static void
2760 iris_compute_sbe_urb_read_interval(uint64_t fs_input_slots,
2761 const struct brw_vue_map *last_vue_map,
2762 bool two_sided_color,
2763 unsigned *out_offset,
2764 unsigned *out_length)
2765 {
2766 /* The compiler computes the first URB slot without considering COL/BFC
2767 * swizzling (because it doesn't know whether it's enabled), so we need
2768 * to do that here too. This may result in a smaller offset, which
2769 * should be safe.
2770 */
2771 const unsigned first_slot =
2772 brw_compute_first_urb_slot_required(fs_input_slots, last_vue_map);
2773
2774 /* This becomes the URB read offset (counted in pairs of slots). */
2775 assert(first_slot % 2 == 0);
2776 *out_offset = first_slot / 2;
2777
2778 /* We need to adjust the inputs read to account for front/back color
2779 * swizzling, as it can make the URB length longer.
2780 */
2781 for (int c = 0; c <= 1; c++) {
2782 if (fs_input_slots & (VARYING_BIT_COL0 << c)) {
2783 /* If two sided color is enabled, the fragment shader's gl_Color
2784 * (COL0) input comes from either the gl_FrontColor (COL0) or
2785 * gl_BackColor (BFC0) input varyings. Mark BFC as used, too.
2786 */
2787 if (two_sided_color)
2788 fs_input_slots |= (VARYING_BIT_BFC0 << c);
2789
2790 /* If front color isn't written, we opt to give them back color
2791 * instead of an undefined value. Switch from COL to BFC.
2792 */
2793 if (last_vue_map->varying_to_slot[VARYING_SLOT_COL0 + c] == -1) {
2794 fs_input_slots &= ~(VARYING_BIT_COL0 << c);
2795 fs_input_slots |= (VARYING_BIT_BFC0 << c);
2796 }
2797 }
2798 }
2799
2800 /* Compute the minimum URB Read Length necessary for the FS inputs.
2801 *
2802 * From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
2803 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
2804 *
2805 * "This field should be set to the minimum length required to read the
2806 * maximum source attribute. The maximum source attribute is indicated
2807 * by the maximum value of the enabled Attribute # Source Attribute if
2808 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
2809 * enable is not set.
2810 * read_length = ceiling((max_source_attr + 1) / 2)
2811 *
2812 * [errata] Corruption/Hang possible if length programmed larger than
2813 * recommended"
2814 *
2815 * Similar text exists for Ivy Bridge.
2816 *
2817 * We find the last URB slot that's actually read by the FS.
2818 */
2819 unsigned last_read_slot = last_vue_map->num_slots - 1;
2820 while (last_read_slot > first_slot && !(fs_input_slots &
2821 (1ull << last_vue_map->slot_to_varying[last_read_slot])))
2822 --last_read_slot;
2823
2824 /* The URB read length is the difference of the two, counted in pairs. */
2825 *out_length = DIV_ROUND_UP(last_read_slot - first_slot + 1, 2);
2826 }
2827
2828 static void
2829 iris_emit_sbe_swiz(struct iris_batch *batch,
2830 const struct iris_context *ice,
2831 unsigned urb_read_offset,
2832 unsigned sprite_coord_enables)
2833 {
2834 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = {};
2835 const struct brw_wm_prog_data *wm_prog_data = (void *)
2836 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
2837 const struct brw_vue_map *vue_map = ice->shaders.last_vue_map;
2838 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
2839
2840 /* XXX: this should be generated when putting programs in place */
2841
2842 // XXX: raster->sprite_coord_enable
2843
2844 for (int fs_attr = 0; fs_attr < VARYING_SLOT_MAX; fs_attr++) {
2845 const int input_index = wm_prog_data->urb_setup[fs_attr];
2846 if (input_index < 0 || input_index >= 16)
2847 continue;
2848
2849 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr =
2850 &attr_overrides[input_index];
2851 int slot = vue_map->varying_to_slot[fs_attr];
2852
2853 /* Viewport and Layer are stored in the VUE header. We need to override
2854 * them to zero if earlier stages didn't write them, as GL requires that
2855 * they read back as zero when not explicitly set.
2856 */
2857 switch (fs_attr) {
2858 case VARYING_SLOT_VIEWPORT:
2859 case VARYING_SLOT_LAYER:
2860 attr->ComponentOverrideX = true;
2861 attr->ComponentOverrideW = true;
2862 attr->ConstantSource = CONST_0000;
2863
2864 if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
2865 attr->ComponentOverrideY = true;
2866 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
2867 attr->ComponentOverrideZ = true;
2868 continue;
2869
2870 case VARYING_SLOT_PRIMITIVE_ID:
2871 /* Override if the previous shader stage didn't write gl_PrimitiveID. */
2872 if (slot == -1) {
2873 attr->ComponentOverrideX = true;
2874 attr->ComponentOverrideY = true;
2875 attr->ComponentOverrideZ = true;
2876 attr->ComponentOverrideW = true;
2877 attr->ConstantSource = PRIM_ID;
2878 continue;
2879 }
2880
2881 default:
2882 break;
2883 }
2884
2885 if (sprite_coord_enables & (1 << input_index))
2886 continue;
2887
2888 /* If there was only a back color written but not front, use back
2889 * as the color instead of undefined.
2890 */
2891 if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
2892 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
2893 if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
2894 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
2895
2896 /* Not written by the previous stage - undefined. */
2897 if (slot == -1) {
2898 attr->ComponentOverrideX = true;
2899 attr->ComponentOverrideY = true;
2900 attr->ComponentOverrideZ = true;
2901 attr->ComponentOverrideW = true;
2902 attr->ConstantSource = CONST_0001_FLOAT;
2903 continue;
2904 }
2905
2906 /* Compute the location of the attribute relative to the read offset,
2907 * which is counted in 256-bit increments (two 128-bit VUE slots).
2908 */
2909 const int source_attr = slot - 2 * urb_read_offset;
2910 assert(source_attr >= 0 && source_attr <= 32);
2911 attr->SourceAttribute = source_attr;
2912
2913 /* If we are doing two-sided color, and the VUE slot following this one
2914 * represents a back-facing color, then we need to instruct the SF unit
2915 * to do back-facing swizzling.
2916 */
2917 if (cso_rast->light_twoside &&
2918 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
2919 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
2920 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
2921 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1)))
2922 attr->SwizzleSelect = INPUTATTR_FACING;
2923 }
2924
2925 iris_emit_cmd(batch, GENX(3DSTATE_SBE_SWIZ), sbes) {
2926 for (int i = 0; i < 16; i++)
2927 sbes.Attribute[i] = attr_overrides[i];
2928 }
2929 }
2930
2931 static unsigned
2932 iris_calculate_point_sprite_overrides(const struct brw_wm_prog_data *prog_data,
2933 const struct iris_rasterizer_state *cso)
2934 {
2935 unsigned overrides = 0;
2936
2937 if (prog_data->urb_setup[VARYING_SLOT_PNTC] != -1)
2938 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_PNTC];
2939
2940 for (int i = 0; i < 8; i++) {
2941 if ((cso->sprite_coord_enable & (1 << i)) &&
2942 prog_data->urb_setup[VARYING_SLOT_TEX0 + i] != -1)
2943 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_TEX0 + i];
2944 }
2945
2946 return overrides;
2947 }
2948
2949 static void
2950 iris_emit_sbe(struct iris_batch *batch, const struct iris_context *ice)
2951 {
2952 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
2953 const struct brw_wm_prog_data *wm_prog_data = (void *)
2954 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
2955 const struct shader_info *fs_info =
2956 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
2957
2958 unsigned urb_read_offset, urb_read_length;
2959 iris_compute_sbe_urb_read_interval(fs_info->inputs_read,
2960 ice->shaders.last_vue_map,
2961 cso_rast->light_twoside,
2962 &urb_read_offset, &urb_read_length);
2963
2964 unsigned sprite_coord_overrides =
2965 iris_calculate_point_sprite_overrides(wm_prog_data, cso_rast);
2966
2967 iris_emit_cmd(batch, GENX(3DSTATE_SBE), sbe) {
2968 sbe.AttributeSwizzleEnable = true;
2969 sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
2970 sbe.PointSpriteTextureCoordinateOrigin = cso_rast->sprite_coord_mode;
2971 sbe.VertexURBEntryReadOffset = urb_read_offset;
2972 sbe.VertexURBEntryReadLength = urb_read_length;
2973 sbe.ForceVertexURBEntryReadOffset = true;
2974 sbe.ForceVertexURBEntryReadLength = true;
2975 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
2976 sbe.PointSpriteTextureCoordinateEnable = sprite_coord_overrides;
2977
2978 for (int i = 0; i < 32; i++) {
2979 sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW;
2980 }
2981 }
2982
2983 iris_emit_sbe_swiz(batch, ice, urb_read_offset, sprite_coord_overrides);
2984 }
2985
2986 /* ------------------------------------------------------------------- */
2987
2988 /**
2989 * Populate VS program key fields based on the current state.
2990 */
2991 static void
2992 iris_populate_vs_key(const struct iris_context *ice,
2993 const struct shader_info *info,
2994 struct brw_vs_prog_key *key)
2995 {
2996 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
2997
2998 if (info->clip_distance_array_size == 0 &&
2999 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)))
3000 key->nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
3001 }
3002
3003 /**
3004 * Populate TCS program key fields based on the current state.
3005 */
3006 static void
3007 iris_populate_tcs_key(const struct iris_context *ice,
3008 struct brw_tcs_prog_key *key)
3009 {
3010 }
3011
3012 /**
3013 * Populate TES program key fields based on the current state.
3014 */
3015 static void
3016 iris_populate_tes_key(const struct iris_context *ice,
3017 struct brw_tes_prog_key *key)
3018 {
3019 }
3020
3021 /**
3022 * Populate GS program key fields based on the current state.
3023 */
3024 static void
3025 iris_populate_gs_key(const struct iris_context *ice,
3026 struct brw_gs_prog_key *key)
3027 {
3028 }
3029
3030 /**
3031 * Populate FS program key fields based on the current state.
3032 */
3033 static void
3034 iris_populate_fs_key(const struct iris_context *ice,
3035 struct brw_wm_prog_key *key)
3036 {
3037 /* XXX: dirty flags? */
3038 const struct pipe_framebuffer_state *fb = &ice->state.framebuffer;
3039 const struct iris_depth_stencil_alpha_state *zsa = ice->state.cso_zsa;
3040 const struct iris_rasterizer_state *rast = ice->state.cso_rast;
3041 const struct iris_blend_state *blend = ice->state.cso_blend;
3042
3043 key->nr_color_regions = fb->nr_cbufs;
3044
3045 key->clamp_fragment_color = rast->clamp_fragment_color;
3046
3047 key->replicate_alpha = fb->nr_cbufs > 1 &&
3048 (zsa->alpha.enabled || blend->alpha_to_coverage);
3049
3050 /* XXX: only bother if COL0/1 are read */
3051 key->flat_shade = rast->flatshade;
3052
3053 key->persample_interp = rast->force_persample_interp;
3054 key->multisample_fbo = rast->multisample && fb->samples > 1;
3055
3056 key->coherent_fb_fetch = true;
3057
3058 // XXX: uint64_t input_slots_valid; - for >16 inputs
3059
3060 // XXX: key->force_dual_color_blend for unigine
3061 // XXX: respect hint for high_quality_derivatives:1;
3062 }
3063
3064 static void
3065 iris_populate_cs_key(const struct iris_context *ice,
3066 struct brw_cs_prog_key *key)
3067 {
3068 }
3069
3070 #if 0
3071 // XXX: these need to go in INIT_THREAD_DISPATCH_FIELDS
3072 pkt.SamplerCount = \
3073 DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4); \
3074
3075 #endif
3076
3077 static uint64_t
3078 KSP(const struct iris_compiled_shader *shader)
3079 {
3080 struct iris_resource *res = (void *) shader->assembly.res;
3081 return iris_bo_offset_from_base_address(res->bo) + shader->assembly.offset;
3082 }
3083
3084 // Gen11 workaround table #2056 WABTPPrefetchDisable suggests to disable
3085 // prefetching of binding tables in A0 and B0 steppings. XXX: Revisit
3086 // this WA on C0 stepping.
3087
3088 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix, stage) \
3089 pkt.KernelStartPointer = KSP(shader); \
3090 pkt.BindingTableEntryCount = GEN_GEN == 11 ? 0 : \
3091 prog_data->binding_table.size_bytes / 4; \
3092 pkt.FloatingPointMode = prog_data->use_alt_mode; \
3093 \
3094 pkt.DispatchGRFStartRegisterForURBData = \
3095 prog_data->dispatch_grf_start_reg; \
3096 pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
3097 pkt.prefix##URBEntryReadOffset = 0; \
3098 \
3099 pkt.StatisticsEnable = true; \
3100 pkt.Enable = true; \
3101 \
3102 if (prog_data->total_scratch) { \
3103 uint32_t scratch_addr = \
3104 iris_get_scratch_space(ice, prog_data->total_scratch, stage); \
3105 pkt.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11; \
3106 pkt.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr); \
3107 }
3108
3109 /**
3110 * Encode most of 3DSTATE_VS based on the compiled shader.
3111 */
3112 static void
3113 iris_store_vs_state(struct iris_context *ice,
3114 const struct gen_device_info *devinfo,
3115 struct iris_compiled_shader *shader)
3116 {
3117 struct brw_stage_prog_data *prog_data = shader->prog_data;
3118 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3119
3120 iris_pack_command(GENX(3DSTATE_VS), shader->derived_data, vs) {
3121 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex, MESA_SHADER_VERTEX);
3122 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
3123 vs.SIMD8DispatchEnable = true;
3124 vs.UserClipDistanceCullTestEnableBitmask =
3125 vue_prog_data->cull_distance_mask;
3126 }
3127 }
3128
3129 /**
3130 * Encode most of 3DSTATE_HS based on the compiled shader.
3131 */
3132 static void
3133 iris_store_tcs_state(struct iris_context *ice,
3134 const struct gen_device_info *devinfo,
3135 struct iris_compiled_shader *shader)
3136 {
3137 struct brw_stage_prog_data *prog_data = shader->prog_data;
3138 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3139 struct brw_tcs_prog_data *tcs_prog_data = (void *) prog_data;
3140
3141 iris_pack_command(GENX(3DSTATE_HS), shader->derived_data, hs) {
3142 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex, MESA_SHADER_TESS_CTRL);
3143
3144 hs.InstanceCount = tcs_prog_data->instances - 1;
3145 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
3146 hs.IncludeVertexHandles = true;
3147 }
3148 }
3149
3150 /**
3151 * Encode 3DSTATE_TE and most of 3DSTATE_DS based on the compiled shader.
3152 */
3153 static void
3154 iris_store_tes_state(struct iris_context *ice,
3155 const struct gen_device_info *devinfo,
3156 struct iris_compiled_shader *shader)
3157 {
3158 struct brw_stage_prog_data *prog_data = shader->prog_data;
3159 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3160 struct brw_tes_prog_data *tes_prog_data = (void *) prog_data;
3161
3162 uint32_t *te_state = (void *) shader->derived_data;
3163 uint32_t *ds_state = te_state + GENX(3DSTATE_TE_length);
3164
3165 iris_pack_command(GENX(3DSTATE_TE), te_state, te) {
3166 te.Partitioning = tes_prog_data->partitioning;
3167 te.OutputTopology = tes_prog_data->output_topology;
3168 te.TEDomain = tes_prog_data->domain;
3169 te.TEEnable = true;
3170 te.MaximumTessellationFactorOdd = 63.0;
3171 te.MaximumTessellationFactorNotOdd = 64.0;
3172 }
3173
3174 iris_pack_command(GENX(3DSTATE_DS), ds_state, ds) {
3175 INIT_THREAD_DISPATCH_FIELDS(ds, Patch, MESA_SHADER_TESS_EVAL);
3176
3177 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
3178 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
3179 ds.ComputeWCoordinateEnable =
3180 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
3181
3182 ds.UserClipDistanceCullTestEnableBitmask =
3183 vue_prog_data->cull_distance_mask;
3184 }
3185
3186 }
3187
3188 /**
3189 * Encode most of 3DSTATE_GS based on the compiled shader.
3190 */
3191 static void
3192 iris_store_gs_state(struct iris_context *ice,
3193 const struct gen_device_info *devinfo,
3194 struct iris_compiled_shader *shader)
3195 {
3196 struct brw_stage_prog_data *prog_data = shader->prog_data;
3197 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3198 struct brw_gs_prog_data *gs_prog_data = (void *) prog_data;
3199
3200 iris_pack_command(GENX(3DSTATE_GS), shader->derived_data, gs) {
3201 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex, MESA_SHADER_GEOMETRY);
3202
3203 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
3204 gs.OutputTopology = gs_prog_data->output_topology;
3205 gs.ControlDataHeaderSize =
3206 gs_prog_data->control_data_header_size_hwords;
3207 gs.InstanceControl = gs_prog_data->invocations - 1;
3208 gs.DispatchMode = DISPATCH_MODE_SIMD8;
3209 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
3210 gs.ControlDataFormat = gs_prog_data->control_data_format;
3211 gs.ReorderMode = TRAILING;
3212 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
3213 gs.MaximumNumberofThreads =
3214 GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
3215 : (devinfo->max_gs_threads - 1);
3216
3217 if (gs_prog_data->static_vertex_count != -1) {
3218 gs.StaticOutput = true;
3219 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
3220 }
3221 gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
3222
3223 gs.UserClipDistanceCullTestEnableBitmask =
3224 vue_prog_data->cull_distance_mask;
3225
3226 const int urb_entry_write_offset = 1;
3227 const uint32_t urb_entry_output_length =
3228 DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
3229 urb_entry_write_offset;
3230
3231 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
3232 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
3233 }
3234 }
3235
3236 /**
3237 * Encode most of 3DSTATE_PS and 3DSTATE_PS_EXTRA based on the shader.
3238 */
3239 static void
3240 iris_store_fs_state(struct iris_context *ice,
3241 const struct gen_device_info *devinfo,
3242 struct iris_compiled_shader *shader)
3243 {
3244 struct brw_stage_prog_data *prog_data = shader->prog_data;
3245 struct brw_wm_prog_data *wm_prog_data = (void *) shader->prog_data;
3246
3247 uint32_t *ps_state = (void *) shader->derived_data;
3248 uint32_t *psx_state = ps_state + GENX(3DSTATE_PS_length);
3249
3250 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
3251 ps.VectorMaskEnable = true;
3252 //ps.SamplerCount = ...
3253 // XXX: WABTPPrefetchDisable, see above, drop at C0
3254 ps.BindingTableEntryCount = GEN_GEN == 11 ? 0 :
3255 prog_data->binding_table.size_bytes / 4;
3256 ps.FloatingPointMode = prog_data->use_alt_mode;
3257 ps.MaximumNumberofThreadsPerPSD = 64 - (GEN_GEN == 8 ? 2 : 1);
3258
3259 ps.PushConstantEnable = shader->num_system_values > 0 ||
3260 prog_data->ubo_ranges[0].length > 0;
3261
3262 /* From the documentation for this packet:
3263 * "If the PS kernel does not need the Position XY Offsets to
3264 * compute a Position Value, then this field should be programmed
3265 * to POSOFFSET_NONE."
3266 *
3267 * "SW Recommendation: If the PS kernel needs the Position Offsets
3268 * to compute a Position XY value, this field should match Position
3269 * ZW Interpolation Mode to ensure a consistent position.xyzw
3270 * computation."
3271 *
3272 * We only require XY sample offsets. So, this recommendation doesn't
3273 * look useful at the moment. We might need this in future.
3274 */
3275 ps.PositionXYOffsetSelect =
3276 wm_prog_data->uses_pos_offset ? POSOFFSET_SAMPLE : POSOFFSET_NONE;
3277 ps._8PixelDispatchEnable = wm_prog_data->dispatch_8;
3278 ps._16PixelDispatchEnable = wm_prog_data->dispatch_16;
3279 ps._32PixelDispatchEnable = wm_prog_data->dispatch_32;
3280
3281 // XXX: Disable SIMD32 with 16x MSAA
3282
3283 ps.DispatchGRFStartRegisterForConstantSetupData0 =
3284 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
3285 ps.DispatchGRFStartRegisterForConstantSetupData1 =
3286 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
3287 ps.DispatchGRFStartRegisterForConstantSetupData2 =
3288 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
3289
3290 ps.KernelStartPointer0 =
3291 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
3292 ps.KernelStartPointer1 =
3293 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
3294 ps.KernelStartPointer2 =
3295 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
3296
3297 if (prog_data->total_scratch) {
3298 uint32_t scratch_addr =
3299 iris_get_scratch_space(ice, prog_data->total_scratch,
3300 MESA_SHADER_FRAGMENT);
3301 ps.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
3302 ps.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr);
3303 }
3304 }
3305
3306 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
3307 psx.PixelShaderValid = true;
3308 psx.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
3309 // XXX: alpha test / alpha to coverage :/
3310 psx.PixelShaderKillsPixel = wm_prog_data->uses_kill ||
3311 wm_prog_data->uses_omask;
3312 psx.AttributeEnable = wm_prog_data->num_varying_inputs != 0;
3313 psx.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
3314 psx.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
3315 psx.PixelShaderIsPerSample = wm_prog_data->persample_dispatch;
3316
3317 if (wm_prog_data->uses_sample_mask) {
3318 /* TODO: conservative rasterization */
3319 if (wm_prog_data->post_depth_coverage)
3320 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
3321 else
3322 psx.InputCoverageMaskState = ICMS_NORMAL;
3323 }
3324
3325 psx.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
3326 psx.PixelShaderPullsBary = wm_prog_data->pulls_bary;
3327 psx.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
3328
3329 // XXX: UAV bit
3330 }
3331 }
3332
3333 /**
3334 * Compute the size of the derived data (shader command packets).
3335 *
3336 * This must match the data written by the iris_store_xs_state() functions.
3337 */
3338 static void
3339 iris_store_cs_state(struct iris_context *ice,
3340 const struct gen_device_info *devinfo,
3341 struct iris_compiled_shader *shader)
3342 {
3343 struct brw_stage_prog_data *prog_data = shader->prog_data;
3344 struct brw_cs_prog_data *cs_prog_data = (void *) shader->prog_data;
3345 void *map = shader->derived_data;
3346
3347 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), map, desc) {
3348 desc.KernelStartPointer = KSP(shader);
3349 desc.ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs;
3350 desc.NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads;
3351 desc.SharedLocalMemorySize =
3352 encode_slm_size(GEN_GEN, prog_data->total_shared);
3353 desc.BarrierEnable = cs_prog_data->uses_barrier;
3354 desc.CrossThreadConstantDataReadLength =
3355 cs_prog_data->push.cross_thread.regs;
3356 }
3357 }
3358
3359 static unsigned
3360 iris_derived_program_state_size(enum iris_program_cache_id cache_id)
3361 {
3362 assert(cache_id <= IRIS_CACHE_BLORP);
3363
3364 static const unsigned dwords[] = {
3365 [IRIS_CACHE_VS] = GENX(3DSTATE_VS_length),
3366 [IRIS_CACHE_TCS] = GENX(3DSTATE_HS_length),
3367 [IRIS_CACHE_TES] = GENX(3DSTATE_TE_length) + GENX(3DSTATE_DS_length),
3368 [IRIS_CACHE_GS] = GENX(3DSTATE_GS_length),
3369 [IRIS_CACHE_FS] =
3370 GENX(3DSTATE_PS_length) + GENX(3DSTATE_PS_EXTRA_length),
3371 [IRIS_CACHE_CS] = GENX(INTERFACE_DESCRIPTOR_DATA_length),
3372 [IRIS_CACHE_BLORP] = 0,
3373 };
3374
3375 return sizeof(uint32_t) * dwords[cache_id];
3376 }
3377
3378 /**
3379 * Create any state packets corresponding to the given shader stage
3380 * (i.e. 3DSTATE_VS) and save them as "derived data" in the shader variant.
3381 * This means that we can look up a program in the in-memory cache and
3382 * get most of the state packet without having to reconstruct it.
3383 */
3384 static void
3385 iris_store_derived_program_state(struct iris_context *ice,
3386 enum iris_program_cache_id cache_id,
3387 struct iris_compiled_shader *shader)
3388 {
3389 struct iris_screen *screen = (void *) ice->ctx.screen;
3390 const struct gen_device_info *devinfo = &screen->devinfo;
3391
3392 switch (cache_id) {
3393 case IRIS_CACHE_VS:
3394 iris_store_vs_state(ice, devinfo, shader);
3395 break;
3396 case IRIS_CACHE_TCS:
3397 iris_store_tcs_state(ice, devinfo, shader);
3398 break;
3399 case IRIS_CACHE_TES:
3400 iris_store_tes_state(ice, devinfo, shader);
3401 break;
3402 case IRIS_CACHE_GS:
3403 iris_store_gs_state(ice, devinfo, shader);
3404 break;
3405 case IRIS_CACHE_FS:
3406 iris_store_fs_state(ice, devinfo, shader);
3407 break;
3408 case IRIS_CACHE_CS:
3409 iris_store_cs_state(ice, devinfo, shader);
3410 case IRIS_CACHE_BLORP:
3411 break;
3412 default:
3413 break;
3414 }
3415 }
3416
3417 /* ------------------------------------------------------------------- */
3418
3419 /**
3420 * Configure the URB.
3421 *
3422 * XXX: write a real comment.
3423 */
3424 static void
3425 iris_upload_urb_config(struct iris_context *ice, struct iris_batch *batch)
3426 {
3427 const struct gen_device_info *devinfo = &batch->screen->devinfo;
3428 const unsigned push_size_kB = 32;
3429 unsigned entries[4];
3430 unsigned start[4];
3431 unsigned size[4];
3432
3433 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
3434 if (!ice->shaders.prog[i]) {
3435 size[i] = 1;
3436 } else {
3437 struct brw_vue_prog_data *vue_prog_data =
3438 (void *) ice->shaders.prog[i]->prog_data;
3439 size[i] = vue_prog_data->urb_entry_size;
3440 }
3441 assert(size[i] != 0);
3442 }
3443
3444 gen_get_urb_config(devinfo, 1024 * push_size_kB,
3445 1024 * ice->shaders.urb_size,
3446 ice->shaders.prog[MESA_SHADER_TESS_EVAL] != NULL,
3447 ice->shaders.prog[MESA_SHADER_GEOMETRY] != NULL,
3448 size, entries, start);
3449
3450 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
3451 iris_emit_cmd(batch, GENX(3DSTATE_URB_VS), urb) {
3452 urb._3DCommandSubOpcode += i;
3453 urb.VSURBStartingAddress = start[i];
3454 urb.VSURBEntryAllocationSize = size[i] - 1;
3455 urb.VSNumberofURBEntries = entries[i];
3456 }
3457 }
3458 }
3459
3460 static const uint32_t push_constant_opcodes[] = {
3461 [MESA_SHADER_VERTEX] = 21,
3462 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
3463 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
3464 [MESA_SHADER_GEOMETRY] = 22,
3465 [MESA_SHADER_FRAGMENT] = 23,
3466 [MESA_SHADER_COMPUTE] = 0,
3467 };
3468
3469 static uint32_t
3470 use_null_surface(struct iris_batch *batch, struct iris_context *ice)
3471 {
3472 struct iris_bo *state_bo = iris_resource_bo(ice->state.unbound_tex.res);
3473
3474 iris_use_pinned_bo(batch, state_bo, false);
3475
3476 return ice->state.unbound_tex.offset;
3477 }
3478
3479 static uint32_t
3480 use_null_fb_surface(struct iris_batch *batch, struct iris_context *ice)
3481 {
3482 /* If set_framebuffer_state() was never called, fall back to 1x1x1 */
3483 if (!ice->state.null_fb.res)
3484 return use_null_surface(batch, ice);
3485
3486 struct iris_bo *state_bo = iris_resource_bo(ice->state.null_fb.res);
3487
3488 iris_use_pinned_bo(batch, state_bo, false);
3489
3490 return ice->state.null_fb.offset;
3491 }
3492
3493 /**
3494 * Add a surface to the validation list, as well as the buffer containing
3495 * the corresponding SURFACE_STATE.
3496 *
3497 * Returns the binding table entry (offset to SURFACE_STATE).
3498 */
3499 static uint32_t
3500 use_surface(struct iris_batch *batch,
3501 struct pipe_surface *p_surf,
3502 bool writeable)
3503 {
3504 struct iris_surface *surf = (void *) p_surf;
3505
3506 iris_use_pinned_bo(batch, iris_resource_bo(p_surf->texture), writeable);
3507 iris_use_pinned_bo(batch, iris_resource_bo(surf->surface_state.res), false);
3508
3509 return surf->surface_state.offset;
3510 }
3511
3512 static uint32_t
3513 use_sampler_view(struct iris_batch *batch, struct iris_sampler_view *isv)
3514 {
3515 iris_use_pinned_bo(batch, isv->res->bo, false);
3516 iris_use_pinned_bo(batch, iris_resource_bo(isv->surface_state.res), false);
3517
3518 return isv->surface_state.offset;
3519 }
3520
3521 static uint32_t
3522 use_const_buffer(struct iris_batch *batch,
3523 struct iris_context *ice,
3524 struct iris_const_buffer *cbuf)
3525 {
3526 if (!cbuf->surface_state.res)
3527 return use_null_surface(batch, ice);
3528
3529 iris_use_pinned_bo(batch, iris_resource_bo(cbuf->data.res), false);
3530 iris_use_pinned_bo(batch, iris_resource_bo(cbuf->surface_state.res), false);
3531
3532 return cbuf->surface_state.offset;
3533 }
3534
3535 static uint32_t
3536 use_ssbo(struct iris_batch *batch, struct iris_context *ice,
3537 struct iris_shader_state *shs, int i)
3538 {
3539 if (!shs->ssbo[i])
3540 return use_null_surface(batch, ice);
3541
3542 struct iris_state_ref *surf_state = &shs->ssbo_surface_state[i];
3543
3544 iris_use_pinned_bo(batch, iris_resource_bo(shs->ssbo[i]), true);
3545 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false);
3546
3547 return surf_state->offset;
3548 }
3549
3550 static uint32_t
3551 use_image(struct iris_batch *batch, struct iris_context *ice,
3552 struct iris_shader_state *shs, int i)
3553 {
3554 if (!shs->image[i].res)
3555 return use_null_surface(batch, ice);
3556
3557 struct iris_state_ref *surf_state = &shs->image[i].surface_state;
3558
3559 iris_use_pinned_bo(batch, iris_resource_bo(shs->image[i].res),
3560 shs->image[i].access & PIPE_IMAGE_ACCESS_WRITE);
3561 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false);
3562
3563 return surf_state->offset;
3564 }
3565
3566 #define push_bt_entry(addr) \
3567 assert(addr >= binder_addr); \
3568 assert(s < prog_data->binding_table.size_bytes / sizeof(uint32_t)); \
3569 if (!pin_only) bt_map[s++] = (addr) - binder_addr;
3570
3571 #define bt_assert(section, exists) \
3572 if (!pin_only) assert(prog_data->binding_table.section == \
3573 (exists) ? s : 0xd0d0d0d0)
3574
3575 /**
3576 * Populate the binding table for a given shader stage.
3577 *
3578 * This fills out the table of pointers to surfaces required by the shader,
3579 * and also adds those buffers to the validation list so the kernel can make
3580 * resident before running our batch.
3581 */
3582 static void
3583 iris_populate_binding_table(struct iris_context *ice,
3584 struct iris_batch *batch,
3585 gl_shader_stage stage,
3586 bool pin_only)
3587 {
3588 const struct iris_binder *binder = &ice->state.binder;
3589 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3590 if (!shader)
3591 return;
3592
3593 UNUSED struct brw_stage_prog_data *prog_data = shader->prog_data;
3594 struct iris_shader_state *shs = &ice->state.shaders[stage];
3595 uint32_t binder_addr = binder->bo->gtt_offset;
3596
3597 //struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
3598 uint32_t *bt_map = binder->map + binder->bt_offset[stage];
3599 int s = 0;
3600
3601 const struct shader_info *info = iris_get_shader_info(ice, stage);
3602 if (!info) {
3603 /* TCS passthrough doesn't need a binding table. */
3604 assert(stage == MESA_SHADER_TESS_CTRL);
3605 return;
3606 }
3607
3608 if (stage == MESA_SHADER_COMPUTE) {
3609 /* surface for gl_NumWorkGroups */
3610 struct iris_state_ref *grid_data = &ice->state.grid_size;
3611 struct iris_state_ref *grid_state = &ice->state.grid_surf_state;
3612 iris_use_pinned_bo(batch, iris_resource_bo(grid_data->res), false);
3613 iris_use_pinned_bo(batch, iris_resource_bo(grid_state->res), false);
3614 push_bt_entry(grid_state->offset);
3615 }
3616
3617 if (stage == MESA_SHADER_FRAGMENT) {
3618 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
3619 /* Note that cso_fb->nr_cbufs == fs_key->nr_color_regions. */
3620 if (cso_fb->nr_cbufs) {
3621 for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
3622 uint32_t addr =
3623 cso_fb->cbufs[i] ? use_surface(batch, cso_fb->cbufs[i], true)
3624 : use_null_fb_surface(batch, ice);
3625 push_bt_entry(addr);
3626 }
3627 } else {
3628 uint32_t addr = use_null_fb_surface(batch, ice);
3629 push_bt_entry(addr);
3630 }
3631 }
3632
3633 bt_assert(texture_start, info->num_textures > 0);
3634
3635 for (int i = 0; i < info->num_textures; i++) {
3636 struct iris_sampler_view *view = shs->textures[i];
3637 uint32_t addr = view ? use_sampler_view(batch, view)
3638 : use_null_surface(batch, ice);
3639 push_bt_entry(addr);
3640 }
3641
3642 bt_assert(image_start, info->num_images > 0);
3643
3644 for (int i = 0; i < info->num_images; i++) {
3645 uint32_t addr = use_image(batch, ice, shs, i);
3646 push_bt_entry(addr);
3647 }
3648
3649 const int num_ubos = iris_get_shader_num_ubos(ice, stage);
3650
3651 bt_assert(ubo_start, num_ubos > 0);
3652
3653 for (int i = 0; i < num_ubos; i++) {
3654 uint32_t addr = use_const_buffer(batch, ice, &shs->constbuf[i]);
3655 push_bt_entry(addr);
3656 }
3657
3658 bt_assert(ssbo_start, info->num_abos + info->num_ssbos > 0);
3659
3660 /* XXX: st is wasting 16 binding table slots for ABOs. Should add a cap
3661 * for changing nir_lower_atomics_to_ssbos setting and buffer_base offset
3662 * in st_atom_storagebuf.c so it'll compact them into one range, with
3663 * SSBOs starting at info->num_abos. Ideally it'd reset num_abos to 0 too
3664 */
3665 if (info->num_abos + info->num_ssbos > 0) {
3666 for (int i = 0; i < IRIS_MAX_ABOS + info->num_ssbos; i++) {
3667 uint32_t addr = use_ssbo(batch, ice, shs, i);
3668 push_bt_entry(addr);
3669 }
3670 }
3671
3672 #if 0
3673 // XXX: not implemented yet
3674 bt_assert(plane_start[1], ...);
3675 bt_assert(plane_start[2], ...);
3676 #endif
3677 }
3678
3679 static void
3680 iris_use_optional_res(struct iris_batch *batch,
3681 struct pipe_resource *res,
3682 bool writeable)
3683 {
3684 if (res) {
3685 struct iris_bo *bo = iris_resource_bo(res);
3686 iris_use_pinned_bo(batch, bo, writeable);
3687 }
3688 }
3689
3690 /* ------------------------------------------------------------------- */
3691
3692 /**
3693 * Pin any BOs which were installed by a previous batch, and restored
3694 * via the hardware logical context mechanism.
3695 *
3696 * We don't need to re-emit all state every batch - the hardware context
3697 * mechanism will save and restore it for us. This includes pointers to
3698 * various BOs...which won't exist unless we ask the kernel to pin them
3699 * by adding them to the validation list.
3700 *
3701 * We can skip buffers if we've re-emitted those packets, as we're
3702 * overwriting those stale pointers with new ones, and don't actually
3703 * refer to the old BOs.
3704 */
3705 static void
3706 iris_restore_render_saved_bos(struct iris_context *ice,
3707 struct iris_batch *batch,
3708 const struct pipe_draw_info *draw)
3709 {
3710 struct iris_genx_state *genx = ice->state.genx;
3711
3712 // XXX: whack IRIS_SHADER_DIRTY_BINDING_TABLE on new batch
3713
3714 const uint64_t clean = ~ice->state.dirty;
3715
3716 if (clean & IRIS_DIRTY_CC_VIEWPORT) {
3717 iris_use_optional_res(batch, ice->state.last_res.cc_vp, false);
3718 }
3719
3720 if (clean & IRIS_DIRTY_SF_CL_VIEWPORT) {
3721 iris_use_optional_res(batch, ice->state.last_res.sf_cl_vp, false);
3722 }
3723
3724 if (clean & IRIS_DIRTY_BLEND_STATE) {
3725 iris_use_optional_res(batch, ice->state.last_res.blend, false);
3726 }
3727
3728 if (clean & IRIS_DIRTY_COLOR_CALC_STATE) {
3729 iris_use_optional_res(batch, ice->state.last_res.color_calc, false);
3730 }
3731
3732 if (clean & IRIS_DIRTY_SCISSOR_RECT) {
3733 iris_use_optional_res(batch, ice->state.last_res.scissor, false);
3734 }
3735
3736 if (ice->state.streamout_active && (clean & IRIS_DIRTY_SO_BUFFERS)) {
3737 for (int i = 0; i < 4; i++) {
3738 struct iris_stream_output_target *tgt =
3739 (void *) ice->state.so_target[i];
3740 if (tgt) {
3741 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
3742 true);
3743 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
3744 true);
3745 }
3746 }
3747 }
3748
3749 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3750 if (!(clean & (IRIS_DIRTY_CONSTANTS_VS << stage)))
3751 continue;
3752
3753 struct iris_shader_state *shs = &ice->state.shaders[stage];
3754 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3755
3756 if (!shader)
3757 continue;
3758
3759 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
3760
3761 for (int i = 0; i < 4; i++) {
3762 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
3763
3764 if (range->length == 0)
3765 continue;
3766
3767 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
3768 struct iris_resource *res = (void *) cbuf->data.res;
3769
3770 if (res)
3771 iris_use_pinned_bo(batch, res->bo, false);
3772 else
3773 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
3774 }
3775 }
3776
3777 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3778 if (clean & (IRIS_DIRTY_BINDINGS_VS << stage)) {
3779 /* Re-pin any buffers referred to by the binding table. */
3780 iris_populate_binding_table(ice, batch, stage, true);
3781 }
3782 }
3783
3784 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3785 struct iris_shader_state *shs = &ice->state.shaders[stage];
3786 struct pipe_resource *res = shs->sampler_table.res;
3787 if (res)
3788 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
3789 }
3790
3791 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3792 if (clean & (IRIS_DIRTY_VS << stage)) {
3793 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3794 if (shader) {
3795 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
3796 iris_use_pinned_bo(batch, bo, false);
3797 }
3798
3799 // XXX: scratch buffer
3800 }
3801 }
3802
3803 if (clean & IRIS_DIRTY_DEPTH_BUFFER) {
3804 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
3805
3806 if (cso_fb->zsbuf) {
3807 struct iris_resource *zres, *sres;
3808 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
3809 &zres, &sres);
3810 // XXX: might not be writable...
3811 if (zres)
3812 iris_use_pinned_bo(batch, zres->bo, true);
3813 if (sres)
3814 iris_use_pinned_bo(batch, sres->bo, true);
3815 }
3816 }
3817
3818 if (draw->index_size == 0 && ice->state.last_res.index_buffer) {
3819 /* This draw didn't emit a new index buffer, so we are inheriting the
3820 * older index buffer. This draw didn't need it, but future ones may.
3821 */
3822 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
3823 iris_use_pinned_bo(batch, bo, false);
3824 }
3825
3826 if (clean & IRIS_DIRTY_VERTEX_BUFFERS) {
3827 uint64_t bound = ice->state.bound_vertex_buffers;
3828 while (bound) {
3829 const int i = u_bit_scan64(&bound);
3830 struct pipe_resource *res = genx->vertex_buffers[i].resource;
3831 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
3832 }
3833 }
3834 }
3835
3836 static void
3837 iris_restore_compute_saved_bos(struct iris_context *ice,
3838 struct iris_batch *batch,
3839 const struct pipe_grid_info *grid)
3840 {
3841 const uint64_t clean = ~ice->state.dirty;
3842
3843 const int stage = MESA_SHADER_COMPUTE;
3844 struct iris_shader_state *shs = &ice->state.shaders[stage];
3845
3846 if (clean & IRIS_DIRTY_CONSTANTS_CS) {
3847 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3848
3849 if (shader) {
3850 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
3851 const struct brw_ubo_range *range = &prog_data->ubo_ranges[0];
3852
3853 if (range->length > 0) {
3854 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
3855 struct iris_resource *res = (void *) cbuf->data.res;
3856
3857 if (res)
3858 iris_use_pinned_bo(batch, res->bo, false);
3859 else
3860 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
3861 }
3862 }
3863 }
3864
3865 if (clean & IRIS_DIRTY_BINDINGS_CS) {
3866 /* Re-pin any buffers referred to by the binding table. */
3867 iris_populate_binding_table(ice, batch, stage, true);
3868 }
3869
3870 struct pipe_resource *sampler_res = shs->sampler_table.res;
3871 if (sampler_res)
3872 iris_use_pinned_bo(batch, iris_resource_bo(sampler_res), false);
3873
3874 if (clean & IRIS_DIRTY_CS) {
3875 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3876 if (shader) {
3877 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
3878 iris_use_pinned_bo(batch, bo, false);
3879 }
3880
3881 // XXX: scratch buffer
3882 }
3883 }
3884
3885 /**
3886 * Possibly emit STATE_BASE_ADDRESS to update Surface State Base Address.
3887 */
3888 static void
3889 iris_update_surface_base_address(struct iris_batch *batch,
3890 struct iris_binder *binder)
3891 {
3892 if (batch->last_surface_base_address == binder->bo->gtt_offset)
3893 return;
3894
3895 flush_for_state_base_change(batch);
3896
3897 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
3898 // XXX: sba.SurfaceStateMemoryObjectControlState = MOCS_WB;
3899 sba.SurfaceStateBaseAddressModifyEnable = true;
3900 sba.SurfaceStateBaseAddress = ro_bo(binder->bo, 0);
3901 }
3902
3903 batch->last_surface_base_address = binder->bo->gtt_offset;
3904 }
3905
3906 static void
3907 iris_upload_dirty_render_state(struct iris_context *ice,
3908 struct iris_batch *batch,
3909 const struct pipe_draw_info *draw)
3910 {
3911 const uint64_t dirty = ice->state.dirty;
3912
3913 if (!(dirty & IRIS_ALL_DIRTY_FOR_RENDER))
3914 return;
3915
3916 struct iris_genx_state *genx = ice->state.genx;
3917 struct iris_binder *binder = &ice->state.binder;
3918 struct brw_wm_prog_data *wm_prog_data = (void *)
3919 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3920
3921 if (dirty & IRIS_DIRTY_CC_VIEWPORT) {
3922 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3923 uint32_t cc_vp_address;
3924
3925 /* XXX: could avoid streaming for depth_clip [0,1] case. */
3926 uint32_t *cc_vp_map =
3927 stream_state(batch, ice->state.dynamic_uploader,
3928 &ice->state.last_res.cc_vp,
3929 4 * ice->state.num_viewports *
3930 GENX(CC_VIEWPORT_length), 32, &cc_vp_address);
3931 for (int i = 0; i < ice->state.num_viewports; i++) {
3932 float zmin, zmax;
3933 util_viewport_zmin_zmax(&ice->state.viewports[i],
3934 cso_rast->clip_halfz, &zmin, &zmax);
3935 if (cso_rast->depth_clip_near)
3936 zmin = 0.0;
3937 if (cso_rast->depth_clip_far)
3938 zmax = 1.0;
3939
3940 iris_pack_state(GENX(CC_VIEWPORT), cc_vp_map, ccv) {
3941 ccv.MinimumDepth = zmin;
3942 ccv.MaximumDepth = zmax;
3943 }
3944
3945 cc_vp_map += GENX(CC_VIEWPORT_length);
3946 }
3947
3948 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
3949 ptr.CCViewportPointer = cc_vp_address;
3950 }
3951 }
3952
3953 if (dirty & IRIS_DIRTY_SF_CL_VIEWPORT) {
3954 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
3955 uint32_t sf_cl_vp_address;
3956 uint32_t *vp_map =
3957 stream_state(batch, ice->state.dynamic_uploader,
3958 &ice->state.last_res.sf_cl_vp,
3959 4 * ice->state.num_viewports *
3960 GENX(SF_CLIP_VIEWPORT_length), 64, &sf_cl_vp_address);
3961
3962 for (unsigned i = 0; i < ice->state.num_viewports; i++) {
3963 const struct pipe_viewport_state *state = &ice->state.viewports[i];
3964 float gb_xmin, gb_xmax, gb_ymin, gb_ymax;
3965
3966 float vp_xmin = viewport_extent(state, 0, -1.0f);
3967 float vp_xmax = viewport_extent(state, 0, 1.0f);
3968 float vp_ymin = viewport_extent(state, 1, -1.0f);
3969 float vp_ymax = viewport_extent(state, 1, 1.0f);
3970
3971 calculate_guardband_size(cso_fb->width, cso_fb->height,
3972 state->scale[0], state->scale[1],
3973 state->translate[0], state->translate[1],
3974 &gb_xmin, &gb_xmax, &gb_ymin, &gb_ymax);
3975
3976 iris_pack_state(GENX(SF_CLIP_VIEWPORT), vp_map, vp) {
3977 vp.ViewportMatrixElementm00 = state->scale[0];
3978 vp.ViewportMatrixElementm11 = state->scale[1];
3979 vp.ViewportMatrixElementm22 = state->scale[2];
3980 vp.ViewportMatrixElementm30 = state->translate[0];
3981 vp.ViewportMatrixElementm31 = state->translate[1];
3982 vp.ViewportMatrixElementm32 = state->translate[2];
3983 vp.XMinClipGuardband = gb_xmin;
3984 vp.XMaxClipGuardband = gb_xmax;
3985 vp.YMinClipGuardband = gb_ymin;
3986 vp.YMaxClipGuardband = gb_ymax;
3987 vp.XMinViewPort = MAX2(vp_xmin, 0);
3988 vp.XMaxViewPort = MIN2(vp_xmax, cso_fb->width) - 1;
3989 vp.YMinViewPort = MAX2(vp_ymin, 0);
3990 vp.YMaxViewPort = MIN2(vp_ymax, cso_fb->height) - 1;
3991 }
3992
3993 vp_map += GENX(SF_CLIP_VIEWPORT_length);
3994 }
3995
3996 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
3997 ptr.SFClipViewportPointer = sf_cl_vp_address;
3998 }
3999 }
4000
4001 /* XXX: L3 State */
4002
4003 // XXX: this is only flagged at setup, we assume a static configuration
4004 if (dirty & IRIS_DIRTY_URB) {
4005 iris_upload_urb_config(ice, batch);
4006 }
4007
4008 if (dirty & IRIS_DIRTY_BLEND_STATE) {
4009 struct iris_blend_state *cso_blend = ice->state.cso_blend;
4010 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4011 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
4012 const int header_dwords = GENX(BLEND_STATE_length);
4013 const int rt_dwords = cso_fb->nr_cbufs * GENX(BLEND_STATE_ENTRY_length);
4014 uint32_t blend_offset;
4015 uint32_t *blend_map =
4016 stream_state(batch, ice->state.dynamic_uploader,
4017 &ice->state.last_res.blend,
4018 4 * (header_dwords + rt_dwords), 64, &blend_offset);
4019
4020 uint32_t blend_state_header;
4021 iris_pack_state(GENX(BLEND_STATE), &blend_state_header, bs) {
4022 bs.AlphaTestEnable = cso_zsa->alpha.enabled;
4023 bs.AlphaTestFunction = translate_compare_func(cso_zsa->alpha.func);
4024 }
4025
4026 blend_map[0] = blend_state_header | cso_blend->blend_state[0];
4027 memcpy(&blend_map[1], &cso_blend->blend_state[1], 4 * rt_dwords);
4028
4029 iris_emit_cmd(batch, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
4030 ptr.BlendStatePointer = blend_offset;
4031 ptr.BlendStatePointerValid = true;
4032 }
4033 }
4034
4035 if (dirty & IRIS_DIRTY_COLOR_CALC_STATE) {
4036 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
4037 uint32_t cc_offset;
4038 void *cc_map =
4039 stream_state(batch, ice->state.dynamic_uploader,
4040 &ice->state.last_res.color_calc,
4041 sizeof(uint32_t) * GENX(COLOR_CALC_STATE_length),
4042 64, &cc_offset);
4043 iris_pack_state(GENX(COLOR_CALC_STATE), cc_map, cc) {
4044 cc.AlphaTestFormat = ALPHATEST_FLOAT32;
4045 cc.AlphaReferenceValueAsFLOAT32 = cso->alpha.ref_value;
4046 cc.BlendConstantColorRed = ice->state.blend_color.color[0];
4047 cc.BlendConstantColorGreen = ice->state.blend_color.color[1];
4048 cc.BlendConstantColorBlue = ice->state.blend_color.color[2];
4049 cc.BlendConstantColorAlpha = ice->state.blend_color.color[3];
4050 }
4051 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
4052 ptr.ColorCalcStatePointer = cc_offset;
4053 ptr.ColorCalcStatePointerValid = true;
4054 }
4055 }
4056
4057 /* Upload constants for TCS passthrough. */
4058 if ((dirty & IRIS_DIRTY_CONSTANTS_TCS) &&
4059 ice->shaders.prog[MESA_SHADER_TESS_CTRL] &&
4060 !ice->shaders.uncompiled[MESA_SHADER_TESS_CTRL]) {
4061 struct iris_compiled_shader *tes_shader = ice->shaders.prog[MESA_SHADER_TESS_EVAL];
4062 assert(tes_shader);
4063
4064 /* Passthrough always copies 2 vec4s, so when uploading data we ensure
4065 * it is in the right layout for TES.
4066 */
4067 float hdr[8] = {};
4068 struct brw_tes_prog_data *tes_prog_data = (void *) tes_shader->prog_data;
4069 switch (tes_prog_data->domain) {
4070 case BRW_TESS_DOMAIN_QUAD:
4071 for (int i = 0; i < 4; i++)
4072 hdr[7 - i] = ice->state.default_outer_level[i];
4073 hdr[3] = ice->state.default_inner_level[0];
4074 hdr[2] = ice->state.default_inner_level[1];
4075 break;
4076 case BRW_TESS_DOMAIN_TRI:
4077 for (int i = 0; i < 3; i++)
4078 hdr[7 - i] = ice->state.default_outer_level[i];
4079 hdr[4] = ice->state.default_inner_level[0];
4080 break;
4081 case BRW_TESS_DOMAIN_ISOLINE:
4082 hdr[7] = ice->state.default_outer_level[1];
4083 hdr[6] = ice->state.default_outer_level[0];
4084 break;
4085 }
4086
4087 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_TESS_CTRL];
4088 struct iris_const_buffer *cbuf = &shs->constbuf[0];
4089 u_upload_data(ice->ctx.const_uploader, 0, sizeof(hdr), 32,
4090 &hdr[0], &cbuf->data.offset,
4091 &cbuf->data.res);
4092 }
4093
4094 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4095 if (!(dirty & (IRIS_DIRTY_CONSTANTS_VS << stage)))
4096 continue;
4097
4098 struct iris_shader_state *shs = &ice->state.shaders[stage];
4099 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4100
4101 if (!shader)
4102 continue;
4103
4104 if (shs->cbuf0_needs_upload)
4105 upload_uniforms(ice, stage);
4106
4107 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4108
4109 iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_VS), pkt) {
4110 pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
4111 if (prog_data) {
4112 /* The Skylake PRM contains the following restriction:
4113 *
4114 * "The driver must ensure The following case does not occur
4115 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
4116 * buffer 3 read length equal to zero committed followed by a
4117 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
4118 * zero committed."
4119 *
4120 * To avoid this, we program the buffers in the highest slots.
4121 * This way, slot 0 is only used if slot 3 is also used.
4122 */
4123 int n = 3;
4124
4125 for (int i = 3; i >= 0; i--) {
4126 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4127
4128 if (range->length == 0)
4129 continue;
4130
4131 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
4132 struct iris_resource *res = (void *) cbuf->data.res;
4133
4134 assert(cbuf->data.offset % 32 == 0);
4135
4136 pkt.ConstantBody.ReadLength[n] = range->length;
4137 pkt.ConstantBody.Buffer[n] =
4138 res ? ro_bo(res->bo, range->start * 32 + cbuf->data.offset)
4139 : ro_bo(batch->screen->workaround_bo, 0);
4140 n--;
4141 }
4142 }
4143 }
4144 }
4145
4146 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4147 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4148 iris_emit_cmd(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), ptr) {
4149 ptr._3DCommandSubOpcode = 38 + stage;
4150 ptr.PointertoVSBindingTable = binder->bt_offset[stage];
4151 }
4152 }
4153 }
4154
4155 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4156 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4157 iris_populate_binding_table(ice, batch, stage, false);
4158 }
4159 }
4160
4161 if (ice->state.need_border_colors)
4162 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
4163
4164 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4165 if (!(dirty & (IRIS_DIRTY_SAMPLER_STATES_VS << stage)) ||
4166 !ice->shaders.prog[stage])
4167 continue;
4168
4169 struct iris_shader_state *shs = &ice->state.shaders[stage];
4170 struct pipe_resource *res = shs->sampler_table.res;
4171 if (res)
4172 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4173
4174 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
4175 ptr._3DCommandSubOpcode = 43 + stage;
4176 ptr.PointertoVSSamplerState = shs->sampler_table.offset;
4177 }
4178 }
4179
4180 if (dirty & IRIS_DIRTY_MULTISAMPLE) {
4181 iris_emit_cmd(batch, GENX(3DSTATE_MULTISAMPLE), ms) {
4182 ms.PixelLocation =
4183 ice->state.cso_rast->half_pixel_center ? CENTER : UL_CORNER;
4184 if (ice->state.framebuffer.samples > 0)
4185 ms.NumberofMultisamples = ffs(ice->state.framebuffer.samples) - 1;
4186 }
4187 }
4188
4189 if (dirty & IRIS_DIRTY_SAMPLE_MASK) {
4190 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_MASK), ms) {
4191 ms.SampleMask = MAX2(ice->state.sample_mask, 1);
4192 }
4193 }
4194
4195 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4196 if (!(dirty & (IRIS_DIRTY_VS << stage)))
4197 continue;
4198
4199 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4200
4201 if (shader) {
4202 struct iris_resource *cache = (void *) shader->assembly.res;
4203 iris_use_pinned_bo(batch, cache->bo, false);
4204 iris_batch_emit(batch, shader->derived_data,
4205 iris_derived_program_state_size(stage));
4206 } else {
4207 if (stage == MESA_SHADER_TESS_EVAL) {
4208 iris_emit_cmd(batch, GENX(3DSTATE_HS), hs);
4209 iris_emit_cmd(batch, GENX(3DSTATE_TE), te);
4210 iris_emit_cmd(batch, GENX(3DSTATE_DS), ds);
4211 } else if (stage == MESA_SHADER_GEOMETRY) {
4212 iris_emit_cmd(batch, GENX(3DSTATE_GS), gs);
4213 }
4214 }
4215 }
4216
4217 if (ice->state.streamout_active) {
4218 if (dirty & IRIS_DIRTY_SO_BUFFERS) {
4219 iris_batch_emit(batch, genx->so_buffers,
4220 4 * 4 * GENX(3DSTATE_SO_BUFFER_length));
4221 for (int i = 0; i < 4; i++) {
4222 struct iris_stream_output_target *tgt =
4223 (void *) ice->state.so_target[i];
4224 if (tgt) {
4225 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
4226 true);
4227 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
4228 true);
4229 }
4230 }
4231 }
4232
4233 if ((dirty & IRIS_DIRTY_SO_DECL_LIST) && ice->state.streamout) {
4234 uint32_t *decl_list =
4235 ice->state.streamout + GENX(3DSTATE_STREAMOUT_length);
4236 iris_batch_emit(batch, decl_list, 4 * ((decl_list[0] & 0xff) + 2));
4237 }
4238
4239 if (dirty & IRIS_DIRTY_STREAMOUT) {
4240 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4241
4242 uint32_t dynamic_sol[GENX(3DSTATE_STREAMOUT_length)];
4243 iris_pack_command(GENX(3DSTATE_STREAMOUT), dynamic_sol, sol) {
4244 sol.SOFunctionEnable = true;
4245 sol.SOStatisticsEnable = true;
4246
4247 sol.RenderingDisable = cso_rast->rasterizer_discard &&
4248 !ice->state.prims_generated_query_active;
4249 sol.ReorderMode = cso_rast->flatshade_first ? LEADING : TRAILING;
4250 }
4251
4252 assert(ice->state.streamout);
4253
4254 iris_emit_merge(batch, ice->state.streamout, dynamic_sol,
4255 GENX(3DSTATE_STREAMOUT_length));
4256 }
4257 } else {
4258 if (dirty & IRIS_DIRTY_STREAMOUT) {
4259 iris_emit_cmd(batch, GENX(3DSTATE_STREAMOUT), sol);
4260 }
4261 }
4262
4263 if (dirty & IRIS_DIRTY_CLIP) {
4264 struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4265 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4266
4267 uint32_t dynamic_clip[GENX(3DSTATE_CLIP_length)];
4268 iris_pack_command(GENX(3DSTATE_CLIP), &dynamic_clip, cl) {
4269 cl.StatisticsEnable = ice->state.statistics_counters_enabled;
4270 cl.ClipMode = cso_rast->rasterizer_discard ? CLIPMODE_REJECT_ALL
4271 : CLIPMODE_NORMAL;
4272 if (wm_prog_data->barycentric_interp_modes &
4273 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
4274 cl.NonPerspectiveBarycentricEnable = true;
4275
4276 cl.ForceZeroRTAIndexEnable = cso_fb->layers == 0;
4277 cl.MaximumVPIndex = ice->state.num_viewports - 1;
4278 }
4279 iris_emit_merge(batch, cso_rast->clip, dynamic_clip,
4280 ARRAY_SIZE(cso_rast->clip));
4281 }
4282
4283 if (dirty & IRIS_DIRTY_RASTER) {
4284 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4285 iris_batch_emit(batch, cso->raster, sizeof(cso->raster));
4286 iris_batch_emit(batch, cso->sf, sizeof(cso->sf));
4287
4288 }
4289
4290 /* XXX: FS program updates needs to flag IRIS_DIRTY_WM */
4291 if (dirty & IRIS_DIRTY_WM) {
4292 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4293 uint32_t dynamic_wm[GENX(3DSTATE_WM_length)];
4294
4295 iris_pack_command(GENX(3DSTATE_WM), &dynamic_wm, wm) {
4296 wm.StatisticsEnable = ice->state.statistics_counters_enabled;
4297
4298 wm.BarycentricInterpolationMode =
4299 wm_prog_data->barycentric_interp_modes;
4300
4301 if (wm_prog_data->early_fragment_tests)
4302 wm.EarlyDepthStencilControl = EDSC_PREPS;
4303 else if (wm_prog_data->has_side_effects)
4304 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
4305 }
4306 iris_emit_merge(batch, cso->wm, dynamic_wm, ARRAY_SIZE(cso->wm));
4307 }
4308
4309 if (dirty & IRIS_DIRTY_SBE) {
4310 iris_emit_sbe(batch, ice);
4311 }
4312
4313 if (dirty & IRIS_DIRTY_PS_BLEND) {
4314 struct iris_blend_state *cso_blend = ice->state.cso_blend;
4315 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
4316 uint32_t dynamic_pb[GENX(3DSTATE_PS_BLEND_length)];
4317 iris_pack_command(GENX(3DSTATE_PS_BLEND), &dynamic_pb, pb) {
4318 pb.HasWriteableRT = true; // XXX: comes from somewhere :(
4319 pb.AlphaTestEnable = cso_zsa->alpha.enabled;
4320 }
4321
4322 iris_emit_merge(batch, cso_blend->ps_blend, dynamic_pb,
4323 ARRAY_SIZE(cso_blend->ps_blend));
4324 }
4325
4326 if (dirty & IRIS_DIRTY_WM_DEPTH_STENCIL) {
4327 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
4328 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
4329
4330 uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
4331 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
4332 wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
4333 wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
4334 }
4335 iris_emit_merge(batch, cso->wmds, stencil_refs, ARRAY_SIZE(cso->wmds));
4336 }
4337
4338 if (dirty & IRIS_DIRTY_SCISSOR_RECT) {
4339 uint32_t scissor_offset =
4340 emit_state(batch, ice->state.dynamic_uploader,
4341 &ice->state.last_res.scissor,
4342 ice->state.scissors,
4343 sizeof(struct pipe_scissor_state) *
4344 ice->state.num_viewports, 32);
4345
4346 iris_emit_cmd(batch, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
4347 ptr.ScissorRectPointer = scissor_offset;
4348 }
4349 }
4350
4351 if (dirty & IRIS_DIRTY_DEPTH_BUFFER) {
4352 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4353 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
4354
4355 iris_batch_emit(batch, cso_z->packets, sizeof(cso_z->packets));
4356
4357 if (cso_fb->zsbuf) {
4358 struct iris_resource *zres, *sres;
4359 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
4360 &zres, &sres);
4361 // XXX: might not be writable...
4362 if (zres)
4363 iris_use_pinned_bo(batch, zres->bo, true);
4364 if (sres)
4365 iris_use_pinned_bo(batch, sres->bo, true);
4366 }
4367 }
4368
4369 if (dirty & IRIS_DIRTY_POLYGON_STIPPLE) {
4370 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
4371 for (int i = 0; i < 32; i++) {
4372 poly.PatternRow[i] = ice->state.poly_stipple.stipple[i];
4373 }
4374 }
4375 }
4376
4377 if (dirty & IRIS_DIRTY_LINE_STIPPLE) {
4378 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4379 iris_batch_emit(batch, cso->line_stipple, sizeof(cso->line_stipple));
4380 }
4381
4382 if (dirty & IRIS_DIRTY_VF_TOPOLOGY) {
4383 iris_emit_cmd(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
4384 topo.PrimitiveTopologyType =
4385 translate_prim_type(draw->mode, draw->vertices_per_patch);
4386 }
4387 }
4388
4389 if (dirty & IRIS_DIRTY_VERTEX_BUFFERS) {
4390 int count = util_bitcount64(ice->state.bound_vertex_buffers);
4391
4392 if (count) {
4393 /* The VF cache designers cut corners, and made the cache key's
4394 * <VertexBufferIndex, Memory Address> tuple only consider the bottom
4395 * 32 bits of the address. If you have two vertex buffers which get
4396 * placed exactly 4 GiB apart and use them in back-to-back draw calls,
4397 * you can get collisions (even within a single batch).
4398 *
4399 * So, we need to do a VF cache invalidate if the buffer for a VB
4400 * slot slot changes [48:32] address bits from the previous time.
4401 */
4402 unsigned flush_flags = 0;
4403
4404 uint64_t bound = ice->state.bound_vertex_buffers;
4405 while (bound) {
4406 const int i = u_bit_scan64(&bound);
4407 uint16_t high_bits = 0;
4408
4409 struct iris_resource *res =
4410 (void *) genx->vertex_buffers[i].resource;
4411 if (res) {
4412 iris_use_pinned_bo(batch, res->bo, false);
4413
4414 high_bits = res->bo->gtt_offset >> 32ull;
4415 if (high_bits != ice->state.last_vbo_high_bits[i]) {
4416 flush_flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
4417 ice->state.last_vbo_high_bits[i] = high_bits;
4418 }
4419
4420 /* If the buffer was written to by streamout, we may need
4421 * to stall so those writes land and become visible to the
4422 * vertex fetcher.
4423 *
4424 * TODO: This may stall more than necessary.
4425 */
4426 if (res->bind_history & PIPE_BIND_STREAM_OUTPUT)
4427 flush_flags |= PIPE_CONTROL_CS_STALL;
4428 }
4429 }
4430
4431 if (flush_flags)
4432 iris_emit_pipe_control_flush(batch, flush_flags);
4433
4434 const unsigned vb_dwords = GENX(VERTEX_BUFFER_STATE_length);
4435
4436 uint32_t *map =
4437 iris_get_command_space(batch, 4 * (1 + vb_dwords * count));
4438 _iris_pack_command(batch, GENX(3DSTATE_VERTEX_BUFFERS), map, vb) {
4439 vb.DWordLength = (vb_dwords * count + 1) - 2;
4440 }
4441 map += 1;
4442
4443 bound = ice->state.bound_vertex_buffers;
4444 while (bound) {
4445 const int i = u_bit_scan64(&bound);
4446 memcpy(map, genx->vertex_buffers[i].state,
4447 sizeof(uint32_t) * vb_dwords);
4448 map += vb_dwords;
4449 }
4450 }
4451 }
4452
4453 if (dirty & IRIS_DIRTY_VERTEX_ELEMENTS) {
4454 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
4455 const unsigned entries = MAX2(cso->count, 1);
4456 iris_batch_emit(batch, cso->vertex_elements, sizeof(uint32_t) *
4457 (1 + entries * GENX(VERTEX_ELEMENT_STATE_length)));
4458 iris_batch_emit(batch, cso->vf_instancing, sizeof(uint32_t) *
4459 entries * GENX(3DSTATE_VF_INSTANCING_length));
4460 }
4461
4462 if (dirty & IRIS_DIRTY_VF_SGVS) {
4463 const struct brw_vs_prog_data *vs_prog_data = (void *)
4464 ice->shaders.prog[MESA_SHADER_VERTEX]->prog_data;
4465 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
4466
4467 iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS), sgv) {
4468 if (vs_prog_data->uses_vertexid) {
4469 sgv.VertexIDEnable = true;
4470 sgv.VertexIDComponentNumber = 2;
4471 sgv.VertexIDElementOffset = cso->count;
4472 }
4473
4474 if (vs_prog_data->uses_instanceid) {
4475 sgv.InstanceIDEnable = true;
4476 sgv.InstanceIDComponentNumber = 3;
4477 sgv.InstanceIDElementOffset = cso->count;
4478 }
4479 }
4480 }
4481
4482 if (dirty & IRIS_DIRTY_VF) {
4483 iris_emit_cmd(batch, GENX(3DSTATE_VF), vf) {
4484 if (draw->primitive_restart) {
4485 vf.IndexedDrawCutIndexEnable = true;
4486 vf.CutIndex = draw->restart_index;
4487 }
4488 }
4489 }
4490
4491 // XXX: Gen8 - PMA fix
4492 }
4493
4494 static void
4495 iris_upload_render_state(struct iris_context *ice,
4496 struct iris_batch *batch,
4497 const struct pipe_draw_info *draw)
4498 {
4499 /* Always pin the binder. If we're emitting new binding table pointers,
4500 * we need it. If not, we're probably inheriting old tables via the
4501 * context, and need it anyway. Since true zero-bindings cases are
4502 * practically non-existent, just pin it and avoid last_res tracking.
4503 */
4504 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
4505
4506 if (!batch->contains_draw) {
4507 iris_restore_render_saved_bos(ice, batch, draw);
4508 batch->contains_draw = true;
4509 }
4510
4511 iris_upload_dirty_render_state(ice, batch, draw);
4512
4513 if (draw->index_size > 0) {
4514 unsigned offset;
4515
4516 if (draw->has_user_indices) {
4517 u_upload_data(ice->ctx.stream_uploader, 0,
4518 draw->count * draw->index_size, 4, draw->index.user,
4519 &offset, &ice->state.last_res.index_buffer);
4520 } else {
4521 struct iris_resource *res = (void *) draw->index.resource;
4522 res->bind_history |= PIPE_BIND_INDEX_BUFFER;
4523
4524 pipe_resource_reference(&ice->state.last_res.index_buffer,
4525 draw->index.resource);
4526 offset = 0;
4527 }
4528
4529 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
4530
4531 iris_emit_cmd(batch, GENX(3DSTATE_INDEX_BUFFER), ib) {
4532 ib.IndexFormat = draw->index_size >> 1;
4533 ib.MOCS = MOCS_WB;
4534 ib.BufferSize = bo->size;
4535 ib.BufferStartingAddress = ro_bo(bo, offset);
4536 }
4537
4538 /* The VF cache key only uses 32-bits, see vertex buffer comment above */
4539 uint16_t high_bits = bo->gtt_offset >> 32ull;
4540 if (high_bits != ice->state.last_index_bo_high_bits) {
4541 iris_emit_pipe_control_flush(batch, PIPE_CONTROL_VF_CACHE_INVALIDATE);
4542 ice->state.last_index_bo_high_bits = high_bits;
4543 }
4544 }
4545
4546 #define _3DPRIM_END_OFFSET 0x2420
4547 #define _3DPRIM_START_VERTEX 0x2430
4548 #define _3DPRIM_VERTEX_COUNT 0x2434
4549 #define _3DPRIM_INSTANCE_COUNT 0x2438
4550 #define _3DPRIM_START_INSTANCE 0x243C
4551 #define _3DPRIM_BASE_VERTEX 0x2440
4552
4553 if (draw->indirect) {
4554 /* We don't support this MultidrawIndirect. */
4555 assert(!draw->indirect->indirect_draw_count);
4556
4557 struct iris_bo *bo = iris_resource_bo(draw->indirect->buffer);
4558 assert(bo);
4559
4560 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4561 lrm.RegisterAddress = _3DPRIM_VERTEX_COUNT;
4562 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 0);
4563 }
4564 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4565 lrm.RegisterAddress = _3DPRIM_INSTANCE_COUNT;
4566 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 4);
4567 }
4568 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4569 lrm.RegisterAddress = _3DPRIM_START_VERTEX;
4570 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 8);
4571 }
4572 if (draw->index_size) {
4573 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4574 lrm.RegisterAddress = _3DPRIM_BASE_VERTEX;
4575 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
4576 }
4577 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4578 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
4579 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 16);
4580 }
4581 } else {
4582 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4583 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
4584 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
4585 }
4586 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
4587 lri.RegisterOffset = _3DPRIM_BASE_VERTEX;
4588 lri.DataDWord = 0;
4589 }
4590 }
4591 } else if (draw->count_from_stream_output) {
4592 struct iris_stream_output_target *so =
4593 (void *) draw->count_from_stream_output;
4594
4595 // XXX: avoid if possible
4596 iris_emit_pipe_control_flush(batch, PIPE_CONTROL_CS_STALL);
4597
4598 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4599 lrm.RegisterAddress = CS_GPR(0);
4600 lrm.MemoryAddress =
4601 ro_bo(iris_resource_bo(so->offset.res), so->offset.offset);
4602 }
4603 iris_math_div32_gpr0(ice, batch, so->stride);
4604 _iris_emit_lrr(batch, _3DPRIM_VERTEX_COUNT, CS_GPR(0));
4605
4606 _iris_emit_lri(batch, _3DPRIM_START_VERTEX, 0);
4607 _iris_emit_lri(batch, _3DPRIM_BASE_VERTEX, 0);
4608 _iris_emit_lri(batch, _3DPRIM_START_INSTANCE, 0);
4609 _iris_emit_lri(batch, _3DPRIM_INSTANCE_COUNT, draw->instance_count);
4610 }
4611
4612 iris_emit_cmd(batch, GENX(3DPRIMITIVE), prim) {
4613 prim.VertexAccessType = draw->index_size > 0 ? RANDOM : SEQUENTIAL;
4614 prim.PredicateEnable =
4615 ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT;
4616
4617 if (draw->indirect || draw->count_from_stream_output) {
4618 prim.IndirectParameterEnable = true;
4619 } else {
4620 prim.StartInstanceLocation = draw->start_instance;
4621 prim.InstanceCount = draw->instance_count;
4622 prim.VertexCountPerInstance = draw->count;
4623
4624 // XXX: this is probably bonkers.
4625 prim.StartVertexLocation = draw->start;
4626
4627 if (draw->index_size) {
4628 prim.BaseVertexLocation += draw->index_bias;
4629 } else {
4630 prim.StartVertexLocation += draw->index_bias;
4631 }
4632
4633 //prim.BaseVertexLocation = ...;
4634 }
4635 }
4636 }
4637
4638 static void
4639 iris_upload_compute_state(struct iris_context *ice,
4640 struct iris_batch *batch,
4641 const struct pipe_grid_info *grid)
4642 {
4643 const uint64_t dirty = ice->state.dirty;
4644 struct iris_screen *screen = batch->screen;
4645 const struct gen_device_info *devinfo = &screen->devinfo;
4646 struct iris_binder *binder = &ice->state.binder;
4647 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
4648 struct iris_compiled_shader *shader =
4649 ice->shaders.prog[MESA_SHADER_COMPUTE];
4650 struct brw_stage_prog_data *prog_data = shader->prog_data;
4651 struct brw_cs_prog_data *cs_prog_data = (void *) prog_data;
4652
4653 if ((dirty & IRIS_DIRTY_CONSTANTS_CS) && shs->cbuf0_needs_upload)
4654 upload_uniforms(ice, MESA_SHADER_COMPUTE);
4655
4656 if (dirty & IRIS_DIRTY_BINDINGS_CS)
4657 iris_populate_binding_table(ice, batch, MESA_SHADER_COMPUTE, false);
4658
4659 iris_use_optional_res(batch, shs->sampler_table.res, false);
4660 iris_use_pinned_bo(batch, iris_resource_bo(shader->assembly.res), false);
4661
4662 if (ice->state.need_border_colors)
4663 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
4664
4665 if (dirty & IRIS_DIRTY_CS) {
4666 /* The MEDIA_VFE_STATE documentation for Gen8+ says:
4667 *
4668 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
4669 * the only bits that are changed are scoreboard related: Scoreboard
4670 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard Delta. For
4671 * these scoreboard related states, a MEDIA_STATE_FLUSH is
4672 * sufficient."
4673 */
4674 iris_emit_pipe_control_flush(batch, PIPE_CONTROL_CS_STALL);
4675
4676 iris_emit_cmd(batch, GENX(MEDIA_VFE_STATE), vfe) {
4677 if (prog_data->total_scratch) {
4678 uint32_t scratch_addr =
4679 iris_get_scratch_space(ice, prog_data->total_scratch,
4680 MESA_SHADER_COMPUTE);
4681 vfe.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
4682 vfe.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr);
4683 }
4684
4685 vfe.MaximumNumberofThreads =
4686 devinfo->max_cs_threads * screen->subslice_total - 1;
4687 #if GEN_GEN < 11
4688 vfe.ResetGatewayTimer =
4689 Resettingrelativetimerandlatchingtheglobaltimestamp;
4690 #endif
4691
4692 vfe.NumberofURBEntries = 2;
4693 vfe.URBEntryAllocationSize = 2;
4694
4695 // XXX: Use Indirect Payload Storage?
4696 vfe.CURBEAllocationSize =
4697 ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
4698 cs_prog_data->push.cross_thread.regs, 2);
4699 }
4700 }
4701
4702 // XXX: hack iris_set_constant_buffers to upload these thread counts
4703 // XXX: along with regular uniforms for compute shaders, somehow.
4704
4705 uint32_t curbe_data_offset = 0;
4706 // TODO: Move subgroup-id into uniforms ubo so we can push uniforms
4707 assert(cs_prog_data->push.cross_thread.dwords == 0 &&
4708 cs_prog_data->push.per_thread.dwords == 1 &&
4709 cs_prog_data->base.param[0] == BRW_PARAM_BUILTIN_SUBGROUP_ID);
4710 struct pipe_resource *curbe_data_res = NULL;
4711 uint32_t *curbe_data_map =
4712 stream_state(batch, ice->state.dynamic_uploader, &curbe_data_res,
4713 ALIGN(cs_prog_data->push.total.size, 64), 64,
4714 &curbe_data_offset);
4715 assert(curbe_data_map);
4716 memset(curbe_data_map, 0x5a, ALIGN(cs_prog_data->push.total.size, 64));
4717 iris_fill_cs_push_const_buffer(cs_prog_data, curbe_data_map);
4718
4719 if (dirty & IRIS_DIRTY_CONSTANTS_CS) {
4720 iris_emit_cmd(batch, GENX(MEDIA_CURBE_LOAD), curbe) {
4721 curbe.CURBETotalDataLength =
4722 ALIGN(cs_prog_data->push.total.size, 64);
4723 curbe.CURBEDataStartAddress = curbe_data_offset;
4724 }
4725 }
4726
4727 if (dirty & (IRIS_DIRTY_SAMPLER_STATES_CS |
4728 IRIS_DIRTY_BINDINGS_CS |
4729 IRIS_DIRTY_CONSTANTS_CS |
4730 IRIS_DIRTY_CS)) {
4731 struct pipe_resource *desc_res = NULL;
4732 uint32_t desc[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
4733
4734 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), desc, idd) {
4735 idd.SamplerStatePointer = shs->sampler_table.offset;
4736 idd.BindingTablePointer = binder->bt_offset[MESA_SHADER_COMPUTE];
4737 }
4738
4739 for (int i = 0; i < GENX(INTERFACE_DESCRIPTOR_DATA_length); i++)
4740 desc[i] |= ((uint32_t *) shader->derived_data)[i];
4741
4742 iris_emit_cmd(batch, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
4743 load.InterfaceDescriptorTotalLength =
4744 GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
4745 load.InterfaceDescriptorDataStartAddress =
4746 emit_state(batch, ice->state.dynamic_uploader,
4747 &desc_res, desc, sizeof(desc), 32);
4748 }
4749
4750 pipe_resource_reference(&desc_res, NULL);
4751 }
4752
4753 uint32_t group_size = grid->block[0] * grid->block[1] * grid->block[2];
4754 uint32_t remainder = group_size & (cs_prog_data->simd_size - 1);
4755 uint32_t right_mask;
4756
4757 if (remainder > 0)
4758 right_mask = ~0u >> (32 - remainder);
4759 else
4760 right_mask = ~0u >> (32 - cs_prog_data->simd_size);
4761
4762 #define GPGPU_DISPATCHDIMX 0x2500
4763 #define GPGPU_DISPATCHDIMY 0x2504
4764 #define GPGPU_DISPATCHDIMZ 0x2508
4765
4766 if (grid->indirect) {
4767 struct iris_state_ref *grid_size = &ice->state.grid_size;
4768 struct iris_bo *bo = iris_resource_bo(grid_size->res);
4769 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4770 lrm.RegisterAddress = GPGPU_DISPATCHDIMX;
4771 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 0);
4772 }
4773 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4774 lrm.RegisterAddress = GPGPU_DISPATCHDIMY;
4775 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 4);
4776 }
4777 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4778 lrm.RegisterAddress = GPGPU_DISPATCHDIMZ;
4779 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 8);
4780 }
4781 }
4782
4783 iris_emit_cmd(batch, GENX(GPGPU_WALKER), ggw) {
4784 ggw.IndirectParameterEnable = grid->indirect != NULL;
4785 ggw.SIMDSize = cs_prog_data->simd_size / 16;
4786 ggw.ThreadDepthCounterMaximum = 0;
4787 ggw.ThreadHeightCounterMaximum = 0;
4788 ggw.ThreadWidthCounterMaximum = cs_prog_data->threads - 1;
4789 ggw.ThreadGroupIDXDimension = grid->grid[0];
4790 ggw.ThreadGroupIDYDimension = grid->grid[1];
4791 ggw.ThreadGroupIDZDimension = grid->grid[2];
4792 ggw.RightExecutionMask = right_mask;
4793 ggw.BottomExecutionMask = 0xffffffff;
4794 }
4795
4796 iris_emit_cmd(batch, GENX(MEDIA_STATE_FLUSH), msf);
4797
4798 if (!batch->contains_draw) {
4799 iris_restore_compute_saved_bos(ice, batch, grid);
4800 batch->contains_draw = true;
4801 }
4802 }
4803
4804 /**
4805 * State module teardown.
4806 */
4807 static void
4808 iris_destroy_state(struct iris_context *ice)
4809 {
4810 struct iris_genx_state *genx = ice->state.genx;
4811
4812 uint64_t bound_vbs = ice->state.bound_vertex_buffers;
4813 while (bound_vbs) {
4814 const int i = u_bit_scan64(&bound_vbs);
4815 pipe_resource_reference(&genx->vertex_buffers[i].resource, NULL);
4816 }
4817
4818 // XXX: unreference resources/surfaces.
4819 for (unsigned i = 0; i < ice->state.framebuffer.nr_cbufs; i++) {
4820 pipe_surface_reference(&ice->state.framebuffer.cbufs[i], NULL);
4821 }
4822 pipe_surface_reference(&ice->state.framebuffer.zsbuf, NULL);
4823
4824 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4825 struct iris_shader_state *shs = &ice->state.shaders[stage];
4826 pipe_resource_reference(&shs->sampler_table.res, NULL);
4827 }
4828 free(ice->state.genx);
4829
4830 pipe_resource_reference(&ice->state.unbound_tex.res, NULL);
4831
4832 pipe_resource_reference(&ice->state.last_res.cc_vp, NULL);
4833 pipe_resource_reference(&ice->state.last_res.sf_cl_vp, NULL);
4834 pipe_resource_reference(&ice->state.last_res.color_calc, NULL);
4835 pipe_resource_reference(&ice->state.last_res.scissor, NULL);
4836 pipe_resource_reference(&ice->state.last_res.blend, NULL);
4837 pipe_resource_reference(&ice->state.last_res.index_buffer, NULL);
4838 }
4839
4840 /* ------------------------------------------------------------------- */
4841
4842 static void
4843 iris_load_register_reg32(struct iris_batch *batch, uint32_t dst,
4844 uint32_t src)
4845 {
4846 _iris_emit_lrr(batch, dst, src);
4847 }
4848
4849 static void
4850 iris_load_register_reg64(struct iris_batch *batch, uint32_t dst,
4851 uint32_t src)
4852 {
4853 _iris_emit_lrr(batch, dst, src);
4854 _iris_emit_lrr(batch, dst + 4, src + 4);
4855 }
4856
4857 static void
4858 iris_load_register_imm32(struct iris_batch *batch, uint32_t reg,
4859 uint32_t val)
4860 {
4861 _iris_emit_lri(batch, reg, val);
4862 }
4863
4864 static void
4865 iris_load_register_imm64(struct iris_batch *batch, uint32_t reg,
4866 uint64_t val)
4867 {
4868 _iris_emit_lri(batch, reg + 0, val & 0xffffffff);
4869 _iris_emit_lri(batch, reg + 4, val >> 32);
4870 }
4871
4872 /**
4873 * Emit MI_LOAD_REGISTER_MEM to load a 32-bit MMIO register from a buffer.
4874 */
4875 static void
4876 iris_load_register_mem32(struct iris_batch *batch, uint32_t reg,
4877 struct iris_bo *bo, uint32_t offset)
4878 {
4879 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4880 lrm.RegisterAddress = reg;
4881 lrm.MemoryAddress = ro_bo(bo, offset);
4882 }
4883 }
4884
4885 /**
4886 * Load a 64-bit value from a buffer into a MMIO register via
4887 * two MI_LOAD_REGISTER_MEM commands.
4888 */
4889 static void
4890 iris_load_register_mem64(struct iris_batch *batch, uint32_t reg,
4891 struct iris_bo *bo, uint32_t offset)
4892 {
4893 iris_load_register_mem32(batch, reg + 0, bo, offset + 0);
4894 iris_load_register_mem32(batch, reg + 4, bo, offset + 4);
4895 }
4896
4897 static void
4898 iris_store_register_mem32(struct iris_batch *batch, uint32_t reg,
4899 struct iris_bo *bo, uint32_t offset,
4900 bool predicated)
4901 {
4902 iris_emit_cmd(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
4903 srm.RegisterAddress = reg;
4904 srm.MemoryAddress = rw_bo(bo, offset);
4905 srm.PredicateEnable = predicated;
4906 }
4907 }
4908
4909 static void
4910 iris_store_register_mem64(struct iris_batch *batch, uint32_t reg,
4911 struct iris_bo *bo, uint32_t offset,
4912 bool predicated)
4913 {
4914 iris_store_register_mem32(batch, reg + 0, bo, offset + 0, predicated);
4915 iris_store_register_mem32(batch, reg + 4, bo, offset + 4, predicated);
4916 }
4917
4918 static void
4919 iris_store_data_imm32(struct iris_batch *batch,
4920 struct iris_bo *bo, uint32_t offset,
4921 uint32_t imm)
4922 {
4923 iris_emit_cmd(batch, GENX(MI_STORE_DATA_IMM), sdi) {
4924 sdi.Address = rw_bo(bo, offset);
4925 sdi.ImmediateData = imm;
4926 }
4927 }
4928
4929 static void
4930 iris_store_data_imm64(struct iris_batch *batch,
4931 struct iris_bo *bo, uint32_t offset,
4932 uint64_t imm)
4933 {
4934 /* Can't use iris_emit_cmd because MI_STORE_DATA_IMM has a length of
4935 * 2 in genxml but it's actually variable length and we need 5 DWords.
4936 */
4937 void *map = iris_get_command_space(batch, 4 * 5);
4938 _iris_pack_command(batch, GENX(MI_STORE_DATA_IMM), map, sdi) {
4939 sdi.DWordLength = 5 - 2;
4940 sdi.Address = rw_bo(bo, offset);
4941 sdi.ImmediateData = imm;
4942 }
4943 }
4944
4945 static void
4946 iris_copy_mem_mem(struct iris_batch *batch,
4947 struct iris_bo *dst_bo, uint32_t dst_offset,
4948 struct iris_bo *src_bo, uint32_t src_offset,
4949 unsigned bytes)
4950 {
4951 /* MI_COPY_MEM_MEM operates on DWords. */
4952 assert(bytes % 4 == 0);
4953 assert(dst_offset % 4 == 0);
4954 assert(src_offset % 4 == 0);
4955
4956 for (unsigned i = 0; i < bytes; i += 4) {
4957 iris_emit_cmd(batch, GENX(MI_COPY_MEM_MEM), cp) {
4958 cp.DestinationMemoryAddress = rw_bo(dst_bo, dst_offset + i);
4959 cp.SourceMemoryAddress = ro_bo(src_bo, src_offset + i);
4960 }
4961 }
4962 }
4963
4964 /* ------------------------------------------------------------------- */
4965
4966 static unsigned
4967 flags_to_post_sync_op(uint32_t flags)
4968 {
4969 if (flags & PIPE_CONTROL_WRITE_IMMEDIATE)
4970 return WriteImmediateData;
4971
4972 if (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT)
4973 return WritePSDepthCount;
4974
4975 if (flags & PIPE_CONTROL_WRITE_TIMESTAMP)
4976 return WriteTimestamp;
4977
4978 return 0;
4979 }
4980
4981 /**
4982 * Do the given flags have a Post Sync or LRI Post Sync operation?
4983 */
4984 static enum pipe_control_flags
4985 get_post_sync_flags(enum pipe_control_flags flags)
4986 {
4987 flags &= PIPE_CONTROL_WRITE_IMMEDIATE |
4988 PIPE_CONTROL_WRITE_DEPTH_COUNT |
4989 PIPE_CONTROL_WRITE_TIMESTAMP |
4990 PIPE_CONTROL_LRI_POST_SYNC_OP;
4991
4992 /* Only one "Post Sync Op" is allowed, and it's mutually exclusive with
4993 * "LRI Post Sync Operation". So more than one bit set would be illegal.
4994 */
4995 assert(util_bitcount(flags) <= 1);
4996
4997 return flags;
4998 }
4999
5000 #define IS_COMPUTE_PIPELINE(batch) (batch->name == IRIS_BATCH_COMPUTE)
5001
5002 /**
5003 * Emit a series of PIPE_CONTROL commands, taking into account any
5004 * workarounds necessary to actually accomplish the caller's request.
5005 *
5006 * Unless otherwise noted, spec quotations in this function come from:
5007 *
5008 * Synchronization of the 3D Pipeline > PIPE_CONTROL Command > Programming
5009 * Restrictions for PIPE_CONTROL.
5010 *
5011 * You should not use this function directly. Use the helpers in
5012 * iris_pipe_control.c instead, which may split the pipe control further.
5013 */
5014 static void
5015 iris_emit_raw_pipe_control(struct iris_batch *batch, uint32_t flags,
5016 struct iris_bo *bo, uint32_t offset, uint64_t imm)
5017 {
5018 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
5019 enum pipe_control_flags post_sync_flags = get_post_sync_flags(flags);
5020 enum pipe_control_flags non_lri_post_sync_flags =
5021 post_sync_flags & ~PIPE_CONTROL_LRI_POST_SYNC_OP;
5022
5023 /* Recursive PIPE_CONTROL workarounds --------------------------------
5024 * (http://knowyourmeme.com/memes/xzibit-yo-dawg)
5025 *
5026 * We do these first because we want to look at the original operation,
5027 * rather than any workarounds we set.
5028 */
5029 if (GEN_GEN == 9 && (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE)) {
5030 /* The PIPE_CONTROL "VF Cache Invalidation Enable" bit description
5031 * lists several workarounds:
5032 *
5033 * "Project: SKL, KBL, BXT
5034 *
5035 * If the VF Cache Invalidation Enable is set to a 1 in a
5036 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields
5037 * sets to 0, with the VF Cache Invalidation Enable set to 0
5038 * needs to be sent prior to the PIPE_CONTROL with VF Cache
5039 * Invalidation Enable set to a 1."
5040 */
5041 iris_emit_raw_pipe_control(batch, 0, NULL, 0, 0);
5042 }
5043
5044 if (GEN_GEN == 9 && IS_COMPUTE_PIPELINE(batch) && post_sync_flags) {
5045 /* Project: SKL / Argument: LRI Post Sync Operation [23]
5046 *
5047 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
5048 * programmed prior to programming a PIPECONTROL command with "LRI
5049 * Post Sync Operation" in GPGPU mode of operation (i.e when
5050 * PIPELINE_SELECT command is set to GPGPU mode of operation)."
5051 *
5052 * The same text exists a few rows below for Post Sync Op.
5053 */
5054 iris_emit_raw_pipe_control(batch, PIPE_CONTROL_CS_STALL, bo, offset, imm);
5055 }
5056
5057 if (GEN_GEN == 10 && (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH)) {
5058 /* Cannonlake:
5059 * "Before sending a PIPE_CONTROL command with bit 12 set, SW must issue
5060 * another PIPE_CONTROL with Render Target Cache Flush Enable (bit 12)
5061 * = 0 and Pipe Control Flush Enable (bit 7) = 1"
5062 */
5063 iris_emit_raw_pipe_control(batch, PIPE_CONTROL_FLUSH_ENABLE, bo,
5064 offset, imm);
5065 }
5066
5067 /* "Flush Types" workarounds ---------------------------------------------
5068 * We do these now because they may add post-sync operations or CS stalls.
5069 */
5070
5071 if (GEN_GEN < 11 && flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) {
5072 /* Project: BDW, SKL+ (stopping at CNL) / Argument: VF Invalidate
5073 *
5074 * "'Post Sync Operation' must be enabled to 'Write Immediate Data' or
5075 * 'Write PS Depth Count' or 'Write Timestamp'."
5076 */
5077 if (!bo) {
5078 flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
5079 post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
5080 non_lri_post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
5081 bo = batch->screen->workaround_bo;
5082 }
5083 }
5084
5085 /* #1130 from Gen10 workarounds page:
5086 *
5087 * "Enable Depth Stall on every Post Sync Op if Render target Cache
5088 * Flush is not enabled in same PIPE CONTROL and Enable Pixel score
5089 * board stall if Render target cache flush is enabled."
5090 *
5091 * Applicable to CNL B0 and C0 steppings only.
5092 *
5093 * The wording here is unclear, and this workaround doesn't look anything
5094 * like the internal bug report recommendations, but leave it be for now...
5095 */
5096 if (GEN_GEN == 10) {
5097 if (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) {
5098 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
5099 } else if (flags & non_lri_post_sync_flags) {
5100 flags |= PIPE_CONTROL_DEPTH_STALL;
5101 }
5102 }
5103
5104 if (flags & PIPE_CONTROL_DEPTH_STALL) {
5105 /* From the PIPE_CONTROL instruction table, bit 13 (Depth Stall Enable):
5106 *
5107 * "This bit must be DISABLED for operations other than writing
5108 * PS_DEPTH_COUNT."
5109 *
5110 * This seems like nonsense. An Ivybridge workaround requires us to
5111 * emit a PIPE_CONTROL with a depth stall and write immediate post-sync
5112 * operation. Gen8+ requires us to emit depth stalls and depth cache
5113 * flushes together. So, it's hard to imagine this means anything other
5114 * than "we originally intended this to be used for PS_DEPTH_COUNT".
5115 *
5116 * We ignore the supposed restriction and do nothing.
5117 */
5118 }
5119
5120 if (flags & (PIPE_CONTROL_RENDER_TARGET_FLUSH |
5121 PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
5122 /* From the PIPE_CONTROL instruction table, bit 12 and bit 1:
5123 *
5124 * "This bit must be DISABLED for End-of-pipe (Read) fences,
5125 * PS_DEPTH_COUNT or TIMESTAMP queries."
5126 *
5127 * TODO: Implement end-of-pipe checking.
5128 */
5129 assert(!(post_sync_flags & (PIPE_CONTROL_WRITE_DEPTH_COUNT |
5130 PIPE_CONTROL_WRITE_TIMESTAMP)));
5131 }
5132
5133 if (GEN_GEN < 11 && (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
5134 /* From the PIPE_CONTROL instruction table, bit 1:
5135 *
5136 * "This bit is ignored if Depth Stall Enable is set.
5137 * Further, the render cache is not flushed even if Write Cache
5138 * Flush Enable bit is set."
5139 *
5140 * We assert that the caller doesn't do this combination, to try and
5141 * prevent mistakes. It shouldn't hurt the GPU, though.
5142 *
5143 * We skip this check on Gen11+ as the "Stall at Pixel Scoreboard"
5144 * and "Render Target Flush" combo is explicitly required for BTI
5145 * update workarounds.
5146 */
5147 assert(!(flags & (PIPE_CONTROL_DEPTH_STALL |
5148 PIPE_CONTROL_RENDER_TARGET_FLUSH)));
5149 }
5150
5151 /* PIPE_CONTROL page workarounds ------------------------------------- */
5152
5153 if (GEN_GEN <= 8 && (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE)) {
5154 /* From the PIPE_CONTROL page itself:
5155 *
5156 * "IVB, HSW, BDW
5157 * Restriction: Pipe_control with CS-stall bit set must be issued
5158 * before a pipe-control command that has the State Cache
5159 * Invalidate bit set."
5160 */
5161 flags |= PIPE_CONTROL_CS_STALL;
5162 }
5163
5164 if (flags & PIPE_CONTROL_FLUSH_LLC) {
5165 /* From the PIPE_CONTROL instruction table, bit 26 (Flush LLC):
5166 *
5167 * "Project: ALL
5168 * SW must always program Post-Sync Operation to "Write Immediate
5169 * Data" when Flush LLC is set."
5170 *
5171 * For now, we just require the caller to do it.
5172 */
5173 assert(flags & PIPE_CONTROL_WRITE_IMMEDIATE);
5174 }
5175
5176 /* "Post-Sync Operation" workarounds -------------------------------- */
5177
5178 /* Project: All / Argument: Global Snapshot Count Reset [19]
5179 *
5180 * "This bit must not be exercised on any product.
5181 * Requires stall bit ([20] of DW1) set."
5182 *
5183 * We don't use this, so we just assert that it isn't used. The
5184 * PIPE_CONTROL instruction page indicates that they intended this
5185 * as a debug feature and don't think it is useful in production,
5186 * but it may actually be usable, should we ever want to.
5187 */
5188 assert((flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) == 0);
5189
5190 if (flags & (PIPE_CONTROL_MEDIA_STATE_CLEAR |
5191 PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE)) {
5192 /* Project: All / Arguments:
5193 *
5194 * - Generic Media State Clear [16]
5195 * - Indirect State Pointers Disable [16]
5196 *
5197 * "Requires stall bit ([20] of DW1) set."
5198 *
5199 * Also, the PIPE_CONTROL instruction table, bit 16 (Generic Media
5200 * State Clear) says:
5201 *
5202 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
5203 * programmed prior to programming a PIPECONTROL command with "Media
5204 * State Clear" set in GPGPU mode of operation"
5205 *
5206 * This is a subset of the earlier rule, so there's nothing to do.
5207 */
5208 flags |= PIPE_CONTROL_CS_STALL;
5209 }
5210
5211 if (flags & PIPE_CONTROL_STORE_DATA_INDEX) {
5212 /* Project: All / Argument: Store Data Index
5213 *
5214 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
5215 * than '0'."
5216 *
5217 * For now, we just assert that the caller does this. We might want to
5218 * automatically add a write to the workaround BO...
5219 */
5220 assert(non_lri_post_sync_flags != 0);
5221 }
5222
5223 if (flags & PIPE_CONTROL_SYNC_GFDT) {
5224 /* Project: All / Argument: Sync GFDT
5225 *
5226 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
5227 * than '0' or 0x2520[13] must be set."
5228 *
5229 * For now, we just assert that the caller does this.
5230 */
5231 assert(non_lri_post_sync_flags != 0);
5232 }
5233
5234 if (flags & PIPE_CONTROL_TLB_INVALIDATE) {
5235 /* Project: IVB+ / Argument: TLB inv
5236 *
5237 * "Requires stall bit ([20] of DW1) set."
5238 *
5239 * Also, from the PIPE_CONTROL instruction table:
5240 *
5241 * "Project: SKL+
5242 * Post Sync Operation or CS stall must be set to ensure a TLB
5243 * invalidation occurs. Otherwise no cycle will occur to the TLB
5244 * cache to invalidate."
5245 *
5246 * This is not a subset of the earlier rule, so there's nothing to do.
5247 */
5248 flags |= PIPE_CONTROL_CS_STALL;
5249 }
5250
5251 if (GEN_GEN == 9 && devinfo->gt == 4) {
5252 /* TODO: The big Skylake GT4 post sync op workaround */
5253 }
5254
5255 /* "GPGPU specific workarounds" (both post-sync and flush) ------------ */
5256
5257 if (IS_COMPUTE_PIPELINE(batch)) {
5258 if (GEN_GEN >= 9 && (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE)) {
5259 /* Project: SKL+ / Argument: Tex Invalidate
5260 * "Requires stall bit ([20] of DW) set for all GPGPU Workloads."
5261 */
5262 flags |= PIPE_CONTROL_CS_STALL;
5263 }
5264
5265 if (GEN_GEN == 8 && (post_sync_flags ||
5266 (flags & (PIPE_CONTROL_NOTIFY_ENABLE |
5267 PIPE_CONTROL_DEPTH_STALL |
5268 PIPE_CONTROL_RENDER_TARGET_FLUSH |
5269 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
5270 PIPE_CONTROL_DATA_CACHE_FLUSH)))) {
5271 /* Project: BDW / Arguments:
5272 *
5273 * - LRI Post Sync Operation [23]
5274 * - Post Sync Op [15:14]
5275 * - Notify En [8]
5276 * - Depth Stall [13]
5277 * - Render Target Cache Flush [12]
5278 * - Depth Cache Flush [0]
5279 * - DC Flush Enable [5]
5280 *
5281 * "Requires stall bit ([20] of DW) set for all GPGPU and Media
5282 * Workloads."
5283 */
5284 flags |= PIPE_CONTROL_CS_STALL;
5285
5286 /* Also, from the PIPE_CONTROL instruction table, bit 20:
5287 *
5288 * "Project: BDW
5289 * This bit must be always set when PIPE_CONTROL command is
5290 * programmed by GPGPU and MEDIA workloads, except for the cases
5291 * when only Read Only Cache Invalidation bits are set (State
5292 * Cache Invalidation Enable, Instruction cache Invalidation
5293 * Enable, Texture Cache Invalidation Enable, Constant Cache
5294 * Invalidation Enable). This is to WA FFDOP CG issue, this WA
5295 * need not implemented when FF_DOP_CG is disable via "Fixed
5296 * Function DOP Clock Gate Disable" bit in RC_PSMI_CTRL register."
5297 *
5298 * It sounds like we could avoid CS stalls in some cases, but we
5299 * don't currently bother. This list isn't exactly the list above,
5300 * either...
5301 */
5302 }
5303 }
5304
5305 /* "Stall" workarounds ----------------------------------------------
5306 * These have to come after the earlier ones because we may have added
5307 * some additional CS stalls above.
5308 */
5309
5310 if (GEN_GEN < 9 && (flags & PIPE_CONTROL_CS_STALL)) {
5311 /* Project: PRE-SKL, VLV, CHV
5312 *
5313 * "[All Stepping][All SKUs]:
5314 *
5315 * One of the following must also be set:
5316 *
5317 * - Render Target Cache Flush Enable ([12] of DW1)
5318 * - Depth Cache Flush Enable ([0] of DW1)
5319 * - Stall at Pixel Scoreboard ([1] of DW1)
5320 * - Depth Stall ([13] of DW1)
5321 * - Post-Sync Operation ([13] of DW1)
5322 * - DC Flush Enable ([5] of DW1)"
5323 *
5324 * If we don't already have one of those bits set, we choose to add
5325 * "Stall at Pixel Scoreboard". Some of the other bits require a
5326 * CS stall as a workaround (see above), which would send us into
5327 * an infinite recursion of PIPE_CONTROLs. "Stall at Pixel Scoreboard"
5328 * appears to be safe, so we choose that.
5329 */
5330 const uint32_t wa_bits = PIPE_CONTROL_RENDER_TARGET_FLUSH |
5331 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
5332 PIPE_CONTROL_WRITE_IMMEDIATE |
5333 PIPE_CONTROL_WRITE_DEPTH_COUNT |
5334 PIPE_CONTROL_WRITE_TIMESTAMP |
5335 PIPE_CONTROL_STALL_AT_SCOREBOARD |
5336 PIPE_CONTROL_DEPTH_STALL |
5337 PIPE_CONTROL_DATA_CACHE_FLUSH;
5338 if (!(flags & wa_bits))
5339 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
5340 }
5341
5342 /* Emit --------------------------------------------------------------- */
5343
5344 iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
5345 pc.LRIPostSyncOperation = NoLRIOperation;
5346 pc.PipeControlFlushEnable = flags & PIPE_CONTROL_FLUSH_ENABLE;
5347 pc.DCFlushEnable = flags & PIPE_CONTROL_DATA_CACHE_FLUSH;
5348 pc.StoreDataIndex = 0;
5349 pc.CommandStreamerStallEnable = flags & PIPE_CONTROL_CS_STALL;
5350 pc.GlobalSnapshotCountReset =
5351 flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET;
5352 pc.TLBInvalidate = flags & PIPE_CONTROL_TLB_INVALIDATE;
5353 pc.GenericMediaStateClear = flags & PIPE_CONTROL_MEDIA_STATE_CLEAR;
5354 pc.StallAtPixelScoreboard = flags & PIPE_CONTROL_STALL_AT_SCOREBOARD;
5355 pc.RenderTargetCacheFlushEnable =
5356 flags & PIPE_CONTROL_RENDER_TARGET_FLUSH;
5357 pc.DepthCacheFlushEnable = flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH;
5358 pc.StateCacheInvalidationEnable =
5359 flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE;
5360 pc.VFCacheInvalidationEnable = flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
5361 pc.ConstantCacheInvalidationEnable =
5362 flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE;
5363 pc.PostSyncOperation = flags_to_post_sync_op(flags);
5364 pc.DepthStallEnable = flags & PIPE_CONTROL_DEPTH_STALL;
5365 pc.InstructionCacheInvalidateEnable =
5366 flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE;
5367 pc.NotifyEnable = flags & PIPE_CONTROL_NOTIFY_ENABLE;
5368 pc.IndirectStatePointersDisable =
5369 flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE;
5370 pc.TextureCacheInvalidationEnable =
5371 flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
5372 pc.Address = rw_bo(bo, offset);
5373 pc.ImmediateData = imm;
5374 }
5375 }
5376
5377 void
5378 genX(init_state)(struct iris_context *ice)
5379 {
5380 struct pipe_context *ctx = &ice->ctx;
5381 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
5382
5383 ctx->create_blend_state = iris_create_blend_state;
5384 ctx->create_depth_stencil_alpha_state = iris_create_zsa_state;
5385 ctx->create_rasterizer_state = iris_create_rasterizer_state;
5386 ctx->create_sampler_state = iris_create_sampler_state;
5387 ctx->create_sampler_view = iris_create_sampler_view;
5388 ctx->create_surface = iris_create_surface;
5389 ctx->create_vertex_elements_state = iris_create_vertex_elements;
5390 ctx->bind_blend_state = iris_bind_blend_state;
5391 ctx->bind_depth_stencil_alpha_state = iris_bind_zsa_state;
5392 ctx->bind_sampler_states = iris_bind_sampler_states;
5393 ctx->bind_rasterizer_state = iris_bind_rasterizer_state;
5394 ctx->bind_vertex_elements_state = iris_bind_vertex_elements_state;
5395 ctx->delete_blend_state = iris_delete_state;
5396 ctx->delete_depth_stencil_alpha_state = iris_delete_state;
5397 ctx->delete_rasterizer_state = iris_delete_state;
5398 ctx->delete_sampler_state = iris_delete_state;
5399 ctx->delete_vertex_elements_state = iris_delete_state;
5400 ctx->set_blend_color = iris_set_blend_color;
5401 ctx->set_clip_state = iris_set_clip_state;
5402 ctx->set_constant_buffer = iris_set_constant_buffer;
5403 ctx->set_shader_buffers = iris_set_shader_buffers;
5404 ctx->set_shader_images = iris_set_shader_images;
5405 ctx->set_sampler_views = iris_set_sampler_views;
5406 ctx->set_tess_state = iris_set_tess_state;
5407 ctx->set_framebuffer_state = iris_set_framebuffer_state;
5408 ctx->set_polygon_stipple = iris_set_polygon_stipple;
5409 ctx->set_sample_mask = iris_set_sample_mask;
5410 ctx->set_scissor_states = iris_set_scissor_states;
5411 ctx->set_stencil_ref = iris_set_stencil_ref;
5412 ctx->set_vertex_buffers = iris_set_vertex_buffers;
5413 ctx->set_viewport_states = iris_set_viewport_states;
5414 ctx->sampler_view_destroy = iris_sampler_view_destroy;
5415 ctx->surface_destroy = iris_surface_destroy;
5416 ctx->draw_vbo = iris_draw_vbo;
5417 ctx->launch_grid = iris_launch_grid;
5418 ctx->create_stream_output_target = iris_create_stream_output_target;
5419 ctx->stream_output_target_destroy = iris_stream_output_target_destroy;
5420 ctx->set_stream_output_targets = iris_set_stream_output_targets;
5421
5422 ice->vtbl.destroy_state = iris_destroy_state;
5423 ice->vtbl.init_render_context = iris_init_render_context;
5424 ice->vtbl.init_compute_context = iris_init_compute_context;
5425 ice->vtbl.upload_render_state = iris_upload_render_state;
5426 ice->vtbl.update_surface_base_address = iris_update_surface_base_address;
5427 ice->vtbl.upload_compute_state = iris_upload_compute_state;
5428 ice->vtbl.emit_raw_pipe_control = iris_emit_raw_pipe_control;
5429 ice->vtbl.load_register_reg32 = iris_load_register_reg32;
5430 ice->vtbl.load_register_reg64 = iris_load_register_reg64;
5431 ice->vtbl.load_register_imm32 = iris_load_register_imm32;
5432 ice->vtbl.load_register_imm64 = iris_load_register_imm64;
5433 ice->vtbl.load_register_mem32 = iris_load_register_mem32;
5434 ice->vtbl.load_register_mem64 = iris_load_register_mem64;
5435 ice->vtbl.store_register_mem32 = iris_store_register_mem32;
5436 ice->vtbl.store_register_mem64 = iris_store_register_mem64;
5437 ice->vtbl.store_data_imm32 = iris_store_data_imm32;
5438 ice->vtbl.store_data_imm64 = iris_store_data_imm64;
5439 ice->vtbl.copy_mem_mem = iris_copy_mem_mem;
5440 ice->vtbl.derived_program_state_size = iris_derived_program_state_size;
5441 ice->vtbl.store_derived_program_state = iris_store_derived_program_state;
5442 ice->vtbl.create_so_decl_list = iris_create_so_decl_list;
5443 ice->vtbl.populate_vs_key = iris_populate_vs_key;
5444 ice->vtbl.populate_tcs_key = iris_populate_tcs_key;
5445 ice->vtbl.populate_tes_key = iris_populate_tes_key;
5446 ice->vtbl.populate_gs_key = iris_populate_gs_key;
5447 ice->vtbl.populate_fs_key = iris_populate_fs_key;
5448 ice->vtbl.populate_cs_key = iris_populate_cs_key;
5449
5450 ice->state.dirty = ~0ull;
5451
5452 ice->state.statistics_counters_enabled = true;
5453
5454 ice->state.sample_mask = 0xffff;
5455 ice->state.num_viewports = 1;
5456 ice->state.genx = calloc(1, sizeof(struct iris_genx_state));
5457
5458 /* Make a 1x1x1 null surface for unbound textures */
5459 void *null_surf_map =
5460 upload_state(ice->state.surface_uploader, &ice->state.unbound_tex,
5461 4 * GENX(RENDER_SURFACE_STATE_length), 64);
5462 isl_null_fill_state(&screen->isl_dev, null_surf_map, isl_extent3d(1, 1, 1));
5463 ice->state.unbound_tex.offset +=
5464 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.unbound_tex.res));
5465
5466 /* Default all scissor rectangles to be empty regions. */
5467 for (int i = 0; i < IRIS_MAX_VIEWPORTS; i++) {
5468 ice->state.scissors[i] = (struct pipe_scissor_state) {
5469 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
5470 };
5471 }
5472 }