iris: Use a surface state fill helper
[mesa.git] / src / gallium / drivers / iris / iris_state.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included
12 * in all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
21 */
22
23 /**
24 * @file iris_state.c
25 *
26 * ============================= GENXML CODE =============================
27 * [This file is compiled once per generation.]
28 * =======================================================================
29 *
30 * This is the main state upload code.
31 *
32 * Gallium uses Constant State Objects, or CSOs, for most state. Large,
33 * complex, or highly reusable state can be created once, and bound and
34 * rebound multiple times. This is modeled with the pipe->create_*_state()
35 * and pipe->bind_*_state() hooks. Highly dynamic or inexpensive state is
36 * streamed out on the fly, via pipe->set_*_state() hooks.
37 *
38 * OpenGL involves frequently mutating context state, which is mirrored in
39 * core Mesa by highly mutable data structures. However, most applications
40 * typically draw the same things over and over - from frame to frame, most
41 * of the same objects are still visible and need to be redrawn. So, rather
42 * than inventing new state all the time, applications usually mutate to swap
43 * between known states that we've seen before.
44 *
45 * Gallium isolates us from this mutation by tracking API state, and
46 * distilling it into a set of Constant State Objects, or CSOs. Large,
47 * complex, or typically reusable state can be created once, then reused
48 * multiple times. Drivers can create and store their own associated data.
49 * This create/bind model corresponds to the pipe->create_*_state() and
50 * pipe->bind_*_state() driver hooks.
51 *
52 * Some state is cheap to create, or expected to be highly dynamic. Rather
53 * than creating and caching piles of CSOs for these, Gallium simply streams
54 * them out, via the pipe->set_*_state() driver hooks.
55 *
56 * To reduce draw time overhead, we try to compute as much state at create
57 * time as possible. Wherever possible, we translate the Gallium pipe state
58 * to 3DSTATE commands, and store those commands in the CSO. At draw time,
59 * we can simply memcpy them into a batch buffer.
60 *
61 * No hardware matches the abstraction perfectly, so some commands require
62 * information from multiple CSOs. In this case, we can store two copies
63 * of the packet (one in each CSO), and simply | together their DWords at
64 * draw time. Sometimes the second set is trivial (one or two fields), so
65 * we simply pack it at draw time.
66 *
67 * There are two main components in the file below. First, the CSO hooks
68 * create/bind/track state. The second are the draw-time upload functions,
69 * iris_upload_render_state() and iris_upload_compute_state(), which read
70 * the context state and emit the commands into the actual batch.
71 */
72
73 #include <stdio.h>
74 #include <errno.h>
75
76 #if HAVE_VALGRIND
77 #include <valgrind.h>
78 #include <memcheck.h>
79 #define VG(x) x
80 #ifndef NDEBUG
81 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
82 #endif
83 #else
84 #define VG(x)
85 #endif
86
87 #include "pipe/p_defines.h"
88 #include "pipe/p_state.h"
89 #include "pipe/p_context.h"
90 #include "pipe/p_screen.h"
91 #include "util/u_inlines.h"
92 #include "util/u_format.h"
93 #include "util/u_framebuffer.h"
94 #include "util/u_transfer.h"
95 #include "util/u_upload_mgr.h"
96 #include "util/u_viewport.h"
97 #include "i915_drm.h"
98 #include "nir.h"
99 #include "intel/compiler/brw_compiler.h"
100 #include "intel/common/gen_l3_config.h"
101 #include "intel/common/gen_sample_positions.h"
102 #include "iris_batch.h"
103 #include "iris_context.h"
104 #include "iris_defines.h"
105 #include "iris_pipe.h"
106 #include "iris_resource.h"
107
108 #define __gen_address_type struct iris_address
109 #define __gen_user_data struct iris_batch
110
111 #define ARRAY_BYTES(x) (sizeof(uint32_t) * ARRAY_SIZE(x))
112
113 static uint64_t
114 __gen_combine_address(struct iris_batch *batch, void *location,
115 struct iris_address addr, uint32_t delta)
116 {
117 uint64_t result = addr.offset + delta;
118
119 if (addr.bo) {
120 iris_use_pinned_bo(batch, addr.bo, addr.write);
121 /* Assume this is a general address, not relative to a base. */
122 result += addr.bo->gtt_offset;
123 }
124
125 return result;
126 }
127
128 #define __genxml_cmd_length(cmd) cmd ## _length
129 #define __genxml_cmd_length_bias(cmd) cmd ## _length_bias
130 #define __genxml_cmd_header(cmd) cmd ## _header
131 #define __genxml_cmd_pack(cmd) cmd ## _pack
132
133 #define _iris_pack_command(batch, cmd, dst, name) \
134 for (struct cmd name = { __genxml_cmd_header(cmd) }, \
135 *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
136 ({ __genxml_cmd_pack(cmd)(batch, (void *)_dst, &name); \
137 _dst = NULL; \
138 }))
139
140 #define iris_pack_command(cmd, dst, name) \
141 _iris_pack_command(NULL, cmd, dst, name)
142
143 #define iris_pack_state(cmd, dst, name) \
144 for (struct cmd name = {}, \
145 *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
146 __genxml_cmd_pack(cmd)(NULL, (void *)_dst, &name), \
147 _dst = NULL)
148
149 #define iris_emit_cmd(batch, cmd, name) \
150 _iris_pack_command(batch, cmd, iris_get_command_space(batch, 4 * __genxml_cmd_length(cmd)), name)
151
152 #define iris_emit_merge(batch, dwords0, dwords1, num_dwords) \
153 do { \
154 uint32_t *dw = iris_get_command_space(batch, 4 * num_dwords); \
155 for (uint32_t i = 0; i < num_dwords; i++) \
156 dw[i] = (dwords0)[i] | (dwords1)[i]; \
157 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, num_dwords)); \
158 } while (0)
159
160 #include "genxml/genX_pack.h"
161 #include "genxml/gen_macros.h"
162 #include "genxml/genX_bits.h"
163
164 #define MOCS_WB (2 << 1)
165
166 /**
167 * Statically assert that PIPE_* enums match the hardware packets.
168 * (As long as they match, we don't need to translate them.)
169 */
170 UNUSED static void pipe_asserts()
171 {
172 #define PIPE_ASSERT(x) STATIC_ASSERT((int)x)
173
174 /* pipe_logicop happens to match the hardware. */
175 PIPE_ASSERT(PIPE_LOGICOP_CLEAR == LOGICOP_CLEAR);
176 PIPE_ASSERT(PIPE_LOGICOP_NOR == LOGICOP_NOR);
177 PIPE_ASSERT(PIPE_LOGICOP_AND_INVERTED == LOGICOP_AND_INVERTED);
178 PIPE_ASSERT(PIPE_LOGICOP_COPY_INVERTED == LOGICOP_COPY_INVERTED);
179 PIPE_ASSERT(PIPE_LOGICOP_AND_REVERSE == LOGICOP_AND_REVERSE);
180 PIPE_ASSERT(PIPE_LOGICOP_INVERT == LOGICOP_INVERT);
181 PIPE_ASSERT(PIPE_LOGICOP_XOR == LOGICOP_XOR);
182 PIPE_ASSERT(PIPE_LOGICOP_NAND == LOGICOP_NAND);
183 PIPE_ASSERT(PIPE_LOGICOP_AND == LOGICOP_AND);
184 PIPE_ASSERT(PIPE_LOGICOP_EQUIV == LOGICOP_EQUIV);
185 PIPE_ASSERT(PIPE_LOGICOP_NOOP == LOGICOP_NOOP);
186 PIPE_ASSERT(PIPE_LOGICOP_OR_INVERTED == LOGICOP_OR_INVERTED);
187 PIPE_ASSERT(PIPE_LOGICOP_COPY == LOGICOP_COPY);
188 PIPE_ASSERT(PIPE_LOGICOP_OR_REVERSE == LOGICOP_OR_REVERSE);
189 PIPE_ASSERT(PIPE_LOGICOP_OR == LOGICOP_OR);
190 PIPE_ASSERT(PIPE_LOGICOP_SET == LOGICOP_SET);
191
192 /* pipe_blend_func happens to match the hardware. */
193 PIPE_ASSERT(PIPE_BLENDFACTOR_ONE == BLENDFACTOR_ONE);
194 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_COLOR == BLENDFACTOR_SRC_COLOR);
195 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA == BLENDFACTOR_SRC_ALPHA);
196 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_ALPHA == BLENDFACTOR_DST_ALPHA);
197 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_COLOR == BLENDFACTOR_DST_COLOR);
198 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE == BLENDFACTOR_SRC_ALPHA_SATURATE);
199 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_COLOR == BLENDFACTOR_CONST_COLOR);
200 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_ALPHA == BLENDFACTOR_CONST_ALPHA);
201 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_COLOR == BLENDFACTOR_SRC1_COLOR);
202 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_ALPHA == BLENDFACTOR_SRC1_ALPHA);
203 PIPE_ASSERT(PIPE_BLENDFACTOR_ZERO == BLENDFACTOR_ZERO);
204 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_COLOR == BLENDFACTOR_INV_SRC_COLOR);
205 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_ALPHA == BLENDFACTOR_INV_SRC_ALPHA);
206 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_ALPHA == BLENDFACTOR_INV_DST_ALPHA);
207 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_COLOR == BLENDFACTOR_INV_DST_COLOR);
208 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_COLOR == BLENDFACTOR_INV_CONST_COLOR);
209 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_ALPHA == BLENDFACTOR_INV_CONST_ALPHA);
210 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_COLOR == BLENDFACTOR_INV_SRC1_COLOR);
211 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_ALPHA == BLENDFACTOR_INV_SRC1_ALPHA);
212
213 /* pipe_blend_func happens to match the hardware. */
214 PIPE_ASSERT(PIPE_BLEND_ADD == BLENDFUNCTION_ADD);
215 PIPE_ASSERT(PIPE_BLEND_SUBTRACT == BLENDFUNCTION_SUBTRACT);
216 PIPE_ASSERT(PIPE_BLEND_REVERSE_SUBTRACT == BLENDFUNCTION_REVERSE_SUBTRACT);
217 PIPE_ASSERT(PIPE_BLEND_MIN == BLENDFUNCTION_MIN);
218 PIPE_ASSERT(PIPE_BLEND_MAX == BLENDFUNCTION_MAX);
219
220 /* pipe_stencil_op happens to match the hardware. */
221 PIPE_ASSERT(PIPE_STENCIL_OP_KEEP == STENCILOP_KEEP);
222 PIPE_ASSERT(PIPE_STENCIL_OP_ZERO == STENCILOP_ZERO);
223 PIPE_ASSERT(PIPE_STENCIL_OP_REPLACE == STENCILOP_REPLACE);
224 PIPE_ASSERT(PIPE_STENCIL_OP_INCR == STENCILOP_INCRSAT);
225 PIPE_ASSERT(PIPE_STENCIL_OP_DECR == STENCILOP_DECRSAT);
226 PIPE_ASSERT(PIPE_STENCIL_OP_INCR_WRAP == STENCILOP_INCR);
227 PIPE_ASSERT(PIPE_STENCIL_OP_DECR_WRAP == STENCILOP_DECR);
228 PIPE_ASSERT(PIPE_STENCIL_OP_INVERT == STENCILOP_INVERT);
229
230 /* pipe_sprite_coord_mode happens to match 3DSTATE_SBE */
231 PIPE_ASSERT(PIPE_SPRITE_COORD_UPPER_LEFT == UPPERLEFT);
232 PIPE_ASSERT(PIPE_SPRITE_COORD_LOWER_LEFT == LOWERLEFT);
233 #undef PIPE_ASSERT
234 }
235
236 static unsigned
237 translate_prim_type(enum pipe_prim_type prim, uint8_t verts_per_patch)
238 {
239 static const unsigned map[] = {
240 [PIPE_PRIM_POINTS] = _3DPRIM_POINTLIST,
241 [PIPE_PRIM_LINES] = _3DPRIM_LINELIST,
242 [PIPE_PRIM_LINE_LOOP] = _3DPRIM_LINELOOP,
243 [PIPE_PRIM_LINE_STRIP] = _3DPRIM_LINESTRIP,
244 [PIPE_PRIM_TRIANGLES] = _3DPRIM_TRILIST,
245 [PIPE_PRIM_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
246 [PIPE_PRIM_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
247 [PIPE_PRIM_QUADS] = _3DPRIM_QUADLIST,
248 [PIPE_PRIM_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
249 [PIPE_PRIM_POLYGON] = _3DPRIM_POLYGON,
250 [PIPE_PRIM_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
251 [PIPE_PRIM_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
252 [PIPE_PRIM_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
253 [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
254 [PIPE_PRIM_PATCHES] = _3DPRIM_PATCHLIST_1 - 1,
255 };
256
257 return map[prim] + (prim == PIPE_PRIM_PATCHES ? verts_per_patch : 0);
258 }
259
260 static unsigned
261 translate_compare_func(enum pipe_compare_func pipe_func)
262 {
263 static const unsigned map[] = {
264 [PIPE_FUNC_NEVER] = COMPAREFUNCTION_NEVER,
265 [PIPE_FUNC_LESS] = COMPAREFUNCTION_LESS,
266 [PIPE_FUNC_EQUAL] = COMPAREFUNCTION_EQUAL,
267 [PIPE_FUNC_LEQUAL] = COMPAREFUNCTION_LEQUAL,
268 [PIPE_FUNC_GREATER] = COMPAREFUNCTION_GREATER,
269 [PIPE_FUNC_NOTEQUAL] = COMPAREFUNCTION_NOTEQUAL,
270 [PIPE_FUNC_GEQUAL] = COMPAREFUNCTION_GEQUAL,
271 [PIPE_FUNC_ALWAYS] = COMPAREFUNCTION_ALWAYS,
272 };
273 return map[pipe_func];
274 }
275
276 static unsigned
277 translate_shadow_func(enum pipe_compare_func pipe_func)
278 {
279 /* Gallium specifies the result of shadow comparisons as:
280 *
281 * 1 if ref <op> texel,
282 * 0 otherwise.
283 *
284 * The hardware does:
285 *
286 * 0 if texel <op> ref,
287 * 1 otherwise.
288 *
289 * So we need to flip the operator and also negate.
290 */
291 static const unsigned map[] = {
292 [PIPE_FUNC_NEVER] = PREFILTEROPALWAYS,
293 [PIPE_FUNC_LESS] = PREFILTEROPLEQUAL,
294 [PIPE_FUNC_EQUAL] = PREFILTEROPNOTEQUAL,
295 [PIPE_FUNC_LEQUAL] = PREFILTEROPLESS,
296 [PIPE_FUNC_GREATER] = PREFILTEROPGEQUAL,
297 [PIPE_FUNC_NOTEQUAL] = PREFILTEROPEQUAL,
298 [PIPE_FUNC_GEQUAL] = PREFILTEROPGREATER,
299 [PIPE_FUNC_ALWAYS] = PREFILTEROPNEVER,
300 };
301 return map[pipe_func];
302 }
303
304 static unsigned
305 translate_cull_mode(unsigned pipe_face)
306 {
307 static const unsigned map[4] = {
308 [PIPE_FACE_NONE] = CULLMODE_NONE,
309 [PIPE_FACE_FRONT] = CULLMODE_FRONT,
310 [PIPE_FACE_BACK] = CULLMODE_BACK,
311 [PIPE_FACE_FRONT_AND_BACK] = CULLMODE_BOTH,
312 };
313 return map[pipe_face];
314 }
315
316 static unsigned
317 translate_fill_mode(unsigned pipe_polymode)
318 {
319 static const unsigned map[4] = {
320 [PIPE_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
321 [PIPE_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
322 [PIPE_POLYGON_MODE_POINT] = FILL_MODE_POINT,
323 [PIPE_POLYGON_MODE_FILL_RECTANGLE] = FILL_MODE_SOLID,
324 };
325 return map[pipe_polymode];
326 }
327
328 static unsigned
329 translate_mip_filter(enum pipe_tex_mipfilter pipe_mip)
330 {
331 static const unsigned map[] = {
332 [PIPE_TEX_MIPFILTER_NEAREST] = MIPFILTER_NEAREST,
333 [PIPE_TEX_MIPFILTER_LINEAR] = MIPFILTER_LINEAR,
334 [PIPE_TEX_MIPFILTER_NONE] = MIPFILTER_NONE,
335 };
336 return map[pipe_mip];
337 }
338
339 static uint32_t
340 translate_wrap(unsigned pipe_wrap)
341 {
342 static const unsigned map[] = {
343 [PIPE_TEX_WRAP_REPEAT] = TCM_WRAP,
344 [PIPE_TEX_WRAP_CLAMP] = TCM_HALF_BORDER,
345 [PIPE_TEX_WRAP_CLAMP_TO_EDGE] = TCM_CLAMP,
346 [PIPE_TEX_WRAP_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER,
347 [PIPE_TEX_WRAP_MIRROR_REPEAT] = TCM_MIRROR,
348 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE,
349
350 /* These are unsupported. */
351 [PIPE_TEX_WRAP_MIRROR_CLAMP] = -1,
352 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER] = -1,
353 };
354 return map[pipe_wrap];
355 }
356
357 static struct iris_address
358 ro_bo(struct iris_bo *bo, uint64_t offset)
359 {
360 /* CSOs must pass NULL for bo! Otherwise it will add the BO to the
361 * validation list at CSO creation time, instead of draw time.
362 */
363 return (struct iris_address) { .bo = bo, .offset = offset };
364 }
365
366 static struct iris_address
367 rw_bo(struct iris_bo *bo, uint64_t offset)
368 {
369 /* CSOs must pass NULL for bo! Otherwise it will add the BO to the
370 * validation list at CSO creation time, instead of draw time.
371 */
372 return (struct iris_address) { .bo = bo, .offset = offset, .write = true };
373 }
374
375 /**
376 * Allocate space for some indirect state.
377 *
378 * Return a pointer to the map (to fill it out) and a state ref (for
379 * referring to the state in GPU commands).
380 */
381 static void *
382 upload_state(struct u_upload_mgr *uploader,
383 struct iris_state_ref *ref,
384 unsigned size,
385 unsigned alignment)
386 {
387 void *p = NULL;
388 u_upload_alloc(uploader, 0, size, alignment, &ref->offset, &ref->res, &p);
389 return p;
390 }
391
392 /**
393 * Stream out temporary/short-lived state.
394 *
395 * This allocates space, pins the BO, and includes the BO address in the
396 * returned offset (which works because all state lives in 32-bit memory
397 * zones).
398 */
399 static uint32_t *
400 stream_state(struct iris_batch *batch,
401 struct u_upload_mgr *uploader,
402 struct pipe_resource **out_res,
403 unsigned size,
404 unsigned alignment,
405 uint32_t *out_offset)
406 {
407 void *ptr = NULL;
408
409 u_upload_alloc(uploader, 0, size, alignment, out_offset, out_res, &ptr);
410
411 struct iris_bo *bo = iris_resource_bo(*out_res);
412 iris_use_pinned_bo(batch, bo, false);
413
414 *out_offset += iris_bo_offset_from_base_address(bo);
415
416 return ptr;
417 }
418
419 /**
420 * stream_state() + memcpy.
421 */
422 static uint32_t
423 emit_state(struct iris_batch *batch,
424 struct u_upload_mgr *uploader,
425 struct pipe_resource **out_res,
426 const void *data,
427 unsigned size,
428 unsigned alignment)
429 {
430 unsigned offset = 0;
431 uint32_t *map =
432 stream_state(batch, uploader, out_res, size, alignment, &offset);
433
434 if (map)
435 memcpy(map, data, size);
436
437 return offset;
438 }
439
440 /**
441 * Did field 'x' change between 'old_cso' and 'new_cso'?
442 *
443 * (If so, we may want to set some dirty flags.)
444 */
445 #define cso_changed(x) (!old_cso || (old_cso->x != new_cso->x))
446 #define cso_changed_memcmp(x) \
447 (!old_cso || memcmp(old_cso->x, new_cso->x, sizeof(old_cso->x)) != 0)
448
449 static void
450 flush_for_state_base_change(struct iris_batch *batch)
451 {
452 /* Flush before emitting STATE_BASE_ADDRESS.
453 *
454 * This isn't documented anywhere in the PRM. However, it seems to be
455 * necessary prior to changing the surface state base adress. We've
456 * seen issues in Vulkan where we get GPU hangs when using multi-level
457 * command buffers which clear depth, reset state base address, and then
458 * go render stuff.
459 *
460 * Normally, in GL, we would trust the kernel to do sufficient stalls
461 * and flushes prior to executing our batch. However, it doesn't seem
462 * as if the kernel's flushing is always sufficient and we don't want to
463 * rely on it.
464 *
465 * We make this an end-of-pipe sync instead of a normal flush because we
466 * do not know the current status of the GPU. On Haswell at least,
467 * having a fast-clear operation in flight at the same time as a normal
468 * rendering operation can cause hangs. Since the kernel's flushing is
469 * insufficient, we need to ensure that any rendering operations from
470 * other processes are definitely complete before we try to do our own
471 * rendering. It's a bit of a big hammer but it appears to work.
472 */
473 iris_emit_end_of_pipe_sync(batch,
474 PIPE_CONTROL_RENDER_TARGET_FLUSH |
475 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
476 PIPE_CONTROL_DATA_CACHE_FLUSH);
477 }
478
479 static void
480 _iris_emit_lri(struct iris_batch *batch, uint32_t reg, uint32_t val)
481 {
482 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
483 lri.RegisterOffset = reg;
484 lri.DataDWord = val;
485 }
486 }
487 #define iris_emit_lri(b, r, v) _iris_emit_lri(b, GENX(r##_num), v)
488
489 static void
490 _iris_emit_lrr(struct iris_batch *batch, uint32_t dst, uint32_t src)
491 {
492 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
493 lrr.SourceRegisterAddress = src;
494 lrr.DestinationRegisterAddress = dst;
495 }
496 }
497
498 static void
499 emit_pipeline_select(struct iris_batch *batch, uint32_t pipeline)
500 {
501 #if GEN_GEN >= 8 && GEN_GEN < 10
502 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
503 *
504 * Software must clear the COLOR_CALC_STATE Valid field in
505 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
506 * with Pipeline Select set to GPGPU.
507 *
508 * The internal hardware docs recommend the same workaround for Gen9
509 * hardware too.
510 */
511 if (pipeline == GPGPU)
512 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
513 #endif
514
515
516 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
517 * PIPELINE_SELECT [DevBWR+]":
518 *
519 * "Project: DEVSNB+
520 *
521 * Software must ensure all the write caches are flushed through a
522 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
523 * command to invalidate read only caches prior to programming
524 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode."
525 */
526 iris_emit_pipe_control_flush(batch,
527 PIPE_CONTROL_RENDER_TARGET_FLUSH |
528 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
529 PIPE_CONTROL_DATA_CACHE_FLUSH |
530 PIPE_CONTROL_CS_STALL);
531
532 iris_emit_pipe_control_flush(batch,
533 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
534 PIPE_CONTROL_CONST_CACHE_INVALIDATE |
535 PIPE_CONTROL_STATE_CACHE_INVALIDATE |
536 PIPE_CONTROL_INSTRUCTION_INVALIDATE);
537
538 iris_emit_cmd(batch, GENX(PIPELINE_SELECT), sel) {
539 #if GEN_GEN >= 9
540 sel.MaskBits = 3;
541 #endif
542 sel.PipelineSelection = pipeline;
543 }
544 }
545
546 UNUSED static void
547 init_glk_barrier_mode(struct iris_batch *batch, uint32_t value)
548 {
549 #if GEN_GEN == 9
550 /* Project: DevGLK
551 *
552 * "This chicken bit works around a hardware issue with barrier
553 * logic encountered when switching between GPGPU and 3D pipelines.
554 * To workaround the issue, this mode bit should be set after a
555 * pipeline is selected."
556 */
557 uint32_t reg_val;
558 iris_pack_state(GENX(SLICE_COMMON_ECO_CHICKEN1), &reg_val, reg) {
559 reg.GLKBarrierMode = value;
560 reg.GLKBarrierModeMask = 1;
561 }
562 iris_emit_lri(batch, SLICE_COMMON_ECO_CHICKEN1, reg_val);
563 #endif
564 }
565
566 static void
567 init_state_base_address(struct iris_batch *batch)
568 {
569 flush_for_state_base_change(batch);
570
571 /* We program most base addresses once at context initialization time.
572 * Each base address points at a 4GB memory zone, and never needs to
573 * change. See iris_bufmgr.h for a description of the memory zones.
574 *
575 * The one exception is Surface State Base Address, which needs to be
576 * updated occasionally. See iris_binder.c for the details there.
577 */
578 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
579 #if 0
580 // XXX: MOCS is stupid for this.
581 sba.GeneralStateMemoryObjectControlState = MOCS_WB;
582 sba.StatelessDataPortAccessMemoryObjectControlState = MOCS_WB;
583 sba.DynamicStateMemoryObjectControlState = MOCS_WB;
584 sba.IndirectObjectMemoryObjectControlState = MOCS_WB;
585 sba.InstructionMemoryObjectControlState = MOCS_WB;
586 sba.BindlessSurfaceStateMemoryObjectControlState = MOCS_WB;
587 #endif
588
589 sba.GeneralStateBaseAddressModifyEnable = true;
590 sba.DynamicStateBaseAddressModifyEnable = true;
591 sba.IndirectObjectBaseAddressModifyEnable = true;
592 sba.InstructionBaseAddressModifyEnable = true;
593 sba.GeneralStateBufferSizeModifyEnable = true;
594 sba.DynamicStateBufferSizeModifyEnable = true;
595 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
596 sba.IndirectObjectBufferSizeModifyEnable = true;
597 sba.InstructionBuffersizeModifyEnable = true;
598
599 sba.InstructionBaseAddress = ro_bo(NULL, IRIS_MEMZONE_SHADER_START);
600 sba.DynamicStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_DYNAMIC_START);
601
602 sba.GeneralStateBufferSize = 0xfffff;
603 sba.IndirectObjectBufferSize = 0xfffff;
604 sba.InstructionBufferSize = 0xfffff;
605 sba.DynamicStateBufferSize = 0xfffff;
606 }
607 }
608
609 /**
610 * Upload the initial GPU state for a render context.
611 *
612 * This sets some invariant state that needs to be programmed a particular
613 * way, but we never actually change.
614 */
615 static void
616 iris_init_render_context(struct iris_screen *screen,
617 struct iris_batch *batch,
618 struct iris_vtable *vtbl,
619 struct pipe_debug_callback *dbg)
620 {
621 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
622 uint32_t reg_val;
623
624 emit_pipeline_select(batch, _3D);
625
626 init_state_base_address(batch);
627
628 // XXX: INSTPM on Gen8
629 iris_pack_state(GENX(CS_DEBUG_MODE2), &reg_val, reg) {
630 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
631 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
632 }
633 iris_emit_lri(batch, CS_DEBUG_MODE2, reg_val);
634
635 #if GEN_GEN == 9
636 iris_pack_state(GENX(CACHE_MODE_1), &reg_val, reg) {
637 reg.FloatBlendOptimizationEnable = true;
638 reg.FloatBlendOptimizationEnableMask = true;
639 reg.PartialResolveDisableInVC = true;
640 reg.PartialResolveDisableInVCMask = true;
641 }
642 iris_emit_lri(batch, CACHE_MODE_1, reg_val);
643
644 if (devinfo->is_geminilake)
645 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_3D_HULL);
646 #endif
647
648 #if GEN_GEN == 11
649 iris_pack_state(GENX(SAMPLER_MODE), &reg_val, reg) {
650 reg.HeaderlessMessageforPreemptableContexts = 1;
651 reg.HeaderlessMessageforPreemptableContextsMask = 1;
652 }
653 iris_emit_lri(batch, SAMPLER_MODE, reg_val);
654
655 // XXX: 3D_MODE?
656 #endif
657
658 /* 3DSTATE_DRAWING_RECTANGLE is non-pipelined, so we want to avoid
659 * changing it dynamically. We set it to the maximum size here, and
660 * instead include the render target dimensions in the viewport, so
661 * viewport extents clipping takes care of pruning stray geometry.
662 */
663 iris_emit_cmd(batch, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
664 rect.ClippedDrawingRectangleXMax = UINT16_MAX;
665 rect.ClippedDrawingRectangleYMax = UINT16_MAX;
666 }
667
668 /* Set the initial MSAA sample positions. */
669 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_PATTERN), pat) {
670 GEN_SAMPLE_POS_1X(pat._1xSample);
671 GEN_SAMPLE_POS_2X(pat._2xSample);
672 GEN_SAMPLE_POS_4X(pat._4xSample);
673 GEN_SAMPLE_POS_8X(pat._8xSample);
674 GEN_SAMPLE_POS_16X(pat._16xSample);
675 }
676
677 /* Use the legacy AA line coverage computation. */
678 iris_emit_cmd(batch, GENX(3DSTATE_AA_LINE_PARAMETERS), foo);
679
680 /* Disable chromakeying (it's for media) */
681 iris_emit_cmd(batch, GENX(3DSTATE_WM_CHROMAKEY), foo);
682
683 /* We want regular rendering, not special HiZ operations. */
684 iris_emit_cmd(batch, GENX(3DSTATE_WM_HZ_OP), foo);
685
686 /* No polygon stippling offsets are necessary. */
687 // XXX: may need to set an offset for origin-UL framebuffers
688 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_OFFSET), foo);
689
690 /* Set a static partitioning of the push constant area. */
691 // XXX: this may be a bad idea...could starve the push ringbuffers...
692 for (int i = 0; i <= MESA_SHADER_FRAGMENT; i++) {
693 iris_emit_cmd(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
694 alloc._3DCommandSubOpcode = 18 + i;
695 alloc.ConstantBufferOffset = 6 * i;
696 alloc.ConstantBufferSize = i == MESA_SHADER_FRAGMENT ? 8 : 6;
697 }
698 }
699 }
700
701 static void
702 iris_init_compute_context(struct iris_screen *screen,
703 struct iris_batch *batch,
704 struct iris_vtable *vtbl,
705 struct pipe_debug_callback *dbg)
706 {
707 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
708
709 emit_pipeline_select(batch, GPGPU);
710
711 const bool has_slm = true;
712 const bool wants_dc_cache = true;
713
714 const struct gen_l3_weights w =
715 gen_get_default_l3_weights(devinfo, wants_dc_cache, has_slm);
716 const struct gen_l3_config *cfg = gen_get_l3_config(devinfo, w);
717
718 uint32_t reg_val;
719 iris_pack_state(GENX(L3CNTLREG), &reg_val, reg) {
720 reg.SLMEnable = has_slm;
721 #if GEN_GEN == 11
722 /* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set
723 * in L3CNTLREG register. The default setting of the bit is not the
724 * desirable behavior.
725 */
726 reg.ErrorDetectionBehaviorControl = true;
727 #endif
728 reg.URBAllocation = cfg->n[GEN_L3P_URB];
729 reg.ROAllocation = cfg->n[GEN_L3P_RO];
730 reg.DCAllocation = cfg->n[GEN_L3P_DC];
731 reg.AllAllocation = cfg->n[GEN_L3P_ALL];
732 }
733 iris_emit_lri(batch, L3CNTLREG, reg_val);
734
735 init_state_base_address(batch);
736
737 #if GEN_GEN == 9
738 if (devinfo->is_geminilake)
739 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_GPGPU);
740 #endif
741 }
742
743 struct iris_vertex_buffer_state {
744 /** The VERTEX_BUFFER_STATE hardware structure. */
745 uint32_t state[GENX(VERTEX_BUFFER_STATE_length)];
746
747 /** The resource to source vertex data from. */
748 struct pipe_resource *resource;
749 };
750
751 struct iris_depth_buffer_state {
752 /* Depth/HiZ/Stencil related hardware packets. */
753 uint32_t packets[GENX(3DSTATE_DEPTH_BUFFER_length) +
754 GENX(3DSTATE_STENCIL_BUFFER_length) +
755 GENX(3DSTATE_HIER_DEPTH_BUFFER_length) +
756 GENX(3DSTATE_CLEAR_PARAMS_length)];
757 };
758
759 /**
760 * Generation-specific context state (ice->state.genx->...).
761 *
762 * Most state can go in iris_context directly, but these encode hardware
763 * packets which vary by generation.
764 */
765 struct iris_genx_state {
766 struct iris_vertex_buffer_state vertex_buffers[33];
767
768 /** The number of bound vertex buffers. */
769 uint64_t bound_vertex_buffers;
770
771 struct iris_depth_buffer_state depth_buffer;
772
773 uint32_t so_buffers[4 * GENX(3DSTATE_SO_BUFFER_length)];
774 };
775
776 /**
777 * The pipe->set_blend_color() driver hook.
778 *
779 * This corresponds to our COLOR_CALC_STATE.
780 */
781 static void
782 iris_set_blend_color(struct pipe_context *ctx,
783 const struct pipe_blend_color *state)
784 {
785 struct iris_context *ice = (struct iris_context *) ctx;
786
787 /* Our COLOR_CALC_STATE is exactly pipe_blend_color, so just memcpy */
788 memcpy(&ice->state.blend_color, state, sizeof(struct pipe_blend_color));
789 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
790 }
791
792 /**
793 * Gallium CSO for blend state (see pipe_blend_state).
794 */
795 struct iris_blend_state {
796 /** Partial 3DSTATE_PS_BLEND */
797 uint32_t ps_blend[GENX(3DSTATE_PS_BLEND_length)];
798
799 /** Partial BLEND_STATE */
800 uint32_t blend_state[GENX(BLEND_STATE_length) +
801 BRW_MAX_DRAW_BUFFERS * GENX(BLEND_STATE_ENTRY_length)];
802
803 bool alpha_to_coverage; /* for shader key */
804 };
805
806 static enum pipe_blendfactor
807 fix_blendfactor(enum pipe_blendfactor f, bool alpha_to_one)
808 {
809 if (alpha_to_one) {
810 if (f == PIPE_BLENDFACTOR_SRC1_ALPHA)
811 return PIPE_BLENDFACTOR_ONE;
812
813 if (f == PIPE_BLENDFACTOR_INV_SRC1_ALPHA)
814 return PIPE_BLENDFACTOR_ZERO;
815 }
816
817 return f;
818 }
819
820 /**
821 * The pipe->create_blend_state() driver hook.
822 *
823 * Translates a pipe_blend_state into iris_blend_state.
824 */
825 static void *
826 iris_create_blend_state(struct pipe_context *ctx,
827 const struct pipe_blend_state *state)
828 {
829 struct iris_blend_state *cso = malloc(sizeof(struct iris_blend_state));
830 uint32_t *blend_entry = cso->blend_state + GENX(BLEND_STATE_length);
831
832 cso->alpha_to_coverage = state->alpha_to_coverage;
833
834 bool indep_alpha_blend = false;
835
836 for (int i = 0; i < BRW_MAX_DRAW_BUFFERS; i++) {
837 const struct pipe_rt_blend_state *rt =
838 &state->rt[state->independent_blend_enable ? i : 0];
839
840 enum pipe_blendfactor src_rgb =
841 fix_blendfactor(rt->rgb_src_factor, state->alpha_to_one);
842 enum pipe_blendfactor src_alpha =
843 fix_blendfactor(rt->alpha_src_factor, state->alpha_to_one);
844 enum pipe_blendfactor dst_rgb =
845 fix_blendfactor(rt->rgb_dst_factor, state->alpha_to_one);
846 enum pipe_blendfactor dst_alpha =
847 fix_blendfactor(rt->alpha_dst_factor, state->alpha_to_one);
848
849 if (rt->rgb_func != rt->alpha_func ||
850 src_rgb != src_alpha || dst_rgb != dst_alpha)
851 indep_alpha_blend = true;
852
853 iris_pack_state(GENX(BLEND_STATE_ENTRY), blend_entry, be) {
854 be.LogicOpEnable = state->logicop_enable;
855 be.LogicOpFunction = state->logicop_func;
856
857 be.PreBlendSourceOnlyClampEnable = false;
858 be.ColorClampRange = COLORCLAMP_RTFORMAT;
859 be.PreBlendColorClampEnable = true;
860 be.PostBlendColorClampEnable = true;
861
862 be.ColorBufferBlendEnable = rt->blend_enable;
863
864 be.ColorBlendFunction = rt->rgb_func;
865 be.AlphaBlendFunction = rt->alpha_func;
866 be.SourceBlendFactor = src_rgb;
867 be.SourceAlphaBlendFactor = src_alpha;
868 be.DestinationBlendFactor = dst_rgb;
869 be.DestinationAlphaBlendFactor = dst_alpha;
870
871 be.WriteDisableRed = !(rt->colormask & PIPE_MASK_R);
872 be.WriteDisableGreen = !(rt->colormask & PIPE_MASK_G);
873 be.WriteDisableBlue = !(rt->colormask & PIPE_MASK_B);
874 be.WriteDisableAlpha = !(rt->colormask & PIPE_MASK_A);
875 }
876 blend_entry += GENX(BLEND_STATE_ENTRY_length);
877 }
878
879 iris_pack_command(GENX(3DSTATE_PS_BLEND), cso->ps_blend, pb) {
880 /* pb.HasWriteableRT is filled in at draw time. */
881 /* pb.AlphaTestEnable is filled in at draw time. */
882 pb.AlphaToCoverageEnable = state->alpha_to_coverage;
883 pb.IndependentAlphaBlendEnable = indep_alpha_blend;
884
885 pb.ColorBufferBlendEnable = state->rt[0].blend_enable;
886
887 pb.SourceBlendFactor =
888 fix_blendfactor(state->rt[0].rgb_src_factor, state->alpha_to_one);
889 pb.SourceAlphaBlendFactor =
890 fix_blendfactor(state->rt[0].alpha_src_factor, state->alpha_to_one);
891 pb.DestinationBlendFactor =
892 fix_blendfactor(state->rt[0].rgb_dst_factor, state->alpha_to_one);
893 pb.DestinationAlphaBlendFactor =
894 fix_blendfactor(state->rt[0].alpha_dst_factor, state->alpha_to_one);
895 }
896
897 iris_pack_state(GENX(BLEND_STATE), cso->blend_state, bs) {
898 bs.AlphaToCoverageEnable = state->alpha_to_coverage;
899 bs.IndependentAlphaBlendEnable = indep_alpha_blend;
900 bs.AlphaToOneEnable = state->alpha_to_one;
901 bs.AlphaToCoverageDitherEnable = state->alpha_to_coverage;
902 bs.ColorDitherEnable = state->dither;
903 /* bl.AlphaTestEnable and bs.AlphaTestFunction are filled in later. */
904 }
905
906
907 return cso;
908 }
909
910 /**
911 * The pipe->bind_blend_state() driver hook.
912 *
913 * Bind a blending CSO and flag related dirty bits.
914 */
915 static void
916 iris_bind_blend_state(struct pipe_context *ctx, void *state)
917 {
918 struct iris_context *ice = (struct iris_context *) ctx;
919 ice->state.cso_blend = state;
920 ice->state.dirty |= IRIS_DIRTY_PS_BLEND;
921 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
922 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_BLEND];
923 }
924
925 /**
926 * Gallium CSO for depth, stencil, and alpha testing state.
927 */
928 struct iris_depth_stencil_alpha_state {
929 /** Partial 3DSTATE_WM_DEPTH_STENCIL. */
930 uint32_t wmds[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
931
932 /** Outbound to BLEND_STATE, 3DSTATE_PS_BLEND, COLOR_CALC_STATE. */
933 struct pipe_alpha_state alpha;
934
935 /** Outbound to resolve and cache set tracking. */
936 bool depth_writes_enabled;
937 bool stencil_writes_enabled;
938 };
939
940 /**
941 * The pipe->create_depth_stencil_alpha_state() driver hook.
942 *
943 * We encode most of 3DSTATE_WM_DEPTH_STENCIL, and just save off the alpha
944 * testing state since we need pieces of it in a variety of places.
945 */
946 static void *
947 iris_create_zsa_state(struct pipe_context *ctx,
948 const struct pipe_depth_stencil_alpha_state *state)
949 {
950 struct iris_depth_stencil_alpha_state *cso =
951 malloc(sizeof(struct iris_depth_stencil_alpha_state));
952
953 bool two_sided_stencil = state->stencil[1].enabled;
954
955 cso->alpha = state->alpha;
956 cso->depth_writes_enabled = state->depth.writemask;
957 cso->stencil_writes_enabled =
958 state->stencil[0].writemask != 0 ||
959 (two_sided_stencil && state->stencil[1].writemask != 1);
960
961 /* The state tracker needs to optimize away EQUAL writes for us. */
962 assert(!(state->depth.func == PIPE_FUNC_EQUAL && state->depth.writemask));
963
964 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), cso->wmds, wmds) {
965 wmds.StencilFailOp = state->stencil[0].fail_op;
966 wmds.StencilPassDepthFailOp = state->stencil[0].zfail_op;
967 wmds.StencilPassDepthPassOp = state->stencil[0].zpass_op;
968 wmds.StencilTestFunction =
969 translate_compare_func(state->stencil[0].func);
970 wmds.BackfaceStencilFailOp = state->stencil[1].fail_op;
971 wmds.BackfaceStencilPassDepthFailOp = state->stencil[1].zfail_op;
972 wmds.BackfaceStencilPassDepthPassOp = state->stencil[1].zpass_op;
973 wmds.BackfaceStencilTestFunction =
974 translate_compare_func(state->stencil[1].func);
975 wmds.DepthTestFunction = translate_compare_func(state->depth.func);
976 wmds.DoubleSidedStencilEnable = two_sided_stencil;
977 wmds.StencilTestEnable = state->stencil[0].enabled;
978 wmds.StencilBufferWriteEnable =
979 state->stencil[0].writemask != 0 ||
980 (two_sided_stencil && state->stencil[1].writemask != 0);
981 wmds.DepthTestEnable = state->depth.enabled;
982 wmds.DepthBufferWriteEnable = state->depth.writemask;
983 wmds.StencilTestMask = state->stencil[0].valuemask;
984 wmds.StencilWriteMask = state->stencil[0].writemask;
985 wmds.BackfaceStencilTestMask = state->stencil[1].valuemask;
986 wmds.BackfaceStencilWriteMask = state->stencil[1].writemask;
987 /* wmds.[Backface]StencilReferenceValue are merged later */
988 }
989
990 return cso;
991 }
992
993 /**
994 * The pipe->bind_depth_stencil_alpha_state() driver hook.
995 *
996 * Bind a depth/stencil/alpha CSO and flag related dirty bits.
997 */
998 static void
999 iris_bind_zsa_state(struct pipe_context *ctx, void *state)
1000 {
1001 struct iris_context *ice = (struct iris_context *) ctx;
1002 struct iris_depth_stencil_alpha_state *old_cso = ice->state.cso_zsa;
1003 struct iris_depth_stencil_alpha_state *new_cso = state;
1004
1005 if (new_cso) {
1006 if (cso_changed(alpha.ref_value))
1007 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
1008
1009 if (cso_changed(alpha.enabled))
1010 ice->state.dirty |= IRIS_DIRTY_PS_BLEND | IRIS_DIRTY_BLEND_STATE;
1011
1012 if (cso_changed(alpha.func))
1013 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1014
1015 ice->state.depth_writes_enabled = new_cso->depth_writes_enabled;
1016 ice->state.stencil_writes_enabled = new_cso->stencil_writes_enabled;
1017 }
1018
1019 ice->state.cso_zsa = new_cso;
1020 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1021 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
1022 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_DEPTH_STENCIL_ALPHA];
1023 }
1024
1025 /**
1026 * Gallium CSO for rasterizer state.
1027 */
1028 struct iris_rasterizer_state {
1029 uint32_t sf[GENX(3DSTATE_SF_length)];
1030 uint32_t clip[GENX(3DSTATE_CLIP_length)];
1031 uint32_t raster[GENX(3DSTATE_RASTER_length)];
1032 uint32_t wm[GENX(3DSTATE_WM_length)];
1033 uint32_t line_stipple[GENX(3DSTATE_LINE_STIPPLE_length)];
1034
1035 uint8_t num_clip_plane_consts;
1036 bool clip_halfz; /* for CC_VIEWPORT */
1037 bool depth_clip_near; /* for CC_VIEWPORT */
1038 bool depth_clip_far; /* for CC_VIEWPORT */
1039 bool flatshade; /* for shader state */
1040 bool flatshade_first; /* for stream output */
1041 bool clamp_fragment_color; /* for shader state */
1042 bool light_twoside; /* for shader state */
1043 bool rasterizer_discard; /* for 3DSTATE_STREAMOUT and 3DSTATE_CLIP */
1044 bool half_pixel_center; /* for 3DSTATE_MULTISAMPLE */
1045 bool line_stipple_enable;
1046 bool poly_stipple_enable;
1047 bool multisample;
1048 bool force_persample_interp;
1049 enum pipe_sprite_coord_mode sprite_coord_mode; /* PIPE_SPRITE_* */
1050 uint16_t sprite_coord_enable;
1051 };
1052
1053 static float
1054 get_line_width(const struct pipe_rasterizer_state *state)
1055 {
1056 float line_width = state->line_width;
1057
1058 /* From the OpenGL 4.4 spec:
1059 *
1060 * "The actual width of non-antialiased lines is determined by rounding
1061 * the supplied width to the nearest integer, then clamping it to the
1062 * implementation-dependent maximum non-antialiased line width."
1063 */
1064 if (!state->multisample && !state->line_smooth)
1065 line_width = roundf(state->line_width);
1066
1067 if (!state->multisample && state->line_smooth && line_width < 1.5f) {
1068 /* For 1 pixel line thickness or less, the general anti-aliasing
1069 * algorithm gives up, and a garbage line is generated. Setting a
1070 * Line Width of 0.0 specifies the rasterization of the "thinnest"
1071 * (one-pixel-wide), non-antialiased lines.
1072 *
1073 * Lines rendered with zero Line Width are rasterized using the
1074 * "Grid Intersection Quantization" rules as specified by the
1075 * "Zero-Width (Cosmetic) Line Rasterization" section of the docs.
1076 */
1077 line_width = 0.0f;
1078 }
1079
1080 return line_width;
1081 }
1082
1083 /**
1084 * The pipe->create_rasterizer_state() driver hook.
1085 */
1086 static void *
1087 iris_create_rasterizer_state(struct pipe_context *ctx,
1088 const struct pipe_rasterizer_state *state)
1089 {
1090 struct iris_rasterizer_state *cso =
1091 malloc(sizeof(struct iris_rasterizer_state));
1092
1093 #if 0
1094 point_quad_rasterization -> SBE?
1095
1096 not necessary?
1097 {
1098 poly_smooth
1099 bottom_edge_rule
1100
1101 offset_units_unscaled - cap not exposed
1102 }
1103 #endif
1104
1105 // XXX: it may make more sense just to store the pipe_rasterizer_state,
1106 // we're copying a lot of booleans here. But we don't need all of them...
1107
1108 cso->multisample = state->multisample;
1109 cso->force_persample_interp = state->force_persample_interp;
1110 cso->clip_halfz = state->clip_halfz;
1111 cso->depth_clip_near = state->depth_clip_near;
1112 cso->depth_clip_far = state->depth_clip_far;
1113 cso->flatshade = state->flatshade;
1114 cso->flatshade_first = state->flatshade_first;
1115 cso->clamp_fragment_color = state->clamp_fragment_color;
1116 cso->light_twoside = state->light_twoside;
1117 cso->rasterizer_discard = state->rasterizer_discard;
1118 cso->half_pixel_center = state->half_pixel_center;
1119 cso->sprite_coord_mode = state->sprite_coord_mode;
1120 cso->sprite_coord_enable = state->sprite_coord_enable;
1121 cso->line_stipple_enable = state->line_stipple_enable;
1122 cso->poly_stipple_enable = state->poly_stipple_enable;
1123
1124 if (state->clip_plane_enable != 0)
1125 cso->num_clip_plane_consts = util_logbase2(state->clip_plane_enable) + 1;
1126 else
1127 cso->num_clip_plane_consts = 0;
1128
1129 float line_width = get_line_width(state);
1130
1131 iris_pack_command(GENX(3DSTATE_SF), cso->sf, sf) {
1132 sf.StatisticsEnable = true;
1133 sf.ViewportTransformEnable = true;
1134 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
1135 sf.LineEndCapAntialiasingRegionWidth =
1136 state->line_smooth ? _10pixels : _05pixels;
1137 sf.LastPixelEnable = state->line_last_pixel;
1138 sf.LineWidth = line_width;
1139 sf.SmoothPointEnable = state->point_smooth || state->multisample;
1140 sf.PointWidthSource = state->point_size_per_vertex ? Vertex : State;
1141 sf.PointWidth = state->point_size;
1142
1143 if (state->flatshade_first) {
1144 sf.TriangleFanProvokingVertexSelect = 1;
1145 } else {
1146 sf.TriangleStripListProvokingVertexSelect = 2;
1147 sf.TriangleFanProvokingVertexSelect = 2;
1148 sf.LineStripListProvokingVertexSelect = 1;
1149 }
1150 }
1151
1152 iris_pack_command(GENX(3DSTATE_RASTER), cso->raster, rr) {
1153 rr.FrontWinding = state->front_ccw ? CounterClockwise : Clockwise;
1154 rr.CullMode = translate_cull_mode(state->cull_face);
1155 rr.FrontFaceFillMode = translate_fill_mode(state->fill_front);
1156 rr.BackFaceFillMode = translate_fill_mode(state->fill_back);
1157 rr.DXMultisampleRasterizationEnable = state->multisample;
1158 rr.GlobalDepthOffsetEnableSolid = state->offset_tri;
1159 rr.GlobalDepthOffsetEnableWireframe = state->offset_line;
1160 rr.GlobalDepthOffsetEnablePoint = state->offset_point;
1161 rr.GlobalDepthOffsetConstant = state->offset_units * 2;
1162 rr.GlobalDepthOffsetScale = state->offset_scale;
1163 rr.GlobalDepthOffsetClamp = state->offset_clamp;
1164 rr.SmoothPointEnable = state->point_smooth || state->multisample;
1165 rr.AntialiasingEnable = state->line_smooth;
1166 rr.ScissorRectangleEnable = state->scissor;
1167 rr.ViewportZNearClipTestEnable = state->depth_clip_near;
1168 rr.ViewportZFarClipTestEnable = state->depth_clip_far;
1169 //rr.ConservativeRasterizationEnable = not yet supported by Gallium...
1170 }
1171
1172 iris_pack_command(GENX(3DSTATE_CLIP), cso->clip, cl) {
1173 /* cl.NonPerspectiveBarycentricEnable is filled in at draw time from
1174 * the FS program; cl.ForceZeroRTAIndexEnable is filled in from the FB.
1175 */
1176 cl.EarlyCullEnable = true;
1177 cl.UserClipDistanceClipTestEnableBitmask = state->clip_plane_enable;
1178 cl.ForceUserClipDistanceClipTestEnableBitmask = true;
1179 cl.APIMode = state->clip_halfz ? APIMODE_D3D : APIMODE_OGL;
1180 cl.GuardbandClipTestEnable = true;
1181 cl.ClipEnable = true;
1182 cl.ViewportXYClipTestEnable = state->point_tri_clip;
1183 cl.MinimumPointWidth = 0.125;
1184 cl.MaximumPointWidth = 255.875;
1185
1186 if (state->flatshade_first) {
1187 cl.TriangleFanProvokingVertexSelect = 1;
1188 } else {
1189 cl.TriangleStripListProvokingVertexSelect = 2;
1190 cl.TriangleFanProvokingVertexSelect = 2;
1191 cl.LineStripListProvokingVertexSelect = 1;
1192 }
1193 }
1194
1195 iris_pack_command(GENX(3DSTATE_WM), cso->wm, wm) {
1196 /* wm.BarycentricInterpolationMode and wm.EarlyDepthStencilControl are
1197 * filled in at draw time from the FS program.
1198 */
1199 wm.LineAntialiasingRegionWidth = _10pixels;
1200 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1201 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1202 wm.LineStippleEnable = state->line_stipple_enable;
1203 wm.PolygonStippleEnable = state->poly_stipple_enable;
1204 }
1205
1206 /* Remap from 0..255 back to 1..256 */
1207 const unsigned line_stipple_factor = state->line_stipple_factor + 1;
1208
1209 iris_pack_command(GENX(3DSTATE_LINE_STIPPLE), cso->line_stipple, line) {
1210 line.LineStipplePattern = state->line_stipple_pattern;
1211 line.LineStippleInverseRepeatCount = 1.0f / line_stipple_factor;
1212 line.LineStippleRepeatCount = line_stipple_factor;
1213 }
1214
1215 return cso;
1216 }
1217
1218 /**
1219 * The pipe->bind_rasterizer_state() driver hook.
1220 *
1221 * Bind a rasterizer CSO and flag related dirty bits.
1222 */
1223 static void
1224 iris_bind_rasterizer_state(struct pipe_context *ctx, void *state)
1225 {
1226 struct iris_context *ice = (struct iris_context *) ctx;
1227 struct iris_rasterizer_state *old_cso = ice->state.cso_rast;
1228 struct iris_rasterizer_state *new_cso = state;
1229
1230 if (new_cso) {
1231 /* Try to avoid re-emitting 3DSTATE_LINE_STIPPLE, it's non-pipelined */
1232 if (cso_changed_memcmp(line_stipple))
1233 ice->state.dirty |= IRIS_DIRTY_LINE_STIPPLE;
1234
1235 if (cso_changed(half_pixel_center))
1236 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
1237
1238 if (cso_changed(line_stipple_enable) || cso_changed(poly_stipple_enable))
1239 ice->state.dirty |= IRIS_DIRTY_WM;
1240
1241 if (cso_changed(rasterizer_discard))
1242 ice->state.dirty |= IRIS_DIRTY_STREAMOUT | IRIS_DIRTY_CLIP;
1243
1244 if (cso_changed(flatshade_first))
1245 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
1246
1247 if (cso_changed(depth_clip_near) || cso_changed(depth_clip_far) ||
1248 cso_changed(clip_halfz))
1249 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1250
1251 if (cso_changed(sprite_coord_enable) ||
1252 cso_changed(sprite_coord_mode) ||
1253 cso_changed(light_twoside))
1254 ice->state.dirty |= IRIS_DIRTY_SBE;
1255 }
1256
1257 ice->state.cso_rast = new_cso;
1258 ice->state.dirty |= IRIS_DIRTY_RASTER;
1259 ice->state.dirty |= IRIS_DIRTY_CLIP;
1260 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_RASTERIZER];
1261 }
1262
1263 /**
1264 * Return true if the given wrap mode requires the border color to exist.
1265 *
1266 * (We can skip uploading it if the sampler isn't going to use it.)
1267 */
1268 static bool
1269 wrap_mode_needs_border_color(unsigned wrap_mode)
1270 {
1271 return wrap_mode == TCM_CLAMP_BORDER || wrap_mode == TCM_HALF_BORDER;
1272 }
1273
1274 /**
1275 * Gallium CSO for sampler state.
1276 */
1277 struct iris_sampler_state {
1278 union pipe_color_union border_color;
1279 bool needs_border_color;
1280
1281 uint32_t sampler_state[GENX(SAMPLER_STATE_length)];
1282 };
1283
1284 /**
1285 * The pipe->create_sampler_state() driver hook.
1286 *
1287 * We fill out SAMPLER_STATE (except for the border color pointer), and
1288 * store that on the CPU. It doesn't make sense to upload it to a GPU
1289 * buffer object yet, because 3DSTATE_SAMPLER_STATE_POINTERS requires
1290 * all bound sampler states to be in contiguous memor.
1291 */
1292 static void *
1293 iris_create_sampler_state(struct pipe_context *ctx,
1294 const struct pipe_sampler_state *state)
1295 {
1296 struct iris_sampler_state *cso = CALLOC_STRUCT(iris_sampler_state);
1297
1298 if (!cso)
1299 return NULL;
1300
1301 STATIC_ASSERT(PIPE_TEX_FILTER_NEAREST == MAPFILTER_NEAREST);
1302 STATIC_ASSERT(PIPE_TEX_FILTER_LINEAR == MAPFILTER_LINEAR);
1303
1304 unsigned wrap_s = translate_wrap(state->wrap_s);
1305 unsigned wrap_t = translate_wrap(state->wrap_t);
1306 unsigned wrap_r = translate_wrap(state->wrap_r);
1307
1308 memcpy(&cso->border_color, &state->border_color, sizeof(cso->border_color));
1309
1310 cso->needs_border_color = wrap_mode_needs_border_color(wrap_s) ||
1311 wrap_mode_needs_border_color(wrap_t) ||
1312 wrap_mode_needs_border_color(wrap_r);
1313
1314 float min_lod = state->min_lod;
1315 unsigned mag_img_filter = state->mag_img_filter;
1316
1317 // XXX: explain this code ported from ilo...I don't get it at all...
1318 if (state->min_mip_filter == PIPE_TEX_MIPFILTER_NONE &&
1319 state->min_lod > 0.0f) {
1320 min_lod = 0.0f;
1321 mag_img_filter = state->min_img_filter;
1322 }
1323
1324 iris_pack_state(GENX(SAMPLER_STATE), cso->sampler_state, samp) {
1325 samp.TCXAddressControlMode = wrap_s;
1326 samp.TCYAddressControlMode = wrap_t;
1327 samp.TCZAddressControlMode = wrap_r;
1328 samp.CubeSurfaceControlMode = state->seamless_cube_map;
1329 samp.NonnormalizedCoordinateEnable = !state->normalized_coords;
1330 samp.MinModeFilter = state->min_img_filter;
1331 samp.MagModeFilter = mag_img_filter;
1332 samp.MipModeFilter = translate_mip_filter(state->min_mip_filter);
1333 samp.MaximumAnisotropy = RATIO21;
1334
1335 if (state->max_anisotropy >= 2) {
1336 if (state->min_img_filter == PIPE_TEX_FILTER_LINEAR) {
1337 samp.MinModeFilter = MAPFILTER_ANISOTROPIC;
1338 samp.AnisotropicAlgorithm = EWAApproximation;
1339 }
1340
1341 if (state->mag_img_filter == PIPE_TEX_FILTER_LINEAR)
1342 samp.MagModeFilter = MAPFILTER_ANISOTROPIC;
1343
1344 samp.MaximumAnisotropy =
1345 MIN2((state->max_anisotropy - 2) / 2, RATIO161);
1346 }
1347
1348 /* Set address rounding bits if not using nearest filtering. */
1349 if (state->min_img_filter != PIPE_TEX_FILTER_NEAREST) {
1350 samp.UAddressMinFilterRoundingEnable = true;
1351 samp.VAddressMinFilterRoundingEnable = true;
1352 samp.RAddressMinFilterRoundingEnable = true;
1353 }
1354
1355 if (state->mag_img_filter != PIPE_TEX_FILTER_NEAREST) {
1356 samp.UAddressMagFilterRoundingEnable = true;
1357 samp.VAddressMagFilterRoundingEnable = true;
1358 samp.RAddressMagFilterRoundingEnable = true;
1359 }
1360
1361 if (state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE)
1362 samp.ShadowFunction = translate_shadow_func(state->compare_func);
1363
1364 const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
1365
1366 samp.LODPreClampMode = CLAMP_MODE_OGL;
1367 samp.MinLOD = CLAMP(min_lod, 0, hw_max_lod);
1368 samp.MaxLOD = CLAMP(state->max_lod, 0, hw_max_lod);
1369 samp.TextureLODBias = CLAMP(state->lod_bias, -16, 15);
1370
1371 /* .BorderColorPointer is filled in by iris_bind_sampler_states. */
1372 }
1373
1374 return cso;
1375 }
1376
1377 /**
1378 * The pipe->bind_sampler_states() driver hook.
1379 *
1380 * Now that we know all the sampler states, we upload them all into a
1381 * contiguous area of GPU memory, for 3DSTATE_SAMPLER_STATE_POINTERS_*.
1382 * We also fill out the border color state pointers at this point.
1383 *
1384 * We could defer this work to draw time, but we assume that binding
1385 * will be less frequent than drawing.
1386 */
1387 // XXX: this may be a bad idea, need to make sure that st/mesa calls us
1388 // XXX: with the complete set of shaders. If it makes multiple calls to
1389 // XXX: things one at a time, we could waste a lot of time assembling things.
1390 // XXX: it doesn't even BUY us anything to do it here, because we only flag
1391 // XXX: IRIS_DIRTY_SAMPLER_STATE when this is called...
1392 static void
1393 iris_bind_sampler_states(struct pipe_context *ctx,
1394 enum pipe_shader_type p_stage,
1395 unsigned start, unsigned count,
1396 void **states)
1397 {
1398 struct iris_context *ice = (struct iris_context *) ctx;
1399 gl_shader_stage stage = stage_from_pipe(p_stage);
1400 struct iris_shader_state *shs = &ice->state.shaders[stage];
1401
1402 assert(start + count <= IRIS_MAX_TEXTURE_SAMPLERS);
1403
1404 for (int i = 0; i < count; i++) {
1405 shs->samplers[start + i] = states[i];
1406 }
1407
1408 /* Assemble the SAMPLER_STATEs into a contiguous table that lives
1409 * in the dynamic state memory zone, so we can point to it via the
1410 * 3DSTATE_SAMPLER_STATE_POINTERS_* commands.
1411 */
1412 uint32_t *map =
1413 upload_state(ice->state.dynamic_uploader, &shs->sampler_table,
1414 count * 4 * GENX(SAMPLER_STATE_length), 32);
1415 if (unlikely(!map))
1416 return;
1417
1418 struct pipe_resource *res = shs->sampler_table.res;
1419 shs->sampler_table.offset +=
1420 iris_bo_offset_from_base_address(iris_resource_bo(res));
1421
1422 /* Make sure all land in the same BO */
1423 iris_border_color_pool_reserve(ice, IRIS_MAX_TEXTURE_SAMPLERS);
1424
1425 for (int i = 0; i < count; i++) {
1426 struct iris_sampler_state *state = shs->samplers[i];
1427
1428 if (!state) {
1429 memset(map, 0, 4 * GENX(SAMPLER_STATE_length));
1430 } else if (!state->needs_border_color) {
1431 memcpy(map, state->sampler_state, 4 * GENX(SAMPLER_STATE_length));
1432 } else {
1433 ice->state.need_border_colors = true;
1434
1435 /* Stream out the border color and merge the pointer. */
1436 uint32_t offset =
1437 iris_upload_border_color(ice, &state->border_color);
1438
1439 uint32_t dynamic[GENX(SAMPLER_STATE_length)];
1440 iris_pack_state(GENX(SAMPLER_STATE), dynamic, dyns) {
1441 dyns.BorderColorPointer = offset;
1442 }
1443
1444 for (uint32_t j = 0; j < GENX(SAMPLER_STATE_length); j++)
1445 map[j] = state->sampler_state[j] | dynamic[j];
1446 }
1447
1448 map += GENX(SAMPLER_STATE_length);
1449 }
1450
1451 ice->state.dirty |= IRIS_DIRTY_SAMPLER_STATES_VS << stage;
1452 }
1453
1454 static enum isl_channel_select
1455 fmt_swizzle(const struct iris_format_info *fmt, enum pipe_swizzle swz)
1456 {
1457 switch (swz) {
1458 case PIPE_SWIZZLE_X: return fmt->swizzle.r;
1459 case PIPE_SWIZZLE_Y: return fmt->swizzle.g;
1460 case PIPE_SWIZZLE_Z: return fmt->swizzle.b;
1461 case PIPE_SWIZZLE_W: return fmt->swizzle.a;
1462 case PIPE_SWIZZLE_1: return SCS_ONE;
1463 case PIPE_SWIZZLE_0: return SCS_ZERO;
1464 default: unreachable("invalid swizzle");
1465 }
1466 }
1467
1468 static void
1469 fill_buffer_surface_state(struct isl_device *isl_dev,
1470 struct iris_bo *bo,
1471 void *map,
1472 enum isl_format format,
1473 unsigned offset,
1474 unsigned size)
1475 {
1476 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
1477 const unsigned cpp = fmtl->bpb / 8;
1478
1479 /* The ARB_texture_buffer_specification says:
1480 *
1481 * "The number of texels in the buffer texture's texel array is given by
1482 *
1483 * floor(<buffer_size> / (<components> * sizeof(<base_type>)),
1484 *
1485 * where <buffer_size> is the size of the buffer object, in basic
1486 * machine units and <components> and <base_type> are the element count
1487 * and base data type for elements, as specified in Table X.1. The
1488 * number of texels in the texel array is then clamped to the
1489 * implementation-dependent limit MAX_TEXTURE_BUFFER_SIZE_ARB."
1490 *
1491 * We need to clamp the size in bytes to MAX_TEXTURE_BUFFER_SIZE * stride,
1492 * so that when ISL divides by stride to obtain the number of texels, that
1493 * texel count is clamped to MAX_TEXTURE_BUFFER_SIZE.
1494 */
1495 unsigned final_size =
1496 MIN3(size, bo->size - offset, IRIS_MAX_TEXTURE_BUFFER_SIZE * cpp);
1497
1498 isl_buffer_fill_state(isl_dev, map,
1499 .address = bo->gtt_offset + offset,
1500 .size_B = final_size,
1501 .format = format,
1502 .stride_B = cpp,
1503 .mocs = MOCS_WB);
1504 }
1505
1506 static void
1507 fill_surface_state(struct isl_device *isl_dev,
1508 void *map,
1509 struct iris_resource *res,
1510 struct isl_view *view)
1511 {
1512 struct isl_surf_fill_state_info f = {
1513 .surf = &res->surf,
1514 .view = view,
1515 .mocs = MOCS_WB,
1516 .address = res->bo->gtt_offset,
1517 };
1518
1519 isl_surf_fill_state_s(isl_dev, map, &f);
1520 }
1521
1522 /**
1523 * The pipe->create_sampler_view() driver hook.
1524 */
1525 static struct pipe_sampler_view *
1526 iris_create_sampler_view(struct pipe_context *ctx,
1527 struct pipe_resource *tex,
1528 const struct pipe_sampler_view *tmpl)
1529 {
1530 struct iris_context *ice = (struct iris_context *) ctx;
1531 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1532 const struct gen_device_info *devinfo = &screen->devinfo;
1533 struct iris_sampler_view *isv = calloc(1, sizeof(struct iris_sampler_view));
1534
1535 if (!isv)
1536 return NULL;
1537
1538 /* initialize base object */
1539 isv->base = *tmpl;
1540 isv->base.context = ctx;
1541 isv->base.texture = NULL;
1542 pipe_reference_init(&isv->base.reference, 1);
1543 pipe_resource_reference(&isv->base.texture, tex);
1544
1545 void *map = upload_state(ice->state.surface_uploader, &isv->surface_state,
1546 4 * GENX(RENDER_SURFACE_STATE_length), 64);
1547 if (!unlikely(map))
1548 return NULL;
1549
1550 struct iris_bo *state_bo = iris_resource_bo(isv->surface_state.res);
1551 isv->surface_state.offset += iris_bo_offset_from_base_address(state_bo);
1552
1553 if (util_format_is_depth_or_stencil(tmpl->format)) {
1554 struct iris_resource *zres, *sres;
1555 const struct util_format_description *desc =
1556 util_format_description(tmpl->format);
1557
1558 iris_get_depth_stencil_resources(tex, &zres, &sres);
1559
1560 tex = util_format_has_depth(desc) ? &zres->base : &sres->base;
1561 }
1562
1563 isv->res = (struct iris_resource *) tex;
1564
1565 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_TEXTURE_BIT;
1566
1567 if (isv->base.target == PIPE_TEXTURE_CUBE ||
1568 isv->base.target == PIPE_TEXTURE_CUBE_ARRAY)
1569 usage |= ISL_SURF_USAGE_CUBE_BIT;
1570
1571 const struct iris_format_info fmt =
1572 iris_format_for_usage(devinfo, tmpl->format, usage);
1573
1574 isv->view = (struct isl_view) {
1575 .format = fmt.fmt,
1576 .swizzle = (struct isl_swizzle) {
1577 .r = fmt_swizzle(&fmt, tmpl->swizzle_r),
1578 .g = fmt_swizzle(&fmt, tmpl->swizzle_g),
1579 .b = fmt_swizzle(&fmt, tmpl->swizzle_b),
1580 .a = fmt_swizzle(&fmt, tmpl->swizzle_a),
1581 },
1582 .usage = usage,
1583 };
1584
1585 /* Fill out SURFACE_STATE for this view. */
1586 if (tmpl->target != PIPE_BUFFER) {
1587 isv->view.base_level = tmpl->u.tex.first_level;
1588 isv->view.levels = tmpl->u.tex.last_level - tmpl->u.tex.first_level + 1;
1589 // XXX: do I need to port f9fd0cf4790cb2a530e75d1a2206dbb9d8af7cb2?
1590 isv->view.base_array_layer = tmpl->u.tex.first_layer;
1591 isv->view.array_len =
1592 tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
1593
1594 fill_surface_state(&screen->isl_dev, map, isv->res, &isv->view);
1595 } else {
1596 fill_buffer_surface_state(&screen->isl_dev, isv->res->bo, map,
1597 isv->view.format, tmpl->u.buf.offset,
1598 tmpl->u.buf.size);
1599 }
1600
1601 return &isv->base;
1602 }
1603
1604 static void
1605 iris_sampler_view_destroy(struct pipe_context *ctx,
1606 struct pipe_sampler_view *state)
1607 {
1608 struct iris_sampler_view *isv = (void *) state;
1609 pipe_resource_reference(&state->texture, NULL);
1610 pipe_resource_reference(&isv->surface_state.res, NULL);
1611 free(isv);
1612 }
1613
1614 /**
1615 * The pipe->create_surface() driver hook.
1616 *
1617 * In Gallium nomenclature, "surfaces" are a view of a resource that
1618 * can be bound as a render target or depth/stencil buffer.
1619 */
1620 static struct pipe_surface *
1621 iris_create_surface(struct pipe_context *ctx,
1622 struct pipe_resource *tex,
1623 const struct pipe_surface *tmpl)
1624 {
1625 struct iris_context *ice = (struct iris_context *) ctx;
1626 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1627 const struct gen_device_info *devinfo = &screen->devinfo;
1628 struct iris_surface *surf = calloc(1, sizeof(struct iris_surface));
1629 struct pipe_surface *psurf = &surf->base;
1630 struct iris_resource *res = (struct iris_resource *) tex;
1631
1632 if (!surf)
1633 return NULL;
1634
1635 pipe_reference_init(&psurf->reference, 1);
1636 pipe_resource_reference(&psurf->texture, tex);
1637 psurf->context = ctx;
1638 psurf->format = tmpl->format;
1639 psurf->width = tex->width0;
1640 psurf->height = tex->height0;
1641 psurf->texture = tex;
1642 psurf->u.tex.first_layer = tmpl->u.tex.first_layer;
1643 psurf->u.tex.last_layer = tmpl->u.tex.last_layer;
1644 psurf->u.tex.level = tmpl->u.tex.level;
1645
1646 isl_surf_usage_flags_t usage = 0;
1647 if (tmpl->writable)
1648 usage = ISL_SURF_USAGE_STORAGE_BIT;
1649 else if (util_format_is_depth_or_stencil(tmpl->format))
1650 usage = ISL_SURF_USAGE_DEPTH_BIT;
1651 else
1652 usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
1653
1654 const struct iris_format_info fmt =
1655 iris_format_for_usage(devinfo, psurf->format, usage);
1656
1657 if ((usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) &&
1658 !isl_format_supports_rendering(devinfo, fmt.fmt)) {
1659 /* Framebuffer validation will reject this invalid case, but it
1660 * hasn't had the opportunity yet. In the meantime, we need to
1661 * avoid hitting ISL asserts about unsupported formats below.
1662 */
1663 free(surf);
1664 return NULL;
1665 }
1666
1667 surf->view = (struct isl_view) {
1668 .format = fmt.fmt,
1669 .base_level = tmpl->u.tex.level,
1670 .levels = 1,
1671 .base_array_layer = tmpl->u.tex.first_layer,
1672 .array_len = tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1,
1673 .swizzle = ISL_SWIZZLE_IDENTITY,
1674 .usage = usage,
1675 };
1676
1677 /* Bail early for depth/stencil - we don't want SURFACE_STATE for them. */
1678 if (res->surf.usage & (ISL_SURF_USAGE_DEPTH_BIT |
1679 ISL_SURF_USAGE_STENCIL_BIT))
1680 return psurf;
1681
1682
1683 void *map = upload_state(ice->state.surface_uploader, &surf->surface_state,
1684 4 * GENX(RENDER_SURFACE_STATE_length), 64);
1685 if (!unlikely(map))
1686 return NULL;
1687
1688 struct iris_bo *state_bo = iris_resource_bo(surf->surface_state.res);
1689 surf->surface_state.offset += iris_bo_offset_from_base_address(state_bo);
1690
1691 fill_surface_state(&screen->isl_dev, map, res, &surf->view);
1692
1693 return psurf;
1694 }
1695
1696 /**
1697 * The pipe->set_shader_images() driver hook.
1698 */
1699 static void
1700 iris_set_shader_images(struct pipe_context *ctx,
1701 enum pipe_shader_type p_stage,
1702 unsigned start_slot, unsigned count,
1703 const struct pipe_image_view *p_images)
1704 {
1705 struct iris_context *ice = (struct iris_context *) ctx;
1706 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1707 const struct gen_device_info *devinfo = &screen->devinfo;
1708 gl_shader_stage stage = stage_from_pipe(p_stage);
1709 struct iris_shader_state *shs = &ice->state.shaders[stage];
1710
1711 shs->bound_image_views &= ~u_bit_consecutive(start_slot, count);
1712
1713 for (unsigned i = 0; i < count; i++) {
1714 if (p_images && p_images[i].resource) {
1715 const struct pipe_image_view *img = &p_images[i];
1716 struct iris_resource *res = (void *) img->resource;
1717 pipe_resource_reference(&shs->image[start_slot + i].res, &res->base);
1718
1719 shs->bound_image_views |= 1 << (start_slot + i);
1720
1721 res->bind_history |= PIPE_BIND_SHADER_IMAGE;
1722
1723 // XXX: these are not retained forever, use a separate uploader?
1724 void *map =
1725 upload_state(ice->state.surface_uploader,
1726 &shs->image[start_slot + i].surface_state,
1727 4 * GENX(RENDER_SURFACE_STATE_length), 64);
1728 if (!unlikely(map)) {
1729 pipe_resource_reference(&shs->image[start_slot + i].res, NULL);
1730 return;
1731 }
1732
1733 struct iris_bo *surf_state_bo =
1734 iris_resource_bo(shs->image[start_slot + i].surface_state.res);
1735 shs->image[start_slot + i].surface_state.offset +=
1736 iris_bo_offset_from_base_address(surf_state_bo);
1737
1738 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_STORAGE_BIT;
1739 enum isl_format isl_format =
1740 iris_format_for_usage(devinfo, img->format, usage).fmt;
1741
1742 if (img->shader_access & PIPE_IMAGE_ACCESS_READ)
1743 isl_format = isl_lower_storage_image_format(devinfo, isl_format);
1744
1745 shs->image[start_slot + i].access = img->shader_access;
1746
1747 if (res->base.target != PIPE_BUFFER) {
1748 struct isl_view view = {
1749 .format = isl_format,
1750 .base_level = img->u.tex.level,
1751 .levels = 1,
1752 .base_array_layer = img->u.tex.first_layer,
1753 .array_len = img->u.tex.last_layer - img->u.tex.first_layer + 1,
1754 .swizzle = ISL_SWIZZLE_IDENTITY,
1755 .usage = usage,
1756 };
1757
1758 fill_surface_state(&screen->isl_dev, map, res, &view);
1759 } else {
1760 fill_buffer_surface_state(&screen->isl_dev, res->bo, map,
1761 isl_format, img->u.buf.offset,
1762 img->u.buf.size);
1763 }
1764 } else {
1765 pipe_resource_reference(&shs->image[start_slot + i].res, NULL);
1766 pipe_resource_reference(&shs->image[start_slot + i].surface_state.res,
1767 NULL);
1768 }
1769 }
1770
1771 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
1772 }
1773
1774
1775 /**
1776 * The pipe->set_sampler_views() driver hook.
1777 */
1778 static void
1779 iris_set_sampler_views(struct pipe_context *ctx,
1780 enum pipe_shader_type p_stage,
1781 unsigned start, unsigned count,
1782 struct pipe_sampler_view **views)
1783 {
1784 struct iris_context *ice = (struct iris_context *) ctx;
1785 gl_shader_stage stage = stage_from_pipe(p_stage);
1786 struct iris_shader_state *shs = &ice->state.shaders[stage];
1787
1788 shs->bound_sampler_views &= ~u_bit_consecutive(start, count);
1789
1790 for (unsigned i = 0; i < count; i++) {
1791 pipe_sampler_view_reference((struct pipe_sampler_view **)
1792 &shs->textures[start + i], views[i]);
1793 struct iris_sampler_view *view = (void *) views[i];
1794 if (view) {
1795 view->res->bind_history |= PIPE_BIND_SAMPLER_VIEW;
1796 shs->bound_sampler_views |= 1 << (start + i);
1797 }
1798 }
1799
1800 ice->state.dirty |= (IRIS_DIRTY_BINDINGS_VS << stage);
1801 }
1802
1803 /**
1804 * The pipe->set_tess_state() driver hook.
1805 */
1806 static void
1807 iris_set_tess_state(struct pipe_context *ctx,
1808 const float default_outer_level[4],
1809 const float default_inner_level[2])
1810 {
1811 struct iris_context *ice = (struct iris_context *) ctx;
1812
1813 memcpy(&ice->state.default_outer_level[0], &default_outer_level[0], 4 * sizeof(float));
1814 memcpy(&ice->state.default_inner_level[0], &default_inner_level[0], 2 * sizeof(float));
1815
1816 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_TCS;
1817 }
1818
1819 static void
1820 iris_surface_destroy(struct pipe_context *ctx, struct pipe_surface *p_surf)
1821 {
1822 struct iris_surface *surf = (void *) p_surf;
1823 pipe_resource_reference(&p_surf->texture, NULL);
1824 pipe_resource_reference(&surf->surface_state.res, NULL);
1825 free(surf);
1826 }
1827
1828 static void
1829 iris_set_clip_state(struct pipe_context *ctx,
1830 const struct pipe_clip_state *state)
1831 {
1832 struct iris_context *ice = (struct iris_context *) ctx;
1833 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_VERTEX];
1834
1835 memcpy(&ice->state.clip_planes, state, sizeof(*state));
1836
1837 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS;
1838 shs->cbuf0_needs_upload = true;
1839 }
1840
1841 /**
1842 * The pipe->set_polygon_stipple() driver hook.
1843 */
1844 static void
1845 iris_set_polygon_stipple(struct pipe_context *ctx,
1846 const struct pipe_poly_stipple *state)
1847 {
1848 struct iris_context *ice = (struct iris_context *) ctx;
1849 memcpy(&ice->state.poly_stipple, state, sizeof(*state));
1850 ice->state.dirty |= IRIS_DIRTY_POLYGON_STIPPLE;
1851 }
1852
1853 /**
1854 * The pipe->set_sample_mask() driver hook.
1855 */
1856 static void
1857 iris_set_sample_mask(struct pipe_context *ctx, unsigned sample_mask)
1858 {
1859 struct iris_context *ice = (struct iris_context *) ctx;
1860
1861 /* We only support 16x MSAA, so we have 16 bits of sample maks.
1862 * st/mesa may pass us 0xffffffff though, meaning "enable all samples".
1863 */
1864 ice->state.sample_mask = sample_mask & 0xffff;
1865 ice->state.dirty |= IRIS_DIRTY_SAMPLE_MASK;
1866 }
1867
1868 /**
1869 * The pipe->set_scissor_states() driver hook.
1870 *
1871 * This corresponds to our SCISSOR_RECT state structures. It's an
1872 * exact match, so we just store them, and memcpy them out later.
1873 */
1874 static void
1875 iris_set_scissor_states(struct pipe_context *ctx,
1876 unsigned start_slot,
1877 unsigned num_scissors,
1878 const struct pipe_scissor_state *rects)
1879 {
1880 struct iris_context *ice = (struct iris_context *) ctx;
1881
1882 for (unsigned i = 0; i < num_scissors; i++) {
1883 if (rects[i].minx == rects[i].maxx || rects[i].miny == rects[i].maxy) {
1884 /* If the scissor was out of bounds and got clamped to 0 width/height
1885 * at the bounds, the subtraction of 1 from maximums could produce a
1886 * negative number and thus not clip anything. Instead, just provide
1887 * a min > max scissor inside the bounds, which produces the expected
1888 * no rendering.
1889 */
1890 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
1891 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
1892 };
1893 } else {
1894 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
1895 .minx = rects[i].minx, .miny = rects[i].miny,
1896 .maxx = rects[i].maxx - 1, .maxy = rects[i].maxy - 1,
1897 };
1898 }
1899 }
1900
1901 ice->state.dirty |= IRIS_DIRTY_SCISSOR_RECT;
1902 }
1903
1904 /**
1905 * The pipe->set_stencil_ref() driver hook.
1906 *
1907 * This is added to 3DSTATE_WM_DEPTH_STENCIL dynamically at draw time.
1908 */
1909 static void
1910 iris_set_stencil_ref(struct pipe_context *ctx,
1911 const struct pipe_stencil_ref *state)
1912 {
1913 struct iris_context *ice = (struct iris_context *) ctx;
1914 memcpy(&ice->state.stencil_ref, state, sizeof(*state));
1915 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
1916 }
1917
1918 static float
1919 viewport_extent(const struct pipe_viewport_state *state, int axis, float sign)
1920 {
1921 return copysignf(state->scale[axis], sign) + state->translate[axis];
1922 }
1923
1924 static void
1925 calculate_guardband_size(uint32_t fb_width, uint32_t fb_height,
1926 float m00, float m11, float m30, float m31,
1927 float *xmin, float *xmax,
1928 float *ymin, float *ymax)
1929 {
1930 /* According to the "Vertex X,Y Clamping and Quantization" section of the
1931 * Strips and Fans documentation:
1932 *
1933 * "The vertex X and Y screen-space coordinates are also /clamped/ to the
1934 * fixed-point "guardband" range supported by the rasterization hardware"
1935 *
1936 * and
1937 *
1938 * "In almost all circumstances, if an object’s vertices are actually
1939 * modified by this clamping (i.e., had X or Y coordinates outside of
1940 * the guardband extent the rendered object will not match the intended
1941 * result. Therefore software should take steps to ensure that this does
1942 * not happen - e.g., by clipping objects such that they do not exceed
1943 * these limits after the Drawing Rectangle is applied."
1944 *
1945 * I believe the fundamental restriction is that the rasterizer (in
1946 * the SF/WM stages) have a limit on the number of pixels that can be
1947 * rasterized. We need to ensure any coordinates beyond the rasterizer
1948 * limit are handled by the clipper. So effectively that limit becomes
1949 * the clipper's guardband size.
1950 *
1951 * It goes on to say:
1952 *
1953 * "In addition, in order to be correctly rendered, objects must have a
1954 * screenspace bounding box not exceeding 8K in the X or Y direction.
1955 * This additional restriction must also be comprehended by software,
1956 * i.e., enforced by use of clipping."
1957 *
1958 * This makes no sense. Gen7+ hardware supports 16K render targets,
1959 * and you definitely need to be able to draw polygons that fill the
1960 * surface. Our assumption is that the rasterizer was limited to 8K
1961 * on Sandybridge, which only supports 8K surfaces, and it was actually
1962 * increased to 16K on Ivybridge and later.
1963 *
1964 * So, limit the guardband to 16K on Gen7+ and 8K on Sandybridge.
1965 */
1966 const float gb_size = GEN_GEN >= 7 ? 16384.0f : 8192.0f;
1967
1968 if (m00 != 0 && m11 != 0) {
1969 /* First, we compute the screen-space render area */
1970 const float ss_ra_xmin = MIN3( 0, m30 + m00, m30 - m00);
1971 const float ss_ra_xmax = MAX3( fb_width, m30 + m00, m30 - m00);
1972 const float ss_ra_ymin = MIN3( 0, m31 + m11, m31 - m11);
1973 const float ss_ra_ymax = MAX3(fb_height, m31 + m11, m31 - m11);
1974
1975 /* We want the guardband to be centered on that */
1976 const float ss_gb_xmin = (ss_ra_xmin + ss_ra_xmax) / 2 - gb_size;
1977 const float ss_gb_xmax = (ss_ra_xmin + ss_ra_xmax) / 2 + gb_size;
1978 const float ss_gb_ymin = (ss_ra_ymin + ss_ra_ymax) / 2 - gb_size;
1979 const float ss_gb_ymax = (ss_ra_ymin + ss_ra_ymax) / 2 + gb_size;
1980
1981 /* Now we need it in native device coordinates */
1982 const float ndc_gb_xmin = (ss_gb_xmin - m30) / m00;
1983 const float ndc_gb_xmax = (ss_gb_xmax - m30) / m00;
1984 const float ndc_gb_ymin = (ss_gb_ymin - m31) / m11;
1985 const float ndc_gb_ymax = (ss_gb_ymax - m31) / m11;
1986
1987 /* Thanks to Y-flipping and ORIGIN_UPPER_LEFT, the Y coordinates may be
1988 * flipped upside-down. X should be fine though.
1989 */
1990 assert(ndc_gb_xmin <= ndc_gb_xmax);
1991 *xmin = ndc_gb_xmin;
1992 *xmax = ndc_gb_xmax;
1993 *ymin = MIN2(ndc_gb_ymin, ndc_gb_ymax);
1994 *ymax = MAX2(ndc_gb_ymin, ndc_gb_ymax);
1995 } else {
1996 /* The viewport scales to 0, so nothing will be rendered. */
1997 *xmin = 0.0f;
1998 *xmax = 0.0f;
1999 *ymin = 0.0f;
2000 *ymax = 0.0f;
2001 }
2002 }
2003
2004 /**
2005 * The pipe->set_viewport_states() driver hook.
2006 *
2007 * This corresponds to our SF_CLIP_VIEWPORT states. We can't calculate
2008 * the guardband yet, as we need the framebuffer dimensions, but we can
2009 * at least fill out the rest.
2010 */
2011 static void
2012 iris_set_viewport_states(struct pipe_context *ctx,
2013 unsigned start_slot,
2014 unsigned count,
2015 const struct pipe_viewport_state *states)
2016 {
2017 struct iris_context *ice = (struct iris_context *) ctx;
2018
2019 memcpy(&ice->state.viewports[start_slot], states, sizeof(*states) * count);
2020
2021 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2022
2023 if (ice->state.cso_rast && (!ice->state.cso_rast->depth_clip_near ||
2024 !ice->state.cso_rast->depth_clip_far))
2025 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
2026 }
2027
2028 /**
2029 * The pipe->set_framebuffer_state() driver hook.
2030 *
2031 * Sets the current draw FBO, including color render targets, depth,
2032 * and stencil buffers.
2033 */
2034 static void
2035 iris_set_framebuffer_state(struct pipe_context *ctx,
2036 const struct pipe_framebuffer_state *state)
2037 {
2038 struct iris_context *ice = (struct iris_context *) ctx;
2039 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2040 struct isl_device *isl_dev = &screen->isl_dev;
2041 struct pipe_framebuffer_state *cso = &ice->state.framebuffer;
2042 struct iris_resource *zres;
2043 struct iris_resource *stencil_res;
2044
2045 unsigned samples = util_framebuffer_get_num_samples(state);
2046
2047 if (cso->samples != samples) {
2048 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
2049 }
2050
2051 if (cso->nr_cbufs != state->nr_cbufs) {
2052 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
2053 }
2054
2055 if ((cso->layers == 0) != (state->layers == 0)) {
2056 ice->state.dirty |= IRIS_DIRTY_CLIP;
2057 }
2058
2059 if (cso->width != state->width || cso->height != state->height) {
2060 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2061 }
2062
2063 util_copy_framebuffer_state(cso, state);
2064 cso->samples = samples;
2065
2066 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
2067
2068 struct isl_view view = {
2069 .base_level = 0,
2070 .levels = 1,
2071 .base_array_layer = 0,
2072 .array_len = 1,
2073 .swizzle = ISL_SWIZZLE_IDENTITY,
2074 };
2075
2076 struct isl_depth_stencil_hiz_emit_info info = {
2077 .view = &view,
2078 .mocs = MOCS_WB,
2079 };
2080
2081 if (cso->zsbuf) {
2082 iris_get_depth_stencil_resources(cso->zsbuf->texture, &zres,
2083 &stencil_res);
2084
2085 view.base_level = cso->zsbuf->u.tex.level;
2086 view.base_array_layer = cso->zsbuf->u.tex.first_layer;
2087 view.array_len =
2088 cso->zsbuf->u.tex.last_layer - cso->zsbuf->u.tex.first_layer + 1;
2089
2090 if (zres) {
2091 view.usage |= ISL_SURF_USAGE_DEPTH_BIT;
2092
2093 info.depth_surf = &zres->surf;
2094 info.depth_address = zres->bo->gtt_offset;
2095 info.hiz_usage = ISL_AUX_USAGE_NONE;
2096
2097 view.format = zres->surf.format;
2098 }
2099
2100 if (stencil_res) {
2101 view.usage |= ISL_SURF_USAGE_STENCIL_BIT;
2102 info.stencil_surf = &stencil_res->surf;
2103 info.stencil_address = stencil_res->bo->gtt_offset;
2104 if (!zres)
2105 view.format = stencil_res->surf.format;
2106 }
2107 }
2108
2109 isl_emit_depth_stencil_hiz_s(isl_dev, cso_z->packets, &info);
2110
2111 /* Make a null surface for unbound buffers */
2112 void *null_surf_map =
2113 upload_state(ice->state.surface_uploader, &ice->state.null_fb,
2114 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2115 isl_null_fill_state(&screen->isl_dev, null_surf_map,
2116 isl_extent3d(MAX2(cso->width, 1),
2117 MAX2(cso->height, 1),
2118 cso->layers ? cso->layers : 1));
2119 ice->state.null_fb.offset +=
2120 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.null_fb.res));
2121
2122 ice->state.dirty |= IRIS_DIRTY_DEPTH_BUFFER;
2123
2124 /* Render target change */
2125 ice->state.dirty |= IRIS_DIRTY_BINDINGS_FS;
2126
2127 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_FRAMEBUFFER];
2128
2129 #if GEN_GEN == 11
2130 // XXX: we may want to flag IRIS_DIRTY_MULTISAMPLE (or SAMPLE_MASK?)
2131 // XXX: see commit 979fc1bc9bcc64027ff2cfafd285676f31b930a6
2132
2133 /* The PIPE_CONTROL command description says:
2134 *
2135 * "Whenever a Binding Table Index (BTI) used by a Render Target Message
2136 * points to a different RENDER_SURFACE_STATE, SW must issue a Render
2137 * Target Cache Flush by enabling this bit. When render target flush
2138 * is set due to new association of BTI, PS Scoreboard Stall bit must
2139 * be set in this packet."
2140 */
2141 // XXX: does this need to happen at 3DSTATE_BTP_PS time?
2142 iris_emit_pipe_control_flush(&ice->batches[IRIS_BATCH_RENDER],
2143 PIPE_CONTROL_RENDER_TARGET_FLUSH |
2144 PIPE_CONTROL_STALL_AT_SCOREBOARD);
2145 #endif
2146 }
2147
2148 static void
2149 upload_ubo_surf_state(struct iris_context *ice,
2150 struct iris_const_buffer *cbuf,
2151 unsigned buffer_size)
2152 {
2153 struct pipe_context *ctx = &ice->ctx;
2154 struct iris_screen *screen = (struct iris_screen *) ctx->screen;
2155
2156 // XXX: these are not retained forever, use a separate uploader?
2157 void *map =
2158 upload_state(ice->state.surface_uploader, &cbuf->surface_state,
2159 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2160 if (!unlikely(map)) {
2161 pipe_resource_reference(&cbuf->data.res, NULL);
2162 return;
2163 }
2164
2165 struct iris_resource *res = (void *) cbuf->data.res;
2166 struct iris_bo *surf_bo = iris_resource_bo(cbuf->surface_state.res);
2167 cbuf->surface_state.offset += iris_bo_offset_from_base_address(surf_bo);
2168
2169 isl_buffer_fill_state(&screen->isl_dev, map,
2170 .address = res->bo->gtt_offset + cbuf->data.offset,
2171 .size_B = MIN2(buffer_size,
2172 res->bo->size - cbuf->data.offset),
2173 .format = ISL_FORMAT_R32G32B32A32_FLOAT,
2174 .stride_B = 1,
2175 .mocs = MOCS_WB)
2176 }
2177
2178 /**
2179 * The pipe->set_constant_buffer() driver hook.
2180 *
2181 * This uploads any constant data in user buffers, and references
2182 * any UBO resources containing constant data.
2183 */
2184 static void
2185 iris_set_constant_buffer(struct pipe_context *ctx,
2186 enum pipe_shader_type p_stage, unsigned index,
2187 const struct pipe_constant_buffer *input)
2188 {
2189 struct iris_context *ice = (struct iris_context *) ctx;
2190 gl_shader_stage stage = stage_from_pipe(p_stage);
2191 struct iris_shader_state *shs = &ice->state.shaders[stage];
2192 struct iris_const_buffer *cbuf = &shs->constbuf[index];
2193
2194 if (input && input->buffer) {
2195 assert(index > 0);
2196
2197 pipe_resource_reference(&cbuf->data.res, input->buffer);
2198 cbuf->data.offset = input->buffer_offset;
2199
2200 struct iris_resource *res = (void *) cbuf->data.res;
2201 res->bind_history |= PIPE_BIND_CONSTANT_BUFFER;
2202
2203 upload_ubo_surf_state(ice, cbuf, input->buffer_size);
2204 } else {
2205 pipe_resource_reference(&cbuf->data.res, NULL);
2206 pipe_resource_reference(&cbuf->surface_state.res, NULL);
2207 }
2208
2209 if (index == 0) {
2210 if (input)
2211 memcpy(&shs->cbuf0, input, sizeof(shs->cbuf0));
2212 else
2213 memset(&shs->cbuf0, 0, sizeof(shs->cbuf0));
2214
2215 shs->cbuf0_needs_upload = true;
2216 }
2217
2218 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
2219 // XXX: maybe not necessary all the time...?
2220 // XXX: we need 3DS_BTP to commit these changes, and if we fell back to
2221 // XXX: pull model we may need actual new bindings...
2222 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2223 }
2224
2225 static void
2226 upload_uniforms(struct iris_context *ice,
2227 gl_shader_stage stage)
2228 {
2229 struct iris_shader_state *shs = &ice->state.shaders[stage];
2230 struct iris_const_buffer *cbuf = &shs->constbuf[0];
2231 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
2232
2233 unsigned upload_size = shader->num_system_values * sizeof(uint32_t) +
2234 shs->cbuf0.buffer_size;
2235
2236 if (upload_size == 0)
2237 return;
2238
2239 uint32_t *map =
2240 upload_state(ice->ctx.const_uploader, &cbuf->data, upload_size, 64);
2241
2242 for (int i = 0; i < shader->num_system_values; i++) {
2243 uint32_t sysval = shader->system_values[i];
2244 uint32_t value = 0;
2245
2246 if (BRW_PARAM_BUILTIN_IS_CLIP_PLANE(sysval)) {
2247 int plane = BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(sysval);
2248 int comp = BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(sysval);
2249 value = fui(ice->state.clip_planes.ucp[plane][comp]);
2250 } else if (sysval == BRW_PARAM_BUILTIN_PATCH_VERTICES_IN) {
2251 if (stage == MESA_SHADER_TESS_CTRL) {
2252 value = ice->state.vertices_per_patch;
2253 } else {
2254 assert(stage == MESA_SHADER_TESS_EVAL);
2255 const struct shader_info *tcs_info =
2256 iris_get_shader_info(ice, MESA_SHADER_TESS_CTRL);
2257 assert(tcs_info);
2258
2259 value = tcs_info->tess.tcs_vertices_out;
2260 }
2261 } else {
2262 assert(!"unhandled system value");
2263 }
2264
2265 *map++ = value;
2266 }
2267
2268 if (shs->cbuf0.user_buffer) {
2269 memcpy(map, shs->cbuf0.user_buffer, shs->cbuf0.buffer_size);
2270 }
2271
2272 upload_ubo_surf_state(ice, cbuf, upload_size);
2273 }
2274
2275 /**
2276 * The pipe->set_shader_buffers() driver hook.
2277 *
2278 * This binds SSBOs and ABOs. Unfortunately, we need to stream out
2279 * SURFACE_STATE here, as the buffer offset may change each time.
2280 */
2281 static void
2282 iris_set_shader_buffers(struct pipe_context *ctx,
2283 enum pipe_shader_type p_stage,
2284 unsigned start_slot, unsigned count,
2285 const struct pipe_shader_buffer *buffers)
2286 {
2287 struct iris_context *ice = (struct iris_context *) ctx;
2288 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2289 gl_shader_stage stage = stage_from_pipe(p_stage);
2290 struct iris_shader_state *shs = &ice->state.shaders[stage];
2291
2292 for (unsigned i = 0; i < count; i++) {
2293 if (buffers && buffers[i].buffer) {
2294 const struct pipe_shader_buffer *buffer = &buffers[i];
2295 struct iris_resource *res = (void *) buffer->buffer;
2296 pipe_resource_reference(&shs->ssbo[start_slot + i], &res->base);
2297
2298 res->bind_history |= PIPE_BIND_SHADER_BUFFER;
2299
2300 // XXX: these are not retained forever, use a separate uploader?
2301 void *map =
2302 upload_state(ice->state.surface_uploader,
2303 &shs->ssbo_surface_state[start_slot + i],
2304 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2305 if (!unlikely(map)) {
2306 pipe_resource_reference(&shs->ssbo[start_slot + i], NULL);
2307 return;
2308 }
2309
2310 struct iris_bo *surf_state_bo =
2311 iris_resource_bo(shs->ssbo_surface_state[start_slot + i].res);
2312 shs->ssbo_surface_state[start_slot + i].offset +=
2313 iris_bo_offset_from_base_address(surf_state_bo);
2314
2315 isl_buffer_fill_state(&screen->isl_dev, map,
2316 .address =
2317 res->bo->gtt_offset + buffer->buffer_offset,
2318 .size_B =
2319 MIN2(buffer->buffer_size,
2320 res->bo->size - buffer->buffer_offset),
2321 .format = ISL_FORMAT_RAW,
2322 .stride_B = 1,
2323 .mocs = MOCS_WB);
2324 } else {
2325 pipe_resource_reference(&shs->ssbo[start_slot + i], NULL);
2326 pipe_resource_reference(&shs->ssbo_surface_state[start_slot + i].res,
2327 NULL);
2328 }
2329 }
2330
2331 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2332 }
2333
2334 static void
2335 iris_delete_state(struct pipe_context *ctx, void *state)
2336 {
2337 free(state);
2338 }
2339
2340 /**
2341 * The pipe->set_vertex_buffers() driver hook.
2342 *
2343 * This translates pipe_vertex_buffer to our 3DSTATE_VERTEX_BUFFERS packet.
2344 */
2345 static void
2346 iris_set_vertex_buffers(struct pipe_context *ctx,
2347 unsigned start_slot, unsigned count,
2348 const struct pipe_vertex_buffer *buffers)
2349 {
2350 struct iris_context *ice = (struct iris_context *) ctx;
2351 struct iris_genx_state *genx = ice->state.genx;
2352
2353 ice->state.bound_vertex_buffers &= ~u_bit_consecutive64(start_slot, count);
2354
2355 for (unsigned i = 0; i < count; i++) {
2356 const struct pipe_vertex_buffer *buffer = buffers ? &buffers[i] : NULL;
2357 struct iris_vertex_buffer_state *state =
2358 &genx->vertex_buffers[start_slot + i];
2359
2360 if (!buffer) {
2361 pipe_resource_reference(&state->resource, NULL);
2362 continue;
2363 }
2364
2365 assert(!buffer->is_user_buffer);
2366
2367 ice->state.bound_vertex_buffers |= 1ull << (start_slot + i);
2368
2369 pipe_resource_reference(&state->resource, buffer->buffer.resource);
2370 struct iris_resource *res = (void *) state->resource;
2371
2372 if (res)
2373 res->bind_history |= PIPE_BIND_VERTEX_BUFFER;
2374
2375 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
2376 vb.VertexBufferIndex = start_slot + i;
2377 vb.MOCS = MOCS_WB;
2378 vb.AddressModifyEnable = true;
2379 vb.BufferPitch = buffer->stride;
2380 if (res) {
2381 vb.BufferSize = res->bo->size;
2382 vb.BufferStartingAddress =
2383 ro_bo(NULL, res->bo->gtt_offset + (int) buffer->buffer_offset);
2384 } else {
2385 vb.NullVertexBuffer = true;
2386 }
2387 }
2388 }
2389
2390 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
2391 }
2392
2393 /**
2394 * Gallium CSO for vertex elements.
2395 */
2396 struct iris_vertex_element_state {
2397 uint32_t vertex_elements[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
2398 uint32_t vf_instancing[33 * GENX(3DSTATE_VF_INSTANCING_length)];
2399 unsigned count;
2400 };
2401
2402 /**
2403 * The pipe->create_vertex_elements() driver hook.
2404 *
2405 * This translates pipe_vertex_element to our 3DSTATE_VERTEX_ELEMENTS
2406 * and 3DSTATE_VF_INSTANCING commands. SGVs are handled at draw time.
2407 */
2408 static void *
2409 iris_create_vertex_elements(struct pipe_context *ctx,
2410 unsigned count,
2411 const struct pipe_vertex_element *state)
2412 {
2413 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2414 const struct gen_device_info *devinfo = &screen->devinfo;
2415 struct iris_vertex_element_state *cso =
2416 malloc(sizeof(struct iris_vertex_element_state));
2417
2418 cso->count = count;
2419
2420 /* TODO:
2421 * - create edge flag one
2422 * - create SGV ones
2423 * - if those are necessary, use count + 1/2/3... OR in the length
2424 */
2425 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS), cso->vertex_elements, ve) {
2426 ve.DWordLength =
2427 1 + GENX(VERTEX_ELEMENT_STATE_length) * MAX2(count, 1) - 2;
2428 }
2429
2430 uint32_t *ve_pack_dest = &cso->vertex_elements[1];
2431 uint32_t *vfi_pack_dest = cso->vf_instancing;
2432
2433 if (count == 0) {
2434 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
2435 ve.Valid = true;
2436 ve.SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT;
2437 ve.Component0Control = VFCOMP_STORE_0;
2438 ve.Component1Control = VFCOMP_STORE_0;
2439 ve.Component2Control = VFCOMP_STORE_0;
2440 ve.Component3Control = VFCOMP_STORE_1_FP;
2441 }
2442
2443 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
2444 }
2445 }
2446
2447 for (int i = 0; i < count; i++) {
2448 const struct iris_format_info fmt =
2449 iris_format_for_usage(devinfo, state[i].src_format, 0);
2450 unsigned comp[4] = { VFCOMP_STORE_SRC, VFCOMP_STORE_SRC,
2451 VFCOMP_STORE_SRC, VFCOMP_STORE_SRC };
2452
2453 switch (isl_format_get_num_channels(fmt.fmt)) {
2454 case 0: comp[0] = VFCOMP_STORE_0;
2455 case 1: comp[1] = VFCOMP_STORE_0;
2456 case 2: comp[2] = VFCOMP_STORE_0;
2457 case 3:
2458 comp[3] = isl_format_has_int_channel(fmt.fmt) ? VFCOMP_STORE_1_INT
2459 : VFCOMP_STORE_1_FP;
2460 break;
2461 }
2462 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
2463 ve.VertexBufferIndex = state[i].vertex_buffer_index;
2464 ve.Valid = true;
2465 ve.SourceElementOffset = state[i].src_offset;
2466 ve.SourceElementFormat = fmt.fmt;
2467 ve.Component0Control = comp[0];
2468 ve.Component1Control = comp[1];
2469 ve.Component2Control = comp[2];
2470 ve.Component3Control = comp[3];
2471 }
2472
2473 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
2474 vi.VertexElementIndex = i;
2475 vi.InstancingEnable = state[i].instance_divisor > 0;
2476 vi.InstanceDataStepRate = state[i].instance_divisor;
2477 }
2478
2479 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
2480 vfi_pack_dest += GENX(3DSTATE_VF_INSTANCING_length);
2481 }
2482
2483 return cso;
2484 }
2485
2486 /**
2487 * The pipe->bind_vertex_elements_state() driver hook.
2488 */
2489 static void
2490 iris_bind_vertex_elements_state(struct pipe_context *ctx, void *state)
2491 {
2492 struct iris_context *ice = (struct iris_context *) ctx;
2493 struct iris_vertex_element_state *old_cso = ice->state.cso_vertex_elements;
2494 struct iris_vertex_element_state *new_cso = state;
2495
2496 /* 3DSTATE_VF_SGVs overrides the last VE, so if the count is changing,
2497 * we need to re-emit it to ensure we're overriding the right one.
2498 */
2499 if (new_cso && cso_changed(count))
2500 ice->state.dirty |= IRIS_DIRTY_VF_SGVS;
2501
2502 ice->state.cso_vertex_elements = state;
2503 ice->state.dirty |= IRIS_DIRTY_VERTEX_ELEMENTS;
2504 }
2505
2506 /**
2507 * The pipe->create_stream_output_target() driver hook.
2508 *
2509 * "Target" here refers to a destination buffer. We translate this into
2510 * a 3DSTATE_SO_BUFFER packet. We can handle most fields, but don't yet
2511 * know which buffer this represents, or whether we ought to zero the
2512 * write-offsets, or append. Those are handled in the set() hook.
2513 */
2514 static struct pipe_stream_output_target *
2515 iris_create_stream_output_target(struct pipe_context *ctx,
2516 struct pipe_resource *p_res,
2517 unsigned buffer_offset,
2518 unsigned buffer_size)
2519 {
2520 struct iris_resource *res = (void *) p_res;
2521 struct iris_stream_output_target *cso = calloc(1, sizeof(*cso));
2522 if (!cso)
2523 return NULL;
2524
2525 res->bind_history |= PIPE_BIND_STREAM_OUTPUT;
2526
2527 pipe_reference_init(&cso->base.reference, 1);
2528 pipe_resource_reference(&cso->base.buffer, p_res);
2529 cso->base.buffer_offset = buffer_offset;
2530 cso->base.buffer_size = buffer_size;
2531 cso->base.context = ctx;
2532
2533 upload_state(ctx->stream_uploader, &cso->offset, sizeof(uint32_t), 4);
2534
2535 return &cso->base;
2536 }
2537
2538 static void
2539 iris_stream_output_target_destroy(struct pipe_context *ctx,
2540 struct pipe_stream_output_target *state)
2541 {
2542 struct iris_stream_output_target *cso = (void *) state;
2543
2544 pipe_resource_reference(&cso->base.buffer, NULL);
2545 pipe_resource_reference(&cso->offset.res, NULL);
2546
2547 free(cso);
2548 }
2549
2550 /**
2551 * The pipe->set_stream_output_targets() driver hook.
2552 *
2553 * At this point, we know which targets are bound to a particular index,
2554 * and also whether we want to append or start over. We can finish the
2555 * 3DSTATE_SO_BUFFER packets we started earlier.
2556 */
2557 static void
2558 iris_set_stream_output_targets(struct pipe_context *ctx,
2559 unsigned num_targets,
2560 struct pipe_stream_output_target **targets,
2561 const unsigned *offsets)
2562 {
2563 struct iris_context *ice = (struct iris_context *) ctx;
2564 struct iris_genx_state *genx = ice->state.genx;
2565 uint32_t *so_buffers = genx->so_buffers;
2566
2567 const bool active = num_targets > 0;
2568 if (ice->state.streamout_active != active) {
2569 ice->state.streamout_active = active;
2570 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
2571
2572 /* We only emit 3DSTATE_SO_DECL_LIST when streamout is active, because
2573 * it's a non-pipelined command. If we're switching streamout on, we
2574 * may have missed emitting it earlier, so do so now. (We're already
2575 * taking a stall to update 3DSTATE_SO_BUFFERS anyway...)
2576 */
2577 if (active)
2578 ice->state.dirty |= IRIS_DIRTY_SO_DECL_LIST;
2579 }
2580
2581 for (int i = 0; i < 4; i++) {
2582 pipe_so_target_reference(&ice->state.so_target[i],
2583 i < num_targets ? targets[i] : NULL);
2584 }
2585
2586 /* No need to update 3DSTATE_SO_BUFFER unless SOL is active. */
2587 if (!active)
2588 return;
2589
2590 for (unsigned i = 0; i < 4; i++,
2591 so_buffers += GENX(3DSTATE_SO_BUFFER_length)) {
2592
2593 if (i >= num_targets || !targets[i]) {
2594 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob)
2595 sob.SOBufferIndex = i;
2596 continue;
2597 }
2598
2599 struct iris_stream_output_target *tgt = (void *) targets[i];
2600 struct iris_resource *res = (void *) tgt->base.buffer;
2601
2602 /* Note that offsets[i] will either be 0, causing us to zero
2603 * the value in the buffer, or 0xFFFFFFFF, which happens to mean
2604 * "continue appending at the existing offset."
2605 */
2606 assert(offsets[i] == 0 || offsets[i] == 0xFFFFFFFF);
2607
2608 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob) {
2609 sob.SurfaceBaseAddress =
2610 rw_bo(NULL, res->bo->gtt_offset + tgt->base.buffer_offset);
2611 sob.SOBufferEnable = true;
2612 sob.StreamOffsetWriteEnable = true;
2613 sob.StreamOutputBufferOffsetAddressEnable = true;
2614 sob.MOCS = MOCS_WB; // XXX: MOCS
2615
2616 sob.SurfaceSize = MAX2(tgt->base.buffer_size / 4, 1) - 1;
2617
2618 sob.SOBufferIndex = i;
2619 sob.StreamOffset = offsets[i];
2620 sob.StreamOutputBufferOffsetAddress =
2621 rw_bo(NULL, iris_resource_bo(tgt->offset.res)->gtt_offset +
2622 tgt->offset.offset);
2623 }
2624 }
2625
2626 ice->state.dirty |= IRIS_DIRTY_SO_BUFFERS;
2627 }
2628
2629 /**
2630 * An iris-vtable helper for encoding the 3DSTATE_SO_DECL_LIST and
2631 * 3DSTATE_STREAMOUT packets.
2632 *
2633 * 3DSTATE_SO_DECL_LIST is a list of shader outputs we want the streamout
2634 * hardware to record. We can create it entirely based on the shader, with
2635 * no dynamic state dependencies.
2636 *
2637 * 3DSTATE_STREAMOUT is an annoying mix of shader-based information and
2638 * state-based settings. We capture the shader-related ones here, and merge
2639 * the rest in at draw time.
2640 */
2641 static uint32_t *
2642 iris_create_so_decl_list(const struct pipe_stream_output_info *info,
2643 const struct brw_vue_map *vue_map)
2644 {
2645 struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
2646 int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2647 int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2648 int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2649 int max_decls = 0;
2650 STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
2651
2652 memset(so_decl, 0, sizeof(so_decl));
2653
2654 /* Construct the list of SO_DECLs to be emitted. The formatting of the
2655 * command feels strange -- each dword pair contains a SO_DECL per stream.
2656 */
2657 for (unsigned i = 0; i < info->num_outputs; i++) {
2658 const struct pipe_stream_output *output = &info->output[i];
2659 const int buffer = output->output_buffer;
2660 const int varying = output->register_index;
2661 const unsigned stream_id = output->stream;
2662 assert(stream_id < MAX_VERTEX_STREAMS);
2663
2664 buffer_mask[stream_id] |= 1 << buffer;
2665
2666 assert(vue_map->varying_to_slot[varying] >= 0);
2667
2668 /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
2669 * array. Instead, it simply increments DstOffset for the following
2670 * input by the number of components that should be skipped.
2671 *
2672 * Our hardware is unusual in that it requires us to program SO_DECLs
2673 * for fake "hole" components, rather than simply taking the offset
2674 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
2675 * program as many size = 4 holes as we can, then a final hole to
2676 * accommodate the final 1, 2, or 3 remaining.
2677 */
2678 int skip_components = output->dst_offset - next_offset[buffer];
2679
2680 while (skip_components > 0) {
2681 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
2682 .HoleFlag = 1,
2683 .OutputBufferSlot = output->output_buffer,
2684 .ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
2685 };
2686 skip_components -= 4;
2687 }
2688
2689 next_offset[buffer] = output->dst_offset + output->num_components;
2690
2691 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
2692 .OutputBufferSlot = output->output_buffer,
2693 .RegisterIndex = vue_map->varying_to_slot[varying],
2694 .ComponentMask =
2695 ((1 << output->num_components) - 1) << output->start_component,
2696 };
2697
2698 if (decls[stream_id] > max_decls)
2699 max_decls = decls[stream_id];
2700 }
2701
2702 unsigned dwords = GENX(3DSTATE_STREAMOUT_length) + (3 + 2 * max_decls);
2703 uint32_t *map = ralloc_size(NULL, sizeof(uint32_t) * dwords);
2704 uint32_t *so_decl_map = map + GENX(3DSTATE_STREAMOUT_length);
2705
2706 iris_pack_command(GENX(3DSTATE_STREAMOUT), map, sol) {
2707 int urb_entry_read_offset = 0;
2708 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
2709 urb_entry_read_offset;
2710
2711 /* We always read the whole vertex. This could be reduced at some
2712 * point by reading less and offsetting the register index in the
2713 * SO_DECLs.
2714 */
2715 sol.Stream0VertexReadOffset = urb_entry_read_offset;
2716 sol.Stream0VertexReadLength = urb_entry_read_length - 1;
2717 sol.Stream1VertexReadOffset = urb_entry_read_offset;
2718 sol.Stream1VertexReadLength = urb_entry_read_length - 1;
2719 sol.Stream2VertexReadOffset = urb_entry_read_offset;
2720 sol.Stream2VertexReadLength = urb_entry_read_length - 1;
2721 sol.Stream3VertexReadOffset = urb_entry_read_offset;
2722 sol.Stream3VertexReadLength = urb_entry_read_length - 1;
2723
2724 /* Set buffer pitches; 0 means unbound. */
2725 sol.Buffer0SurfacePitch = 4 * info->stride[0];
2726 sol.Buffer1SurfacePitch = 4 * info->stride[1];
2727 sol.Buffer2SurfacePitch = 4 * info->stride[2];
2728 sol.Buffer3SurfacePitch = 4 * info->stride[3];
2729 }
2730
2731 iris_pack_command(GENX(3DSTATE_SO_DECL_LIST), so_decl_map, list) {
2732 list.DWordLength = 3 + 2 * max_decls - 2;
2733 list.StreamtoBufferSelects0 = buffer_mask[0];
2734 list.StreamtoBufferSelects1 = buffer_mask[1];
2735 list.StreamtoBufferSelects2 = buffer_mask[2];
2736 list.StreamtoBufferSelects3 = buffer_mask[3];
2737 list.NumEntries0 = decls[0];
2738 list.NumEntries1 = decls[1];
2739 list.NumEntries2 = decls[2];
2740 list.NumEntries3 = decls[3];
2741 }
2742
2743 for (int i = 0; i < max_decls; i++) {
2744 iris_pack_state(GENX(SO_DECL_ENTRY), so_decl_map + 3 + i * 2, entry) {
2745 entry.Stream0Decl = so_decl[0][i];
2746 entry.Stream1Decl = so_decl[1][i];
2747 entry.Stream2Decl = so_decl[2][i];
2748 entry.Stream3Decl = so_decl[3][i];
2749 }
2750 }
2751
2752 return map;
2753 }
2754
2755 static void
2756 iris_compute_sbe_urb_read_interval(uint64_t fs_input_slots,
2757 const struct brw_vue_map *last_vue_map,
2758 bool two_sided_color,
2759 unsigned *out_offset,
2760 unsigned *out_length)
2761 {
2762 /* The compiler computes the first URB slot without considering COL/BFC
2763 * swizzling (because it doesn't know whether it's enabled), so we need
2764 * to do that here too. This may result in a smaller offset, which
2765 * should be safe.
2766 */
2767 const unsigned first_slot =
2768 brw_compute_first_urb_slot_required(fs_input_slots, last_vue_map);
2769
2770 /* This becomes the URB read offset (counted in pairs of slots). */
2771 assert(first_slot % 2 == 0);
2772 *out_offset = first_slot / 2;
2773
2774 /* We need to adjust the inputs read to account for front/back color
2775 * swizzling, as it can make the URB length longer.
2776 */
2777 for (int c = 0; c <= 1; c++) {
2778 if (fs_input_slots & (VARYING_BIT_COL0 << c)) {
2779 /* If two sided color is enabled, the fragment shader's gl_Color
2780 * (COL0) input comes from either the gl_FrontColor (COL0) or
2781 * gl_BackColor (BFC0) input varyings. Mark BFC as used, too.
2782 */
2783 if (two_sided_color)
2784 fs_input_slots |= (VARYING_BIT_BFC0 << c);
2785
2786 /* If front color isn't written, we opt to give them back color
2787 * instead of an undefined value. Switch from COL to BFC.
2788 */
2789 if (last_vue_map->varying_to_slot[VARYING_SLOT_COL0 + c] == -1) {
2790 fs_input_slots &= ~(VARYING_BIT_COL0 << c);
2791 fs_input_slots |= (VARYING_BIT_BFC0 << c);
2792 }
2793 }
2794 }
2795
2796 /* Compute the minimum URB Read Length necessary for the FS inputs.
2797 *
2798 * From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
2799 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
2800 *
2801 * "This field should be set to the minimum length required to read the
2802 * maximum source attribute. The maximum source attribute is indicated
2803 * by the maximum value of the enabled Attribute # Source Attribute if
2804 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
2805 * enable is not set.
2806 * read_length = ceiling((max_source_attr + 1) / 2)
2807 *
2808 * [errata] Corruption/Hang possible if length programmed larger than
2809 * recommended"
2810 *
2811 * Similar text exists for Ivy Bridge.
2812 *
2813 * We find the last URB slot that's actually read by the FS.
2814 */
2815 unsigned last_read_slot = last_vue_map->num_slots - 1;
2816 while (last_read_slot > first_slot && !(fs_input_slots &
2817 (1ull << last_vue_map->slot_to_varying[last_read_slot])))
2818 --last_read_slot;
2819
2820 /* The URB read length is the difference of the two, counted in pairs. */
2821 *out_length = DIV_ROUND_UP(last_read_slot - first_slot + 1, 2);
2822 }
2823
2824 static void
2825 iris_emit_sbe_swiz(struct iris_batch *batch,
2826 const struct iris_context *ice,
2827 unsigned urb_read_offset,
2828 unsigned sprite_coord_enables)
2829 {
2830 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = {};
2831 const struct brw_wm_prog_data *wm_prog_data = (void *)
2832 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
2833 const struct brw_vue_map *vue_map = ice->shaders.last_vue_map;
2834 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
2835
2836 /* XXX: this should be generated when putting programs in place */
2837
2838 // XXX: raster->sprite_coord_enable
2839
2840 for (int fs_attr = 0; fs_attr < VARYING_SLOT_MAX; fs_attr++) {
2841 const int input_index = wm_prog_data->urb_setup[fs_attr];
2842 if (input_index < 0 || input_index >= 16)
2843 continue;
2844
2845 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr =
2846 &attr_overrides[input_index];
2847 int slot = vue_map->varying_to_slot[fs_attr];
2848
2849 /* Viewport and Layer are stored in the VUE header. We need to override
2850 * them to zero if earlier stages didn't write them, as GL requires that
2851 * they read back as zero when not explicitly set.
2852 */
2853 switch (fs_attr) {
2854 case VARYING_SLOT_VIEWPORT:
2855 case VARYING_SLOT_LAYER:
2856 attr->ComponentOverrideX = true;
2857 attr->ComponentOverrideW = true;
2858 attr->ConstantSource = CONST_0000;
2859
2860 if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
2861 attr->ComponentOverrideY = true;
2862 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
2863 attr->ComponentOverrideZ = true;
2864 continue;
2865
2866 case VARYING_SLOT_PRIMITIVE_ID:
2867 /* Override if the previous shader stage didn't write gl_PrimitiveID. */
2868 if (slot == -1) {
2869 attr->ComponentOverrideX = true;
2870 attr->ComponentOverrideY = true;
2871 attr->ComponentOverrideZ = true;
2872 attr->ComponentOverrideW = true;
2873 attr->ConstantSource = PRIM_ID;
2874 continue;
2875 }
2876
2877 default:
2878 break;
2879 }
2880
2881 if (sprite_coord_enables & (1 << input_index))
2882 continue;
2883
2884 /* If there was only a back color written but not front, use back
2885 * as the color instead of undefined.
2886 */
2887 if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
2888 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
2889 if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
2890 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
2891
2892 /* Not written by the previous stage - undefined. */
2893 if (slot == -1) {
2894 attr->ComponentOverrideX = true;
2895 attr->ComponentOverrideY = true;
2896 attr->ComponentOverrideZ = true;
2897 attr->ComponentOverrideW = true;
2898 attr->ConstantSource = CONST_0001_FLOAT;
2899 continue;
2900 }
2901
2902 /* Compute the location of the attribute relative to the read offset,
2903 * which is counted in 256-bit increments (two 128-bit VUE slots).
2904 */
2905 const int source_attr = slot - 2 * urb_read_offset;
2906 assert(source_attr >= 0 && source_attr <= 32);
2907 attr->SourceAttribute = source_attr;
2908
2909 /* If we are doing two-sided color, and the VUE slot following this one
2910 * represents a back-facing color, then we need to instruct the SF unit
2911 * to do back-facing swizzling.
2912 */
2913 if (cso_rast->light_twoside &&
2914 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
2915 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
2916 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
2917 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1)))
2918 attr->SwizzleSelect = INPUTATTR_FACING;
2919 }
2920
2921 iris_emit_cmd(batch, GENX(3DSTATE_SBE_SWIZ), sbes) {
2922 for (int i = 0; i < 16; i++)
2923 sbes.Attribute[i] = attr_overrides[i];
2924 }
2925 }
2926
2927 static unsigned
2928 iris_calculate_point_sprite_overrides(const struct brw_wm_prog_data *prog_data,
2929 const struct iris_rasterizer_state *cso)
2930 {
2931 unsigned overrides = 0;
2932
2933 if (prog_data->urb_setup[VARYING_SLOT_PNTC] != -1)
2934 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_PNTC];
2935
2936 for (int i = 0; i < 8; i++) {
2937 if ((cso->sprite_coord_enable & (1 << i)) &&
2938 prog_data->urb_setup[VARYING_SLOT_TEX0 + i] != -1)
2939 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_TEX0 + i];
2940 }
2941
2942 return overrides;
2943 }
2944
2945 static void
2946 iris_emit_sbe(struct iris_batch *batch, const struct iris_context *ice)
2947 {
2948 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
2949 const struct brw_wm_prog_data *wm_prog_data = (void *)
2950 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
2951 const struct shader_info *fs_info =
2952 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
2953
2954 unsigned urb_read_offset, urb_read_length;
2955 iris_compute_sbe_urb_read_interval(fs_info->inputs_read,
2956 ice->shaders.last_vue_map,
2957 cso_rast->light_twoside,
2958 &urb_read_offset, &urb_read_length);
2959
2960 unsigned sprite_coord_overrides =
2961 iris_calculate_point_sprite_overrides(wm_prog_data, cso_rast);
2962
2963 iris_emit_cmd(batch, GENX(3DSTATE_SBE), sbe) {
2964 sbe.AttributeSwizzleEnable = true;
2965 sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
2966 sbe.PointSpriteTextureCoordinateOrigin = cso_rast->sprite_coord_mode;
2967 sbe.VertexURBEntryReadOffset = urb_read_offset;
2968 sbe.VertexURBEntryReadLength = urb_read_length;
2969 sbe.ForceVertexURBEntryReadOffset = true;
2970 sbe.ForceVertexURBEntryReadLength = true;
2971 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
2972 sbe.PointSpriteTextureCoordinateEnable = sprite_coord_overrides;
2973
2974 for (int i = 0; i < 32; i++) {
2975 sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW;
2976 }
2977 }
2978
2979 iris_emit_sbe_swiz(batch, ice, urb_read_offset, sprite_coord_overrides);
2980 }
2981
2982 /* ------------------------------------------------------------------- */
2983
2984 /**
2985 * Populate VS program key fields based on the current state.
2986 */
2987 static void
2988 iris_populate_vs_key(const struct iris_context *ice,
2989 const struct shader_info *info,
2990 struct brw_vs_prog_key *key)
2991 {
2992 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
2993
2994 if (info->clip_distance_array_size == 0 &&
2995 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)))
2996 key->nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
2997 }
2998
2999 /**
3000 * Populate TCS program key fields based on the current state.
3001 */
3002 static void
3003 iris_populate_tcs_key(const struct iris_context *ice,
3004 struct brw_tcs_prog_key *key)
3005 {
3006 }
3007
3008 /**
3009 * Populate TES program key fields based on the current state.
3010 */
3011 static void
3012 iris_populate_tes_key(const struct iris_context *ice,
3013 struct brw_tes_prog_key *key)
3014 {
3015 }
3016
3017 /**
3018 * Populate GS program key fields based on the current state.
3019 */
3020 static void
3021 iris_populate_gs_key(const struct iris_context *ice,
3022 struct brw_gs_prog_key *key)
3023 {
3024 }
3025
3026 /**
3027 * Populate FS program key fields based on the current state.
3028 */
3029 static void
3030 iris_populate_fs_key(const struct iris_context *ice,
3031 struct brw_wm_prog_key *key)
3032 {
3033 /* XXX: dirty flags? */
3034 const struct pipe_framebuffer_state *fb = &ice->state.framebuffer;
3035 const struct iris_depth_stencil_alpha_state *zsa = ice->state.cso_zsa;
3036 const struct iris_rasterizer_state *rast = ice->state.cso_rast;
3037 const struct iris_blend_state *blend = ice->state.cso_blend;
3038
3039 key->nr_color_regions = fb->nr_cbufs;
3040
3041 key->clamp_fragment_color = rast->clamp_fragment_color;
3042
3043 key->replicate_alpha = fb->nr_cbufs > 1 &&
3044 (zsa->alpha.enabled || blend->alpha_to_coverage);
3045
3046 /* XXX: only bother if COL0/1 are read */
3047 key->flat_shade = rast->flatshade;
3048
3049 key->persample_interp = rast->force_persample_interp;
3050 key->multisample_fbo = rast->multisample && fb->samples > 1;
3051
3052 key->coherent_fb_fetch = true;
3053
3054 // XXX: uint64_t input_slots_valid; - for >16 inputs
3055
3056 // XXX: key->force_dual_color_blend for unigine
3057 // XXX: respect hint for high_quality_derivatives:1;
3058 }
3059
3060 static void
3061 iris_populate_cs_key(const struct iris_context *ice,
3062 struct brw_cs_prog_key *key)
3063 {
3064 }
3065
3066 #if 0
3067 // XXX: these need to go in INIT_THREAD_DISPATCH_FIELDS
3068 pkt.SamplerCount = \
3069 DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4); \
3070
3071 #endif
3072
3073 static uint64_t
3074 KSP(const struct iris_compiled_shader *shader)
3075 {
3076 struct iris_resource *res = (void *) shader->assembly.res;
3077 return iris_bo_offset_from_base_address(res->bo) + shader->assembly.offset;
3078 }
3079
3080 // Gen11 workaround table #2056 WABTPPrefetchDisable suggests to disable
3081 // prefetching of binding tables in A0 and B0 steppings. XXX: Revisit
3082 // this WA on C0 stepping.
3083
3084 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix, stage) \
3085 pkt.KernelStartPointer = KSP(shader); \
3086 pkt.BindingTableEntryCount = GEN_GEN == 11 ? 0 : \
3087 prog_data->binding_table.size_bytes / 4; \
3088 pkt.FloatingPointMode = prog_data->use_alt_mode; \
3089 \
3090 pkt.DispatchGRFStartRegisterForURBData = \
3091 prog_data->dispatch_grf_start_reg; \
3092 pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
3093 pkt.prefix##URBEntryReadOffset = 0; \
3094 \
3095 pkt.StatisticsEnable = true; \
3096 pkt.Enable = true; \
3097 \
3098 if (prog_data->total_scratch) { \
3099 uint32_t scratch_addr = \
3100 iris_get_scratch_space(ice, prog_data->total_scratch, stage); \
3101 pkt.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11; \
3102 pkt.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr); \
3103 }
3104
3105 /**
3106 * Encode most of 3DSTATE_VS based on the compiled shader.
3107 */
3108 static void
3109 iris_store_vs_state(struct iris_context *ice,
3110 const struct gen_device_info *devinfo,
3111 struct iris_compiled_shader *shader)
3112 {
3113 struct brw_stage_prog_data *prog_data = shader->prog_data;
3114 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3115
3116 iris_pack_command(GENX(3DSTATE_VS), shader->derived_data, vs) {
3117 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex, MESA_SHADER_VERTEX);
3118 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
3119 vs.SIMD8DispatchEnable = true;
3120 vs.UserClipDistanceCullTestEnableBitmask =
3121 vue_prog_data->cull_distance_mask;
3122 }
3123 }
3124
3125 /**
3126 * Encode most of 3DSTATE_HS based on the compiled shader.
3127 */
3128 static void
3129 iris_store_tcs_state(struct iris_context *ice,
3130 const struct gen_device_info *devinfo,
3131 struct iris_compiled_shader *shader)
3132 {
3133 struct brw_stage_prog_data *prog_data = shader->prog_data;
3134 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3135 struct brw_tcs_prog_data *tcs_prog_data = (void *) prog_data;
3136
3137 iris_pack_command(GENX(3DSTATE_HS), shader->derived_data, hs) {
3138 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex, MESA_SHADER_TESS_CTRL);
3139
3140 hs.InstanceCount = tcs_prog_data->instances - 1;
3141 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
3142 hs.IncludeVertexHandles = true;
3143 }
3144 }
3145
3146 /**
3147 * Encode 3DSTATE_TE and most of 3DSTATE_DS based on the compiled shader.
3148 */
3149 static void
3150 iris_store_tes_state(struct iris_context *ice,
3151 const struct gen_device_info *devinfo,
3152 struct iris_compiled_shader *shader)
3153 {
3154 struct brw_stage_prog_data *prog_data = shader->prog_data;
3155 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3156 struct brw_tes_prog_data *tes_prog_data = (void *) prog_data;
3157
3158 uint32_t *te_state = (void *) shader->derived_data;
3159 uint32_t *ds_state = te_state + GENX(3DSTATE_TE_length);
3160
3161 iris_pack_command(GENX(3DSTATE_TE), te_state, te) {
3162 te.Partitioning = tes_prog_data->partitioning;
3163 te.OutputTopology = tes_prog_data->output_topology;
3164 te.TEDomain = tes_prog_data->domain;
3165 te.TEEnable = true;
3166 te.MaximumTessellationFactorOdd = 63.0;
3167 te.MaximumTessellationFactorNotOdd = 64.0;
3168 }
3169
3170 iris_pack_command(GENX(3DSTATE_DS), ds_state, ds) {
3171 INIT_THREAD_DISPATCH_FIELDS(ds, Patch, MESA_SHADER_TESS_EVAL);
3172
3173 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
3174 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
3175 ds.ComputeWCoordinateEnable =
3176 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
3177
3178 ds.UserClipDistanceCullTestEnableBitmask =
3179 vue_prog_data->cull_distance_mask;
3180 }
3181
3182 }
3183
3184 /**
3185 * Encode most of 3DSTATE_GS based on the compiled shader.
3186 */
3187 static void
3188 iris_store_gs_state(struct iris_context *ice,
3189 const struct gen_device_info *devinfo,
3190 struct iris_compiled_shader *shader)
3191 {
3192 struct brw_stage_prog_data *prog_data = shader->prog_data;
3193 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3194 struct brw_gs_prog_data *gs_prog_data = (void *) prog_data;
3195
3196 iris_pack_command(GENX(3DSTATE_GS), shader->derived_data, gs) {
3197 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex, MESA_SHADER_GEOMETRY);
3198
3199 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
3200 gs.OutputTopology = gs_prog_data->output_topology;
3201 gs.ControlDataHeaderSize =
3202 gs_prog_data->control_data_header_size_hwords;
3203 gs.InstanceControl = gs_prog_data->invocations - 1;
3204 gs.DispatchMode = DISPATCH_MODE_SIMD8;
3205 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
3206 gs.ControlDataFormat = gs_prog_data->control_data_format;
3207 gs.ReorderMode = TRAILING;
3208 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
3209 gs.MaximumNumberofThreads =
3210 GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
3211 : (devinfo->max_gs_threads - 1);
3212
3213 if (gs_prog_data->static_vertex_count != -1) {
3214 gs.StaticOutput = true;
3215 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
3216 }
3217 gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
3218
3219 gs.UserClipDistanceCullTestEnableBitmask =
3220 vue_prog_data->cull_distance_mask;
3221
3222 const int urb_entry_write_offset = 1;
3223 const uint32_t urb_entry_output_length =
3224 DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
3225 urb_entry_write_offset;
3226
3227 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
3228 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
3229 }
3230 }
3231
3232 /**
3233 * Encode most of 3DSTATE_PS and 3DSTATE_PS_EXTRA based on the shader.
3234 */
3235 static void
3236 iris_store_fs_state(struct iris_context *ice,
3237 const struct gen_device_info *devinfo,
3238 struct iris_compiled_shader *shader)
3239 {
3240 struct brw_stage_prog_data *prog_data = shader->prog_data;
3241 struct brw_wm_prog_data *wm_prog_data = (void *) shader->prog_data;
3242
3243 uint32_t *ps_state = (void *) shader->derived_data;
3244 uint32_t *psx_state = ps_state + GENX(3DSTATE_PS_length);
3245
3246 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
3247 ps.VectorMaskEnable = true;
3248 //ps.SamplerCount = ...
3249 // XXX: WABTPPrefetchDisable, see above, drop at C0
3250 ps.BindingTableEntryCount = GEN_GEN == 11 ? 0 :
3251 prog_data->binding_table.size_bytes / 4;
3252 ps.FloatingPointMode = prog_data->use_alt_mode;
3253 ps.MaximumNumberofThreadsPerPSD = 64 - (GEN_GEN == 8 ? 2 : 1);
3254
3255 ps.PushConstantEnable = shader->num_system_values > 0 ||
3256 prog_data->ubo_ranges[0].length > 0;
3257
3258 /* From the documentation for this packet:
3259 * "If the PS kernel does not need the Position XY Offsets to
3260 * compute a Position Value, then this field should be programmed
3261 * to POSOFFSET_NONE."
3262 *
3263 * "SW Recommendation: If the PS kernel needs the Position Offsets
3264 * to compute a Position XY value, this field should match Position
3265 * ZW Interpolation Mode to ensure a consistent position.xyzw
3266 * computation."
3267 *
3268 * We only require XY sample offsets. So, this recommendation doesn't
3269 * look useful at the moment. We might need this in future.
3270 */
3271 ps.PositionXYOffsetSelect =
3272 wm_prog_data->uses_pos_offset ? POSOFFSET_SAMPLE : POSOFFSET_NONE;
3273 ps._8PixelDispatchEnable = wm_prog_data->dispatch_8;
3274 ps._16PixelDispatchEnable = wm_prog_data->dispatch_16;
3275 ps._32PixelDispatchEnable = wm_prog_data->dispatch_32;
3276
3277 // XXX: Disable SIMD32 with 16x MSAA
3278
3279 ps.DispatchGRFStartRegisterForConstantSetupData0 =
3280 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
3281 ps.DispatchGRFStartRegisterForConstantSetupData1 =
3282 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
3283 ps.DispatchGRFStartRegisterForConstantSetupData2 =
3284 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
3285
3286 ps.KernelStartPointer0 =
3287 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
3288 ps.KernelStartPointer1 =
3289 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
3290 ps.KernelStartPointer2 =
3291 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
3292
3293 if (prog_data->total_scratch) {
3294 uint32_t scratch_addr =
3295 iris_get_scratch_space(ice, prog_data->total_scratch,
3296 MESA_SHADER_FRAGMENT);
3297 ps.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
3298 ps.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr);
3299 }
3300 }
3301
3302 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
3303 psx.PixelShaderValid = true;
3304 psx.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
3305 // XXX: alpha test / alpha to coverage :/
3306 psx.PixelShaderKillsPixel = wm_prog_data->uses_kill ||
3307 wm_prog_data->uses_omask;
3308 psx.AttributeEnable = wm_prog_data->num_varying_inputs != 0;
3309 psx.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
3310 psx.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
3311 psx.PixelShaderIsPerSample = wm_prog_data->persample_dispatch;
3312
3313 if (wm_prog_data->uses_sample_mask) {
3314 /* TODO: conservative rasterization */
3315 if (wm_prog_data->post_depth_coverage)
3316 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
3317 else
3318 psx.InputCoverageMaskState = ICMS_NORMAL;
3319 }
3320
3321 psx.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
3322 psx.PixelShaderPullsBary = wm_prog_data->pulls_bary;
3323 psx.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
3324
3325 // XXX: UAV bit
3326 }
3327 }
3328
3329 /**
3330 * Compute the size of the derived data (shader command packets).
3331 *
3332 * This must match the data written by the iris_store_xs_state() functions.
3333 */
3334 static void
3335 iris_store_cs_state(struct iris_context *ice,
3336 const struct gen_device_info *devinfo,
3337 struct iris_compiled_shader *shader)
3338 {
3339 struct brw_stage_prog_data *prog_data = shader->prog_data;
3340 struct brw_cs_prog_data *cs_prog_data = (void *) shader->prog_data;
3341 void *map = shader->derived_data;
3342
3343 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), map, desc) {
3344 desc.KernelStartPointer = KSP(shader);
3345 desc.ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs;
3346 desc.NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads;
3347 desc.SharedLocalMemorySize =
3348 encode_slm_size(GEN_GEN, prog_data->total_shared);
3349 desc.BarrierEnable = cs_prog_data->uses_barrier;
3350 desc.CrossThreadConstantDataReadLength =
3351 cs_prog_data->push.cross_thread.regs;
3352 }
3353 }
3354
3355 static unsigned
3356 iris_derived_program_state_size(enum iris_program_cache_id cache_id)
3357 {
3358 assert(cache_id <= IRIS_CACHE_BLORP);
3359
3360 static const unsigned dwords[] = {
3361 [IRIS_CACHE_VS] = GENX(3DSTATE_VS_length),
3362 [IRIS_CACHE_TCS] = GENX(3DSTATE_HS_length),
3363 [IRIS_CACHE_TES] = GENX(3DSTATE_TE_length) + GENX(3DSTATE_DS_length),
3364 [IRIS_CACHE_GS] = GENX(3DSTATE_GS_length),
3365 [IRIS_CACHE_FS] =
3366 GENX(3DSTATE_PS_length) + GENX(3DSTATE_PS_EXTRA_length),
3367 [IRIS_CACHE_CS] = GENX(INTERFACE_DESCRIPTOR_DATA_length),
3368 [IRIS_CACHE_BLORP] = 0,
3369 };
3370
3371 return sizeof(uint32_t) * dwords[cache_id];
3372 }
3373
3374 /**
3375 * Create any state packets corresponding to the given shader stage
3376 * (i.e. 3DSTATE_VS) and save them as "derived data" in the shader variant.
3377 * This means that we can look up a program in the in-memory cache and
3378 * get most of the state packet without having to reconstruct it.
3379 */
3380 static void
3381 iris_store_derived_program_state(struct iris_context *ice,
3382 enum iris_program_cache_id cache_id,
3383 struct iris_compiled_shader *shader)
3384 {
3385 struct iris_screen *screen = (void *) ice->ctx.screen;
3386 const struct gen_device_info *devinfo = &screen->devinfo;
3387
3388 switch (cache_id) {
3389 case IRIS_CACHE_VS:
3390 iris_store_vs_state(ice, devinfo, shader);
3391 break;
3392 case IRIS_CACHE_TCS:
3393 iris_store_tcs_state(ice, devinfo, shader);
3394 break;
3395 case IRIS_CACHE_TES:
3396 iris_store_tes_state(ice, devinfo, shader);
3397 break;
3398 case IRIS_CACHE_GS:
3399 iris_store_gs_state(ice, devinfo, shader);
3400 break;
3401 case IRIS_CACHE_FS:
3402 iris_store_fs_state(ice, devinfo, shader);
3403 break;
3404 case IRIS_CACHE_CS:
3405 iris_store_cs_state(ice, devinfo, shader);
3406 case IRIS_CACHE_BLORP:
3407 break;
3408 default:
3409 break;
3410 }
3411 }
3412
3413 /* ------------------------------------------------------------------- */
3414
3415 /**
3416 * Configure the URB.
3417 *
3418 * XXX: write a real comment.
3419 */
3420 static void
3421 iris_upload_urb_config(struct iris_context *ice, struct iris_batch *batch)
3422 {
3423 const struct gen_device_info *devinfo = &batch->screen->devinfo;
3424 const unsigned push_size_kB = 32;
3425 unsigned entries[4];
3426 unsigned start[4];
3427 unsigned size[4];
3428
3429 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
3430 if (!ice->shaders.prog[i]) {
3431 size[i] = 1;
3432 } else {
3433 struct brw_vue_prog_data *vue_prog_data =
3434 (void *) ice->shaders.prog[i]->prog_data;
3435 size[i] = vue_prog_data->urb_entry_size;
3436 }
3437 assert(size[i] != 0);
3438 }
3439
3440 gen_get_urb_config(devinfo, 1024 * push_size_kB,
3441 1024 * ice->shaders.urb_size,
3442 ice->shaders.prog[MESA_SHADER_TESS_EVAL] != NULL,
3443 ice->shaders.prog[MESA_SHADER_GEOMETRY] != NULL,
3444 size, entries, start);
3445
3446 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
3447 iris_emit_cmd(batch, GENX(3DSTATE_URB_VS), urb) {
3448 urb._3DCommandSubOpcode += i;
3449 urb.VSURBStartingAddress = start[i];
3450 urb.VSURBEntryAllocationSize = size[i] - 1;
3451 urb.VSNumberofURBEntries = entries[i];
3452 }
3453 }
3454 }
3455
3456 static const uint32_t push_constant_opcodes[] = {
3457 [MESA_SHADER_VERTEX] = 21,
3458 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
3459 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
3460 [MESA_SHADER_GEOMETRY] = 22,
3461 [MESA_SHADER_FRAGMENT] = 23,
3462 [MESA_SHADER_COMPUTE] = 0,
3463 };
3464
3465 static uint32_t
3466 use_null_surface(struct iris_batch *batch, struct iris_context *ice)
3467 {
3468 struct iris_bo *state_bo = iris_resource_bo(ice->state.unbound_tex.res);
3469
3470 iris_use_pinned_bo(batch, state_bo, false);
3471
3472 return ice->state.unbound_tex.offset;
3473 }
3474
3475 static uint32_t
3476 use_null_fb_surface(struct iris_batch *batch, struct iris_context *ice)
3477 {
3478 /* If set_framebuffer_state() was never called, fall back to 1x1x1 */
3479 if (!ice->state.null_fb.res)
3480 return use_null_surface(batch, ice);
3481
3482 struct iris_bo *state_bo = iris_resource_bo(ice->state.null_fb.res);
3483
3484 iris_use_pinned_bo(batch, state_bo, false);
3485
3486 return ice->state.null_fb.offset;
3487 }
3488
3489 /**
3490 * Add a surface to the validation list, as well as the buffer containing
3491 * the corresponding SURFACE_STATE.
3492 *
3493 * Returns the binding table entry (offset to SURFACE_STATE).
3494 */
3495 static uint32_t
3496 use_surface(struct iris_batch *batch,
3497 struct pipe_surface *p_surf,
3498 bool writeable)
3499 {
3500 struct iris_surface *surf = (void *) p_surf;
3501
3502 iris_use_pinned_bo(batch, iris_resource_bo(p_surf->texture), writeable);
3503 iris_use_pinned_bo(batch, iris_resource_bo(surf->surface_state.res), false);
3504
3505 return surf->surface_state.offset;
3506 }
3507
3508 static uint32_t
3509 use_sampler_view(struct iris_batch *batch, struct iris_sampler_view *isv)
3510 {
3511 iris_use_pinned_bo(batch, isv->res->bo, false);
3512 iris_use_pinned_bo(batch, iris_resource_bo(isv->surface_state.res), false);
3513
3514 return isv->surface_state.offset;
3515 }
3516
3517 static uint32_t
3518 use_const_buffer(struct iris_batch *batch,
3519 struct iris_context *ice,
3520 struct iris_const_buffer *cbuf)
3521 {
3522 if (!cbuf->surface_state.res)
3523 return use_null_surface(batch, ice);
3524
3525 iris_use_pinned_bo(batch, iris_resource_bo(cbuf->data.res), false);
3526 iris_use_pinned_bo(batch, iris_resource_bo(cbuf->surface_state.res), false);
3527
3528 return cbuf->surface_state.offset;
3529 }
3530
3531 static uint32_t
3532 use_ssbo(struct iris_batch *batch, struct iris_context *ice,
3533 struct iris_shader_state *shs, int i)
3534 {
3535 if (!shs->ssbo[i])
3536 return use_null_surface(batch, ice);
3537
3538 struct iris_state_ref *surf_state = &shs->ssbo_surface_state[i];
3539
3540 iris_use_pinned_bo(batch, iris_resource_bo(shs->ssbo[i]), true);
3541 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false);
3542
3543 return surf_state->offset;
3544 }
3545
3546 static uint32_t
3547 use_image(struct iris_batch *batch, struct iris_context *ice,
3548 struct iris_shader_state *shs, int i)
3549 {
3550 if (!shs->image[i].res)
3551 return use_null_surface(batch, ice);
3552
3553 struct iris_state_ref *surf_state = &shs->image[i].surface_state;
3554
3555 iris_use_pinned_bo(batch, iris_resource_bo(shs->image[i].res),
3556 shs->image[i].access & PIPE_IMAGE_ACCESS_WRITE);
3557 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false);
3558
3559 return surf_state->offset;
3560 }
3561
3562 #define push_bt_entry(addr) \
3563 assert(addr >= binder_addr); \
3564 assert(s < prog_data->binding_table.size_bytes / sizeof(uint32_t)); \
3565 if (!pin_only) bt_map[s++] = (addr) - binder_addr;
3566
3567 #define bt_assert(section, exists) \
3568 if (!pin_only) assert(prog_data->binding_table.section == \
3569 (exists) ? s : 0xd0d0d0d0)
3570
3571 /**
3572 * Populate the binding table for a given shader stage.
3573 *
3574 * This fills out the table of pointers to surfaces required by the shader,
3575 * and also adds those buffers to the validation list so the kernel can make
3576 * resident before running our batch.
3577 */
3578 static void
3579 iris_populate_binding_table(struct iris_context *ice,
3580 struct iris_batch *batch,
3581 gl_shader_stage stage,
3582 bool pin_only)
3583 {
3584 const struct iris_binder *binder = &ice->state.binder;
3585 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3586 if (!shader)
3587 return;
3588
3589 UNUSED struct brw_stage_prog_data *prog_data = shader->prog_data;
3590 struct iris_shader_state *shs = &ice->state.shaders[stage];
3591 uint32_t binder_addr = binder->bo->gtt_offset;
3592
3593 //struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
3594 uint32_t *bt_map = binder->map + binder->bt_offset[stage];
3595 int s = 0;
3596
3597 const struct shader_info *info = iris_get_shader_info(ice, stage);
3598 if (!info) {
3599 /* TCS passthrough doesn't need a binding table. */
3600 assert(stage == MESA_SHADER_TESS_CTRL);
3601 return;
3602 }
3603
3604 if (stage == MESA_SHADER_COMPUTE) {
3605 /* surface for gl_NumWorkGroups */
3606 struct iris_state_ref *grid_data = &ice->state.grid_size;
3607 struct iris_state_ref *grid_state = &ice->state.grid_surf_state;
3608 iris_use_pinned_bo(batch, iris_resource_bo(grid_data->res), false);
3609 iris_use_pinned_bo(batch, iris_resource_bo(grid_state->res), false);
3610 push_bt_entry(grid_state->offset);
3611 }
3612
3613 if (stage == MESA_SHADER_FRAGMENT) {
3614 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
3615 /* Note that cso_fb->nr_cbufs == fs_key->nr_color_regions. */
3616 if (cso_fb->nr_cbufs) {
3617 for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
3618 uint32_t addr =
3619 cso_fb->cbufs[i] ? use_surface(batch, cso_fb->cbufs[i], true)
3620 : use_null_fb_surface(batch, ice);
3621 push_bt_entry(addr);
3622 }
3623 } else {
3624 uint32_t addr = use_null_fb_surface(batch, ice);
3625 push_bt_entry(addr);
3626 }
3627 }
3628
3629 bt_assert(texture_start, info->num_textures > 0);
3630
3631 for (int i = 0; i < info->num_textures; i++) {
3632 struct iris_sampler_view *view = shs->textures[i];
3633 uint32_t addr = view ? use_sampler_view(batch, view)
3634 : use_null_surface(batch, ice);
3635 push_bt_entry(addr);
3636 }
3637
3638 bt_assert(image_start, info->num_images > 0);
3639
3640 for (int i = 0; i < info->num_images; i++) {
3641 uint32_t addr = use_image(batch, ice, shs, i);
3642 push_bt_entry(addr);
3643 }
3644
3645 const int num_ubos = iris_get_shader_num_ubos(ice, stage);
3646
3647 bt_assert(ubo_start, num_ubos > 0);
3648
3649 for (int i = 0; i < num_ubos; i++) {
3650 uint32_t addr = use_const_buffer(batch, ice, &shs->constbuf[i]);
3651 push_bt_entry(addr);
3652 }
3653
3654 bt_assert(ssbo_start, info->num_abos + info->num_ssbos > 0);
3655
3656 /* XXX: st is wasting 16 binding table slots for ABOs. Should add a cap
3657 * for changing nir_lower_atomics_to_ssbos setting and buffer_base offset
3658 * in st_atom_storagebuf.c so it'll compact them into one range, with
3659 * SSBOs starting at info->num_abos. Ideally it'd reset num_abos to 0 too
3660 */
3661 if (info->num_abos + info->num_ssbos > 0) {
3662 for (int i = 0; i < IRIS_MAX_ABOS + info->num_ssbos; i++) {
3663 uint32_t addr = use_ssbo(batch, ice, shs, i);
3664 push_bt_entry(addr);
3665 }
3666 }
3667
3668 #if 0
3669 // XXX: not implemented yet
3670 bt_assert(plane_start[1], ...);
3671 bt_assert(plane_start[2], ...);
3672 #endif
3673 }
3674
3675 static void
3676 iris_use_optional_res(struct iris_batch *batch,
3677 struct pipe_resource *res,
3678 bool writeable)
3679 {
3680 if (res) {
3681 struct iris_bo *bo = iris_resource_bo(res);
3682 iris_use_pinned_bo(batch, bo, writeable);
3683 }
3684 }
3685
3686 /* ------------------------------------------------------------------- */
3687
3688 /**
3689 * Pin any BOs which were installed by a previous batch, and restored
3690 * via the hardware logical context mechanism.
3691 *
3692 * We don't need to re-emit all state every batch - the hardware context
3693 * mechanism will save and restore it for us. This includes pointers to
3694 * various BOs...which won't exist unless we ask the kernel to pin them
3695 * by adding them to the validation list.
3696 *
3697 * We can skip buffers if we've re-emitted those packets, as we're
3698 * overwriting those stale pointers with new ones, and don't actually
3699 * refer to the old BOs.
3700 */
3701 static void
3702 iris_restore_render_saved_bos(struct iris_context *ice,
3703 struct iris_batch *batch,
3704 const struct pipe_draw_info *draw)
3705 {
3706 struct iris_genx_state *genx = ice->state.genx;
3707
3708 // XXX: whack IRIS_SHADER_DIRTY_BINDING_TABLE on new batch
3709
3710 const uint64_t clean = ~ice->state.dirty;
3711
3712 if (clean & IRIS_DIRTY_CC_VIEWPORT) {
3713 iris_use_optional_res(batch, ice->state.last_res.cc_vp, false);
3714 }
3715
3716 if (clean & IRIS_DIRTY_SF_CL_VIEWPORT) {
3717 iris_use_optional_res(batch, ice->state.last_res.sf_cl_vp, false);
3718 }
3719
3720 if (clean & IRIS_DIRTY_BLEND_STATE) {
3721 iris_use_optional_res(batch, ice->state.last_res.blend, false);
3722 }
3723
3724 if (clean & IRIS_DIRTY_COLOR_CALC_STATE) {
3725 iris_use_optional_res(batch, ice->state.last_res.color_calc, false);
3726 }
3727
3728 if (clean & IRIS_DIRTY_SCISSOR_RECT) {
3729 iris_use_optional_res(batch, ice->state.last_res.scissor, false);
3730 }
3731
3732 if (ice->state.streamout_active && (clean & IRIS_DIRTY_SO_BUFFERS)) {
3733 for (int i = 0; i < 4; i++) {
3734 struct iris_stream_output_target *tgt =
3735 (void *) ice->state.so_target[i];
3736 if (tgt) {
3737 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
3738 true);
3739 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
3740 true);
3741 }
3742 }
3743 }
3744
3745 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3746 if (!(clean & (IRIS_DIRTY_CONSTANTS_VS << stage)))
3747 continue;
3748
3749 struct iris_shader_state *shs = &ice->state.shaders[stage];
3750 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3751
3752 if (!shader)
3753 continue;
3754
3755 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
3756
3757 for (int i = 0; i < 4; i++) {
3758 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
3759
3760 if (range->length == 0)
3761 continue;
3762
3763 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
3764 struct iris_resource *res = (void *) cbuf->data.res;
3765
3766 if (res)
3767 iris_use_pinned_bo(batch, res->bo, false);
3768 else
3769 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
3770 }
3771 }
3772
3773 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3774 if (clean & (IRIS_DIRTY_BINDINGS_VS << stage)) {
3775 /* Re-pin any buffers referred to by the binding table. */
3776 iris_populate_binding_table(ice, batch, stage, true);
3777 }
3778 }
3779
3780 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3781 struct iris_shader_state *shs = &ice->state.shaders[stage];
3782 struct pipe_resource *res = shs->sampler_table.res;
3783 if (res)
3784 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
3785 }
3786
3787 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3788 if (clean & (IRIS_DIRTY_VS << stage)) {
3789 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3790 if (shader) {
3791 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
3792 iris_use_pinned_bo(batch, bo, false);
3793 }
3794
3795 // XXX: scratch buffer
3796 }
3797 }
3798
3799 if (clean & IRIS_DIRTY_DEPTH_BUFFER) {
3800 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
3801
3802 if (cso_fb->zsbuf) {
3803 struct iris_resource *zres, *sres;
3804 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
3805 &zres, &sres);
3806 // XXX: might not be writable...
3807 if (zres)
3808 iris_use_pinned_bo(batch, zres->bo, true);
3809 if (sres)
3810 iris_use_pinned_bo(batch, sres->bo, true);
3811 }
3812 }
3813
3814 if (draw->index_size == 0 && ice->state.last_res.index_buffer) {
3815 /* This draw didn't emit a new index buffer, so we are inheriting the
3816 * older index buffer. This draw didn't need it, but future ones may.
3817 */
3818 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
3819 iris_use_pinned_bo(batch, bo, false);
3820 }
3821
3822 if (clean & IRIS_DIRTY_VERTEX_BUFFERS) {
3823 uint64_t bound = ice->state.bound_vertex_buffers;
3824 while (bound) {
3825 const int i = u_bit_scan64(&bound);
3826 struct pipe_resource *res = genx->vertex_buffers[i].resource;
3827 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
3828 }
3829 }
3830 }
3831
3832 static void
3833 iris_restore_compute_saved_bos(struct iris_context *ice,
3834 struct iris_batch *batch,
3835 const struct pipe_grid_info *grid)
3836 {
3837 const uint64_t clean = ~ice->state.dirty;
3838
3839 const int stage = MESA_SHADER_COMPUTE;
3840 struct iris_shader_state *shs = &ice->state.shaders[stage];
3841
3842 if (clean & IRIS_DIRTY_CONSTANTS_CS) {
3843 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3844
3845 if (shader) {
3846 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
3847 const struct brw_ubo_range *range = &prog_data->ubo_ranges[0];
3848
3849 if (range->length > 0) {
3850 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
3851 struct iris_resource *res = (void *) cbuf->data.res;
3852
3853 if (res)
3854 iris_use_pinned_bo(batch, res->bo, false);
3855 else
3856 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
3857 }
3858 }
3859 }
3860
3861 if (clean & IRIS_DIRTY_BINDINGS_CS) {
3862 /* Re-pin any buffers referred to by the binding table. */
3863 iris_populate_binding_table(ice, batch, stage, true);
3864 }
3865
3866 struct pipe_resource *sampler_res = shs->sampler_table.res;
3867 if (sampler_res)
3868 iris_use_pinned_bo(batch, iris_resource_bo(sampler_res), false);
3869
3870 if (clean & IRIS_DIRTY_CS) {
3871 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3872 if (shader) {
3873 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
3874 iris_use_pinned_bo(batch, bo, false);
3875 }
3876
3877 // XXX: scratch buffer
3878 }
3879 }
3880
3881 /**
3882 * Possibly emit STATE_BASE_ADDRESS to update Surface State Base Address.
3883 */
3884 static void
3885 iris_update_surface_base_address(struct iris_batch *batch,
3886 struct iris_binder *binder)
3887 {
3888 if (batch->last_surface_base_address == binder->bo->gtt_offset)
3889 return;
3890
3891 flush_for_state_base_change(batch);
3892
3893 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
3894 // XXX: sba.SurfaceStateMemoryObjectControlState = MOCS_WB;
3895 sba.SurfaceStateBaseAddressModifyEnable = true;
3896 sba.SurfaceStateBaseAddress = ro_bo(binder->bo, 0);
3897 }
3898
3899 batch->last_surface_base_address = binder->bo->gtt_offset;
3900 }
3901
3902 static void
3903 iris_upload_dirty_render_state(struct iris_context *ice,
3904 struct iris_batch *batch,
3905 const struct pipe_draw_info *draw)
3906 {
3907 const uint64_t dirty = ice->state.dirty;
3908
3909 if (!(dirty & IRIS_ALL_DIRTY_FOR_RENDER))
3910 return;
3911
3912 struct iris_genx_state *genx = ice->state.genx;
3913 struct iris_binder *binder = &ice->state.binder;
3914 struct brw_wm_prog_data *wm_prog_data = (void *)
3915 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3916
3917 if (dirty & IRIS_DIRTY_CC_VIEWPORT) {
3918 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3919 uint32_t cc_vp_address;
3920
3921 /* XXX: could avoid streaming for depth_clip [0,1] case. */
3922 uint32_t *cc_vp_map =
3923 stream_state(batch, ice->state.dynamic_uploader,
3924 &ice->state.last_res.cc_vp,
3925 4 * ice->state.num_viewports *
3926 GENX(CC_VIEWPORT_length), 32, &cc_vp_address);
3927 for (int i = 0; i < ice->state.num_viewports; i++) {
3928 float zmin, zmax;
3929 util_viewport_zmin_zmax(&ice->state.viewports[i],
3930 cso_rast->clip_halfz, &zmin, &zmax);
3931 if (cso_rast->depth_clip_near)
3932 zmin = 0.0;
3933 if (cso_rast->depth_clip_far)
3934 zmax = 1.0;
3935
3936 iris_pack_state(GENX(CC_VIEWPORT), cc_vp_map, ccv) {
3937 ccv.MinimumDepth = zmin;
3938 ccv.MaximumDepth = zmax;
3939 }
3940
3941 cc_vp_map += GENX(CC_VIEWPORT_length);
3942 }
3943
3944 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
3945 ptr.CCViewportPointer = cc_vp_address;
3946 }
3947 }
3948
3949 if (dirty & IRIS_DIRTY_SF_CL_VIEWPORT) {
3950 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
3951 uint32_t sf_cl_vp_address;
3952 uint32_t *vp_map =
3953 stream_state(batch, ice->state.dynamic_uploader,
3954 &ice->state.last_res.sf_cl_vp,
3955 4 * ice->state.num_viewports *
3956 GENX(SF_CLIP_VIEWPORT_length), 64, &sf_cl_vp_address);
3957
3958 for (unsigned i = 0; i < ice->state.num_viewports; i++) {
3959 const struct pipe_viewport_state *state = &ice->state.viewports[i];
3960 float gb_xmin, gb_xmax, gb_ymin, gb_ymax;
3961
3962 float vp_xmin = viewport_extent(state, 0, -1.0f);
3963 float vp_xmax = viewport_extent(state, 0, 1.0f);
3964 float vp_ymin = viewport_extent(state, 1, -1.0f);
3965 float vp_ymax = viewport_extent(state, 1, 1.0f);
3966
3967 calculate_guardband_size(cso_fb->width, cso_fb->height,
3968 state->scale[0], state->scale[1],
3969 state->translate[0], state->translate[1],
3970 &gb_xmin, &gb_xmax, &gb_ymin, &gb_ymax);
3971
3972 iris_pack_state(GENX(SF_CLIP_VIEWPORT), vp_map, vp) {
3973 vp.ViewportMatrixElementm00 = state->scale[0];
3974 vp.ViewportMatrixElementm11 = state->scale[1];
3975 vp.ViewportMatrixElementm22 = state->scale[2];
3976 vp.ViewportMatrixElementm30 = state->translate[0];
3977 vp.ViewportMatrixElementm31 = state->translate[1];
3978 vp.ViewportMatrixElementm32 = state->translate[2];
3979 vp.XMinClipGuardband = gb_xmin;
3980 vp.XMaxClipGuardband = gb_xmax;
3981 vp.YMinClipGuardband = gb_ymin;
3982 vp.YMaxClipGuardband = gb_ymax;
3983 vp.XMinViewPort = MAX2(vp_xmin, 0);
3984 vp.XMaxViewPort = MIN2(vp_xmax, cso_fb->width) - 1;
3985 vp.YMinViewPort = MAX2(vp_ymin, 0);
3986 vp.YMaxViewPort = MIN2(vp_ymax, cso_fb->height) - 1;
3987 }
3988
3989 vp_map += GENX(SF_CLIP_VIEWPORT_length);
3990 }
3991
3992 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
3993 ptr.SFClipViewportPointer = sf_cl_vp_address;
3994 }
3995 }
3996
3997 /* XXX: L3 State */
3998
3999 // XXX: this is only flagged at setup, we assume a static configuration
4000 if (dirty & IRIS_DIRTY_URB) {
4001 iris_upload_urb_config(ice, batch);
4002 }
4003
4004 if (dirty & IRIS_DIRTY_BLEND_STATE) {
4005 struct iris_blend_state *cso_blend = ice->state.cso_blend;
4006 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4007 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
4008 const int header_dwords = GENX(BLEND_STATE_length);
4009 const int rt_dwords = cso_fb->nr_cbufs * GENX(BLEND_STATE_ENTRY_length);
4010 uint32_t blend_offset;
4011 uint32_t *blend_map =
4012 stream_state(batch, ice->state.dynamic_uploader,
4013 &ice->state.last_res.blend,
4014 4 * (header_dwords + rt_dwords), 64, &blend_offset);
4015
4016 uint32_t blend_state_header;
4017 iris_pack_state(GENX(BLEND_STATE), &blend_state_header, bs) {
4018 bs.AlphaTestEnable = cso_zsa->alpha.enabled;
4019 bs.AlphaTestFunction = translate_compare_func(cso_zsa->alpha.func);
4020 }
4021
4022 blend_map[0] = blend_state_header | cso_blend->blend_state[0];
4023 memcpy(&blend_map[1], &cso_blend->blend_state[1], 4 * rt_dwords);
4024
4025 iris_emit_cmd(batch, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
4026 ptr.BlendStatePointer = blend_offset;
4027 ptr.BlendStatePointerValid = true;
4028 }
4029 }
4030
4031 if (dirty & IRIS_DIRTY_COLOR_CALC_STATE) {
4032 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
4033 uint32_t cc_offset;
4034 void *cc_map =
4035 stream_state(batch, ice->state.dynamic_uploader,
4036 &ice->state.last_res.color_calc,
4037 sizeof(uint32_t) * GENX(COLOR_CALC_STATE_length),
4038 64, &cc_offset);
4039 iris_pack_state(GENX(COLOR_CALC_STATE), cc_map, cc) {
4040 cc.AlphaTestFormat = ALPHATEST_FLOAT32;
4041 cc.AlphaReferenceValueAsFLOAT32 = cso->alpha.ref_value;
4042 cc.BlendConstantColorRed = ice->state.blend_color.color[0];
4043 cc.BlendConstantColorGreen = ice->state.blend_color.color[1];
4044 cc.BlendConstantColorBlue = ice->state.blend_color.color[2];
4045 cc.BlendConstantColorAlpha = ice->state.blend_color.color[3];
4046 }
4047 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
4048 ptr.ColorCalcStatePointer = cc_offset;
4049 ptr.ColorCalcStatePointerValid = true;
4050 }
4051 }
4052
4053 /* Upload constants for TCS passthrough. */
4054 if ((dirty & IRIS_DIRTY_CONSTANTS_TCS) &&
4055 ice->shaders.prog[MESA_SHADER_TESS_CTRL] &&
4056 !ice->shaders.uncompiled[MESA_SHADER_TESS_CTRL]) {
4057 struct iris_compiled_shader *tes_shader = ice->shaders.prog[MESA_SHADER_TESS_EVAL];
4058 assert(tes_shader);
4059
4060 /* Passthrough always copies 2 vec4s, so when uploading data we ensure
4061 * it is in the right layout for TES.
4062 */
4063 float hdr[8] = {};
4064 struct brw_tes_prog_data *tes_prog_data = (void *) tes_shader->prog_data;
4065 switch (tes_prog_data->domain) {
4066 case BRW_TESS_DOMAIN_QUAD:
4067 for (int i = 0; i < 4; i++)
4068 hdr[7 - i] = ice->state.default_outer_level[i];
4069 hdr[3] = ice->state.default_inner_level[0];
4070 hdr[2] = ice->state.default_inner_level[1];
4071 break;
4072 case BRW_TESS_DOMAIN_TRI:
4073 for (int i = 0; i < 3; i++)
4074 hdr[7 - i] = ice->state.default_outer_level[i];
4075 hdr[4] = ice->state.default_inner_level[0];
4076 break;
4077 case BRW_TESS_DOMAIN_ISOLINE:
4078 hdr[7] = ice->state.default_outer_level[1];
4079 hdr[6] = ice->state.default_outer_level[0];
4080 break;
4081 }
4082
4083 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_TESS_CTRL];
4084 struct iris_const_buffer *cbuf = &shs->constbuf[0];
4085 u_upload_data(ice->ctx.const_uploader, 0, sizeof(hdr), 32,
4086 &hdr[0], &cbuf->data.offset,
4087 &cbuf->data.res);
4088 }
4089
4090 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4091 if (!(dirty & (IRIS_DIRTY_CONSTANTS_VS << stage)))
4092 continue;
4093
4094 struct iris_shader_state *shs = &ice->state.shaders[stage];
4095 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4096
4097 if (!shader)
4098 continue;
4099
4100 if (shs->cbuf0_needs_upload)
4101 upload_uniforms(ice, stage);
4102
4103 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4104
4105 iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_VS), pkt) {
4106 pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
4107 if (prog_data) {
4108 /* The Skylake PRM contains the following restriction:
4109 *
4110 * "The driver must ensure The following case does not occur
4111 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
4112 * buffer 3 read length equal to zero committed followed by a
4113 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
4114 * zero committed."
4115 *
4116 * To avoid this, we program the buffers in the highest slots.
4117 * This way, slot 0 is only used if slot 3 is also used.
4118 */
4119 int n = 3;
4120
4121 for (int i = 3; i >= 0; i--) {
4122 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4123
4124 if (range->length == 0)
4125 continue;
4126
4127 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
4128 struct iris_resource *res = (void *) cbuf->data.res;
4129
4130 assert(cbuf->data.offset % 32 == 0);
4131
4132 pkt.ConstantBody.ReadLength[n] = range->length;
4133 pkt.ConstantBody.Buffer[n] =
4134 res ? ro_bo(res->bo, range->start * 32 + cbuf->data.offset)
4135 : ro_bo(batch->screen->workaround_bo, 0);
4136 n--;
4137 }
4138 }
4139 }
4140 }
4141
4142 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4143 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4144 iris_emit_cmd(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), ptr) {
4145 ptr._3DCommandSubOpcode = 38 + stage;
4146 ptr.PointertoVSBindingTable = binder->bt_offset[stage];
4147 }
4148 }
4149 }
4150
4151 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4152 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4153 iris_populate_binding_table(ice, batch, stage, false);
4154 }
4155 }
4156
4157 if (ice->state.need_border_colors)
4158 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
4159
4160 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4161 if (!(dirty & (IRIS_DIRTY_SAMPLER_STATES_VS << stage)) ||
4162 !ice->shaders.prog[stage])
4163 continue;
4164
4165 struct iris_shader_state *shs = &ice->state.shaders[stage];
4166 struct pipe_resource *res = shs->sampler_table.res;
4167 if (res)
4168 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4169
4170 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
4171 ptr._3DCommandSubOpcode = 43 + stage;
4172 ptr.PointertoVSSamplerState = shs->sampler_table.offset;
4173 }
4174 }
4175
4176 if (dirty & IRIS_DIRTY_MULTISAMPLE) {
4177 iris_emit_cmd(batch, GENX(3DSTATE_MULTISAMPLE), ms) {
4178 ms.PixelLocation =
4179 ice->state.cso_rast->half_pixel_center ? CENTER : UL_CORNER;
4180 if (ice->state.framebuffer.samples > 0)
4181 ms.NumberofMultisamples = ffs(ice->state.framebuffer.samples) - 1;
4182 }
4183 }
4184
4185 if (dirty & IRIS_DIRTY_SAMPLE_MASK) {
4186 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_MASK), ms) {
4187 ms.SampleMask = MAX2(ice->state.sample_mask, 1);
4188 }
4189 }
4190
4191 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4192 if (!(dirty & (IRIS_DIRTY_VS << stage)))
4193 continue;
4194
4195 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4196
4197 if (shader) {
4198 struct iris_resource *cache = (void *) shader->assembly.res;
4199 iris_use_pinned_bo(batch, cache->bo, false);
4200 iris_batch_emit(batch, shader->derived_data,
4201 iris_derived_program_state_size(stage));
4202 } else {
4203 if (stage == MESA_SHADER_TESS_EVAL) {
4204 iris_emit_cmd(batch, GENX(3DSTATE_HS), hs);
4205 iris_emit_cmd(batch, GENX(3DSTATE_TE), te);
4206 iris_emit_cmd(batch, GENX(3DSTATE_DS), ds);
4207 } else if (stage == MESA_SHADER_GEOMETRY) {
4208 iris_emit_cmd(batch, GENX(3DSTATE_GS), gs);
4209 }
4210 }
4211 }
4212
4213 if (ice->state.streamout_active) {
4214 if (dirty & IRIS_DIRTY_SO_BUFFERS) {
4215 iris_batch_emit(batch, genx->so_buffers,
4216 4 * 4 * GENX(3DSTATE_SO_BUFFER_length));
4217 for (int i = 0; i < 4; i++) {
4218 struct iris_stream_output_target *tgt =
4219 (void *) ice->state.so_target[i];
4220 if (tgt) {
4221 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
4222 true);
4223 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
4224 true);
4225 }
4226 }
4227 }
4228
4229 if ((dirty & IRIS_DIRTY_SO_DECL_LIST) && ice->state.streamout) {
4230 uint32_t *decl_list =
4231 ice->state.streamout + GENX(3DSTATE_STREAMOUT_length);
4232 iris_batch_emit(batch, decl_list, 4 * ((decl_list[0] & 0xff) + 2));
4233 }
4234
4235 if (dirty & IRIS_DIRTY_STREAMOUT) {
4236 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4237
4238 uint32_t dynamic_sol[GENX(3DSTATE_STREAMOUT_length)];
4239 iris_pack_command(GENX(3DSTATE_STREAMOUT), dynamic_sol, sol) {
4240 sol.SOFunctionEnable = true;
4241 sol.SOStatisticsEnable = true;
4242
4243 sol.RenderingDisable = cso_rast->rasterizer_discard &&
4244 !ice->state.prims_generated_query_active;
4245 sol.ReorderMode = cso_rast->flatshade_first ? LEADING : TRAILING;
4246 }
4247
4248 assert(ice->state.streamout);
4249
4250 iris_emit_merge(batch, ice->state.streamout, dynamic_sol,
4251 GENX(3DSTATE_STREAMOUT_length));
4252 }
4253 } else {
4254 if (dirty & IRIS_DIRTY_STREAMOUT) {
4255 iris_emit_cmd(batch, GENX(3DSTATE_STREAMOUT), sol);
4256 }
4257 }
4258
4259 if (dirty & IRIS_DIRTY_CLIP) {
4260 struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4261 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4262
4263 uint32_t dynamic_clip[GENX(3DSTATE_CLIP_length)];
4264 iris_pack_command(GENX(3DSTATE_CLIP), &dynamic_clip, cl) {
4265 cl.StatisticsEnable = ice->state.statistics_counters_enabled;
4266 cl.ClipMode = cso_rast->rasterizer_discard ? CLIPMODE_REJECT_ALL
4267 : CLIPMODE_NORMAL;
4268 if (wm_prog_data->barycentric_interp_modes &
4269 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
4270 cl.NonPerspectiveBarycentricEnable = true;
4271
4272 cl.ForceZeroRTAIndexEnable = cso_fb->layers == 0;
4273 cl.MaximumVPIndex = ice->state.num_viewports - 1;
4274 }
4275 iris_emit_merge(batch, cso_rast->clip, dynamic_clip,
4276 ARRAY_SIZE(cso_rast->clip));
4277 }
4278
4279 if (dirty & IRIS_DIRTY_RASTER) {
4280 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4281 iris_batch_emit(batch, cso->raster, sizeof(cso->raster));
4282 iris_batch_emit(batch, cso->sf, sizeof(cso->sf));
4283
4284 }
4285
4286 /* XXX: FS program updates needs to flag IRIS_DIRTY_WM */
4287 if (dirty & IRIS_DIRTY_WM) {
4288 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4289 uint32_t dynamic_wm[GENX(3DSTATE_WM_length)];
4290
4291 iris_pack_command(GENX(3DSTATE_WM), &dynamic_wm, wm) {
4292 wm.StatisticsEnable = ice->state.statistics_counters_enabled;
4293
4294 wm.BarycentricInterpolationMode =
4295 wm_prog_data->barycentric_interp_modes;
4296
4297 if (wm_prog_data->early_fragment_tests)
4298 wm.EarlyDepthStencilControl = EDSC_PREPS;
4299 else if (wm_prog_data->has_side_effects)
4300 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
4301 }
4302 iris_emit_merge(batch, cso->wm, dynamic_wm, ARRAY_SIZE(cso->wm));
4303 }
4304
4305 if (dirty & IRIS_DIRTY_SBE) {
4306 iris_emit_sbe(batch, ice);
4307 }
4308
4309 if (dirty & IRIS_DIRTY_PS_BLEND) {
4310 struct iris_blend_state *cso_blend = ice->state.cso_blend;
4311 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
4312 uint32_t dynamic_pb[GENX(3DSTATE_PS_BLEND_length)];
4313 iris_pack_command(GENX(3DSTATE_PS_BLEND), &dynamic_pb, pb) {
4314 pb.HasWriteableRT = true; // XXX: comes from somewhere :(
4315 pb.AlphaTestEnable = cso_zsa->alpha.enabled;
4316 }
4317
4318 iris_emit_merge(batch, cso_blend->ps_blend, dynamic_pb,
4319 ARRAY_SIZE(cso_blend->ps_blend));
4320 }
4321
4322 if (dirty & IRIS_DIRTY_WM_DEPTH_STENCIL) {
4323 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
4324 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
4325
4326 uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
4327 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
4328 wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
4329 wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
4330 }
4331 iris_emit_merge(batch, cso->wmds, stencil_refs, ARRAY_SIZE(cso->wmds));
4332 }
4333
4334 if (dirty & IRIS_DIRTY_SCISSOR_RECT) {
4335 uint32_t scissor_offset =
4336 emit_state(batch, ice->state.dynamic_uploader,
4337 &ice->state.last_res.scissor,
4338 ice->state.scissors,
4339 sizeof(struct pipe_scissor_state) *
4340 ice->state.num_viewports, 32);
4341
4342 iris_emit_cmd(batch, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
4343 ptr.ScissorRectPointer = scissor_offset;
4344 }
4345 }
4346
4347 if (dirty & IRIS_DIRTY_DEPTH_BUFFER) {
4348 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4349 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
4350
4351 iris_batch_emit(batch, cso_z->packets, sizeof(cso_z->packets));
4352
4353 if (cso_fb->zsbuf) {
4354 struct iris_resource *zres, *sres;
4355 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
4356 &zres, &sres);
4357 // XXX: might not be writable...
4358 if (zres)
4359 iris_use_pinned_bo(batch, zres->bo, true);
4360 if (sres)
4361 iris_use_pinned_bo(batch, sres->bo, true);
4362 }
4363 }
4364
4365 if (dirty & IRIS_DIRTY_POLYGON_STIPPLE) {
4366 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
4367 for (int i = 0; i < 32; i++) {
4368 poly.PatternRow[i] = ice->state.poly_stipple.stipple[i];
4369 }
4370 }
4371 }
4372
4373 if (dirty & IRIS_DIRTY_LINE_STIPPLE) {
4374 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4375 iris_batch_emit(batch, cso->line_stipple, sizeof(cso->line_stipple));
4376 }
4377
4378 if (dirty & IRIS_DIRTY_VF_TOPOLOGY) {
4379 iris_emit_cmd(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
4380 topo.PrimitiveTopologyType =
4381 translate_prim_type(draw->mode, draw->vertices_per_patch);
4382 }
4383 }
4384
4385 if (dirty & IRIS_DIRTY_VERTEX_BUFFERS) {
4386 int count = util_bitcount64(ice->state.bound_vertex_buffers);
4387
4388 if (count) {
4389 /* The VF cache designers cut corners, and made the cache key's
4390 * <VertexBufferIndex, Memory Address> tuple only consider the bottom
4391 * 32 bits of the address. If you have two vertex buffers which get
4392 * placed exactly 4 GiB apart and use them in back-to-back draw calls,
4393 * you can get collisions (even within a single batch).
4394 *
4395 * So, we need to do a VF cache invalidate if the buffer for a VB
4396 * slot slot changes [48:32] address bits from the previous time.
4397 */
4398 unsigned flush_flags = 0;
4399
4400 uint64_t bound = ice->state.bound_vertex_buffers;
4401 while (bound) {
4402 const int i = u_bit_scan64(&bound);
4403 uint16_t high_bits = 0;
4404
4405 struct iris_resource *res =
4406 (void *) genx->vertex_buffers[i].resource;
4407 if (res) {
4408 iris_use_pinned_bo(batch, res->bo, false);
4409
4410 high_bits = res->bo->gtt_offset >> 32ull;
4411 if (high_bits != ice->state.last_vbo_high_bits[i]) {
4412 flush_flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
4413 ice->state.last_vbo_high_bits[i] = high_bits;
4414 }
4415
4416 /* If the buffer was written to by streamout, we may need
4417 * to stall so those writes land and become visible to the
4418 * vertex fetcher.
4419 *
4420 * TODO: This may stall more than necessary.
4421 */
4422 if (res->bind_history & PIPE_BIND_STREAM_OUTPUT)
4423 flush_flags |= PIPE_CONTROL_CS_STALL;
4424 }
4425 }
4426
4427 if (flush_flags)
4428 iris_emit_pipe_control_flush(batch, flush_flags);
4429
4430 const unsigned vb_dwords = GENX(VERTEX_BUFFER_STATE_length);
4431
4432 uint32_t *map =
4433 iris_get_command_space(batch, 4 * (1 + vb_dwords * count));
4434 _iris_pack_command(batch, GENX(3DSTATE_VERTEX_BUFFERS), map, vb) {
4435 vb.DWordLength = (vb_dwords * count + 1) - 2;
4436 }
4437 map += 1;
4438
4439 bound = ice->state.bound_vertex_buffers;
4440 while (bound) {
4441 const int i = u_bit_scan64(&bound);
4442 memcpy(map, genx->vertex_buffers[i].state,
4443 sizeof(uint32_t) * vb_dwords);
4444 map += vb_dwords;
4445 }
4446 }
4447 }
4448
4449 if (dirty & IRIS_DIRTY_VERTEX_ELEMENTS) {
4450 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
4451 const unsigned entries = MAX2(cso->count, 1);
4452 iris_batch_emit(batch, cso->vertex_elements, sizeof(uint32_t) *
4453 (1 + entries * GENX(VERTEX_ELEMENT_STATE_length)));
4454 iris_batch_emit(batch, cso->vf_instancing, sizeof(uint32_t) *
4455 entries * GENX(3DSTATE_VF_INSTANCING_length));
4456 }
4457
4458 if (dirty & IRIS_DIRTY_VF_SGVS) {
4459 const struct brw_vs_prog_data *vs_prog_data = (void *)
4460 ice->shaders.prog[MESA_SHADER_VERTEX]->prog_data;
4461 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
4462
4463 iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS), sgv) {
4464 if (vs_prog_data->uses_vertexid) {
4465 sgv.VertexIDEnable = true;
4466 sgv.VertexIDComponentNumber = 2;
4467 sgv.VertexIDElementOffset = cso->count;
4468 }
4469
4470 if (vs_prog_data->uses_instanceid) {
4471 sgv.InstanceIDEnable = true;
4472 sgv.InstanceIDComponentNumber = 3;
4473 sgv.InstanceIDElementOffset = cso->count;
4474 }
4475 }
4476 }
4477
4478 if (dirty & IRIS_DIRTY_VF) {
4479 iris_emit_cmd(batch, GENX(3DSTATE_VF), vf) {
4480 if (draw->primitive_restart) {
4481 vf.IndexedDrawCutIndexEnable = true;
4482 vf.CutIndex = draw->restart_index;
4483 }
4484 }
4485 }
4486
4487 // XXX: Gen8 - PMA fix
4488 }
4489
4490 static void
4491 iris_upload_render_state(struct iris_context *ice,
4492 struct iris_batch *batch,
4493 const struct pipe_draw_info *draw)
4494 {
4495 /* Always pin the binder. If we're emitting new binding table pointers,
4496 * we need it. If not, we're probably inheriting old tables via the
4497 * context, and need it anyway. Since true zero-bindings cases are
4498 * practically non-existent, just pin it and avoid last_res tracking.
4499 */
4500 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
4501
4502 if (!batch->contains_draw) {
4503 iris_restore_render_saved_bos(ice, batch, draw);
4504 batch->contains_draw = true;
4505 }
4506
4507 iris_upload_dirty_render_state(ice, batch, draw);
4508
4509 if (draw->index_size > 0) {
4510 unsigned offset;
4511
4512 if (draw->has_user_indices) {
4513 u_upload_data(ice->ctx.stream_uploader, 0,
4514 draw->count * draw->index_size, 4, draw->index.user,
4515 &offset, &ice->state.last_res.index_buffer);
4516 } else {
4517 struct iris_resource *res = (void *) draw->index.resource;
4518 res->bind_history |= PIPE_BIND_INDEX_BUFFER;
4519
4520 pipe_resource_reference(&ice->state.last_res.index_buffer,
4521 draw->index.resource);
4522 offset = 0;
4523 }
4524
4525 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
4526
4527 iris_emit_cmd(batch, GENX(3DSTATE_INDEX_BUFFER), ib) {
4528 ib.IndexFormat = draw->index_size >> 1;
4529 ib.MOCS = MOCS_WB;
4530 ib.BufferSize = bo->size;
4531 ib.BufferStartingAddress = ro_bo(bo, offset);
4532 }
4533
4534 /* The VF cache key only uses 32-bits, see vertex buffer comment above */
4535 uint16_t high_bits = bo->gtt_offset >> 32ull;
4536 if (high_bits != ice->state.last_index_bo_high_bits) {
4537 iris_emit_pipe_control_flush(batch, PIPE_CONTROL_VF_CACHE_INVALIDATE);
4538 ice->state.last_index_bo_high_bits = high_bits;
4539 }
4540 }
4541
4542 #define _3DPRIM_END_OFFSET 0x2420
4543 #define _3DPRIM_START_VERTEX 0x2430
4544 #define _3DPRIM_VERTEX_COUNT 0x2434
4545 #define _3DPRIM_INSTANCE_COUNT 0x2438
4546 #define _3DPRIM_START_INSTANCE 0x243C
4547 #define _3DPRIM_BASE_VERTEX 0x2440
4548
4549 if (draw->indirect) {
4550 /* We don't support this MultidrawIndirect. */
4551 assert(!draw->indirect->indirect_draw_count);
4552
4553 struct iris_bo *bo = iris_resource_bo(draw->indirect->buffer);
4554 assert(bo);
4555
4556 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4557 lrm.RegisterAddress = _3DPRIM_VERTEX_COUNT;
4558 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 0);
4559 }
4560 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4561 lrm.RegisterAddress = _3DPRIM_INSTANCE_COUNT;
4562 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 4);
4563 }
4564 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4565 lrm.RegisterAddress = _3DPRIM_START_VERTEX;
4566 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 8);
4567 }
4568 if (draw->index_size) {
4569 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4570 lrm.RegisterAddress = _3DPRIM_BASE_VERTEX;
4571 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
4572 }
4573 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4574 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
4575 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 16);
4576 }
4577 } else {
4578 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4579 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
4580 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
4581 }
4582 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
4583 lri.RegisterOffset = _3DPRIM_BASE_VERTEX;
4584 lri.DataDWord = 0;
4585 }
4586 }
4587 } else if (draw->count_from_stream_output) {
4588 struct iris_stream_output_target *so =
4589 (void *) draw->count_from_stream_output;
4590
4591 // XXX: avoid if possible
4592 iris_emit_pipe_control_flush(batch, PIPE_CONTROL_CS_STALL);
4593
4594 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4595 lrm.RegisterAddress = CS_GPR(0);
4596 lrm.MemoryAddress =
4597 ro_bo(iris_resource_bo(so->offset.res), so->offset.offset);
4598 }
4599 iris_math_div32_gpr0(ice, batch, so->stride);
4600 _iris_emit_lrr(batch, _3DPRIM_VERTEX_COUNT, CS_GPR(0));
4601
4602 _iris_emit_lri(batch, _3DPRIM_START_VERTEX, 0);
4603 _iris_emit_lri(batch, _3DPRIM_BASE_VERTEX, 0);
4604 _iris_emit_lri(batch, _3DPRIM_START_INSTANCE, 0);
4605 _iris_emit_lri(batch, _3DPRIM_INSTANCE_COUNT, draw->instance_count);
4606 }
4607
4608 iris_emit_cmd(batch, GENX(3DPRIMITIVE), prim) {
4609 prim.VertexAccessType = draw->index_size > 0 ? RANDOM : SEQUENTIAL;
4610 prim.PredicateEnable =
4611 ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT;
4612
4613 if (draw->indirect || draw->count_from_stream_output) {
4614 prim.IndirectParameterEnable = true;
4615 } else {
4616 prim.StartInstanceLocation = draw->start_instance;
4617 prim.InstanceCount = draw->instance_count;
4618 prim.VertexCountPerInstance = draw->count;
4619
4620 // XXX: this is probably bonkers.
4621 prim.StartVertexLocation = draw->start;
4622
4623 if (draw->index_size) {
4624 prim.BaseVertexLocation += draw->index_bias;
4625 } else {
4626 prim.StartVertexLocation += draw->index_bias;
4627 }
4628
4629 //prim.BaseVertexLocation = ...;
4630 }
4631 }
4632 }
4633
4634 static void
4635 iris_upload_compute_state(struct iris_context *ice,
4636 struct iris_batch *batch,
4637 const struct pipe_grid_info *grid)
4638 {
4639 const uint64_t dirty = ice->state.dirty;
4640 struct iris_screen *screen = batch->screen;
4641 const struct gen_device_info *devinfo = &screen->devinfo;
4642 struct iris_binder *binder = &ice->state.binder;
4643 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
4644 struct iris_compiled_shader *shader =
4645 ice->shaders.prog[MESA_SHADER_COMPUTE];
4646 struct brw_stage_prog_data *prog_data = shader->prog_data;
4647 struct brw_cs_prog_data *cs_prog_data = (void *) prog_data;
4648
4649 if ((dirty & IRIS_DIRTY_CONSTANTS_CS) && shs->cbuf0_needs_upload)
4650 upload_uniforms(ice, MESA_SHADER_COMPUTE);
4651
4652 if (dirty & IRIS_DIRTY_BINDINGS_CS)
4653 iris_populate_binding_table(ice, batch, MESA_SHADER_COMPUTE, false);
4654
4655 iris_use_optional_res(batch, shs->sampler_table.res, false);
4656 iris_use_pinned_bo(batch, iris_resource_bo(shader->assembly.res), false);
4657
4658 if (ice->state.need_border_colors)
4659 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
4660
4661 if (dirty & IRIS_DIRTY_CS) {
4662 /* The MEDIA_VFE_STATE documentation for Gen8+ says:
4663 *
4664 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
4665 * the only bits that are changed are scoreboard related: Scoreboard
4666 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard Delta. For
4667 * these scoreboard related states, a MEDIA_STATE_FLUSH is
4668 * sufficient."
4669 */
4670 iris_emit_pipe_control_flush(batch, PIPE_CONTROL_CS_STALL);
4671
4672 iris_emit_cmd(batch, GENX(MEDIA_VFE_STATE), vfe) {
4673 if (prog_data->total_scratch) {
4674 uint32_t scratch_addr =
4675 iris_get_scratch_space(ice, prog_data->total_scratch,
4676 MESA_SHADER_COMPUTE);
4677 vfe.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
4678 vfe.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr);
4679 }
4680
4681 vfe.MaximumNumberofThreads =
4682 devinfo->max_cs_threads * screen->subslice_total - 1;
4683 #if GEN_GEN < 11
4684 vfe.ResetGatewayTimer =
4685 Resettingrelativetimerandlatchingtheglobaltimestamp;
4686 #endif
4687
4688 vfe.NumberofURBEntries = 2;
4689 vfe.URBEntryAllocationSize = 2;
4690
4691 // XXX: Use Indirect Payload Storage?
4692 vfe.CURBEAllocationSize =
4693 ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
4694 cs_prog_data->push.cross_thread.regs, 2);
4695 }
4696 }
4697
4698 // XXX: hack iris_set_constant_buffers to upload these thread counts
4699 // XXX: along with regular uniforms for compute shaders, somehow.
4700
4701 uint32_t curbe_data_offset = 0;
4702 // TODO: Move subgroup-id into uniforms ubo so we can push uniforms
4703 assert(cs_prog_data->push.cross_thread.dwords == 0 &&
4704 cs_prog_data->push.per_thread.dwords == 1 &&
4705 cs_prog_data->base.param[0] == BRW_PARAM_BUILTIN_SUBGROUP_ID);
4706 struct pipe_resource *curbe_data_res = NULL;
4707 uint32_t *curbe_data_map =
4708 stream_state(batch, ice->state.dynamic_uploader, &curbe_data_res,
4709 ALIGN(cs_prog_data->push.total.size, 64), 64,
4710 &curbe_data_offset);
4711 assert(curbe_data_map);
4712 memset(curbe_data_map, 0x5a, ALIGN(cs_prog_data->push.total.size, 64));
4713 iris_fill_cs_push_const_buffer(cs_prog_data, curbe_data_map);
4714
4715 if (dirty & IRIS_DIRTY_CONSTANTS_CS) {
4716 iris_emit_cmd(batch, GENX(MEDIA_CURBE_LOAD), curbe) {
4717 curbe.CURBETotalDataLength =
4718 ALIGN(cs_prog_data->push.total.size, 64);
4719 curbe.CURBEDataStartAddress = curbe_data_offset;
4720 }
4721 }
4722
4723 if (dirty & (IRIS_DIRTY_SAMPLER_STATES_CS |
4724 IRIS_DIRTY_BINDINGS_CS |
4725 IRIS_DIRTY_CONSTANTS_CS |
4726 IRIS_DIRTY_CS)) {
4727 struct pipe_resource *desc_res = NULL;
4728 uint32_t desc[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
4729
4730 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), desc, idd) {
4731 idd.SamplerStatePointer = shs->sampler_table.offset;
4732 idd.BindingTablePointer = binder->bt_offset[MESA_SHADER_COMPUTE];
4733 }
4734
4735 for (int i = 0; i < GENX(INTERFACE_DESCRIPTOR_DATA_length); i++)
4736 desc[i] |= ((uint32_t *) shader->derived_data)[i];
4737
4738 iris_emit_cmd(batch, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
4739 load.InterfaceDescriptorTotalLength =
4740 GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
4741 load.InterfaceDescriptorDataStartAddress =
4742 emit_state(batch, ice->state.dynamic_uploader,
4743 &desc_res, desc, sizeof(desc), 32);
4744 }
4745
4746 pipe_resource_reference(&desc_res, NULL);
4747 }
4748
4749 uint32_t group_size = grid->block[0] * grid->block[1] * grid->block[2];
4750 uint32_t remainder = group_size & (cs_prog_data->simd_size - 1);
4751 uint32_t right_mask;
4752
4753 if (remainder > 0)
4754 right_mask = ~0u >> (32 - remainder);
4755 else
4756 right_mask = ~0u >> (32 - cs_prog_data->simd_size);
4757
4758 #define GPGPU_DISPATCHDIMX 0x2500
4759 #define GPGPU_DISPATCHDIMY 0x2504
4760 #define GPGPU_DISPATCHDIMZ 0x2508
4761
4762 if (grid->indirect) {
4763 struct iris_state_ref *grid_size = &ice->state.grid_size;
4764 struct iris_bo *bo = iris_resource_bo(grid_size->res);
4765 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4766 lrm.RegisterAddress = GPGPU_DISPATCHDIMX;
4767 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 0);
4768 }
4769 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4770 lrm.RegisterAddress = GPGPU_DISPATCHDIMY;
4771 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 4);
4772 }
4773 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4774 lrm.RegisterAddress = GPGPU_DISPATCHDIMZ;
4775 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 8);
4776 }
4777 }
4778
4779 iris_emit_cmd(batch, GENX(GPGPU_WALKER), ggw) {
4780 ggw.IndirectParameterEnable = grid->indirect != NULL;
4781 ggw.SIMDSize = cs_prog_data->simd_size / 16;
4782 ggw.ThreadDepthCounterMaximum = 0;
4783 ggw.ThreadHeightCounterMaximum = 0;
4784 ggw.ThreadWidthCounterMaximum = cs_prog_data->threads - 1;
4785 ggw.ThreadGroupIDXDimension = grid->grid[0];
4786 ggw.ThreadGroupIDYDimension = grid->grid[1];
4787 ggw.ThreadGroupIDZDimension = grid->grid[2];
4788 ggw.RightExecutionMask = right_mask;
4789 ggw.BottomExecutionMask = 0xffffffff;
4790 }
4791
4792 iris_emit_cmd(batch, GENX(MEDIA_STATE_FLUSH), msf);
4793
4794 if (!batch->contains_draw) {
4795 iris_restore_compute_saved_bos(ice, batch, grid);
4796 batch->contains_draw = true;
4797 }
4798 }
4799
4800 /**
4801 * State module teardown.
4802 */
4803 static void
4804 iris_destroy_state(struct iris_context *ice)
4805 {
4806 struct iris_genx_state *genx = ice->state.genx;
4807
4808 uint64_t bound_vbs = ice->state.bound_vertex_buffers;
4809 while (bound_vbs) {
4810 const int i = u_bit_scan64(&bound_vbs);
4811 pipe_resource_reference(&genx->vertex_buffers[i].resource, NULL);
4812 }
4813
4814 // XXX: unreference resources/surfaces.
4815 for (unsigned i = 0; i < ice->state.framebuffer.nr_cbufs; i++) {
4816 pipe_surface_reference(&ice->state.framebuffer.cbufs[i], NULL);
4817 }
4818 pipe_surface_reference(&ice->state.framebuffer.zsbuf, NULL);
4819
4820 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4821 struct iris_shader_state *shs = &ice->state.shaders[stage];
4822 pipe_resource_reference(&shs->sampler_table.res, NULL);
4823 }
4824 free(ice->state.genx);
4825
4826 pipe_resource_reference(&ice->state.unbound_tex.res, NULL);
4827
4828 pipe_resource_reference(&ice->state.last_res.cc_vp, NULL);
4829 pipe_resource_reference(&ice->state.last_res.sf_cl_vp, NULL);
4830 pipe_resource_reference(&ice->state.last_res.color_calc, NULL);
4831 pipe_resource_reference(&ice->state.last_res.scissor, NULL);
4832 pipe_resource_reference(&ice->state.last_res.blend, NULL);
4833 pipe_resource_reference(&ice->state.last_res.index_buffer, NULL);
4834 }
4835
4836 /* ------------------------------------------------------------------- */
4837
4838 static void
4839 iris_load_register_reg32(struct iris_batch *batch, uint32_t dst,
4840 uint32_t src)
4841 {
4842 _iris_emit_lrr(batch, dst, src);
4843 }
4844
4845 static void
4846 iris_load_register_reg64(struct iris_batch *batch, uint32_t dst,
4847 uint32_t src)
4848 {
4849 _iris_emit_lrr(batch, dst, src);
4850 _iris_emit_lrr(batch, dst + 4, src + 4);
4851 }
4852
4853 static void
4854 iris_load_register_imm32(struct iris_batch *batch, uint32_t reg,
4855 uint32_t val)
4856 {
4857 _iris_emit_lri(batch, reg, val);
4858 }
4859
4860 static void
4861 iris_load_register_imm64(struct iris_batch *batch, uint32_t reg,
4862 uint64_t val)
4863 {
4864 _iris_emit_lri(batch, reg + 0, val & 0xffffffff);
4865 _iris_emit_lri(batch, reg + 4, val >> 32);
4866 }
4867
4868 /**
4869 * Emit MI_LOAD_REGISTER_MEM to load a 32-bit MMIO register from a buffer.
4870 */
4871 static void
4872 iris_load_register_mem32(struct iris_batch *batch, uint32_t reg,
4873 struct iris_bo *bo, uint32_t offset)
4874 {
4875 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4876 lrm.RegisterAddress = reg;
4877 lrm.MemoryAddress = ro_bo(bo, offset);
4878 }
4879 }
4880
4881 /**
4882 * Load a 64-bit value from a buffer into a MMIO register via
4883 * two MI_LOAD_REGISTER_MEM commands.
4884 */
4885 static void
4886 iris_load_register_mem64(struct iris_batch *batch, uint32_t reg,
4887 struct iris_bo *bo, uint32_t offset)
4888 {
4889 iris_load_register_mem32(batch, reg + 0, bo, offset + 0);
4890 iris_load_register_mem32(batch, reg + 4, bo, offset + 4);
4891 }
4892
4893 static void
4894 iris_store_register_mem32(struct iris_batch *batch, uint32_t reg,
4895 struct iris_bo *bo, uint32_t offset,
4896 bool predicated)
4897 {
4898 iris_emit_cmd(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
4899 srm.RegisterAddress = reg;
4900 srm.MemoryAddress = rw_bo(bo, offset);
4901 srm.PredicateEnable = predicated;
4902 }
4903 }
4904
4905 static void
4906 iris_store_register_mem64(struct iris_batch *batch, uint32_t reg,
4907 struct iris_bo *bo, uint32_t offset,
4908 bool predicated)
4909 {
4910 iris_store_register_mem32(batch, reg + 0, bo, offset + 0, predicated);
4911 iris_store_register_mem32(batch, reg + 4, bo, offset + 4, predicated);
4912 }
4913
4914 static void
4915 iris_store_data_imm32(struct iris_batch *batch,
4916 struct iris_bo *bo, uint32_t offset,
4917 uint32_t imm)
4918 {
4919 iris_emit_cmd(batch, GENX(MI_STORE_DATA_IMM), sdi) {
4920 sdi.Address = rw_bo(bo, offset);
4921 sdi.ImmediateData = imm;
4922 }
4923 }
4924
4925 static void
4926 iris_store_data_imm64(struct iris_batch *batch,
4927 struct iris_bo *bo, uint32_t offset,
4928 uint64_t imm)
4929 {
4930 /* Can't use iris_emit_cmd because MI_STORE_DATA_IMM has a length of
4931 * 2 in genxml but it's actually variable length and we need 5 DWords.
4932 */
4933 void *map = iris_get_command_space(batch, 4 * 5);
4934 _iris_pack_command(batch, GENX(MI_STORE_DATA_IMM), map, sdi) {
4935 sdi.DWordLength = 5 - 2;
4936 sdi.Address = rw_bo(bo, offset);
4937 sdi.ImmediateData = imm;
4938 }
4939 }
4940
4941 static void
4942 iris_copy_mem_mem(struct iris_batch *batch,
4943 struct iris_bo *dst_bo, uint32_t dst_offset,
4944 struct iris_bo *src_bo, uint32_t src_offset,
4945 unsigned bytes)
4946 {
4947 /* MI_COPY_MEM_MEM operates on DWords. */
4948 assert(bytes % 4 == 0);
4949 assert(dst_offset % 4 == 0);
4950 assert(src_offset % 4 == 0);
4951
4952 for (unsigned i = 0; i < bytes; i += 4) {
4953 iris_emit_cmd(batch, GENX(MI_COPY_MEM_MEM), cp) {
4954 cp.DestinationMemoryAddress = rw_bo(dst_bo, dst_offset + i);
4955 cp.SourceMemoryAddress = ro_bo(src_bo, src_offset + i);
4956 }
4957 }
4958 }
4959
4960 /* ------------------------------------------------------------------- */
4961
4962 static unsigned
4963 flags_to_post_sync_op(uint32_t flags)
4964 {
4965 if (flags & PIPE_CONTROL_WRITE_IMMEDIATE)
4966 return WriteImmediateData;
4967
4968 if (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT)
4969 return WritePSDepthCount;
4970
4971 if (flags & PIPE_CONTROL_WRITE_TIMESTAMP)
4972 return WriteTimestamp;
4973
4974 return 0;
4975 }
4976
4977 /**
4978 * Do the given flags have a Post Sync or LRI Post Sync operation?
4979 */
4980 static enum pipe_control_flags
4981 get_post_sync_flags(enum pipe_control_flags flags)
4982 {
4983 flags &= PIPE_CONTROL_WRITE_IMMEDIATE |
4984 PIPE_CONTROL_WRITE_DEPTH_COUNT |
4985 PIPE_CONTROL_WRITE_TIMESTAMP |
4986 PIPE_CONTROL_LRI_POST_SYNC_OP;
4987
4988 /* Only one "Post Sync Op" is allowed, and it's mutually exclusive with
4989 * "LRI Post Sync Operation". So more than one bit set would be illegal.
4990 */
4991 assert(util_bitcount(flags) <= 1);
4992
4993 return flags;
4994 }
4995
4996 #define IS_COMPUTE_PIPELINE(batch) (batch->name == IRIS_BATCH_COMPUTE)
4997
4998 /**
4999 * Emit a series of PIPE_CONTROL commands, taking into account any
5000 * workarounds necessary to actually accomplish the caller's request.
5001 *
5002 * Unless otherwise noted, spec quotations in this function come from:
5003 *
5004 * Synchronization of the 3D Pipeline > PIPE_CONTROL Command > Programming
5005 * Restrictions for PIPE_CONTROL.
5006 *
5007 * You should not use this function directly. Use the helpers in
5008 * iris_pipe_control.c instead, which may split the pipe control further.
5009 */
5010 static void
5011 iris_emit_raw_pipe_control(struct iris_batch *batch, uint32_t flags,
5012 struct iris_bo *bo, uint32_t offset, uint64_t imm)
5013 {
5014 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
5015 enum pipe_control_flags post_sync_flags = get_post_sync_flags(flags);
5016 enum pipe_control_flags non_lri_post_sync_flags =
5017 post_sync_flags & ~PIPE_CONTROL_LRI_POST_SYNC_OP;
5018
5019 /* Recursive PIPE_CONTROL workarounds --------------------------------
5020 * (http://knowyourmeme.com/memes/xzibit-yo-dawg)
5021 *
5022 * We do these first because we want to look at the original operation,
5023 * rather than any workarounds we set.
5024 */
5025 if (GEN_GEN == 9 && (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE)) {
5026 /* The PIPE_CONTROL "VF Cache Invalidation Enable" bit description
5027 * lists several workarounds:
5028 *
5029 * "Project: SKL, KBL, BXT
5030 *
5031 * If the VF Cache Invalidation Enable is set to a 1 in a
5032 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields
5033 * sets to 0, with the VF Cache Invalidation Enable set to 0
5034 * needs to be sent prior to the PIPE_CONTROL with VF Cache
5035 * Invalidation Enable set to a 1."
5036 */
5037 iris_emit_raw_pipe_control(batch, 0, NULL, 0, 0);
5038 }
5039
5040 if (GEN_GEN == 9 && IS_COMPUTE_PIPELINE(batch) && post_sync_flags) {
5041 /* Project: SKL / Argument: LRI Post Sync Operation [23]
5042 *
5043 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
5044 * programmed prior to programming a PIPECONTROL command with "LRI
5045 * Post Sync Operation" in GPGPU mode of operation (i.e when
5046 * PIPELINE_SELECT command is set to GPGPU mode of operation)."
5047 *
5048 * The same text exists a few rows below for Post Sync Op.
5049 */
5050 iris_emit_raw_pipe_control(batch, PIPE_CONTROL_CS_STALL, bo, offset, imm);
5051 }
5052
5053 if (GEN_GEN == 10 && (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH)) {
5054 /* Cannonlake:
5055 * "Before sending a PIPE_CONTROL command with bit 12 set, SW must issue
5056 * another PIPE_CONTROL with Render Target Cache Flush Enable (bit 12)
5057 * = 0 and Pipe Control Flush Enable (bit 7) = 1"
5058 */
5059 iris_emit_raw_pipe_control(batch, PIPE_CONTROL_FLUSH_ENABLE, bo,
5060 offset, imm);
5061 }
5062
5063 /* "Flush Types" workarounds ---------------------------------------------
5064 * We do these now because they may add post-sync operations or CS stalls.
5065 */
5066
5067 if (GEN_GEN < 11 && flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) {
5068 /* Project: BDW, SKL+ (stopping at CNL) / Argument: VF Invalidate
5069 *
5070 * "'Post Sync Operation' must be enabled to 'Write Immediate Data' or
5071 * 'Write PS Depth Count' or 'Write Timestamp'."
5072 */
5073 if (!bo) {
5074 flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
5075 post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
5076 non_lri_post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
5077 bo = batch->screen->workaround_bo;
5078 }
5079 }
5080
5081 /* #1130 from Gen10 workarounds page:
5082 *
5083 * "Enable Depth Stall on every Post Sync Op if Render target Cache
5084 * Flush is not enabled in same PIPE CONTROL and Enable Pixel score
5085 * board stall if Render target cache flush is enabled."
5086 *
5087 * Applicable to CNL B0 and C0 steppings only.
5088 *
5089 * The wording here is unclear, and this workaround doesn't look anything
5090 * like the internal bug report recommendations, but leave it be for now...
5091 */
5092 if (GEN_GEN == 10) {
5093 if (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) {
5094 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
5095 } else if (flags & non_lri_post_sync_flags) {
5096 flags |= PIPE_CONTROL_DEPTH_STALL;
5097 }
5098 }
5099
5100 if (flags & PIPE_CONTROL_DEPTH_STALL) {
5101 /* From the PIPE_CONTROL instruction table, bit 13 (Depth Stall Enable):
5102 *
5103 * "This bit must be DISABLED for operations other than writing
5104 * PS_DEPTH_COUNT."
5105 *
5106 * This seems like nonsense. An Ivybridge workaround requires us to
5107 * emit a PIPE_CONTROL with a depth stall and write immediate post-sync
5108 * operation. Gen8+ requires us to emit depth stalls and depth cache
5109 * flushes together. So, it's hard to imagine this means anything other
5110 * than "we originally intended this to be used for PS_DEPTH_COUNT".
5111 *
5112 * We ignore the supposed restriction and do nothing.
5113 */
5114 }
5115
5116 if (flags & (PIPE_CONTROL_RENDER_TARGET_FLUSH |
5117 PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
5118 /* From the PIPE_CONTROL instruction table, bit 12 and bit 1:
5119 *
5120 * "This bit must be DISABLED for End-of-pipe (Read) fences,
5121 * PS_DEPTH_COUNT or TIMESTAMP queries."
5122 *
5123 * TODO: Implement end-of-pipe checking.
5124 */
5125 assert(!(post_sync_flags & (PIPE_CONTROL_WRITE_DEPTH_COUNT |
5126 PIPE_CONTROL_WRITE_TIMESTAMP)));
5127 }
5128
5129 if (GEN_GEN < 11 && (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
5130 /* From the PIPE_CONTROL instruction table, bit 1:
5131 *
5132 * "This bit is ignored if Depth Stall Enable is set.
5133 * Further, the render cache is not flushed even if Write Cache
5134 * Flush Enable bit is set."
5135 *
5136 * We assert that the caller doesn't do this combination, to try and
5137 * prevent mistakes. It shouldn't hurt the GPU, though.
5138 *
5139 * We skip this check on Gen11+ as the "Stall at Pixel Scoreboard"
5140 * and "Render Target Flush" combo is explicitly required for BTI
5141 * update workarounds.
5142 */
5143 assert(!(flags & (PIPE_CONTROL_DEPTH_STALL |
5144 PIPE_CONTROL_RENDER_TARGET_FLUSH)));
5145 }
5146
5147 /* PIPE_CONTROL page workarounds ------------------------------------- */
5148
5149 if (GEN_GEN <= 8 && (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE)) {
5150 /* From the PIPE_CONTROL page itself:
5151 *
5152 * "IVB, HSW, BDW
5153 * Restriction: Pipe_control with CS-stall bit set must be issued
5154 * before a pipe-control command that has the State Cache
5155 * Invalidate bit set."
5156 */
5157 flags |= PIPE_CONTROL_CS_STALL;
5158 }
5159
5160 if (flags & PIPE_CONTROL_FLUSH_LLC) {
5161 /* From the PIPE_CONTROL instruction table, bit 26 (Flush LLC):
5162 *
5163 * "Project: ALL
5164 * SW must always program Post-Sync Operation to "Write Immediate
5165 * Data" when Flush LLC is set."
5166 *
5167 * For now, we just require the caller to do it.
5168 */
5169 assert(flags & PIPE_CONTROL_WRITE_IMMEDIATE);
5170 }
5171
5172 /* "Post-Sync Operation" workarounds -------------------------------- */
5173
5174 /* Project: All / Argument: Global Snapshot Count Reset [19]
5175 *
5176 * "This bit must not be exercised on any product.
5177 * Requires stall bit ([20] of DW1) set."
5178 *
5179 * We don't use this, so we just assert that it isn't used. The
5180 * PIPE_CONTROL instruction page indicates that they intended this
5181 * as a debug feature and don't think it is useful in production,
5182 * but it may actually be usable, should we ever want to.
5183 */
5184 assert((flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) == 0);
5185
5186 if (flags & (PIPE_CONTROL_MEDIA_STATE_CLEAR |
5187 PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE)) {
5188 /* Project: All / Arguments:
5189 *
5190 * - Generic Media State Clear [16]
5191 * - Indirect State Pointers Disable [16]
5192 *
5193 * "Requires stall bit ([20] of DW1) set."
5194 *
5195 * Also, the PIPE_CONTROL instruction table, bit 16 (Generic Media
5196 * State Clear) says:
5197 *
5198 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
5199 * programmed prior to programming a PIPECONTROL command with "Media
5200 * State Clear" set in GPGPU mode of operation"
5201 *
5202 * This is a subset of the earlier rule, so there's nothing to do.
5203 */
5204 flags |= PIPE_CONTROL_CS_STALL;
5205 }
5206
5207 if (flags & PIPE_CONTROL_STORE_DATA_INDEX) {
5208 /* Project: All / Argument: Store Data Index
5209 *
5210 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
5211 * than '0'."
5212 *
5213 * For now, we just assert that the caller does this. We might want to
5214 * automatically add a write to the workaround BO...
5215 */
5216 assert(non_lri_post_sync_flags != 0);
5217 }
5218
5219 if (flags & PIPE_CONTROL_SYNC_GFDT) {
5220 /* Project: All / Argument: Sync GFDT
5221 *
5222 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
5223 * than '0' or 0x2520[13] must be set."
5224 *
5225 * For now, we just assert that the caller does this.
5226 */
5227 assert(non_lri_post_sync_flags != 0);
5228 }
5229
5230 if (flags & PIPE_CONTROL_TLB_INVALIDATE) {
5231 /* Project: IVB+ / Argument: TLB inv
5232 *
5233 * "Requires stall bit ([20] of DW1) set."
5234 *
5235 * Also, from the PIPE_CONTROL instruction table:
5236 *
5237 * "Project: SKL+
5238 * Post Sync Operation or CS stall must be set to ensure a TLB
5239 * invalidation occurs. Otherwise no cycle will occur to the TLB
5240 * cache to invalidate."
5241 *
5242 * This is not a subset of the earlier rule, so there's nothing to do.
5243 */
5244 flags |= PIPE_CONTROL_CS_STALL;
5245 }
5246
5247 if (GEN_GEN == 9 && devinfo->gt == 4) {
5248 /* TODO: The big Skylake GT4 post sync op workaround */
5249 }
5250
5251 /* "GPGPU specific workarounds" (both post-sync and flush) ------------ */
5252
5253 if (IS_COMPUTE_PIPELINE(batch)) {
5254 if (GEN_GEN >= 9 && (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE)) {
5255 /* Project: SKL+ / Argument: Tex Invalidate
5256 * "Requires stall bit ([20] of DW) set for all GPGPU Workloads."
5257 */
5258 flags |= PIPE_CONTROL_CS_STALL;
5259 }
5260
5261 if (GEN_GEN == 8 && (post_sync_flags ||
5262 (flags & (PIPE_CONTROL_NOTIFY_ENABLE |
5263 PIPE_CONTROL_DEPTH_STALL |
5264 PIPE_CONTROL_RENDER_TARGET_FLUSH |
5265 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
5266 PIPE_CONTROL_DATA_CACHE_FLUSH)))) {
5267 /* Project: BDW / Arguments:
5268 *
5269 * - LRI Post Sync Operation [23]
5270 * - Post Sync Op [15:14]
5271 * - Notify En [8]
5272 * - Depth Stall [13]
5273 * - Render Target Cache Flush [12]
5274 * - Depth Cache Flush [0]
5275 * - DC Flush Enable [5]
5276 *
5277 * "Requires stall bit ([20] of DW) set for all GPGPU and Media
5278 * Workloads."
5279 */
5280 flags |= PIPE_CONTROL_CS_STALL;
5281
5282 /* Also, from the PIPE_CONTROL instruction table, bit 20:
5283 *
5284 * "Project: BDW
5285 * This bit must be always set when PIPE_CONTROL command is
5286 * programmed by GPGPU and MEDIA workloads, except for the cases
5287 * when only Read Only Cache Invalidation bits are set (State
5288 * Cache Invalidation Enable, Instruction cache Invalidation
5289 * Enable, Texture Cache Invalidation Enable, Constant Cache
5290 * Invalidation Enable). This is to WA FFDOP CG issue, this WA
5291 * need not implemented when FF_DOP_CG is disable via "Fixed
5292 * Function DOP Clock Gate Disable" bit in RC_PSMI_CTRL register."
5293 *
5294 * It sounds like we could avoid CS stalls in some cases, but we
5295 * don't currently bother. This list isn't exactly the list above,
5296 * either...
5297 */
5298 }
5299 }
5300
5301 /* "Stall" workarounds ----------------------------------------------
5302 * These have to come after the earlier ones because we may have added
5303 * some additional CS stalls above.
5304 */
5305
5306 if (GEN_GEN < 9 && (flags & PIPE_CONTROL_CS_STALL)) {
5307 /* Project: PRE-SKL, VLV, CHV
5308 *
5309 * "[All Stepping][All SKUs]:
5310 *
5311 * One of the following must also be set:
5312 *
5313 * - Render Target Cache Flush Enable ([12] of DW1)
5314 * - Depth Cache Flush Enable ([0] of DW1)
5315 * - Stall at Pixel Scoreboard ([1] of DW1)
5316 * - Depth Stall ([13] of DW1)
5317 * - Post-Sync Operation ([13] of DW1)
5318 * - DC Flush Enable ([5] of DW1)"
5319 *
5320 * If we don't already have one of those bits set, we choose to add
5321 * "Stall at Pixel Scoreboard". Some of the other bits require a
5322 * CS stall as a workaround (see above), which would send us into
5323 * an infinite recursion of PIPE_CONTROLs. "Stall at Pixel Scoreboard"
5324 * appears to be safe, so we choose that.
5325 */
5326 const uint32_t wa_bits = PIPE_CONTROL_RENDER_TARGET_FLUSH |
5327 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
5328 PIPE_CONTROL_WRITE_IMMEDIATE |
5329 PIPE_CONTROL_WRITE_DEPTH_COUNT |
5330 PIPE_CONTROL_WRITE_TIMESTAMP |
5331 PIPE_CONTROL_STALL_AT_SCOREBOARD |
5332 PIPE_CONTROL_DEPTH_STALL |
5333 PIPE_CONTROL_DATA_CACHE_FLUSH;
5334 if (!(flags & wa_bits))
5335 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
5336 }
5337
5338 /* Emit --------------------------------------------------------------- */
5339
5340 iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
5341 pc.LRIPostSyncOperation = NoLRIOperation;
5342 pc.PipeControlFlushEnable = flags & PIPE_CONTROL_FLUSH_ENABLE;
5343 pc.DCFlushEnable = flags & PIPE_CONTROL_DATA_CACHE_FLUSH;
5344 pc.StoreDataIndex = 0;
5345 pc.CommandStreamerStallEnable = flags & PIPE_CONTROL_CS_STALL;
5346 pc.GlobalSnapshotCountReset =
5347 flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET;
5348 pc.TLBInvalidate = flags & PIPE_CONTROL_TLB_INVALIDATE;
5349 pc.GenericMediaStateClear = flags & PIPE_CONTROL_MEDIA_STATE_CLEAR;
5350 pc.StallAtPixelScoreboard = flags & PIPE_CONTROL_STALL_AT_SCOREBOARD;
5351 pc.RenderTargetCacheFlushEnable =
5352 flags & PIPE_CONTROL_RENDER_TARGET_FLUSH;
5353 pc.DepthCacheFlushEnable = flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH;
5354 pc.StateCacheInvalidationEnable =
5355 flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE;
5356 pc.VFCacheInvalidationEnable = flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
5357 pc.ConstantCacheInvalidationEnable =
5358 flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE;
5359 pc.PostSyncOperation = flags_to_post_sync_op(flags);
5360 pc.DepthStallEnable = flags & PIPE_CONTROL_DEPTH_STALL;
5361 pc.InstructionCacheInvalidateEnable =
5362 flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE;
5363 pc.NotifyEnable = flags & PIPE_CONTROL_NOTIFY_ENABLE;
5364 pc.IndirectStatePointersDisable =
5365 flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE;
5366 pc.TextureCacheInvalidationEnable =
5367 flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
5368 pc.Address = rw_bo(bo, offset);
5369 pc.ImmediateData = imm;
5370 }
5371 }
5372
5373 void
5374 genX(init_state)(struct iris_context *ice)
5375 {
5376 struct pipe_context *ctx = &ice->ctx;
5377 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
5378
5379 ctx->create_blend_state = iris_create_blend_state;
5380 ctx->create_depth_stencil_alpha_state = iris_create_zsa_state;
5381 ctx->create_rasterizer_state = iris_create_rasterizer_state;
5382 ctx->create_sampler_state = iris_create_sampler_state;
5383 ctx->create_sampler_view = iris_create_sampler_view;
5384 ctx->create_surface = iris_create_surface;
5385 ctx->create_vertex_elements_state = iris_create_vertex_elements;
5386 ctx->bind_blend_state = iris_bind_blend_state;
5387 ctx->bind_depth_stencil_alpha_state = iris_bind_zsa_state;
5388 ctx->bind_sampler_states = iris_bind_sampler_states;
5389 ctx->bind_rasterizer_state = iris_bind_rasterizer_state;
5390 ctx->bind_vertex_elements_state = iris_bind_vertex_elements_state;
5391 ctx->delete_blend_state = iris_delete_state;
5392 ctx->delete_depth_stencil_alpha_state = iris_delete_state;
5393 ctx->delete_rasterizer_state = iris_delete_state;
5394 ctx->delete_sampler_state = iris_delete_state;
5395 ctx->delete_vertex_elements_state = iris_delete_state;
5396 ctx->set_blend_color = iris_set_blend_color;
5397 ctx->set_clip_state = iris_set_clip_state;
5398 ctx->set_constant_buffer = iris_set_constant_buffer;
5399 ctx->set_shader_buffers = iris_set_shader_buffers;
5400 ctx->set_shader_images = iris_set_shader_images;
5401 ctx->set_sampler_views = iris_set_sampler_views;
5402 ctx->set_tess_state = iris_set_tess_state;
5403 ctx->set_framebuffer_state = iris_set_framebuffer_state;
5404 ctx->set_polygon_stipple = iris_set_polygon_stipple;
5405 ctx->set_sample_mask = iris_set_sample_mask;
5406 ctx->set_scissor_states = iris_set_scissor_states;
5407 ctx->set_stencil_ref = iris_set_stencil_ref;
5408 ctx->set_vertex_buffers = iris_set_vertex_buffers;
5409 ctx->set_viewport_states = iris_set_viewport_states;
5410 ctx->sampler_view_destroy = iris_sampler_view_destroy;
5411 ctx->surface_destroy = iris_surface_destroy;
5412 ctx->draw_vbo = iris_draw_vbo;
5413 ctx->launch_grid = iris_launch_grid;
5414 ctx->create_stream_output_target = iris_create_stream_output_target;
5415 ctx->stream_output_target_destroy = iris_stream_output_target_destroy;
5416 ctx->set_stream_output_targets = iris_set_stream_output_targets;
5417
5418 ice->vtbl.destroy_state = iris_destroy_state;
5419 ice->vtbl.init_render_context = iris_init_render_context;
5420 ice->vtbl.init_compute_context = iris_init_compute_context;
5421 ice->vtbl.upload_render_state = iris_upload_render_state;
5422 ice->vtbl.update_surface_base_address = iris_update_surface_base_address;
5423 ice->vtbl.upload_compute_state = iris_upload_compute_state;
5424 ice->vtbl.emit_raw_pipe_control = iris_emit_raw_pipe_control;
5425 ice->vtbl.load_register_reg32 = iris_load_register_reg32;
5426 ice->vtbl.load_register_reg64 = iris_load_register_reg64;
5427 ice->vtbl.load_register_imm32 = iris_load_register_imm32;
5428 ice->vtbl.load_register_imm64 = iris_load_register_imm64;
5429 ice->vtbl.load_register_mem32 = iris_load_register_mem32;
5430 ice->vtbl.load_register_mem64 = iris_load_register_mem64;
5431 ice->vtbl.store_register_mem32 = iris_store_register_mem32;
5432 ice->vtbl.store_register_mem64 = iris_store_register_mem64;
5433 ice->vtbl.store_data_imm32 = iris_store_data_imm32;
5434 ice->vtbl.store_data_imm64 = iris_store_data_imm64;
5435 ice->vtbl.copy_mem_mem = iris_copy_mem_mem;
5436 ice->vtbl.derived_program_state_size = iris_derived_program_state_size;
5437 ice->vtbl.store_derived_program_state = iris_store_derived_program_state;
5438 ice->vtbl.create_so_decl_list = iris_create_so_decl_list;
5439 ice->vtbl.populate_vs_key = iris_populate_vs_key;
5440 ice->vtbl.populate_tcs_key = iris_populate_tcs_key;
5441 ice->vtbl.populate_tes_key = iris_populate_tes_key;
5442 ice->vtbl.populate_gs_key = iris_populate_gs_key;
5443 ice->vtbl.populate_fs_key = iris_populate_fs_key;
5444 ice->vtbl.populate_cs_key = iris_populate_cs_key;
5445
5446 ice->state.dirty = ~0ull;
5447
5448 ice->state.statistics_counters_enabled = true;
5449
5450 ice->state.sample_mask = 0xffff;
5451 ice->state.num_viewports = 1;
5452 ice->state.genx = calloc(1, sizeof(struct iris_genx_state));
5453
5454 /* Make a 1x1x1 null surface for unbound textures */
5455 void *null_surf_map =
5456 upload_state(ice->state.surface_uploader, &ice->state.unbound_tex,
5457 4 * GENX(RENDER_SURFACE_STATE_length), 64);
5458 isl_null_fill_state(&screen->isl_dev, null_surf_map, isl_extent3d(1, 1, 1));
5459 ice->state.unbound_tex.offset +=
5460 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.unbound_tex.res));
5461
5462 /* Default all scissor rectangles to be empty regions. */
5463 for (int i = 0; i < IRIS_MAX_VIEWPORTS; i++) {
5464 ice->state.scissors[i] = (struct pipe_scissor_state) {
5465 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
5466 };
5467 }
5468 }