iris: Refactor code to share 3DSTATE_URB_* packet
[mesa.git] / src / gallium / drivers / iris / iris_state.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included
12 * in all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
21 */
22
23 /**
24 * @file iris_state.c
25 *
26 * ============================= GENXML CODE =============================
27 * [This file is compiled once per generation.]
28 * =======================================================================
29 *
30 * This is the main state upload code.
31 *
32 * Gallium uses Constant State Objects, or CSOs, for most state. Large,
33 * complex, or highly reusable state can be created once, and bound and
34 * rebound multiple times. This is modeled with the pipe->create_*_state()
35 * and pipe->bind_*_state() hooks. Highly dynamic or inexpensive state is
36 * streamed out on the fly, via pipe->set_*_state() hooks.
37 *
38 * OpenGL involves frequently mutating context state, which is mirrored in
39 * core Mesa by highly mutable data structures. However, most applications
40 * typically draw the same things over and over - from frame to frame, most
41 * of the same objects are still visible and need to be redrawn. So, rather
42 * than inventing new state all the time, applications usually mutate to swap
43 * between known states that we've seen before.
44 *
45 * Gallium isolates us from this mutation by tracking API state, and
46 * distilling it into a set of Constant State Objects, or CSOs. Large,
47 * complex, or typically reusable state can be created once, then reused
48 * multiple times. Drivers can create and store their own associated data.
49 * This create/bind model corresponds to the pipe->create_*_state() and
50 * pipe->bind_*_state() driver hooks.
51 *
52 * Some state is cheap to create, or expected to be highly dynamic. Rather
53 * than creating and caching piles of CSOs for these, Gallium simply streams
54 * them out, via the pipe->set_*_state() driver hooks.
55 *
56 * To reduce draw time overhead, we try to compute as much state at create
57 * time as possible. Wherever possible, we translate the Gallium pipe state
58 * to 3DSTATE commands, and store those commands in the CSO. At draw time,
59 * we can simply memcpy them into a batch buffer.
60 *
61 * No hardware matches the abstraction perfectly, so some commands require
62 * information from multiple CSOs. In this case, we can store two copies
63 * of the packet (one in each CSO), and simply | together their DWords at
64 * draw time. Sometimes the second set is trivial (one or two fields), so
65 * we simply pack it at draw time.
66 *
67 * There are two main components in the file below. First, the CSO hooks
68 * create/bind/track state. The second are the draw-time upload functions,
69 * iris_upload_render_state() and iris_upload_compute_state(), which read
70 * the context state and emit the commands into the actual batch.
71 */
72
73 #include <stdio.h>
74 #include <errno.h>
75
76 #if HAVE_VALGRIND
77 #include <valgrind.h>
78 #include <memcheck.h>
79 #define VG(x) x
80 #ifndef NDEBUG
81 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
82 #endif
83 #else
84 #define VG(x)
85 #endif
86
87 #include "pipe/p_defines.h"
88 #include "pipe/p_state.h"
89 #include "pipe/p_context.h"
90 #include "pipe/p_screen.h"
91 #include "util/u_inlines.h"
92 #include "util/u_format.h"
93 #include "util/u_framebuffer.h"
94 #include "util/u_transfer.h"
95 #include "util/u_upload_mgr.h"
96 #include "util/u_viewport.h"
97 #include "drm-uapi/i915_drm.h"
98 #include "nir.h"
99 #include "intel/compiler/brw_compiler.h"
100 #include "intel/common/gen_l3_config.h"
101 #include "intel/common/gen_sample_positions.h"
102 #include "iris_batch.h"
103 #include "iris_context.h"
104 #include "iris_defines.h"
105 #include "iris_pipe.h"
106 #include "iris_resource.h"
107
108 #define __gen_address_type struct iris_address
109 #define __gen_user_data struct iris_batch
110
111 #define ARRAY_BYTES(x) (sizeof(uint32_t) * ARRAY_SIZE(x))
112
113 static uint64_t
114 __gen_combine_address(struct iris_batch *batch, void *location,
115 struct iris_address addr, uint32_t delta)
116 {
117 uint64_t result = addr.offset + delta;
118
119 if (addr.bo) {
120 iris_use_pinned_bo(batch, addr.bo, addr.write);
121 /* Assume this is a general address, not relative to a base. */
122 result += addr.bo->gtt_offset;
123 }
124
125 return result;
126 }
127
128 #define __genxml_cmd_length(cmd) cmd ## _length
129 #define __genxml_cmd_length_bias(cmd) cmd ## _length_bias
130 #define __genxml_cmd_header(cmd) cmd ## _header
131 #define __genxml_cmd_pack(cmd) cmd ## _pack
132
133 #define _iris_pack_command(batch, cmd, dst, name) \
134 for (struct cmd name = { __genxml_cmd_header(cmd) }, \
135 *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
136 ({ __genxml_cmd_pack(cmd)(batch, (void *)_dst, &name); \
137 _dst = NULL; \
138 }))
139
140 #define iris_pack_command(cmd, dst, name) \
141 _iris_pack_command(NULL, cmd, dst, name)
142
143 #define iris_pack_state(cmd, dst, name) \
144 for (struct cmd name = {}, \
145 *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
146 __genxml_cmd_pack(cmd)(NULL, (void *)_dst, &name), \
147 _dst = NULL)
148
149 #define iris_emit_cmd(batch, cmd, name) \
150 _iris_pack_command(batch, cmd, iris_get_command_space(batch, 4 * __genxml_cmd_length(cmd)), name)
151
152 #define iris_emit_merge(batch, dwords0, dwords1, num_dwords) \
153 do { \
154 uint32_t *dw = iris_get_command_space(batch, 4 * num_dwords); \
155 for (uint32_t i = 0; i < num_dwords; i++) \
156 dw[i] = (dwords0)[i] | (dwords1)[i]; \
157 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, num_dwords)); \
158 } while (0)
159
160 #include "genxml/genX_pack.h"
161 #include "genxml/gen_macros.h"
162 #include "genxml/genX_bits.h"
163
164 #if GEN_GEN == 8
165 #define MOCS_PTE 0x18
166 #define MOCS_WB 0x78
167 #else
168 #define MOCS_PTE (1 << 1)
169 #define MOCS_WB (2 << 1)
170 #endif
171
172 static uint32_t
173 mocs(const struct iris_bo *bo)
174 {
175 return bo && bo->external ? MOCS_PTE : MOCS_WB;
176 }
177
178 /**
179 * Statically assert that PIPE_* enums match the hardware packets.
180 * (As long as they match, we don't need to translate them.)
181 */
182 UNUSED static void pipe_asserts()
183 {
184 #define PIPE_ASSERT(x) STATIC_ASSERT((int)x)
185
186 /* pipe_logicop happens to match the hardware. */
187 PIPE_ASSERT(PIPE_LOGICOP_CLEAR == LOGICOP_CLEAR);
188 PIPE_ASSERT(PIPE_LOGICOP_NOR == LOGICOP_NOR);
189 PIPE_ASSERT(PIPE_LOGICOP_AND_INVERTED == LOGICOP_AND_INVERTED);
190 PIPE_ASSERT(PIPE_LOGICOP_COPY_INVERTED == LOGICOP_COPY_INVERTED);
191 PIPE_ASSERT(PIPE_LOGICOP_AND_REVERSE == LOGICOP_AND_REVERSE);
192 PIPE_ASSERT(PIPE_LOGICOP_INVERT == LOGICOP_INVERT);
193 PIPE_ASSERT(PIPE_LOGICOP_XOR == LOGICOP_XOR);
194 PIPE_ASSERT(PIPE_LOGICOP_NAND == LOGICOP_NAND);
195 PIPE_ASSERT(PIPE_LOGICOP_AND == LOGICOP_AND);
196 PIPE_ASSERT(PIPE_LOGICOP_EQUIV == LOGICOP_EQUIV);
197 PIPE_ASSERT(PIPE_LOGICOP_NOOP == LOGICOP_NOOP);
198 PIPE_ASSERT(PIPE_LOGICOP_OR_INVERTED == LOGICOP_OR_INVERTED);
199 PIPE_ASSERT(PIPE_LOGICOP_COPY == LOGICOP_COPY);
200 PIPE_ASSERT(PIPE_LOGICOP_OR_REVERSE == LOGICOP_OR_REVERSE);
201 PIPE_ASSERT(PIPE_LOGICOP_OR == LOGICOP_OR);
202 PIPE_ASSERT(PIPE_LOGICOP_SET == LOGICOP_SET);
203
204 /* pipe_blend_func happens to match the hardware. */
205 PIPE_ASSERT(PIPE_BLENDFACTOR_ONE == BLENDFACTOR_ONE);
206 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_COLOR == BLENDFACTOR_SRC_COLOR);
207 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA == BLENDFACTOR_SRC_ALPHA);
208 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_ALPHA == BLENDFACTOR_DST_ALPHA);
209 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_COLOR == BLENDFACTOR_DST_COLOR);
210 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE == BLENDFACTOR_SRC_ALPHA_SATURATE);
211 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_COLOR == BLENDFACTOR_CONST_COLOR);
212 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_ALPHA == BLENDFACTOR_CONST_ALPHA);
213 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_COLOR == BLENDFACTOR_SRC1_COLOR);
214 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_ALPHA == BLENDFACTOR_SRC1_ALPHA);
215 PIPE_ASSERT(PIPE_BLENDFACTOR_ZERO == BLENDFACTOR_ZERO);
216 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_COLOR == BLENDFACTOR_INV_SRC_COLOR);
217 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_ALPHA == BLENDFACTOR_INV_SRC_ALPHA);
218 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_ALPHA == BLENDFACTOR_INV_DST_ALPHA);
219 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_COLOR == BLENDFACTOR_INV_DST_COLOR);
220 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_COLOR == BLENDFACTOR_INV_CONST_COLOR);
221 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_ALPHA == BLENDFACTOR_INV_CONST_ALPHA);
222 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_COLOR == BLENDFACTOR_INV_SRC1_COLOR);
223 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_ALPHA == BLENDFACTOR_INV_SRC1_ALPHA);
224
225 /* pipe_blend_func happens to match the hardware. */
226 PIPE_ASSERT(PIPE_BLEND_ADD == BLENDFUNCTION_ADD);
227 PIPE_ASSERT(PIPE_BLEND_SUBTRACT == BLENDFUNCTION_SUBTRACT);
228 PIPE_ASSERT(PIPE_BLEND_REVERSE_SUBTRACT == BLENDFUNCTION_REVERSE_SUBTRACT);
229 PIPE_ASSERT(PIPE_BLEND_MIN == BLENDFUNCTION_MIN);
230 PIPE_ASSERT(PIPE_BLEND_MAX == BLENDFUNCTION_MAX);
231
232 /* pipe_stencil_op happens to match the hardware. */
233 PIPE_ASSERT(PIPE_STENCIL_OP_KEEP == STENCILOP_KEEP);
234 PIPE_ASSERT(PIPE_STENCIL_OP_ZERO == STENCILOP_ZERO);
235 PIPE_ASSERT(PIPE_STENCIL_OP_REPLACE == STENCILOP_REPLACE);
236 PIPE_ASSERT(PIPE_STENCIL_OP_INCR == STENCILOP_INCRSAT);
237 PIPE_ASSERT(PIPE_STENCIL_OP_DECR == STENCILOP_DECRSAT);
238 PIPE_ASSERT(PIPE_STENCIL_OP_INCR_WRAP == STENCILOP_INCR);
239 PIPE_ASSERT(PIPE_STENCIL_OP_DECR_WRAP == STENCILOP_DECR);
240 PIPE_ASSERT(PIPE_STENCIL_OP_INVERT == STENCILOP_INVERT);
241
242 /* pipe_sprite_coord_mode happens to match 3DSTATE_SBE */
243 PIPE_ASSERT(PIPE_SPRITE_COORD_UPPER_LEFT == UPPERLEFT);
244 PIPE_ASSERT(PIPE_SPRITE_COORD_LOWER_LEFT == LOWERLEFT);
245 #undef PIPE_ASSERT
246 }
247
248 static unsigned
249 translate_prim_type(enum pipe_prim_type prim, uint8_t verts_per_patch)
250 {
251 static const unsigned map[] = {
252 [PIPE_PRIM_POINTS] = _3DPRIM_POINTLIST,
253 [PIPE_PRIM_LINES] = _3DPRIM_LINELIST,
254 [PIPE_PRIM_LINE_LOOP] = _3DPRIM_LINELOOP,
255 [PIPE_PRIM_LINE_STRIP] = _3DPRIM_LINESTRIP,
256 [PIPE_PRIM_TRIANGLES] = _3DPRIM_TRILIST,
257 [PIPE_PRIM_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
258 [PIPE_PRIM_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
259 [PIPE_PRIM_QUADS] = _3DPRIM_QUADLIST,
260 [PIPE_PRIM_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
261 [PIPE_PRIM_POLYGON] = _3DPRIM_POLYGON,
262 [PIPE_PRIM_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
263 [PIPE_PRIM_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
264 [PIPE_PRIM_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
265 [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
266 [PIPE_PRIM_PATCHES] = _3DPRIM_PATCHLIST_1 - 1,
267 };
268
269 return map[prim] + (prim == PIPE_PRIM_PATCHES ? verts_per_patch : 0);
270 }
271
272 static unsigned
273 translate_compare_func(enum pipe_compare_func pipe_func)
274 {
275 static const unsigned map[] = {
276 [PIPE_FUNC_NEVER] = COMPAREFUNCTION_NEVER,
277 [PIPE_FUNC_LESS] = COMPAREFUNCTION_LESS,
278 [PIPE_FUNC_EQUAL] = COMPAREFUNCTION_EQUAL,
279 [PIPE_FUNC_LEQUAL] = COMPAREFUNCTION_LEQUAL,
280 [PIPE_FUNC_GREATER] = COMPAREFUNCTION_GREATER,
281 [PIPE_FUNC_NOTEQUAL] = COMPAREFUNCTION_NOTEQUAL,
282 [PIPE_FUNC_GEQUAL] = COMPAREFUNCTION_GEQUAL,
283 [PIPE_FUNC_ALWAYS] = COMPAREFUNCTION_ALWAYS,
284 };
285 return map[pipe_func];
286 }
287
288 static unsigned
289 translate_shadow_func(enum pipe_compare_func pipe_func)
290 {
291 /* Gallium specifies the result of shadow comparisons as:
292 *
293 * 1 if ref <op> texel,
294 * 0 otherwise.
295 *
296 * The hardware does:
297 *
298 * 0 if texel <op> ref,
299 * 1 otherwise.
300 *
301 * So we need to flip the operator and also negate.
302 */
303 static const unsigned map[] = {
304 [PIPE_FUNC_NEVER] = PREFILTEROPALWAYS,
305 [PIPE_FUNC_LESS] = PREFILTEROPLEQUAL,
306 [PIPE_FUNC_EQUAL] = PREFILTEROPNOTEQUAL,
307 [PIPE_FUNC_LEQUAL] = PREFILTEROPLESS,
308 [PIPE_FUNC_GREATER] = PREFILTEROPGEQUAL,
309 [PIPE_FUNC_NOTEQUAL] = PREFILTEROPEQUAL,
310 [PIPE_FUNC_GEQUAL] = PREFILTEROPGREATER,
311 [PIPE_FUNC_ALWAYS] = PREFILTEROPNEVER,
312 };
313 return map[pipe_func];
314 }
315
316 static unsigned
317 translate_cull_mode(unsigned pipe_face)
318 {
319 static const unsigned map[4] = {
320 [PIPE_FACE_NONE] = CULLMODE_NONE,
321 [PIPE_FACE_FRONT] = CULLMODE_FRONT,
322 [PIPE_FACE_BACK] = CULLMODE_BACK,
323 [PIPE_FACE_FRONT_AND_BACK] = CULLMODE_BOTH,
324 };
325 return map[pipe_face];
326 }
327
328 static unsigned
329 translate_fill_mode(unsigned pipe_polymode)
330 {
331 static const unsigned map[4] = {
332 [PIPE_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
333 [PIPE_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
334 [PIPE_POLYGON_MODE_POINT] = FILL_MODE_POINT,
335 [PIPE_POLYGON_MODE_FILL_RECTANGLE] = FILL_MODE_SOLID,
336 };
337 return map[pipe_polymode];
338 }
339
340 static unsigned
341 translate_mip_filter(enum pipe_tex_mipfilter pipe_mip)
342 {
343 static const unsigned map[] = {
344 [PIPE_TEX_MIPFILTER_NEAREST] = MIPFILTER_NEAREST,
345 [PIPE_TEX_MIPFILTER_LINEAR] = MIPFILTER_LINEAR,
346 [PIPE_TEX_MIPFILTER_NONE] = MIPFILTER_NONE,
347 };
348 return map[pipe_mip];
349 }
350
351 static uint32_t
352 translate_wrap(unsigned pipe_wrap)
353 {
354 static const unsigned map[] = {
355 [PIPE_TEX_WRAP_REPEAT] = TCM_WRAP,
356 [PIPE_TEX_WRAP_CLAMP] = TCM_HALF_BORDER,
357 [PIPE_TEX_WRAP_CLAMP_TO_EDGE] = TCM_CLAMP,
358 [PIPE_TEX_WRAP_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER,
359 [PIPE_TEX_WRAP_MIRROR_REPEAT] = TCM_MIRROR,
360 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE,
361
362 /* These are unsupported. */
363 [PIPE_TEX_WRAP_MIRROR_CLAMP] = -1,
364 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER] = -1,
365 };
366 return map[pipe_wrap];
367 }
368
369 static struct iris_address
370 ro_bo(struct iris_bo *bo, uint64_t offset)
371 {
372 /* CSOs must pass NULL for bo! Otherwise it will add the BO to the
373 * validation list at CSO creation time, instead of draw time.
374 */
375 return (struct iris_address) { .bo = bo, .offset = offset };
376 }
377
378 static struct iris_address
379 rw_bo(struct iris_bo *bo, uint64_t offset)
380 {
381 /* CSOs must pass NULL for bo! Otherwise it will add the BO to the
382 * validation list at CSO creation time, instead of draw time.
383 */
384 return (struct iris_address) { .bo = bo, .offset = offset, .write = true };
385 }
386
387 /**
388 * Allocate space for some indirect state.
389 *
390 * Return a pointer to the map (to fill it out) and a state ref (for
391 * referring to the state in GPU commands).
392 */
393 static void *
394 upload_state(struct u_upload_mgr *uploader,
395 struct iris_state_ref *ref,
396 unsigned size,
397 unsigned alignment)
398 {
399 void *p = NULL;
400 u_upload_alloc(uploader, 0, size, alignment, &ref->offset, &ref->res, &p);
401 return p;
402 }
403
404 /**
405 * Stream out temporary/short-lived state.
406 *
407 * This allocates space, pins the BO, and includes the BO address in the
408 * returned offset (which works because all state lives in 32-bit memory
409 * zones).
410 */
411 static uint32_t *
412 stream_state(struct iris_batch *batch,
413 struct u_upload_mgr *uploader,
414 struct pipe_resource **out_res,
415 unsigned size,
416 unsigned alignment,
417 uint32_t *out_offset)
418 {
419 void *ptr = NULL;
420
421 u_upload_alloc(uploader, 0, size, alignment, out_offset, out_res, &ptr);
422
423 struct iris_bo *bo = iris_resource_bo(*out_res);
424 iris_use_pinned_bo(batch, bo, false);
425
426 *out_offset += iris_bo_offset_from_base_address(bo);
427
428 return ptr;
429 }
430
431 /**
432 * stream_state() + memcpy.
433 */
434 static uint32_t
435 emit_state(struct iris_batch *batch,
436 struct u_upload_mgr *uploader,
437 struct pipe_resource **out_res,
438 const void *data,
439 unsigned size,
440 unsigned alignment)
441 {
442 unsigned offset = 0;
443 uint32_t *map =
444 stream_state(batch, uploader, out_res, size, alignment, &offset);
445
446 if (map)
447 memcpy(map, data, size);
448
449 return offset;
450 }
451
452 /**
453 * Did field 'x' change between 'old_cso' and 'new_cso'?
454 *
455 * (If so, we may want to set some dirty flags.)
456 */
457 #define cso_changed(x) (!old_cso || (old_cso->x != new_cso->x))
458 #define cso_changed_memcmp(x) \
459 (!old_cso || memcmp(old_cso->x, new_cso->x, sizeof(old_cso->x)) != 0)
460
461 static void
462 flush_for_state_base_change(struct iris_batch *batch)
463 {
464 /* Flush before emitting STATE_BASE_ADDRESS.
465 *
466 * This isn't documented anywhere in the PRM. However, it seems to be
467 * necessary prior to changing the surface state base adress. We've
468 * seen issues in Vulkan where we get GPU hangs when using multi-level
469 * command buffers which clear depth, reset state base address, and then
470 * go render stuff.
471 *
472 * Normally, in GL, we would trust the kernel to do sufficient stalls
473 * and flushes prior to executing our batch. However, it doesn't seem
474 * as if the kernel's flushing is always sufficient and we don't want to
475 * rely on it.
476 *
477 * We make this an end-of-pipe sync instead of a normal flush because we
478 * do not know the current status of the GPU. On Haswell at least,
479 * having a fast-clear operation in flight at the same time as a normal
480 * rendering operation can cause hangs. Since the kernel's flushing is
481 * insufficient, we need to ensure that any rendering operations from
482 * other processes are definitely complete before we try to do our own
483 * rendering. It's a bit of a big hammer but it appears to work.
484 */
485 iris_emit_end_of_pipe_sync(batch,
486 PIPE_CONTROL_RENDER_TARGET_FLUSH |
487 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
488 PIPE_CONTROL_DATA_CACHE_FLUSH);
489 }
490
491 static void
492 _iris_emit_lri(struct iris_batch *batch, uint32_t reg, uint32_t val)
493 {
494 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
495 lri.RegisterOffset = reg;
496 lri.DataDWord = val;
497 }
498 }
499 #define iris_emit_lri(b, r, v) _iris_emit_lri(b, GENX(r##_num), v)
500
501 static void
502 _iris_emit_lrr(struct iris_batch *batch, uint32_t dst, uint32_t src)
503 {
504 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
505 lrr.SourceRegisterAddress = src;
506 lrr.DestinationRegisterAddress = dst;
507 }
508 }
509
510 static void
511 emit_pipeline_select(struct iris_batch *batch, uint32_t pipeline)
512 {
513 #if GEN_GEN >= 8 && GEN_GEN < 10
514 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
515 *
516 * Software must clear the COLOR_CALC_STATE Valid field in
517 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
518 * with Pipeline Select set to GPGPU.
519 *
520 * The internal hardware docs recommend the same workaround for Gen9
521 * hardware too.
522 */
523 if (pipeline == GPGPU)
524 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
525 #endif
526
527
528 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
529 * PIPELINE_SELECT [DevBWR+]":
530 *
531 * "Project: DEVSNB+
532 *
533 * Software must ensure all the write caches are flushed through a
534 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
535 * command to invalidate read only caches prior to programming
536 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode."
537 */
538 iris_emit_pipe_control_flush(batch,
539 PIPE_CONTROL_RENDER_TARGET_FLUSH |
540 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
541 PIPE_CONTROL_DATA_CACHE_FLUSH |
542 PIPE_CONTROL_CS_STALL);
543
544 iris_emit_pipe_control_flush(batch,
545 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
546 PIPE_CONTROL_CONST_CACHE_INVALIDATE |
547 PIPE_CONTROL_STATE_CACHE_INVALIDATE |
548 PIPE_CONTROL_INSTRUCTION_INVALIDATE);
549
550 iris_emit_cmd(batch, GENX(PIPELINE_SELECT), sel) {
551 #if GEN_GEN >= 9
552 sel.MaskBits = 3;
553 #endif
554 sel.PipelineSelection = pipeline;
555 }
556 }
557
558 UNUSED static void
559 init_glk_barrier_mode(struct iris_batch *batch, uint32_t value)
560 {
561 #if GEN_GEN == 9
562 /* Project: DevGLK
563 *
564 * "This chicken bit works around a hardware issue with barrier
565 * logic encountered when switching between GPGPU and 3D pipelines.
566 * To workaround the issue, this mode bit should be set after a
567 * pipeline is selected."
568 */
569 uint32_t reg_val;
570 iris_pack_state(GENX(SLICE_COMMON_ECO_CHICKEN1), &reg_val, reg) {
571 reg.GLKBarrierMode = value;
572 reg.GLKBarrierModeMask = 1;
573 }
574 iris_emit_lri(batch, SLICE_COMMON_ECO_CHICKEN1, reg_val);
575 #endif
576 }
577
578 static void
579 init_state_base_address(struct iris_batch *batch)
580 {
581 flush_for_state_base_change(batch);
582
583 /* We program most base addresses once at context initialization time.
584 * Each base address points at a 4GB memory zone, and never needs to
585 * change. See iris_bufmgr.h for a description of the memory zones.
586 *
587 * The one exception is Surface State Base Address, which needs to be
588 * updated occasionally. See iris_binder.c for the details there.
589 */
590 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
591 sba.GeneralStateMOCS = MOCS_WB;
592 sba.StatelessDataPortAccessMOCS = MOCS_WB;
593 sba.DynamicStateMOCS = MOCS_WB;
594 sba.IndirectObjectMOCS = MOCS_WB;
595 sba.InstructionMOCS = MOCS_WB;
596
597 sba.GeneralStateBaseAddressModifyEnable = true;
598 sba.DynamicStateBaseAddressModifyEnable = true;
599 sba.IndirectObjectBaseAddressModifyEnable = true;
600 sba.InstructionBaseAddressModifyEnable = true;
601 sba.GeneralStateBufferSizeModifyEnable = true;
602 sba.DynamicStateBufferSizeModifyEnable = true;
603 #if (GEN_GEN >= 9)
604 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
605 sba.BindlessSurfaceStateMOCS = MOCS_WB;
606 #endif
607 sba.IndirectObjectBufferSizeModifyEnable = true;
608 sba.InstructionBuffersizeModifyEnable = true;
609
610 sba.InstructionBaseAddress = ro_bo(NULL, IRIS_MEMZONE_SHADER_START);
611 sba.DynamicStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_DYNAMIC_START);
612
613 sba.GeneralStateBufferSize = 0xfffff;
614 sba.IndirectObjectBufferSize = 0xfffff;
615 sba.InstructionBufferSize = 0xfffff;
616 sba.DynamicStateBufferSize = 0xfffff;
617 }
618 }
619
620 static void
621 iris_emit_l3_config(struct iris_batch *batch, const struct gen_l3_config *cfg,
622 bool has_slm, bool wants_dc_cache)
623 {
624 uint32_t reg_val;
625 iris_pack_state(GENX(L3CNTLREG), &reg_val, reg) {
626 reg.SLMEnable = has_slm;
627 #if GEN_GEN == 11
628 /* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set
629 * in L3CNTLREG register. The default setting of the bit is not the
630 * desirable behavior.
631 */
632 reg.ErrorDetectionBehaviorControl = true;
633 #endif
634 reg.URBAllocation = cfg->n[GEN_L3P_URB];
635 reg.ROAllocation = cfg->n[GEN_L3P_RO];
636 reg.DCAllocation = cfg->n[GEN_L3P_DC];
637 reg.AllAllocation = cfg->n[GEN_L3P_ALL];
638 }
639 iris_emit_lri(batch, L3CNTLREG, reg_val);
640 }
641
642 static void
643 iris_emit_default_l3_config(struct iris_batch *batch,
644 const struct gen_device_info *devinfo,
645 bool compute)
646 {
647 bool wants_dc_cache = true;
648 bool has_slm = compute;
649 const struct gen_l3_weights w =
650 gen_get_default_l3_weights(devinfo, wants_dc_cache, has_slm);
651 const struct gen_l3_config *cfg = gen_get_l3_config(devinfo, w);
652 iris_emit_l3_config(batch, cfg, has_slm, wants_dc_cache);
653 }
654
655 /**
656 * Upload the initial GPU state for a render context.
657 *
658 * This sets some invariant state that needs to be programmed a particular
659 * way, but we never actually change.
660 */
661 static void
662 iris_init_render_context(struct iris_screen *screen,
663 struct iris_batch *batch,
664 struct iris_vtable *vtbl,
665 struct pipe_debug_callback *dbg)
666 {
667 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
668 uint32_t reg_val;
669
670 emit_pipeline_select(batch, _3D);
671
672 iris_emit_default_l3_config(batch, devinfo, false);
673
674 init_state_base_address(batch);
675
676 #if GEN_GEN >= 9
677 iris_pack_state(GENX(CS_DEBUG_MODE2), &reg_val, reg) {
678 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
679 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
680 }
681 iris_emit_lri(batch, CS_DEBUG_MODE2, reg_val);
682 #else
683 iris_pack_state(GENX(INSTPM), &reg_val, reg) {
684 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
685 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
686 }
687 iris_emit_lri(batch, INSTPM, reg_val);
688 #endif
689
690 #if GEN_GEN == 9
691 iris_pack_state(GENX(CACHE_MODE_1), &reg_val, reg) {
692 reg.FloatBlendOptimizationEnable = true;
693 reg.FloatBlendOptimizationEnableMask = true;
694 reg.PartialResolveDisableInVC = true;
695 reg.PartialResolveDisableInVCMask = true;
696 }
697 iris_emit_lri(batch, CACHE_MODE_1, reg_val);
698
699 if (devinfo->is_geminilake)
700 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_3D_HULL);
701 #endif
702
703 #if GEN_GEN == 11
704 iris_pack_state(GENX(SAMPLER_MODE), &reg_val, reg) {
705 reg.HeaderlessMessageforPreemptableContexts = 1;
706 reg.HeaderlessMessageforPreemptableContextsMask = 1;
707 }
708 iris_emit_lri(batch, SAMPLER_MODE, reg_val);
709
710 // XXX: 3D_MODE?
711 #endif
712
713 /* 3DSTATE_DRAWING_RECTANGLE is non-pipelined, so we want to avoid
714 * changing it dynamically. We set it to the maximum size here, and
715 * instead include the render target dimensions in the viewport, so
716 * viewport extents clipping takes care of pruning stray geometry.
717 */
718 iris_emit_cmd(batch, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
719 rect.ClippedDrawingRectangleXMax = UINT16_MAX;
720 rect.ClippedDrawingRectangleYMax = UINT16_MAX;
721 }
722
723 /* Set the initial MSAA sample positions. */
724 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_PATTERN), pat) {
725 GEN_SAMPLE_POS_1X(pat._1xSample);
726 GEN_SAMPLE_POS_2X(pat._2xSample);
727 GEN_SAMPLE_POS_4X(pat._4xSample);
728 GEN_SAMPLE_POS_8X(pat._8xSample);
729 #if GEN_GEN >= 9
730 GEN_SAMPLE_POS_16X(pat._16xSample);
731 #endif
732 }
733
734 /* Use the legacy AA line coverage computation. */
735 iris_emit_cmd(batch, GENX(3DSTATE_AA_LINE_PARAMETERS), foo);
736
737 /* Disable chromakeying (it's for media) */
738 iris_emit_cmd(batch, GENX(3DSTATE_WM_CHROMAKEY), foo);
739
740 /* We want regular rendering, not special HiZ operations. */
741 iris_emit_cmd(batch, GENX(3DSTATE_WM_HZ_OP), foo);
742
743 /* No polygon stippling offsets are necessary. */
744 /* TODO: may need to set an offset for origin-UL framebuffers */
745 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_OFFSET), foo);
746
747 /* Set a static partitioning of the push constant area. */
748 /* TODO: this may be a bad idea...could starve the push ringbuffers... */
749 for (int i = 0; i <= MESA_SHADER_FRAGMENT; i++) {
750 iris_emit_cmd(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
751 alloc._3DCommandSubOpcode = 18 + i;
752 alloc.ConstantBufferOffset = 6 * i;
753 alloc.ConstantBufferSize = i == MESA_SHADER_FRAGMENT ? 8 : 6;
754 }
755 }
756 }
757
758 static void
759 iris_init_compute_context(struct iris_screen *screen,
760 struct iris_batch *batch,
761 struct iris_vtable *vtbl,
762 struct pipe_debug_callback *dbg)
763 {
764 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
765
766 emit_pipeline_select(batch, GPGPU);
767
768 iris_emit_default_l3_config(batch, devinfo, true);
769
770 init_state_base_address(batch);
771
772 #if GEN_GEN == 9
773 if (devinfo->is_geminilake)
774 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_GPGPU);
775 #endif
776 }
777
778 struct iris_vertex_buffer_state {
779 /** The VERTEX_BUFFER_STATE hardware structure. */
780 uint32_t state[GENX(VERTEX_BUFFER_STATE_length)];
781
782 /** The resource to source vertex data from. */
783 struct pipe_resource *resource;
784 };
785
786 struct iris_depth_buffer_state {
787 /* Depth/HiZ/Stencil related hardware packets. */
788 uint32_t packets[GENX(3DSTATE_DEPTH_BUFFER_length) +
789 GENX(3DSTATE_STENCIL_BUFFER_length) +
790 GENX(3DSTATE_HIER_DEPTH_BUFFER_length) +
791 GENX(3DSTATE_CLEAR_PARAMS_length)];
792 };
793
794 /**
795 * Generation-specific context state (ice->state.genx->...).
796 *
797 * Most state can go in iris_context directly, but these encode hardware
798 * packets which vary by generation.
799 */
800 struct iris_genx_state {
801 struct iris_vertex_buffer_state vertex_buffers[33];
802
803 struct iris_depth_buffer_state depth_buffer;
804
805 uint32_t so_buffers[4 * GENX(3DSTATE_SO_BUFFER_length)];
806 };
807
808 /**
809 * The pipe->set_blend_color() driver hook.
810 *
811 * This corresponds to our COLOR_CALC_STATE.
812 */
813 static void
814 iris_set_blend_color(struct pipe_context *ctx,
815 const struct pipe_blend_color *state)
816 {
817 struct iris_context *ice = (struct iris_context *) ctx;
818
819 /* Our COLOR_CALC_STATE is exactly pipe_blend_color, so just memcpy */
820 memcpy(&ice->state.blend_color, state, sizeof(struct pipe_blend_color));
821 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
822 }
823
824 /**
825 * Gallium CSO for blend state (see pipe_blend_state).
826 */
827 struct iris_blend_state {
828 /** Partial 3DSTATE_PS_BLEND */
829 uint32_t ps_blend[GENX(3DSTATE_PS_BLEND_length)];
830
831 /** Partial BLEND_STATE */
832 uint32_t blend_state[GENX(BLEND_STATE_length) +
833 BRW_MAX_DRAW_BUFFERS * GENX(BLEND_STATE_ENTRY_length)];
834
835 bool alpha_to_coverage; /* for shader key */
836
837 /** Bitfield of whether blending is enabled for RT[i] - for aux resolves */
838 uint8_t blend_enables;
839
840 /** Bitfield of whether color writes are enabled for RT[i] */
841 uint8_t color_write_enables;
842 };
843
844 static enum pipe_blendfactor
845 fix_blendfactor(enum pipe_blendfactor f, bool alpha_to_one)
846 {
847 if (alpha_to_one) {
848 if (f == PIPE_BLENDFACTOR_SRC1_ALPHA)
849 return PIPE_BLENDFACTOR_ONE;
850
851 if (f == PIPE_BLENDFACTOR_INV_SRC1_ALPHA)
852 return PIPE_BLENDFACTOR_ZERO;
853 }
854
855 return f;
856 }
857
858 /**
859 * The pipe->create_blend_state() driver hook.
860 *
861 * Translates a pipe_blend_state into iris_blend_state.
862 */
863 static void *
864 iris_create_blend_state(struct pipe_context *ctx,
865 const struct pipe_blend_state *state)
866 {
867 struct iris_blend_state *cso = malloc(sizeof(struct iris_blend_state));
868 uint32_t *blend_entry = cso->blend_state + GENX(BLEND_STATE_length);
869
870 cso->blend_enables = 0;
871 cso->color_write_enables = 0;
872 STATIC_ASSERT(BRW_MAX_DRAW_BUFFERS <= 8);
873
874 cso->alpha_to_coverage = state->alpha_to_coverage;
875
876 bool indep_alpha_blend = false;
877
878 for (int i = 0; i < BRW_MAX_DRAW_BUFFERS; i++) {
879 const struct pipe_rt_blend_state *rt =
880 &state->rt[state->independent_blend_enable ? i : 0];
881
882 enum pipe_blendfactor src_rgb =
883 fix_blendfactor(rt->rgb_src_factor, state->alpha_to_one);
884 enum pipe_blendfactor src_alpha =
885 fix_blendfactor(rt->alpha_src_factor, state->alpha_to_one);
886 enum pipe_blendfactor dst_rgb =
887 fix_blendfactor(rt->rgb_dst_factor, state->alpha_to_one);
888 enum pipe_blendfactor dst_alpha =
889 fix_blendfactor(rt->alpha_dst_factor, state->alpha_to_one);
890
891 if (rt->rgb_func != rt->alpha_func ||
892 src_rgb != src_alpha || dst_rgb != dst_alpha)
893 indep_alpha_blend = true;
894
895 if (rt->blend_enable)
896 cso->blend_enables |= 1u << i;
897
898 if (rt->colormask)
899 cso->color_write_enables |= 1u << i;
900
901 iris_pack_state(GENX(BLEND_STATE_ENTRY), blend_entry, be) {
902 be.LogicOpEnable = state->logicop_enable;
903 be.LogicOpFunction = state->logicop_func;
904
905 be.PreBlendSourceOnlyClampEnable = false;
906 be.ColorClampRange = COLORCLAMP_RTFORMAT;
907 be.PreBlendColorClampEnable = true;
908 be.PostBlendColorClampEnable = true;
909
910 be.ColorBufferBlendEnable = rt->blend_enable;
911
912 be.ColorBlendFunction = rt->rgb_func;
913 be.AlphaBlendFunction = rt->alpha_func;
914 be.SourceBlendFactor = src_rgb;
915 be.SourceAlphaBlendFactor = src_alpha;
916 be.DestinationBlendFactor = dst_rgb;
917 be.DestinationAlphaBlendFactor = dst_alpha;
918
919 be.WriteDisableRed = !(rt->colormask & PIPE_MASK_R);
920 be.WriteDisableGreen = !(rt->colormask & PIPE_MASK_G);
921 be.WriteDisableBlue = !(rt->colormask & PIPE_MASK_B);
922 be.WriteDisableAlpha = !(rt->colormask & PIPE_MASK_A);
923 }
924 blend_entry += GENX(BLEND_STATE_ENTRY_length);
925 }
926
927 iris_pack_command(GENX(3DSTATE_PS_BLEND), cso->ps_blend, pb) {
928 /* pb.HasWriteableRT is filled in at draw time. */
929 /* pb.AlphaTestEnable is filled in at draw time. */
930 pb.AlphaToCoverageEnable = state->alpha_to_coverage;
931 pb.IndependentAlphaBlendEnable = indep_alpha_blend;
932
933 pb.ColorBufferBlendEnable = state->rt[0].blend_enable;
934
935 pb.SourceBlendFactor =
936 fix_blendfactor(state->rt[0].rgb_src_factor, state->alpha_to_one);
937 pb.SourceAlphaBlendFactor =
938 fix_blendfactor(state->rt[0].alpha_src_factor, state->alpha_to_one);
939 pb.DestinationBlendFactor =
940 fix_blendfactor(state->rt[0].rgb_dst_factor, state->alpha_to_one);
941 pb.DestinationAlphaBlendFactor =
942 fix_blendfactor(state->rt[0].alpha_dst_factor, state->alpha_to_one);
943 }
944
945 iris_pack_state(GENX(BLEND_STATE), cso->blend_state, bs) {
946 bs.AlphaToCoverageEnable = state->alpha_to_coverage;
947 bs.IndependentAlphaBlendEnable = indep_alpha_blend;
948 bs.AlphaToOneEnable = state->alpha_to_one;
949 bs.AlphaToCoverageDitherEnable = state->alpha_to_coverage;
950 bs.ColorDitherEnable = state->dither;
951 /* bl.AlphaTestEnable and bs.AlphaTestFunction are filled in later. */
952 }
953
954
955 return cso;
956 }
957
958 /**
959 * The pipe->bind_blend_state() driver hook.
960 *
961 * Bind a blending CSO and flag related dirty bits.
962 */
963 static void
964 iris_bind_blend_state(struct pipe_context *ctx, void *state)
965 {
966 struct iris_context *ice = (struct iris_context *) ctx;
967 struct iris_blend_state *cso = state;
968
969 ice->state.cso_blend = cso;
970 ice->state.blend_enables = cso ? cso->blend_enables : 0;
971
972 ice->state.dirty |= IRIS_DIRTY_PS_BLEND;
973 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
974 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_BLEND];
975 }
976
977 /**
978 * Return true if the FS writes to any color outputs which are not disabled
979 * via color masking.
980 */
981 static bool
982 has_writeable_rt(const struct iris_blend_state *cso_blend,
983 const struct shader_info *fs_info)
984 {
985 if (!fs_info)
986 return false;
987
988 unsigned rt_outputs = fs_info->outputs_written >> FRAG_RESULT_DATA0;
989
990 if (fs_info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_COLOR))
991 rt_outputs = (1 << BRW_MAX_DRAW_BUFFERS) - 1;
992
993 return cso_blend->color_write_enables & rt_outputs;
994 }
995
996 /**
997 * Gallium CSO for depth, stencil, and alpha testing state.
998 */
999 struct iris_depth_stencil_alpha_state {
1000 /** Partial 3DSTATE_WM_DEPTH_STENCIL. */
1001 uint32_t wmds[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
1002
1003 /** Outbound to BLEND_STATE, 3DSTATE_PS_BLEND, COLOR_CALC_STATE. */
1004 struct pipe_alpha_state alpha;
1005
1006 /** Outbound to resolve and cache set tracking. */
1007 bool depth_writes_enabled;
1008 bool stencil_writes_enabled;
1009 };
1010
1011 /**
1012 * The pipe->create_depth_stencil_alpha_state() driver hook.
1013 *
1014 * We encode most of 3DSTATE_WM_DEPTH_STENCIL, and just save off the alpha
1015 * testing state since we need pieces of it in a variety of places.
1016 */
1017 static void *
1018 iris_create_zsa_state(struct pipe_context *ctx,
1019 const struct pipe_depth_stencil_alpha_state *state)
1020 {
1021 struct iris_depth_stencil_alpha_state *cso =
1022 malloc(sizeof(struct iris_depth_stencil_alpha_state));
1023
1024 bool two_sided_stencil = state->stencil[1].enabled;
1025
1026 cso->alpha = state->alpha;
1027 cso->depth_writes_enabled = state->depth.writemask;
1028 cso->stencil_writes_enabled =
1029 state->stencil[0].writemask != 0 ||
1030 (two_sided_stencil && state->stencil[1].writemask != 1);
1031
1032 /* The state tracker needs to optimize away EQUAL writes for us. */
1033 assert(!(state->depth.func == PIPE_FUNC_EQUAL && state->depth.writemask));
1034
1035 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), cso->wmds, wmds) {
1036 wmds.StencilFailOp = state->stencil[0].fail_op;
1037 wmds.StencilPassDepthFailOp = state->stencil[0].zfail_op;
1038 wmds.StencilPassDepthPassOp = state->stencil[0].zpass_op;
1039 wmds.StencilTestFunction =
1040 translate_compare_func(state->stencil[0].func);
1041 wmds.BackfaceStencilFailOp = state->stencil[1].fail_op;
1042 wmds.BackfaceStencilPassDepthFailOp = state->stencil[1].zfail_op;
1043 wmds.BackfaceStencilPassDepthPassOp = state->stencil[1].zpass_op;
1044 wmds.BackfaceStencilTestFunction =
1045 translate_compare_func(state->stencil[1].func);
1046 wmds.DepthTestFunction = translate_compare_func(state->depth.func);
1047 wmds.DoubleSidedStencilEnable = two_sided_stencil;
1048 wmds.StencilTestEnable = state->stencil[0].enabled;
1049 wmds.StencilBufferWriteEnable =
1050 state->stencil[0].writemask != 0 ||
1051 (two_sided_stencil && state->stencil[1].writemask != 0);
1052 wmds.DepthTestEnable = state->depth.enabled;
1053 wmds.DepthBufferWriteEnable = state->depth.writemask;
1054 wmds.StencilTestMask = state->stencil[0].valuemask;
1055 wmds.StencilWriteMask = state->stencil[0].writemask;
1056 wmds.BackfaceStencilTestMask = state->stencil[1].valuemask;
1057 wmds.BackfaceStencilWriteMask = state->stencil[1].writemask;
1058 /* wmds.[Backface]StencilReferenceValue are merged later */
1059 }
1060
1061 return cso;
1062 }
1063
1064 /**
1065 * The pipe->bind_depth_stencil_alpha_state() driver hook.
1066 *
1067 * Bind a depth/stencil/alpha CSO and flag related dirty bits.
1068 */
1069 static void
1070 iris_bind_zsa_state(struct pipe_context *ctx, void *state)
1071 {
1072 struct iris_context *ice = (struct iris_context *) ctx;
1073 struct iris_depth_stencil_alpha_state *old_cso = ice->state.cso_zsa;
1074 struct iris_depth_stencil_alpha_state *new_cso = state;
1075
1076 if (new_cso) {
1077 if (cso_changed(alpha.ref_value))
1078 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
1079
1080 if (cso_changed(alpha.enabled))
1081 ice->state.dirty |= IRIS_DIRTY_PS_BLEND | IRIS_DIRTY_BLEND_STATE;
1082
1083 if (cso_changed(alpha.func))
1084 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1085
1086 ice->state.depth_writes_enabled = new_cso->depth_writes_enabled;
1087 ice->state.stencil_writes_enabled = new_cso->stencil_writes_enabled;
1088 }
1089
1090 ice->state.cso_zsa = new_cso;
1091 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1092 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
1093 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_DEPTH_STENCIL_ALPHA];
1094 }
1095
1096 /**
1097 * Gallium CSO for rasterizer state.
1098 */
1099 struct iris_rasterizer_state {
1100 uint32_t sf[GENX(3DSTATE_SF_length)];
1101 uint32_t clip[GENX(3DSTATE_CLIP_length)];
1102 uint32_t raster[GENX(3DSTATE_RASTER_length)];
1103 uint32_t wm[GENX(3DSTATE_WM_length)];
1104 uint32_t line_stipple[GENX(3DSTATE_LINE_STIPPLE_length)];
1105
1106 uint8_t num_clip_plane_consts;
1107 bool clip_halfz; /* for CC_VIEWPORT */
1108 bool depth_clip_near; /* for CC_VIEWPORT */
1109 bool depth_clip_far; /* for CC_VIEWPORT */
1110 bool flatshade; /* for shader state */
1111 bool flatshade_first; /* for stream output */
1112 bool clamp_fragment_color; /* for shader state */
1113 bool light_twoside; /* for shader state */
1114 bool rasterizer_discard; /* for 3DSTATE_STREAMOUT and 3DSTATE_CLIP */
1115 bool half_pixel_center; /* for 3DSTATE_MULTISAMPLE */
1116 bool line_stipple_enable;
1117 bool poly_stipple_enable;
1118 bool multisample;
1119 bool force_persample_interp;
1120 enum pipe_sprite_coord_mode sprite_coord_mode; /* PIPE_SPRITE_* */
1121 uint16_t sprite_coord_enable;
1122 };
1123
1124 static float
1125 get_line_width(const struct pipe_rasterizer_state *state)
1126 {
1127 float line_width = state->line_width;
1128
1129 /* From the OpenGL 4.4 spec:
1130 *
1131 * "The actual width of non-antialiased lines is determined by rounding
1132 * the supplied width to the nearest integer, then clamping it to the
1133 * implementation-dependent maximum non-antialiased line width."
1134 */
1135 if (!state->multisample && !state->line_smooth)
1136 line_width = roundf(state->line_width);
1137
1138 if (!state->multisample && state->line_smooth && line_width < 1.5f) {
1139 /* For 1 pixel line thickness or less, the general anti-aliasing
1140 * algorithm gives up, and a garbage line is generated. Setting a
1141 * Line Width of 0.0 specifies the rasterization of the "thinnest"
1142 * (one-pixel-wide), non-antialiased lines.
1143 *
1144 * Lines rendered with zero Line Width are rasterized using the
1145 * "Grid Intersection Quantization" rules as specified by the
1146 * "Zero-Width (Cosmetic) Line Rasterization" section of the docs.
1147 */
1148 line_width = 0.0f;
1149 }
1150
1151 return line_width;
1152 }
1153
1154 /**
1155 * The pipe->create_rasterizer_state() driver hook.
1156 */
1157 static void *
1158 iris_create_rasterizer_state(struct pipe_context *ctx,
1159 const struct pipe_rasterizer_state *state)
1160 {
1161 struct iris_rasterizer_state *cso =
1162 malloc(sizeof(struct iris_rasterizer_state));
1163
1164 cso->multisample = state->multisample;
1165 cso->force_persample_interp = state->force_persample_interp;
1166 cso->clip_halfz = state->clip_halfz;
1167 cso->depth_clip_near = state->depth_clip_near;
1168 cso->depth_clip_far = state->depth_clip_far;
1169 cso->flatshade = state->flatshade;
1170 cso->flatshade_first = state->flatshade_first;
1171 cso->clamp_fragment_color = state->clamp_fragment_color;
1172 cso->light_twoside = state->light_twoside;
1173 cso->rasterizer_discard = state->rasterizer_discard;
1174 cso->half_pixel_center = state->half_pixel_center;
1175 cso->sprite_coord_mode = state->sprite_coord_mode;
1176 cso->sprite_coord_enable = state->sprite_coord_enable;
1177 cso->line_stipple_enable = state->line_stipple_enable;
1178 cso->poly_stipple_enable = state->poly_stipple_enable;
1179
1180 if (state->clip_plane_enable != 0)
1181 cso->num_clip_plane_consts = util_logbase2(state->clip_plane_enable) + 1;
1182 else
1183 cso->num_clip_plane_consts = 0;
1184
1185 float line_width = get_line_width(state);
1186
1187 iris_pack_command(GENX(3DSTATE_SF), cso->sf, sf) {
1188 sf.StatisticsEnable = true;
1189 sf.ViewportTransformEnable = true;
1190 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
1191 sf.LineEndCapAntialiasingRegionWidth =
1192 state->line_smooth ? _10pixels : _05pixels;
1193 sf.LastPixelEnable = state->line_last_pixel;
1194 sf.LineWidth = line_width;
1195 sf.SmoothPointEnable = (state->point_smooth || state->multisample) &&
1196 !state->point_quad_rasterization;
1197 sf.PointWidthSource = state->point_size_per_vertex ? Vertex : State;
1198 sf.PointWidth = state->point_size;
1199
1200 if (state->flatshade_first) {
1201 sf.TriangleFanProvokingVertexSelect = 1;
1202 } else {
1203 sf.TriangleStripListProvokingVertexSelect = 2;
1204 sf.TriangleFanProvokingVertexSelect = 2;
1205 sf.LineStripListProvokingVertexSelect = 1;
1206 }
1207 }
1208
1209 iris_pack_command(GENX(3DSTATE_RASTER), cso->raster, rr) {
1210 rr.FrontWinding = state->front_ccw ? CounterClockwise : Clockwise;
1211 rr.CullMode = translate_cull_mode(state->cull_face);
1212 rr.FrontFaceFillMode = translate_fill_mode(state->fill_front);
1213 rr.BackFaceFillMode = translate_fill_mode(state->fill_back);
1214 rr.DXMultisampleRasterizationEnable = state->multisample;
1215 rr.GlobalDepthOffsetEnableSolid = state->offset_tri;
1216 rr.GlobalDepthOffsetEnableWireframe = state->offset_line;
1217 rr.GlobalDepthOffsetEnablePoint = state->offset_point;
1218 rr.GlobalDepthOffsetConstant = state->offset_units * 2;
1219 rr.GlobalDepthOffsetScale = state->offset_scale;
1220 rr.GlobalDepthOffsetClamp = state->offset_clamp;
1221 rr.SmoothPointEnable = state->point_smooth;
1222 rr.AntialiasingEnable = state->line_smooth;
1223 rr.ScissorRectangleEnable = state->scissor;
1224 #if GEN_GEN >= 9
1225 rr.ViewportZNearClipTestEnable = state->depth_clip_near;
1226 rr.ViewportZFarClipTestEnable = state->depth_clip_far;
1227 #else
1228 rr.ViewportZClipTestEnable = (state->depth_clip_near || state->depth_clip_far);
1229 #endif
1230 /* TODO: ConservativeRasterizationEnable */
1231 }
1232
1233 iris_pack_command(GENX(3DSTATE_CLIP), cso->clip, cl) {
1234 /* cl.NonPerspectiveBarycentricEnable is filled in at draw time from
1235 * the FS program; cl.ForceZeroRTAIndexEnable is filled in from the FB.
1236 */
1237 cl.EarlyCullEnable = true;
1238 cl.UserClipDistanceClipTestEnableBitmask = state->clip_plane_enable;
1239 cl.ForceUserClipDistanceClipTestEnableBitmask = true;
1240 cl.APIMode = state->clip_halfz ? APIMODE_D3D : APIMODE_OGL;
1241 cl.GuardbandClipTestEnable = true;
1242 cl.ClipEnable = true;
1243 cl.ViewportXYClipTestEnable = state->point_tri_clip;
1244 cl.MinimumPointWidth = 0.125;
1245 cl.MaximumPointWidth = 255.875;
1246
1247 if (state->flatshade_first) {
1248 cl.TriangleFanProvokingVertexSelect = 1;
1249 } else {
1250 cl.TriangleStripListProvokingVertexSelect = 2;
1251 cl.TriangleFanProvokingVertexSelect = 2;
1252 cl.LineStripListProvokingVertexSelect = 1;
1253 }
1254 }
1255
1256 iris_pack_command(GENX(3DSTATE_WM), cso->wm, wm) {
1257 /* wm.BarycentricInterpolationMode and wm.EarlyDepthStencilControl are
1258 * filled in at draw time from the FS program.
1259 */
1260 wm.LineAntialiasingRegionWidth = _10pixels;
1261 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1262 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1263 wm.LineStippleEnable = state->line_stipple_enable;
1264 wm.PolygonStippleEnable = state->poly_stipple_enable;
1265 }
1266
1267 /* Remap from 0..255 back to 1..256 */
1268 const unsigned line_stipple_factor = state->line_stipple_factor + 1;
1269
1270 iris_pack_command(GENX(3DSTATE_LINE_STIPPLE), cso->line_stipple, line) {
1271 line.LineStipplePattern = state->line_stipple_pattern;
1272 line.LineStippleInverseRepeatCount = 1.0f / line_stipple_factor;
1273 line.LineStippleRepeatCount = line_stipple_factor;
1274 }
1275
1276 return cso;
1277 }
1278
1279 /**
1280 * The pipe->bind_rasterizer_state() driver hook.
1281 *
1282 * Bind a rasterizer CSO and flag related dirty bits.
1283 */
1284 static void
1285 iris_bind_rasterizer_state(struct pipe_context *ctx, void *state)
1286 {
1287 struct iris_context *ice = (struct iris_context *) ctx;
1288 struct iris_rasterizer_state *old_cso = ice->state.cso_rast;
1289 struct iris_rasterizer_state *new_cso = state;
1290
1291 if (new_cso) {
1292 /* Try to avoid re-emitting 3DSTATE_LINE_STIPPLE, it's non-pipelined */
1293 if (cso_changed_memcmp(line_stipple))
1294 ice->state.dirty |= IRIS_DIRTY_LINE_STIPPLE;
1295
1296 if (cso_changed(half_pixel_center))
1297 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
1298
1299 if (cso_changed(line_stipple_enable) || cso_changed(poly_stipple_enable))
1300 ice->state.dirty |= IRIS_DIRTY_WM;
1301
1302 if (cso_changed(rasterizer_discard))
1303 ice->state.dirty |= IRIS_DIRTY_STREAMOUT | IRIS_DIRTY_CLIP;
1304
1305 if (cso_changed(flatshade_first))
1306 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
1307
1308 if (cso_changed(depth_clip_near) || cso_changed(depth_clip_far) ||
1309 cso_changed(clip_halfz))
1310 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1311
1312 if (cso_changed(sprite_coord_enable) ||
1313 cso_changed(sprite_coord_mode) ||
1314 cso_changed(light_twoside))
1315 ice->state.dirty |= IRIS_DIRTY_SBE;
1316 }
1317
1318 ice->state.cso_rast = new_cso;
1319 ice->state.dirty |= IRIS_DIRTY_RASTER;
1320 ice->state.dirty |= IRIS_DIRTY_CLIP;
1321 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_RASTERIZER];
1322 }
1323
1324 /**
1325 * Return true if the given wrap mode requires the border color to exist.
1326 *
1327 * (We can skip uploading it if the sampler isn't going to use it.)
1328 */
1329 static bool
1330 wrap_mode_needs_border_color(unsigned wrap_mode)
1331 {
1332 return wrap_mode == TCM_CLAMP_BORDER || wrap_mode == TCM_HALF_BORDER;
1333 }
1334
1335 /**
1336 * Gallium CSO for sampler state.
1337 */
1338 struct iris_sampler_state {
1339 union pipe_color_union border_color;
1340 bool needs_border_color;
1341
1342 uint32_t sampler_state[GENX(SAMPLER_STATE_length)];
1343 };
1344
1345 /**
1346 * The pipe->create_sampler_state() driver hook.
1347 *
1348 * We fill out SAMPLER_STATE (except for the border color pointer), and
1349 * store that on the CPU. It doesn't make sense to upload it to a GPU
1350 * buffer object yet, because 3DSTATE_SAMPLER_STATE_POINTERS requires
1351 * all bound sampler states to be in contiguous memor.
1352 */
1353 static void *
1354 iris_create_sampler_state(struct pipe_context *ctx,
1355 const struct pipe_sampler_state *state)
1356 {
1357 struct iris_sampler_state *cso = CALLOC_STRUCT(iris_sampler_state);
1358
1359 if (!cso)
1360 return NULL;
1361
1362 STATIC_ASSERT(PIPE_TEX_FILTER_NEAREST == MAPFILTER_NEAREST);
1363 STATIC_ASSERT(PIPE_TEX_FILTER_LINEAR == MAPFILTER_LINEAR);
1364
1365 unsigned wrap_s = translate_wrap(state->wrap_s);
1366 unsigned wrap_t = translate_wrap(state->wrap_t);
1367 unsigned wrap_r = translate_wrap(state->wrap_r);
1368
1369 memcpy(&cso->border_color, &state->border_color, sizeof(cso->border_color));
1370
1371 cso->needs_border_color = wrap_mode_needs_border_color(wrap_s) ||
1372 wrap_mode_needs_border_color(wrap_t) ||
1373 wrap_mode_needs_border_color(wrap_r);
1374
1375 float min_lod = state->min_lod;
1376 unsigned mag_img_filter = state->mag_img_filter;
1377
1378 // XXX: explain this code ported from ilo...I don't get it at all...
1379 if (state->min_mip_filter == PIPE_TEX_MIPFILTER_NONE &&
1380 state->min_lod > 0.0f) {
1381 min_lod = 0.0f;
1382 mag_img_filter = state->min_img_filter;
1383 }
1384
1385 iris_pack_state(GENX(SAMPLER_STATE), cso->sampler_state, samp) {
1386 samp.TCXAddressControlMode = wrap_s;
1387 samp.TCYAddressControlMode = wrap_t;
1388 samp.TCZAddressControlMode = wrap_r;
1389 samp.CubeSurfaceControlMode = state->seamless_cube_map;
1390 samp.NonnormalizedCoordinateEnable = !state->normalized_coords;
1391 samp.MinModeFilter = state->min_img_filter;
1392 samp.MagModeFilter = mag_img_filter;
1393 samp.MipModeFilter = translate_mip_filter(state->min_mip_filter);
1394 samp.MaximumAnisotropy = RATIO21;
1395
1396 if (state->max_anisotropy >= 2) {
1397 if (state->min_img_filter == PIPE_TEX_FILTER_LINEAR) {
1398 samp.MinModeFilter = MAPFILTER_ANISOTROPIC;
1399 samp.AnisotropicAlgorithm = EWAApproximation;
1400 }
1401
1402 if (state->mag_img_filter == PIPE_TEX_FILTER_LINEAR)
1403 samp.MagModeFilter = MAPFILTER_ANISOTROPIC;
1404
1405 samp.MaximumAnisotropy =
1406 MIN2((state->max_anisotropy - 2) / 2, RATIO161);
1407 }
1408
1409 /* Set address rounding bits if not using nearest filtering. */
1410 if (state->min_img_filter != PIPE_TEX_FILTER_NEAREST) {
1411 samp.UAddressMinFilterRoundingEnable = true;
1412 samp.VAddressMinFilterRoundingEnable = true;
1413 samp.RAddressMinFilterRoundingEnable = true;
1414 }
1415
1416 if (state->mag_img_filter != PIPE_TEX_FILTER_NEAREST) {
1417 samp.UAddressMagFilterRoundingEnable = true;
1418 samp.VAddressMagFilterRoundingEnable = true;
1419 samp.RAddressMagFilterRoundingEnable = true;
1420 }
1421
1422 if (state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE)
1423 samp.ShadowFunction = translate_shadow_func(state->compare_func);
1424
1425 const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
1426
1427 samp.LODPreClampMode = CLAMP_MODE_OGL;
1428 samp.MinLOD = CLAMP(min_lod, 0, hw_max_lod);
1429 samp.MaxLOD = CLAMP(state->max_lod, 0, hw_max_lod);
1430 samp.TextureLODBias = CLAMP(state->lod_bias, -16, 15);
1431
1432 /* .BorderColorPointer is filled in by iris_bind_sampler_states. */
1433 }
1434
1435 return cso;
1436 }
1437
1438 /**
1439 * The pipe->bind_sampler_states() driver hook.
1440 */
1441 static void
1442 iris_bind_sampler_states(struct pipe_context *ctx,
1443 enum pipe_shader_type p_stage,
1444 unsigned start, unsigned count,
1445 void **states)
1446 {
1447 struct iris_context *ice = (struct iris_context *) ctx;
1448 gl_shader_stage stage = stage_from_pipe(p_stage);
1449 struct iris_shader_state *shs = &ice->state.shaders[stage];
1450
1451 assert(start + count <= IRIS_MAX_TEXTURE_SAMPLERS);
1452
1453 for (int i = 0; i < count; i++) {
1454 shs->samplers[start + i] = states[i];
1455 }
1456
1457 ice->state.dirty |= IRIS_DIRTY_SAMPLER_STATES_VS << stage;
1458 }
1459
1460 /**
1461 * Upload the sampler states into a contiguous area of GPU memory, for
1462 * for 3DSTATE_SAMPLER_STATE_POINTERS_*.
1463 *
1464 * Also fill out the border color state pointers.
1465 */
1466 static void
1467 iris_upload_sampler_states(struct iris_context *ice, gl_shader_stage stage)
1468 {
1469 struct iris_shader_state *shs = &ice->state.shaders[stage];
1470 const struct shader_info *info = iris_get_shader_info(ice, stage);
1471
1472 /* We assume the state tracker will call pipe->bind_sampler_states()
1473 * if the program's number of textures changes.
1474 */
1475 unsigned count = info ? util_last_bit(info->textures_used) : 0;
1476
1477 if (!count)
1478 return;
1479
1480 /* Assemble the SAMPLER_STATEs into a contiguous table that lives
1481 * in the dynamic state memory zone, so we can point to it via the
1482 * 3DSTATE_SAMPLER_STATE_POINTERS_* commands.
1483 */
1484 uint32_t *map =
1485 upload_state(ice->state.dynamic_uploader, &shs->sampler_table,
1486 count * 4 * GENX(SAMPLER_STATE_length), 32);
1487 if (unlikely(!map))
1488 return;
1489
1490 struct pipe_resource *res = shs->sampler_table.res;
1491 shs->sampler_table.offset +=
1492 iris_bo_offset_from_base_address(iris_resource_bo(res));
1493
1494 /* Make sure all land in the same BO */
1495 iris_border_color_pool_reserve(ice, IRIS_MAX_TEXTURE_SAMPLERS);
1496
1497 ice->state.need_border_colors &= ~(1 << stage);
1498
1499 for (int i = 0; i < count; i++) {
1500 struct iris_sampler_state *state = shs->samplers[i];
1501 struct iris_sampler_view *tex = shs->textures[i];
1502
1503 if (!state) {
1504 memset(map, 0, 4 * GENX(SAMPLER_STATE_length));
1505 } else if (!state->needs_border_color) {
1506 memcpy(map, state->sampler_state, 4 * GENX(SAMPLER_STATE_length));
1507 } else {
1508 ice->state.need_border_colors |= 1 << stage;
1509
1510 /* We may need to swizzle the border color for format faking.
1511 * A/LA formats are faked as R/RG with 000R or R00G swizzles.
1512 * This means we need to move the border color's A channel into
1513 * the R or G channels so that those read swizzles will move it
1514 * back into A.
1515 */
1516 union pipe_color_union *color = &state->border_color;
1517 if (tex) {
1518 union pipe_color_union tmp;
1519 enum pipe_format internal_format = tex->res->internal_format;
1520
1521 if (util_format_is_alpha(internal_format)) {
1522 unsigned char swz[4] = {
1523 PIPE_SWIZZLE_W, PIPE_SWIZZLE_0,
1524 PIPE_SWIZZLE_0, PIPE_SWIZZLE_0
1525 };
1526 util_format_apply_color_swizzle(&tmp, color, swz, true);
1527 color = &tmp;
1528 } else if (util_format_is_luminance_alpha(internal_format) &&
1529 internal_format != PIPE_FORMAT_L8A8_SRGB) {
1530 unsigned char swz[4] = {
1531 PIPE_SWIZZLE_X, PIPE_SWIZZLE_W,
1532 PIPE_SWIZZLE_0, PIPE_SWIZZLE_0
1533 };
1534 util_format_apply_color_swizzle(&tmp, color, swz, true);
1535 color = &tmp;
1536 }
1537 }
1538
1539 /* Stream out the border color and merge the pointer. */
1540 uint32_t offset = iris_upload_border_color(ice, color);
1541
1542 uint32_t dynamic[GENX(SAMPLER_STATE_length)];
1543 iris_pack_state(GENX(SAMPLER_STATE), dynamic, dyns) {
1544 dyns.BorderColorPointer = offset;
1545 }
1546
1547 for (uint32_t j = 0; j < GENX(SAMPLER_STATE_length); j++)
1548 map[j] = state->sampler_state[j] | dynamic[j];
1549 }
1550
1551 map += GENX(SAMPLER_STATE_length);
1552 }
1553 }
1554
1555 static enum isl_channel_select
1556 fmt_swizzle(const struct iris_format_info *fmt, enum pipe_swizzle swz)
1557 {
1558 switch (swz) {
1559 case PIPE_SWIZZLE_X: return fmt->swizzle.r;
1560 case PIPE_SWIZZLE_Y: return fmt->swizzle.g;
1561 case PIPE_SWIZZLE_Z: return fmt->swizzle.b;
1562 case PIPE_SWIZZLE_W: return fmt->swizzle.a;
1563 case PIPE_SWIZZLE_1: return SCS_ONE;
1564 case PIPE_SWIZZLE_0: return SCS_ZERO;
1565 default: unreachable("invalid swizzle");
1566 }
1567 }
1568
1569 static void
1570 fill_buffer_surface_state(struct isl_device *isl_dev,
1571 struct iris_bo *bo,
1572 void *map,
1573 enum isl_format format,
1574 struct isl_swizzle swizzle,
1575 unsigned offset,
1576 unsigned size)
1577 {
1578 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
1579 const unsigned cpp = format == ISL_FORMAT_RAW ? 1 : fmtl->bpb / 8;
1580
1581 /* The ARB_texture_buffer_specification says:
1582 *
1583 * "The number of texels in the buffer texture's texel array is given by
1584 *
1585 * floor(<buffer_size> / (<components> * sizeof(<base_type>)),
1586 *
1587 * where <buffer_size> is the size of the buffer object, in basic
1588 * machine units and <components> and <base_type> are the element count
1589 * and base data type for elements, as specified in Table X.1. The
1590 * number of texels in the texel array is then clamped to the
1591 * implementation-dependent limit MAX_TEXTURE_BUFFER_SIZE_ARB."
1592 *
1593 * We need to clamp the size in bytes to MAX_TEXTURE_BUFFER_SIZE * stride,
1594 * so that when ISL divides by stride to obtain the number of texels, that
1595 * texel count is clamped to MAX_TEXTURE_BUFFER_SIZE.
1596 */
1597 unsigned final_size =
1598 MIN3(size, bo->size - offset, IRIS_MAX_TEXTURE_BUFFER_SIZE * cpp);
1599
1600 isl_buffer_fill_state(isl_dev, map,
1601 .address = bo->gtt_offset + offset,
1602 .size_B = final_size,
1603 .format = format,
1604 .swizzle = swizzle,
1605 .stride_B = cpp,
1606 .mocs = mocs(bo));
1607 }
1608
1609 #define SURFACE_STATE_ALIGNMENT 64
1610
1611 /**
1612 * Allocate several contiguous SURFACE_STATE structures, one for each
1613 * supported auxiliary surface mode.
1614 */
1615 static void *
1616 alloc_surface_states(struct u_upload_mgr *mgr,
1617 struct iris_state_ref *ref,
1618 unsigned aux_usages)
1619 {
1620 const unsigned surf_size = 4 * GENX(RENDER_SURFACE_STATE_length);
1621
1622 /* If this changes, update this to explicitly align pointers */
1623 STATIC_ASSERT(surf_size == SURFACE_STATE_ALIGNMENT);
1624
1625 assert(aux_usages != 0);
1626
1627 void *map =
1628 upload_state(mgr, ref, util_bitcount(aux_usages) * surf_size,
1629 SURFACE_STATE_ALIGNMENT);
1630
1631 ref->offset += iris_bo_offset_from_base_address(iris_resource_bo(ref->res));
1632
1633 return map;
1634 }
1635
1636 static void
1637 fill_surface_state(struct isl_device *isl_dev,
1638 void *map,
1639 struct iris_resource *res,
1640 struct isl_view *view,
1641 unsigned aux_usage)
1642 {
1643 struct isl_surf_fill_state_info f = {
1644 .surf = &res->surf,
1645 .view = view,
1646 .mocs = mocs(res->bo),
1647 .address = res->bo->gtt_offset,
1648 };
1649
1650 if (aux_usage != ISL_AUX_USAGE_NONE) {
1651 f.aux_surf = &res->aux.surf;
1652 f.aux_usage = aux_usage;
1653 f.aux_address = res->aux.bo->gtt_offset + res->aux.offset;
1654 // XXX: clear color
1655 }
1656
1657 isl_surf_fill_state_s(isl_dev, map, &f);
1658 }
1659
1660 /**
1661 * The pipe->create_sampler_view() driver hook.
1662 */
1663 static struct pipe_sampler_view *
1664 iris_create_sampler_view(struct pipe_context *ctx,
1665 struct pipe_resource *tex,
1666 const struct pipe_sampler_view *tmpl)
1667 {
1668 struct iris_context *ice = (struct iris_context *) ctx;
1669 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1670 const struct gen_device_info *devinfo = &screen->devinfo;
1671 struct iris_sampler_view *isv = calloc(1, sizeof(struct iris_sampler_view));
1672
1673 if (!isv)
1674 return NULL;
1675
1676 /* initialize base object */
1677 isv->base = *tmpl;
1678 isv->base.context = ctx;
1679 isv->base.texture = NULL;
1680 pipe_reference_init(&isv->base.reference, 1);
1681 pipe_resource_reference(&isv->base.texture, tex);
1682
1683 if (util_format_is_depth_or_stencil(tmpl->format)) {
1684 struct iris_resource *zres, *sres;
1685 const struct util_format_description *desc =
1686 util_format_description(tmpl->format);
1687
1688 iris_get_depth_stencil_resources(tex, &zres, &sres);
1689
1690 tex = util_format_has_depth(desc) ? &zres->base : &sres->base;
1691 }
1692
1693 isv->res = (struct iris_resource *) tex;
1694
1695 void *map = alloc_surface_states(ice->state.surface_uploader,
1696 &isv->surface_state,
1697 isv->res->aux.possible_usages);
1698 if (!unlikely(map))
1699 return NULL;
1700
1701 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_TEXTURE_BIT;
1702
1703 if (isv->base.target == PIPE_TEXTURE_CUBE ||
1704 isv->base.target == PIPE_TEXTURE_CUBE_ARRAY)
1705 usage |= ISL_SURF_USAGE_CUBE_BIT;
1706
1707 const struct iris_format_info fmt =
1708 iris_format_for_usage(devinfo, tmpl->format, usage);
1709
1710 isv->view = (struct isl_view) {
1711 .format = fmt.fmt,
1712 .swizzle = (struct isl_swizzle) {
1713 .r = fmt_swizzle(&fmt, tmpl->swizzle_r),
1714 .g = fmt_swizzle(&fmt, tmpl->swizzle_g),
1715 .b = fmt_swizzle(&fmt, tmpl->swizzle_b),
1716 .a = fmt_swizzle(&fmt, tmpl->swizzle_a),
1717 },
1718 .usage = usage,
1719 };
1720
1721 /* Fill out SURFACE_STATE for this view. */
1722 if (tmpl->target != PIPE_BUFFER) {
1723 isv->view.base_level = tmpl->u.tex.first_level;
1724 isv->view.levels = tmpl->u.tex.last_level - tmpl->u.tex.first_level + 1;
1725 // XXX: do I need to port f9fd0cf4790cb2a530e75d1a2206dbb9d8af7cb2?
1726 isv->view.base_array_layer = tmpl->u.tex.first_layer;
1727 isv->view.array_len =
1728 tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
1729
1730 unsigned aux_modes = isv->res->aux.possible_usages;
1731 while (aux_modes) {
1732 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
1733
1734 fill_surface_state(&screen->isl_dev, map, isv->res, &isv->view,
1735 aux_usage);
1736
1737 map += SURFACE_STATE_ALIGNMENT;
1738 }
1739 } else {
1740 fill_buffer_surface_state(&screen->isl_dev, isv->res->bo, map,
1741 isv->view.format, isv->view.swizzle,
1742 tmpl->u.buf.offset, tmpl->u.buf.size);
1743 }
1744
1745 return &isv->base;
1746 }
1747
1748 static void
1749 iris_sampler_view_destroy(struct pipe_context *ctx,
1750 struct pipe_sampler_view *state)
1751 {
1752 struct iris_sampler_view *isv = (void *) state;
1753 pipe_resource_reference(&state->texture, NULL);
1754 pipe_resource_reference(&isv->surface_state.res, NULL);
1755 free(isv);
1756 }
1757
1758 /**
1759 * The pipe->create_surface() driver hook.
1760 *
1761 * In Gallium nomenclature, "surfaces" are a view of a resource that
1762 * can be bound as a render target or depth/stencil buffer.
1763 */
1764 static struct pipe_surface *
1765 iris_create_surface(struct pipe_context *ctx,
1766 struct pipe_resource *tex,
1767 const struct pipe_surface *tmpl)
1768 {
1769 struct iris_context *ice = (struct iris_context *) ctx;
1770 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1771 const struct gen_device_info *devinfo = &screen->devinfo;
1772 struct iris_surface *surf = calloc(1, sizeof(struct iris_surface));
1773 struct pipe_surface *psurf = &surf->base;
1774 struct iris_resource *res = (struct iris_resource *) tex;
1775
1776 if (!surf)
1777 return NULL;
1778
1779 pipe_reference_init(&psurf->reference, 1);
1780 pipe_resource_reference(&psurf->texture, tex);
1781 psurf->context = ctx;
1782 psurf->format = tmpl->format;
1783 psurf->width = tex->width0;
1784 psurf->height = tex->height0;
1785 psurf->texture = tex;
1786 psurf->u.tex.first_layer = tmpl->u.tex.first_layer;
1787 psurf->u.tex.last_layer = tmpl->u.tex.last_layer;
1788 psurf->u.tex.level = tmpl->u.tex.level;
1789
1790 isl_surf_usage_flags_t usage = 0;
1791 if (tmpl->writable)
1792 usage = ISL_SURF_USAGE_STORAGE_BIT;
1793 else if (util_format_is_depth_or_stencil(tmpl->format))
1794 usage = ISL_SURF_USAGE_DEPTH_BIT;
1795 else
1796 usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
1797
1798 const struct iris_format_info fmt =
1799 iris_format_for_usage(devinfo, psurf->format, usage);
1800
1801 if ((usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) &&
1802 !isl_format_supports_rendering(devinfo, fmt.fmt)) {
1803 /* Framebuffer validation will reject this invalid case, but it
1804 * hasn't had the opportunity yet. In the meantime, we need to
1805 * avoid hitting ISL asserts about unsupported formats below.
1806 */
1807 free(surf);
1808 return NULL;
1809 }
1810
1811 surf->view = (struct isl_view) {
1812 .format = fmt.fmt,
1813 .base_level = tmpl->u.tex.level,
1814 .levels = 1,
1815 .base_array_layer = tmpl->u.tex.first_layer,
1816 .array_len = tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1,
1817 .swizzle = ISL_SWIZZLE_IDENTITY,
1818 .usage = usage,
1819 };
1820
1821 /* Bail early for depth/stencil - we don't want SURFACE_STATE for them. */
1822 if (res->surf.usage & (ISL_SURF_USAGE_DEPTH_BIT |
1823 ISL_SURF_USAGE_STENCIL_BIT))
1824 return psurf;
1825
1826
1827 void *map = alloc_surface_states(ice->state.surface_uploader,
1828 &surf->surface_state,
1829 res->aux.possible_usages);
1830 if (!unlikely(map))
1831 return NULL;
1832
1833 unsigned aux_modes = res->aux.possible_usages;
1834 while (aux_modes) {
1835 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
1836
1837 fill_surface_state(&screen->isl_dev, map, res, &surf->view, aux_usage);
1838
1839 map += SURFACE_STATE_ALIGNMENT;
1840 }
1841
1842 return psurf;
1843 }
1844
1845 #if GEN_GEN < 9
1846 static void
1847 fill_default_image_param(struct brw_image_param *param)
1848 {
1849 memset(param, 0, sizeof(*param));
1850 /* Set the swizzling shifts to all-ones to effectively disable swizzling --
1851 * See emit_address_calculation() in brw_fs_surface_builder.cpp for a more
1852 * detailed explanation of these parameters.
1853 */
1854 param->swizzling[0] = 0xff;
1855 param->swizzling[1] = 0xff;
1856 }
1857
1858 static void
1859 fill_buffer_image_param(struct brw_image_param *param,
1860 enum pipe_format pfmt,
1861 unsigned size)
1862 {
1863 const unsigned cpp = util_format_get_blocksize(pfmt);
1864
1865 fill_default_image_param(param);
1866 param->size[0] = size / cpp;
1867 param->stride[0] = cpp;
1868 }
1869 #else
1870 #define isl_surf_fill_image_param(x, ...)
1871 #define fill_default_image_param(x, ...)
1872 #define fill_buffer_image_param(x, ...)
1873 #endif
1874
1875 /**
1876 * The pipe->set_shader_images() driver hook.
1877 */
1878 static void
1879 iris_set_shader_images(struct pipe_context *ctx,
1880 enum pipe_shader_type p_stage,
1881 unsigned start_slot, unsigned count,
1882 const struct pipe_image_view *p_images)
1883 {
1884 struct iris_context *ice = (struct iris_context *) ctx;
1885 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1886 const struct gen_device_info *devinfo = &screen->devinfo;
1887 gl_shader_stage stage = stage_from_pipe(p_stage);
1888 struct iris_shader_state *shs = &ice->state.shaders[stage];
1889
1890 shs->bound_image_views &= ~u_bit_consecutive(start_slot, count);
1891
1892 for (unsigned i = 0; i < count; i++) {
1893 if (p_images && p_images[i].resource) {
1894 const struct pipe_image_view *img = &p_images[i];
1895 struct iris_resource *res = (void *) img->resource;
1896 pipe_resource_reference(&shs->image[start_slot + i].res, &res->base);
1897
1898 shs->bound_image_views |= 1 << (start_slot + i);
1899
1900 res->bind_history |= PIPE_BIND_SHADER_IMAGE;
1901
1902 // XXX: these are not retained forever, use a separate uploader?
1903 void *map =
1904 alloc_surface_states(ice->state.surface_uploader,
1905 &shs->image[start_slot + i].surface_state,
1906 1 << ISL_AUX_USAGE_NONE);
1907 if (!unlikely(map)) {
1908 pipe_resource_reference(&shs->image[start_slot + i].res, NULL);
1909 return;
1910 }
1911
1912 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_STORAGE_BIT;
1913 enum isl_format isl_fmt =
1914 iris_format_for_usage(devinfo, img->format, usage).fmt;
1915
1916 bool untyped_fallback = false;
1917
1918 if (img->shader_access & PIPE_IMAGE_ACCESS_READ) {
1919 /* On Gen8, try to use typed surfaces reads (which support a
1920 * limited number of formats), and if not possible, fall back
1921 * to untyped reads.
1922 */
1923 untyped_fallback = GEN_GEN == 8 &&
1924 !isl_has_matching_typed_storage_image_format(devinfo, isl_fmt);
1925
1926 if (untyped_fallback)
1927 isl_fmt = ISL_FORMAT_RAW;
1928 else
1929 isl_fmt = isl_lower_storage_image_format(devinfo, isl_fmt);
1930 }
1931
1932 shs->image[start_slot + i].access = img->shader_access;
1933
1934 if (res->base.target != PIPE_BUFFER) {
1935 struct isl_view view = {
1936 .format = isl_fmt,
1937 .base_level = img->u.tex.level,
1938 .levels = 1,
1939 .base_array_layer = img->u.tex.first_layer,
1940 .array_len = img->u.tex.last_layer - img->u.tex.first_layer + 1,
1941 .swizzle = ISL_SWIZZLE_IDENTITY,
1942 .usage = usage,
1943 };
1944
1945 if (untyped_fallback) {
1946 fill_buffer_surface_state(&screen->isl_dev, res->bo, map,
1947 isl_fmt, ISL_SWIZZLE_IDENTITY,
1948 0, res->bo->size);
1949 } else {
1950 /* Images don't support compression */
1951 unsigned aux_modes = 1 << ISL_AUX_USAGE_NONE;
1952 while (aux_modes) {
1953 enum isl_aux_usage usage = u_bit_scan(&aux_modes);
1954
1955 fill_surface_state(&screen->isl_dev, map, res, &view, usage);
1956
1957 map += SURFACE_STATE_ALIGNMENT;
1958 }
1959 }
1960
1961 isl_surf_fill_image_param(&screen->isl_dev,
1962 &shs->image[start_slot + i].param,
1963 &res->surf, &view);
1964 } else {
1965 fill_buffer_surface_state(&screen->isl_dev, res->bo, map,
1966 isl_fmt, ISL_SWIZZLE_IDENTITY,
1967 img->u.buf.offset, img->u.buf.size);
1968 fill_buffer_image_param(&shs->image[start_slot + i].param,
1969 img->format, img->u.buf.size);
1970 }
1971 } else {
1972 pipe_resource_reference(&shs->image[start_slot + i].res, NULL);
1973 pipe_resource_reference(&shs->image[start_slot + i].surface_state.res,
1974 NULL);
1975 fill_default_image_param(&shs->image[start_slot + i].param);
1976 }
1977 }
1978
1979 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
1980
1981 /* Broadwell also needs brw_image_params re-uploaded */
1982 if (GEN_GEN < 9) {
1983 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
1984 shs->cbuf0_needs_upload = true;
1985 }
1986 }
1987
1988
1989 /**
1990 * The pipe->set_sampler_views() driver hook.
1991 */
1992 static void
1993 iris_set_sampler_views(struct pipe_context *ctx,
1994 enum pipe_shader_type p_stage,
1995 unsigned start, unsigned count,
1996 struct pipe_sampler_view **views)
1997 {
1998 struct iris_context *ice = (struct iris_context *) ctx;
1999 gl_shader_stage stage = stage_from_pipe(p_stage);
2000 struct iris_shader_state *shs = &ice->state.shaders[stage];
2001
2002 shs->bound_sampler_views &= ~u_bit_consecutive(start, count);
2003
2004 for (unsigned i = 0; i < count; i++) {
2005 pipe_sampler_view_reference((struct pipe_sampler_view **)
2006 &shs->textures[start + i], views[i]);
2007 struct iris_sampler_view *view = (void *) views[i];
2008 if (view) {
2009 view->res->bind_history |= PIPE_BIND_SAMPLER_VIEW;
2010 shs->bound_sampler_views |= 1 << (start + i);
2011 }
2012 }
2013
2014 ice->state.dirty |= (IRIS_DIRTY_BINDINGS_VS << stage);
2015 }
2016
2017 /**
2018 * The pipe->set_tess_state() driver hook.
2019 */
2020 static void
2021 iris_set_tess_state(struct pipe_context *ctx,
2022 const float default_outer_level[4],
2023 const float default_inner_level[2])
2024 {
2025 struct iris_context *ice = (struct iris_context *) ctx;
2026
2027 memcpy(&ice->state.default_outer_level[0], &default_outer_level[0], 4 * sizeof(float));
2028 memcpy(&ice->state.default_inner_level[0], &default_inner_level[0], 2 * sizeof(float));
2029
2030 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_TCS;
2031 }
2032
2033 static void
2034 iris_surface_destroy(struct pipe_context *ctx, struct pipe_surface *p_surf)
2035 {
2036 struct iris_surface *surf = (void *) p_surf;
2037 pipe_resource_reference(&p_surf->texture, NULL);
2038 pipe_resource_reference(&surf->surface_state.res, NULL);
2039 free(surf);
2040 }
2041
2042 static void
2043 iris_set_clip_state(struct pipe_context *ctx,
2044 const struct pipe_clip_state *state)
2045 {
2046 struct iris_context *ice = (struct iris_context *) ctx;
2047 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_VERTEX];
2048
2049 memcpy(&ice->state.clip_planes, state, sizeof(*state));
2050
2051 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS;
2052 shs->cbuf0_needs_upload = true;
2053 }
2054
2055 /**
2056 * The pipe->set_polygon_stipple() driver hook.
2057 */
2058 static void
2059 iris_set_polygon_stipple(struct pipe_context *ctx,
2060 const struct pipe_poly_stipple *state)
2061 {
2062 struct iris_context *ice = (struct iris_context *) ctx;
2063 memcpy(&ice->state.poly_stipple, state, sizeof(*state));
2064 ice->state.dirty |= IRIS_DIRTY_POLYGON_STIPPLE;
2065 }
2066
2067 /**
2068 * The pipe->set_sample_mask() driver hook.
2069 */
2070 static void
2071 iris_set_sample_mask(struct pipe_context *ctx, unsigned sample_mask)
2072 {
2073 struct iris_context *ice = (struct iris_context *) ctx;
2074
2075 /* We only support 16x MSAA, so we have 16 bits of sample maks.
2076 * st/mesa may pass us 0xffffffff though, meaning "enable all samples".
2077 */
2078 ice->state.sample_mask = sample_mask & 0xffff;
2079 ice->state.dirty |= IRIS_DIRTY_SAMPLE_MASK;
2080 }
2081
2082 /**
2083 * The pipe->set_scissor_states() driver hook.
2084 *
2085 * This corresponds to our SCISSOR_RECT state structures. It's an
2086 * exact match, so we just store them, and memcpy them out later.
2087 */
2088 static void
2089 iris_set_scissor_states(struct pipe_context *ctx,
2090 unsigned start_slot,
2091 unsigned num_scissors,
2092 const struct pipe_scissor_state *rects)
2093 {
2094 struct iris_context *ice = (struct iris_context *) ctx;
2095
2096 for (unsigned i = 0; i < num_scissors; i++) {
2097 if (rects[i].minx == rects[i].maxx || rects[i].miny == rects[i].maxy) {
2098 /* If the scissor was out of bounds and got clamped to 0 width/height
2099 * at the bounds, the subtraction of 1 from maximums could produce a
2100 * negative number and thus not clip anything. Instead, just provide
2101 * a min > max scissor inside the bounds, which produces the expected
2102 * no rendering.
2103 */
2104 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
2105 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
2106 };
2107 } else {
2108 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
2109 .minx = rects[i].minx, .miny = rects[i].miny,
2110 .maxx = rects[i].maxx - 1, .maxy = rects[i].maxy - 1,
2111 };
2112 }
2113 }
2114
2115 ice->state.dirty |= IRIS_DIRTY_SCISSOR_RECT;
2116 }
2117
2118 /**
2119 * The pipe->set_stencil_ref() driver hook.
2120 *
2121 * This is added to 3DSTATE_WM_DEPTH_STENCIL dynamically at draw time.
2122 */
2123 static void
2124 iris_set_stencil_ref(struct pipe_context *ctx,
2125 const struct pipe_stencil_ref *state)
2126 {
2127 struct iris_context *ice = (struct iris_context *) ctx;
2128 memcpy(&ice->state.stencil_ref, state, sizeof(*state));
2129 if (GEN_GEN == 8)
2130 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
2131 else
2132 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
2133 }
2134
2135 static float
2136 viewport_extent(const struct pipe_viewport_state *state, int axis, float sign)
2137 {
2138 return copysignf(state->scale[axis], sign) + state->translate[axis];
2139 }
2140
2141 static void
2142 calculate_guardband_size(uint32_t fb_width, uint32_t fb_height,
2143 float m00, float m11, float m30, float m31,
2144 float *xmin, float *xmax,
2145 float *ymin, float *ymax)
2146 {
2147 /* According to the "Vertex X,Y Clamping and Quantization" section of the
2148 * Strips and Fans documentation:
2149 *
2150 * "The vertex X and Y screen-space coordinates are also /clamped/ to the
2151 * fixed-point "guardband" range supported by the rasterization hardware"
2152 *
2153 * and
2154 *
2155 * "In almost all circumstances, if an object’s vertices are actually
2156 * modified by this clamping (i.e., had X or Y coordinates outside of
2157 * the guardband extent the rendered object will not match the intended
2158 * result. Therefore software should take steps to ensure that this does
2159 * not happen - e.g., by clipping objects such that they do not exceed
2160 * these limits after the Drawing Rectangle is applied."
2161 *
2162 * I believe the fundamental restriction is that the rasterizer (in
2163 * the SF/WM stages) have a limit on the number of pixels that can be
2164 * rasterized. We need to ensure any coordinates beyond the rasterizer
2165 * limit are handled by the clipper. So effectively that limit becomes
2166 * the clipper's guardband size.
2167 *
2168 * It goes on to say:
2169 *
2170 * "In addition, in order to be correctly rendered, objects must have a
2171 * screenspace bounding box not exceeding 8K in the X or Y direction.
2172 * This additional restriction must also be comprehended by software,
2173 * i.e., enforced by use of clipping."
2174 *
2175 * This makes no sense. Gen7+ hardware supports 16K render targets,
2176 * and you definitely need to be able to draw polygons that fill the
2177 * surface. Our assumption is that the rasterizer was limited to 8K
2178 * on Sandybridge, which only supports 8K surfaces, and it was actually
2179 * increased to 16K on Ivybridge and later.
2180 *
2181 * So, limit the guardband to 16K on Gen7+ and 8K on Sandybridge.
2182 */
2183 const float gb_size = GEN_GEN >= 7 ? 16384.0f : 8192.0f;
2184
2185 if (m00 != 0 && m11 != 0) {
2186 /* First, we compute the screen-space render area */
2187 const float ss_ra_xmin = MIN3( 0, m30 + m00, m30 - m00);
2188 const float ss_ra_xmax = MAX3( fb_width, m30 + m00, m30 - m00);
2189 const float ss_ra_ymin = MIN3( 0, m31 + m11, m31 - m11);
2190 const float ss_ra_ymax = MAX3(fb_height, m31 + m11, m31 - m11);
2191
2192 /* We want the guardband to be centered on that */
2193 const float ss_gb_xmin = (ss_ra_xmin + ss_ra_xmax) / 2 - gb_size;
2194 const float ss_gb_xmax = (ss_ra_xmin + ss_ra_xmax) / 2 + gb_size;
2195 const float ss_gb_ymin = (ss_ra_ymin + ss_ra_ymax) / 2 - gb_size;
2196 const float ss_gb_ymax = (ss_ra_ymin + ss_ra_ymax) / 2 + gb_size;
2197
2198 /* Now we need it in native device coordinates */
2199 const float ndc_gb_xmin = (ss_gb_xmin - m30) / m00;
2200 const float ndc_gb_xmax = (ss_gb_xmax - m30) / m00;
2201 const float ndc_gb_ymin = (ss_gb_ymin - m31) / m11;
2202 const float ndc_gb_ymax = (ss_gb_ymax - m31) / m11;
2203
2204 /* Thanks to Y-flipping and ORIGIN_UPPER_LEFT, the Y coordinates may be
2205 * flipped upside-down. X should be fine though.
2206 */
2207 assert(ndc_gb_xmin <= ndc_gb_xmax);
2208 *xmin = ndc_gb_xmin;
2209 *xmax = ndc_gb_xmax;
2210 *ymin = MIN2(ndc_gb_ymin, ndc_gb_ymax);
2211 *ymax = MAX2(ndc_gb_ymin, ndc_gb_ymax);
2212 } else {
2213 /* The viewport scales to 0, so nothing will be rendered. */
2214 *xmin = 0.0f;
2215 *xmax = 0.0f;
2216 *ymin = 0.0f;
2217 *ymax = 0.0f;
2218 }
2219 }
2220
2221 /**
2222 * The pipe->set_viewport_states() driver hook.
2223 *
2224 * This corresponds to our SF_CLIP_VIEWPORT states. We can't calculate
2225 * the guardband yet, as we need the framebuffer dimensions, but we can
2226 * at least fill out the rest.
2227 */
2228 static void
2229 iris_set_viewport_states(struct pipe_context *ctx,
2230 unsigned start_slot,
2231 unsigned count,
2232 const struct pipe_viewport_state *states)
2233 {
2234 struct iris_context *ice = (struct iris_context *) ctx;
2235
2236 memcpy(&ice->state.viewports[start_slot], states, sizeof(*states) * count);
2237
2238 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2239
2240 if (ice->state.cso_rast && (!ice->state.cso_rast->depth_clip_near ||
2241 !ice->state.cso_rast->depth_clip_far))
2242 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
2243 }
2244
2245 /**
2246 * The pipe->set_framebuffer_state() driver hook.
2247 *
2248 * Sets the current draw FBO, including color render targets, depth,
2249 * and stencil buffers.
2250 */
2251 static void
2252 iris_set_framebuffer_state(struct pipe_context *ctx,
2253 const struct pipe_framebuffer_state *state)
2254 {
2255 struct iris_context *ice = (struct iris_context *) ctx;
2256 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2257 struct isl_device *isl_dev = &screen->isl_dev;
2258 struct pipe_framebuffer_state *cso = &ice->state.framebuffer;
2259 struct iris_resource *zres;
2260 struct iris_resource *stencil_res;
2261
2262 unsigned samples = util_framebuffer_get_num_samples(state);
2263 unsigned layers = util_framebuffer_get_num_layers(state);
2264
2265 if (cso->samples != samples) {
2266 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
2267 }
2268
2269 if (cso->nr_cbufs != state->nr_cbufs) {
2270 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
2271 }
2272
2273 if ((cso->layers == 0) != (layers == 0)) {
2274 ice->state.dirty |= IRIS_DIRTY_CLIP;
2275 }
2276
2277 if (cso->width != state->width || cso->height != state->height) {
2278 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2279 }
2280
2281 util_copy_framebuffer_state(cso, state);
2282 cso->samples = samples;
2283 cso->layers = layers;
2284
2285 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
2286
2287 struct isl_view view = {
2288 .base_level = 0,
2289 .levels = 1,
2290 .base_array_layer = 0,
2291 .array_len = 1,
2292 .swizzle = ISL_SWIZZLE_IDENTITY,
2293 };
2294
2295 struct isl_depth_stencil_hiz_emit_info info = { .view = &view };
2296
2297 if (cso->zsbuf) {
2298 iris_get_depth_stencil_resources(cso->zsbuf->texture, &zres,
2299 &stencil_res);
2300
2301 view.base_level = cso->zsbuf->u.tex.level;
2302 view.base_array_layer = cso->zsbuf->u.tex.first_layer;
2303 view.array_len =
2304 cso->zsbuf->u.tex.last_layer - cso->zsbuf->u.tex.first_layer + 1;
2305
2306 if (zres) {
2307 view.usage |= ISL_SURF_USAGE_DEPTH_BIT;
2308
2309 info.depth_surf = &zres->surf;
2310 info.depth_address = zres->bo->gtt_offset;
2311 info.mocs = mocs(zres->bo);
2312
2313 view.format = zres->surf.format;
2314
2315 if (iris_resource_level_has_hiz(zres, view.base_level)) {
2316 info.hiz_usage = ISL_AUX_USAGE_HIZ;
2317 info.hiz_surf = &zres->aux.surf;
2318 info.hiz_address = zres->aux.bo->gtt_offset;
2319 }
2320 }
2321
2322 if (stencil_res) {
2323 view.usage |= ISL_SURF_USAGE_STENCIL_BIT;
2324 info.stencil_surf = &stencil_res->surf;
2325 info.stencil_address = stencil_res->bo->gtt_offset;
2326 if (!zres) {
2327 view.format = stencil_res->surf.format;
2328 info.mocs = mocs(stencil_res->bo);
2329 }
2330 }
2331 }
2332
2333 isl_emit_depth_stencil_hiz_s(isl_dev, cso_z->packets, &info);
2334
2335 /* Make a null surface for unbound buffers */
2336 void *null_surf_map =
2337 upload_state(ice->state.surface_uploader, &ice->state.null_fb,
2338 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2339 isl_null_fill_state(&screen->isl_dev, null_surf_map,
2340 isl_extent3d(MAX2(cso->width, 1),
2341 MAX2(cso->height, 1),
2342 cso->layers ? cso->layers : 1));
2343 ice->state.null_fb.offset +=
2344 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.null_fb.res));
2345
2346 ice->state.dirty |= IRIS_DIRTY_DEPTH_BUFFER;
2347
2348 /* Render target change */
2349 ice->state.dirty |= IRIS_DIRTY_BINDINGS_FS;
2350
2351 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_FRAMEBUFFER];
2352
2353 #if GEN_GEN == 11
2354 // XXX: we may want to flag IRIS_DIRTY_MULTISAMPLE (or SAMPLE_MASK?)
2355 // XXX: see commit 979fc1bc9bcc64027ff2cfafd285676f31b930a6
2356
2357 /* The PIPE_CONTROL command description says:
2358 *
2359 * "Whenever a Binding Table Index (BTI) used by a Render Target Message
2360 * points to a different RENDER_SURFACE_STATE, SW must issue a Render
2361 * Target Cache Flush by enabling this bit. When render target flush
2362 * is set due to new association of BTI, PS Scoreboard Stall bit must
2363 * be set in this packet."
2364 */
2365 // XXX: does this need to happen at 3DSTATE_BTP_PS time?
2366 iris_emit_pipe_control_flush(&ice->batches[IRIS_BATCH_RENDER],
2367 PIPE_CONTROL_RENDER_TARGET_FLUSH |
2368 PIPE_CONTROL_STALL_AT_SCOREBOARD);
2369 #endif
2370 }
2371
2372 static void
2373 upload_ubo_surf_state(struct iris_context *ice,
2374 struct iris_const_buffer *cbuf,
2375 unsigned buffer_size)
2376 {
2377 struct pipe_context *ctx = &ice->ctx;
2378 struct iris_screen *screen = (struct iris_screen *) ctx->screen;
2379
2380 // XXX: these are not retained forever, use a separate uploader?
2381 void *map =
2382 upload_state(ice->state.surface_uploader, &cbuf->surface_state,
2383 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2384 if (!unlikely(map)) {
2385 pipe_resource_reference(&cbuf->data.res, NULL);
2386 return;
2387 }
2388
2389 struct iris_resource *res = (void *) cbuf->data.res;
2390 struct iris_bo *surf_bo = iris_resource_bo(cbuf->surface_state.res);
2391 cbuf->surface_state.offset += iris_bo_offset_from_base_address(surf_bo);
2392
2393 isl_buffer_fill_state(&screen->isl_dev, map,
2394 .address = res->bo->gtt_offset + cbuf->data.offset,
2395 .size_B = MIN2(buffer_size,
2396 res->bo->size - cbuf->data.offset),
2397 .format = ISL_FORMAT_R32G32B32A32_FLOAT,
2398 .swizzle = ISL_SWIZZLE_IDENTITY,
2399 .stride_B = 1,
2400 .mocs = mocs(res->bo))
2401 }
2402
2403 /**
2404 * The pipe->set_constant_buffer() driver hook.
2405 *
2406 * This uploads any constant data in user buffers, and references
2407 * any UBO resources containing constant data.
2408 */
2409 static void
2410 iris_set_constant_buffer(struct pipe_context *ctx,
2411 enum pipe_shader_type p_stage, unsigned index,
2412 const struct pipe_constant_buffer *input)
2413 {
2414 struct iris_context *ice = (struct iris_context *) ctx;
2415 gl_shader_stage stage = stage_from_pipe(p_stage);
2416 struct iris_shader_state *shs = &ice->state.shaders[stage];
2417 struct iris_const_buffer *cbuf = &shs->constbuf[index];
2418
2419 if (input && input->buffer) {
2420 assert(index > 0);
2421
2422 pipe_resource_reference(&cbuf->data.res, input->buffer);
2423 cbuf->data.offset = input->buffer_offset;
2424
2425 struct iris_resource *res = (void *) cbuf->data.res;
2426 res->bind_history |= PIPE_BIND_CONSTANT_BUFFER;
2427
2428 upload_ubo_surf_state(ice, cbuf, input->buffer_size);
2429 } else {
2430 pipe_resource_reference(&cbuf->data.res, NULL);
2431 pipe_resource_reference(&cbuf->surface_state.res, NULL);
2432 }
2433
2434 if (index == 0) {
2435 if (input)
2436 memcpy(&shs->cbuf0, input, sizeof(shs->cbuf0));
2437 else
2438 memset(&shs->cbuf0, 0, sizeof(shs->cbuf0));
2439
2440 shs->cbuf0_needs_upload = true;
2441 }
2442
2443 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
2444 // XXX: maybe not necessary all the time...?
2445 // XXX: we need 3DS_BTP to commit these changes, and if we fell back to
2446 // XXX: pull model we may need actual new bindings...
2447 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2448 }
2449
2450 static void
2451 upload_uniforms(struct iris_context *ice,
2452 gl_shader_stage stage)
2453 {
2454 struct iris_shader_state *shs = &ice->state.shaders[stage];
2455 struct iris_const_buffer *cbuf = &shs->constbuf[0];
2456 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
2457
2458 unsigned upload_size = shader->num_system_values * sizeof(uint32_t) +
2459 shs->cbuf0.buffer_size;
2460
2461 if (upload_size == 0)
2462 return;
2463
2464 uint32_t *map =
2465 upload_state(ice->ctx.const_uploader, &cbuf->data, upload_size, 64);
2466
2467 for (int i = 0; i < shader->num_system_values; i++) {
2468 uint32_t sysval = shader->system_values[i];
2469 uint32_t value = 0;
2470
2471 if (BRW_PARAM_DOMAIN(sysval) == BRW_PARAM_DOMAIN_IMAGE) {
2472 unsigned img = BRW_PARAM_IMAGE_IDX(sysval);
2473 unsigned offset = BRW_PARAM_IMAGE_OFFSET(sysval);
2474 struct brw_image_param *param = &shs->image[img].param;
2475
2476 assert(offset < sizeof(struct brw_image_param));
2477 value = ((uint32_t *) param)[offset];
2478 } else if (sysval == BRW_PARAM_BUILTIN_ZERO) {
2479 value = 0;
2480 } else if (BRW_PARAM_BUILTIN_IS_CLIP_PLANE(sysval)) {
2481 int plane = BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(sysval);
2482 int comp = BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(sysval);
2483 value = fui(ice->state.clip_planes.ucp[plane][comp]);
2484 } else if (sysval == BRW_PARAM_BUILTIN_PATCH_VERTICES_IN) {
2485 if (stage == MESA_SHADER_TESS_CTRL) {
2486 value = ice->state.vertices_per_patch;
2487 } else {
2488 assert(stage == MESA_SHADER_TESS_EVAL);
2489 const struct shader_info *tcs_info =
2490 iris_get_shader_info(ice, MESA_SHADER_TESS_CTRL);
2491 assert(tcs_info);
2492
2493 value = tcs_info->tess.tcs_vertices_out;
2494 }
2495 } else {
2496 assert(!"unhandled system value");
2497 }
2498
2499 *map++ = value;
2500 }
2501
2502 if (shs->cbuf0.user_buffer) {
2503 memcpy(map, shs->cbuf0.user_buffer, shs->cbuf0.buffer_size);
2504 }
2505
2506 upload_ubo_surf_state(ice, cbuf, upload_size);
2507 }
2508
2509 /**
2510 * The pipe->set_shader_buffers() driver hook.
2511 *
2512 * This binds SSBOs and ABOs. Unfortunately, we need to stream out
2513 * SURFACE_STATE here, as the buffer offset may change each time.
2514 */
2515 static void
2516 iris_set_shader_buffers(struct pipe_context *ctx,
2517 enum pipe_shader_type p_stage,
2518 unsigned start_slot, unsigned count,
2519 const struct pipe_shader_buffer *buffers)
2520 {
2521 struct iris_context *ice = (struct iris_context *) ctx;
2522 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2523 gl_shader_stage stage = stage_from_pipe(p_stage);
2524 struct iris_shader_state *shs = &ice->state.shaders[stage];
2525
2526 for (unsigned i = 0; i < count; i++) {
2527 if (buffers && buffers[i].buffer) {
2528 const struct pipe_shader_buffer *buffer = &buffers[i];
2529 struct iris_resource *res = (void *) buffer->buffer;
2530 pipe_resource_reference(&shs->ssbo[start_slot + i], &res->base);
2531
2532 res->bind_history |= PIPE_BIND_SHADER_BUFFER;
2533
2534 // XXX: these are not retained forever, use a separate uploader?
2535 void *map =
2536 upload_state(ice->state.surface_uploader,
2537 &shs->ssbo_surface_state[start_slot + i],
2538 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2539 if (!unlikely(map)) {
2540 pipe_resource_reference(&shs->ssbo[start_slot + i], NULL);
2541 return;
2542 }
2543
2544 struct iris_bo *surf_state_bo =
2545 iris_resource_bo(shs->ssbo_surface_state[start_slot + i].res);
2546 shs->ssbo_surface_state[start_slot + i].offset +=
2547 iris_bo_offset_from_base_address(surf_state_bo);
2548
2549 isl_buffer_fill_state(&screen->isl_dev, map,
2550 .address =
2551 res->bo->gtt_offset + buffer->buffer_offset,
2552 .size_B =
2553 MIN2(buffer->buffer_size,
2554 res->bo->size - buffer->buffer_offset),
2555 .format = ISL_FORMAT_RAW,
2556 .swizzle = ISL_SWIZZLE_IDENTITY,
2557 .stride_B = 1,
2558 .mocs = mocs(res->bo));
2559 } else {
2560 pipe_resource_reference(&shs->ssbo[start_slot + i], NULL);
2561 pipe_resource_reference(&shs->ssbo_surface_state[start_slot + i].res,
2562 NULL);
2563 }
2564 }
2565
2566 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2567 }
2568
2569 static void
2570 iris_delete_state(struct pipe_context *ctx, void *state)
2571 {
2572 free(state);
2573 }
2574
2575 /**
2576 * The pipe->set_vertex_buffers() driver hook.
2577 *
2578 * This translates pipe_vertex_buffer to our 3DSTATE_VERTEX_BUFFERS packet.
2579 */
2580 static void
2581 iris_set_vertex_buffers(struct pipe_context *ctx,
2582 unsigned start_slot, unsigned count,
2583 const struct pipe_vertex_buffer *buffers)
2584 {
2585 struct iris_context *ice = (struct iris_context *) ctx;
2586 struct iris_genx_state *genx = ice->state.genx;
2587
2588 ice->state.bound_vertex_buffers &= ~u_bit_consecutive64(start_slot, count);
2589
2590 for (unsigned i = 0; i < count; i++) {
2591 const struct pipe_vertex_buffer *buffer = buffers ? &buffers[i] : NULL;
2592 struct iris_vertex_buffer_state *state =
2593 &genx->vertex_buffers[start_slot + i];
2594
2595 if (!buffer) {
2596 pipe_resource_reference(&state->resource, NULL);
2597 continue;
2598 }
2599
2600 assert(!buffer->is_user_buffer);
2601
2602 pipe_resource_reference(&state->resource, buffer->buffer.resource);
2603 struct iris_resource *res = (void *) state->resource;
2604
2605 if (res) {
2606 ice->state.bound_vertex_buffers |= 1ull << (start_slot + i);
2607 res->bind_history |= PIPE_BIND_VERTEX_BUFFER;
2608 }
2609
2610 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
2611 vb.VertexBufferIndex = start_slot + i;
2612 vb.AddressModifyEnable = true;
2613 vb.BufferPitch = buffer->stride;
2614 if (res) {
2615 vb.BufferSize = res->bo->size;
2616 vb.BufferStartingAddress =
2617 ro_bo(NULL, res->bo->gtt_offset + (int) buffer->buffer_offset);
2618 vb.MOCS = mocs(res->bo);
2619 } else {
2620 vb.NullVertexBuffer = true;
2621 }
2622 }
2623 }
2624
2625 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
2626 }
2627
2628 /**
2629 * Gallium CSO for vertex elements.
2630 */
2631 struct iris_vertex_element_state {
2632 uint32_t vertex_elements[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
2633 uint32_t vf_instancing[33 * GENX(3DSTATE_VF_INSTANCING_length)];
2634 uint32_t edgeflag_ve[GENX(VERTEX_ELEMENT_STATE_length)];
2635 uint32_t edgeflag_vfi[GENX(3DSTATE_VF_INSTANCING_length)];
2636 unsigned count;
2637 };
2638
2639 /**
2640 * The pipe->create_vertex_elements() driver hook.
2641 *
2642 * This translates pipe_vertex_element to our 3DSTATE_VERTEX_ELEMENTS
2643 * and 3DSTATE_VF_INSTANCING commands. The vertex_elements and vf_instancing
2644 * arrays are ready to be emitted at draw time if no EdgeFlag or SGVs are
2645 * needed. In these cases we will need information available at draw time.
2646 * We setup edgeflag_ve and edgeflag_vfi as alternatives last
2647 * 3DSTATE_VERTEX_ELEMENT and 3DSTATE_VF_INSTANCING that can be used at
2648 * draw time if we detect that EdgeFlag is needed by the Vertex Shader.
2649 */
2650 static void *
2651 iris_create_vertex_elements(struct pipe_context *ctx,
2652 unsigned count,
2653 const struct pipe_vertex_element *state)
2654 {
2655 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2656 const struct gen_device_info *devinfo = &screen->devinfo;
2657 struct iris_vertex_element_state *cso =
2658 malloc(sizeof(struct iris_vertex_element_state));
2659
2660 cso->count = count;
2661
2662 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS), cso->vertex_elements, ve) {
2663 ve.DWordLength =
2664 1 + GENX(VERTEX_ELEMENT_STATE_length) * MAX2(count, 1) - 2;
2665 }
2666
2667 uint32_t *ve_pack_dest = &cso->vertex_elements[1];
2668 uint32_t *vfi_pack_dest = cso->vf_instancing;
2669
2670 if (count == 0) {
2671 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
2672 ve.Valid = true;
2673 ve.SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT;
2674 ve.Component0Control = VFCOMP_STORE_0;
2675 ve.Component1Control = VFCOMP_STORE_0;
2676 ve.Component2Control = VFCOMP_STORE_0;
2677 ve.Component3Control = VFCOMP_STORE_1_FP;
2678 }
2679
2680 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
2681 }
2682 }
2683
2684 for (int i = 0; i < count; i++) {
2685 const struct iris_format_info fmt =
2686 iris_format_for_usage(devinfo, state[i].src_format, 0);
2687 unsigned comp[4] = { VFCOMP_STORE_SRC, VFCOMP_STORE_SRC,
2688 VFCOMP_STORE_SRC, VFCOMP_STORE_SRC };
2689
2690 switch (isl_format_get_num_channels(fmt.fmt)) {
2691 case 0: comp[0] = VFCOMP_STORE_0;
2692 case 1: comp[1] = VFCOMP_STORE_0;
2693 case 2: comp[2] = VFCOMP_STORE_0;
2694 case 3:
2695 comp[3] = isl_format_has_int_channel(fmt.fmt) ? VFCOMP_STORE_1_INT
2696 : VFCOMP_STORE_1_FP;
2697 break;
2698 }
2699 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
2700 ve.EdgeFlagEnable = false;
2701 ve.VertexBufferIndex = state[i].vertex_buffer_index;
2702 ve.Valid = true;
2703 ve.SourceElementOffset = state[i].src_offset;
2704 ve.SourceElementFormat = fmt.fmt;
2705 ve.Component0Control = comp[0];
2706 ve.Component1Control = comp[1];
2707 ve.Component2Control = comp[2];
2708 ve.Component3Control = comp[3];
2709 }
2710
2711 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
2712 vi.VertexElementIndex = i;
2713 vi.InstancingEnable = state[i].instance_divisor > 0;
2714 vi.InstanceDataStepRate = state[i].instance_divisor;
2715 }
2716
2717 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
2718 vfi_pack_dest += GENX(3DSTATE_VF_INSTANCING_length);
2719 }
2720
2721 /* An alternative version of the last VE and VFI is stored so it
2722 * can be used at draw time in case Vertex Shader uses EdgeFlag
2723 */
2724 if (count) {
2725 const unsigned edgeflag_index = count - 1;
2726 const struct iris_format_info fmt =
2727 iris_format_for_usage(devinfo, state[edgeflag_index].src_format, 0);
2728 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), cso->edgeflag_ve, ve) {
2729 ve.EdgeFlagEnable = true ;
2730 ve.VertexBufferIndex = state[edgeflag_index].vertex_buffer_index;
2731 ve.Valid = true;
2732 ve.SourceElementOffset = state[edgeflag_index].src_offset;
2733 ve.SourceElementFormat = fmt.fmt;
2734 ve.Component0Control = VFCOMP_STORE_SRC;
2735 ve.Component1Control = VFCOMP_STORE_0;
2736 ve.Component2Control = VFCOMP_STORE_0;
2737 ve.Component3Control = VFCOMP_STORE_0;
2738 }
2739 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), cso->edgeflag_vfi, vi) {
2740 /* The vi.VertexElementIndex of the EdgeFlag Vertex Element is filled
2741 * at draw time, as it should change if SGVs are emitted.
2742 */
2743 vi.InstancingEnable = state[edgeflag_index].instance_divisor > 0;
2744 vi.InstanceDataStepRate = state[edgeflag_index].instance_divisor;
2745 }
2746 }
2747
2748 return cso;
2749 }
2750
2751 /**
2752 * The pipe->bind_vertex_elements_state() driver hook.
2753 */
2754 static void
2755 iris_bind_vertex_elements_state(struct pipe_context *ctx, void *state)
2756 {
2757 struct iris_context *ice = (struct iris_context *) ctx;
2758 struct iris_vertex_element_state *old_cso = ice->state.cso_vertex_elements;
2759 struct iris_vertex_element_state *new_cso = state;
2760
2761 /* 3DSTATE_VF_SGVs overrides the last VE, so if the count is changing,
2762 * we need to re-emit it to ensure we're overriding the right one.
2763 */
2764 if (new_cso && cso_changed(count))
2765 ice->state.dirty |= IRIS_DIRTY_VF_SGVS;
2766
2767 ice->state.cso_vertex_elements = state;
2768 ice->state.dirty |= IRIS_DIRTY_VERTEX_ELEMENTS;
2769 }
2770
2771 /**
2772 * The pipe->create_stream_output_target() driver hook.
2773 *
2774 * "Target" here refers to a destination buffer. We translate this into
2775 * a 3DSTATE_SO_BUFFER packet. We can handle most fields, but don't yet
2776 * know which buffer this represents, or whether we ought to zero the
2777 * write-offsets, or append. Those are handled in the set() hook.
2778 */
2779 static struct pipe_stream_output_target *
2780 iris_create_stream_output_target(struct pipe_context *ctx,
2781 struct pipe_resource *p_res,
2782 unsigned buffer_offset,
2783 unsigned buffer_size)
2784 {
2785 struct iris_resource *res = (void *) p_res;
2786 struct iris_stream_output_target *cso = calloc(1, sizeof(*cso));
2787 if (!cso)
2788 return NULL;
2789
2790 res->bind_history |= PIPE_BIND_STREAM_OUTPUT;
2791
2792 pipe_reference_init(&cso->base.reference, 1);
2793 pipe_resource_reference(&cso->base.buffer, p_res);
2794 cso->base.buffer_offset = buffer_offset;
2795 cso->base.buffer_size = buffer_size;
2796 cso->base.context = ctx;
2797
2798 upload_state(ctx->stream_uploader, &cso->offset, sizeof(uint32_t), 4);
2799
2800 return &cso->base;
2801 }
2802
2803 static void
2804 iris_stream_output_target_destroy(struct pipe_context *ctx,
2805 struct pipe_stream_output_target *state)
2806 {
2807 struct iris_stream_output_target *cso = (void *) state;
2808
2809 pipe_resource_reference(&cso->base.buffer, NULL);
2810 pipe_resource_reference(&cso->offset.res, NULL);
2811
2812 free(cso);
2813 }
2814
2815 /**
2816 * The pipe->set_stream_output_targets() driver hook.
2817 *
2818 * At this point, we know which targets are bound to a particular index,
2819 * and also whether we want to append or start over. We can finish the
2820 * 3DSTATE_SO_BUFFER packets we started earlier.
2821 */
2822 static void
2823 iris_set_stream_output_targets(struct pipe_context *ctx,
2824 unsigned num_targets,
2825 struct pipe_stream_output_target **targets,
2826 const unsigned *offsets)
2827 {
2828 struct iris_context *ice = (struct iris_context *) ctx;
2829 struct iris_genx_state *genx = ice->state.genx;
2830 uint32_t *so_buffers = genx->so_buffers;
2831
2832 const bool active = num_targets > 0;
2833 if (ice->state.streamout_active != active) {
2834 ice->state.streamout_active = active;
2835 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
2836
2837 /* We only emit 3DSTATE_SO_DECL_LIST when streamout is active, because
2838 * it's a non-pipelined command. If we're switching streamout on, we
2839 * may have missed emitting it earlier, so do so now. (We're already
2840 * taking a stall to update 3DSTATE_SO_BUFFERS anyway...)
2841 */
2842 if (active)
2843 ice->state.dirty |= IRIS_DIRTY_SO_DECL_LIST;
2844 }
2845
2846 for (int i = 0; i < 4; i++) {
2847 pipe_so_target_reference(&ice->state.so_target[i],
2848 i < num_targets ? targets[i] : NULL);
2849 }
2850
2851 /* No need to update 3DSTATE_SO_BUFFER unless SOL is active. */
2852 if (!active)
2853 return;
2854
2855 for (unsigned i = 0; i < 4; i++,
2856 so_buffers += GENX(3DSTATE_SO_BUFFER_length)) {
2857
2858 if (i >= num_targets || !targets[i]) {
2859 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob)
2860 sob.SOBufferIndex = i;
2861 continue;
2862 }
2863
2864 struct iris_stream_output_target *tgt = (void *) targets[i];
2865 struct iris_resource *res = (void *) tgt->base.buffer;
2866
2867 /* Note that offsets[i] will either be 0, causing us to zero
2868 * the value in the buffer, or 0xFFFFFFFF, which happens to mean
2869 * "continue appending at the existing offset."
2870 */
2871 assert(offsets[i] == 0 || offsets[i] == 0xFFFFFFFF);
2872
2873 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob) {
2874 sob.SurfaceBaseAddress =
2875 rw_bo(NULL, res->bo->gtt_offset + tgt->base.buffer_offset);
2876 sob.SOBufferEnable = true;
2877 sob.StreamOffsetWriteEnable = true;
2878 sob.StreamOutputBufferOffsetAddressEnable = true;
2879 sob.MOCS = mocs(res->bo);
2880
2881 sob.SurfaceSize = MAX2(tgt->base.buffer_size / 4, 1) - 1;
2882
2883 sob.SOBufferIndex = i;
2884 sob.StreamOffset = offsets[i];
2885 sob.StreamOutputBufferOffsetAddress =
2886 rw_bo(NULL, iris_resource_bo(tgt->offset.res)->gtt_offset +
2887 tgt->offset.offset);
2888 }
2889 }
2890
2891 ice->state.dirty |= IRIS_DIRTY_SO_BUFFERS;
2892 }
2893
2894 /**
2895 * An iris-vtable helper for encoding the 3DSTATE_SO_DECL_LIST and
2896 * 3DSTATE_STREAMOUT packets.
2897 *
2898 * 3DSTATE_SO_DECL_LIST is a list of shader outputs we want the streamout
2899 * hardware to record. We can create it entirely based on the shader, with
2900 * no dynamic state dependencies.
2901 *
2902 * 3DSTATE_STREAMOUT is an annoying mix of shader-based information and
2903 * state-based settings. We capture the shader-related ones here, and merge
2904 * the rest in at draw time.
2905 */
2906 static uint32_t *
2907 iris_create_so_decl_list(const struct pipe_stream_output_info *info,
2908 const struct brw_vue_map *vue_map)
2909 {
2910 struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
2911 int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2912 int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2913 int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2914 int max_decls = 0;
2915 STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
2916
2917 memset(so_decl, 0, sizeof(so_decl));
2918
2919 /* Construct the list of SO_DECLs to be emitted. The formatting of the
2920 * command feels strange -- each dword pair contains a SO_DECL per stream.
2921 */
2922 for (unsigned i = 0; i < info->num_outputs; i++) {
2923 const struct pipe_stream_output *output = &info->output[i];
2924 const int buffer = output->output_buffer;
2925 const int varying = output->register_index;
2926 const unsigned stream_id = output->stream;
2927 assert(stream_id < MAX_VERTEX_STREAMS);
2928
2929 buffer_mask[stream_id] |= 1 << buffer;
2930
2931 assert(vue_map->varying_to_slot[varying] >= 0);
2932
2933 /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
2934 * array. Instead, it simply increments DstOffset for the following
2935 * input by the number of components that should be skipped.
2936 *
2937 * Our hardware is unusual in that it requires us to program SO_DECLs
2938 * for fake "hole" components, rather than simply taking the offset
2939 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
2940 * program as many size = 4 holes as we can, then a final hole to
2941 * accommodate the final 1, 2, or 3 remaining.
2942 */
2943 int skip_components = output->dst_offset - next_offset[buffer];
2944
2945 while (skip_components > 0) {
2946 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
2947 .HoleFlag = 1,
2948 .OutputBufferSlot = output->output_buffer,
2949 .ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
2950 };
2951 skip_components -= 4;
2952 }
2953
2954 next_offset[buffer] = output->dst_offset + output->num_components;
2955
2956 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
2957 .OutputBufferSlot = output->output_buffer,
2958 .RegisterIndex = vue_map->varying_to_slot[varying],
2959 .ComponentMask =
2960 ((1 << output->num_components) - 1) << output->start_component,
2961 };
2962
2963 if (decls[stream_id] > max_decls)
2964 max_decls = decls[stream_id];
2965 }
2966
2967 unsigned dwords = GENX(3DSTATE_STREAMOUT_length) + (3 + 2 * max_decls);
2968 uint32_t *map = ralloc_size(NULL, sizeof(uint32_t) * dwords);
2969 uint32_t *so_decl_map = map + GENX(3DSTATE_STREAMOUT_length);
2970
2971 iris_pack_command(GENX(3DSTATE_STREAMOUT), map, sol) {
2972 int urb_entry_read_offset = 0;
2973 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
2974 urb_entry_read_offset;
2975
2976 /* We always read the whole vertex. This could be reduced at some
2977 * point by reading less and offsetting the register index in the
2978 * SO_DECLs.
2979 */
2980 sol.Stream0VertexReadOffset = urb_entry_read_offset;
2981 sol.Stream0VertexReadLength = urb_entry_read_length - 1;
2982 sol.Stream1VertexReadOffset = urb_entry_read_offset;
2983 sol.Stream1VertexReadLength = urb_entry_read_length - 1;
2984 sol.Stream2VertexReadOffset = urb_entry_read_offset;
2985 sol.Stream2VertexReadLength = urb_entry_read_length - 1;
2986 sol.Stream3VertexReadOffset = urb_entry_read_offset;
2987 sol.Stream3VertexReadLength = urb_entry_read_length - 1;
2988
2989 /* Set buffer pitches; 0 means unbound. */
2990 sol.Buffer0SurfacePitch = 4 * info->stride[0];
2991 sol.Buffer1SurfacePitch = 4 * info->stride[1];
2992 sol.Buffer2SurfacePitch = 4 * info->stride[2];
2993 sol.Buffer3SurfacePitch = 4 * info->stride[3];
2994 }
2995
2996 iris_pack_command(GENX(3DSTATE_SO_DECL_LIST), so_decl_map, list) {
2997 list.DWordLength = 3 + 2 * max_decls - 2;
2998 list.StreamtoBufferSelects0 = buffer_mask[0];
2999 list.StreamtoBufferSelects1 = buffer_mask[1];
3000 list.StreamtoBufferSelects2 = buffer_mask[2];
3001 list.StreamtoBufferSelects3 = buffer_mask[3];
3002 list.NumEntries0 = decls[0];
3003 list.NumEntries1 = decls[1];
3004 list.NumEntries2 = decls[2];
3005 list.NumEntries3 = decls[3];
3006 }
3007
3008 for (int i = 0; i < max_decls; i++) {
3009 iris_pack_state(GENX(SO_DECL_ENTRY), so_decl_map + 3 + i * 2, entry) {
3010 entry.Stream0Decl = so_decl[0][i];
3011 entry.Stream1Decl = so_decl[1][i];
3012 entry.Stream2Decl = so_decl[2][i];
3013 entry.Stream3Decl = so_decl[3][i];
3014 }
3015 }
3016
3017 return map;
3018 }
3019
3020 static void
3021 iris_compute_sbe_urb_read_interval(uint64_t fs_input_slots,
3022 const struct brw_vue_map *last_vue_map,
3023 bool two_sided_color,
3024 unsigned *out_offset,
3025 unsigned *out_length)
3026 {
3027 /* The compiler computes the first URB slot without considering COL/BFC
3028 * swizzling (because it doesn't know whether it's enabled), so we need
3029 * to do that here too. This may result in a smaller offset, which
3030 * should be safe.
3031 */
3032 const unsigned first_slot =
3033 brw_compute_first_urb_slot_required(fs_input_slots, last_vue_map);
3034
3035 /* This becomes the URB read offset (counted in pairs of slots). */
3036 assert(first_slot % 2 == 0);
3037 *out_offset = first_slot / 2;
3038
3039 /* We need to adjust the inputs read to account for front/back color
3040 * swizzling, as it can make the URB length longer.
3041 */
3042 for (int c = 0; c <= 1; c++) {
3043 if (fs_input_slots & (VARYING_BIT_COL0 << c)) {
3044 /* If two sided color is enabled, the fragment shader's gl_Color
3045 * (COL0) input comes from either the gl_FrontColor (COL0) or
3046 * gl_BackColor (BFC0) input varyings. Mark BFC as used, too.
3047 */
3048 if (two_sided_color)
3049 fs_input_slots |= (VARYING_BIT_BFC0 << c);
3050
3051 /* If front color isn't written, we opt to give them back color
3052 * instead of an undefined value. Switch from COL to BFC.
3053 */
3054 if (last_vue_map->varying_to_slot[VARYING_SLOT_COL0 + c] == -1) {
3055 fs_input_slots &= ~(VARYING_BIT_COL0 << c);
3056 fs_input_slots |= (VARYING_BIT_BFC0 << c);
3057 }
3058 }
3059 }
3060
3061 /* Compute the minimum URB Read Length necessary for the FS inputs.
3062 *
3063 * From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
3064 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
3065 *
3066 * "This field should be set to the minimum length required to read the
3067 * maximum source attribute. The maximum source attribute is indicated
3068 * by the maximum value of the enabled Attribute # Source Attribute if
3069 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
3070 * enable is not set.
3071 * read_length = ceiling((max_source_attr + 1) / 2)
3072 *
3073 * [errata] Corruption/Hang possible if length programmed larger than
3074 * recommended"
3075 *
3076 * Similar text exists for Ivy Bridge.
3077 *
3078 * We find the last URB slot that's actually read by the FS.
3079 */
3080 unsigned last_read_slot = last_vue_map->num_slots - 1;
3081 while (last_read_slot > first_slot && !(fs_input_slots &
3082 (1ull << last_vue_map->slot_to_varying[last_read_slot])))
3083 --last_read_slot;
3084
3085 /* The URB read length is the difference of the two, counted in pairs. */
3086 *out_length = DIV_ROUND_UP(last_read_slot - first_slot + 1, 2);
3087 }
3088
3089 static void
3090 iris_emit_sbe_swiz(struct iris_batch *batch,
3091 const struct iris_context *ice,
3092 unsigned urb_read_offset,
3093 unsigned sprite_coord_enables)
3094 {
3095 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = {};
3096 const struct brw_wm_prog_data *wm_prog_data = (void *)
3097 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3098 const struct brw_vue_map *vue_map = ice->shaders.last_vue_map;
3099 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3100
3101 /* XXX: this should be generated when putting programs in place */
3102
3103 for (int fs_attr = 0; fs_attr < VARYING_SLOT_MAX; fs_attr++) {
3104 const int input_index = wm_prog_data->urb_setup[fs_attr];
3105 if (input_index < 0 || input_index >= 16)
3106 continue;
3107
3108 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr =
3109 &attr_overrides[input_index];
3110 int slot = vue_map->varying_to_slot[fs_attr];
3111
3112 /* Viewport and Layer are stored in the VUE header. We need to override
3113 * them to zero if earlier stages didn't write them, as GL requires that
3114 * they read back as zero when not explicitly set.
3115 */
3116 switch (fs_attr) {
3117 case VARYING_SLOT_VIEWPORT:
3118 case VARYING_SLOT_LAYER:
3119 attr->ComponentOverrideX = true;
3120 attr->ComponentOverrideW = true;
3121 attr->ConstantSource = CONST_0000;
3122
3123 if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
3124 attr->ComponentOverrideY = true;
3125 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
3126 attr->ComponentOverrideZ = true;
3127 continue;
3128
3129 case VARYING_SLOT_PRIMITIVE_ID:
3130 /* Override if the previous shader stage didn't write gl_PrimitiveID. */
3131 if (slot == -1) {
3132 attr->ComponentOverrideX = true;
3133 attr->ComponentOverrideY = true;
3134 attr->ComponentOverrideZ = true;
3135 attr->ComponentOverrideW = true;
3136 attr->ConstantSource = PRIM_ID;
3137 continue;
3138 }
3139
3140 default:
3141 break;
3142 }
3143
3144 if (sprite_coord_enables & (1 << input_index))
3145 continue;
3146
3147 /* If there was only a back color written but not front, use back
3148 * as the color instead of undefined.
3149 */
3150 if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
3151 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
3152 if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
3153 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
3154
3155 /* Not written by the previous stage - undefined. */
3156 if (slot == -1) {
3157 attr->ComponentOverrideX = true;
3158 attr->ComponentOverrideY = true;
3159 attr->ComponentOverrideZ = true;
3160 attr->ComponentOverrideW = true;
3161 attr->ConstantSource = CONST_0001_FLOAT;
3162 continue;
3163 }
3164
3165 /* Compute the location of the attribute relative to the read offset,
3166 * which is counted in 256-bit increments (two 128-bit VUE slots).
3167 */
3168 const int source_attr = slot - 2 * urb_read_offset;
3169 assert(source_attr >= 0 && source_attr <= 32);
3170 attr->SourceAttribute = source_attr;
3171
3172 /* If we are doing two-sided color, and the VUE slot following this one
3173 * represents a back-facing color, then we need to instruct the SF unit
3174 * to do back-facing swizzling.
3175 */
3176 if (cso_rast->light_twoside &&
3177 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
3178 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
3179 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
3180 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1)))
3181 attr->SwizzleSelect = INPUTATTR_FACING;
3182 }
3183
3184 iris_emit_cmd(batch, GENX(3DSTATE_SBE_SWIZ), sbes) {
3185 for (int i = 0; i < 16; i++)
3186 sbes.Attribute[i] = attr_overrides[i];
3187 }
3188 }
3189
3190 static unsigned
3191 iris_calculate_point_sprite_overrides(const struct brw_wm_prog_data *prog_data,
3192 const struct iris_rasterizer_state *cso)
3193 {
3194 unsigned overrides = 0;
3195
3196 if (prog_data->urb_setup[VARYING_SLOT_PNTC] != -1)
3197 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_PNTC];
3198
3199 for (int i = 0; i < 8; i++) {
3200 if ((cso->sprite_coord_enable & (1 << i)) &&
3201 prog_data->urb_setup[VARYING_SLOT_TEX0 + i] != -1)
3202 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_TEX0 + i];
3203 }
3204
3205 return overrides;
3206 }
3207
3208 static void
3209 iris_emit_sbe(struct iris_batch *batch, const struct iris_context *ice)
3210 {
3211 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3212 const struct brw_wm_prog_data *wm_prog_data = (void *)
3213 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3214 const struct shader_info *fs_info =
3215 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
3216
3217 unsigned urb_read_offset, urb_read_length;
3218 iris_compute_sbe_urb_read_interval(fs_info->inputs_read,
3219 ice->shaders.last_vue_map,
3220 cso_rast->light_twoside,
3221 &urb_read_offset, &urb_read_length);
3222
3223 unsigned sprite_coord_overrides =
3224 iris_calculate_point_sprite_overrides(wm_prog_data, cso_rast);
3225
3226 iris_emit_cmd(batch, GENX(3DSTATE_SBE), sbe) {
3227 sbe.AttributeSwizzleEnable = true;
3228 sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
3229 sbe.PointSpriteTextureCoordinateOrigin = cso_rast->sprite_coord_mode;
3230 sbe.VertexURBEntryReadOffset = urb_read_offset;
3231 sbe.VertexURBEntryReadLength = urb_read_length;
3232 sbe.ForceVertexURBEntryReadOffset = true;
3233 sbe.ForceVertexURBEntryReadLength = true;
3234 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
3235 sbe.PointSpriteTextureCoordinateEnable = sprite_coord_overrides;
3236 #if GEN_GEN >= 9
3237 for (int i = 0; i < 32; i++) {
3238 sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW;
3239 }
3240 #endif
3241 }
3242
3243 iris_emit_sbe_swiz(batch, ice, urb_read_offset, sprite_coord_overrides);
3244 }
3245
3246 /* ------------------------------------------------------------------- */
3247
3248 /**
3249 * Populate VS program key fields based on the current state.
3250 */
3251 static void
3252 iris_populate_vs_key(const struct iris_context *ice,
3253 const struct shader_info *info,
3254 struct brw_vs_prog_key *key)
3255 {
3256 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3257
3258 if (info->clip_distance_array_size == 0 &&
3259 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)))
3260 key->nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
3261 }
3262
3263 /**
3264 * Populate TCS program key fields based on the current state.
3265 */
3266 static void
3267 iris_populate_tcs_key(const struct iris_context *ice,
3268 struct brw_tcs_prog_key *key)
3269 {
3270 }
3271
3272 /**
3273 * Populate TES program key fields based on the current state.
3274 */
3275 static void
3276 iris_populate_tes_key(const struct iris_context *ice,
3277 struct brw_tes_prog_key *key)
3278 {
3279 }
3280
3281 /**
3282 * Populate GS program key fields based on the current state.
3283 */
3284 static void
3285 iris_populate_gs_key(const struct iris_context *ice,
3286 struct brw_gs_prog_key *key)
3287 {
3288 }
3289
3290 /**
3291 * Populate FS program key fields based on the current state.
3292 */
3293 static void
3294 iris_populate_fs_key(const struct iris_context *ice,
3295 struct brw_wm_prog_key *key)
3296 {
3297 const struct pipe_framebuffer_state *fb = &ice->state.framebuffer;
3298 const struct iris_depth_stencil_alpha_state *zsa = ice->state.cso_zsa;
3299 const struct iris_rasterizer_state *rast = ice->state.cso_rast;
3300 const struct iris_blend_state *blend = ice->state.cso_blend;
3301
3302 key->nr_color_regions = fb->nr_cbufs;
3303
3304 key->clamp_fragment_color = rast->clamp_fragment_color;
3305
3306 key->replicate_alpha = fb->nr_cbufs > 1 &&
3307 (zsa->alpha.enabled || blend->alpha_to_coverage);
3308
3309 /* XXX: only bother if COL0/1 are read */
3310 key->flat_shade = rast->flatshade;
3311
3312 key->persample_interp = rast->force_persample_interp;
3313 key->multisample_fbo = rast->multisample && fb->samples > 1;
3314
3315 key->coherent_fb_fetch = true;
3316
3317 /* TODO: support key->force_dual_color_blend for Unigine */
3318 /* TODO: Respect glHint for key->high_quality_derivatives */
3319 }
3320
3321 static void
3322 iris_populate_cs_key(const struct iris_context *ice,
3323 struct brw_cs_prog_key *key)
3324 {
3325 }
3326
3327 static uint64_t
3328 KSP(const struct iris_compiled_shader *shader)
3329 {
3330 struct iris_resource *res = (void *) shader->assembly.res;
3331 return iris_bo_offset_from_base_address(res->bo) + shader->assembly.offset;
3332 }
3333
3334 /* Gen11 workaround table #2056 WABTPPrefetchDisable suggests to disable
3335 * prefetching of binding tables in A0 and B0 steppings. XXX: Revisit
3336 * this WA on C0 stepping.
3337 *
3338 * TODO: Fill out SamplerCount for prefetching?
3339 */
3340
3341 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix, stage) \
3342 pkt.KernelStartPointer = KSP(shader); \
3343 pkt.BindingTableEntryCount = GEN_GEN == 11 ? 0 : \
3344 prog_data->binding_table.size_bytes / 4; \
3345 pkt.FloatingPointMode = prog_data->use_alt_mode; \
3346 \
3347 pkt.DispatchGRFStartRegisterForURBData = \
3348 prog_data->dispatch_grf_start_reg; \
3349 pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
3350 pkt.prefix##URBEntryReadOffset = 0; \
3351 \
3352 pkt.StatisticsEnable = true; \
3353 pkt.Enable = true; \
3354 \
3355 if (prog_data->total_scratch) { \
3356 struct iris_bo *bo = \
3357 iris_get_scratch_space(ice, prog_data->total_scratch, stage); \
3358 uint32_t scratch_addr = bo->gtt_offset; \
3359 pkt.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11; \
3360 pkt.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr); \
3361 }
3362
3363 /**
3364 * Encode most of 3DSTATE_VS based on the compiled shader.
3365 */
3366 static void
3367 iris_store_vs_state(struct iris_context *ice,
3368 const struct gen_device_info *devinfo,
3369 struct iris_compiled_shader *shader)
3370 {
3371 struct brw_stage_prog_data *prog_data = shader->prog_data;
3372 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3373
3374 iris_pack_command(GENX(3DSTATE_VS), shader->derived_data, vs) {
3375 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex, MESA_SHADER_VERTEX);
3376 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
3377 vs.SIMD8DispatchEnable = true;
3378 vs.UserClipDistanceCullTestEnableBitmask =
3379 vue_prog_data->cull_distance_mask;
3380 }
3381 }
3382
3383 /**
3384 * Encode most of 3DSTATE_HS based on the compiled shader.
3385 */
3386 static void
3387 iris_store_tcs_state(struct iris_context *ice,
3388 const struct gen_device_info *devinfo,
3389 struct iris_compiled_shader *shader)
3390 {
3391 struct brw_stage_prog_data *prog_data = shader->prog_data;
3392 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3393 struct brw_tcs_prog_data *tcs_prog_data = (void *) prog_data;
3394
3395 iris_pack_command(GENX(3DSTATE_HS), shader->derived_data, hs) {
3396 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex, MESA_SHADER_TESS_CTRL);
3397
3398 hs.InstanceCount = tcs_prog_data->instances - 1;
3399 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
3400 hs.IncludeVertexHandles = true;
3401 }
3402 }
3403
3404 /**
3405 * Encode 3DSTATE_TE and most of 3DSTATE_DS based on the compiled shader.
3406 */
3407 static void
3408 iris_store_tes_state(struct iris_context *ice,
3409 const struct gen_device_info *devinfo,
3410 struct iris_compiled_shader *shader)
3411 {
3412 struct brw_stage_prog_data *prog_data = shader->prog_data;
3413 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3414 struct brw_tes_prog_data *tes_prog_data = (void *) prog_data;
3415
3416 uint32_t *te_state = (void *) shader->derived_data;
3417 uint32_t *ds_state = te_state + GENX(3DSTATE_TE_length);
3418
3419 iris_pack_command(GENX(3DSTATE_TE), te_state, te) {
3420 te.Partitioning = tes_prog_data->partitioning;
3421 te.OutputTopology = tes_prog_data->output_topology;
3422 te.TEDomain = tes_prog_data->domain;
3423 te.TEEnable = true;
3424 te.MaximumTessellationFactorOdd = 63.0;
3425 te.MaximumTessellationFactorNotOdd = 64.0;
3426 }
3427
3428 iris_pack_command(GENX(3DSTATE_DS), ds_state, ds) {
3429 INIT_THREAD_DISPATCH_FIELDS(ds, Patch, MESA_SHADER_TESS_EVAL);
3430
3431 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
3432 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
3433 ds.ComputeWCoordinateEnable =
3434 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
3435
3436 ds.UserClipDistanceCullTestEnableBitmask =
3437 vue_prog_data->cull_distance_mask;
3438 }
3439
3440 }
3441
3442 /**
3443 * Encode most of 3DSTATE_GS based on the compiled shader.
3444 */
3445 static void
3446 iris_store_gs_state(struct iris_context *ice,
3447 const struct gen_device_info *devinfo,
3448 struct iris_compiled_shader *shader)
3449 {
3450 struct brw_stage_prog_data *prog_data = shader->prog_data;
3451 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3452 struct brw_gs_prog_data *gs_prog_data = (void *) prog_data;
3453
3454 iris_pack_command(GENX(3DSTATE_GS), shader->derived_data, gs) {
3455 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex, MESA_SHADER_GEOMETRY);
3456
3457 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
3458 gs.OutputTopology = gs_prog_data->output_topology;
3459 gs.ControlDataHeaderSize =
3460 gs_prog_data->control_data_header_size_hwords;
3461 gs.InstanceControl = gs_prog_data->invocations - 1;
3462 gs.DispatchMode = DISPATCH_MODE_SIMD8;
3463 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
3464 gs.ControlDataFormat = gs_prog_data->control_data_format;
3465 gs.ReorderMode = TRAILING;
3466 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
3467 gs.MaximumNumberofThreads =
3468 GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
3469 : (devinfo->max_gs_threads - 1);
3470
3471 if (gs_prog_data->static_vertex_count != -1) {
3472 gs.StaticOutput = true;
3473 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
3474 }
3475 gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
3476
3477 gs.UserClipDistanceCullTestEnableBitmask =
3478 vue_prog_data->cull_distance_mask;
3479
3480 const int urb_entry_write_offset = 1;
3481 const uint32_t urb_entry_output_length =
3482 DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
3483 urb_entry_write_offset;
3484
3485 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
3486 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
3487 }
3488 }
3489
3490 /**
3491 * Encode most of 3DSTATE_PS and 3DSTATE_PS_EXTRA based on the shader.
3492 */
3493 static void
3494 iris_store_fs_state(struct iris_context *ice,
3495 const struct gen_device_info *devinfo,
3496 struct iris_compiled_shader *shader)
3497 {
3498 struct brw_stage_prog_data *prog_data = shader->prog_data;
3499 struct brw_wm_prog_data *wm_prog_data = (void *) shader->prog_data;
3500
3501 uint32_t *ps_state = (void *) shader->derived_data;
3502 uint32_t *psx_state = ps_state + GENX(3DSTATE_PS_length);
3503
3504 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
3505 ps.VectorMaskEnable = true;
3506 // XXX: WABTPPrefetchDisable, see above, drop at C0
3507 ps.BindingTableEntryCount = GEN_GEN == 11 ? 0 :
3508 prog_data->binding_table.size_bytes / 4;
3509 ps.FloatingPointMode = prog_data->use_alt_mode;
3510 ps.MaximumNumberofThreadsPerPSD = 64 - (GEN_GEN == 8 ? 2 : 1);
3511
3512 ps.PushConstantEnable = prog_data->ubo_ranges[0].length > 0;
3513
3514 /* From the documentation for this packet:
3515 * "If the PS kernel does not need the Position XY Offsets to
3516 * compute a Position Value, then this field should be programmed
3517 * to POSOFFSET_NONE."
3518 *
3519 * "SW Recommendation: If the PS kernel needs the Position Offsets
3520 * to compute a Position XY value, this field should match Position
3521 * ZW Interpolation Mode to ensure a consistent position.xyzw
3522 * computation."
3523 *
3524 * We only require XY sample offsets. So, this recommendation doesn't
3525 * look useful at the moment. We might need this in future.
3526 */
3527 ps.PositionXYOffsetSelect =
3528 wm_prog_data->uses_pos_offset ? POSOFFSET_SAMPLE : POSOFFSET_NONE;
3529 ps._8PixelDispatchEnable = wm_prog_data->dispatch_8;
3530 ps._16PixelDispatchEnable = wm_prog_data->dispatch_16;
3531 ps._32PixelDispatchEnable = wm_prog_data->dispatch_32;
3532
3533 // XXX: Disable SIMD32 with 16x MSAA
3534
3535 ps.DispatchGRFStartRegisterForConstantSetupData0 =
3536 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
3537 ps.DispatchGRFStartRegisterForConstantSetupData1 =
3538 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
3539 ps.DispatchGRFStartRegisterForConstantSetupData2 =
3540 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
3541
3542 ps.KernelStartPointer0 =
3543 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
3544 ps.KernelStartPointer1 =
3545 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
3546 ps.KernelStartPointer2 =
3547 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
3548
3549 if (prog_data->total_scratch) {
3550 struct iris_bo *bo =
3551 iris_get_scratch_space(ice, prog_data->total_scratch,
3552 MESA_SHADER_FRAGMENT);
3553 uint32_t scratch_addr = bo->gtt_offset;
3554 ps.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
3555 ps.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr);
3556 }
3557 }
3558
3559 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
3560 psx.PixelShaderValid = true;
3561 psx.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
3562 psx.PixelShaderKillsPixel = wm_prog_data->uses_kill;
3563 psx.AttributeEnable = wm_prog_data->num_varying_inputs != 0;
3564 psx.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
3565 psx.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
3566 psx.PixelShaderIsPerSample = wm_prog_data->persample_dispatch;
3567 psx.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
3568
3569 #if GEN_GEN >= 9
3570 if (wm_prog_data->uses_sample_mask) {
3571 /* TODO: conservative rasterization */
3572 if (wm_prog_data->post_depth_coverage)
3573 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
3574 else
3575 psx.InputCoverageMaskState = ICMS_NORMAL;
3576 }
3577
3578 psx.PixelShaderPullsBary = wm_prog_data->pulls_bary;
3579 psx.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
3580 #else
3581 psx.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
3582 #endif
3583 // XXX: UAV bit
3584 }
3585 }
3586
3587 /**
3588 * Compute the size of the derived data (shader command packets).
3589 *
3590 * This must match the data written by the iris_store_xs_state() functions.
3591 */
3592 static void
3593 iris_store_cs_state(struct iris_context *ice,
3594 const struct gen_device_info *devinfo,
3595 struct iris_compiled_shader *shader)
3596 {
3597 struct brw_stage_prog_data *prog_data = shader->prog_data;
3598 struct brw_cs_prog_data *cs_prog_data = (void *) shader->prog_data;
3599 void *map = shader->derived_data;
3600
3601 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), map, desc) {
3602 desc.KernelStartPointer = KSP(shader);
3603 desc.ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs;
3604 desc.NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads;
3605 desc.SharedLocalMemorySize =
3606 encode_slm_size(GEN_GEN, prog_data->total_shared);
3607 desc.BarrierEnable = cs_prog_data->uses_barrier;
3608 desc.CrossThreadConstantDataReadLength =
3609 cs_prog_data->push.cross_thread.regs;
3610 }
3611 }
3612
3613 static unsigned
3614 iris_derived_program_state_size(enum iris_program_cache_id cache_id)
3615 {
3616 assert(cache_id <= IRIS_CACHE_BLORP);
3617
3618 static const unsigned dwords[] = {
3619 [IRIS_CACHE_VS] = GENX(3DSTATE_VS_length),
3620 [IRIS_CACHE_TCS] = GENX(3DSTATE_HS_length),
3621 [IRIS_CACHE_TES] = GENX(3DSTATE_TE_length) + GENX(3DSTATE_DS_length),
3622 [IRIS_CACHE_GS] = GENX(3DSTATE_GS_length),
3623 [IRIS_CACHE_FS] =
3624 GENX(3DSTATE_PS_length) + GENX(3DSTATE_PS_EXTRA_length),
3625 [IRIS_CACHE_CS] = GENX(INTERFACE_DESCRIPTOR_DATA_length),
3626 [IRIS_CACHE_BLORP] = 0,
3627 };
3628
3629 return sizeof(uint32_t) * dwords[cache_id];
3630 }
3631
3632 /**
3633 * Create any state packets corresponding to the given shader stage
3634 * (i.e. 3DSTATE_VS) and save them as "derived data" in the shader variant.
3635 * This means that we can look up a program in the in-memory cache and
3636 * get most of the state packet without having to reconstruct it.
3637 */
3638 static void
3639 iris_store_derived_program_state(struct iris_context *ice,
3640 enum iris_program_cache_id cache_id,
3641 struct iris_compiled_shader *shader)
3642 {
3643 struct iris_screen *screen = (void *) ice->ctx.screen;
3644 const struct gen_device_info *devinfo = &screen->devinfo;
3645
3646 switch (cache_id) {
3647 case IRIS_CACHE_VS:
3648 iris_store_vs_state(ice, devinfo, shader);
3649 break;
3650 case IRIS_CACHE_TCS:
3651 iris_store_tcs_state(ice, devinfo, shader);
3652 break;
3653 case IRIS_CACHE_TES:
3654 iris_store_tes_state(ice, devinfo, shader);
3655 break;
3656 case IRIS_CACHE_GS:
3657 iris_store_gs_state(ice, devinfo, shader);
3658 break;
3659 case IRIS_CACHE_FS:
3660 iris_store_fs_state(ice, devinfo, shader);
3661 break;
3662 case IRIS_CACHE_CS:
3663 iris_store_cs_state(ice, devinfo, shader);
3664 case IRIS_CACHE_BLORP:
3665 break;
3666 default:
3667 break;
3668 }
3669 }
3670
3671 /* ------------------------------------------------------------------- */
3672
3673 static const uint32_t push_constant_opcodes[] = {
3674 [MESA_SHADER_VERTEX] = 21,
3675 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
3676 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
3677 [MESA_SHADER_GEOMETRY] = 22,
3678 [MESA_SHADER_FRAGMENT] = 23,
3679 [MESA_SHADER_COMPUTE] = 0,
3680 };
3681
3682 static uint32_t
3683 use_null_surface(struct iris_batch *batch, struct iris_context *ice)
3684 {
3685 struct iris_bo *state_bo = iris_resource_bo(ice->state.unbound_tex.res);
3686
3687 iris_use_pinned_bo(batch, state_bo, false);
3688
3689 return ice->state.unbound_tex.offset;
3690 }
3691
3692 static uint32_t
3693 use_null_fb_surface(struct iris_batch *batch, struct iris_context *ice)
3694 {
3695 /* If set_framebuffer_state() was never called, fall back to 1x1x1 */
3696 if (!ice->state.null_fb.res)
3697 return use_null_surface(batch, ice);
3698
3699 struct iris_bo *state_bo = iris_resource_bo(ice->state.null_fb.res);
3700
3701 iris_use_pinned_bo(batch, state_bo, false);
3702
3703 return ice->state.null_fb.offset;
3704 }
3705
3706 static uint32_t
3707 surf_state_offset_for_aux(struct iris_resource *res,
3708 enum isl_aux_usage aux_usage)
3709 {
3710 return SURFACE_STATE_ALIGNMENT *
3711 util_bitcount(res->aux.possible_usages & ((1 << aux_usage) - 1));
3712 }
3713
3714 /**
3715 * Add a surface to the validation list, as well as the buffer containing
3716 * the corresponding SURFACE_STATE.
3717 *
3718 * Returns the binding table entry (offset to SURFACE_STATE).
3719 */
3720 static uint32_t
3721 use_surface(struct iris_batch *batch,
3722 struct pipe_surface *p_surf,
3723 bool writeable,
3724 enum isl_aux_usage aux_usage)
3725 {
3726 struct iris_surface *surf = (void *) p_surf;
3727 struct iris_resource *res = (void *) p_surf->texture;
3728
3729 iris_use_pinned_bo(batch, iris_resource_bo(p_surf->texture), writeable);
3730 iris_use_pinned_bo(batch, iris_resource_bo(surf->surface_state.res), false);
3731
3732 if (res->aux.bo)
3733 iris_use_pinned_bo(batch, res->aux.bo, writeable);
3734
3735 return surf->surface_state.offset +
3736 surf_state_offset_for_aux(res, aux_usage);
3737 }
3738
3739 static uint32_t
3740 use_sampler_view(struct iris_context *ice,
3741 struct iris_batch *batch,
3742 struct iris_sampler_view *isv)
3743 {
3744 // XXX: ASTC hacks
3745 enum isl_aux_usage aux_usage =
3746 iris_resource_texture_aux_usage(ice, isv->res, isv->view.format, 0);
3747
3748 iris_use_pinned_bo(batch, isv->res->bo, false);
3749 iris_use_pinned_bo(batch, iris_resource_bo(isv->surface_state.res), false);
3750
3751 if (isv->res->aux.bo)
3752 iris_use_pinned_bo(batch, isv->res->aux.bo, false);
3753
3754 return isv->surface_state.offset +
3755 surf_state_offset_for_aux(isv->res, aux_usage);
3756 }
3757
3758 static uint32_t
3759 use_const_buffer(struct iris_batch *batch,
3760 struct iris_context *ice,
3761 struct iris_const_buffer *cbuf)
3762 {
3763 if (!cbuf->surface_state.res)
3764 return use_null_surface(batch, ice);
3765
3766 iris_use_pinned_bo(batch, iris_resource_bo(cbuf->data.res), false);
3767 iris_use_pinned_bo(batch, iris_resource_bo(cbuf->surface_state.res), false);
3768
3769 return cbuf->surface_state.offset;
3770 }
3771
3772 static uint32_t
3773 use_ssbo(struct iris_batch *batch, struct iris_context *ice,
3774 struct iris_shader_state *shs, int i)
3775 {
3776 if (!shs->ssbo[i])
3777 return use_null_surface(batch, ice);
3778
3779 struct iris_state_ref *surf_state = &shs->ssbo_surface_state[i];
3780
3781 iris_use_pinned_bo(batch, iris_resource_bo(shs->ssbo[i]), true);
3782 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false);
3783
3784 return surf_state->offset;
3785 }
3786
3787 static uint32_t
3788 use_image(struct iris_batch *batch, struct iris_context *ice,
3789 struct iris_shader_state *shs, int i)
3790 {
3791 if (!shs->image[i].res)
3792 return use_null_surface(batch, ice);
3793
3794 struct iris_resource *res = (void *) shs->image[i].res;
3795 struct iris_state_ref *surf_state = &shs->image[i].surface_state;
3796 bool write = shs->image[i].access & PIPE_IMAGE_ACCESS_WRITE;
3797
3798 iris_use_pinned_bo(batch, res->bo, write);
3799 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false);
3800
3801 if (res->aux.bo)
3802 iris_use_pinned_bo(batch, res->aux.bo, write);
3803
3804 return surf_state->offset;
3805 }
3806
3807 #define push_bt_entry(addr) \
3808 assert(addr >= binder_addr); \
3809 assert(s < prog_data->binding_table.size_bytes / sizeof(uint32_t)); \
3810 if (!pin_only) bt_map[s++] = (addr) - binder_addr;
3811
3812 #define bt_assert(section, exists) \
3813 if (!pin_only) assert(prog_data->binding_table.section == \
3814 (exists) ? s : 0xd0d0d0d0)
3815
3816 /**
3817 * Populate the binding table for a given shader stage.
3818 *
3819 * This fills out the table of pointers to surfaces required by the shader,
3820 * and also adds those buffers to the validation list so the kernel can make
3821 * resident before running our batch.
3822 */
3823 static void
3824 iris_populate_binding_table(struct iris_context *ice,
3825 struct iris_batch *batch,
3826 gl_shader_stage stage,
3827 bool pin_only)
3828 {
3829 const struct iris_binder *binder = &ice->state.binder;
3830 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3831 if (!shader)
3832 return;
3833
3834 UNUSED struct brw_stage_prog_data *prog_data = shader->prog_data;
3835 struct iris_shader_state *shs = &ice->state.shaders[stage];
3836 uint32_t binder_addr = binder->bo->gtt_offset;
3837
3838 //struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
3839 uint32_t *bt_map = binder->map + binder->bt_offset[stage];
3840 int s = 0;
3841
3842 const struct shader_info *info = iris_get_shader_info(ice, stage);
3843 if (!info) {
3844 /* TCS passthrough doesn't need a binding table. */
3845 assert(stage == MESA_SHADER_TESS_CTRL);
3846 return;
3847 }
3848
3849 if (stage == MESA_SHADER_COMPUTE) {
3850 /* surface for gl_NumWorkGroups */
3851 struct iris_state_ref *grid_data = &ice->state.grid_size;
3852 struct iris_state_ref *grid_state = &ice->state.grid_surf_state;
3853 iris_use_pinned_bo(batch, iris_resource_bo(grid_data->res), false);
3854 iris_use_pinned_bo(batch, iris_resource_bo(grid_state->res), false);
3855 push_bt_entry(grid_state->offset);
3856 }
3857
3858 if (stage == MESA_SHADER_FRAGMENT) {
3859 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
3860 /* Note that cso_fb->nr_cbufs == fs_key->nr_color_regions. */
3861 if (cso_fb->nr_cbufs) {
3862 for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
3863 uint32_t addr;
3864 if (cso_fb->cbufs[i]) {
3865 addr = use_surface(batch, cso_fb->cbufs[i], true,
3866 ice->state.draw_aux_usage[i]);
3867 } else {
3868 addr = use_null_fb_surface(batch, ice);
3869 }
3870 push_bt_entry(addr);
3871 }
3872 } else {
3873 uint32_t addr = use_null_fb_surface(batch, ice);
3874 push_bt_entry(addr);
3875 }
3876 }
3877
3878 unsigned num_textures = util_last_bit(info->textures_used);
3879
3880 bt_assert(texture_start, num_textures > 0);
3881
3882 for (int i = 0; i < num_textures; i++) {
3883 struct iris_sampler_view *view = shs->textures[i];
3884 uint32_t addr = view ? use_sampler_view(ice, batch, view)
3885 : use_null_surface(batch, ice);
3886 push_bt_entry(addr);
3887 }
3888
3889 bt_assert(image_start, info->num_images > 0);
3890
3891 for (int i = 0; i < info->num_images; i++) {
3892 uint32_t addr = use_image(batch, ice, shs, i);
3893 push_bt_entry(addr);
3894 }
3895
3896 bt_assert(ubo_start, shader->num_cbufs > 0);
3897
3898 for (int i = 0; i < shader->num_cbufs; i++) {
3899 uint32_t addr = use_const_buffer(batch, ice, &shs->constbuf[i]);
3900 push_bt_entry(addr);
3901 }
3902
3903 bt_assert(ssbo_start, info->num_abos + info->num_ssbos > 0);
3904
3905 /* XXX: st is wasting 16 binding table slots for ABOs. Should add a cap
3906 * for changing nir_lower_atomics_to_ssbos setting and buffer_base offset
3907 * in st_atom_storagebuf.c so it'll compact them into one range, with
3908 * SSBOs starting at info->num_abos. Ideally it'd reset num_abos to 0 too
3909 */
3910 if (info->num_abos + info->num_ssbos > 0) {
3911 for (int i = 0; i < IRIS_MAX_ABOS + info->num_ssbos; i++) {
3912 uint32_t addr = use_ssbo(batch, ice, shs, i);
3913 push_bt_entry(addr);
3914 }
3915 }
3916
3917 #if 0
3918 /* XXX: YUV surfaces not implemented yet */
3919 bt_assert(plane_start[1], ...);
3920 bt_assert(plane_start[2], ...);
3921 #endif
3922 }
3923
3924 static void
3925 iris_use_optional_res(struct iris_batch *batch,
3926 struct pipe_resource *res,
3927 bool writeable)
3928 {
3929 if (res) {
3930 struct iris_bo *bo = iris_resource_bo(res);
3931 iris_use_pinned_bo(batch, bo, writeable);
3932 }
3933 }
3934
3935 /* ------------------------------------------------------------------- */
3936
3937 /**
3938 * Pin any BOs which were installed by a previous batch, and restored
3939 * via the hardware logical context mechanism.
3940 *
3941 * We don't need to re-emit all state every batch - the hardware context
3942 * mechanism will save and restore it for us. This includes pointers to
3943 * various BOs...which won't exist unless we ask the kernel to pin them
3944 * by adding them to the validation list.
3945 *
3946 * We can skip buffers if we've re-emitted those packets, as we're
3947 * overwriting those stale pointers with new ones, and don't actually
3948 * refer to the old BOs.
3949 */
3950 static void
3951 iris_restore_render_saved_bos(struct iris_context *ice,
3952 struct iris_batch *batch,
3953 const struct pipe_draw_info *draw)
3954 {
3955 struct iris_genx_state *genx = ice->state.genx;
3956
3957 const uint64_t clean = ~ice->state.dirty;
3958
3959 if (clean & IRIS_DIRTY_CC_VIEWPORT) {
3960 iris_use_optional_res(batch, ice->state.last_res.cc_vp, false);
3961 }
3962
3963 if (clean & IRIS_DIRTY_SF_CL_VIEWPORT) {
3964 iris_use_optional_res(batch, ice->state.last_res.sf_cl_vp, false);
3965 }
3966
3967 if (clean & IRIS_DIRTY_BLEND_STATE) {
3968 iris_use_optional_res(batch, ice->state.last_res.blend, false);
3969 }
3970
3971 if (clean & IRIS_DIRTY_COLOR_CALC_STATE) {
3972 iris_use_optional_res(batch, ice->state.last_res.color_calc, false);
3973 }
3974
3975 if (clean & IRIS_DIRTY_SCISSOR_RECT) {
3976 iris_use_optional_res(batch, ice->state.last_res.scissor, false);
3977 }
3978
3979 if (ice->state.streamout_active && (clean & IRIS_DIRTY_SO_BUFFERS)) {
3980 for (int i = 0; i < 4; i++) {
3981 struct iris_stream_output_target *tgt =
3982 (void *) ice->state.so_target[i];
3983 if (tgt) {
3984 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
3985 true);
3986 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
3987 true);
3988 }
3989 }
3990 }
3991
3992 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3993 if (!(clean & (IRIS_DIRTY_CONSTANTS_VS << stage)))
3994 continue;
3995
3996 struct iris_shader_state *shs = &ice->state.shaders[stage];
3997 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3998
3999 if (!shader)
4000 continue;
4001
4002 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4003
4004 for (int i = 0; i < 4; i++) {
4005 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4006
4007 if (range->length == 0)
4008 continue;
4009
4010 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
4011 struct iris_resource *res = (void *) cbuf->data.res;
4012
4013 if (res)
4014 iris_use_pinned_bo(batch, res->bo, false);
4015 else
4016 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
4017 }
4018 }
4019
4020 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4021 if (clean & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4022 /* Re-pin any buffers referred to by the binding table. */
4023 iris_populate_binding_table(ice, batch, stage, true);
4024 }
4025 }
4026
4027 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4028 struct iris_shader_state *shs = &ice->state.shaders[stage];
4029 struct pipe_resource *res = shs->sampler_table.res;
4030 if (res)
4031 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4032 }
4033
4034 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4035 if (clean & (IRIS_DIRTY_VS << stage)) {
4036 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4037
4038 if (shader) {
4039 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
4040 iris_use_pinned_bo(batch, bo, false);
4041
4042 struct brw_stage_prog_data *prog_data = shader->prog_data;
4043
4044 if (prog_data->total_scratch > 0) {
4045 struct iris_bo *bo =
4046 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4047 iris_use_pinned_bo(batch, bo, true);
4048 }
4049 }
4050 }
4051 }
4052
4053 if (clean & IRIS_DIRTY_DEPTH_BUFFER) {
4054 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4055
4056 if (cso_fb->zsbuf) {
4057 struct iris_resource *zres, *sres;
4058 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
4059 &zres, &sres);
4060 if (zres) {
4061 iris_cache_flush_for_depth(batch, zres->bo);
4062
4063 iris_use_pinned_bo(batch, zres->bo,
4064 ice->state.depth_writes_enabled);
4065 if (zres->aux.bo) {
4066 iris_use_pinned_bo(batch, zres->aux.bo,
4067 ice->state.depth_writes_enabled);
4068 }
4069 }
4070
4071 if (sres) {
4072 iris_cache_flush_for_depth(batch, sres->bo);
4073
4074 iris_use_pinned_bo(batch, sres->bo,
4075 ice->state.stencil_writes_enabled);
4076 }
4077 }
4078 }
4079
4080 if (draw->index_size == 0 && ice->state.last_res.index_buffer) {
4081 /* This draw didn't emit a new index buffer, so we are inheriting the
4082 * older index buffer. This draw didn't need it, but future ones may.
4083 */
4084 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
4085 iris_use_pinned_bo(batch, bo, false);
4086 }
4087
4088 if (clean & IRIS_DIRTY_VERTEX_BUFFERS) {
4089 uint64_t bound = ice->state.bound_vertex_buffers;
4090 while (bound) {
4091 const int i = u_bit_scan64(&bound);
4092 struct pipe_resource *res = genx->vertex_buffers[i].resource;
4093 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4094 }
4095 }
4096 }
4097
4098 static void
4099 iris_restore_compute_saved_bos(struct iris_context *ice,
4100 struct iris_batch *batch,
4101 const struct pipe_grid_info *grid)
4102 {
4103 const uint64_t clean = ~ice->state.dirty;
4104
4105 const int stage = MESA_SHADER_COMPUTE;
4106 struct iris_shader_state *shs = &ice->state.shaders[stage];
4107
4108 if (clean & IRIS_DIRTY_CONSTANTS_CS) {
4109 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4110
4111 if (shader) {
4112 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4113 const struct brw_ubo_range *range = &prog_data->ubo_ranges[0];
4114
4115 if (range->length > 0) {
4116 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
4117 struct iris_resource *res = (void *) cbuf->data.res;
4118
4119 if (res)
4120 iris_use_pinned_bo(batch, res->bo, false);
4121 else
4122 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
4123 }
4124 }
4125 }
4126
4127 if (clean & IRIS_DIRTY_BINDINGS_CS) {
4128 /* Re-pin any buffers referred to by the binding table. */
4129 iris_populate_binding_table(ice, batch, stage, true);
4130 }
4131
4132 struct pipe_resource *sampler_res = shs->sampler_table.res;
4133 if (sampler_res)
4134 iris_use_pinned_bo(batch, iris_resource_bo(sampler_res), false);
4135
4136 if (clean & IRIS_DIRTY_CS) {
4137 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4138
4139 if (shader) {
4140 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
4141 iris_use_pinned_bo(batch, bo, false);
4142
4143 struct brw_stage_prog_data *prog_data = shader->prog_data;
4144
4145 if (prog_data->total_scratch > 0) {
4146 struct iris_bo *bo =
4147 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4148 iris_use_pinned_bo(batch, bo, true);
4149 }
4150 }
4151 }
4152 }
4153
4154 /**
4155 * Possibly emit STATE_BASE_ADDRESS to update Surface State Base Address.
4156 */
4157 static void
4158 iris_update_surface_base_address(struct iris_batch *batch,
4159 struct iris_binder *binder)
4160 {
4161 if (batch->last_surface_base_address == binder->bo->gtt_offset)
4162 return;
4163
4164 flush_for_state_base_change(batch);
4165
4166 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
4167 sba.SurfaceStateMOCS = MOCS_WB;
4168 sba.SurfaceStateBaseAddressModifyEnable = true;
4169 sba.SurfaceStateBaseAddress = ro_bo(binder->bo, 0);
4170 }
4171
4172 batch->last_surface_base_address = binder->bo->gtt_offset;
4173 }
4174
4175 static void
4176 iris_upload_dirty_render_state(struct iris_context *ice,
4177 struct iris_batch *batch,
4178 const struct pipe_draw_info *draw)
4179 {
4180 const uint64_t dirty = ice->state.dirty;
4181
4182 if (!(dirty & IRIS_ALL_DIRTY_FOR_RENDER))
4183 return;
4184
4185 struct iris_genx_state *genx = ice->state.genx;
4186 struct iris_binder *binder = &ice->state.binder;
4187 struct brw_wm_prog_data *wm_prog_data = (void *)
4188 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
4189
4190 if (dirty & IRIS_DIRTY_CC_VIEWPORT) {
4191 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4192 uint32_t cc_vp_address;
4193
4194 /* XXX: could avoid streaming for depth_clip [0,1] case. */
4195 uint32_t *cc_vp_map =
4196 stream_state(batch, ice->state.dynamic_uploader,
4197 &ice->state.last_res.cc_vp,
4198 4 * ice->state.num_viewports *
4199 GENX(CC_VIEWPORT_length), 32, &cc_vp_address);
4200 for (int i = 0; i < ice->state.num_viewports; i++) {
4201 float zmin, zmax;
4202 util_viewport_zmin_zmax(&ice->state.viewports[i],
4203 cso_rast->clip_halfz, &zmin, &zmax);
4204 if (cso_rast->depth_clip_near)
4205 zmin = 0.0;
4206 if (cso_rast->depth_clip_far)
4207 zmax = 1.0;
4208
4209 iris_pack_state(GENX(CC_VIEWPORT), cc_vp_map, ccv) {
4210 ccv.MinimumDepth = zmin;
4211 ccv.MaximumDepth = zmax;
4212 }
4213
4214 cc_vp_map += GENX(CC_VIEWPORT_length);
4215 }
4216
4217 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
4218 ptr.CCViewportPointer = cc_vp_address;
4219 }
4220 }
4221
4222 if (dirty & IRIS_DIRTY_SF_CL_VIEWPORT) {
4223 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4224 uint32_t sf_cl_vp_address;
4225 uint32_t *vp_map =
4226 stream_state(batch, ice->state.dynamic_uploader,
4227 &ice->state.last_res.sf_cl_vp,
4228 4 * ice->state.num_viewports *
4229 GENX(SF_CLIP_VIEWPORT_length), 64, &sf_cl_vp_address);
4230
4231 for (unsigned i = 0; i < ice->state.num_viewports; i++) {
4232 const struct pipe_viewport_state *state = &ice->state.viewports[i];
4233 float gb_xmin, gb_xmax, gb_ymin, gb_ymax;
4234
4235 float vp_xmin = viewport_extent(state, 0, -1.0f);
4236 float vp_xmax = viewport_extent(state, 0, 1.0f);
4237 float vp_ymin = viewport_extent(state, 1, -1.0f);
4238 float vp_ymax = viewport_extent(state, 1, 1.0f);
4239
4240 calculate_guardband_size(cso_fb->width, cso_fb->height,
4241 state->scale[0], state->scale[1],
4242 state->translate[0], state->translate[1],
4243 &gb_xmin, &gb_xmax, &gb_ymin, &gb_ymax);
4244
4245 iris_pack_state(GENX(SF_CLIP_VIEWPORT), vp_map, vp) {
4246 vp.ViewportMatrixElementm00 = state->scale[0];
4247 vp.ViewportMatrixElementm11 = state->scale[1];
4248 vp.ViewportMatrixElementm22 = state->scale[2];
4249 vp.ViewportMatrixElementm30 = state->translate[0];
4250 vp.ViewportMatrixElementm31 = state->translate[1];
4251 vp.ViewportMatrixElementm32 = state->translate[2];
4252 vp.XMinClipGuardband = gb_xmin;
4253 vp.XMaxClipGuardband = gb_xmax;
4254 vp.YMinClipGuardband = gb_ymin;
4255 vp.YMaxClipGuardband = gb_ymax;
4256 vp.XMinViewPort = MAX2(vp_xmin, 0);
4257 vp.XMaxViewPort = MIN2(vp_xmax, cso_fb->width) - 1;
4258 vp.YMinViewPort = MAX2(vp_ymin, 0);
4259 vp.YMaxViewPort = MIN2(vp_ymax, cso_fb->height) - 1;
4260 }
4261
4262 vp_map += GENX(SF_CLIP_VIEWPORT_length);
4263 }
4264
4265 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
4266 ptr.SFClipViewportPointer = sf_cl_vp_address;
4267 }
4268 }
4269
4270 if (dirty & IRIS_DIRTY_URB) {
4271 unsigned size[4];
4272
4273 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
4274 if (!ice->shaders.prog[i]) {
4275 size[i] = 1;
4276 } else {
4277 struct brw_vue_prog_data *vue_prog_data =
4278 (void *) ice->shaders.prog[i]->prog_data;
4279 size[i] = vue_prog_data->urb_entry_size;
4280 }
4281 assert(size[i] != 0);
4282 }
4283
4284 genX(emit_urb_setup)(ice, batch, size,
4285 ice->shaders.prog[MESA_SHADER_TESS_EVAL] != NULL,
4286 ice->shaders.prog[MESA_SHADER_GEOMETRY] != NULL);
4287 }
4288
4289 if (dirty & IRIS_DIRTY_BLEND_STATE) {
4290 struct iris_blend_state *cso_blend = ice->state.cso_blend;
4291 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4292 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
4293 const int header_dwords = GENX(BLEND_STATE_length);
4294
4295 /* Always write at least one BLEND_STATE - the final RT message will
4296 * reference BLEND_STATE[0] even if there aren't color writes. There
4297 * may still be alpha testing, computed depth, and so on.
4298 */
4299 const int rt_dwords =
4300 MAX2(cso_fb->nr_cbufs, 1) * GENX(BLEND_STATE_ENTRY_length);
4301
4302 uint32_t blend_offset;
4303 uint32_t *blend_map =
4304 stream_state(batch, ice->state.dynamic_uploader,
4305 &ice->state.last_res.blend,
4306 4 * (header_dwords + rt_dwords), 64, &blend_offset);
4307
4308 uint32_t blend_state_header;
4309 iris_pack_state(GENX(BLEND_STATE), &blend_state_header, bs) {
4310 bs.AlphaTestEnable = cso_zsa->alpha.enabled;
4311 bs.AlphaTestFunction = translate_compare_func(cso_zsa->alpha.func);
4312 }
4313
4314 blend_map[0] = blend_state_header | cso_blend->blend_state[0];
4315 memcpy(&blend_map[1], &cso_blend->blend_state[1], 4 * rt_dwords);
4316
4317 iris_emit_cmd(batch, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
4318 ptr.BlendStatePointer = blend_offset;
4319 ptr.BlendStatePointerValid = true;
4320 }
4321 }
4322
4323 if (dirty & IRIS_DIRTY_COLOR_CALC_STATE) {
4324 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
4325 #if GEN_GEN == 8
4326 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
4327 #endif
4328 uint32_t cc_offset;
4329 void *cc_map =
4330 stream_state(batch, ice->state.dynamic_uploader,
4331 &ice->state.last_res.color_calc,
4332 sizeof(uint32_t) * GENX(COLOR_CALC_STATE_length),
4333 64, &cc_offset);
4334 iris_pack_state(GENX(COLOR_CALC_STATE), cc_map, cc) {
4335 cc.AlphaTestFormat = ALPHATEST_FLOAT32;
4336 cc.AlphaReferenceValueAsFLOAT32 = cso->alpha.ref_value;
4337 cc.BlendConstantColorRed = ice->state.blend_color.color[0];
4338 cc.BlendConstantColorGreen = ice->state.blend_color.color[1];
4339 cc.BlendConstantColorBlue = ice->state.blend_color.color[2];
4340 cc.BlendConstantColorAlpha = ice->state.blend_color.color[3];
4341 #if GEN_GEN == 8
4342 cc.StencilReferenceValue = p_stencil_refs->ref_value[0];
4343 cc.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
4344 #endif
4345 }
4346 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
4347 ptr.ColorCalcStatePointer = cc_offset;
4348 ptr.ColorCalcStatePointerValid = true;
4349 }
4350 }
4351
4352 /* Upload constants for TCS passthrough. */
4353 if ((dirty & IRIS_DIRTY_CONSTANTS_TCS) &&
4354 ice->shaders.prog[MESA_SHADER_TESS_CTRL] &&
4355 !ice->shaders.uncompiled[MESA_SHADER_TESS_CTRL]) {
4356 struct iris_compiled_shader *tes_shader = ice->shaders.prog[MESA_SHADER_TESS_EVAL];
4357 assert(tes_shader);
4358
4359 /* Passthrough always copies 2 vec4s, so when uploading data we ensure
4360 * it is in the right layout for TES.
4361 */
4362 float hdr[8] = {};
4363 struct brw_tes_prog_data *tes_prog_data = (void *) tes_shader->prog_data;
4364 switch (tes_prog_data->domain) {
4365 case BRW_TESS_DOMAIN_QUAD:
4366 for (int i = 0; i < 4; i++)
4367 hdr[7 - i] = ice->state.default_outer_level[i];
4368 hdr[3] = ice->state.default_inner_level[0];
4369 hdr[2] = ice->state.default_inner_level[1];
4370 break;
4371 case BRW_TESS_DOMAIN_TRI:
4372 for (int i = 0; i < 3; i++)
4373 hdr[7 - i] = ice->state.default_outer_level[i];
4374 hdr[4] = ice->state.default_inner_level[0];
4375 break;
4376 case BRW_TESS_DOMAIN_ISOLINE:
4377 hdr[7] = ice->state.default_outer_level[1];
4378 hdr[6] = ice->state.default_outer_level[0];
4379 break;
4380 }
4381
4382 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_TESS_CTRL];
4383 struct iris_const_buffer *cbuf = &shs->constbuf[0];
4384 u_upload_data(ice->ctx.const_uploader, 0, sizeof(hdr), 32,
4385 &hdr[0], &cbuf->data.offset,
4386 &cbuf->data.res);
4387 }
4388
4389 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4390 if (!(dirty & (IRIS_DIRTY_CONSTANTS_VS << stage)))
4391 continue;
4392
4393 struct iris_shader_state *shs = &ice->state.shaders[stage];
4394 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4395
4396 if (!shader)
4397 continue;
4398
4399 if (shs->cbuf0_needs_upload)
4400 upload_uniforms(ice, stage);
4401
4402 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4403
4404 iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_VS), pkt) {
4405 pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
4406 if (prog_data) {
4407 /* The Skylake PRM contains the following restriction:
4408 *
4409 * "The driver must ensure The following case does not occur
4410 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
4411 * buffer 3 read length equal to zero committed followed by a
4412 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
4413 * zero committed."
4414 *
4415 * To avoid this, we program the buffers in the highest slots.
4416 * This way, slot 0 is only used if slot 3 is also used.
4417 */
4418 int n = 3;
4419
4420 for (int i = 3; i >= 0; i--) {
4421 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4422
4423 if (range->length == 0)
4424 continue;
4425
4426 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
4427 struct iris_resource *res = (void *) cbuf->data.res;
4428
4429 assert(cbuf->data.offset % 32 == 0);
4430
4431 pkt.ConstantBody.ReadLength[n] = range->length;
4432 pkt.ConstantBody.Buffer[n] =
4433 res ? ro_bo(res->bo, range->start * 32 + cbuf->data.offset)
4434 : ro_bo(batch->screen->workaround_bo, 0);
4435 n--;
4436 }
4437 }
4438 }
4439 }
4440
4441 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4442 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4443 iris_emit_cmd(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), ptr) {
4444 ptr._3DCommandSubOpcode = 38 + stage;
4445 ptr.PointertoVSBindingTable = binder->bt_offset[stage];
4446 }
4447 }
4448 }
4449
4450 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4451 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4452 iris_populate_binding_table(ice, batch, stage, false);
4453 }
4454 }
4455
4456 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4457 if (!(dirty & (IRIS_DIRTY_SAMPLER_STATES_VS << stage)) ||
4458 !ice->shaders.prog[stage])
4459 continue;
4460
4461 iris_upload_sampler_states(ice, stage);
4462
4463 struct iris_shader_state *shs = &ice->state.shaders[stage];
4464 struct pipe_resource *res = shs->sampler_table.res;
4465 if (res)
4466 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4467
4468 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
4469 ptr._3DCommandSubOpcode = 43 + stage;
4470 ptr.PointertoVSSamplerState = shs->sampler_table.offset;
4471 }
4472 }
4473
4474 if (ice->state.need_border_colors)
4475 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
4476
4477 if (dirty & IRIS_DIRTY_MULTISAMPLE) {
4478 iris_emit_cmd(batch, GENX(3DSTATE_MULTISAMPLE), ms) {
4479 ms.PixelLocation =
4480 ice->state.cso_rast->half_pixel_center ? CENTER : UL_CORNER;
4481 if (ice->state.framebuffer.samples > 0)
4482 ms.NumberofMultisamples = ffs(ice->state.framebuffer.samples) - 1;
4483 }
4484 }
4485
4486 if (dirty & IRIS_DIRTY_SAMPLE_MASK) {
4487 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_MASK), ms) {
4488 ms.SampleMask = ice->state.sample_mask;
4489 }
4490 }
4491
4492 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4493 if (!(dirty & (IRIS_DIRTY_VS << stage)))
4494 continue;
4495
4496 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4497
4498 if (shader) {
4499 struct iris_resource *cache = (void *) shader->assembly.res;
4500 iris_use_pinned_bo(batch, cache->bo, false);
4501 iris_batch_emit(batch, shader->derived_data,
4502 iris_derived_program_state_size(stage));
4503 } else {
4504 if (stage == MESA_SHADER_TESS_EVAL) {
4505 iris_emit_cmd(batch, GENX(3DSTATE_HS), hs);
4506 iris_emit_cmd(batch, GENX(3DSTATE_TE), te);
4507 iris_emit_cmd(batch, GENX(3DSTATE_DS), ds);
4508 } else if (stage == MESA_SHADER_GEOMETRY) {
4509 iris_emit_cmd(batch, GENX(3DSTATE_GS), gs);
4510 }
4511 }
4512 }
4513
4514 if (ice->state.streamout_active) {
4515 if (dirty & IRIS_DIRTY_SO_BUFFERS) {
4516 iris_batch_emit(batch, genx->so_buffers,
4517 4 * 4 * GENX(3DSTATE_SO_BUFFER_length));
4518 for (int i = 0; i < 4; i++) {
4519 struct iris_stream_output_target *tgt =
4520 (void *) ice->state.so_target[i];
4521 if (tgt) {
4522 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
4523 true);
4524 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
4525 true);
4526 }
4527 }
4528 }
4529
4530 if ((dirty & IRIS_DIRTY_SO_DECL_LIST) && ice->state.streamout) {
4531 uint32_t *decl_list =
4532 ice->state.streamout + GENX(3DSTATE_STREAMOUT_length);
4533 iris_batch_emit(batch, decl_list, 4 * ((decl_list[0] & 0xff) + 2));
4534 }
4535
4536 if (dirty & IRIS_DIRTY_STREAMOUT) {
4537 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4538
4539 uint32_t dynamic_sol[GENX(3DSTATE_STREAMOUT_length)];
4540 iris_pack_command(GENX(3DSTATE_STREAMOUT), dynamic_sol, sol) {
4541 sol.SOFunctionEnable = true;
4542 sol.SOStatisticsEnable = true;
4543
4544 sol.RenderingDisable = cso_rast->rasterizer_discard &&
4545 !ice->state.prims_generated_query_active;
4546 sol.ReorderMode = cso_rast->flatshade_first ? LEADING : TRAILING;
4547 }
4548
4549 assert(ice->state.streamout);
4550
4551 iris_emit_merge(batch, ice->state.streamout, dynamic_sol,
4552 GENX(3DSTATE_STREAMOUT_length));
4553 }
4554 } else {
4555 if (dirty & IRIS_DIRTY_STREAMOUT) {
4556 iris_emit_cmd(batch, GENX(3DSTATE_STREAMOUT), sol);
4557 }
4558 }
4559
4560 if (dirty & IRIS_DIRTY_CLIP) {
4561 struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4562 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4563
4564 uint32_t dynamic_clip[GENX(3DSTATE_CLIP_length)];
4565 iris_pack_command(GENX(3DSTATE_CLIP), &dynamic_clip, cl) {
4566 cl.StatisticsEnable = ice->state.statistics_counters_enabled;
4567 cl.ClipMode = cso_rast->rasterizer_discard ? CLIPMODE_REJECT_ALL
4568 : CLIPMODE_NORMAL;
4569 if (wm_prog_data->barycentric_interp_modes &
4570 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
4571 cl.NonPerspectiveBarycentricEnable = true;
4572
4573 cl.ForceZeroRTAIndexEnable = cso_fb->layers == 0;
4574 cl.MaximumVPIndex = ice->state.num_viewports - 1;
4575 }
4576 iris_emit_merge(batch, cso_rast->clip, dynamic_clip,
4577 ARRAY_SIZE(cso_rast->clip));
4578 }
4579
4580 if (dirty & IRIS_DIRTY_RASTER) {
4581 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4582 iris_batch_emit(batch, cso->raster, sizeof(cso->raster));
4583 iris_batch_emit(batch, cso->sf, sizeof(cso->sf));
4584
4585 }
4586
4587 if (dirty & IRIS_DIRTY_WM) {
4588 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4589 uint32_t dynamic_wm[GENX(3DSTATE_WM_length)];
4590
4591 iris_pack_command(GENX(3DSTATE_WM), &dynamic_wm, wm) {
4592 wm.StatisticsEnable = ice->state.statistics_counters_enabled;
4593
4594 wm.BarycentricInterpolationMode =
4595 wm_prog_data->barycentric_interp_modes;
4596
4597 if (wm_prog_data->early_fragment_tests)
4598 wm.EarlyDepthStencilControl = EDSC_PREPS;
4599 else if (wm_prog_data->has_side_effects)
4600 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
4601
4602 /* We could skip this bit if color writes are enabled. */
4603 if (wm_prog_data->has_side_effects || wm_prog_data->uses_kill)
4604 wm.ForceThreadDispatchEnable = ForceON;
4605 }
4606 iris_emit_merge(batch, cso->wm, dynamic_wm, ARRAY_SIZE(cso->wm));
4607 }
4608
4609 if (dirty & IRIS_DIRTY_SBE) {
4610 iris_emit_sbe(batch, ice);
4611 }
4612
4613 if (dirty & IRIS_DIRTY_PS_BLEND) {
4614 struct iris_blend_state *cso_blend = ice->state.cso_blend;
4615 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
4616 const struct shader_info *fs_info =
4617 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
4618
4619 uint32_t dynamic_pb[GENX(3DSTATE_PS_BLEND_length)];
4620 iris_pack_command(GENX(3DSTATE_PS_BLEND), &dynamic_pb, pb) {
4621 pb.HasWriteableRT = has_writeable_rt(cso_blend, fs_info);
4622 pb.AlphaTestEnable = cso_zsa->alpha.enabled;
4623 }
4624
4625 iris_emit_merge(batch, cso_blend->ps_blend, dynamic_pb,
4626 ARRAY_SIZE(cso_blend->ps_blend));
4627 }
4628
4629 if (dirty & IRIS_DIRTY_WM_DEPTH_STENCIL) {
4630 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
4631 #if GEN_GEN >= 9
4632 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
4633 uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
4634 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
4635 wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
4636 wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
4637 }
4638 iris_emit_merge(batch, cso->wmds, stencil_refs, ARRAY_SIZE(cso->wmds));
4639 #else
4640 iris_batch_emit(batch, cso->wmds, sizeof(cso->wmds));
4641 #endif
4642 }
4643
4644 if (dirty & IRIS_DIRTY_SCISSOR_RECT) {
4645 uint32_t scissor_offset =
4646 emit_state(batch, ice->state.dynamic_uploader,
4647 &ice->state.last_res.scissor,
4648 ice->state.scissors,
4649 sizeof(struct pipe_scissor_state) *
4650 ice->state.num_viewports, 32);
4651
4652 iris_emit_cmd(batch, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
4653 ptr.ScissorRectPointer = scissor_offset;
4654 }
4655 }
4656
4657 if (dirty & IRIS_DIRTY_DEPTH_BUFFER) {
4658 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4659 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
4660
4661 iris_batch_emit(batch, cso_z->packets, sizeof(cso_z->packets));
4662
4663 if (cso_fb->zsbuf) {
4664 struct iris_resource *zres, *sres;
4665 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
4666 &zres, &sres);
4667 if (zres) {
4668 iris_use_pinned_bo(batch, zres->bo,
4669 ice->state.depth_writes_enabled);
4670 if (zres->aux.bo) {
4671 iris_use_pinned_bo(batch, zres->aux.bo,
4672 ice->state.depth_writes_enabled);
4673 }
4674 }
4675
4676 if (sres) {
4677 iris_use_pinned_bo(batch, sres->bo,
4678 ice->state.stencil_writes_enabled);
4679 }
4680 }
4681 }
4682
4683 if (dirty & IRIS_DIRTY_POLYGON_STIPPLE) {
4684 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
4685 for (int i = 0; i < 32; i++) {
4686 poly.PatternRow[i] = ice->state.poly_stipple.stipple[i];
4687 }
4688 }
4689 }
4690
4691 if (dirty & IRIS_DIRTY_LINE_STIPPLE) {
4692 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4693 iris_batch_emit(batch, cso->line_stipple, sizeof(cso->line_stipple));
4694 }
4695
4696 if (dirty & IRIS_DIRTY_VF_TOPOLOGY) {
4697 iris_emit_cmd(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
4698 topo.PrimitiveTopologyType =
4699 translate_prim_type(draw->mode, draw->vertices_per_patch);
4700 }
4701 }
4702
4703 if (dirty & IRIS_DIRTY_VERTEX_BUFFERS) {
4704 int count = util_bitcount64(ice->state.bound_vertex_buffers);
4705 int dynamic_bound = ice->state.bound_vertex_buffers;
4706
4707 if (ice->state.vs_uses_draw_params) {
4708 if (ice->draw.draw_params_offset == 0) {
4709 u_upload_data(ice->state.dynamic_uploader, 0, sizeof(ice->draw.params),
4710 4, &ice->draw.params, &ice->draw.draw_params_offset,
4711 &ice->draw.draw_params_res);
4712 }
4713 assert(ice->draw.draw_params_res);
4714
4715 struct iris_vertex_buffer_state *state =
4716 &(ice->state.genx->vertex_buffers[count]);
4717 pipe_resource_reference(&state->resource, ice->draw.draw_params_res);
4718 struct iris_resource *res = (void *) state->resource;
4719
4720 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
4721 vb.VertexBufferIndex = count;
4722 vb.AddressModifyEnable = true;
4723 vb.BufferPitch = 0;
4724 vb.BufferSize = res->bo->size - ice->draw.draw_params_offset;
4725 vb.BufferStartingAddress =
4726 ro_bo(NULL, res->bo->gtt_offset +
4727 (int) ice->draw.draw_params_offset);
4728 vb.MOCS = mocs(res->bo);
4729 }
4730 dynamic_bound |= 1ull << count;
4731 count++;
4732 }
4733
4734 if (ice->state.vs_uses_derived_draw_params) {
4735 u_upload_data(ice->state.dynamic_uploader, 0,
4736 sizeof(ice->draw.derived_params), 4,
4737 &ice->draw.derived_params,
4738 &ice->draw.derived_draw_params_offset,
4739 &ice->draw.derived_draw_params_res);
4740
4741 struct iris_vertex_buffer_state *state =
4742 &(ice->state.genx->vertex_buffers[count]);
4743 pipe_resource_reference(&state->resource,
4744 ice->draw.derived_draw_params_res);
4745 struct iris_resource *res = (void *) ice->draw.derived_draw_params_res;
4746
4747 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
4748 vb.VertexBufferIndex = count;
4749 vb.AddressModifyEnable = true;
4750 vb.BufferPitch = 0;
4751 vb.BufferSize =
4752 res->bo->size - ice->draw.derived_draw_params_offset;
4753 vb.BufferStartingAddress =
4754 ro_bo(NULL, res->bo->gtt_offset +
4755 (int) ice->draw.derived_draw_params_offset);
4756 vb.MOCS = mocs(res->bo);
4757 }
4758 dynamic_bound |= 1ull << count;
4759 count++;
4760 }
4761
4762 if (count) {
4763 /* The VF cache designers cut corners, and made the cache key's
4764 * <VertexBufferIndex, Memory Address> tuple only consider the bottom
4765 * 32 bits of the address. If you have two vertex buffers which get
4766 * placed exactly 4 GiB apart and use them in back-to-back draw calls,
4767 * you can get collisions (even within a single batch).
4768 *
4769 * So, we need to do a VF cache invalidate if the buffer for a VB
4770 * slot slot changes [48:32] address bits from the previous time.
4771 */
4772 unsigned flush_flags = 0;
4773
4774 uint64_t bound = dynamic_bound;
4775 while (bound) {
4776 const int i = u_bit_scan64(&bound);
4777 uint16_t high_bits = 0;
4778
4779 struct iris_resource *res =
4780 (void *) genx->vertex_buffers[i].resource;
4781 if (res) {
4782 iris_use_pinned_bo(batch, res->bo, false);
4783
4784 high_bits = res->bo->gtt_offset >> 32ull;
4785 if (high_bits != ice->state.last_vbo_high_bits[i]) {
4786 flush_flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE |
4787 PIPE_CONTROL_CS_STALL;
4788 ice->state.last_vbo_high_bits[i] = high_bits;
4789 }
4790
4791 /* If the buffer was written to by streamout, we may need
4792 * to stall so those writes land and become visible to the
4793 * vertex fetcher.
4794 *
4795 * TODO: This may stall more than necessary.
4796 */
4797 if (res->bind_history & PIPE_BIND_STREAM_OUTPUT)
4798 flush_flags |= PIPE_CONTROL_CS_STALL;
4799 }
4800 }
4801
4802 if (flush_flags)
4803 iris_emit_pipe_control_flush(batch, flush_flags);
4804
4805 const unsigned vb_dwords = GENX(VERTEX_BUFFER_STATE_length);
4806
4807 uint32_t *map =
4808 iris_get_command_space(batch, 4 * (1 + vb_dwords * count));
4809 _iris_pack_command(batch, GENX(3DSTATE_VERTEX_BUFFERS), map, vb) {
4810 vb.DWordLength = (vb_dwords * count + 1) - 2;
4811 }
4812 map += 1;
4813
4814 bound = dynamic_bound;
4815 while (bound) {
4816 const int i = u_bit_scan64(&bound);
4817 memcpy(map, genx->vertex_buffers[i].state,
4818 sizeof(uint32_t) * vb_dwords);
4819 map += vb_dwords;
4820 }
4821 }
4822 }
4823
4824 if (dirty & IRIS_DIRTY_VERTEX_ELEMENTS) {
4825 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
4826 const unsigned entries = MAX2(cso->count, 1);
4827 if (!(ice->state.vs_needs_sgvs_element ||
4828 ice->state.vs_uses_derived_draw_params ||
4829 ice->state.vs_needs_edge_flag)) {
4830 iris_batch_emit(batch, cso->vertex_elements, sizeof(uint32_t) *
4831 (1 + entries * GENX(VERTEX_ELEMENT_STATE_length)));
4832 } else {
4833 uint32_t dynamic_ves[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
4834 const unsigned dyn_count = cso->count +
4835 ice->state.vs_needs_sgvs_element +
4836 ice->state.vs_uses_derived_draw_params;
4837
4838 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS),
4839 &dynamic_ves, ve) {
4840 ve.DWordLength =
4841 1 + GENX(VERTEX_ELEMENT_STATE_length) * dyn_count - 2;
4842 }
4843 memcpy(&dynamic_ves[1], &cso->vertex_elements[1],
4844 (cso->count - ice->state.vs_needs_edge_flag) *
4845 GENX(VERTEX_ELEMENT_STATE_length) * sizeof(uint32_t));
4846 uint32_t *ve_pack_dest =
4847 &dynamic_ves[1 + (cso->count - ice->state.vs_needs_edge_flag) *
4848 GENX(VERTEX_ELEMENT_STATE_length)];
4849
4850 if (ice->state.vs_needs_sgvs_element) {
4851 uint32_t base_ctrl = ice->state.vs_uses_draw_params ?
4852 VFCOMP_STORE_SRC : VFCOMP_STORE_0;
4853 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
4854 ve.Valid = true;
4855 ve.VertexBufferIndex =
4856 util_bitcount64(ice->state.bound_vertex_buffers);
4857 ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
4858 ve.Component0Control = base_ctrl;
4859 ve.Component1Control = base_ctrl;
4860 ve.Component2Control = VFCOMP_STORE_0;
4861 ve.Component3Control = VFCOMP_STORE_0;
4862 }
4863 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
4864 }
4865 if (ice->state.vs_uses_derived_draw_params) {
4866 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
4867 ve.Valid = true;
4868 ve.VertexBufferIndex =
4869 util_bitcount64(ice->state.bound_vertex_buffers) +
4870 ice->state.vs_uses_draw_params;
4871 ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
4872 ve.Component0Control = VFCOMP_STORE_SRC;
4873 ve.Component1Control = VFCOMP_STORE_SRC;
4874 ve.Component2Control = VFCOMP_STORE_0;
4875 ve.Component3Control = VFCOMP_STORE_0;
4876 }
4877 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
4878 }
4879 if (ice->state.vs_needs_edge_flag) {
4880 for (int i = 0; i < GENX(VERTEX_ELEMENT_STATE_length); i++)
4881 ve_pack_dest[i] = cso->edgeflag_ve[i];
4882 }
4883
4884 iris_batch_emit(batch, &dynamic_ves, sizeof(uint32_t) *
4885 (1 + dyn_count * GENX(VERTEX_ELEMENT_STATE_length)));
4886 }
4887
4888 if (!ice->state.vs_needs_edge_flag) {
4889 iris_batch_emit(batch, cso->vf_instancing, sizeof(uint32_t) *
4890 entries * GENX(3DSTATE_VF_INSTANCING_length));
4891 } else {
4892 assert(cso->count > 0);
4893 const unsigned edgeflag_index = cso->count - 1;
4894 uint32_t dynamic_vfi[33 * GENX(3DSTATE_VF_INSTANCING_length)];
4895 memcpy(&dynamic_vfi[0], cso->vf_instancing, edgeflag_index *
4896 GENX(3DSTATE_VF_INSTANCING_length) * sizeof(uint32_t));
4897
4898 uint32_t *vfi_pack_dest = &dynamic_vfi[0] +
4899 edgeflag_index * GENX(3DSTATE_VF_INSTANCING_length);
4900 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
4901 vi.VertexElementIndex = edgeflag_index +
4902 ice->state.vs_needs_sgvs_element +
4903 ice->state.vs_uses_derived_draw_params;
4904 }
4905 for (int i = 0; i < GENX(3DSTATE_VF_INSTANCING_length); i++)
4906 vfi_pack_dest[i] |= cso->edgeflag_vfi[i];
4907
4908 iris_batch_emit(batch, &dynamic_vfi[0], sizeof(uint32_t) *
4909 entries * GENX(3DSTATE_VF_INSTANCING_length));
4910 }
4911 }
4912
4913 if (dirty & IRIS_DIRTY_VF_SGVS) {
4914 const struct brw_vs_prog_data *vs_prog_data = (void *)
4915 ice->shaders.prog[MESA_SHADER_VERTEX]->prog_data;
4916 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
4917
4918 iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS), sgv) {
4919 if (vs_prog_data->uses_vertexid) {
4920 sgv.VertexIDEnable = true;
4921 sgv.VertexIDComponentNumber = 2;
4922 sgv.VertexIDElementOffset =
4923 cso->count - ice->state.vs_needs_edge_flag;
4924 }
4925
4926 if (vs_prog_data->uses_instanceid) {
4927 sgv.InstanceIDEnable = true;
4928 sgv.InstanceIDComponentNumber = 3;
4929 sgv.InstanceIDElementOffset =
4930 cso->count - ice->state.vs_needs_edge_flag;
4931 }
4932 }
4933 }
4934
4935 if (dirty & IRIS_DIRTY_VF) {
4936 iris_emit_cmd(batch, GENX(3DSTATE_VF), vf) {
4937 if (draw->primitive_restart) {
4938 vf.IndexedDrawCutIndexEnable = true;
4939 vf.CutIndex = draw->restart_index;
4940 }
4941 }
4942 }
4943
4944 /* TODO: Gen8 PMA fix */
4945 }
4946
4947 static void
4948 iris_upload_render_state(struct iris_context *ice,
4949 struct iris_batch *batch,
4950 const struct pipe_draw_info *draw)
4951 {
4952 /* Always pin the binder. If we're emitting new binding table pointers,
4953 * we need it. If not, we're probably inheriting old tables via the
4954 * context, and need it anyway. Since true zero-bindings cases are
4955 * practically non-existent, just pin it and avoid last_res tracking.
4956 */
4957 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
4958
4959 if (!batch->contains_draw) {
4960 iris_restore_render_saved_bos(ice, batch, draw);
4961 batch->contains_draw = true;
4962 }
4963
4964 iris_upload_dirty_render_state(ice, batch, draw);
4965
4966 if (draw->index_size > 0) {
4967 unsigned offset;
4968
4969 if (draw->has_user_indices) {
4970 u_upload_data(ice->ctx.stream_uploader, 0,
4971 draw->count * draw->index_size, 4, draw->index.user,
4972 &offset, &ice->state.last_res.index_buffer);
4973 } else {
4974 struct iris_resource *res = (void *) draw->index.resource;
4975 res->bind_history |= PIPE_BIND_INDEX_BUFFER;
4976
4977 pipe_resource_reference(&ice->state.last_res.index_buffer,
4978 draw->index.resource);
4979 offset = 0;
4980 }
4981
4982 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
4983
4984 iris_emit_cmd(batch, GENX(3DSTATE_INDEX_BUFFER), ib) {
4985 ib.IndexFormat = draw->index_size >> 1;
4986 ib.MOCS = mocs(bo);
4987 ib.BufferSize = bo->size;
4988 ib.BufferStartingAddress = ro_bo(bo, offset);
4989 }
4990
4991 /* The VF cache key only uses 32-bits, see vertex buffer comment above */
4992 uint16_t high_bits = bo->gtt_offset >> 32ull;
4993 if (high_bits != ice->state.last_index_bo_high_bits) {
4994 iris_emit_pipe_control_flush(batch, PIPE_CONTROL_VF_CACHE_INVALIDATE |
4995 PIPE_CONTROL_CS_STALL);
4996 ice->state.last_index_bo_high_bits = high_bits;
4997 }
4998 }
4999
5000 #define _3DPRIM_END_OFFSET 0x2420
5001 #define _3DPRIM_START_VERTEX 0x2430
5002 #define _3DPRIM_VERTEX_COUNT 0x2434
5003 #define _3DPRIM_INSTANCE_COUNT 0x2438
5004 #define _3DPRIM_START_INSTANCE 0x243C
5005 #define _3DPRIM_BASE_VERTEX 0x2440
5006
5007 if (draw->indirect) {
5008 /* We don't support this MultidrawIndirect. */
5009 assert(!draw->indirect->indirect_draw_count);
5010
5011 struct iris_bo *bo = iris_resource_bo(draw->indirect->buffer);
5012 assert(bo);
5013
5014 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5015 lrm.RegisterAddress = _3DPRIM_VERTEX_COUNT;
5016 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 0);
5017 }
5018 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5019 lrm.RegisterAddress = _3DPRIM_INSTANCE_COUNT;
5020 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 4);
5021 }
5022 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5023 lrm.RegisterAddress = _3DPRIM_START_VERTEX;
5024 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 8);
5025 }
5026 if (draw->index_size) {
5027 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5028 lrm.RegisterAddress = _3DPRIM_BASE_VERTEX;
5029 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
5030 }
5031 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5032 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
5033 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 16);
5034 }
5035 } else {
5036 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5037 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
5038 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
5039 }
5040 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
5041 lri.RegisterOffset = _3DPRIM_BASE_VERTEX;
5042 lri.DataDWord = 0;
5043 }
5044 }
5045 } else if (draw->count_from_stream_output) {
5046 struct iris_stream_output_target *so =
5047 (void *) draw->count_from_stream_output;
5048
5049 /* XXX: Replace with actual cache tracking */
5050 iris_emit_pipe_control_flush(batch, PIPE_CONTROL_CS_STALL);
5051
5052 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5053 lrm.RegisterAddress = CS_GPR(0);
5054 lrm.MemoryAddress =
5055 ro_bo(iris_resource_bo(so->offset.res), so->offset.offset);
5056 }
5057 iris_math_div32_gpr0(ice, batch, so->stride);
5058 _iris_emit_lrr(batch, _3DPRIM_VERTEX_COUNT, CS_GPR(0));
5059
5060 _iris_emit_lri(batch, _3DPRIM_START_VERTEX, 0);
5061 _iris_emit_lri(batch, _3DPRIM_BASE_VERTEX, 0);
5062 _iris_emit_lri(batch, _3DPRIM_START_INSTANCE, 0);
5063 _iris_emit_lri(batch, _3DPRIM_INSTANCE_COUNT, draw->instance_count);
5064 }
5065
5066 iris_emit_cmd(batch, GENX(3DPRIMITIVE), prim) {
5067 prim.VertexAccessType = draw->index_size > 0 ? RANDOM : SEQUENTIAL;
5068 prim.PredicateEnable =
5069 ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT;
5070
5071 if (draw->indirect || draw->count_from_stream_output) {
5072 prim.IndirectParameterEnable = true;
5073 } else {
5074 prim.StartInstanceLocation = draw->start_instance;
5075 prim.InstanceCount = draw->instance_count;
5076 prim.VertexCountPerInstance = draw->count;
5077
5078 // XXX: this is probably bonkers.
5079 prim.StartVertexLocation = draw->start;
5080
5081 if (draw->index_size) {
5082 prim.BaseVertexLocation += draw->index_bias;
5083 } else {
5084 prim.StartVertexLocation += draw->index_bias;
5085 }
5086
5087 //prim.BaseVertexLocation = ...;
5088 }
5089 }
5090 }
5091
5092 static void
5093 iris_upload_compute_state(struct iris_context *ice,
5094 struct iris_batch *batch,
5095 const struct pipe_grid_info *grid)
5096 {
5097 const uint64_t dirty = ice->state.dirty;
5098 struct iris_screen *screen = batch->screen;
5099 const struct gen_device_info *devinfo = &screen->devinfo;
5100 struct iris_binder *binder = &ice->state.binder;
5101 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
5102 struct iris_compiled_shader *shader =
5103 ice->shaders.prog[MESA_SHADER_COMPUTE];
5104 struct brw_stage_prog_data *prog_data = shader->prog_data;
5105 struct brw_cs_prog_data *cs_prog_data = (void *) prog_data;
5106
5107 /* Always pin the binder. If we're emitting new binding table pointers,
5108 * we need it. If not, we're probably inheriting old tables via the
5109 * context, and need it anyway. Since true zero-bindings cases are
5110 * practically non-existent, just pin it and avoid last_res tracking.
5111 */
5112 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
5113
5114 if ((dirty & IRIS_DIRTY_CONSTANTS_CS) && shs->cbuf0_needs_upload)
5115 upload_uniforms(ice, MESA_SHADER_COMPUTE);
5116
5117 if (dirty & IRIS_DIRTY_BINDINGS_CS)
5118 iris_populate_binding_table(ice, batch, MESA_SHADER_COMPUTE, false);
5119
5120 if (dirty & IRIS_DIRTY_SAMPLER_STATES_CS)
5121 iris_upload_sampler_states(ice, MESA_SHADER_COMPUTE);
5122
5123 iris_use_optional_res(batch, shs->sampler_table.res, false);
5124 iris_use_pinned_bo(batch, iris_resource_bo(shader->assembly.res), false);
5125
5126 if (ice->state.need_border_colors)
5127 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
5128
5129 if (dirty & IRIS_DIRTY_CS) {
5130 /* The MEDIA_VFE_STATE documentation for Gen8+ says:
5131 *
5132 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
5133 * the only bits that are changed are scoreboard related: Scoreboard
5134 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard Delta. For
5135 * these scoreboard related states, a MEDIA_STATE_FLUSH is
5136 * sufficient."
5137 */
5138 iris_emit_pipe_control_flush(batch, PIPE_CONTROL_CS_STALL);
5139
5140 iris_emit_cmd(batch, GENX(MEDIA_VFE_STATE), vfe) {
5141 if (prog_data->total_scratch) {
5142 struct iris_bo *bo =
5143 iris_get_scratch_space(ice, prog_data->total_scratch,
5144 MESA_SHADER_COMPUTE);
5145 vfe.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
5146 vfe.ScratchSpaceBasePointer = rw_bo(bo, 0);
5147 }
5148
5149 vfe.MaximumNumberofThreads =
5150 devinfo->max_cs_threads * screen->subslice_total - 1;
5151 #if GEN_GEN < 11
5152 vfe.ResetGatewayTimer =
5153 Resettingrelativetimerandlatchingtheglobaltimestamp;
5154 #endif
5155 #if GEN_GEN == 8
5156 vfe.BypassGatewayControl = true;
5157 #endif
5158 vfe.NumberofURBEntries = 2;
5159 vfe.URBEntryAllocationSize = 2;
5160
5161 vfe.CURBEAllocationSize =
5162 ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
5163 cs_prog_data->push.cross_thread.regs, 2);
5164 }
5165 }
5166
5167 /* TODO: Combine subgroup-id with cbuf0 so we can push regular uniforms */
5168 uint32_t curbe_data_offset = 0;
5169 assert(cs_prog_data->push.cross_thread.dwords == 0 &&
5170 cs_prog_data->push.per_thread.dwords == 1 &&
5171 cs_prog_data->base.param[0] == BRW_PARAM_BUILTIN_SUBGROUP_ID);
5172 struct pipe_resource *curbe_data_res = NULL;
5173 uint32_t *curbe_data_map =
5174 stream_state(batch, ice->state.dynamic_uploader, &curbe_data_res,
5175 ALIGN(cs_prog_data->push.total.size, 64), 64,
5176 &curbe_data_offset);
5177 assert(curbe_data_map);
5178 memset(curbe_data_map, 0x5a, ALIGN(cs_prog_data->push.total.size, 64));
5179 iris_fill_cs_push_const_buffer(cs_prog_data, curbe_data_map);
5180
5181 if (dirty & IRIS_DIRTY_CONSTANTS_CS) {
5182 iris_emit_cmd(batch, GENX(MEDIA_CURBE_LOAD), curbe) {
5183 curbe.CURBETotalDataLength =
5184 ALIGN(cs_prog_data->push.total.size, 64);
5185 curbe.CURBEDataStartAddress = curbe_data_offset;
5186 }
5187 }
5188
5189 if (dirty & (IRIS_DIRTY_SAMPLER_STATES_CS |
5190 IRIS_DIRTY_BINDINGS_CS |
5191 IRIS_DIRTY_CONSTANTS_CS |
5192 IRIS_DIRTY_CS)) {
5193 struct pipe_resource *desc_res = NULL;
5194 uint32_t desc[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
5195
5196 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), desc, idd) {
5197 idd.SamplerStatePointer = shs->sampler_table.offset;
5198 idd.BindingTablePointer = binder->bt_offset[MESA_SHADER_COMPUTE];
5199 }
5200
5201 for (int i = 0; i < GENX(INTERFACE_DESCRIPTOR_DATA_length); i++)
5202 desc[i] |= ((uint32_t *) shader->derived_data)[i];
5203
5204 iris_emit_cmd(batch, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
5205 load.InterfaceDescriptorTotalLength =
5206 GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
5207 load.InterfaceDescriptorDataStartAddress =
5208 emit_state(batch, ice->state.dynamic_uploader,
5209 &desc_res, desc, sizeof(desc), 32);
5210 }
5211
5212 pipe_resource_reference(&desc_res, NULL);
5213 }
5214
5215 uint32_t group_size = grid->block[0] * grid->block[1] * grid->block[2];
5216 uint32_t remainder = group_size & (cs_prog_data->simd_size - 1);
5217 uint32_t right_mask;
5218
5219 if (remainder > 0)
5220 right_mask = ~0u >> (32 - remainder);
5221 else
5222 right_mask = ~0u >> (32 - cs_prog_data->simd_size);
5223
5224 #define GPGPU_DISPATCHDIMX 0x2500
5225 #define GPGPU_DISPATCHDIMY 0x2504
5226 #define GPGPU_DISPATCHDIMZ 0x2508
5227
5228 if (grid->indirect) {
5229 struct iris_state_ref *grid_size = &ice->state.grid_size;
5230 struct iris_bo *bo = iris_resource_bo(grid_size->res);
5231 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5232 lrm.RegisterAddress = GPGPU_DISPATCHDIMX;
5233 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 0);
5234 }
5235 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5236 lrm.RegisterAddress = GPGPU_DISPATCHDIMY;
5237 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 4);
5238 }
5239 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5240 lrm.RegisterAddress = GPGPU_DISPATCHDIMZ;
5241 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 8);
5242 }
5243 }
5244
5245 iris_emit_cmd(batch, GENX(GPGPU_WALKER), ggw) {
5246 ggw.IndirectParameterEnable = grid->indirect != NULL;
5247 ggw.SIMDSize = cs_prog_data->simd_size / 16;
5248 ggw.ThreadDepthCounterMaximum = 0;
5249 ggw.ThreadHeightCounterMaximum = 0;
5250 ggw.ThreadWidthCounterMaximum = cs_prog_data->threads - 1;
5251 ggw.ThreadGroupIDXDimension = grid->grid[0];
5252 ggw.ThreadGroupIDYDimension = grid->grid[1];
5253 ggw.ThreadGroupIDZDimension = grid->grid[2];
5254 ggw.RightExecutionMask = right_mask;
5255 ggw.BottomExecutionMask = 0xffffffff;
5256 }
5257
5258 iris_emit_cmd(batch, GENX(MEDIA_STATE_FLUSH), msf);
5259
5260 if (!batch->contains_draw) {
5261 iris_restore_compute_saved_bos(ice, batch, grid);
5262 batch->contains_draw = true;
5263 }
5264 }
5265
5266 /**
5267 * State module teardown.
5268 */
5269 static void
5270 iris_destroy_state(struct iris_context *ice)
5271 {
5272 struct iris_genx_state *genx = ice->state.genx;
5273
5274 uint64_t bound_vbs = ice->state.bound_vertex_buffers;
5275 while (bound_vbs) {
5276 const int i = u_bit_scan64(&bound_vbs);
5277 pipe_resource_reference(&genx->vertex_buffers[i].resource, NULL);
5278 }
5279 free(ice->state.genx);
5280
5281 for (unsigned i = 0; i < ice->state.framebuffer.nr_cbufs; i++) {
5282 pipe_surface_reference(&ice->state.framebuffer.cbufs[i], NULL);
5283 }
5284 pipe_surface_reference(&ice->state.framebuffer.zsbuf, NULL);
5285
5286 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
5287 struct iris_shader_state *shs = &ice->state.shaders[stage];
5288 pipe_resource_reference(&shs->sampler_table.res, NULL);
5289 for (int i = 0; i < PIPE_MAX_CONSTANT_BUFFERS; i++) {
5290 pipe_resource_reference(&shs->constbuf[i].data.res, NULL);
5291 pipe_resource_reference(&shs->constbuf[i].surface_state.res, NULL);
5292 }
5293 for (int i = 0; i < PIPE_MAX_SHADER_IMAGES; i++) {
5294 pipe_resource_reference(&shs->image[i].res, NULL);
5295 pipe_resource_reference(&shs->image[i].surface_state.res, NULL);
5296 }
5297 for (int i = 0; i < PIPE_MAX_SHADER_BUFFERS; i++) {
5298 pipe_resource_reference(&shs->ssbo[i], NULL);
5299 pipe_resource_reference(&shs->ssbo_surface_state[i].res, NULL);
5300 }
5301 for (int i = 0; i < IRIS_MAX_TEXTURE_SAMPLERS; i++) {
5302 pipe_sampler_view_reference((struct pipe_sampler_view **)
5303 &shs->textures[i], NULL);
5304 }
5305 }
5306
5307 pipe_resource_reference(&ice->state.grid_size.res, NULL);
5308 pipe_resource_reference(&ice->state.grid_surf_state.res, NULL);
5309
5310 pipe_resource_reference(&ice->state.null_fb.res, NULL);
5311 pipe_resource_reference(&ice->state.unbound_tex.res, NULL);
5312
5313 pipe_resource_reference(&ice->state.last_res.cc_vp, NULL);
5314 pipe_resource_reference(&ice->state.last_res.sf_cl_vp, NULL);
5315 pipe_resource_reference(&ice->state.last_res.color_calc, NULL);
5316 pipe_resource_reference(&ice->state.last_res.scissor, NULL);
5317 pipe_resource_reference(&ice->state.last_res.blend, NULL);
5318 pipe_resource_reference(&ice->state.last_res.index_buffer, NULL);
5319 }
5320
5321 /* ------------------------------------------------------------------- */
5322
5323 static void
5324 iris_load_register_reg32(struct iris_batch *batch, uint32_t dst,
5325 uint32_t src)
5326 {
5327 _iris_emit_lrr(batch, dst, src);
5328 }
5329
5330 static void
5331 iris_load_register_reg64(struct iris_batch *batch, uint32_t dst,
5332 uint32_t src)
5333 {
5334 _iris_emit_lrr(batch, dst, src);
5335 _iris_emit_lrr(batch, dst + 4, src + 4);
5336 }
5337
5338 static void
5339 iris_load_register_imm32(struct iris_batch *batch, uint32_t reg,
5340 uint32_t val)
5341 {
5342 _iris_emit_lri(batch, reg, val);
5343 }
5344
5345 static void
5346 iris_load_register_imm64(struct iris_batch *batch, uint32_t reg,
5347 uint64_t val)
5348 {
5349 _iris_emit_lri(batch, reg + 0, val & 0xffffffff);
5350 _iris_emit_lri(batch, reg + 4, val >> 32);
5351 }
5352
5353 /**
5354 * Emit MI_LOAD_REGISTER_MEM to load a 32-bit MMIO register from a buffer.
5355 */
5356 static void
5357 iris_load_register_mem32(struct iris_batch *batch, uint32_t reg,
5358 struct iris_bo *bo, uint32_t offset)
5359 {
5360 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5361 lrm.RegisterAddress = reg;
5362 lrm.MemoryAddress = ro_bo(bo, offset);
5363 }
5364 }
5365
5366 /**
5367 * Load a 64-bit value from a buffer into a MMIO register via
5368 * two MI_LOAD_REGISTER_MEM commands.
5369 */
5370 static void
5371 iris_load_register_mem64(struct iris_batch *batch, uint32_t reg,
5372 struct iris_bo *bo, uint32_t offset)
5373 {
5374 iris_load_register_mem32(batch, reg + 0, bo, offset + 0);
5375 iris_load_register_mem32(batch, reg + 4, bo, offset + 4);
5376 }
5377
5378 static void
5379 iris_store_register_mem32(struct iris_batch *batch, uint32_t reg,
5380 struct iris_bo *bo, uint32_t offset,
5381 bool predicated)
5382 {
5383 iris_emit_cmd(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
5384 srm.RegisterAddress = reg;
5385 srm.MemoryAddress = rw_bo(bo, offset);
5386 srm.PredicateEnable = predicated;
5387 }
5388 }
5389
5390 static void
5391 iris_store_register_mem64(struct iris_batch *batch, uint32_t reg,
5392 struct iris_bo *bo, uint32_t offset,
5393 bool predicated)
5394 {
5395 iris_store_register_mem32(batch, reg + 0, bo, offset + 0, predicated);
5396 iris_store_register_mem32(batch, reg + 4, bo, offset + 4, predicated);
5397 }
5398
5399 static void
5400 iris_store_data_imm32(struct iris_batch *batch,
5401 struct iris_bo *bo, uint32_t offset,
5402 uint32_t imm)
5403 {
5404 iris_emit_cmd(batch, GENX(MI_STORE_DATA_IMM), sdi) {
5405 sdi.Address = rw_bo(bo, offset);
5406 sdi.ImmediateData = imm;
5407 }
5408 }
5409
5410 static void
5411 iris_store_data_imm64(struct iris_batch *batch,
5412 struct iris_bo *bo, uint32_t offset,
5413 uint64_t imm)
5414 {
5415 /* Can't use iris_emit_cmd because MI_STORE_DATA_IMM has a length of
5416 * 2 in genxml but it's actually variable length and we need 5 DWords.
5417 */
5418 void *map = iris_get_command_space(batch, 4 * 5);
5419 _iris_pack_command(batch, GENX(MI_STORE_DATA_IMM), map, sdi) {
5420 sdi.DWordLength = 5 - 2;
5421 sdi.Address = rw_bo(bo, offset);
5422 sdi.ImmediateData = imm;
5423 }
5424 }
5425
5426 static void
5427 iris_copy_mem_mem(struct iris_batch *batch,
5428 struct iris_bo *dst_bo, uint32_t dst_offset,
5429 struct iris_bo *src_bo, uint32_t src_offset,
5430 unsigned bytes)
5431 {
5432 /* MI_COPY_MEM_MEM operates on DWords. */
5433 assert(bytes % 4 == 0);
5434 assert(dst_offset % 4 == 0);
5435 assert(src_offset % 4 == 0);
5436
5437 for (unsigned i = 0; i < bytes; i += 4) {
5438 iris_emit_cmd(batch, GENX(MI_COPY_MEM_MEM), cp) {
5439 cp.DestinationMemoryAddress = rw_bo(dst_bo, dst_offset + i);
5440 cp.SourceMemoryAddress = ro_bo(src_bo, src_offset + i);
5441 }
5442 }
5443 }
5444
5445 /* ------------------------------------------------------------------- */
5446
5447 static unsigned
5448 flags_to_post_sync_op(uint32_t flags)
5449 {
5450 if (flags & PIPE_CONTROL_WRITE_IMMEDIATE)
5451 return WriteImmediateData;
5452
5453 if (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT)
5454 return WritePSDepthCount;
5455
5456 if (flags & PIPE_CONTROL_WRITE_TIMESTAMP)
5457 return WriteTimestamp;
5458
5459 return 0;
5460 }
5461
5462 /**
5463 * Do the given flags have a Post Sync or LRI Post Sync operation?
5464 */
5465 static enum pipe_control_flags
5466 get_post_sync_flags(enum pipe_control_flags flags)
5467 {
5468 flags &= PIPE_CONTROL_WRITE_IMMEDIATE |
5469 PIPE_CONTROL_WRITE_DEPTH_COUNT |
5470 PIPE_CONTROL_WRITE_TIMESTAMP |
5471 PIPE_CONTROL_LRI_POST_SYNC_OP;
5472
5473 /* Only one "Post Sync Op" is allowed, and it's mutually exclusive with
5474 * "LRI Post Sync Operation". So more than one bit set would be illegal.
5475 */
5476 assert(util_bitcount(flags) <= 1);
5477
5478 return flags;
5479 }
5480
5481 #define IS_COMPUTE_PIPELINE(batch) (batch->name == IRIS_BATCH_COMPUTE)
5482
5483 /**
5484 * Emit a series of PIPE_CONTROL commands, taking into account any
5485 * workarounds necessary to actually accomplish the caller's request.
5486 *
5487 * Unless otherwise noted, spec quotations in this function come from:
5488 *
5489 * Synchronization of the 3D Pipeline > PIPE_CONTROL Command > Programming
5490 * Restrictions for PIPE_CONTROL.
5491 *
5492 * You should not use this function directly. Use the helpers in
5493 * iris_pipe_control.c instead, which may split the pipe control further.
5494 */
5495 static void
5496 iris_emit_raw_pipe_control(struct iris_batch *batch, uint32_t flags,
5497 struct iris_bo *bo, uint32_t offset, uint64_t imm)
5498 {
5499 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
5500 enum pipe_control_flags post_sync_flags = get_post_sync_flags(flags);
5501 enum pipe_control_flags non_lri_post_sync_flags =
5502 post_sync_flags & ~PIPE_CONTROL_LRI_POST_SYNC_OP;
5503
5504 /* Recursive PIPE_CONTROL workarounds --------------------------------
5505 * (http://knowyourmeme.com/memes/xzibit-yo-dawg)
5506 *
5507 * We do these first because we want to look at the original operation,
5508 * rather than any workarounds we set.
5509 */
5510 if (GEN_GEN == 9 && (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE)) {
5511 /* The PIPE_CONTROL "VF Cache Invalidation Enable" bit description
5512 * lists several workarounds:
5513 *
5514 * "Project: SKL, KBL, BXT
5515 *
5516 * If the VF Cache Invalidation Enable is set to a 1 in a
5517 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields
5518 * sets to 0, with the VF Cache Invalidation Enable set to 0
5519 * needs to be sent prior to the PIPE_CONTROL with VF Cache
5520 * Invalidation Enable set to a 1."
5521 */
5522 iris_emit_raw_pipe_control(batch, 0, NULL, 0, 0);
5523 }
5524
5525 if (GEN_GEN == 9 && IS_COMPUTE_PIPELINE(batch) && post_sync_flags) {
5526 /* Project: SKL / Argument: LRI Post Sync Operation [23]
5527 *
5528 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
5529 * programmed prior to programming a PIPECONTROL command with "LRI
5530 * Post Sync Operation" in GPGPU mode of operation (i.e when
5531 * PIPELINE_SELECT command is set to GPGPU mode of operation)."
5532 *
5533 * The same text exists a few rows below for Post Sync Op.
5534 */
5535 iris_emit_raw_pipe_control(batch, PIPE_CONTROL_CS_STALL, bo, offset, imm);
5536 }
5537
5538 if (GEN_GEN == 10 && (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH)) {
5539 /* Cannonlake:
5540 * "Before sending a PIPE_CONTROL command with bit 12 set, SW must issue
5541 * another PIPE_CONTROL with Render Target Cache Flush Enable (bit 12)
5542 * = 0 and Pipe Control Flush Enable (bit 7) = 1"
5543 */
5544 iris_emit_raw_pipe_control(batch, PIPE_CONTROL_FLUSH_ENABLE, bo,
5545 offset, imm);
5546 }
5547
5548 /* "Flush Types" workarounds ---------------------------------------------
5549 * We do these now because they may add post-sync operations or CS stalls.
5550 */
5551
5552 if (GEN_GEN < 11 && flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) {
5553 /* Project: BDW, SKL+ (stopping at CNL) / Argument: VF Invalidate
5554 *
5555 * "'Post Sync Operation' must be enabled to 'Write Immediate Data' or
5556 * 'Write PS Depth Count' or 'Write Timestamp'."
5557 */
5558 if (!bo) {
5559 flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
5560 post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
5561 non_lri_post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
5562 bo = batch->screen->workaround_bo;
5563 }
5564 }
5565
5566 /* #1130 from Gen10 workarounds page:
5567 *
5568 * "Enable Depth Stall on every Post Sync Op if Render target Cache
5569 * Flush is not enabled in same PIPE CONTROL and Enable Pixel score
5570 * board stall if Render target cache flush is enabled."
5571 *
5572 * Applicable to CNL B0 and C0 steppings only.
5573 *
5574 * The wording here is unclear, and this workaround doesn't look anything
5575 * like the internal bug report recommendations, but leave it be for now...
5576 */
5577 if (GEN_GEN == 10) {
5578 if (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) {
5579 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
5580 } else if (flags & non_lri_post_sync_flags) {
5581 flags |= PIPE_CONTROL_DEPTH_STALL;
5582 }
5583 }
5584
5585 if (flags & PIPE_CONTROL_DEPTH_STALL) {
5586 /* From the PIPE_CONTROL instruction table, bit 13 (Depth Stall Enable):
5587 *
5588 * "This bit must be DISABLED for operations other than writing
5589 * PS_DEPTH_COUNT."
5590 *
5591 * This seems like nonsense. An Ivybridge workaround requires us to
5592 * emit a PIPE_CONTROL with a depth stall and write immediate post-sync
5593 * operation. Gen8+ requires us to emit depth stalls and depth cache
5594 * flushes together. So, it's hard to imagine this means anything other
5595 * than "we originally intended this to be used for PS_DEPTH_COUNT".
5596 *
5597 * We ignore the supposed restriction and do nothing.
5598 */
5599 }
5600
5601 if (flags & (PIPE_CONTROL_RENDER_TARGET_FLUSH |
5602 PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
5603 /* From the PIPE_CONTROL instruction table, bit 12 and bit 1:
5604 *
5605 * "This bit must be DISABLED for End-of-pipe (Read) fences,
5606 * PS_DEPTH_COUNT or TIMESTAMP queries."
5607 *
5608 * TODO: Implement end-of-pipe checking.
5609 */
5610 assert(!(post_sync_flags & (PIPE_CONTROL_WRITE_DEPTH_COUNT |
5611 PIPE_CONTROL_WRITE_TIMESTAMP)));
5612 }
5613
5614 if (GEN_GEN < 11 && (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
5615 /* From the PIPE_CONTROL instruction table, bit 1:
5616 *
5617 * "This bit is ignored if Depth Stall Enable is set.
5618 * Further, the render cache is not flushed even if Write Cache
5619 * Flush Enable bit is set."
5620 *
5621 * We assert that the caller doesn't do this combination, to try and
5622 * prevent mistakes. It shouldn't hurt the GPU, though.
5623 *
5624 * We skip this check on Gen11+ as the "Stall at Pixel Scoreboard"
5625 * and "Render Target Flush" combo is explicitly required for BTI
5626 * update workarounds.
5627 */
5628 assert(!(flags & (PIPE_CONTROL_DEPTH_STALL |
5629 PIPE_CONTROL_RENDER_TARGET_FLUSH)));
5630 }
5631
5632 /* PIPE_CONTROL page workarounds ------------------------------------- */
5633
5634 if (GEN_GEN <= 8 && (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE)) {
5635 /* From the PIPE_CONTROL page itself:
5636 *
5637 * "IVB, HSW, BDW
5638 * Restriction: Pipe_control with CS-stall bit set must be issued
5639 * before a pipe-control command that has the State Cache
5640 * Invalidate bit set."
5641 */
5642 flags |= PIPE_CONTROL_CS_STALL;
5643 }
5644
5645 if (flags & PIPE_CONTROL_FLUSH_LLC) {
5646 /* From the PIPE_CONTROL instruction table, bit 26 (Flush LLC):
5647 *
5648 * "Project: ALL
5649 * SW must always program Post-Sync Operation to "Write Immediate
5650 * Data" when Flush LLC is set."
5651 *
5652 * For now, we just require the caller to do it.
5653 */
5654 assert(flags & PIPE_CONTROL_WRITE_IMMEDIATE);
5655 }
5656
5657 /* "Post-Sync Operation" workarounds -------------------------------- */
5658
5659 /* Project: All / Argument: Global Snapshot Count Reset [19]
5660 *
5661 * "This bit must not be exercised on any product.
5662 * Requires stall bit ([20] of DW1) set."
5663 *
5664 * We don't use this, so we just assert that it isn't used. The
5665 * PIPE_CONTROL instruction page indicates that they intended this
5666 * as a debug feature and don't think it is useful in production,
5667 * but it may actually be usable, should we ever want to.
5668 */
5669 assert((flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) == 0);
5670
5671 if (flags & (PIPE_CONTROL_MEDIA_STATE_CLEAR |
5672 PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE)) {
5673 /* Project: All / Arguments:
5674 *
5675 * - Generic Media State Clear [16]
5676 * - Indirect State Pointers Disable [16]
5677 *
5678 * "Requires stall bit ([20] of DW1) set."
5679 *
5680 * Also, the PIPE_CONTROL instruction table, bit 16 (Generic Media
5681 * State Clear) says:
5682 *
5683 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
5684 * programmed prior to programming a PIPECONTROL command with "Media
5685 * State Clear" set in GPGPU mode of operation"
5686 *
5687 * This is a subset of the earlier rule, so there's nothing to do.
5688 */
5689 flags |= PIPE_CONTROL_CS_STALL;
5690 }
5691
5692 if (flags & PIPE_CONTROL_STORE_DATA_INDEX) {
5693 /* Project: All / Argument: Store Data Index
5694 *
5695 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
5696 * than '0'."
5697 *
5698 * For now, we just assert that the caller does this. We might want to
5699 * automatically add a write to the workaround BO...
5700 */
5701 assert(non_lri_post_sync_flags != 0);
5702 }
5703
5704 if (flags & PIPE_CONTROL_SYNC_GFDT) {
5705 /* Project: All / Argument: Sync GFDT
5706 *
5707 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
5708 * than '0' or 0x2520[13] must be set."
5709 *
5710 * For now, we just assert that the caller does this.
5711 */
5712 assert(non_lri_post_sync_flags != 0);
5713 }
5714
5715 if (flags & PIPE_CONTROL_TLB_INVALIDATE) {
5716 /* Project: IVB+ / Argument: TLB inv
5717 *
5718 * "Requires stall bit ([20] of DW1) set."
5719 *
5720 * Also, from the PIPE_CONTROL instruction table:
5721 *
5722 * "Project: SKL+
5723 * Post Sync Operation or CS stall must be set to ensure a TLB
5724 * invalidation occurs. Otherwise no cycle will occur to the TLB
5725 * cache to invalidate."
5726 *
5727 * This is not a subset of the earlier rule, so there's nothing to do.
5728 */
5729 flags |= PIPE_CONTROL_CS_STALL;
5730 }
5731
5732 if (GEN_GEN == 9 && devinfo->gt == 4) {
5733 /* TODO: The big Skylake GT4 post sync op workaround */
5734 }
5735
5736 /* "GPGPU specific workarounds" (both post-sync and flush) ------------ */
5737
5738 if (IS_COMPUTE_PIPELINE(batch)) {
5739 if (GEN_GEN >= 9 && (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE)) {
5740 /* Project: SKL+ / Argument: Tex Invalidate
5741 * "Requires stall bit ([20] of DW) set for all GPGPU Workloads."
5742 */
5743 flags |= PIPE_CONTROL_CS_STALL;
5744 }
5745
5746 if (GEN_GEN == 8 && (post_sync_flags ||
5747 (flags & (PIPE_CONTROL_NOTIFY_ENABLE |
5748 PIPE_CONTROL_DEPTH_STALL |
5749 PIPE_CONTROL_RENDER_TARGET_FLUSH |
5750 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
5751 PIPE_CONTROL_DATA_CACHE_FLUSH)))) {
5752 /* Project: BDW / Arguments:
5753 *
5754 * - LRI Post Sync Operation [23]
5755 * - Post Sync Op [15:14]
5756 * - Notify En [8]
5757 * - Depth Stall [13]
5758 * - Render Target Cache Flush [12]
5759 * - Depth Cache Flush [0]
5760 * - DC Flush Enable [5]
5761 *
5762 * "Requires stall bit ([20] of DW) set for all GPGPU and Media
5763 * Workloads."
5764 */
5765 flags |= PIPE_CONTROL_CS_STALL;
5766
5767 /* Also, from the PIPE_CONTROL instruction table, bit 20:
5768 *
5769 * "Project: BDW
5770 * This bit must be always set when PIPE_CONTROL command is
5771 * programmed by GPGPU and MEDIA workloads, except for the cases
5772 * when only Read Only Cache Invalidation bits are set (State
5773 * Cache Invalidation Enable, Instruction cache Invalidation
5774 * Enable, Texture Cache Invalidation Enable, Constant Cache
5775 * Invalidation Enable). This is to WA FFDOP CG issue, this WA
5776 * need not implemented when FF_DOP_CG is disable via "Fixed
5777 * Function DOP Clock Gate Disable" bit in RC_PSMI_CTRL register."
5778 *
5779 * It sounds like we could avoid CS stalls in some cases, but we
5780 * don't currently bother. This list isn't exactly the list above,
5781 * either...
5782 */
5783 }
5784 }
5785
5786 /* "Stall" workarounds ----------------------------------------------
5787 * These have to come after the earlier ones because we may have added
5788 * some additional CS stalls above.
5789 */
5790
5791 if (GEN_GEN < 9 && (flags & PIPE_CONTROL_CS_STALL)) {
5792 /* Project: PRE-SKL, VLV, CHV
5793 *
5794 * "[All Stepping][All SKUs]:
5795 *
5796 * One of the following must also be set:
5797 *
5798 * - Render Target Cache Flush Enable ([12] of DW1)
5799 * - Depth Cache Flush Enable ([0] of DW1)
5800 * - Stall at Pixel Scoreboard ([1] of DW1)
5801 * - Depth Stall ([13] of DW1)
5802 * - Post-Sync Operation ([13] of DW1)
5803 * - DC Flush Enable ([5] of DW1)"
5804 *
5805 * If we don't already have one of those bits set, we choose to add
5806 * "Stall at Pixel Scoreboard". Some of the other bits require a
5807 * CS stall as a workaround (see above), which would send us into
5808 * an infinite recursion of PIPE_CONTROLs. "Stall at Pixel Scoreboard"
5809 * appears to be safe, so we choose that.
5810 */
5811 const uint32_t wa_bits = PIPE_CONTROL_RENDER_TARGET_FLUSH |
5812 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
5813 PIPE_CONTROL_WRITE_IMMEDIATE |
5814 PIPE_CONTROL_WRITE_DEPTH_COUNT |
5815 PIPE_CONTROL_WRITE_TIMESTAMP |
5816 PIPE_CONTROL_STALL_AT_SCOREBOARD |
5817 PIPE_CONTROL_DEPTH_STALL |
5818 PIPE_CONTROL_DATA_CACHE_FLUSH;
5819 if (!(flags & wa_bits))
5820 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
5821 }
5822
5823 /* Emit --------------------------------------------------------------- */
5824
5825 iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
5826 pc.LRIPostSyncOperation = NoLRIOperation;
5827 pc.PipeControlFlushEnable = flags & PIPE_CONTROL_FLUSH_ENABLE;
5828 pc.DCFlushEnable = flags & PIPE_CONTROL_DATA_CACHE_FLUSH;
5829 pc.StoreDataIndex = 0;
5830 pc.CommandStreamerStallEnable = flags & PIPE_CONTROL_CS_STALL;
5831 pc.GlobalSnapshotCountReset =
5832 flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET;
5833 pc.TLBInvalidate = flags & PIPE_CONTROL_TLB_INVALIDATE;
5834 pc.GenericMediaStateClear = flags & PIPE_CONTROL_MEDIA_STATE_CLEAR;
5835 pc.StallAtPixelScoreboard = flags & PIPE_CONTROL_STALL_AT_SCOREBOARD;
5836 pc.RenderTargetCacheFlushEnable =
5837 flags & PIPE_CONTROL_RENDER_TARGET_FLUSH;
5838 pc.DepthCacheFlushEnable = flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH;
5839 pc.StateCacheInvalidationEnable =
5840 flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE;
5841 pc.VFCacheInvalidationEnable = flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
5842 pc.ConstantCacheInvalidationEnable =
5843 flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE;
5844 pc.PostSyncOperation = flags_to_post_sync_op(flags);
5845 pc.DepthStallEnable = flags & PIPE_CONTROL_DEPTH_STALL;
5846 pc.InstructionCacheInvalidateEnable =
5847 flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE;
5848 pc.NotifyEnable = flags & PIPE_CONTROL_NOTIFY_ENABLE;
5849 pc.IndirectStatePointersDisable =
5850 flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE;
5851 pc.TextureCacheInvalidationEnable =
5852 flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
5853 pc.Address = rw_bo(bo, offset);
5854 pc.ImmediateData = imm;
5855 }
5856 }
5857
5858 void
5859 genX(emit_urb_setup)(struct iris_context *ice,
5860 struct iris_batch *batch,
5861 const unsigned size[4],
5862 bool tess_present, bool gs_present)
5863 {
5864 const struct gen_device_info *devinfo = &batch->screen->devinfo;
5865 const unsigned push_size_kB = 32;
5866 unsigned entries[4];
5867 unsigned start[4];
5868
5869 gen_get_urb_config(devinfo, 1024 * push_size_kB,
5870 1024 * ice->shaders.urb_size,
5871 tess_present, gs_present,
5872 size, entries, start);
5873
5874 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
5875 iris_emit_cmd(batch, GENX(3DSTATE_URB_VS), urb) {
5876 urb._3DCommandSubOpcode += i;
5877 urb.VSURBStartingAddress = start[i];
5878 urb.VSURBEntryAllocationSize = size[i] - 1;
5879 urb.VSNumberofURBEntries = entries[i];
5880 }
5881 }
5882 }
5883
5884 void
5885 genX(init_state)(struct iris_context *ice)
5886 {
5887 struct pipe_context *ctx = &ice->ctx;
5888 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
5889
5890 ctx->create_blend_state = iris_create_blend_state;
5891 ctx->create_depth_stencil_alpha_state = iris_create_zsa_state;
5892 ctx->create_rasterizer_state = iris_create_rasterizer_state;
5893 ctx->create_sampler_state = iris_create_sampler_state;
5894 ctx->create_sampler_view = iris_create_sampler_view;
5895 ctx->create_surface = iris_create_surface;
5896 ctx->create_vertex_elements_state = iris_create_vertex_elements;
5897 ctx->bind_blend_state = iris_bind_blend_state;
5898 ctx->bind_depth_stencil_alpha_state = iris_bind_zsa_state;
5899 ctx->bind_sampler_states = iris_bind_sampler_states;
5900 ctx->bind_rasterizer_state = iris_bind_rasterizer_state;
5901 ctx->bind_vertex_elements_state = iris_bind_vertex_elements_state;
5902 ctx->delete_blend_state = iris_delete_state;
5903 ctx->delete_depth_stencil_alpha_state = iris_delete_state;
5904 ctx->delete_rasterizer_state = iris_delete_state;
5905 ctx->delete_sampler_state = iris_delete_state;
5906 ctx->delete_vertex_elements_state = iris_delete_state;
5907 ctx->set_blend_color = iris_set_blend_color;
5908 ctx->set_clip_state = iris_set_clip_state;
5909 ctx->set_constant_buffer = iris_set_constant_buffer;
5910 ctx->set_shader_buffers = iris_set_shader_buffers;
5911 ctx->set_shader_images = iris_set_shader_images;
5912 ctx->set_sampler_views = iris_set_sampler_views;
5913 ctx->set_tess_state = iris_set_tess_state;
5914 ctx->set_framebuffer_state = iris_set_framebuffer_state;
5915 ctx->set_polygon_stipple = iris_set_polygon_stipple;
5916 ctx->set_sample_mask = iris_set_sample_mask;
5917 ctx->set_scissor_states = iris_set_scissor_states;
5918 ctx->set_stencil_ref = iris_set_stencil_ref;
5919 ctx->set_vertex_buffers = iris_set_vertex_buffers;
5920 ctx->set_viewport_states = iris_set_viewport_states;
5921 ctx->sampler_view_destroy = iris_sampler_view_destroy;
5922 ctx->surface_destroy = iris_surface_destroy;
5923 ctx->draw_vbo = iris_draw_vbo;
5924 ctx->launch_grid = iris_launch_grid;
5925 ctx->create_stream_output_target = iris_create_stream_output_target;
5926 ctx->stream_output_target_destroy = iris_stream_output_target_destroy;
5927 ctx->set_stream_output_targets = iris_set_stream_output_targets;
5928
5929 ice->vtbl.destroy_state = iris_destroy_state;
5930 ice->vtbl.init_render_context = iris_init_render_context;
5931 ice->vtbl.init_compute_context = iris_init_compute_context;
5932 ice->vtbl.upload_render_state = iris_upload_render_state;
5933 ice->vtbl.update_surface_base_address = iris_update_surface_base_address;
5934 ice->vtbl.upload_compute_state = iris_upload_compute_state;
5935 ice->vtbl.emit_raw_pipe_control = iris_emit_raw_pipe_control;
5936 ice->vtbl.load_register_reg32 = iris_load_register_reg32;
5937 ice->vtbl.load_register_reg64 = iris_load_register_reg64;
5938 ice->vtbl.load_register_imm32 = iris_load_register_imm32;
5939 ice->vtbl.load_register_imm64 = iris_load_register_imm64;
5940 ice->vtbl.load_register_mem32 = iris_load_register_mem32;
5941 ice->vtbl.load_register_mem64 = iris_load_register_mem64;
5942 ice->vtbl.store_register_mem32 = iris_store_register_mem32;
5943 ice->vtbl.store_register_mem64 = iris_store_register_mem64;
5944 ice->vtbl.store_data_imm32 = iris_store_data_imm32;
5945 ice->vtbl.store_data_imm64 = iris_store_data_imm64;
5946 ice->vtbl.copy_mem_mem = iris_copy_mem_mem;
5947 ice->vtbl.derived_program_state_size = iris_derived_program_state_size;
5948 ice->vtbl.store_derived_program_state = iris_store_derived_program_state;
5949 ice->vtbl.create_so_decl_list = iris_create_so_decl_list;
5950 ice->vtbl.populate_vs_key = iris_populate_vs_key;
5951 ice->vtbl.populate_tcs_key = iris_populate_tcs_key;
5952 ice->vtbl.populate_tes_key = iris_populate_tes_key;
5953 ice->vtbl.populate_gs_key = iris_populate_gs_key;
5954 ice->vtbl.populate_fs_key = iris_populate_fs_key;
5955 ice->vtbl.populate_cs_key = iris_populate_cs_key;
5956 ice->vtbl.mocs = mocs;
5957
5958 ice->state.dirty = ~0ull;
5959
5960 ice->state.statistics_counters_enabled = true;
5961
5962 ice->state.sample_mask = 0xffff;
5963 ice->state.num_viewports = 1;
5964 ice->state.genx = calloc(1, sizeof(struct iris_genx_state));
5965
5966 /* Make a 1x1x1 null surface for unbound textures */
5967 void *null_surf_map =
5968 upload_state(ice->state.surface_uploader, &ice->state.unbound_tex,
5969 4 * GENX(RENDER_SURFACE_STATE_length), 64);
5970 isl_null_fill_state(&screen->isl_dev, null_surf_map, isl_extent3d(1, 1, 1));
5971 ice->state.unbound_tex.offset +=
5972 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.unbound_tex.res));
5973
5974 /* Default all scissor rectangles to be empty regions. */
5975 for (int i = 0; i < IRIS_MAX_VIEWPORTS; i++) {
5976 ice->state.scissors[i] = (struct pipe_scissor_state) {
5977 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
5978 };
5979 }
5980 }