iris: reemit blend state for alpha test function changes
[mesa.git] / src / gallium / drivers / iris / iris_state.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * on the rights to use, copy, modify, merge, publish, distribute, sub
8 * license, and/or sell copies of the Software, and to permit persons to whom
9 * the Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 */
23 #include <stdio.h>
24 #include <errno.h>
25
26 #if HAVE_VALGRIND
27 #include <valgrind.h>
28 #include <memcheck.h>
29 #define VG(x) x
30 #ifndef NDEBUG
31 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
32 #endif
33 #else
34 #define VG(x)
35 #endif
36
37 #include "pipe/p_defines.h"
38 #include "pipe/p_state.h"
39 #include "pipe/p_context.h"
40 #include "pipe/p_screen.h"
41 #include "util/u_inlines.h"
42 #include "util/u_format.h"
43 #include "util/u_framebuffer.h"
44 #include "util/u_transfer.h"
45 #include "util/u_upload_mgr.h"
46 #include "util/u_viewport.h"
47 #include "i915_drm.h"
48 #include "nir.h"
49 #include "intel/compiler/brw_compiler.h"
50 #include "intel/common/gen_l3_config.h"
51 #include "intel/common/gen_sample_positions.h"
52 #include "iris_batch.h"
53 #include "iris_context.h"
54 #include "iris_pipe.h"
55 #include "iris_resource.h"
56
57 #define __gen_address_type struct iris_address
58 #define __gen_user_data struct iris_batch
59
60 #define ARRAY_BYTES(x) (sizeof(uint32_t) * ARRAY_SIZE(x))
61
62 static uint64_t
63 __gen_combine_address(struct iris_batch *batch, void *location,
64 struct iris_address addr, uint32_t delta)
65 {
66 uint64_t result = addr.offset + delta;
67
68 if (addr.bo) {
69 iris_use_pinned_bo(batch, addr.bo, addr.write);
70 /* Assume this is a general address, not relative to a base. */
71 result += addr.bo->gtt_offset;
72 }
73
74 return result;
75 }
76
77 #define __genxml_cmd_length(cmd) cmd ## _length
78 #define __genxml_cmd_length_bias(cmd) cmd ## _length_bias
79 #define __genxml_cmd_header(cmd) cmd ## _header
80 #define __genxml_cmd_pack(cmd) cmd ## _pack
81
82 #define _iris_pack_command(batch, cmd, dst, name) \
83 for (struct cmd name = { __genxml_cmd_header(cmd) }, \
84 *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
85 ({ __genxml_cmd_pack(cmd)(batch, (void *)_dst, &name); \
86 _dst = NULL; \
87 }))
88
89 #define iris_pack_command(cmd, dst, name) \
90 _iris_pack_command(NULL, cmd, dst, name)
91
92 #define iris_pack_state(cmd, dst, name) \
93 for (struct cmd name = {}, \
94 *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
95 __genxml_cmd_pack(cmd)(NULL, (void *)_dst, &name), \
96 _dst = NULL)
97
98 #define iris_emit_cmd(batch, cmd, name) \
99 _iris_pack_command(batch, cmd, iris_get_command_space(batch, 4 * __genxml_cmd_length(cmd)), name)
100
101 #define iris_emit_merge(batch, dwords0, dwords1, num_dwords) \
102 do { \
103 uint32_t *dw = iris_get_command_space(batch, 4 * num_dwords); \
104 for (uint32_t i = 0; i < num_dwords; i++) \
105 dw[i] = (dwords0)[i] | (dwords1)[i]; \
106 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, num_dwords)); \
107 } while (0)
108
109 #include "genxml/genX_pack.h"
110 #include "genxml/gen_macros.h"
111 #include "genxml/genX_bits.h"
112
113 #define MOCS_WB (2 << 1)
114
115 UNUSED static void pipe_asserts()
116 {
117 #define PIPE_ASSERT(x) STATIC_ASSERT((int)x)
118
119 /* pipe_logicop happens to match the hardware. */
120 PIPE_ASSERT(PIPE_LOGICOP_CLEAR == LOGICOP_CLEAR);
121 PIPE_ASSERT(PIPE_LOGICOP_NOR == LOGICOP_NOR);
122 PIPE_ASSERT(PIPE_LOGICOP_AND_INVERTED == LOGICOP_AND_INVERTED);
123 PIPE_ASSERT(PIPE_LOGICOP_COPY_INVERTED == LOGICOP_COPY_INVERTED);
124 PIPE_ASSERT(PIPE_LOGICOP_AND_REVERSE == LOGICOP_AND_REVERSE);
125 PIPE_ASSERT(PIPE_LOGICOP_INVERT == LOGICOP_INVERT);
126 PIPE_ASSERT(PIPE_LOGICOP_XOR == LOGICOP_XOR);
127 PIPE_ASSERT(PIPE_LOGICOP_NAND == LOGICOP_NAND);
128 PIPE_ASSERT(PIPE_LOGICOP_AND == LOGICOP_AND);
129 PIPE_ASSERT(PIPE_LOGICOP_EQUIV == LOGICOP_EQUIV);
130 PIPE_ASSERT(PIPE_LOGICOP_NOOP == LOGICOP_NOOP);
131 PIPE_ASSERT(PIPE_LOGICOP_OR_INVERTED == LOGICOP_OR_INVERTED);
132 PIPE_ASSERT(PIPE_LOGICOP_COPY == LOGICOP_COPY);
133 PIPE_ASSERT(PIPE_LOGICOP_OR_REVERSE == LOGICOP_OR_REVERSE);
134 PIPE_ASSERT(PIPE_LOGICOP_OR == LOGICOP_OR);
135 PIPE_ASSERT(PIPE_LOGICOP_SET == LOGICOP_SET);
136
137 /* pipe_blend_func happens to match the hardware. */
138 PIPE_ASSERT(PIPE_BLENDFACTOR_ONE == BLENDFACTOR_ONE);
139 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_COLOR == BLENDFACTOR_SRC_COLOR);
140 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA == BLENDFACTOR_SRC_ALPHA);
141 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_ALPHA == BLENDFACTOR_DST_ALPHA);
142 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_COLOR == BLENDFACTOR_DST_COLOR);
143 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE == BLENDFACTOR_SRC_ALPHA_SATURATE);
144 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_COLOR == BLENDFACTOR_CONST_COLOR);
145 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_ALPHA == BLENDFACTOR_CONST_ALPHA);
146 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_COLOR == BLENDFACTOR_SRC1_COLOR);
147 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_ALPHA == BLENDFACTOR_SRC1_ALPHA);
148 PIPE_ASSERT(PIPE_BLENDFACTOR_ZERO == BLENDFACTOR_ZERO);
149 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_COLOR == BLENDFACTOR_INV_SRC_COLOR);
150 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_ALPHA == BLENDFACTOR_INV_SRC_ALPHA);
151 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_ALPHA == BLENDFACTOR_INV_DST_ALPHA);
152 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_COLOR == BLENDFACTOR_INV_DST_COLOR);
153 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_COLOR == BLENDFACTOR_INV_CONST_COLOR);
154 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_ALPHA == BLENDFACTOR_INV_CONST_ALPHA);
155 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_COLOR == BLENDFACTOR_INV_SRC1_COLOR);
156 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_ALPHA == BLENDFACTOR_INV_SRC1_ALPHA);
157
158 /* pipe_blend_func happens to match the hardware. */
159 PIPE_ASSERT(PIPE_BLEND_ADD == BLENDFUNCTION_ADD);
160 PIPE_ASSERT(PIPE_BLEND_SUBTRACT == BLENDFUNCTION_SUBTRACT);
161 PIPE_ASSERT(PIPE_BLEND_REVERSE_SUBTRACT == BLENDFUNCTION_REVERSE_SUBTRACT);
162 PIPE_ASSERT(PIPE_BLEND_MIN == BLENDFUNCTION_MIN);
163 PIPE_ASSERT(PIPE_BLEND_MAX == BLENDFUNCTION_MAX);
164
165 /* pipe_stencil_op happens to match the hardware. */
166 PIPE_ASSERT(PIPE_STENCIL_OP_KEEP == STENCILOP_KEEP);
167 PIPE_ASSERT(PIPE_STENCIL_OP_ZERO == STENCILOP_ZERO);
168 PIPE_ASSERT(PIPE_STENCIL_OP_REPLACE == STENCILOP_REPLACE);
169 PIPE_ASSERT(PIPE_STENCIL_OP_INCR == STENCILOP_INCRSAT);
170 PIPE_ASSERT(PIPE_STENCIL_OP_DECR == STENCILOP_DECRSAT);
171 PIPE_ASSERT(PIPE_STENCIL_OP_INCR_WRAP == STENCILOP_INCR);
172 PIPE_ASSERT(PIPE_STENCIL_OP_DECR_WRAP == STENCILOP_DECR);
173 PIPE_ASSERT(PIPE_STENCIL_OP_INVERT == STENCILOP_INVERT);
174
175 /* pipe_sprite_coord_mode happens to match 3DSTATE_SBE */
176 PIPE_ASSERT(PIPE_SPRITE_COORD_UPPER_LEFT == UPPERLEFT);
177 PIPE_ASSERT(PIPE_SPRITE_COORD_LOWER_LEFT == LOWERLEFT);
178 #undef PIPE_ASSERT
179 }
180
181 static unsigned
182 translate_prim_type(enum pipe_prim_type prim, uint8_t verts_per_patch)
183 {
184 static const unsigned map[] = {
185 [PIPE_PRIM_POINTS] = _3DPRIM_POINTLIST,
186 [PIPE_PRIM_LINES] = _3DPRIM_LINELIST,
187 [PIPE_PRIM_LINE_LOOP] = _3DPRIM_LINELOOP,
188 [PIPE_PRIM_LINE_STRIP] = _3DPRIM_LINESTRIP,
189 [PIPE_PRIM_TRIANGLES] = _3DPRIM_TRILIST,
190 [PIPE_PRIM_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
191 [PIPE_PRIM_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
192 [PIPE_PRIM_QUADS] = _3DPRIM_QUADLIST,
193 [PIPE_PRIM_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
194 [PIPE_PRIM_POLYGON] = _3DPRIM_POLYGON,
195 [PIPE_PRIM_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
196 [PIPE_PRIM_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
197 [PIPE_PRIM_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
198 [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
199 [PIPE_PRIM_PATCHES] = _3DPRIM_PATCHLIST_1 - 1,
200 };
201
202 return map[prim] + (prim == PIPE_PRIM_PATCHES ? verts_per_patch : 0);
203 }
204
205 static unsigned
206 translate_compare_func(enum pipe_compare_func pipe_func)
207 {
208 static const unsigned map[] = {
209 [PIPE_FUNC_NEVER] = COMPAREFUNCTION_NEVER,
210 [PIPE_FUNC_LESS] = COMPAREFUNCTION_LESS,
211 [PIPE_FUNC_EQUAL] = COMPAREFUNCTION_EQUAL,
212 [PIPE_FUNC_LEQUAL] = COMPAREFUNCTION_LEQUAL,
213 [PIPE_FUNC_GREATER] = COMPAREFUNCTION_GREATER,
214 [PIPE_FUNC_NOTEQUAL] = COMPAREFUNCTION_NOTEQUAL,
215 [PIPE_FUNC_GEQUAL] = COMPAREFUNCTION_GEQUAL,
216 [PIPE_FUNC_ALWAYS] = COMPAREFUNCTION_ALWAYS,
217 };
218 return map[pipe_func];
219 }
220
221 static unsigned
222 translate_shadow_func(enum pipe_compare_func pipe_func)
223 {
224 /* Gallium specifies the result of shadow comparisons as:
225 *
226 * 1 if ref <op> texel,
227 * 0 otherwise.
228 *
229 * The hardware does:
230 *
231 * 0 if texel <op> ref,
232 * 1 otherwise.
233 *
234 * So we need to flip the operator and also negate.
235 */
236 static const unsigned map[] = {
237 [PIPE_FUNC_NEVER] = PREFILTEROPALWAYS,
238 [PIPE_FUNC_LESS] = PREFILTEROPLEQUAL,
239 [PIPE_FUNC_EQUAL] = PREFILTEROPNOTEQUAL,
240 [PIPE_FUNC_LEQUAL] = PREFILTEROPLESS,
241 [PIPE_FUNC_GREATER] = PREFILTEROPGEQUAL,
242 [PIPE_FUNC_NOTEQUAL] = PREFILTEROPEQUAL,
243 [PIPE_FUNC_GEQUAL] = PREFILTEROPGREATER,
244 [PIPE_FUNC_ALWAYS] = PREFILTEROPNEVER,
245 };
246 return map[pipe_func];
247 }
248
249 static unsigned
250 translate_cull_mode(unsigned pipe_face)
251 {
252 static const unsigned map[4] = {
253 [PIPE_FACE_NONE] = CULLMODE_NONE,
254 [PIPE_FACE_FRONT] = CULLMODE_FRONT,
255 [PIPE_FACE_BACK] = CULLMODE_BACK,
256 [PIPE_FACE_FRONT_AND_BACK] = CULLMODE_BOTH,
257 };
258 return map[pipe_face];
259 }
260
261 static unsigned
262 translate_fill_mode(unsigned pipe_polymode)
263 {
264 static const unsigned map[4] = {
265 [PIPE_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
266 [PIPE_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
267 [PIPE_POLYGON_MODE_POINT] = FILL_MODE_POINT,
268 [PIPE_POLYGON_MODE_FILL_RECTANGLE] = FILL_MODE_SOLID,
269 };
270 return map[pipe_polymode];
271 }
272
273 static struct iris_address
274 ro_bo(struct iris_bo *bo, uint64_t offset)
275 {
276 /* Not for CSOs! */
277 return (struct iris_address) { .bo = bo, .offset = offset };
278 }
279
280 static struct iris_address
281 rw_bo(struct iris_bo *bo, uint64_t offset)
282 {
283 /* Not for CSOs! */
284 return (struct iris_address) { .bo = bo, .offset = offset, .write = true };
285 }
286
287 static void *
288 upload_state(struct u_upload_mgr *uploader,
289 struct iris_state_ref *ref,
290 unsigned size,
291 unsigned alignment)
292 {
293 void *p = NULL;
294 u_upload_alloc(uploader, 0, size, alignment, &ref->offset, &ref->res, &p);
295 return p;
296 }
297
298 static uint32_t *
299 stream_state(struct iris_batch *batch,
300 struct u_upload_mgr *uploader,
301 struct pipe_resource **out_res,
302 unsigned size,
303 unsigned alignment,
304 uint32_t *out_offset)
305 {
306 void *ptr = NULL;
307
308 u_upload_alloc(uploader, 0, size, alignment, out_offset, out_res, &ptr);
309
310 struct iris_bo *bo = iris_resource_bo(*out_res);
311 iris_use_pinned_bo(batch, bo, false);
312
313 *out_offset += iris_bo_offset_from_base_address(bo);
314
315 return ptr;
316 }
317
318 static uint32_t
319 emit_state(struct iris_batch *batch,
320 struct u_upload_mgr *uploader,
321 struct pipe_resource **out_res,
322 const void *data,
323 unsigned size,
324 unsigned alignment)
325 {
326 unsigned offset = 0;
327 uint32_t *map =
328 stream_state(batch, uploader, out_res, size, alignment, &offset);
329
330 if (map)
331 memcpy(map, data, size);
332
333 return offset;
334 }
335
336 #define cso_changed(x) (!old_cso || (old_cso->x != new_cso->x))
337 #define cso_changed_memcmp(x) \
338 (!old_cso || memcmp(old_cso->x, new_cso->x, sizeof(old_cso->x)) != 0)
339
340 static void
341 iris_init_render_context(struct iris_screen *screen,
342 struct iris_batch *batch,
343 struct iris_vtable *vtbl,
344 struct pipe_debug_callback *dbg)
345 {
346 iris_init_batch(batch, screen, vtbl, dbg, I915_EXEC_RENDER);
347
348 /* XXX: PIPE_CONTROLs */
349
350 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
351 #if 0
352 // XXX: MOCS is stupid for this.
353 sba.GeneralStateMemoryObjectControlState = MOCS_WB;
354 sba.StatelessDataPortAccessMemoryObjectControlState = MOCS_WB;
355 sba.SurfaceStateMemoryObjectControlState = MOCS_WB;
356 sba.DynamicStateMemoryObjectControlState = MOCS_WB;
357 sba.IndirectObjectMemoryObjectControlState = MOCS_WB;
358 sba.InstructionMemoryObjectControlState = MOCS_WB;
359 sba.BindlessSurfaceStateMemoryObjectControlState = MOCS_WB;
360 #endif
361
362 sba.GeneralStateBaseAddressModifyEnable = true;
363 sba.SurfaceStateBaseAddressModifyEnable = true;
364 sba.DynamicStateBaseAddressModifyEnable = true;
365 sba.IndirectObjectBaseAddressModifyEnable = true;
366 sba.InstructionBaseAddressModifyEnable = true;
367 sba.GeneralStateBufferSizeModifyEnable = true;
368 sba.DynamicStateBufferSizeModifyEnable = true;
369 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
370 sba.IndirectObjectBufferSizeModifyEnable = true;
371 sba.InstructionBuffersizeModifyEnable = true;
372
373 sba.InstructionBaseAddress = ro_bo(NULL, IRIS_MEMZONE_SHADER_START);
374 sba.SurfaceStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_SURFACE_START);
375 sba.DynamicStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_DYNAMIC_START);
376
377 sba.GeneralStateBufferSize = 0xfffff;
378 sba.IndirectObjectBufferSize = 0xfffff;
379 sba.InstructionBufferSize = 0xfffff;
380 sba.DynamicStateBufferSize = 0xfffff;
381 }
382
383 iris_emit_cmd(batch, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
384 rect.ClippedDrawingRectangleXMax = UINT16_MAX;
385 rect.ClippedDrawingRectangleYMax = UINT16_MAX;
386 }
387 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_PATTERN), pat) {
388 GEN_SAMPLE_POS_1X(pat._1xSample);
389 GEN_SAMPLE_POS_2X(pat._2xSample);
390 GEN_SAMPLE_POS_4X(pat._4xSample);
391 GEN_SAMPLE_POS_8X(pat._8xSample);
392 GEN_SAMPLE_POS_16X(pat._16xSample);
393 }
394 iris_emit_cmd(batch, GENX(3DSTATE_AA_LINE_PARAMETERS), foo);
395 iris_emit_cmd(batch, GENX(3DSTATE_WM_CHROMAKEY), foo);
396 iris_emit_cmd(batch, GENX(3DSTATE_WM_HZ_OP), foo);
397 /* XXX: may need to set an offset for origin-UL framebuffers */
398 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_OFFSET), foo);
399
400 /* Just assign a static partitioning. */
401 for (int i = 0; i <= MESA_SHADER_FRAGMENT; i++) {
402 iris_emit_cmd(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
403 alloc._3DCommandSubOpcode = 18 + i;
404 alloc.ConstantBufferOffset = 6 * i;
405 alloc.ConstantBufferSize = i == MESA_SHADER_FRAGMENT ? 8 : 6;
406 }
407 }
408 }
409
410 struct iris_vertex_buffer_state {
411 uint32_t vertex_buffers[1 + 33 * GENX(VERTEX_BUFFER_STATE_length)];
412 struct pipe_resource *resources[33];
413 unsigned num_buffers;
414 };
415
416 struct iris_depth_buffer_state {
417 uint32_t packets[GENX(3DSTATE_DEPTH_BUFFER_length) +
418 GENX(3DSTATE_STENCIL_BUFFER_length) +
419 GENX(3DSTATE_HIER_DEPTH_BUFFER_length) +
420 GENX(3DSTATE_CLEAR_PARAMS_length)];
421 };
422
423 /**
424 * State that can't be stored directly in iris_context because the data
425 * layout varies per generation.
426 */
427 struct iris_genx_state {
428 /** SF_CLIP_VIEWPORT */
429 uint32_t sf_cl_vp[GENX(SF_CLIP_VIEWPORT_length) * IRIS_MAX_VIEWPORTS];
430
431 struct iris_vertex_buffer_state vertex_buffers;
432 struct iris_depth_buffer_state depth_buffer;
433
434 uint32_t so_buffers[4 * GENX(3DSTATE_SO_BUFFER_length)];
435 uint32_t streamout[4 * GENX(3DSTATE_STREAMOUT_length)];
436 };
437
438 static void
439 iris_launch_grid(struct pipe_context *ctx, const struct pipe_grid_info *info)
440 {
441 }
442
443 static void
444 iris_set_blend_color(struct pipe_context *ctx,
445 const struct pipe_blend_color *state)
446 {
447 struct iris_context *ice = (struct iris_context *) ctx;
448
449 memcpy(&ice->state.blend_color, state, sizeof(struct pipe_blend_color));
450 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
451 }
452
453 struct iris_blend_state {
454 /** Partial 3DSTATE_PS_BLEND */
455 uint32_t ps_blend[GENX(3DSTATE_PS_BLEND_length)];
456
457 /** Partial BLEND_STATE */
458 uint32_t blend_state[GENX(BLEND_STATE_length) +
459 BRW_MAX_DRAW_BUFFERS * GENX(BLEND_STATE_ENTRY_length)];
460
461 bool alpha_to_coverage; /* for shader key */
462 };
463
464 static void *
465 iris_create_blend_state(struct pipe_context *ctx,
466 const struct pipe_blend_state *state)
467 {
468 struct iris_blend_state *cso = malloc(sizeof(struct iris_blend_state));
469 uint32_t *blend_state = cso->blend_state;
470
471 cso->alpha_to_coverage = state->alpha_to_coverage;
472
473 iris_pack_command(GENX(3DSTATE_PS_BLEND), cso->ps_blend, pb) {
474 /* pb.HasWriteableRT is filled in at draw time. */
475 /* pb.AlphaTestEnable is filled in at draw time. */
476 pb.AlphaToCoverageEnable = state->alpha_to_coverage;
477 pb.IndependentAlphaBlendEnable = state->independent_blend_enable;
478
479 pb.ColorBufferBlendEnable = state->rt[0].blend_enable;
480
481 pb.SourceBlendFactor = state->rt[0].rgb_src_factor;
482 pb.SourceAlphaBlendFactor = state->rt[0].alpha_func;
483 pb.DestinationBlendFactor = state->rt[0].rgb_dst_factor;
484 pb.DestinationAlphaBlendFactor = state->rt[0].alpha_dst_factor;
485 }
486
487 iris_pack_state(GENX(BLEND_STATE), blend_state, bs) {
488 bs.AlphaToCoverageEnable = state->alpha_to_coverage;
489 bs.IndependentAlphaBlendEnable = state->independent_blend_enable;
490 bs.AlphaToOneEnable = state->alpha_to_one;
491 bs.AlphaToCoverageDitherEnable = state->alpha_to_coverage;
492 bs.ColorDitherEnable = state->dither;
493 /* bl.AlphaTestEnable and bs.AlphaTestFunction are filled in later. */
494 }
495
496 blend_state += GENX(BLEND_STATE_length);
497
498 for (int i = 0; i < BRW_MAX_DRAW_BUFFERS; i++) {
499 iris_pack_state(GENX(BLEND_STATE_ENTRY), blend_state, be) {
500 be.LogicOpEnable = state->logicop_enable;
501 be.LogicOpFunction = state->logicop_func;
502
503 be.PreBlendSourceOnlyClampEnable = false;
504 be.ColorClampRange = COLORCLAMP_RTFORMAT;
505 be.PreBlendColorClampEnable = true;
506 be.PostBlendColorClampEnable = true;
507
508 be.ColorBufferBlendEnable = state->rt[i].blend_enable;
509
510 be.ColorBlendFunction = state->rt[i].rgb_func;
511 be.AlphaBlendFunction = state->rt[i].alpha_func;
512 be.SourceBlendFactor = state->rt[i].rgb_src_factor;
513 be.SourceAlphaBlendFactor = state->rt[i].alpha_func;
514 be.DestinationBlendFactor = state->rt[i].rgb_dst_factor;
515 be.DestinationAlphaBlendFactor = state->rt[i].alpha_dst_factor;
516
517 be.WriteDisableRed = !(state->rt[i].colormask & PIPE_MASK_R);
518 be.WriteDisableGreen = !(state->rt[i].colormask & PIPE_MASK_G);
519 be.WriteDisableBlue = !(state->rt[i].colormask & PIPE_MASK_B);
520 be.WriteDisableAlpha = !(state->rt[i].colormask & PIPE_MASK_A);
521 }
522 blend_state += GENX(BLEND_STATE_ENTRY_length);
523 }
524
525 return cso;
526 }
527
528 static void
529 iris_bind_blend_state(struct pipe_context *ctx, void *state)
530 {
531 struct iris_context *ice = (struct iris_context *) ctx;
532 ice->state.cso_blend = state;
533 ice->state.dirty |= IRIS_DIRTY_PS_BLEND;
534 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
535 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_BLEND];
536 }
537
538 struct iris_depth_stencil_alpha_state {
539 /** Partial 3DSTATE_WM_DEPTH_STENCIL */
540 uint32_t wmds[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
541
542 /** Outbound to BLEND_STATE, 3DSTATE_PS_BLEND, COLOR_CALC_STATE */
543 struct pipe_alpha_state alpha;
544 };
545
546 static void *
547 iris_create_zsa_state(struct pipe_context *ctx,
548 const struct pipe_depth_stencil_alpha_state *state)
549 {
550 struct iris_depth_stencil_alpha_state *cso =
551 malloc(sizeof(struct iris_depth_stencil_alpha_state));
552
553 cso->alpha = state->alpha;
554
555 bool two_sided_stencil = state->stencil[1].enabled;
556
557 /* The state tracker needs to optimize away EQUAL writes for us. */
558 assert(!(state->depth.func == PIPE_FUNC_EQUAL && state->depth.writemask));
559
560 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), cso->wmds, wmds) {
561 wmds.StencilFailOp = state->stencil[0].fail_op;
562 wmds.StencilPassDepthFailOp = state->stencil[0].zfail_op;
563 wmds.StencilPassDepthPassOp = state->stencil[0].zpass_op;
564 wmds.StencilTestFunction =
565 translate_compare_func(state->stencil[0].func);
566 wmds.BackfaceStencilFailOp = state->stencil[1].fail_op;
567 wmds.BackfaceStencilPassDepthFailOp = state->stencil[1].zfail_op;
568 wmds.BackfaceStencilPassDepthPassOp = state->stencil[1].zpass_op;
569 wmds.BackfaceStencilTestFunction =
570 translate_compare_func(state->stencil[1].func);
571 wmds.DepthTestFunction = translate_compare_func(state->depth.func);
572 wmds.DoubleSidedStencilEnable = two_sided_stencil;
573 wmds.StencilTestEnable = state->stencil[0].enabled;
574 wmds.StencilBufferWriteEnable =
575 state->stencil[0].writemask != 0 ||
576 (two_sided_stencil && state->stencil[1].writemask != 0);
577 wmds.DepthTestEnable = state->depth.enabled;
578 wmds.DepthBufferWriteEnable = state->depth.writemask;
579 wmds.StencilTestMask = state->stencil[0].valuemask;
580 wmds.StencilWriteMask = state->stencil[0].writemask;
581 wmds.BackfaceStencilTestMask = state->stencil[1].valuemask;
582 wmds.BackfaceStencilWriteMask = state->stencil[1].writemask;
583 /* wmds.[Backface]StencilReferenceValue are merged later */
584 }
585
586 return cso;
587 }
588
589 static void
590 iris_bind_zsa_state(struct pipe_context *ctx, void *state)
591 {
592 struct iris_context *ice = (struct iris_context *) ctx;
593 struct iris_depth_stencil_alpha_state *old_cso = ice->state.cso_zsa;
594 struct iris_depth_stencil_alpha_state *new_cso = state;
595
596 if (new_cso) {
597 if (cso_changed(alpha.ref_value))
598 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
599
600 if (cso_changed(alpha.enabled))
601 ice->state.dirty |= IRIS_DIRTY_PS_BLEND | IRIS_DIRTY_BLEND_STATE;
602
603 if (cso_changed(alpha.func))
604 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
605 }
606
607 ice->state.cso_zsa = new_cso;
608 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
609 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
610 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_DEPTH_STENCIL_ALPHA];
611 }
612
613 struct iris_rasterizer_state {
614 uint32_t sf[GENX(3DSTATE_SF_length)];
615 uint32_t clip[GENX(3DSTATE_CLIP_length)];
616 uint32_t raster[GENX(3DSTATE_RASTER_length)];
617 uint32_t wm[GENX(3DSTATE_WM_length)];
618 uint32_t line_stipple[GENX(3DSTATE_LINE_STIPPLE_length)];
619
620 bool clip_halfz; /* for CC_VIEWPORT */
621 bool depth_clip_near; /* for CC_VIEWPORT */
622 bool depth_clip_far; /* for CC_VIEWPORT */
623 bool flatshade; /* for shader state */
624 bool flatshade_first; /* for stream output */
625 bool clamp_fragment_color; /* for shader state */
626 bool light_twoside; /* for shader state */
627 bool rasterizer_discard; /* for 3DSTATE_STREAMOUT */
628 bool half_pixel_center; /* for 3DSTATE_MULTISAMPLE */
629 bool line_stipple_enable;
630 bool poly_stipple_enable;
631 bool multisample;
632 bool force_persample_interp;
633 enum pipe_sprite_coord_mode sprite_coord_mode; /* PIPE_SPRITE_* */
634 uint16_t sprite_coord_enable;
635 };
636
637 static void *
638 iris_create_rasterizer_state(struct pipe_context *ctx,
639 const struct pipe_rasterizer_state *state)
640 {
641 struct iris_rasterizer_state *cso =
642 malloc(sizeof(struct iris_rasterizer_state));
643
644 #if 0
645 point_quad_rasterization -> SBE?
646
647 not necessary?
648 {
649 poly_smooth
650 force_persample_interp - ?
651 bottom_edge_rule
652
653 offset_units_unscaled - cap not exposed
654 }
655 #endif
656
657 cso->multisample = state->multisample;
658 cso->force_persample_interp = state->force_persample_interp;
659 cso->clip_halfz = state->clip_halfz;
660 cso->depth_clip_near = state->depth_clip_near;
661 cso->depth_clip_far = state->depth_clip_far;
662 cso->flatshade = state->flatshade;
663 cso->flatshade_first = state->flatshade_first;
664 cso->clamp_fragment_color = state->clamp_fragment_color;
665 cso->light_twoside = state->light_twoside;
666 cso->rasterizer_discard = state->rasterizer_discard;
667 cso->half_pixel_center = state->half_pixel_center;
668 cso->sprite_coord_mode = state->sprite_coord_mode;
669 cso->sprite_coord_enable = state->sprite_coord_enable;
670 cso->line_stipple_enable = state->line_stipple_enable;
671 cso->poly_stipple_enable = state->poly_stipple_enable;
672
673 iris_pack_command(GENX(3DSTATE_SF), cso->sf, sf) {
674 sf.StatisticsEnable = true;
675 sf.ViewportTransformEnable = true;
676 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
677 sf.LineEndCapAntialiasingRegionWidth =
678 state->line_smooth ? _10pixels : _05pixels;
679 sf.LastPixelEnable = state->line_last_pixel;
680 sf.LineWidth = state->line_width;
681 sf.SmoothPointEnable = state->point_smooth;
682 sf.PointWidthSource = state->point_size_per_vertex ? Vertex : State;
683 sf.PointWidth = state->point_size;
684
685 if (state->flatshade_first) {
686 sf.TriangleFanProvokingVertexSelect = 1;
687 } else {
688 sf.TriangleStripListProvokingVertexSelect = 2;
689 sf.TriangleFanProvokingVertexSelect = 2;
690 sf.LineStripListProvokingVertexSelect = 1;
691 }
692 }
693
694 iris_pack_command(GENX(3DSTATE_RASTER), cso->raster, rr) {
695 rr.FrontWinding = state->front_ccw ? CounterClockwise : Clockwise;
696 rr.CullMode = translate_cull_mode(state->cull_face);
697 rr.FrontFaceFillMode = translate_fill_mode(state->fill_front);
698 rr.BackFaceFillMode = translate_fill_mode(state->fill_back);
699 rr.DXMultisampleRasterizationEnable = state->multisample;
700 rr.GlobalDepthOffsetEnableSolid = state->offset_tri;
701 rr.GlobalDepthOffsetEnableWireframe = state->offset_line;
702 rr.GlobalDepthOffsetEnablePoint = state->offset_point;
703 rr.GlobalDepthOffsetConstant = state->offset_units * 2;
704 rr.GlobalDepthOffsetScale = state->offset_scale;
705 rr.GlobalDepthOffsetClamp = state->offset_clamp;
706 rr.SmoothPointEnable = state->point_smooth;
707 rr.AntialiasingEnable = state->line_smooth;
708 rr.ScissorRectangleEnable = state->scissor;
709 rr.ViewportZNearClipTestEnable = state->depth_clip_near;
710 rr.ViewportZFarClipTestEnable = state->depth_clip_far;
711 //rr.ConservativeRasterizationEnable = not yet supported by Gallium...
712 }
713
714 iris_pack_command(GENX(3DSTATE_CLIP), cso->clip, cl) {
715 /* cl.NonPerspectiveBarycentricEnable is filled in at draw time from
716 * the FS program; cl.ForceZeroRTAIndexEnable is filled in from the FB.
717 */
718 cl.StatisticsEnable = true;
719 cl.EarlyCullEnable = true;
720 cl.UserClipDistanceClipTestEnableBitmask = state->clip_plane_enable;
721 cl.ForceUserClipDistanceClipTestEnableBitmask = true;
722 cl.APIMode = state->clip_halfz ? APIMODE_D3D : APIMODE_OGL;
723 cl.GuardbandClipTestEnable = true;
724 cl.ClipMode = CLIPMODE_NORMAL;
725 cl.ClipEnable = true;
726 cl.ViewportXYClipTestEnable = state->point_tri_clip;
727 cl.MinimumPointWidth = 0.125;
728 cl.MaximumPointWidth = 255.875;
729
730 if (state->flatshade_first) {
731 cl.TriangleFanProvokingVertexSelect = 1;
732 } else {
733 cl.TriangleStripListProvokingVertexSelect = 2;
734 cl.TriangleFanProvokingVertexSelect = 2;
735 cl.LineStripListProvokingVertexSelect = 1;
736 }
737 }
738
739 iris_pack_command(GENX(3DSTATE_WM), cso->wm, wm) {
740 /* wm.BarycentricInterpolationMode and wm.EarlyDepthStencilControl are
741 * filled in at draw time from the FS program.
742 */
743 wm.LineAntialiasingRegionWidth = _10pixels;
744 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
745 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
746 wm.StatisticsEnable = true;
747 wm.LineStippleEnable = state->line_stipple_enable;
748 wm.PolygonStippleEnable = state->poly_stipple_enable;
749 }
750
751 /* Remap from 0..255 back to 1..256 */
752 const unsigned line_stipple_factor = state->line_stipple_factor + 1;
753
754 iris_pack_command(GENX(3DSTATE_LINE_STIPPLE), cso->line_stipple, line) {
755 line.LineStipplePattern = state->line_stipple_pattern;
756 line.LineStippleInverseRepeatCount = 1.0f / line_stipple_factor;
757 line.LineStippleRepeatCount = line_stipple_factor;
758 }
759
760 return cso;
761 }
762
763 static void
764 iris_bind_rasterizer_state(struct pipe_context *ctx, void *state)
765 {
766 struct iris_context *ice = (struct iris_context *) ctx;
767 struct iris_rasterizer_state *old_cso = ice->state.cso_rast;
768 struct iris_rasterizer_state *new_cso = state;
769
770 if (new_cso) {
771 /* Try to avoid re-emitting 3DSTATE_LINE_STIPPLE, it's non-pipelined */
772 if (cso_changed_memcmp(line_stipple))
773 ice->state.dirty |= IRIS_DIRTY_LINE_STIPPLE;
774
775 if (cso_changed(half_pixel_center))
776 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
777
778 if (cso_changed(line_stipple_enable) || cso_changed(poly_stipple_enable))
779 ice->state.dirty |= IRIS_DIRTY_WM;
780
781 if (cso_changed(rasterizer_discard) || cso_changed(flatshade_first))
782 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
783
784 if (cso_changed(depth_clip_near) || cso_changed(depth_clip_far) ||
785 cso_changed(clip_halfz))
786 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
787 }
788
789 ice->state.cso_rast = new_cso;
790 ice->state.dirty |= IRIS_DIRTY_RASTER;
791 ice->state.dirty |= IRIS_DIRTY_CLIP;
792 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_RASTERIZER];
793 }
794
795 static uint32_t
796 translate_wrap(unsigned pipe_wrap)
797 {
798 static const unsigned map[] = {
799 [PIPE_TEX_WRAP_REPEAT] = TCM_WRAP,
800 [PIPE_TEX_WRAP_CLAMP] = TCM_HALF_BORDER,
801 [PIPE_TEX_WRAP_CLAMP_TO_EDGE] = TCM_CLAMP,
802 [PIPE_TEX_WRAP_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER,
803 [PIPE_TEX_WRAP_MIRROR_REPEAT] = TCM_MIRROR,
804 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE,
805
806 /* These are unsupported. */
807 [PIPE_TEX_WRAP_MIRROR_CLAMP] = -1,
808 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER] = -1,
809 };
810 return map[pipe_wrap];
811 }
812
813 /**
814 * Return true if the given wrap mode requires the border color to exist.
815 */
816 static bool
817 wrap_mode_needs_border_color(unsigned wrap_mode)
818 {
819 return wrap_mode == TCM_CLAMP_BORDER || wrap_mode == TCM_HALF_BORDER;
820 }
821
822 static unsigned
823 translate_mip_filter(enum pipe_tex_mipfilter pipe_mip)
824 {
825 static const unsigned map[] = {
826 [PIPE_TEX_MIPFILTER_NEAREST] = MIPFILTER_NEAREST,
827 [PIPE_TEX_MIPFILTER_LINEAR] = MIPFILTER_LINEAR,
828 [PIPE_TEX_MIPFILTER_NONE] = MIPFILTER_NONE,
829 };
830 return map[pipe_mip];
831 }
832
833 struct iris_sampler_state {
834 struct pipe_sampler_state base;
835
836 bool needs_border_color;
837
838 uint32_t sampler_state[GENX(SAMPLER_STATE_length)];
839 };
840
841 static void *
842 iris_create_sampler_state(struct pipe_context *ctx,
843 const struct pipe_sampler_state *state)
844 {
845 struct iris_sampler_state *cso = CALLOC_STRUCT(iris_sampler_state);
846
847 if (!cso)
848 return NULL;
849
850 memcpy(&cso->base, state, sizeof(*state));
851
852 STATIC_ASSERT(PIPE_TEX_FILTER_NEAREST == MAPFILTER_NEAREST);
853 STATIC_ASSERT(PIPE_TEX_FILTER_LINEAR == MAPFILTER_LINEAR);
854
855 unsigned wrap_s = translate_wrap(state->wrap_s);
856 unsigned wrap_t = translate_wrap(state->wrap_t);
857 unsigned wrap_r = translate_wrap(state->wrap_r);
858
859 cso->needs_border_color = wrap_mode_needs_border_color(wrap_s) ||
860 wrap_mode_needs_border_color(wrap_t) ||
861 wrap_mode_needs_border_color(wrap_r);
862
863 iris_pack_state(GENX(SAMPLER_STATE), cso->sampler_state, samp) {
864 samp.TCXAddressControlMode = wrap_s;
865 samp.TCYAddressControlMode = wrap_t;
866 samp.TCZAddressControlMode = wrap_r;
867 samp.CubeSurfaceControlMode = state->seamless_cube_map;
868 samp.NonnormalizedCoordinateEnable = !state->normalized_coords;
869 samp.MinModeFilter = state->min_img_filter;
870 samp.MagModeFilter = state->mag_img_filter;
871 samp.MipModeFilter = translate_mip_filter(state->min_mip_filter);
872 samp.MaximumAnisotropy = RATIO21;
873
874 if (state->max_anisotropy >= 2) {
875 if (state->min_img_filter == PIPE_TEX_FILTER_LINEAR) {
876 samp.MinModeFilter = MAPFILTER_ANISOTROPIC;
877 samp.AnisotropicAlgorithm = EWAApproximation;
878 }
879
880 if (state->mag_img_filter == PIPE_TEX_FILTER_LINEAR)
881 samp.MagModeFilter = MAPFILTER_ANISOTROPIC;
882
883 samp.MaximumAnisotropy =
884 MIN2((state->max_anisotropy - 2) / 2, RATIO161);
885 }
886
887 /* Set address rounding bits if not using nearest filtering. */
888 if (state->min_img_filter != PIPE_TEX_FILTER_NEAREST) {
889 samp.UAddressMinFilterRoundingEnable = true;
890 samp.VAddressMinFilterRoundingEnable = true;
891 samp.RAddressMinFilterRoundingEnable = true;
892 }
893
894 if (state->mag_img_filter != PIPE_TEX_FILTER_NEAREST) {
895 samp.UAddressMagFilterRoundingEnable = true;
896 samp.VAddressMagFilterRoundingEnable = true;
897 samp.RAddressMagFilterRoundingEnable = true;
898 }
899
900 if (state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE)
901 samp.ShadowFunction = translate_shadow_func(state->compare_func);
902
903 const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
904
905 samp.LODPreClampMode = CLAMP_MODE_OGL;
906 samp.MinLOD = CLAMP(state->min_lod, 0, hw_max_lod);
907 samp.MaxLOD = CLAMP(state->max_lod, 0, hw_max_lod);
908 samp.TextureLODBias = CLAMP(state->lod_bias, -16, 15);
909
910 /* .BorderColorPointer is filled in by iris_bind_sampler_states. */
911 }
912
913 return cso;
914 }
915
916 static void
917 iris_bind_sampler_states(struct pipe_context *ctx,
918 enum pipe_shader_type p_stage,
919 unsigned start, unsigned count,
920 void **states)
921 {
922 struct iris_context *ice = (struct iris_context *) ctx;
923 gl_shader_stage stage = stage_from_pipe(p_stage);
924
925 assert(start + count <= IRIS_MAX_TEXTURE_SAMPLERS);
926 ice->state.num_samplers[stage] =
927 MAX2(ice->state.num_samplers[stage], start + count);
928
929 for (int i = 0; i < count; i++) {
930 ice->state.samplers[stage][start + i] = states[i];
931 }
932
933 /* Assemble the SAMPLER_STATEs into a contiguous table that lives
934 * in the dynamic state memory zone, so we can point to it via the
935 * 3DSTATE_SAMPLER_STATE_POINTERS_* commands.
936 */
937 void *map = upload_state(ice->state.dynamic_uploader,
938 &ice->state.sampler_table[stage],
939 count * 4 * GENX(SAMPLER_STATE_length), 32);
940 if (unlikely(!map))
941 return;
942
943 struct pipe_resource *res = ice->state.sampler_table[stage].res;
944 ice->state.sampler_table[stage].offset +=
945 iris_bo_offset_from_base_address(iris_resource_bo(res));
946
947 /* Make sure all land in the same BO */
948 iris_border_color_pool_reserve(ice, IRIS_MAX_TEXTURE_SAMPLERS);
949
950 for (int i = 0; i < count; i++) {
951 struct iris_sampler_state *state = ice->state.samplers[stage][i];
952
953 /* Save a pointer to the iris_sampler_state, a few fields need
954 * to inform draw-time decisions.
955 */
956 ice->state.samplers[stage][start + i] = state;
957
958 if (!state) {
959 memset(map, 0, 4 * GENX(SAMPLER_STATE_length));
960 } else if (!state->needs_border_color) {
961 memcpy(map, state->sampler_state, 4 * GENX(SAMPLER_STATE_length));
962 } else {
963 ice->state.need_border_colors = true;
964
965 /* Stream out the border color and merge the pointer. */
966 uint32_t offset =
967 iris_upload_border_color(ice, &state->base.border_color);
968
969 uint32_t dynamic[GENX(SAMPLER_STATE_length)];
970 iris_pack_state(GENX(SAMPLER_STATE), dynamic, dyns) {
971 dyns.BorderColorPointer = offset;
972 }
973
974 for (uint32_t j = 0; j < GENX(SAMPLER_STATE_length); j++)
975 ((uint32_t *) map)[j] = state->sampler_state[j] | dynamic[j];
976 }
977
978 map += GENX(SAMPLER_STATE_length);
979 }
980
981 ice->state.dirty |= IRIS_DIRTY_SAMPLER_STATES_VS << stage;
982 }
983
984 struct iris_sampler_view {
985 struct pipe_sampler_view pipe;
986 struct isl_view view;
987
988 /** The resource (BO) holding our SURFACE_STATE. */
989 struct iris_state_ref surface_state;
990 };
991
992 /**
993 * Convert an swizzle enumeration (i.e. PIPE_SWIZZLE_X) to one of the Gen7.5+
994 * "Shader Channel Select" enumerations (i.e. HSW_SCS_RED). The mappings are
995 *
996 * SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W, SWIZZLE_ZERO, SWIZZLE_ONE
997 * 0 1 2 3 4 5
998 * 4 5 6 7 0 1
999 * SCS_RED, SCS_GREEN, SCS_BLUE, SCS_ALPHA, SCS_ZERO, SCS_ONE
1000 *
1001 * which is simply adding 4 then modding by 8 (or anding with 7).
1002 *
1003 * We then may need to apply workarounds for textureGather hardware bugs.
1004 */
1005 static enum isl_channel_select
1006 pipe_swizzle_to_isl_channel(enum pipe_swizzle swizzle)
1007 {
1008 return (swizzle + 4) & 7;
1009 }
1010
1011 static struct pipe_sampler_view *
1012 iris_create_sampler_view(struct pipe_context *ctx,
1013 struct pipe_resource *tex,
1014 const struct pipe_sampler_view *tmpl)
1015 {
1016 struct iris_context *ice = (struct iris_context *) ctx;
1017 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1018 struct iris_resource *itex = (struct iris_resource *) tex;
1019 struct iris_sampler_view *isv = calloc(1, sizeof(struct iris_sampler_view));
1020
1021 if (!isv)
1022 return NULL;
1023
1024 /* initialize base object */
1025 isv->pipe = *tmpl;
1026 isv->pipe.context = ctx;
1027 isv->pipe.texture = NULL;
1028 pipe_reference_init(&isv->pipe.reference, 1);
1029 pipe_resource_reference(&isv->pipe.texture, tex);
1030
1031 void *map = upload_state(ice->state.surface_uploader, &isv->surface_state,
1032 4 * GENX(RENDER_SURFACE_STATE_length), 64);
1033 if (!unlikely(map))
1034 return NULL;
1035
1036 struct iris_bo *state_bo = iris_resource_bo(isv->surface_state.res);
1037 isv->surface_state.offset += iris_bo_offset_from_base_address(state_bo);
1038
1039 /* XXX: do we need brw_get_texture_swizzle hacks here? */
1040 isv->view = (struct isl_view) {
1041 .format = iris_isl_format_for_pipe_format(tmpl->format),
1042 .swizzle = (struct isl_swizzle) {
1043 .r = pipe_swizzle_to_isl_channel(tmpl->swizzle_r),
1044 .g = pipe_swizzle_to_isl_channel(tmpl->swizzle_g),
1045 .b = pipe_swizzle_to_isl_channel(tmpl->swizzle_b),
1046 .a = pipe_swizzle_to_isl_channel(tmpl->swizzle_a),
1047 },
1048 .usage = ISL_SURF_USAGE_TEXTURE_BIT |
1049 (itex->surf.usage & ISL_SURF_USAGE_CUBE_BIT),
1050 };
1051
1052 if (tmpl->target != PIPE_BUFFER) {
1053 isv->view.base_level = tmpl->u.tex.first_level;
1054 isv->view.levels = tmpl->u.tex.last_level - tmpl->u.tex.first_level + 1;
1055 isv->view.base_array_layer = tmpl->u.tex.first_layer;
1056 isv->view.array_len =
1057 tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
1058
1059 isl_surf_fill_state(&screen->isl_dev, map,
1060 .surf = &itex->surf, .view = &isv->view,
1061 .mocs = MOCS_WB,
1062 .address = itex->bo->gtt_offset);
1063 // .aux_surf =
1064 // .clear_color = clear_color,
1065 } else {
1066 // XXX: what to do about isv->view? other drivers don't use it for bufs
1067 const struct isl_format_layout *fmtl =
1068 isl_format_get_layout(isv->view.format);
1069 const unsigned cpp = fmtl->bpb / 8;
1070
1071 isl_buffer_fill_state(&screen->isl_dev, map,
1072 .address = itex->bo->gtt_offset +
1073 tmpl->u.buf.offset,
1074 // XXX: buffer_texture_range_size from i965?
1075 .size_B = tmpl->u.buf.size,
1076 .format = isv->view.format,
1077 .stride_B = cpp,
1078 .mocs = MOCS_WB);
1079 }
1080
1081 return &isv->pipe;
1082 }
1083
1084 static struct pipe_surface *
1085 iris_create_surface(struct pipe_context *ctx,
1086 struct pipe_resource *tex,
1087 const struct pipe_surface *tmpl)
1088 {
1089 struct iris_context *ice = (struct iris_context *) ctx;
1090 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1091 struct iris_surface *surf = calloc(1, sizeof(struct iris_surface));
1092 struct pipe_surface *psurf = &surf->pipe;
1093 struct iris_resource *res = (struct iris_resource *) tex;
1094
1095 if (!surf)
1096 return NULL;
1097
1098 pipe_reference_init(&psurf->reference, 1);
1099 pipe_resource_reference(&psurf->texture, tex);
1100 psurf->context = ctx;
1101 psurf->format = tmpl->format;
1102 psurf->width = tex->width0;
1103 psurf->height = tex->height0;
1104 psurf->texture = tex;
1105 psurf->u.tex.first_layer = tmpl->u.tex.first_layer;
1106 psurf->u.tex.last_layer = tmpl->u.tex.last_layer;
1107 psurf->u.tex.level = tmpl->u.tex.level;
1108
1109 unsigned usage = 0;
1110 if (tmpl->writable)
1111 usage = ISL_SURF_USAGE_STORAGE_BIT;
1112 else if (util_format_is_depth_or_stencil(tmpl->format))
1113 usage = ISL_SURF_USAGE_DEPTH_BIT;
1114 else
1115 usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
1116
1117 surf->view = (struct isl_view) {
1118 .format = iris_isl_format_for_pipe_format(tmpl->format),
1119 .base_level = tmpl->u.tex.level,
1120 .levels = 1,
1121 .base_array_layer = tmpl->u.tex.first_layer,
1122 .array_len = tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1,
1123 .swizzle = ISL_SWIZZLE_IDENTITY,
1124 .usage = usage,
1125 };
1126
1127 /* Bail early for depth/stencil */
1128 if (res->surf.usage & (ISL_SURF_USAGE_DEPTH_BIT |
1129 ISL_SURF_USAGE_STENCIL_BIT))
1130 return psurf;
1131
1132
1133 void *map = upload_state(ice->state.surface_uploader, &surf->surface_state,
1134 4 * GENX(RENDER_SURFACE_STATE_length), 64);
1135 if (!unlikely(map))
1136 return NULL;
1137
1138 struct iris_bo *state_bo = iris_resource_bo(surf->surface_state.res);
1139 surf->surface_state.offset += iris_bo_offset_from_base_address(state_bo);
1140
1141 isl_surf_fill_state(&screen->isl_dev, map,
1142 .surf = &res->surf, .view = &surf->view,
1143 .mocs = MOCS_WB,
1144 .address = res->bo->gtt_offset);
1145 // .aux_surf =
1146 // .clear_color = clear_color,
1147
1148 return psurf;
1149 }
1150
1151 static void
1152 iris_set_sampler_views(struct pipe_context *ctx,
1153 enum pipe_shader_type p_stage,
1154 unsigned start, unsigned count,
1155 struct pipe_sampler_view **views)
1156 {
1157 struct iris_context *ice = (struct iris_context *) ctx;
1158 gl_shader_stage stage = stage_from_pipe(p_stage);
1159
1160 unsigned i;
1161 for (i = 0; i < count; i++) {
1162 pipe_sampler_view_reference((struct pipe_sampler_view **)
1163 &ice->state.textures[stage][i], views[i]);
1164 }
1165 for (; i < ice->state.num_textures[stage]; i++) {
1166 pipe_sampler_view_reference((struct pipe_sampler_view **)
1167 &ice->state.textures[stage][i], NULL);
1168 }
1169
1170 ice->state.num_textures[stage] = count;
1171
1172 ice->state.dirty |= (IRIS_DIRTY_BINDINGS_VS << stage);
1173 }
1174
1175 static void
1176 iris_set_clip_state(struct pipe_context *ctx,
1177 const struct pipe_clip_state *state)
1178 {
1179 }
1180
1181 static void
1182 iris_set_polygon_stipple(struct pipe_context *ctx,
1183 const struct pipe_poly_stipple *state)
1184 {
1185 struct iris_context *ice = (struct iris_context *) ctx;
1186 memcpy(&ice->state.poly_stipple, state, sizeof(*state));
1187 ice->state.dirty |= IRIS_DIRTY_POLYGON_STIPPLE;
1188 }
1189
1190 static void
1191 iris_set_sample_mask(struct pipe_context *ctx, unsigned sample_mask)
1192 {
1193 struct iris_context *ice = (struct iris_context *) ctx;
1194
1195 ice->state.sample_mask = sample_mask == 0xffffffff ? 1 : sample_mask;
1196 ice->state.dirty |= IRIS_DIRTY_SAMPLE_MASK;
1197 }
1198
1199 static void
1200 iris_set_scissor_states(struct pipe_context *ctx,
1201 unsigned start_slot,
1202 unsigned num_scissors,
1203 const struct pipe_scissor_state *states)
1204 {
1205 struct iris_context *ice = (struct iris_context *) ctx;
1206
1207 for (unsigned i = 0; i < num_scissors; i++) {
1208 ice->state.scissors[start_slot + i] = states[i];
1209 }
1210
1211 ice->state.dirty |= IRIS_DIRTY_SCISSOR_RECT;
1212 }
1213
1214 static void
1215 iris_set_stencil_ref(struct pipe_context *ctx,
1216 const struct pipe_stencil_ref *state)
1217 {
1218 struct iris_context *ice = (struct iris_context *) ctx;
1219 memcpy(&ice->state.stencil_ref, state, sizeof(*state));
1220 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
1221 }
1222
1223 static float
1224 viewport_extent(const struct pipe_viewport_state *state, int axis, float sign)
1225 {
1226 return copysignf(state->scale[axis], sign) + state->translate[axis];
1227 }
1228
1229 #if 0
1230 static void
1231 calculate_guardband_size(uint32_t fb_width, uint32_t fb_height,
1232 float m00, float m11, float m30, float m31,
1233 float *xmin, float *xmax,
1234 float *ymin, float *ymax)
1235 {
1236 /* According to the "Vertex X,Y Clamping and Quantization" section of the
1237 * Strips and Fans documentation:
1238 *
1239 * "The vertex X and Y screen-space coordinates are also /clamped/ to the
1240 * fixed-point "guardband" range supported by the rasterization hardware"
1241 *
1242 * and
1243 *
1244 * "In almost all circumstances, if an object’s vertices are actually
1245 * modified by this clamping (i.e., had X or Y coordinates outside of
1246 * the guardband extent the rendered object will not match the intended
1247 * result. Therefore software should take steps to ensure that this does
1248 * not happen - e.g., by clipping objects such that they do not exceed
1249 * these limits after the Drawing Rectangle is applied."
1250 *
1251 * I believe the fundamental restriction is that the rasterizer (in
1252 * the SF/WM stages) have a limit on the number of pixels that can be
1253 * rasterized. We need to ensure any coordinates beyond the rasterizer
1254 * limit are handled by the clipper. So effectively that limit becomes
1255 * the clipper's guardband size.
1256 *
1257 * It goes on to say:
1258 *
1259 * "In addition, in order to be correctly rendered, objects must have a
1260 * screenspace bounding box not exceeding 8K in the X or Y direction.
1261 * This additional restriction must also be comprehended by software,
1262 * i.e., enforced by use of clipping."
1263 *
1264 * This makes no sense. Gen7+ hardware supports 16K render targets,
1265 * and you definitely need to be able to draw polygons that fill the
1266 * surface. Our assumption is that the rasterizer was limited to 8K
1267 * on Sandybridge, which only supports 8K surfaces, and it was actually
1268 * increased to 16K on Ivybridge and later.
1269 *
1270 * So, limit the guardband to 16K on Gen7+ and 8K on Sandybridge.
1271 */
1272 const float gb_size = GEN_GEN >= 7 ? 16384.0f : 8192.0f;
1273
1274 if (m00 != 0 && m11 != 0) {
1275 /* First, we compute the screen-space render area */
1276 const float ss_ra_xmin = MIN3( 0, m30 + m00, m30 - m00);
1277 const float ss_ra_xmax = MAX3( fb_width, m30 + m00, m30 - m00);
1278 const float ss_ra_ymin = MIN3( 0, m31 + m11, m31 - m11);
1279 const float ss_ra_ymax = MAX3(fb_height, m31 + m11, m31 - m11);
1280
1281 /* We want the guardband to be centered on that */
1282 const float ss_gb_xmin = (ss_ra_xmin + ss_ra_xmax) / 2 - gb_size;
1283 const float ss_gb_xmax = (ss_ra_xmin + ss_ra_xmax) / 2 + gb_size;
1284 const float ss_gb_ymin = (ss_ra_ymin + ss_ra_ymax) / 2 - gb_size;
1285 const float ss_gb_ymax = (ss_ra_ymin + ss_ra_ymax) / 2 + gb_size;
1286
1287 /* Now we need it in native device coordinates */
1288 const float ndc_gb_xmin = (ss_gb_xmin - m30) / m00;
1289 const float ndc_gb_xmax = (ss_gb_xmax - m30) / m00;
1290 const float ndc_gb_ymin = (ss_gb_ymin - m31) / m11;
1291 const float ndc_gb_ymax = (ss_gb_ymax - m31) / m11;
1292
1293 /* Thanks to Y-flipping and ORIGIN_UPPER_LEFT, the Y coordinates may be
1294 * flipped upside-down. X should be fine though.
1295 */
1296 assert(ndc_gb_xmin <= ndc_gb_xmax);
1297 *xmin = ndc_gb_xmin;
1298 *xmax = ndc_gb_xmax;
1299 *ymin = MIN2(ndc_gb_ymin, ndc_gb_ymax);
1300 *ymax = MAX2(ndc_gb_ymin, ndc_gb_ymax);
1301 } else {
1302 /* The viewport scales to 0, so nothing will be rendered. */
1303 *xmin = 0.0f;
1304 *xmax = 0.0f;
1305 *ymin = 0.0f;
1306 *ymax = 0.0f;
1307 }
1308 }
1309 #endif
1310
1311 static void
1312 iris_set_viewport_states(struct pipe_context *ctx,
1313 unsigned start_slot,
1314 unsigned count,
1315 const struct pipe_viewport_state *states)
1316 {
1317 struct iris_context *ice = (struct iris_context *) ctx;
1318 struct iris_genx_state *genx = ice->state.genx;
1319 uint32_t *vp_map = &genx->sf_cl_vp[start_slot];
1320
1321 for (unsigned i = 0; i < count; i++) {
1322 const struct pipe_viewport_state *state = &states[i];
1323
1324 memcpy(&ice->state.viewports[start_slot + i], state, sizeof(*state));
1325
1326 iris_pack_state(GENX(SF_CLIP_VIEWPORT), vp_map, vp) {
1327 vp.ViewportMatrixElementm00 = state->scale[0];
1328 vp.ViewportMatrixElementm11 = state->scale[1];
1329 vp.ViewportMatrixElementm22 = state->scale[2];
1330 vp.ViewportMatrixElementm30 = state->translate[0];
1331 vp.ViewportMatrixElementm31 = state->translate[1];
1332 vp.ViewportMatrixElementm32 = state->translate[2];
1333 /* XXX: in i965 this is computed based on the drawbuffer size,
1334 * but we don't have that here...
1335 */
1336 vp.XMinClipGuardband = -1.0;
1337 vp.XMaxClipGuardband = 1.0;
1338 vp.YMinClipGuardband = -1.0;
1339 vp.YMaxClipGuardband = 1.0;
1340 vp.XMinViewPort = viewport_extent(state, 0, -1.0f);
1341 vp.XMaxViewPort = viewport_extent(state, 0, 1.0f) - 1;
1342 vp.YMinViewPort = viewport_extent(state, 1, -1.0f);
1343 vp.YMaxViewPort = viewport_extent(state, 1, 1.0f) - 1;
1344 }
1345
1346 vp_map += GENX(SF_CLIP_VIEWPORT_length);
1347 }
1348
1349 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
1350
1351 if (ice->state.cso_rast && (!ice->state.cso_rast->depth_clip_near ||
1352 !ice->state.cso_rast->depth_clip_far))
1353 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1354 }
1355
1356 static void
1357 iris_set_framebuffer_state(struct pipe_context *ctx,
1358 const struct pipe_framebuffer_state *state)
1359 {
1360 struct iris_context *ice = (struct iris_context *) ctx;
1361 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1362 struct isl_device *isl_dev = &screen->isl_dev;
1363 struct pipe_framebuffer_state *cso = &ice->state.framebuffer;
1364
1365 if (cso->samples != state->samples) {
1366 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
1367 }
1368
1369 if (cso->nr_cbufs != state->nr_cbufs) {
1370 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1371 }
1372
1373 if ((cso->layers == 0) != (state->layers == 0)) {
1374 ice->state.dirty |= IRIS_DIRTY_CLIP;
1375 }
1376
1377 util_copy_framebuffer_state(cso, state);
1378
1379 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
1380
1381 struct isl_view view = {
1382 .base_level = 0,
1383 .levels = 1,
1384 .base_array_layer = 0,
1385 .array_len = 1,
1386 .swizzle = ISL_SWIZZLE_IDENTITY,
1387 };
1388
1389 struct isl_depth_stencil_hiz_emit_info info = {
1390 .view = &view,
1391 .mocs = MOCS_WB,
1392 };
1393
1394 struct iris_resource *zres =
1395 (void *) (cso->zsbuf ? cso->zsbuf->texture : NULL);
1396
1397 if (zres) {
1398 view.usage |= ISL_SURF_USAGE_DEPTH_BIT;
1399
1400 info.depth_surf = &zres->surf;
1401 info.depth_address = zres->bo->gtt_offset;
1402
1403 view.format = zres->surf.format;
1404
1405 view.base_level = cso->zsbuf->u.tex.level;
1406 view.base_array_layer = cso->zsbuf->u.tex.first_layer;
1407 view.array_len =
1408 cso->zsbuf->u.tex.last_layer - cso->zsbuf->u.tex.first_layer + 1;
1409
1410 info.hiz_usage = ISL_AUX_USAGE_NONE;
1411 }
1412
1413 #if 0
1414 if (stencil_mt) {
1415 view.usage |= ISL_SURF_USAGE_STENCIL_BIT;
1416 info.stencil_surf = &stencil_mt->surf;
1417
1418 if (!depth_mt) {
1419 view.base_level = stencil_irb->mt_level - stencil_irb->mt->first_level;
1420 view.base_array_layer = stencil_irb->mt_layer;
1421 view.array_len = MAX2(stencil_irb->layer_count, 1);
1422 view.format = stencil_mt->surf.format;
1423 }
1424
1425 uint32_t stencil_offset = 0;
1426 info.stencil_address = stencil_mt->bo->gtt_offset + stencil_mt->offset;
1427 }
1428 #endif
1429
1430 isl_emit_depth_stencil_hiz_s(isl_dev, cso_z->packets, &info);
1431
1432 ice->state.dirty |= IRIS_DIRTY_DEPTH_BUFFER;
1433
1434 /* Render target change */
1435 ice->state.dirty |= IRIS_DIRTY_BINDINGS_FS;
1436
1437 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_FRAMEBUFFER];
1438 }
1439
1440 static void
1441 iris_set_constant_buffer(struct pipe_context *ctx,
1442 enum pipe_shader_type p_stage, unsigned index,
1443 const struct pipe_constant_buffer *input)
1444 {
1445 struct iris_context *ice = (struct iris_context *) ctx;
1446 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1447 gl_shader_stage stage = stage_from_pipe(p_stage);
1448 struct iris_shader_state *shs = &ice->shaders.state[stage];
1449 struct iris_const_buffer *cbuf = &shs->constbuf[index];
1450
1451 if (input && (input->buffer || input->user_buffer)) {
1452 if (input->user_buffer) {
1453 u_upload_data(ctx->const_uploader, 0, input->buffer_size, 32,
1454 input->user_buffer, &cbuf->data.offset,
1455 &cbuf->data.res);
1456 } else {
1457 pipe_resource_reference(&cbuf->data.res, input->buffer);
1458 }
1459
1460 // XXX: these are not retained forever, use a separate uploader?
1461 void *map =
1462 upload_state(ice->state.surface_uploader, &cbuf->surface_state,
1463 4 * GENX(RENDER_SURFACE_STATE_length), 64);
1464 if (!unlikely(map)) {
1465 pipe_resource_reference(&cbuf->data.res, NULL);
1466 return;
1467 }
1468
1469 struct iris_resource *res = (void *) cbuf->data.res;
1470 struct iris_bo *surf_bo = iris_resource_bo(cbuf->surface_state.res);
1471 cbuf->surface_state.offset += iris_bo_offset_from_base_address(surf_bo);
1472
1473 isl_buffer_fill_state(&screen->isl_dev, map,
1474 .address = res->bo->gtt_offset + cbuf->data.offset,
1475 .size_B = input->buffer_size,
1476 .format = ISL_FORMAT_R32G32B32A32_FLOAT,
1477 .stride_B = 1,
1478 .mocs = MOCS_WB)
1479 } else {
1480 pipe_resource_reference(&cbuf->data.res, NULL);
1481 pipe_resource_reference(&cbuf->surface_state.res, NULL);
1482 }
1483
1484 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
1485 // XXX: maybe not necessary all the time...?
1486 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
1487 }
1488
1489 static void
1490 iris_sampler_view_destroy(struct pipe_context *ctx,
1491 struct pipe_sampler_view *state)
1492 {
1493 struct iris_sampler_view *isv = (void *) state;
1494 pipe_resource_reference(&state->texture, NULL);
1495 pipe_resource_reference(&isv->surface_state.res, NULL);
1496 free(isv);
1497 }
1498
1499
1500 static void
1501 iris_surface_destroy(struct pipe_context *ctx, struct pipe_surface *p_surf)
1502 {
1503 struct iris_surface *surf = (void *) p_surf;
1504 pipe_resource_reference(&p_surf->texture, NULL);
1505 pipe_resource_reference(&surf->surface_state.res, NULL);
1506 free(surf);
1507 }
1508
1509 static void
1510 iris_delete_state(struct pipe_context *ctx, void *state)
1511 {
1512 free(state);
1513 }
1514
1515 static void
1516 iris_free_vertex_buffers(struct iris_vertex_buffer_state *cso)
1517 {
1518 for (unsigned i = 0; i < cso->num_buffers; i++)
1519 pipe_resource_reference(&cso->resources[i], NULL);
1520 }
1521
1522 static void
1523 iris_set_vertex_buffers(struct pipe_context *ctx,
1524 unsigned start_slot, unsigned count,
1525 const struct pipe_vertex_buffer *buffers)
1526 {
1527 struct iris_context *ice = (struct iris_context *) ctx;
1528 struct iris_vertex_buffer_state *cso = &ice->state.genx->vertex_buffers;
1529
1530 iris_free_vertex_buffers(&ice->state.genx->vertex_buffers);
1531
1532 if (!buffers)
1533 count = 0;
1534
1535 cso->num_buffers = count;
1536
1537 iris_pack_command(GENX(3DSTATE_VERTEX_BUFFERS), cso->vertex_buffers, vb) {
1538 vb.DWordLength = 4 * MAX2(cso->num_buffers, 1) - 1;
1539 }
1540
1541 uint32_t *vb_pack_dest = &cso->vertex_buffers[1];
1542
1543 if (count == 0) {
1544 iris_pack_state(GENX(VERTEX_BUFFER_STATE), vb_pack_dest, vb) {
1545 vb.VertexBufferIndex = start_slot;
1546 vb.NullVertexBuffer = true;
1547 vb.AddressModifyEnable = true;
1548 }
1549 }
1550
1551 for (unsigned i = 0; i < count; i++) {
1552 assert(!buffers[i].is_user_buffer);
1553
1554 pipe_resource_reference(&cso->resources[i], buffers[i].buffer.resource);
1555 struct iris_resource *res = (void *) cso->resources[i];
1556
1557 iris_pack_state(GENX(VERTEX_BUFFER_STATE), vb_pack_dest, vb) {
1558 vb.VertexBufferIndex = start_slot + i;
1559 vb.MOCS = MOCS_WB;
1560 vb.AddressModifyEnable = true;
1561 vb.BufferPitch = buffers[i].stride;
1562 vb.BufferSize = res->bo->size;
1563 vb.BufferStartingAddress =
1564 ro_bo(NULL, res->bo->gtt_offset + buffers[i].buffer_offset);
1565 }
1566
1567 vb_pack_dest += GENX(VERTEX_BUFFER_STATE_length);
1568 }
1569
1570 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
1571 }
1572
1573 struct iris_vertex_element_state {
1574 uint32_t vertex_elements[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
1575 uint32_t vf_instancing[33 * GENX(3DSTATE_VF_INSTANCING_length)];
1576 unsigned count;
1577 };
1578
1579 static void *
1580 iris_create_vertex_elements(struct pipe_context *ctx,
1581 unsigned count,
1582 const struct pipe_vertex_element *state)
1583 {
1584 struct iris_vertex_element_state *cso =
1585 malloc(sizeof(struct iris_vertex_element_state));
1586
1587 cso->count = count;
1588
1589 /* TODO:
1590 * - create edge flag one
1591 * - create SGV ones
1592 * - if those are necessary, use count + 1/2/3... OR in the length
1593 */
1594 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS), cso->vertex_elements, ve) {
1595 ve.DWordLength =
1596 1 + GENX(VERTEX_ELEMENT_STATE_length) * MAX2(count, 1) - 2;
1597 }
1598
1599 uint32_t *ve_pack_dest = &cso->vertex_elements[1];
1600 uint32_t *vfi_pack_dest = cso->vf_instancing;
1601
1602 if (count == 0) {
1603 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
1604 ve.Valid = true;
1605 ve.SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT;
1606 ve.Component0Control = VFCOMP_STORE_0;
1607 ve.Component1Control = VFCOMP_STORE_0;
1608 ve.Component2Control = VFCOMP_STORE_0;
1609 ve.Component3Control = VFCOMP_STORE_1_FP;
1610 }
1611
1612 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
1613 }
1614 }
1615
1616 for (int i = 0; i < count; i++) {
1617 enum isl_format isl_format =
1618 iris_isl_format_for_pipe_format(state[i].src_format);
1619 unsigned comp[4] = { VFCOMP_STORE_SRC, VFCOMP_STORE_SRC,
1620 VFCOMP_STORE_SRC, VFCOMP_STORE_SRC };
1621
1622 switch (isl_format_get_num_channels(isl_format)) {
1623 case 0: comp[0] = VFCOMP_STORE_0;
1624 case 1: comp[1] = VFCOMP_STORE_0;
1625 case 2: comp[2] = VFCOMP_STORE_0;
1626 case 3:
1627 comp[3] = isl_format_has_int_channel(isl_format) ? VFCOMP_STORE_1_INT
1628 : VFCOMP_STORE_1_FP;
1629 break;
1630 }
1631 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
1632 ve.VertexBufferIndex = state[i].vertex_buffer_index;
1633 ve.Valid = true;
1634 ve.SourceElementOffset = state[i].src_offset;
1635 ve.SourceElementFormat = isl_format;
1636 ve.Component0Control = comp[0];
1637 ve.Component1Control = comp[1];
1638 ve.Component2Control = comp[2];
1639 ve.Component3Control = comp[3];
1640 }
1641
1642 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
1643 vi.VertexElementIndex = i;
1644 vi.InstancingEnable = state[i].instance_divisor > 0;
1645 vi.InstanceDataStepRate = state[i].instance_divisor;
1646 }
1647
1648 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
1649 vfi_pack_dest += GENX(3DSTATE_VF_INSTANCING_length);
1650 }
1651
1652 return cso;
1653 }
1654
1655 static void
1656 iris_bind_vertex_elements_state(struct pipe_context *ctx, void *state)
1657 {
1658 struct iris_context *ice = (struct iris_context *) ctx;
1659 struct iris_vertex_element_state *old_cso = ice->state.cso_vertex_elements;
1660 struct iris_vertex_element_state *new_cso = state;
1661
1662 if (new_cso && cso_changed(count))
1663 ice->state.dirty |= IRIS_DIRTY_VF_SGVS;
1664
1665 ice->state.cso_vertex_elements = state;
1666 ice->state.dirty |= IRIS_DIRTY_VERTEX_ELEMENTS;
1667 }
1668
1669 static void *
1670 iris_create_compute_state(struct pipe_context *ctx,
1671 const struct pipe_compute_state *state)
1672 {
1673 return malloc(1);
1674 }
1675
1676 struct iris_stream_output_target {
1677 struct pipe_stream_output_target base;
1678
1679 uint32_t so_buffer[GENX(3DSTATE_SO_BUFFER_length)];
1680
1681 struct iris_state_ref offset;
1682 };
1683
1684 static struct pipe_stream_output_target *
1685 iris_create_stream_output_target(struct pipe_context *ctx,
1686 struct pipe_resource *res,
1687 unsigned buffer_offset,
1688 unsigned buffer_size)
1689 {
1690 struct iris_stream_output_target *cso = calloc(1, sizeof(*cso));
1691 if (!cso)
1692 return NULL;
1693
1694 pipe_reference_init(&cso->base.reference, 1);
1695 pipe_resource_reference(&cso->base.buffer, res);
1696 cso->base.buffer_offset = buffer_offset;
1697 cso->base.buffer_size = buffer_size;
1698 cso->base.context = ctx;
1699
1700 upload_state(ctx->stream_uploader, &cso->offset, 4, 4);
1701
1702 iris_pack_command(GENX(3DSTATE_SO_BUFFER), cso->so_buffer, sob) {
1703 sob.SurfaceBaseAddress =
1704 rw_bo(NULL, iris_resource_bo(res)->gtt_offset + buffer_offset);
1705 sob.SOBufferEnable = true;
1706 sob.StreamOffsetWriteEnable = true;
1707 sob.StreamOutputBufferOffsetAddressEnable = true;
1708 sob.MOCS = MOCS_WB; // XXX: MOCS
1709
1710 sob.SurfaceSize = MAX2(buffer_size / 4, 1) - 1;
1711 sob.StreamOutputBufferOffsetAddress =
1712 rw_bo(NULL, iris_resource_bo(cso->offset.res)->gtt_offset + cso->offset.offset);
1713
1714 /* .SOBufferIndex and .StreamOffset are filled in later */
1715 }
1716
1717 return &cso->base;
1718 }
1719
1720 static void
1721 iris_stream_output_target_destroy(struct pipe_context *ctx,
1722 struct pipe_stream_output_target *state)
1723 {
1724 struct iris_stream_output_target *cso = (void *) state;
1725
1726 pipe_resource_reference(&cso->base.buffer, NULL);
1727 pipe_resource_reference(&cso->offset.res, NULL);
1728
1729 free(cso);
1730 }
1731
1732 static void
1733 iris_set_stream_output_targets(struct pipe_context *ctx,
1734 unsigned num_targets,
1735 struct pipe_stream_output_target **targets,
1736 const unsigned *offsets)
1737 {
1738 struct iris_context *ice = (struct iris_context *) ctx;
1739 struct iris_genx_state *genx = ice->state.genx;
1740 uint32_t *so_buffers = genx->so_buffers;
1741
1742 const bool active = num_targets > 0;
1743 if (ice->state.streamout_active != active) {
1744 ice->state.streamout_active = active;
1745 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
1746 }
1747
1748 for (int i = 0; i < 4; i++) {
1749 pipe_so_target_reference(&ice->state.so_target[i],
1750 i < num_targets ? targets[i] : NULL);
1751 }
1752
1753 /* No need to update 3DSTATE_SO_BUFFER unless SOL is active. */
1754 if (!active)
1755 return;
1756
1757 for (unsigned i = 0; i < 4; i++,
1758 so_buffers += GENX(3DSTATE_SO_BUFFER_length)) {
1759
1760 if (i >= num_targets || !targets[i]) {
1761 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob)
1762 sob.SOBufferIndex = i;
1763 continue;
1764 }
1765
1766 /* Note that offsets[i] will either be 0, causing us to zero
1767 * the value in the buffer, or 0xFFFFFFFF, which happens to mean
1768 * "continue appending at the existing offset."
1769 */
1770 assert(offsets[i] == 0 || offsets[i] == 0xFFFFFFFF);
1771
1772 uint32_t dynamic[GENX(3DSTATE_SO_BUFFER_length)];
1773 iris_pack_state(GENX(3DSTATE_SO_BUFFER), dynamic, dyns) {
1774 dyns.SOBufferIndex = i;
1775 dyns.StreamOffset = offsets[i];
1776 }
1777
1778 struct iris_stream_output_target *tgt = (void *) targets[i];
1779 for (uint32_t j = 0; j < GENX(3DSTATE_SO_BUFFER_length); j++) {
1780 so_buffers[j] = tgt->so_buffer[j] | dynamic[j];
1781 }
1782 }
1783
1784 ice->state.dirty |= IRIS_DIRTY_SO_BUFFERS;
1785 }
1786
1787 static uint32_t *
1788 iris_create_so_decl_list(const struct pipe_stream_output_info *info,
1789 const struct brw_vue_map *vue_map)
1790 {
1791 struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
1792 int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
1793 int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
1794 int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
1795 int max_decls = 0;
1796 STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
1797
1798 memset(so_decl, 0, sizeof(so_decl));
1799
1800 /* Construct the list of SO_DECLs to be emitted. The formatting of the
1801 * command feels strange -- each dword pair contains a SO_DECL per stream.
1802 */
1803 for (unsigned i = 0; i < info->num_outputs; i++) {
1804 const struct pipe_stream_output *output = &info->output[i];
1805 const int buffer = output->output_buffer;
1806 const int varying = output->register_index;
1807 const unsigned stream_id = output->stream;
1808 assert(stream_id < MAX_VERTEX_STREAMS);
1809
1810 buffer_mask[stream_id] |= 1 << buffer;
1811
1812 assert(vue_map->varying_to_slot[varying] >= 0);
1813
1814 /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
1815 * array. Instead, it simply increments DstOffset for the following
1816 * input by the number of components that should be skipped.
1817 *
1818 * Our hardware is unusual in that it requires us to program SO_DECLs
1819 * for fake "hole" components, rather than simply taking the offset
1820 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
1821 * program as many size = 4 holes as we can, then a final hole to
1822 * accommodate the final 1, 2, or 3 remaining.
1823 */
1824 int skip_components = output->dst_offset - next_offset[buffer];
1825
1826 while (skip_components > 0) {
1827 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
1828 .HoleFlag = 1,
1829 .OutputBufferSlot = output->output_buffer,
1830 .ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
1831 };
1832 skip_components -= 4;
1833 }
1834
1835 next_offset[buffer] = output->dst_offset + output->num_components;
1836
1837 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
1838 .OutputBufferSlot = output->output_buffer,
1839 .RegisterIndex = vue_map->varying_to_slot[varying],
1840 .ComponentMask =
1841 ((1 << output->num_components) - 1) << output->start_component,
1842 };
1843
1844 if (decls[stream_id] > max_decls)
1845 max_decls = decls[stream_id];
1846 }
1847
1848 unsigned dwords = GENX(3DSTATE_STREAMOUT_length) + (3 + 2 * max_decls);
1849 uint32_t *map = ralloc_size(NULL, sizeof(uint32_t) * dwords);
1850 uint32_t *so_decl_map = map + GENX(3DSTATE_STREAMOUT_length);
1851
1852 iris_pack_command(GENX(3DSTATE_STREAMOUT), map, sol) {
1853 int urb_entry_read_offset = 0;
1854 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
1855 urb_entry_read_offset;
1856
1857 /* We always read the whole vertex. This could be reduced at some
1858 * point by reading less and offsetting the register index in the
1859 * SO_DECLs.
1860 */
1861 sol.Stream0VertexReadOffset = urb_entry_read_offset;
1862 sol.Stream0VertexReadLength = urb_entry_read_length - 1;
1863 sol.Stream1VertexReadOffset = urb_entry_read_offset;
1864 sol.Stream1VertexReadLength = urb_entry_read_length - 1;
1865 sol.Stream2VertexReadOffset = urb_entry_read_offset;
1866 sol.Stream2VertexReadLength = urb_entry_read_length - 1;
1867 sol.Stream3VertexReadOffset = urb_entry_read_offset;
1868 sol.Stream3VertexReadLength = urb_entry_read_length - 1;
1869
1870 /* Set buffer pitches; 0 means unbound. */
1871 sol.Buffer0SurfacePitch = 4 * info->stride[0];
1872 sol.Buffer1SurfacePitch = 4 * info->stride[1];
1873 sol.Buffer2SurfacePitch = 4 * info->stride[2];
1874 sol.Buffer3SurfacePitch = 4 * info->stride[3];
1875 }
1876
1877 iris_pack_command(GENX(3DSTATE_SO_DECL_LIST), so_decl_map, list) {
1878 list.DWordLength = 3 + 2 * max_decls - 2;
1879 list.StreamtoBufferSelects0 = buffer_mask[0];
1880 list.StreamtoBufferSelects1 = buffer_mask[1];
1881 list.StreamtoBufferSelects2 = buffer_mask[2];
1882 list.StreamtoBufferSelects3 = buffer_mask[3];
1883 list.NumEntries0 = decls[0];
1884 list.NumEntries1 = decls[1];
1885 list.NumEntries2 = decls[2];
1886 list.NumEntries3 = decls[3];
1887 }
1888
1889 for (int i = 0; i < max_decls; i++) {
1890 iris_pack_state(GENX(SO_DECL_ENTRY), so_decl_map + 3 + i * 2, entry) {
1891 entry.Stream0Decl = so_decl[0][i];
1892 entry.Stream1Decl = so_decl[1][i];
1893 entry.Stream2Decl = so_decl[2][i];
1894 entry.Stream3Decl = so_decl[3][i];
1895 }
1896 }
1897
1898 return map;
1899 }
1900
1901 static void
1902 iris_compute_sbe_urb_read_interval(uint64_t fs_input_slots,
1903 const struct brw_vue_map *last_vue_map,
1904 bool two_sided_color,
1905 unsigned *out_offset,
1906 unsigned *out_length)
1907 {
1908 /* The compiler computes the first URB slot without considering COL/BFC
1909 * swizzling (because it doesn't know whether it's enabled), so we need
1910 * to do that here too. This may result in a smaller offset, which
1911 * should be safe.
1912 */
1913 const unsigned first_slot =
1914 brw_compute_first_urb_slot_required(fs_input_slots, last_vue_map);
1915
1916 /* This becomes the URB read offset (counted in pairs of slots). */
1917 assert(first_slot % 2 == 0);
1918 *out_offset = first_slot / 2;
1919
1920 /* We need to adjust the inputs read to account for front/back color
1921 * swizzling, as it can make the URB length longer.
1922 */
1923 for (int c = 0; c <= 1; c++) {
1924 if (fs_input_slots & (VARYING_BIT_COL0 << c)) {
1925 /* If two sided color is enabled, the fragment shader's gl_Color
1926 * (COL0) input comes from either the gl_FrontColor (COL0) or
1927 * gl_BackColor (BFC0) input varyings. Mark BFC as used, too.
1928 */
1929 if (two_sided_color)
1930 fs_input_slots |= (VARYING_BIT_BFC0 << c);
1931
1932 /* If front color isn't written, we opt to give them back color
1933 * instead of an undefined value. Switch from COL to BFC.
1934 */
1935 if (last_vue_map->varying_to_slot[VARYING_SLOT_COL0 + c] == -1) {
1936 fs_input_slots &= ~(VARYING_BIT_COL0 << c);
1937 fs_input_slots |= (VARYING_BIT_BFC0 << c);
1938 }
1939 }
1940 }
1941
1942 /* Compute the minimum URB Read Length necessary for the FS inputs.
1943 *
1944 * From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
1945 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
1946 *
1947 * "This field should be set to the minimum length required to read the
1948 * maximum source attribute. The maximum source attribute is indicated
1949 * by the maximum value of the enabled Attribute # Source Attribute if
1950 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
1951 * enable is not set.
1952 * read_length = ceiling((max_source_attr + 1) / 2)
1953 *
1954 * [errata] Corruption/Hang possible if length programmed larger than
1955 * recommended"
1956 *
1957 * Similar text exists for Ivy Bridge.
1958 *
1959 * We find the last URB slot that's actually read by the FS.
1960 */
1961 unsigned last_read_slot = last_vue_map->num_slots - 1;
1962 while (last_read_slot > first_slot && !(fs_input_slots &
1963 (1ull << last_vue_map->slot_to_varying[last_read_slot])))
1964 --last_read_slot;
1965
1966 /* The URB read length is the difference of the two, counted in pairs. */
1967 *out_length = DIV_ROUND_UP(last_read_slot - first_slot + 1, 2);
1968 }
1969
1970 static void
1971 iris_emit_sbe_swiz(struct iris_batch *batch,
1972 const struct iris_context *ice,
1973 unsigned urb_read_offset)
1974 {
1975 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = {};
1976 const struct brw_wm_prog_data *wm_prog_data = (void *)
1977 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
1978 const struct brw_vue_map *vue_map = ice->shaders.last_vue_map;
1979 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
1980
1981 /* XXX: this should be generated when putting programs in place */
1982
1983 // XXX: raster->sprite_coord_enable
1984
1985 for (int fs_attr = 0; fs_attr < VARYING_SLOT_MAX; fs_attr++) {
1986 const int input_index = wm_prog_data->urb_setup[fs_attr];
1987 if (input_index < 0 || input_index >= 16)
1988 continue;
1989
1990 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr =
1991 &attr_overrides[input_index];
1992
1993 /* Viewport and Layer are stored in the VUE header. We need to override
1994 * them to zero if earlier stages didn't write them, as GL requires that
1995 * they read back as zero when not explicitly set.
1996 */
1997 switch (fs_attr) {
1998 case VARYING_SLOT_VIEWPORT:
1999 case VARYING_SLOT_LAYER:
2000 attr->ComponentOverrideX = true;
2001 attr->ComponentOverrideW = true;
2002 attr->ConstantSource = CONST_0000;
2003
2004 if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
2005 attr->ComponentOverrideY = true;
2006 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
2007 attr->ComponentOverrideZ = true;
2008 continue;
2009
2010 case VARYING_SLOT_PRIMITIVE_ID:
2011 attr->ComponentOverrideX = true;
2012 attr->ComponentOverrideY = true;
2013 attr->ComponentOverrideZ = true;
2014 attr->ComponentOverrideW = true;
2015 attr->ConstantSource = PRIM_ID;
2016 continue;
2017
2018 default:
2019 break;
2020 }
2021
2022 int slot = vue_map->varying_to_slot[fs_attr];
2023
2024 /* If there was only a back color written but not front, use back
2025 * as the color instead of undefined.
2026 */
2027 if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
2028 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
2029 if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
2030 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
2031
2032 /* Not written by the previous stage - undefined. */
2033 if (slot == -1) {
2034 attr->ComponentOverrideX = true;
2035 attr->ComponentOverrideY = true;
2036 attr->ComponentOverrideZ = true;
2037 attr->ComponentOverrideW = true;
2038 attr->ConstantSource = CONST_0001_FLOAT;
2039 continue;
2040 }
2041
2042 /* Compute the location of the attribute relative to the read offset,
2043 * which is counted in 256-bit increments (two 128-bit VUE slots).
2044 */
2045 const int source_attr = slot - 2 * urb_read_offset;
2046 assert(source_attr >= 0 && source_attr <= 32);
2047 attr->SourceAttribute = source_attr;
2048
2049 /* If we are doing two-sided color, and the VUE slot following this one
2050 * represents a back-facing color, then we need to instruct the SF unit
2051 * to do back-facing swizzling.
2052 */
2053 if (cso_rast->light_twoside &&
2054 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
2055 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
2056 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
2057 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1)))
2058 attr->SwizzleSelect = INPUTATTR_FACING;
2059 }
2060
2061 iris_emit_cmd(batch, GENX(3DSTATE_SBE_SWIZ), sbes) {
2062 for (int i = 0; i < 16; i++)
2063 sbes.Attribute[i] = attr_overrides[i];
2064 }
2065 }
2066
2067 static void
2068 iris_emit_sbe(struct iris_batch *batch, const struct iris_context *ice)
2069 {
2070 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
2071 const struct brw_wm_prog_data *wm_prog_data = (void *)
2072 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
2073 struct pipe_shader_state *p_fs =
2074 (void *) ice->shaders.uncompiled[MESA_SHADER_FRAGMENT];
2075 assert(p_fs->type == PIPE_SHADER_IR_NIR);
2076 nir_shader *fs_nir = p_fs->ir.nir;
2077
2078 unsigned urb_read_offset, urb_read_length;
2079 iris_compute_sbe_urb_read_interval(fs_nir->info.inputs_read,
2080 ice->shaders.last_vue_map,
2081 cso_rast->light_twoside,
2082 &urb_read_offset, &urb_read_length);
2083
2084 iris_emit_cmd(batch, GENX(3DSTATE_SBE), sbe) {
2085 sbe.AttributeSwizzleEnable = true;
2086 sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
2087 sbe.PointSpriteTextureCoordinateOrigin = cso_rast->sprite_coord_mode;
2088 sbe.VertexURBEntryReadOffset = urb_read_offset;
2089 sbe.VertexURBEntryReadLength = urb_read_length;
2090 sbe.ForceVertexURBEntryReadOffset = true;
2091 sbe.ForceVertexURBEntryReadLength = true;
2092 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
2093
2094 for (int i = 0; i < 32; i++) {
2095 sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW;
2096 }
2097 }
2098
2099 iris_emit_sbe_swiz(batch, ice, urb_read_offset);
2100 }
2101
2102 static void
2103 iris_bind_compute_state(struct pipe_context *ctx, void *state)
2104 {
2105 }
2106
2107 static void
2108 iris_populate_sampler_key(const struct iris_context *ice,
2109 struct brw_sampler_prog_key_data *key)
2110 {
2111 for (int i = 0; i < MAX_SAMPLERS; i++) {
2112 key->swizzles[i] = 0x688; /* XYZW */
2113 }
2114 }
2115
2116 static void
2117 iris_populate_vs_key(const struct iris_context *ice,
2118 struct brw_vs_prog_key *key)
2119 {
2120 iris_populate_sampler_key(ice, &key->tex);
2121 }
2122
2123 static void
2124 iris_populate_tcs_key(const struct iris_context *ice,
2125 struct brw_tcs_prog_key *key)
2126 {
2127 iris_populate_sampler_key(ice, &key->tex);
2128 }
2129
2130 static void
2131 iris_populate_tes_key(const struct iris_context *ice,
2132 struct brw_tes_prog_key *key)
2133 {
2134 iris_populate_sampler_key(ice, &key->tex);
2135 }
2136
2137 static void
2138 iris_populate_gs_key(const struct iris_context *ice,
2139 struct brw_gs_prog_key *key)
2140 {
2141 iris_populate_sampler_key(ice, &key->tex);
2142 }
2143
2144 static void
2145 iris_populate_fs_key(const struct iris_context *ice,
2146 struct brw_wm_prog_key *key)
2147 {
2148 iris_populate_sampler_key(ice, &key->tex);
2149
2150 /* XXX: dirty flags? */
2151 const struct pipe_framebuffer_state *fb = &ice->state.framebuffer;
2152 const struct iris_depth_stencil_alpha_state *zsa = ice->state.cso_zsa;
2153 const struct iris_rasterizer_state *rast = ice->state.cso_rast;
2154 const struct iris_blend_state *blend = ice->state.cso_blend;
2155
2156 key->nr_color_regions = fb->nr_cbufs;
2157
2158 key->clamp_fragment_color = rast->clamp_fragment_color;
2159
2160 key->replicate_alpha = fb->nr_cbufs > 1 &&
2161 (zsa->alpha.enabled || blend->alpha_to_coverage);
2162
2163 /* XXX: only bother if COL0/1 are read */
2164 key->flat_shade = rast->flatshade;
2165
2166 key->persample_interp = rast->force_persample_interp;
2167 key->multisample_fbo = rast->multisample && fb->samples > 1;
2168
2169 key->coherent_fb_fetch = true;
2170
2171 // XXX: uint64_t input_slots_valid; - for >16 inputs
2172
2173 // XXX: key->force_dual_color_blend for unigine
2174 // XXX: respect hint for high_quality_derivatives:1;
2175 }
2176
2177 #if 0
2178 // XXX: these need to go in INIT_THREAD_DISPATCH_FIELDS
2179 pkt.SamplerCount = \
2180 DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4); \
2181 pkt.PerThreadScratchSpace = prog_data->total_scratch == 0 ? 0 : \
2182 ffs(stage_state->per_thread_scratch) - 11; \
2183
2184 #endif
2185
2186 static uint64_t
2187 KSP(const struct iris_compiled_shader *shader)
2188 {
2189 struct iris_resource *res = (void *) shader->assembly.res;
2190 return iris_bo_offset_from_base_address(res->bo) + shader->assembly.offset;
2191 }
2192
2193 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix) \
2194 pkt.KernelStartPointer = KSP(shader); \
2195 pkt.BindingTableEntryCount = prog_data->binding_table.size_bytes / 4; \
2196 pkt.FloatingPointMode = prog_data->use_alt_mode; \
2197 \
2198 pkt.DispatchGRFStartRegisterForURBData = \
2199 prog_data->dispatch_grf_start_reg; \
2200 pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
2201 pkt.prefix##URBEntryReadOffset = 0; \
2202 \
2203 pkt.StatisticsEnable = true; \
2204 pkt.Enable = true;
2205
2206 static void
2207 iris_store_vs_state(const struct gen_device_info *devinfo,
2208 struct iris_compiled_shader *shader)
2209 {
2210 struct brw_stage_prog_data *prog_data = shader->prog_data;
2211 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
2212
2213 iris_pack_command(GENX(3DSTATE_VS), shader->derived_data, vs) {
2214 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex);
2215 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
2216 vs.SIMD8DispatchEnable = true;
2217 vs.UserClipDistanceCullTestEnableBitmask =
2218 vue_prog_data->cull_distance_mask;
2219 }
2220 }
2221
2222 static void
2223 iris_store_tcs_state(const struct gen_device_info *devinfo,
2224 struct iris_compiled_shader *shader)
2225 {
2226 struct brw_stage_prog_data *prog_data = shader->prog_data;
2227 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
2228 struct brw_tcs_prog_data *tcs_prog_data = (void *) prog_data;
2229
2230 iris_pack_command(GENX(3DSTATE_HS), shader->derived_data, hs) {
2231 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex);
2232
2233 hs.InstanceCount = tcs_prog_data->instances - 1;
2234 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
2235 hs.IncludeVertexHandles = true;
2236 }
2237 }
2238
2239 static void
2240 iris_store_tes_state(const struct gen_device_info *devinfo,
2241 struct iris_compiled_shader *shader)
2242 {
2243 struct brw_stage_prog_data *prog_data = shader->prog_data;
2244 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
2245 struct brw_tes_prog_data *tes_prog_data = (void *) prog_data;
2246
2247 uint32_t *te_state = (void *) shader->derived_data;
2248 uint32_t *ds_state = te_state + GENX(3DSTATE_TE_length);
2249
2250 iris_pack_command(GENX(3DSTATE_TE), te_state, te) {
2251 te.Partitioning = tes_prog_data->partitioning;
2252 te.OutputTopology = tes_prog_data->output_topology;
2253 te.TEDomain = tes_prog_data->domain;
2254 te.TEEnable = true;
2255 te.MaximumTessellationFactorOdd = 63.0;
2256 te.MaximumTessellationFactorNotOdd = 64.0;
2257 }
2258
2259 iris_pack_command(GENX(3DSTATE_DS), ds_state, ds) {
2260 INIT_THREAD_DISPATCH_FIELDS(ds, Patch);
2261
2262 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
2263 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
2264 ds.ComputeWCoordinateEnable =
2265 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
2266
2267 ds.UserClipDistanceCullTestEnableBitmask =
2268 vue_prog_data->cull_distance_mask;
2269 }
2270
2271 }
2272
2273 static void
2274 iris_store_gs_state(const struct gen_device_info *devinfo,
2275 struct iris_compiled_shader *shader)
2276 {
2277 struct brw_stage_prog_data *prog_data = shader->prog_data;
2278 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
2279 struct brw_gs_prog_data *gs_prog_data = (void *) prog_data;
2280
2281 iris_pack_command(GENX(3DSTATE_GS), shader->derived_data, gs) {
2282 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex);
2283
2284 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
2285 gs.OutputTopology = gs_prog_data->output_topology;
2286 gs.ControlDataHeaderSize =
2287 gs_prog_data->control_data_header_size_hwords;
2288 gs.InstanceControl = gs_prog_data->invocations - 1;
2289 gs.DispatchMode = DISPATCH_MODE_SIMD8;
2290 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
2291 gs.ControlDataFormat = gs_prog_data->control_data_format;
2292 gs.ReorderMode = TRAILING;
2293 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
2294 gs.MaximumNumberofThreads =
2295 GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
2296 : (devinfo->max_gs_threads - 1);
2297
2298 if (gs_prog_data->static_vertex_count != -1) {
2299 gs.StaticOutput = true;
2300 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
2301 }
2302 gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
2303
2304 gs.UserClipDistanceCullTestEnableBitmask =
2305 vue_prog_data->cull_distance_mask;
2306
2307 const int urb_entry_write_offset = 1;
2308 const uint32_t urb_entry_output_length =
2309 DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
2310 urb_entry_write_offset;
2311
2312 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
2313 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
2314 }
2315 }
2316
2317 static void
2318 iris_store_fs_state(const struct gen_device_info *devinfo,
2319 struct iris_compiled_shader *shader)
2320 {
2321 struct brw_stage_prog_data *prog_data = shader->prog_data;
2322 struct brw_wm_prog_data *wm_prog_data = (void *) shader->prog_data;
2323
2324 uint32_t *ps_state = (void *) shader->derived_data;
2325 uint32_t *psx_state = ps_state + GENX(3DSTATE_PS_length);
2326
2327 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
2328 ps.VectorMaskEnable = true;
2329 //ps.SamplerCount = ...
2330 ps.BindingTableEntryCount = prog_data->binding_table.size_bytes / 4;
2331 ps.FloatingPointMode = prog_data->use_alt_mode;
2332 ps.MaximumNumberofThreadsPerPSD = 64 - (GEN_GEN == 8 ? 2 : 1);
2333
2334 ps.PushConstantEnable = prog_data->nr_params > 0 ||
2335 prog_data->ubo_ranges[0].length > 0;
2336
2337 /* From the documentation for this packet:
2338 * "If the PS kernel does not need the Position XY Offsets to
2339 * compute a Position Value, then this field should be programmed
2340 * to POSOFFSET_NONE."
2341 *
2342 * "SW Recommendation: If the PS kernel needs the Position Offsets
2343 * to compute a Position XY value, this field should match Position
2344 * ZW Interpolation Mode to ensure a consistent position.xyzw
2345 * computation."
2346 *
2347 * We only require XY sample offsets. So, this recommendation doesn't
2348 * look useful at the moment. We might need this in future.
2349 */
2350 ps.PositionXYOffsetSelect =
2351 wm_prog_data->uses_pos_offset ? POSOFFSET_SAMPLE : POSOFFSET_NONE;
2352 ps._8PixelDispatchEnable = wm_prog_data->dispatch_8;
2353 ps._16PixelDispatchEnable = wm_prog_data->dispatch_16;
2354 ps._32PixelDispatchEnable = wm_prog_data->dispatch_32;
2355
2356 // XXX: Disable SIMD32 with 16x MSAA
2357
2358 ps.DispatchGRFStartRegisterForConstantSetupData0 =
2359 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
2360 ps.DispatchGRFStartRegisterForConstantSetupData1 =
2361 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
2362 ps.DispatchGRFStartRegisterForConstantSetupData2 =
2363 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
2364
2365 ps.KernelStartPointer0 =
2366 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
2367 ps.KernelStartPointer1 =
2368 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
2369 ps.KernelStartPointer2 =
2370 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
2371 }
2372
2373 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
2374 psx.PixelShaderValid = true;
2375 psx.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
2376 psx.PixelShaderKillsPixel = wm_prog_data->uses_kill;
2377 psx.AttributeEnable = wm_prog_data->num_varying_inputs != 0;
2378 psx.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
2379 psx.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
2380 psx.PixelShaderIsPerSample = wm_prog_data->persample_dispatch;
2381
2382 if (wm_prog_data->uses_sample_mask) {
2383 /* TODO: conservative rasterization */
2384 if (wm_prog_data->post_depth_coverage)
2385 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
2386 else
2387 psx.InputCoverageMaskState = ICMS_NORMAL;
2388 }
2389
2390 psx.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
2391 psx.PixelShaderPullsBary = wm_prog_data->pulls_bary;
2392 psx.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
2393
2394 // XXX: UAV bit
2395 }
2396 }
2397
2398 static unsigned
2399 iris_derived_program_state_size(enum iris_program_cache_id cache_id)
2400 {
2401 assert(cache_id <= IRIS_CACHE_BLORP);
2402
2403 static const unsigned dwords[] = {
2404 [IRIS_CACHE_VS] = GENX(3DSTATE_VS_length),
2405 [IRIS_CACHE_TCS] = GENX(3DSTATE_HS_length),
2406 [IRIS_CACHE_TES] = GENX(3DSTATE_TE_length) + GENX(3DSTATE_DS_length),
2407 [IRIS_CACHE_GS] = GENX(3DSTATE_GS_length),
2408 [IRIS_CACHE_FS] =
2409 GENX(3DSTATE_PS_length) + GENX(3DSTATE_PS_EXTRA_length),
2410 [IRIS_CACHE_CS] = 0,
2411 [IRIS_CACHE_BLORP] = 0,
2412 };
2413
2414 return sizeof(uint32_t) * dwords[cache_id];
2415 }
2416
2417 static void
2418 iris_store_derived_program_state(const struct gen_device_info *devinfo,
2419 enum iris_program_cache_id cache_id,
2420 struct iris_compiled_shader *shader)
2421 {
2422 switch (cache_id) {
2423 case IRIS_CACHE_VS:
2424 iris_store_vs_state(devinfo, shader);
2425 break;
2426 case IRIS_CACHE_TCS:
2427 iris_store_tcs_state(devinfo, shader);
2428 break;
2429 case IRIS_CACHE_TES:
2430 iris_store_tes_state(devinfo, shader);
2431 break;
2432 case IRIS_CACHE_GS:
2433 iris_store_gs_state(devinfo, shader);
2434 break;
2435 case IRIS_CACHE_FS:
2436 iris_store_fs_state(devinfo, shader);
2437 break;
2438 case IRIS_CACHE_CS:
2439 case IRIS_CACHE_BLORP:
2440 break;
2441 default:
2442 break;
2443 }
2444 }
2445
2446 static void
2447 iris_upload_urb_config(struct iris_context *ice, struct iris_batch *batch)
2448 {
2449 const struct gen_device_info *devinfo = &batch->screen->devinfo;
2450 const unsigned push_size_kB = 32;
2451 unsigned entries[4];
2452 unsigned start[4];
2453 unsigned size[4];
2454
2455 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
2456 if (!ice->shaders.prog[i]) {
2457 size[i] = 1;
2458 } else {
2459 struct brw_vue_prog_data *vue_prog_data =
2460 (void *) ice->shaders.prog[i]->prog_data;
2461 size[i] = vue_prog_data->urb_entry_size;
2462 }
2463 assert(size[i] != 0);
2464 }
2465
2466 gen_get_urb_config(devinfo, 1024 * push_size_kB,
2467 1024 * ice->shaders.urb_size,
2468 ice->shaders.prog[MESA_SHADER_TESS_EVAL] != NULL,
2469 ice->shaders.prog[MESA_SHADER_GEOMETRY] != NULL,
2470 size, entries, start);
2471
2472 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
2473 iris_emit_cmd(batch, GENX(3DSTATE_URB_VS), urb) {
2474 urb._3DCommandSubOpcode += i;
2475 urb.VSURBStartingAddress = start[i];
2476 urb.VSURBEntryAllocationSize = size[i] - 1;
2477 urb.VSNumberofURBEntries = entries[i];
2478 }
2479 }
2480 }
2481
2482 static const uint32_t push_constant_opcodes[] = {
2483 [MESA_SHADER_VERTEX] = 21,
2484 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
2485 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
2486 [MESA_SHADER_GEOMETRY] = 22,
2487 [MESA_SHADER_FRAGMENT] = 23,
2488 [MESA_SHADER_COMPUTE] = 0,
2489 };
2490
2491 /**
2492 * Add a surface to the validation list, as well as the buffer containing
2493 * the corresponding SURFACE_STATE.
2494 *
2495 * Returns the binding table entry (offset to SURFACE_STATE).
2496 */
2497 static uint32_t
2498 use_surface(struct iris_batch *batch,
2499 struct pipe_surface *p_surf,
2500 bool writeable)
2501 {
2502 struct iris_surface *surf = (void *) p_surf;
2503
2504 iris_use_pinned_bo(batch, iris_resource_bo(p_surf->texture), writeable);
2505 iris_use_pinned_bo(batch, iris_resource_bo(surf->surface_state.res), false);
2506
2507 return surf->surface_state.offset;
2508 }
2509
2510 static uint32_t
2511 use_sampler_view(struct iris_batch *batch, struct iris_sampler_view *isv)
2512 {
2513 iris_use_pinned_bo(batch, iris_resource_bo(isv->pipe.texture), false);
2514 iris_use_pinned_bo(batch, iris_resource_bo(isv->surface_state.res), false);
2515
2516 return isv->surface_state.offset;
2517 }
2518
2519 static uint32_t
2520 use_const_buffer(struct iris_batch *batch, struct iris_const_buffer *cbuf)
2521 {
2522 iris_use_pinned_bo(batch, iris_resource_bo(cbuf->data.res), false);
2523 iris_use_pinned_bo(batch, iris_resource_bo(cbuf->surface_state.res), false);
2524
2525 return cbuf->surface_state.offset;
2526 }
2527
2528 static uint32_t
2529 use_null_surface(struct iris_batch *batch, struct iris_context *ice)
2530 {
2531 struct iris_bo *state_bo = iris_resource_bo(ice->state.unbound_tex.res);
2532
2533 iris_use_pinned_bo(batch, state_bo, false);
2534
2535 return ice->state.unbound_tex.offset;
2536 }
2537
2538 static void
2539 iris_populate_binding_table(struct iris_context *ice,
2540 struct iris_batch *batch,
2541 gl_shader_stage stage)
2542 {
2543 const struct iris_binder *binder = &batch->binder;
2544 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
2545 if (!shader)
2546 return;
2547
2548 // Surfaces:
2549 // - pull constants
2550 // - ubos/ssbos/abos
2551 // - images
2552 // - textures
2553 // - render targets - write and read
2554
2555 //struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
2556 uint32_t *bt_map = binder->map + binder->bt_offset[stage];
2557 int s = 0;
2558
2559 if (stage == MESA_SHADER_FRAGMENT) {
2560 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
2561 for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
2562 bt_map[s++] = use_surface(batch, cso_fb->cbufs[i], true);
2563 }
2564 }
2565
2566 //assert(prog_data->binding_table.texture_start ==
2567 //(ice->state.num_textures[stage] ? s : 0xd0d0d0d0));
2568
2569 for (int i = 0; i < ice->state.num_textures[stage]; i++) {
2570 struct iris_sampler_view *view = ice->state.textures[stage][i];
2571 bt_map[s++] = view ? use_sampler_view(batch, view)
2572 : use_null_surface(batch, ice);
2573 }
2574
2575 // XXX: want the number of BTE's to shorten this loop
2576 struct iris_shader_state *shs = &ice->shaders.state[stage];
2577 for (int i = 0; i < PIPE_MAX_CONSTANT_BUFFERS; i++) {
2578 struct iris_const_buffer *cbuf = &shs->constbuf[i];
2579 if (!cbuf->surface_state.res)
2580 break;
2581
2582 bt_map[s++] = use_const_buffer(batch, cbuf);
2583 }
2584 #if 0
2585 // XXX: not implemented yet
2586 assert(prog_data->binding_table.pull_constants_start == 0xd0d0d0d0);
2587 assert(prog_data->binding_table.ubo_start == 0xd0d0d0d0);
2588 assert(prog_data->binding_table.ssbo_start == 0xd0d0d0d0);
2589 assert(prog_data->binding_table.image_start == 0xd0d0d0d0);
2590 assert(prog_data->binding_table.shader_time_start == 0xd0d0d0d0);
2591 //assert(prog_data->binding_table.plane_start[1] == 0xd0d0d0d0);
2592 //assert(prog_data->binding_table.plane_start[2] == 0xd0d0d0d0);
2593 #endif
2594 }
2595
2596 static void
2597 iris_use_optional_res(struct iris_batch *batch,
2598 struct pipe_resource *res,
2599 bool writeable)
2600 {
2601 if (res) {
2602 struct iris_bo *bo = iris_resource_bo(res);
2603 iris_use_pinned_bo(batch, bo, writeable);
2604 }
2605 }
2606
2607
2608 /**
2609 * Pin any BOs which were installed by a previous batch, and restored
2610 * via the hardware logical context mechanism.
2611 *
2612 * We don't need to re-emit all state every batch - the hardware context
2613 * mechanism will save and restore it for us. This includes pointers to
2614 * various BOs...which won't exist unless we ask the kernel to pin them
2615 * by adding them to the validation list.
2616 *
2617 * We can skip buffers if we've re-emitted those packets, as we're
2618 * overwriting those stale pointers with new ones, and don't actually
2619 * refer to the old BOs.
2620 */
2621 static void
2622 iris_restore_context_saved_bos(struct iris_context *ice,
2623 struct iris_batch *batch,
2624 const struct pipe_draw_info *draw)
2625 {
2626 // XXX: whack IRIS_SHADER_DIRTY_BINDING_TABLE on new batch
2627
2628 const uint64_t clean = ~ice->state.dirty;
2629
2630 if (clean & IRIS_DIRTY_CC_VIEWPORT) {
2631 iris_use_optional_res(batch, ice->state.last_res.cc_vp, false);
2632 }
2633
2634 if (clean & IRIS_DIRTY_SF_CL_VIEWPORT) {
2635 iris_use_optional_res(batch, ice->state.last_res.sf_cl_vp, false);
2636 }
2637
2638 if (clean & IRIS_DIRTY_BLEND_STATE) {
2639 iris_use_optional_res(batch, ice->state.last_res.blend, false);
2640 }
2641
2642 if (clean & IRIS_DIRTY_COLOR_CALC_STATE) {
2643 iris_use_optional_res(batch, ice->state.last_res.color_calc, false);
2644 }
2645
2646 if (clean & IRIS_DIRTY_SCISSOR_RECT) {
2647 iris_use_optional_res(batch, ice->state.last_res.scissor, false);
2648 }
2649
2650 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
2651 if (clean & (IRIS_DIRTY_CONSTANTS_VS << stage))
2652 continue;
2653
2654 struct iris_shader_state *shs = &ice->shaders.state[stage];
2655 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
2656
2657 if (!shader)
2658 continue;
2659
2660 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
2661
2662 for (int i = 0; i < 4; i++) {
2663 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
2664
2665 if (range->length == 0)
2666 continue;
2667
2668 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
2669 struct iris_resource *res = (void *) cbuf->data.res;
2670
2671 if (res)
2672 iris_use_pinned_bo(batch, res->bo, false);
2673 else
2674 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
2675 }
2676 }
2677
2678 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
2679 struct pipe_resource *res = ice->state.sampler_table[stage].res;
2680 if (res)
2681 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
2682 }
2683
2684 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
2685 if (clean & (IRIS_DIRTY_VS << stage)) {
2686 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
2687 if (shader) {
2688 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
2689 iris_use_pinned_bo(batch, bo, false);
2690 }
2691
2692 // XXX: scratch buffer
2693 }
2694 }
2695
2696 if (clean & IRIS_DIRTY_DEPTH_BUFFER) {
2697 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
2698
2699 if (cso_fb->zsbuf) {
2700 struct iris_resource *zres = (void *) cso_fb->zsbuf->texture;
2701 // XXX: depth might not be writable...
2702 iris_use_pinned_bo(batch, zres->bo, true);
2703 }
2704 }
2705
2706 if (draw->index_size > 0) {
2707 // XXX: index buffer
2708 }
2709
2710 if (clean & IRIS_DIRTY_VERTEX_BUFFERS) {
2711 struct iris_vertex_buffer_state *cso = &ice->state.genx->vertex_buffers;
2712 for (unsigned i = 0; i < cso->num_buffers; i++) {
2713 struct iris_resource *res = (void *) cso->resources[i];
2714 iris_use_pinned_bo(batch, res->bo, false);
2715 }
2716 }
2717 }
2718
2719 static void
2720 iris_upload_render_state(struct iris_context *ice,
2721 struct iris_batch *batch,
2722 const struct pipe_draw_info *draw)
2723 {
2724 const uint64_t dirty = ice->state.dirty;
2725
2726 struct iris_genx_state *genx = ice->state.genx;
2727 struct brw_wm_prog_data *wm_prog_data = (void *)
2728 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
2729
2730 if (dirty & IRIS_DIRTY_CC_VIEWPORT) {
2731 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
2732 uint32_t cc_vp_address;
2733
2734 /* XXX: could avoid streaming for depth_clip [0,1] case. */
2735 uint32_t *cc_vp_map =
2736 stream_state(batch, ice->state.dynamic_uploader,
2737 &ice->state.last_res.cc_vp,
2738 4 * ice->state.num_viewports *
2739 GENX(CC_VIEWPORT_length), 32, &cc_vp_address);
2740 for (int i = 0; i < ice->state.num_viewports; i++) {
2741 float zmin, zmax;
2742 util_viewport_zmin_zmax(&ice->state.viewports[i],
2743 cso_rast->clip_halfz, &zmin, &zmax);
2744 if (cso_rast->depth_clip_near)
2745 zmin = 0.0;
2746 if (cso_rast->depth_clip_far)
2747 zmax = 1.0;
2748
2749 iris_pack_state(GENX(CC_VIEWPORT), cc_vp_map, ccv) {
2750 ccv.MinimumDepth = zmin;
2751 ccv.MaximumDepth = zmax;
2752 }
2753
2754 cc_vp_map += GENX(CC_VIEWPORT_length);
2755 }
2756
2757 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
2758 ptr.CCViewportPointer = cc_vp_address;
2759 }
2760 }
2761
2762 if (dirty & IRIS_DIRTY_SF_CL_VIEWPORT) {
2763 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
2764 ptr.SFClipViewportPointer =
2765 emit_state(batch, ice->state.dynamic_uploader,
2766 &ice->state.last_res.sf_cl_vp,
2767 genx->sf_cl_vp, 4 * GENX(SF_CLIP_VIEWPORT_length) *
2768 ice->state.num_viewports, 64);
2769 }
2770 }
2771
2772 /* XXX: L3 State */
2773
2774 // XXX: this is only flagged at setup, we assume a static configuration
2775 if (dirty & IRIS_DIRTY_URB) {
2776 iris_upload_urb_config(ice, batch);
2777 }
2778
2779 if (dirty & IRIS_DIRTY_BLEND_STATE) {
2780 struct iris_blend_state *cso_blend = ice->state.cso_blend;
2781 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
2782 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
2783 const int num_dwords = 4 * (GENX(BLEND_STATE_length) +
2784 cso_fb->nr_cbufs * GENX(BLEND_STATE_ENTRY_length));
2785 uint32_t blend_offset;
2786 uint32_t *blend_map =
2787 stream_state(batch, ice->state.dynamic_uploader,
2788 &ice->state.last_res.blend,
2789 4 * num_dwords, 64, &blend_offset);
2790
2791 uint32_t blend_state_header;
2792 iris_pack_state(GENX(BLEND_STATE), &blend_state_header, bs) {
2793 bs.AlphaTestEnable = cso_zsa->alpha.enabled;
2794 bs.AlphaTestFunction = translate_compare_func(cso_zsa->alpha.func);
2795 }
2796
2797 blend_map[0] = blend_state_header | cso_blend->blend_state[0];
2798 memcpy(&blend_map[1], &cso_blend->blend_state[1],
2799 sizeof(cso_blend->blend_state) - sizeof(uint32_t));
2800
2801 iris_emit_cmd(batch, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
2802 ptr.BlendStatePointer = blend_offset;
2803 ptr.BlendStatePointerValid = true;
2804 }
2805 }
2806
2807 if (dirty & IRIS_DIRTY_COLOR_CALC_STATE) {
2808 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
2809 uint32_t cc_offset;
2810 void *cc_map =
2811 stream_state(batch, ice->state.dynamic_uploader,
2812 &ice->state.last_res.color_calc,
2813 sizeof(uint32_t) * GENX(COLOR_CALC_STATE_length),
2814 64, &cc_offset);
2815 iris_pack_state(GENX(COLOR_CALC_STATE), cc_map, cc) {
2816 cc.AlphaTestFormat = ALPHATEST_FLOAT32;
2817 cc.AlphaReferenceValueAsFLOAT32 = cso->alpha.ref_value;
2818 cc.BlendConstantColorRed = ice->state.blend_color.color[0];
2819 cc.BlendConstantColorGreen = ice->state.blend_color.color[1];
2820 cc.BlendConstantColorBlue = ice->state.blend_color.color[2];
2821 cc.BlendConstantColorAlpha = ice->state.blend_color.color[3];
2822 }
2823 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
2824 ptr.ColorCalcStatePointer = cc_offset;
2825 ptr.ColorCalcStatePointerValid = true;
2826 }
2827 }
2828
2829 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
2830 // XXX: wrong dirty tracking...
2831 if (!(dirty & (IRIS_DIRTY_CONSTANTS_VS << stage)))
2832 continue;
2833
2834 struct iris_shader_state *shs = &ice->shaders.state[stage];
2835 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
2836
2837 if (!shader)
2838 continue;
2839
2840 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
2841
2842 iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_VS), pkt) {
2843 pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
2844 if (prog_data) {
2845 /* The Skylake PRM contains the following restriction:
2846 *
2847 * "The driver must ensure The following case does not occur
2848 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
2849 * buffer 3 read length equal to zero committed followed by a
2850 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
2851 * zero committed."
2852 *
2853 * To avoid this, we program the buffers in the highest slots.
2854 * This way, slot 0 is only used if slot 3 is also used.
2855 */
2856 int n = 3;
2857
2858 for (int i = 3; i >= 0; i--) {
2859 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
2860
2861 if (range->length == 0)
2862 continue;
2863
2864 // XXX: is range->block a constbuf index? it would be nice
2865 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
2866 struct iris_resource *res = (void *) cbuf->data.res;
2867
2868 assert(cbuf->data.offset % 32 == 0);
2869
2870 pkt.ConstantBody.ReadLength[n] = range->length;
2871 pkt.ConstantBody.Buffer[n] =
2872 res ? ro_bo(res->bo, range->start * 32 + cbuf->data.offset)
2873 : ro_bo(batch->screen->workaround_bo, 0);
2874 n--;
2875 }
2876 }
2877 }
2878 }
2879
2880 struct iris_binder *binder = &batch->binder;
2881
2882 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
2883 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
2884 iris_emit_cmd(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), ptr) {
2885 ptr._3DCommandSubOpcode = 38 + stage;
2886 ptr.PointertoVSBindingTable = binder->bt_offset[stage];
2887 }
2888 }
2889 }
2890
2891 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
2892 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
2893 iris_populate_binding_table(ice, batch, stage);
2894 }
2895 }
2896
2897 if (ice->state.need_border_colors)
2898 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
2899
2900 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
2901 if (!(dirty & (IRIS_DIRTY_SAMPLER_STATES_VS << stage)) ||
2902 !ice->shaders.prog[stage])
2903 continue;
2904
2905 struct pipe_resource *res = ice->state.sampler_table[stage].res;
2906 if (res)
2907 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
2908
2909 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
2910 ptr._3DCommandSubOpcode = 43 + stage;
2911 ptr.PointertoVSSamplerState = ice->state.sampler_table[stage].offset;
2912 }
2913 }
2914
2915 if (dirty & IRIS_DIRTY_MULTISAMPLE) {
2916 iris_emit_cmd(batch, GENX(3DSTATE_MULTISAMPLE), ms) {
2917 ms.PixelLocation =
2918 ice->state.cso_rast->half_pixel_center ? CENTER : UL_CORNER;
2919 if (ice->state.framebuffer.samples > 0)
2920 ms.NumberofMultisamples = ffs(ice->state.framebuffer.samples) - 1;
2921 }
2922 }
2923
2924 if (dirty & IRIS_DIRTY_SAMPLE_MASK) {
2925 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_MASK), ms) {
2926 ms.SampleMask = MAX2(ice->state.sample_mask, 1);
2927 }
2928 }
2929
2930 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
2931 if (!(dirty & (IRIS_DIRTY_VS << stage)))
2932 continue;
2933
2934 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
2935
2936 if (shader) {
2937 struct iris_resource *cache = (void *) shader->assembly.res;
2938 iris_use_pinned_bo(batch, cache->bo, false);
2939 iris_batch_emit(batch, shader->derived_data,
2940 iris_derived_program_state_size(stage));
2941 } else {
2942 if (stage == MESA_SHADER_TESS_EVAL) {
2943 iris_emit_cmd(batch, GENX(3DSTATE_HS), hs);
2944 iris_emit_cmd(batch, GENX(3DSTATE_TE), te);
2945 iris_emit_cmd(batch, GENX(3DSTATE_DS), ds);
2946 } else if (stage == MESA_SHADER_GEOMETRY) {
2947 iris_emit_cmd(batch, GENX(3DSTATE_GS), gs);
2948 }
2949 }
2950 }
2951
2952 if (ice->state.streamout_active) {
2953 if (dirty & IRIS_DIRTY_SO_BUFFERS) {
2954 iris_batch_emit(batch, genx->so_buffers,
2955 4 * 4 * GENX(3DSTATE_SO_BUFFER_length));
2956 for (int i = 0; i < 4; i++) {
2957 struct iris_stream_output_target *tgt =
2958 (void *) ice->state.so_target[i];
2959 if (tgt) {
2960 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
2961 true);
2962 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
2963 true);
2964 }
2965 }
2966 }
2967
2968 if ((dirty & IRIS_DIRTY_SO_DECL_LIST) && ice->state.streamout) {
2969 uint32_t *decl_list =
2970 ice->state.streamout + GENX(3DSTATE_STREAMOUT_length);
2971 iris_batch_emit(batch, decl_list, 4 * ((decl_list[0] & 0xff) + 2));
2972 }
2973
2974 if (dirty & IRIS_DIRTY_STREAMOUT) {
2975 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
2976
2977 uint32_t dynamic_sol[GENX(3DSTATE_STREAMOUT_length)];
2978 iris_pack_command(GENX(3DSTATE_STREAMOUT), dynamic_sol, sol) {
2979 sol.SOFunctionEnable = true;
2980 sol.SOStatisticsEnable = true;
2981
2982 // XXX: GL_PRIMITIVES_GENERATED query
2983 sol.RenderingDisable = cso_rast->rasterizer_discard;
2984 sol.ReorderMode = cso_rast->flatshade_first ? LEADING : TRAILING;
2985 }
2986
2987 assert(ice->state.streamout);
2988
2989 iris_emit_merge(batch, ice->state.streamout, dynamic_sol,
2990 GENX(3DSTATE_STREAMOUT_length));
2991 }
2992 } else {
2993 if (dirty & IRIS_DIRTY_STREAMOUT) {
2994 iris_emit_cmd(batch, GENX(3DSTATE_STREAMOUT), sol);
2995 }
2996 }
2997
2998 if (dirty & IRIS_DIRTY_CLIP) {
2999 struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3000 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
3001
3002 uint32_t dynamic_clip[GENX(3DSTATE_CLIP_length)];
3003 iris_pack_command(GENX(3DSTATE_CLIP), &dynamic_clip, cl) {
3004 if (wm_prog_data->barycentric_interp_modes &
3005 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
3006 cl.NonPerspectiveBarycentricEnable = true;
3007
3008 cl.ForceZeroRTAIndexEnable = cso_fb->layers == 0;
3009 cl.MaximumVPIndex = ice->state.num_viewports - 1;
3010 }
3011 iris_emit_merge(batch, cso_rast->clip, dynamic_clip,
3012 ARRAY_SIZE(cso_rast->clip));
3013 }
3014
3015 if (dirty & IRIS_DIRTY_RASTER) {
3016 struct iris_rasterizer_state *cso = ice->state.cso_rast;
3017 iris_batch_emit(batch, cso->raster, sizeof(cso->raster));
3018 iris_batch_emit(batch, cso->sf, sizeof(cso->sf));
3019
3020 }
3021
3022 /* XXX: FS program updates needs to flag IRIS_DIRTY_WM */
3023 if (dirty & IRIS_DIRTY_WM) {
3024 struct iris_rasterizer_state *cso = ice->state.cso_rast;
3025 uint32_t dynamic_wm[GENX(3DSTATE_WM_length)];
3026
3027 iris_pack_command(GENX(3DSTATE_WM), &dynamic_wm, wm) {
3028 wm.BarycentricInterpolationMode =
3029 wm_prog_data->barycentric_interp_modes;
3030
3031 if (wm_prog_data->early_fragment_tests)
3032 wm.EarlyDepthStencilControl = EDSC_PREPS;
3033 else if (wm_prog_data->has_side_effects)
3034 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
3035 }
3036 iris_emit_merge(batch, cso->wm, dynamic_wm, ARRAY_SIZE(cso->wm));
3037 }
3038
3039 if (1) {
3040 // XXX: 3DSTATE_SBE, 3DSTATE_SBE_SWIZ
3041 // -> iris_raster_state (point sprite texture coordinate origin)
3042 // -> bunch of shader state...
3043 iris_emit_sbe(batch, ice);
3044 }
3045
3046 if (dirty & IRIS_DIRTY_PS_BLEND) {
3047 struct iris_blend_state *cso_blend = ice->state.cso_blend;
3048 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
3049 uint32_t dynamic_pb[GENX(3DSTATE_PS_BLEND_length)];
3050 iris_pack_command(GENX(3DSTATE_PS_BLEND), &dynamic_pb, pb) {
3051 pb.HasWriteableRT = true; // XXX: comes from somewhere :(
3052 pb.AlphaTestEnable = cso_zsa->alpha.enabled;
3053 }
3054
3055 iris_emit_merge(batch, cso_blend->ps_blend, dynamic_pb,
3056 ARRAY_SIZE(cso_blend->ps_blend));
3057 }
3058
3059 if (dirty & IRIS_DIRTY_WM_DEPTH_STENCIL) {
3060 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
3061 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
3062
3063 uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
3064 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
3065 wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
3066 wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
3067 }
3068 iris_emit_merge(batch, cso->wmds, stencil_refs, ARRAY_SIZE(cso->wmds));
3069 }
3070
3071 if (dirty & IRIS_DIRTY_SCISSOR_RECT) {
3072 uint32_t scissor_offset =
3073 emit_state(batch, ice->state.dynamic_uploader,
3074 &ice->state.last_res.scissor,
3075 ice->state.scissors,
3076 sizeof(struct pipe_scissor_state) *
3077 ice->state.num_viewports, 32);
3078
3079 iris_emit_cmd(batch, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
3080 ptr.ScissorRectPointer = scissor_offset;
3081 }
3082 }
3083
3084 if (dirty & IRIS_DIRTY_DEPTH_BUFFER) {
3085 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
3086 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
3087
3088 iris_batch_emit(batch, cso_z->packets, sizeof(cso_z->packets));
3089
3090 if (cso_fb->zsbuf) {
3091 struct iris_resource *zres = (void *) cso_fb->zsbuf->texture;
3092 // XXX: depth might not be writable...
3093 iris_use_pinned_bo(batch, zres->bo, true);
3094 }
3095 }
3096
3097 if (dirty & IRIS_DIRTY_POLYGON_STIPPLE) {
3098 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
3099 for (int i = 0; i < 32; i++) {
3100 poly.PatternRow[i] = ice->state.poly_stipple.stipple[i];
3101 }
3102 }
3103 }
3104
3105 if (dirty & IRIS_DIRTY_LINE_STIPPLE) {
3106 struct iris_rasterizer_state *cso = ice->state.cso_rast;
3107 iris_batch_emit(batch, cso->line_stipple, sizeof(cso->line_stipple));
3108 }
3109
3110 if (1) {
3111 iris_emit_cmd(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
3112 topo.PrimitiveTopologyType =
3113 translate_prim_type(draw->mode, draw->vertices_per_patch);
3114 }
3115 }
3116
3117 if (draw->index_size > 0) {
3118 struct iris_resource *res = NULL;
3119 unsigned offset;
3120
3121 if (draw->has_user_indices) {
3122 u_upload_data(ice->ctx.stream_uploader, 0,
3123 draw->count * draw->index_size, 4, draw->index.user,
3124 &offset, (struct pipe_resource **) &res);
3125 } else {
3126 res = (struct iris_resource *) draw->index.resource;
3127 offset = 0;
3128 }
3129
3130 iris_emit_cmd(batch, GENX(3DSTATE_INDEX_BUFFER), ib) {
3131 ib.IndexFormat = draw->index_size >> 1;
3132 ib.MOCS = MOCS_WB;
3133 ib.BufferSize = res->bo->size;
3134 ib.BufferStartingAddress = ro_bo(res->bo, offset);
3135 }
3136 }
3137
3138 if (dirty & IRIS_DIRTY_VERTEX_BUFFERS) {
3139 struct iris_vertex_buffer_state *cso = &ice->state.genx->vertex_buffers;
3140 const unsigned vb_dwords = GENX(VERTEX_BUFFER_STATE_length);
3141
3142 if (cso->num_buffers > 0) {
3143 iris_batch_emit(batch, cso->vertex_buffers, sizeof(uint32_t) *
3144 (1 + vb_dwords * cso->num_buffers));
3145
3146 for (unsigned i = 0; i < cso->num_buffers; i++) {
3147 struct iris_resource *res = (void *) cso->resources[i];
3148 iris_use_pinned_bo(batch, res->bo, false);
3149 }
3150 }
3151 }
3152
3153 if (dirty & IRIS_DIRTY_VERTEX_ELEMENTS) {
3154 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
3155 const unsigned entries = MAX2(cso->count, 1);
3156 iris_batch_emit(batch, cso->vertex_elements, sizeof(uint32_t) *
3157 (1 + entries * GENX(VERTEX_ELEMENT_STATE_length)));
3158 iris_batch_emit(batch, cso->vf_instancing, sizeof(uint32_t) *
3159 entries * GENX(3DSTATE_VF_INSTANCING_length));
3160 }
3161
3162 if (dirty & IRIS_DIRTY_VF_SGVS) {
3163 const struct brw_vs_prog_data *vs_prog_data = (void *)
3164 ice->shaders.prog[MESA_SHADER_VERTEX]->prog_data;
3165 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
3166
3167 iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS), sgv) {
3168 if (vs_prog_data->uses_vertexid) {
3169 sgv.VertexIDEnable = true;
3170 sgv.VertexIDComponentNumber = 2;
3171 sgv.VertexIDElementOffset = cso->count;
3172 }
3173
3174 if (vs_prog_data->uses_instanceid) {
3175 sgv.InstanceIDEnable = true;
3176 sgv.InstanceIDComponentNumber = 3;
3177 sgv.InstanceIDElementOffset = cso->count;
3178 }
3179 }
3180 }
3181
3182 if (1) {
3183 iris_emit_cmd(batch, GENX(3DSTATE_VF), vf) {
3184 if (draw->primitive_restart) {
3185 vf.IndexedDrawCutIndexEnable = true;
3186 vf.CutIndex = draw->restart_index;
3187 }
3188 }
3189 }
3190
3191 // XXX: Gen8 - PMA fix
3192
3193 #define _3DPRIM_END_OFFSET 0x2420
3194 #define _3DPRIM_START_VERTEX 0x2430
3195 #define _3DPRIM_VERTEX_COUNT 0x2434
3196 #define _3DPRIM_INSTANCE_COUNT 0x2438
3197 #define _3DPRIM_START_INSTANCE 0x243C
3198 #define _3DPRIM_BASE_VERTEX 0x2440
3199
3200 if (draw->indirect) {
3201 /* We don't support this MultidrawIndirect. */
3202 assert(!draw->indirect->indirect_draw_count);
3203
3204 struct iris_bo *bo = iris_resource_bo(draw->indirect->buffer);
3205 assert(bo);
3206
3207 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
3208 lrm.RegisterAddress = _3DPRIM_VERTEX_COUNT;
3209 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 0);
3210 }
3211 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
3212 lrm.RegisterAddress = _3DPRIM_INSTANCE_COUNT;
3213 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 4);
3214 }
3215 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
3216 lrm.RegisterAddress = _3DPRIM_START_VERTEX;
3217 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 8);
3218 }
3219 if (draw->index_size) {
3220 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
3221 lrm.RegisterAddress = _3DPRIM_BASE_VERTEX;
3222 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
3223 }
3224 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
3225 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
3226 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 16);
3227 }
3228 } else {
3229 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
3230 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
3231 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
3232 }
3233 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
3234 lri.RegisterOffset = _3DPRIM_BASE_VERTEX;
3235 lri.DataDWord = 0;
3236 }
3237 }
3238 }
3239
3240 iris_emit_cmd(batch, GENX(3DPRIMITIVE), prim) {
3241 prim.StartInstanceLocation = draw->start_instance;
3242 prim.InstanceCount = draw->instance_count;
3243 prim.VertexCountPerInstance = draw->count;
3244 prim.VertexAccessType = draw->index_size > 0 ? RANDOM : SEQUENTIAL;
3245
3246 // XXX: this is probably bonkers.
3247 prim.StartVertexLocation = draw->start;
3248
3249 prim.IndirectParameterEnable = draw->indirect != NULL;
3250
3251 if (draw->index_size) {
3252 prim.BaseVertexLocation += draw->index_bias;
3253 } else {
3254 prim.StartVertexLocation += draw->index_bias;
3255 }
3256
3257 //prim.BaseVertexLocation = ...;
3258 }
3259
3260 if (!batch->contains_draw) {
3261 iris_restore_context_saved_bos(ice, batch, draw);
3262 batch->contains_draw = true;
3263 }
3264 }
3265
3266 /**
3267 * State module teardown.
3268 */
3269 static void
3270 iris_destroy_state(struct iris_context *ice)
3271 {
3272 iris_free_vertex_buffers(&ice->state.genx->vertex_buffers);
3273
3274 // XXX: unreference resources/surfaces.
3275 for (unsigned i = 0; i < ice->state.framebuffer.nr_cbufs; i++) {
3276 pipe_surface_reference(&ice->state.framebuffer.cbufs[i], NULL);
3277 }
3278 pipe_surface_reference(&ice->state.framebuffer.zsbuf, NULL);
3279
3280 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
3281 pipe_resource_reference(&ice->state.sampler_table[stage].res, NULL);
3282 }
3283 free(ice->state.genx);
3284
3285 pipe_resource_reference(&ice->state.last_res.cc_vp, NULL);
3286 pipe_resource_reference(&ice->state.last_res.sf_cl_vp, NULL);
3287 pipe_resource_reference(&ice->state.last_res.color_calc, NULL);
3288 pipe_resource_reference(&ice->state.last_res.scissor, NULL);
3289 pipe_resource_reference(&ice->state.last_res.blend, NULL);
3290 }
3291
3292 static unsigned
3293 flags_to_post_sync_op(uint32_t flags)
3294 {
3295 if (flags & PIPE_CONTROL_WRITE_IMMEDIATE)
3296 return WriteImmediateData;
3297
3298 if (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT)
3299 return WritePSDepthCount;
3300
3301 if (flags & PIPE_CONTROL_WRITE_TIMESTAMP)
3302 return WriteTimestamp;
3303
3304 return 0;
3305 }
3306
3307 /**
3308 * Do the given flags have a Post Sync or LRI Post Sync operation?
3309 */
3310 static enum pipe_control_flags
3311 get_post_sync_flags(enum pipe_control_flags flags)
3312 {
3313 flags &= PIPE_CONTROL_WRITE_IMMEDIATE |
3314 PIPE_CONTROL_WRITE_DEPTH_COUNT |
3315 PIPE_CONTROL_WRITE_TIMESTAMP |
3316 PIPE_CONTROL_LRI_POST_SYNC_OP;
3317
3318 /* Only one "Post Sync Op" is allowed, and it's mutually exclusive with
3319 * "LRI Post Sync Operation". So more than one bit set would be illegal.
3320 */
3321 assert(util_bitcount(flags) <= 1);
3322
3323 return flags;
3324 }
3325
3326 // XXX: compute support
3327 #define IS_COMPUTE_PIPELINE(batch) (batch->ring != I915_EXEC_RENDER)
3328
3329 /**
3330 * Emit a series of PIPE_CONTROL commands, taking into account any
3331 * workarounds necessary to actually accomplish the caller's request.
3332 *
3333 * Unless otherwise noted, spec quotations in this function come from:
3334 *
3335 * Synchronization of the 3D Pipeline > PIPE_CONTROL Command > Programming
3336 * Restrictions for PIPE_CONTROL.
3337 */
3338 static void
3339 iris_emit_raw_pipe_control(struct iris_batch *batch, uint32_t flags,
3340 struct iris_bo *bo, uint32_t offset, uint64_t imm)
3341 {
3342 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
3343 enum pipe_control_flags post_sync_flags = get_post_sync_flags(flags);
3344 enum pipe_control_flags non_lri_post_sync_flags =
3345 post_sync_flags & ~PIPE_CONTROL_LRI_POST_SYNC_OP;
3346
3347 /* Recursive PIPE_CONTROL workarounds --------------------------------
3348 * (http://knowyourmeme.com/memes/xzibit-yo-dawg)
3349 *
3350 * We do these first because we want to look at the original operation,
3351 * rather than any workarounds we set.
3352 */
3353 if (GEN_GEN == 9 && (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE)) {
3354 /* The PIPE_CONTROL "VF Cache Invalidation Enable" bit description
3355 * lists several workarounds:
3356 *
3357 * "Project: SKL, KBL, BXT
3358 *
3359 * If the VF Cache Invalidation Enable is set to a 1 in a
3360 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields
3361 * sets to 0, with the VF Cache Invalidation Enable set to 0
3362 * needs to be sent prior to the PIPE_CONTROL with VF Cache
3363 * Invalidation Enable set to a 1."
3364 */
3365 iris_emit_raw_pipe_control(batch, 0, NULL, 0, 0);
3366 }
3367
3368 if (GEN_GEN == 9 && IS_COMPUTE_PIPELINE(batch) && post_sync_flags) {
3369 /* Project: SKL / Argument: LRI Post Sync Operation [23]
3370 *
3371 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
3372 * programmed prior to programming a PIPECONTROL command with "LRI
3373 * Post Sync Operation" in GPGPU mode of operation (i.e when
3374 * PIPELINE_SELECT command is set to GPGPU mode of operation)."
3375 *
3376 * The same text exists a few rows below for Post Sync Op.
3377 */
3378 iris_emit_raw_pipe_control(batch, PIPE_CONTROL_CS_STALL, bo, offset, imm);
3379 }
3380
3381 if (GEN_GEN == 10 && (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH)) {
3382 /* Cannonlake:
3383 * "Before sending a PIPE_CONTROL command with bit 12 set, SW must issue
3384 * another PIPE_CONTROL with Render Target Cache Flush Enable (bit 12)
3385 * = 0 and Pipe Control Flush Enable (bit 7) = 1"
3386 */
3387 iris_emit_raw_pipe_control(batch, PIPE_CONTROL_FLUSH_ENABLE, bo,
3388 offset, imm);
3389 }
3390
3391 /* "Flush Types" workarounds ---------------------------------------------
3392 * We do these now because they may add post-sync operations or CS stalls.
3393 */
3394
3395 if (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) {
3396 /* Project: BDW, SKL+ (stopping at CNL) / Argument: VF Invalidate
3397 *
3398 * "'Post Sync Operation' must be enabled to 'Write Immediate Data' or
3399 * 'Write PS Depth Count' or 'Write Timestamp'."
3400 */
3401 if (!bo) {
3402 flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
3403 post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
3404 non_lri_post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
3405 bo = batch->screen->workaround_bo;
3406 }
3407 }
3408
3409 /* #1130 from Gen10 workarounds page:
3410 *
3411 * "Enable Depth Stall on every Post Sync Op if Render target Cache
3412 * Flush is not enabled in same PIPE CONTROL and Enable Pixel score
3413 * board stall if Render target cache flush is enabled."
3414 *
3415 * Applicable to CNL B0 and C0 steppings only.
3416 *
3417 * The wording here is unclear, and this workaround doesn't look anything
3418 * like the internal bug report recommendations, but leave it be for now...
3419 */
3420 if (GEN_GEN == 10) {
3421 if (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) {
3422 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
3423 } else if (flags & non_lri_post_sync_flags) {
3424 flags |= PIPE_CONTROL_DEPTH_STALL;
3425 }
3426 }
3427
3428 if (flags & PIPE_CONTROL_DEPTH_STALL) {
3429 /* From the PIPE_CONTROL instruction table, bit 13 (Depth Stall Enable):
3430 *
3431 * "This bit must be DISABLED for operations other than writing
3432 * PS_DEPTH_COUNT."
3433 *
3434 * This seems like nonsense. An Ivybridge workaround requires us to
3435 * emit a PIPE_CONTROL with a depth stall and write immediate post-sync
3436 * operation. Gen8+ requires us to emit depth stalls and depth cache
3437 * flushes together. So, it's hard to imagine this means anything other
3438 * than "we originally intended this to be used for PS_DEPTH_COUNT".
3439 *
3440 * We ignore the supposed restriction and do nothing.
3441 */
3442 }
3443
3444 if (flags & (PIPE_CONTROL_RENDER_TARGET_FLUSH |
3445 PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
3446 /* From the PIPE_CONTROL instruction table, bit 12 and bit 1:
3447 *
3448 * "This bit must be DISABLED for End-of-pipe (Read) fences,
3449 * PS_DEPTH_COUNT or TIMESTAMP queries."
3450 *
3451 * TODO: Implement end-of-pipe checking.
3452 */
3453 assert(!(post_sync_flags & (PIPE_CONTROL_WRITE_DEPTH_COUNT |
3454 PIPE_CONTROL_WRITE_TIMESTAMP)));
3455 }
3456
3457 if (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD) {
3458 /* From the PIPE_CONTROL instruction table, bit 1:
3459 *
3460 * "This bit is ignored if Depth Stall Enable is set.
3461 * Further, the render cache is not flushed even if Write Cache
3462 * Flush Enable bit is set."
3463 *
3464 * We assert that the caller doesn't do this combination, to try and
3465 * prevent mistakes. It shouldn't hurt the GPU, though.
3466 */
3467 assert(!(flags & (PIPE_CONTROL_DEPTH_STALL |
3468 PIPE_CONTROL_RENDER_TARGET_FLUSH)));
3469 }
3470
3471 /* PIPE_CONTROL page workarounds ------------------------------------- */
3472
3473 if (GEN_GEN <= 8 && (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE)) {
3474 /* From the PIPE_CONTROL page itself:
3475 *
3476 * "IVB, HSW, BDW
3477 * Restriction: Pipe_control with CS-stall bit set must be issued
3478 * before a pipe-control command that has the State Cache
3479 * Invalidate bit set."
3480 */
3481 flags |= PIPE_CONTROL_CS_STALL;
3482 }
3483
3484 if (flags & PIPE_CONTROL_FLUSH_LLC) {
3485 /* From the PIPE_CONTROL instruction table, bit 26 (Flush LLC):
3486 *
3487 * "Project: ALL
3488 * SW must always program Post-Sync Operation to "Write Immediate
3489 * Data" when Flush LLC is set."
3490 *
3491 * For now, we just require the caller to do it.
3492 */
3493 assert(flags & PIPE_CONTROL_WRITE_IMMEDIATE);
3494 }
3495
3496 /* "Post-Sync Operation" workarounds -------------------------------- */
3497
3498 /* Project: All / Argument: Global Snapshot Count Reset [19]
3499 *
3500 * "This bit must not be exercised on any product.
3501 * Requires stall bit ([20] of DW1) set."
3502 *
3503 * We don't use this, so we just assert that it isn't used. The
3504 * PIPE_CONTROL instruction page indicates that they intended this
3505 * as a debug feature and don't think it is useful in production,
3506 * but it may actually be usable, should we ever want to.
3507 */
3508 assert((flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) == 0);
3509
3510 if (flags & (PIPE_CONTROL_MEDIA_STATE_CLEAR |
3511 PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE)) {
3512 /* Project: All / Arguments:
3513 *
3514 * - Generic Media State Clear [16]
3515 * - Indirect State Pointers Disable [16]
3516 *
3517 * "Requires stall bit ([20] of DW1) set."
3518 *
3519 * Also, the PIPE_CONTROL instruction table, bit 16 (Generic Media
3520 * State Clear) says:
3521 *
3522 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
3523 * programmed prior to programming a PIPECONTROL command with "Media
3524 * State Clear" set in GPGPU mode of operation"
3525 *
3526 * This is a subset of the earlier rule, so there's nothing to do.
3527 */
3528 flags |= PIPE_CONTROL_CS_STALL;
3529 }
3530
3531 if (flags & PIPE_CONTROL_STORE_DATA_INDEX) {
3532 /* Project: All / Argument: Store Data Index
3533 *
3534 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
3535 * than '0'."
3536 *
3537 * For now, we just assert that the caller does this. We might want to
3538 * automatically add a write to the workaround BO...
3539 */
3540 assert(non_lri_post_sync_flags != 0);
3541 }
3542
3543 if (flags & PIPE_CONTROL_SYNC_GFDT) {
3544 /* Project: All / Argument: Sync GFDT
3545 *
3546 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
3547 * than '0' or 0x2520[13] must be set."
3548 *
3549 * For now, we just assert that the caller does this.
3550 */
3551 assert(non_lri_post_sync_flags != 0);
3552 }
3553
3554 if (flags & PIPE_CONTROL_TLB_INVALIDATE) {
3555 /* Project: IVB+ / Argument: TLB inv
3556 *
3557 * "Requires stall bit ([20] of DW1) set."
3558 *
3559 * Also, from the PIPE_CONTROL instruction table:
3560 *
3561 * "Project: SKL+
3562 * Post Sync Operation or CS stall must be set to ensure a TLB
3563 * invalidation occurs. Otherwise no cycle will occur to the TLB
3564 * cache to invalidate."
3565 *
3566 * This is not a subset of the earlier rule, so there's nothing to do.
3567 */
3568 flags |= PIPE_CONTROL_CS_STALL;
3569 }
3570
3571 if (GEN_GEN == 9 && devinfo->gt == 4) {
3572 /* TODO: The big Skylake GT4 post sync op workaround */
3573 }
3574
3575 /* "GPGPU specific workarounds" (both post-sync and flush) ------------ */
3576
3577 if (IS_COMPUTE_PIPELINE(batch)) {
3578 if (GEN_GEN >= 9 && (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE)) {
3579 /* Project: SKL+ / Argument: Tex Invalidate
3580 * "Requires stall bit ([20] of DW) set for all GPGPU Workloads."
3581 */
3582 flags |= PIPE_CONTROL_CS_STALL;
3583 }
3584
3585 if (GEN_GEN == 8 && (post_sync_flags ||
3586 (flags & (PIPE_CONTROL_NOTIFY_ENABLE |
3587 PIPE_CONTROL_DEPTH_STALL |
3588 PIPE_CONTROL_RENDER_TARGET_FLUSH |
3589 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
3590 PIPE_CONTROL_DATA_CACHE_FLUSH)))) {
3591 /* Project: BDW / Arguments:
3592 *
3593 * - LRI Post Sync Operation [23]
3594 * - Post Sync Op [15:14]
3595 * - Notify En [8]
3596 * - Depth Stall [13]
3597 * - Render Target Cache Flush [12]
3598 * - Depth Cache Flush [0]
3599 * - DC Flush Enable [5]
3600 *
3601 * "Requires stall bit ([20] of DW) set for all GPGPU and Media
3602 * Workloads."
3603 */
3604 flags |= PIPE_CONTROL_CS_STALL;
3605
3606 /* Also, from the PIPE_CONTROL instruction table, bit 20:
3607 *
3608 * "Project: BDW
3609 * This bit must be always set when PIPE_CONTROL command is
3610 * programmed by GPGPU and MEDIA workloads, except for the cases
3611 * when only Read Only Cache Invalidation bits are set (State
3612 * Cache Invalidation Enable, Instruction cache Invalidation
3613 * Enable, Texture Cache Invalidation Enable, Constant Cache
3614 * Invalidation Enable). This is to WA FFDOP CG issue, this WA
3615 * need not implemented when FF_DOP_CG is disable via "Fixed
3616 * Function DOP Clock Gate Disable" bit in RC_PSMI_CTRL register."
3617 *
3618 * It sounds like we could avoid CS stalls in some cases, but we
3619 * don't currently bother. This list isn't exactly the list above,
3620 * either...
3621 */
3622 }
3623 }
3624
3625 /* "Stall" workarounds ----------------------------------------------
3626 * These have to come after the earlier ones because we may have added
3627 * some additional CS stalls above.
3628 */
3629
3630 if (GEN_GEN < 9 && (flags & PIPE_CONTROL_CS_STALL)) {
3631 /* Project: PRE-SKL, VLV, CHV
3632 *
3633 * "[All Stepping][All SKUs]:
3634 *
3635 * One of the following must also be set:
3636 *
3637 * - Render Target Cache Flush Enable ([12] of DW1)
3638 * - Depth Cache Flush Enable ([0] of DW1)
3639 * - Stall at Pixel Scoreboard ([1] of DW1)
3640 * - Depth Stall ([13] of DW1)
3641 * - Post-Sync Operation ([13] of DW1)
3642 * - DC Flush Enable ([5] of DW1)"
3643 *
3644 * If we don't already have one of those bits set, we choose to add
3645 * "Stall at Pixel Scoreboard". Some of the other bits require a
3646 * CS stall as a workaround (see above), which would send us into
3647 * an infinite recursion of PIPE_CONTROLs. "Stall at Pixel Scoreboard"
3648 * appears to be safe, so we choose that.
3649 */
3650 const uint32_t wa_bits = PIPE_CONTROL_RENDER_TARGET_FLUSH |
3651 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
3652 PIPE_CONTROL_WRITE_IMMEDIATE |
3653 PIPE_CONTROL_WRITE_DEPTH_COUNT |
3654 PIPE_CONTROL_WRITE_TIMESTAMP |
3655 PIPE_CONTROL_STALL_AT_SCOREBOARD |
3656 PIPE_CONTROL_DEPTH_STALL |
3657 PIPE_CONTROL_DATA_CACHE_FLUSH;
3658 if (!(flags & wa_bits))
3659 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
3660 }
3661
3662 /* Emit --------------------------------------------------------------- */
3663
3664 iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
3665 pc.LRIPostSyncOperation = NoLRIOperation;
3666 pc.PipeControlFlushEnable = flags & PIPE_CONTROL_FLUSH_ENABLE;
3667 pc.DCFlushEnable = flags & PIPE_CONTROL_DATA_CACHE_FLUSH;
3668 pc.StoreDataIndex = 0;
3669 pc.CommandStreamerStallEnable = flags & PIPE_CONTROL_CS_STALL;
3670 pc.GlobalSnapshotCountReset =
3671 flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET;
3672 pc.TLBInvalidate = flags & PIPE_CONTROL_TLB_INVALIDATE;
3673 pc.GenericMediaStateClear = flags & PIPE_CONTROL_MEDIA_STATE_CLEAR;
3674 pc.StallAtPixelScoreboard = flags & PIPE_CONTROL_STALL_AT_SCOREBOARD;
3675 pc.RenderTargetCacheFlushEnable =
3676 flags & PIPE_CONTROL_RENDER_TARGET_FLUSH;
3677 pc.DepthCacheFlushEnable = flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH;
3678 pc.StateCacheInvalidationEnable =
3679 flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE;
3680 pc.VFCacheInvalidationEnable = flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
3681 pc.ConstantCacheInvalidationEnable =
3682 flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE;
3683 pc.PostSyncOperation = flags_to_post_sync_op(flags);
3684 pc.DepthStallEnable = flags & PIPE_CONTROL_DEPTH_STALL;
3685 pc.InstructionCacheInvalidateEnable =
3686 flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE;
3687 pc.NotifyEnable = flags & PIPE_CONTROL_NOTIFY_ENABLE;
3688 pc.IndirectStatePointersDisable =
3689 flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE;
3690 pc.TextureCacheInvalidationEnable =
3691 flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
3692 pc.Address = ro_bo(bo, offset);
3693 pc.ImmediateData = imm;
3694 }
3695 }
3696
3697 void
3698 genX(init_state)(struct iris_context *ice)
3699 {
3700 struct pipe_context *ctx = &ice->ctx;
3701 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
3702
3703 ctx->create_blend_state = iris_create_blend_state;
3704 ctx->create_depth_stencil_alpha_state = iris_create_zsa_state;
3705 ctx->create_rasterizer_state = iris_create_rasterizer_state;
3706 ctx->create_sampler_state = iris_create_sampler_state;
3707 ctx->create_sampler_view = iris_create_sampler_view;
3708 ctx->create_surface = iris_create_surface;
3709 ctx->create_vertex_elements_state = iris_create_vertex_elements;
3710 ctx->create_compute_state = iris_create_compute_state;
3711 ctx->bind_blend_state = iris_bind_blend_state;
3712 ctx->bind_depth_stencil_alpha_state = iris_bind_zsa_state;
3713 ctx->bind_sampler_states = iris_bind_sampler_states;
3714 ctx->bind_rasterizer_state = iris_bind_rasterizer_state;
3715 ctx->bind_vertex_elements_state = iris_bind_vertex_elements_state;
3716 ctx->bind_compute_state = iris_bind_compute_state;
3717 ctx->delete_blend_state = iris_delete_state;
3718 ctx->delete_depth_stencil_alpha_state = iris_delete_state;
3719 ctx->delete_fs_state = iris_delete_state;
3720 ctx->delete_rasterizer_state = iris_delete_state;
3721 ctx->delete_sampler_state = iris_delete_state;
3722 ctx->delete_vertex_elements_state = iris_delete_state;
3723 ctx->delete_compute_state = iris_delete_state;
3724 ctx->delete_tcs_state = iris_delete_state;
3725 ctx->delete_tes_state = iris_delete_state;
3726 ctx->delete_gs_state = iris_delete_state;
3727 ctx->delete_vs_state = iris_delete_state;
3728 ctx->set_blend_color = iris_set_blend_color;
3729 ctx->set_clip_state = iris_set_clip_state;
3730 ctx->set_constant_buffer = iris_set_constant_buffer;
3731 ctx->set_sampler_views = iris_set_sampler_views;
3732 ctx->set_framebuffer_state = iris_set_framebuffer_state;
3733 ctx->set_polygon_stipple = iris_set_polygon_stipple;
3734 ctx->set_sample_mask = iris_set_sample_mask;
3735 ctx->set_scissor_states = iris_set_scissor_states;
3736 ctx->set_stencil_ref = iris_set_stencil_ref;
3737 ctx->set_vertex_buffers = iris_set_vertex_buffers;
3738 ctx->set_viewport_states = iris_set_viewport_states;
3739 ctx->sampler_view_destroy = iris_sampler_view_destroy;
3740 ctx->surface_destroy = iris_surface_destroy;
3741 ctx->draw_vbo = iris_draw_vbo;
3742 ctx->launch_grid = iris_launch_grid;
3743 ctx->create_stream_output_target = iris_create_stream_output_target;
3744 ctx->stream_output_target_destroy = iris_stream_output_target_destroy;
3745 ctx->set_stream_output_targets = iris_set_stream_output_targets;
3746
3747 ice->vtbl.destroy_state = iris_destroy_state;
3748 ice->vtbl.init_render_context = iris_init_render_context;
3749 ice->vtbl.upload_render_state = iris_upload_render_state;
3750 ice->vtbl.emit_raw_pipe_control = iris_emit_raw_pipe_control;
3751 ice->vtbl.derived_program_state_size = iris_derived_program_state_size;
3752 ice->vtbl.store_derived_program_state = iris_store_derived_program_state;
3753 ice->vtbl.create_so_decl_list = iris_create_so_decl_list;
3754 ice->vtbl.populate_vs_key = iris_populate_vs_key;
3755 ice->vtbl.populate_tcs_key = iris_populate_tcs_key;
3756 ice->vtbl.populate_tes_key = iris_populate_tes_key;
3757 ice->vtbl.populate_gs_key = iris_populate_gs_key;
3758 ice->vtbl.populate_fs_key = iris_populate_fs_key;
3759
3760 ice->state.dirty = ~0ull;
3761
3762 ice->state.num_viewports = 1;
3763 ice->state.genx = calloc(1, sizeof(struct iris_genx_state));
3764
3765 /* Make a 1x1x1 null surface for unbound textures */
3766 void *null_surf_map =
3767 upload_state(ice->state.surface_uploader, &ice->state.unbound_tex,
3768 4 * GENX(RENDER_SURFACE_STATE_length), 64);
3769 isl_null_fill_state(&screen->isl_dev, null_surf_map, isl_extent3d(1, 1, 1));
3770 }