iris: Clamp viewport extents to the framebuffer dimensions
[mesa.git] / src / gallium / drivers / iris / iris_state.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included
12 * in all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
21 */
22
23 /**
24 * @file iris_state.c
25 *
26 * ============================= GENXML CODE =============================
27 * [This file is compiled once per generation.]
28 * =======================================================================
29 *
30 * This is the main state upload code.
31 *
32 * Gallium uses Constant State Objects, or CSOs, for most state. Large,
33 * complex, or highly reusable state can be created once, and bound and
34 * rebound multiple times. This is modeled with the pipe->create_*_state()
35 * and pipe->bind_*_state() hooks. Highly dynamic or inexpensive state is
36 * streamed out on the fly, via pipe->set_*_state() hooks.
37 *
38 * OpenGL involves frequently mutating context state, which is mirrored in
39 * core Mesa by highly mutable data structures. However, most applications
40 * typically draw the same things over and over - from frame to frame, most
41 * of the same objects are still visible and need to be redrawn. So, rather
42 * than inventing new state all the time, applications usually mutate to swap
43 * between known states that we've seen before.
44 *
45 * Gallium isolates us from this mutation by tracking API state, and
46 * distilling it into a set of Constant State Objects, or CSOs. Large,
47 * complex, or typically reusable state can be created once, then reused
48 * multiple times. Drivers can create and store their own associated data.
49 * This create/bind model corresponds to the pipe->create_*_state() and
50 * pipe->bind_*_state() driver hooks.
51 *
52 * Some state is cheap to create, or expected to be highly dynamic. Rather
53 * than creating and caching piles of CSOs for these, Gallium simply streams
54 * them out, via the pipe->set_*_state() driver hooks.
55 *
56 * To reduce draw time overhead, we try to compute as much state at create
57 * time as possible. Wherever possible, we translate the Gallium pipe state
58 * to 3DSTATE commands, and store those commands in the CSO. At draw time,
59 * we can simply memcpy them into a batch buffer.
60 *
61 * No hardware matches the abstraction perfectly, so some commands require
62 * information from multiple CSOs. In this case, we can store two copies
63 * of the packet (one in each CSO), and simply | together their DWords at
64 * draw time. Sometimes the second set is trivial (one or two fields), so
65 * we simply pack it at draw time.
66 *
67 * There are two main components in the file below. First, the CSO hooks
68 * create/bind/track state. The second are the draw-time upload functions,
69 * iris_upload_render_state() and iris_upload_compute_state(), which read
70 * the context state and emit the commands into the actual batch.
71 */
72
73 #include <stdio.h>
74 #include <errno.h>
75
76 #if HAVE_VALGRIND
77 #include <valgrind.h>
78 #include <memcheck.h>
79 #define VG(x) x
80 #ifndef NDEBUG
81 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
82 #endif
83 #else
84 #define VG(x)
85 #endif
86
87 #include "pipe/p_defines.h"
88 #include "pipe/p_state.h"
89 #include "pipe/p_context.h"
90 #include "pipe/p_screen.h"
91 #include "util/u_inlines.h"
92 #include "util/u_format.h"
93 #include "util/u_framebuffer.h"
94 #include "util/u_transfer.h"
95 #include "util/u_upload_mgr.h"
96 #include "util/u_viewport.h"
97 #include "i915_drm.h"
98 #include "nir.h"
99 #include "intel/compiler/brw_compiler.h"
100 #include "intel/common/gen_l3_config.h"
101 #include "intel/common/gen_sample_positions.h"
102 #include "iris_batch.h"
103 #include "iris_context.h"
104 #include "iris_pipe.h"
105 #include "iris_resource.h"
106
107 #define __gen_address_type struct iris_address
108 #define __gen_user_data struct iris_batch
109
110 #define ARRAY_BYTES(x) (sizeof(uint32_t) * ARRAY_SIZE(x))
111
112 static uint64_t
113 __gen_combine_address(struct iris_batch *batch, void *location,
114 struct iris_address addr, uint32_t delta)
115 {
116 uint64_t result = addr.offset + delta;
117
118 if (addr.bo) {
119 iris_use_pinned_bo(batch, addr.bo, addr.write);
120 /* Assume this is a general address, not relative to a base. */
121 result += addr.bo->gtt_offset;
122 }
123
124 return result;
125 }
126
127 #define __genxml_cmd_length(cmd) cmd ## _length
128 #define __genxml_cmd_length_bias(cmd) cmd ## _length_bias
129 #define __genxml_cmd_header(cmd) cmd ## _header
130 #define __genxml_cmd_pack(cmd) cmd ## _pack
131
132 #define _iris_pack_command(batch, cmd, dst, name) \
133 for (struct cmd name = { __genxml_cmd_header(cmd) }, \
134 *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
135 ({ __genxml_cmd_pack(cmd)(batch, (void *)_dst, &name); \
136 _dst = NULL; \
137 }))
138
139 #define iris_pack_command(cmd, dst, name) \
140 _iris_pack_command(NULL, cmd, dst, name)
141
142 #define iris_pack_state(cmd, dst, name) \
143 for (struct cmd name = {}, \
144 *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
145 __genxml_cmd_pack(cmd)(NULL, (void *)_dst, &name), \
146 _dst = NULL)
147
148 #define iris_emit_cmd(batch, cmd, name) \
149 _iris_pack_command(batch, cmd, iris_get_command_space(batch, 4 * __genxml_cmd_length(cmd)), name)
150
151 #define iris_emit_merge(batch, dwords0, dwords1, num_dwords) \
152 do { \
153 uint32_t *dw = iris_get_command_space(batch, 4 * num_dwords); \
154 for (uint32_t i = 0; i < num_dwords; i++) \
155 dw[i] = (dwords0)[i] | (dwords1)[i]; \
156 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, num_dwords)); \
157 } while (0)
158
159 #include "genxml/genX_pack.h"
160 #include "genxml/gen_macros.h"
161 #include "genxml/genX_bits.h"
162
163 #define MOCS_WB (2 << 1)
164
165 /**
166 * Statically assert that PIPE_* enums match the hardware packets.
167 * (As long as they match, we don't need to translate them.)
168 */
169 UNUSED static void pipe_asserts()
170 {
171 #define PIPE_ASSERT(x) STATIC_ASSERT((int)x)
172
173 /* pipe_logicop happens to match the hardware. */
174 PIPE_ASSERT(PIPE_LOGICOP_CLEAR == LOGICOP_CLEAR);
175 PIPE_ASSERT(PIPE_LOGICOP_NOR == LOGICOP_NOR);
176 PIPE_ASSERT(PIPE_LOGICOP_AND_INVERTED == LOGICOP_AND_INVERTED);
177 PIPE_ASSERT(PIPE_LOGICOP_COPY_INVERTED == LOGICOP_COPY_INVERTED);
178 PIPE_ASSERT(PIPE_LOGICOP_AND_REVERSE == LOGICOP_AND_REVERSE);
179 PIPE_ASSERT(PIPE_LOGICOP_INVERT == LOGICOP_INVERT);
180 PIPE_ASSERT(PIPE_LOGICOP_XOR == LOGICOP_XOR);
181 PIPE_ASSERT(PIPE_LOGICOP_NAND == LOGICOP_NAND);
182 PIPE_ASSERT(PIPE_LOGICOP_AND == LOGICOP_AND);
183 PIPE_ASSERT(PIPE_LOGICOP_EQUIV == LOGICOP_EQUIV);
184 PIPE_ASSERT(PIPE_LOGICOP_NOOP == LOGICOP_NOOP);
185 PIPE_ASSERT(PIPE_LOGICOP_OR_INVERTED == LOGICOP_OR_INVERTED);
186 PIPE_ASSERT(PIPE_LOGICOP_COPY == LOGICOP_COPY);
187 PIPE_ASSERT(PIPE_LOGICOP_OR_REVERSE == LOGICOP_OR_REVERSE);
188 PIPE_ASSERT(PIPE_LOGICOP_OR == LOGICOP_OR);
189 PIPE_ASSERT(PIPE_LOGICOP_SET == LOGICOP_SET);
190
191 /* pipe_blend_func happens to match the hardware. */
192 PIPE_ASSERT(PIPE_BLENDFACTOR_ONE == BLENDFACTOR_ONE);
193 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_COLOR == BLENDFACTOR_SRC_COLOR);
194 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA == BLENDFACTOR_SRC_ALPHA);
195 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_ALPHA == BLENDFACTOR_DST_ALPHA);
196 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_COLOR == BLENDFACTOR_DST_COLOR);
197 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE == BLENDFACTOR_SRC_ALPHA_SATURATE);
198 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_COLOR == BLENDFACTOR_CONST_COLOR);
199 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_ALPHA == BLENDFACTOR_CONST_ALPHA);
200 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_COLOR == BLENDFACTOR_SRC1_COLOR);
201 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_ALPHA == BLENDFACTOR_SRC1_ALPHA);
202 PIPE_ASSERT(PIPE_BLENDFACTOR_ZERO == BLENDFACTOR_ZERO);
203 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_COLOR == BLENDFACTOR_INV_SRC_COLOR);
204 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_ALPHA == BLENDFACTOR_INV_SRC_ALPHA);
205 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_ALPHA == BLENDFACTOR_INV_DST_ALPHA);
206 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_COLOR == BLENDFACTOR_INV_DST_COLOR);
207 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_COLOR == BLENDFACTOR_INV_CONST_COLOR);
208 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_ALPHA == BLENDFACTOR_INV_CONST_ALPHA);
209 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_COLOR == BLENDFACTOR_INV_SRC1_COLOR);
210 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_ALPHA == BLENDFACTOR_INV_SRC1_ALPHA);
211
212 /* pipe_blend_func happens to match the hardware. */
213 PIPE_ASSERT(PIPE_BLEND_ADD == BLENDFUNCTION_ADD);
214 PIPE_ASSERT(PIPE_BLEND_SUBTRACT == BLENDFUNCTION_SUBTRACT);
215 PIPE_ASSERT(PIPE_BLEND_REVERSE_SUBTRACT == BLENDFUNCTION_REVERSE_SUBTRACT);
216 PIPE_ASSERT(PIPE_BLEND_MIN == BLENDFUNCTION_MIN);
217 PIPE_ASSERT(PIPE_BLEND_MAX == BLENDFUNCTION_MAX);
218
219 /* pipe_stencil_op happens to match the hardware. */
220 PIPE_ASSERT(PIPE_STENCIL_OP_KEEP == STENCILOP_KEEP);
221 PIPE_ASSERT(PIPE_STENCIL_OP_ZERO == STENCILOP_ZERO);
222 PIPE_ASSERT(PIPE_STENCIL_OP_REPLACE == STENCILOP_REPLACE);
223 PIPE_ASSERT(PIPE_STENCIL_OP_INCR == STENCILOP_INCRSAT);
224 PIPE_ASSERT(PIPE_STENCIL_OP_DECR == STENCILOP_DECRSAT);
225 PIPE_ASSERT(PIPE_STENCIL_OP_INCR_WRAP == STENCILOP_INCR);
226 PIPE_ASSERT(PIPE_STENCIL_OP_DECR_WRAP == STENCILOP_DECR);
227 PIPE_ASSERT(PIPE_STENCIL_OP_INVERT == STENCILOP_INVERT);
228
229 /* pipe_sprite_coord_mode happens to match 3DSTATE_SBE */
230 PIPE_ASSERT(PIPE_SPRITE_COORD_UPPER_LEFT == UPPERLEFT);
231 PIPE_ASSERT(PIPE_SPRITE_COORD_LOWER_LEFT == LOWERLEFT);
232 #undef PIPE_ASSERT
233 }
234
235 static unsigned
236 translate_prim_type(enum pipe_prim_type prim, uint8_t verts_per_patch)
237 {
238 static const unsigned map[] = {
239 [PIPE_PRIM_POINTS] = _3DPRIM_POINTLIST,
240 [PIPE_PRIM_LINES] = _3DPRIM_LINELIST,
241 [PIPE_PRIM_LINE_LOOP] = _3DPRIM_LINELOOP,
242 [PIPE_PRIM_LINE_STRIP] = _3DPRIM_LINESTRIP,
243 [PIPE_PRIM_TRIANGLES] = _3DPRIM_TRILIST,
244 [PIPE_PRIM_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
245 [PIPE_PRIM_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
246 [PIPE_PRIM_QUADS] = _3DPRIM_QUADLIST,
247 [PIPE_PRIM_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
248 [PIPE_PRIM_POLYGON] = _3DPRIM_POLYGON,
249 [PIPE_PRIM_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
250 [PIPE_PRIM_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
251 [PIPE_PRIM_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
252 [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
253 [PIPE_PRIM_PATCHES] = _3DPRIM_PATCHLIST_1 - 1,
254 };
255
256 return map[prim] + (prim == PIPE_PRIM_PATCHES ? verts_per_patch : 0);
257 }
258
259 static unsigned
260 translate_compare_func(enum pipe_compare_func pipe_func)
261 {
262 static const unsigned map[] = {
263 [PIPE_FUNC_NEVER] = COMPAREFUNCTION_NEVER,
264 [PIPE_FUNC_LESS] = COMPAREFUNCTION_LESS,
265 [PIPE_FUNC_EQUAL] = COMPAREFUNCTION_EQUAL,
266 [PIPE_FUNC_LEQUAL] = COMPAREFUNCTION_LEQUAL,
267 [PIPE_FUNC_GREATER] = COMPAREFUNCTION_GREATER,
268 [PIPE_FUNC_NOTEQUAL] = COMPAREFUNCTION_NOTEQUAL,
269 [PIPE_FUNC_GEQUAL] = COMPAREFUNCTION_GEQUAL,
270 [PIPE_FUNC_ALWAYS] = COMPAREFUNCTION_ALWAYS,
271 };
272 return map[pipe_func];
273 }
274
275 static unsigned
276 translate_shadow_func(enum pipe_compare_func pipe_func)
277 {
278 /* Gallium specifies the result of shadow comparisons as:
279 *
280 * 1 if ref <op> texel,
281 * 0 otherwise.
282 *
283 * The hardware does:
284 *
285 * 0 if texel <op> ref,
286 * 1 otherwise.
287 *
288 * So we need to flip the operator and also negate.
289 */
290 static const unsigned map[] = {
291 [PIPE_FUNC_NEVER] = PREFILTEROPALWAYS,
292 [PIPE_FUNC_LESS] = PREFILTEROPLEQUAL,
293 [PIPE_FUNC_EQUAL] = PREFILTEROPNOTEQUAL,
294 [PIPE_FUNC_LEQUAL] = PREFILTEROPLESS,
295 [PIPE_FUNC_GREATER] = PREFILTEROPGEQUAL,
296 [PIPE_FUNC_NOTEQUAL] = PREFILTEROPEQUAL,
297 [PIPE_FUNC_GEQUAL] = PREFILTEROPGREATER,
298 [PIPE_FUNC_ALWAYS] = PREFILTEROPNEVER,
299 };
300 return map[pipe_func];
301 }
302
303 static unsigned
304 translate_cull_mode(unsigned pipe_face)
305 {
306 static const unsigned map[4] = {
307 [PIPE_FACE_NONE] = CULLMODE_NONE,
308 [PIPE_FACE_FRONT] = CULLMODE_FRONT,
309 [PIPE_FACE_BACK] = CULLMODE_BACK,
310 [PIPE_FACE_FRONT_AND_BACK] = CULLMODE_BOTH,
311 };
312 return map[pipe_face];
313 }
314
315 static unsigned
316 translate_fill_mode(unsigned pipe_polymode)
317 {
318 static const unsigned map[4] = {
319 [PIPE_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
320 [PIPE_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
321 [PIPE_POLYGON_MODE_POINT] = FILL_MODE_POINT,
322 [PIPE_POLYGON_MODE_FILL_RECTANGLE] = FILL_MODE_SOLID,
323 };
324 return map[pipe_polymode];
325 }
326
327 static unsigned
328 translate_mip_filter(enum pipe_tex_mipfilter pipe_mip)
329 {
330 static const unsigned map[] = {
331 [PIPE_TEX_MIPFILTER_NEAREST] = MIPFILTER_NEAREST,
332 [PIPE_TEX_MIPFILTER_LINEAR] = MIPFILTER_LINEAR,
333 [PIPE_TEX_MIPFILTER_NONE] = MIPFILTER_NONE,
334 };
335 return map[pipe_mip];
336 }
337
338 static uint32_t
339 translate_wrap(unsigned pipe_wrap)
340 {
341 static const unsigned map[] = {
342 [PIPE_TEX_WRAP_REPEAT] = TCM_WRAP,
343 [PIPE_TEX_WRAP_CLAMP] = TCM_HALF_BORDER,
344 [PIPE_TEX_WRAP_CLAMP_TO_EDGE] = TCM_CLAMP,
345 [PIPE_TEX_WRAP_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER,
346 [PIPE_TEX_WRAP_MIRROR_REPEAT] = TCM_MIRROR,
347 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE,
348
349 /* These are unsupported. */
350 [PIPE_TEX_WRAP_MIRROR_CLAMP] = -1,
351 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER] = -1,
352 };
353 return map[pipe_wrap];
354 }
355
356 static struct iris_address
357 ro_bo(struct iris_bo *bo, uint64_t offset)
358 {
359 /* CSOs must pass NULL for bo! Otherwise it will add the BO to the
360 * validation list at CSO creation time, instead of draw time.
361 */
362 return (struct iris_address) { .bo = bo, .offset = offset };
363 }
364
365 static struct iris_address
366 rw_bo(struct iris_bo *bo, uint64_t offset)
367 {
368 /* CSOs must pass NULL for bo! Otherwise it will add the BO to the
369 * validation list at CSO creation time, instead of draw time.
370 */
371 return (struct iris_address) { .bo = bo, .offset = offset, .write = true };
372 }
373
374 /**
375 * Allocate space for some indirect state.
376 *
377 * Return a pointer to the map (to fill it out) and a state ref (for
378 * referring to the state in GPU commands).
379 */
380 static void *
381 upload_state(struct u_upload_mgr *uploader,
382 struct iris_state_ref *ref,
383 unsigned size,
384 unsigned alignment)
385 {
386 void *p = NULL;
387 u_upload_alloc(uploader, 0, size, alignment, &ref->offset, &ref->res, &p);
388 return p;
389 }
390
391 /**
392 * Stream out temporary/short-lived state.
393 *
394 * This allocates space, pins the BO, and includes the BO address in the
395 * returned offset (which works because all state lives in 32-bit memory
396 * zones).
397 */
398 static uint32_t *
399 stream_state(struct iris_batch *batch,
400 struct u_upload_mgr *uploader,
401 struct pipe_resource **out_res,
402 unsigned size,
403 unsigned alignment,
404 uint32_t *out_offset)
405 {
406 void *ptr = NULL;
407
408 u_upload_alloc(uploader, 0, size, alignment, out_offset, out_res, &ptr);
409
410 struct iris_bo *bo = iris_resource_bo(*out_res);
411 iris_use_pinned_bo(batch, bo, false);
412
413 *out_offset += iris_bo_offset_from_base_address(bo);
414
415 return ptr;
416 }
417
418 /**
419 * stream_state() + memcpy.
420 */
421 static uint32_t
422 emit_state(struct iris_batch *batch,
423 struct u_upload_mgr *uploader,
424 struct pipe_resource **out_res,
425 const void *data,
426 unsigned size,
427 unsigned alignment)
428 {
429 unsigned offset = 0;
430 uint32_t *map =
431 stream_state(batch, uploader, out_res, size, alignment, &offset);
432
433 if (map)
434 memcpy(map, data, size);
435
436 return offset;
437 }
438
439 /**
440 * Did field 'x' change between 'old_cso' and 'new_cso'?
441 *
442 * (If so, we may want to set some dirty flags.)
443 */
444 #define cso_changed(x) (!old_cso || (old_cso->x != new_cso->x))
445 #define cso_changed_memcmp(x) \
446 (!old_cso || memcmp(old_cso->x, new_cso->x, sizeof(old_cso->x)) != 0)
447
448 static void
449 flush_for_state_base_change(struct iris_batch *batch)
450 {
451 /* Flush before emitting STATE_BASE_ADDRESS.
452 *
453 * This isn't documented anywhere in the PRM. However, it seems to be
454 * necessary prior to changing the surface state base adress. We've
455 * seen issues in Vulkan where we get GPU hangs when using multi-level
456 * command buffers which clear depth, reset state base address, and then
457 * go render stuff.
458 *
459 * Normally, in GL, we would trust the kernel to do sufficient stalls
460 * and flushes prior to executing our batch. However, it doesn't seem
461 * as if the kernel's flushing is always sufficient and we don't want to
462 * rely on it.
463 *
464 * We make this an end-of-pipe sync instead of a normal flush because we
465 * do not know the current status of the GPU. On Haswell at least,
466 * having a fast-clear operation in flight at the same time as a normal
467 * rendering operation can cause hangs. Since the kernel's flushing is
468 * insufficient, we need to ensure that any rendering operations from
469 * other processes are definitely complete before we try to do our own
470 * rendering. It's a bit of a big hammer but it appears to work.
471 */
472 iris_emit_end_of_pipe_sync(batch,
473 PIPE_CONTROL_RENDER_TARGET_FLUSH |
474 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
475 PIPE_CONTROL_DATA_CACHE_FLUSH);
476 }
477
478 static void
479 _iris_emit_lri(struct iris_batch *batch, uint32_t reg, uint32_t val)
480 {
481 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
482 lri.RegisterOffset = reg;
483 lri.DataDWord = val;
484 }
485 }
486 #define iris_emit_lri(b, r, v) _iris_emit_lri(b, GENX(r##_num), v)
487
488 static void
489 _iris_emit_lrr(struct iris_batch *batch, uint32_t src, uint32_t dst)
490 {
491 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
492 lrr.SourceRegisterAddress = src;
493 lrr.DestinationRegisterAddress = dst;
494 }
495 }
496
497 static void
498 emit_pipeline_select(struct iris_batch *batch, uint32_t pipeline)
499 {
500 #if GEN_GEN >= 8 && GEN_GEN < 10
501 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
502 *
503 * Software must clear the COLOR_CALC_STATE Valid field in
504 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
505 * with Pipeline Select set to GPGPU.
506 *
507 * The internal hardware docs recommend the same workaround for Gen9
508 * hardware too.
509 */
510 if (pipeline == GPGPU)
511 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
512 #endif
513
514
515 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
516 * PIPELINE_SELECT [DevBWR+]":
517 *
518 * "Project: DEVSNB+
519 *
520 * Software must ensure all the write caches are flushed through a
521 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
522 * command to invalidate read only caches prior to programming
523 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode."
524 */
525 iris_emit_pipe_control_flush(batch,
526 PIPE_CONTROL_RENDER_TARGET_FLUSH |
527 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
528 PIPE_CONTROL_DATA_CACHE_FLUSH |
529 PIPE_CONTROL_CS_STALL);
530
531 iris_emit_pipe_control_flush(batch,
532 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
533 PIPE_CONTROL_CONST_CACHE_INVALIDATE |
534 PIPE_CONTROL_STATE_CACHE_INVALIDATE |
535 PIPE_CONTROL_INSTRUCTION_INVALIDATE);
536
537 iris_emit_cmd(batch, GENX(PIPELINE_SELECT), sel) {
538 #if GEN_GEN >= 9
539 sel.MaskBits = 3;
540 #endif
541 sel.PipelineSelection = pipeline;
542 }
543 }
544
545 UNUSED static void
546 init_glk_barrier_mode(struct iris_batch *batch, uint32_t value)
547 {
548 #if GEN_GEN == 9
549 /* Project: DevGLK
550 *
551 * "This chicken bit works around a hardware issue with barrier
552 * logic encountered when switching between GPGPU and 3D pipelines.
553 * To workaround the issue, this mode bit should be set after a
554 * pipeline is selected."
555 */
556 uint32_t reg_val;
557 iris_pack_state(GENX(SLICE_COMMON_ECO_CHICKEN1), &reg_val, reg) {
558 reg.GLKBarrierMode = value;
559 reg.GLKBarrierModeMask = 1;
560 }
561 iris_emit_lri(batch, SLICE_COMMON_ECO_CHICKEN1, reg_val);
562 #endif
563 }
564
565 static void
566 init_state_base_address(struct iris_batch *batch)
567 {
568 flush_for_state_base_change(batch);
569
570 /* We program most base addresses once at context initialization time.
571 * Each base address points at a 4GB memory zone, and never needs to
572 * change. See iris_bufmgr.h for a description of the memory zones.
573 *
574 * The one exception is Surface State Base Address, which needs to be
575 * updated occasionally. See iris_binder.c for the details there.
576 */
577 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
578 #if 0
579 // XXX: MOCS is stupid for this.
580 sba.GeneralStateMemoryObjectControlState = MOCS_WB;
581 sba.StatelessDataPortAccessMemoryObjectControlState = MOCS_WB;
582 sba.DynamicStateMemoryObjectControlState = MOCS_WB;
583 sba.IndirectObjectMemoryObjectControlState = MOCS_WB;
584 sba.InstructionMemoryObjectControlState = MOCS_WB;
585 sba.BindlessSurfaceStateMemoryObjectControlState = MOCS_WB;
586 #endif
587
588 sba.GeneralStateBaseAddressModifyEnable = true;
589 sba.DynamicStateBaseAddressModifyEnable = true;
590 sba.IndirectObjectBaseAddressModifyEnable = true;
591 sba.InstructionBaseAddressModifyEnable = true;
592 sba.GeneralStateBufferSizeModifyEnable = true;
593 sba.DynamicStateBufferSizeModifyEnable = true;
594 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
595 sba.IndirectObjectBufferSizeModifyEnable = true;
596 sba.InstructionBuffersizeModifyEnable = true;
597
598 sba.InstructionBaseAddress = ro_bo(NULL, IRIS_MEMZONE_SHADER_START);
599 sba.DynamicStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_DYNAMIC_START);
600
601 sba.GeneralStateBufferSize = 0xfffff;
602 sba.IndirectObjectBufferSize = 0xfffff;
603 sba.InstructionBufferSize = 0xfffff;
604 sba.DynamicStateBufferSize = 0xfffff;
605 }
606 }
607
608 /**
609 * Upload the initial GPU state for a render context.
610 *
611 * This sets some invariant state that needs to be programmed a particular
612 * way, but we never actually change.
613 */
614 static void
615 iris_init_render_context(struct iris_screen *screen,
616 struct iris_batch *batch,
617 struct iris_vtable *vtbl,
618 struct pipe_debug_callback *dbg)
619 {
620 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
621 uint32_t reg_val;
622
623 emit_pipeline_select(batch, _3D);
624
625 init_state_base_address(batch);
626
627 // XXX: INSTPM on Gen8
628 iris_pack_state(GENX(CS_DEBUG_MODE2), &reg_val, reg) {
629 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
630 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
631 }
632 iris_emit_lri(batch, CS_DEBUG_MODE2, reg_val);
633
634 #if GEN_GEN == 9
635 iris_pack_state(GENX(CACHE_MODE_1), &reg_val, reg) {
636 reg.FloatBlendOptimizationEnable = true;
637 reg.FloatBlendOptimizationEnableMask = true;
638 reg.PartialResolveDisableInVC = true;
639 reg.PartialResolveDisableInVCMask = true;
640 }
641 iris_emit_lri(batch, CACHE_MODE_1, reg_val);
642
643 if (devinfo->is_geminilake)
644 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_3D_HULL);
645 #endif
646
647 #if GEN_GEN == 11
648 iris_pack_state(GENX(SAMPLER_MODE), &reg_val, reg) {
649 reg.HeaderlessMessageforPreemptableContexts = 1;
650 reg.HeaderlessMessageforPreemptableContextsMask = 1;
651 }
652 iris_emit_lri(batch, SAMPLER_MODE, reg_val);
653
654 // XXX: 3D_MODE?
655 #endif
656
657 /* 3DSTATE_DRAWING_RECTANGLE is non-pipelined, so we want to avoid
658 * changing it dynamically. We set it to the maximum size here, and
659 * instead include the render target dimensions in the viewport, so
660 * viewport extents clipping takes care of pruning stray geometry.
661 */
662 iris_emit_cmd(batch, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
663 rect.ClippedDrawingRectangleXMax = UINT16_MAX;
664 rect.ClippedDrawingRectangleYMax = UINT16_MAX;
665 }
666
667 /* Set the initial MSAA sample positions. */
668 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_PATTERN), pat) {
669 GEN_SAMPLE_POS_1X(pat._1xSample);
670 GEN_SAMPLE_POS_2X(pat._2xSample);
671 GEN_SAMPLE_POS_4X(pat._4xSample);
672 GEN_SAMPLE_POS_8X(pat._8xSample);
673 GEN_SAMPLE_POS_16X(pat._16xSample);
674 }
675
676 /* Use the legacy AA line coverage computation. */
677 iris_emit_cmd(batch, GENX(3DSTATE_AA_LINE_PARAMETERS), foo);
678
679 /* Disable chromakeying (it's for media) */
680 iris_emit_cmd(batch, GENX(3DSTATE_WM_CHROMAKEY), foo);
681
682 /* We want regular rendering, not special HiZ operations. */
683 iris_emit_cmd(batch, GENX(3DSTATE_WM_HZ_OP), foo);
684
685 /* No polygon stippling offsets are necessary. */
686 // XXX: may need to set an offset for origin-UL framebuffers
687 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_OFFSET), foo);
688
689 /* Set a static partitioning of the push constant area. */
690 // XXX: this may be a bad idea...could starve the push ringbuffers...
691 for (int i = 0; i <= MESA_SHADER_FRAGMENT; i++) {
692 iris_emit_cmd(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
693 alloc._3DCommandSubOpcode = 18 + i;
694 alloc.ConstantBufferOffset = 6 * i;
695 alloc.ConstantBufferSize = i == MESA_SHADER_FRAGMENT ? 8 : 6;
696 }
697 }
698 }
699
700 static void
701 iris_init_compute_context(struct iris_screen *screen,
702 struct iris_batch *batch,
703 struct iris_vtable *vtbl,
704 struct pipe_debug_callback *dbg)
705 {
706 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
707
708 emit_pipeline_select(batch, GPGPU);
709
710 const bool has_slm = true;
711 const bool wants_dc_cache = true;
712
713 const struct gen_l3_weights w =
714 gen_get_default_l3_weights(devinfo, wants_dc_cache, has_slm);
715 const struct gen_l3_config *cfg = gen_get_l3_config(devinfo, w);
716
717 uint32_t reg_val;
718 iris_pack_state(GENX(L3CNTLREG), &reg_val, reg) {
719 reg.SLMEnable = has_slm;
720 #if GEN_GEN == 11
721 /* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set
722 * in L3CNTLREG register. The default setting of the bit is not the
723 * desirable behavior.
724 */
725 reg.ErrorDetectionBehaviorControl = true;
726 #endif
727 reg.URBAllocation = cfg->n[GEN_L3P_URB];
728 reg.ROAllocation = cfg->n[GEN_L3P_RO];
729 reg.DCAllocation = cfg->n[GEN_L3P_DC];
730 reg.AllAllocation = cfg->n[GEN_L3P_ALL];
731 }
732 iris_emit_lri(batch, L3CNTLREG, reg_val);
733
734 init_state_base_address(batch);
735
736 #if GEN_GEN == 9
737 if (devinfo->is_geminilake)
738 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_GPGPU);
739 #endif
740 }
741
742 struct iris_vertex_buffer_state {
743 /** The 3DSTATE_VERTEX_BUFFERS hardware packet. */
744 uint32_t vertex_buffers[1 + 33 * GENX(VERTEX_BUFFER_STATE_length)];
745
746 /** The resource to source vertex data from. */
747 struct pipe_resource *resources[33];
748
749 /** The number of bound vertex buffers. */
750 unsigned num_buffers;
751 };
752
753 struct iris_depth_buffer_state {
754 /* Depth/HiZ/Stencil related hardware packets. */
755 uint32_t packets[GENX(3DSTATE_DEPTH_BUFFER_length) +
756 GENX(3DSTATE_STENCIL_BUFFER_length) +
757 GENX(3DSTATE_HIER_DEPTH_BUFFER_length) +
758 GENX(3DSTATE_CLEAR_PARAMS_length)];
759 };
760
761 /**
762 * Generation-specific context state (ice->state.genx->...).
763 *
764 * Most state can go in iris_context directly, but these encode hardware
765 * packets which vary by generation.
766 */
767 struct iris_genx_state {
768 struct iris_vertex_buffer_state vertex_buffers;
769 struct iris_depth_buffer_state depth_buffer;
770
771 uint32_t so_buffers[4 * GENX(3DSTATE_SO_BUFFER_length)];
772 uint32_t streamout[4 * GENX(3DSTATE_STREAMOUT_length)];
773 };
774
775 /**
776 * The pipe->set_blend_color() driver hook.
777 *
778 * This corresponds to our COLOR_CALC_STATE.
779 */
780 static void
781 iris_set_blend_color(struct pipe_context *ctx,
782 const struct pipe_blend_color *state)
783 {
784 struct iris_context *ice = (struct iris_context *) ctx;
785
786 /* Our COLOR_CALC_STATE is exactly pipe_blend_color, so just memcpy */
787 memcpy(&ice->state.blend_color, state, sizeof(struct pipe_blend_color));
788 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
789 }
790
791 /**
792 * Gallium CSO for blend state (see pipe_blend_state).
793 */
794 struct iris_blend_state {
795 /** Partial 3DSTATE_PS_BLEND */
796 uint32_t ps_blend[GENX(3DSTATE_PS_BLEND_length)];
797
798 /** Partial BLEND_STATE */
799 uint32_t blend_state[GENX(BLEND_STATE_length) +
800 BRW_MAX_DRAW_BUFFERS * GENX(BLEND_STATE_ENTRY_length)];
801
802 bool alpha_to_coverage; /* for shader key */
803 };
804
805 /**
806 * The pipe->create_blend_state() driver hook.
807 *
808 * Translates a pipe_blend_state into iris_blend_state.
809 */
810 static void *
811 iris_create_blend_state(struct pipe_context *ctx,
812 const struct pipe_blend_state *state)
813 {
814 struct iris_blend_state *cso = malloc(sizeof(struct iris_blend_state));
815 uint32_t *blend_entry = cso->blend_state + GENX(BLEND_STATE_length);
816
817 cso->alpha_to_coverage = state->alpha_to_coverage;
818
819 bool indep_alpha_blend = false;
820
821 for (int i = 0; i < BRW_MAX_DRAW_BUFFERS; i++) {
822 const struct pipe_rt_blend_state *rt =
823 &state->rt[state->independent_blend_enable ? i : 0];
824
825 if (rt->rgb_func != rt->alpha_func ||
826 rt->rgb_src_factor != rt->alpha_src_factor ||
827 rt->rgb_dst_factor != rt->alpha_dst_factor)
828 indep_alpha_blend = true;
829
830 iris_pack_state(GENX(BLEND_STATE_ENTRY), blend_entry, be) {
831 be.LogicOpEnable = state->logicop_enable;
832 be.LogicOpFunction = state->logicop_func;
833
834 be.PreBlendSourceOnlyClampEnable = false;
835 be.ColorClampRange = COLORCLAMP_RTFORMAT;
836 be.PreBlendColorClampEnable = true;
837 be.PostBlendColorClampEnable = true;
838
839 be.ColorBufferBlendEnable = rt->blend_enable;
840
841 be.ColorBlendFunction = rt->rgb_func;
842 be.AlphaBlendFunction = rt->alpha_func;
843 be.SourceBlendFactor = rt->rgb_src_factor;
844 be.SourceAlphaBlendFactor = rt->alpha_src_factor;
845 be.DestinationBlendFactor = rt->rgb_dst_factor;
846 be.DestinationAlphaBlendFactor = rt->alpha_dst_factor;
847
848 be.WriteDisableRed = !(rt->colormask & PIPE_MASK_R);
849 be.WriteDisableGreen = !(rt->colormask & PIPE_MASK_G);
850 be.WriteDisableBlue = !(rt->colormask & PIPE_MASK_B);
851 be.WriteDisableAlpha = !(rt->colormask & PIPE_MASK_A);
852 }
853 blend_entry += GENX(BLEND_STATE_ENTRY_length);
854 }
855
856 iris_pack_command(GENX(3DSTATE_PS_BLEND), cso->ps_blend, pb) {
857 /* pb.HasWriteableRT is filled in at draw time. */
858 /* pb.AlphaTestEnable is filled in at draw time. */
859 pb.AlphaToCoverageEnable = state->alpha_to_coverage;
860 pb.IndependentAlphaBlendEnable = indep_alpha_blend;
861
862 pb.ColorBufferBlendEnable = state->rt[0].blend_enable;
863
864 pb.SourceBlendFactor = state->rt[0].rgb_src_factor;
865 pb.SourceAlphaBlendFactor = state->rt[0].alpha_src_factor;
866 pb.DestinationBlendFactor = state->rt[0].rgb_dst_factor;
867 pb.DestinationAlphaBlendFactor = state->rt[0].alpha_dst_factor;
868 }
869
870 iris_pack_state(GENX(BLEND_STATE), cso->blend_state, bs) {
871 bs.AlphaToCoverageEnable = state->alpha_to_coverage;
872 bs.IndependentAlphaBlendEnable = indep_alpha_blend;
873 bs.AlphaToOneEnable = state->alpha_to_one;
874 bs.AlphaToCoverageDitherEnable = state->alpha_to_coverage;
875 bs.ColorDitherEnable = state->dither;
876 /* bl.AlphaTestEnable and bs.AlphaTestFunction are filled in later. */
877 }
878
879
880 return cso;
881 }
882
883 /**
884 * The pipe->bind_blend_state() driver hook.
885 *
886 * Bind a blending CSO and flag related dirty bits.
887 */
888 static void
889 iris_bind_blend_state(struct pipe_context *ctx, void *state)
890 {
891 struct iris_context *ice = (struct iris_context *) ctx;
892 ice->state.cso_blend = state;
893 ice->state.dirty |= IRIS_DIRTY_PS_BLEND;
894 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
895 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_BLEND];
896 }
897
898 /**
899 * Gallium CSO for depth, stencil, and alpha testing state.
900 */
901 struct iris_depth_stencil_alpha_state {
902 /** Partial 3DSTATE_WM_DEPTH_STENCIL. */
903 uint32_t wmds[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
904
905 /** Outbound to BLEND_STATE, 3DSTATE_PS_BLEND, COLOR_CALC_STATE. */
906 struct pipe_alpha_state alpha;
907
908 /** Outbound to resolve and cache set tracking. */
909 bool depth_writes_enabled;
910 bool stencil_writes_enabled;
911 };
912
913 /**
914 * The pipe->create_depth_stencil_alpha_state() driver hook.
915 *
916 * We encode most of 3DSTATE_WM_DEPTH_STENCIL, and just save off the alpha
917 * testing state since we need pieces of it in a variety of places.
918 */
919 static void *
920 iris_create_zsa_state(struct pipe_context *ctx,
921 const struct pipe_depth_stencil_alpha_state *state)
922 {
923 struct iris_depth_stencil_alpha_state *cso =
924 malloc(sizeof(struct iris_depth_stencil_alpha_state));
925
926 bool two_sided_stencil = state->stencil[1].enabled;
927
928 cso->alpha = state->alpha;
929 cso->depth_writes_enabled = state->depth.writemask;
930 cso->stencil_writes_enabled =
931 state->stencil[0].writemask != 0 ||
932 (two_sided_stencil && state->stencil[1].writemask != 1);
933
934 /* The state tracker needs to optimize away EQUAL writes for us. */
935 assert(!(state->depth.func == PIPE_FUNC_EQUAL && state->depth.writemask));
936
937 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), cso->wmds, wmds) {
938 wmds.StencilFailOp = state->stencil[0].fail_op;
939 wmds.StencilPassDepthFailOp = state->stencil[0].zfail_op;
940 wmds.StencilPassDepthPassOp = state->stencil[0].zpass_op;
941 wmds.StencilTestFunction =
942 translate_compare_func(state->stencil[0].func);
943 wmds.BackfaceStencilFailOp = state->stencil[1].fail_op;
944 wmds.BackfaceStencilPassDepthFailOp = state->stencil[1].zfail_op;
945 wmds.BackfaceStencilPassDepthPassOp = state->stencil[1].zpass_op;
946 wmds.BackfaceStencilTestFunction =
947 translate_compare_func(state->stencil[1].func);
948 wmds.DepthTestFunction = translate_compare_func(state->depth.func);
949 wmds.DoubleSidedStencilEnable = two_sided_stencil;
950 wmds.StencilTestEnable = state->stencil[0].enabled;
951 wmds.StencilBufferWriteEnable =
952 state->stencil[0].writemask != 0 ||
953 (two_sided_stencil && state->stencil[1].writemask != 0);
954 wmds.DepthTestEnable = state->depth.enabled;
955 wmds.DepthBufferWriteEnable = state->depth.writemask;
956 wmds.StencilTestMask = state->stencil[0].valuemask;
957 wmds.StencilWriteMask = state->stencil[0].writemask;
958 wmds.BackfaceStencilTestMask = state->stencil[1].valuemask;
959 wmds.BackfaceStencilWriteMask = state->stencil[1].writemask;
960 /* wmds.[Backface]StencilReferenceValue are merged later */
961 }
962
963 return cso;
964 }
965
966 /**
967 * The pipe->bind_depth_stencil_alpha_state() driver hook.
968 *
969 * Bind a depth/stencil/alpha CSO and flag related dirty bits.
970 */
971 static void
972 iris_bind_zsa_state(struct pipe_context *ctx, void *state)
973 {
974 struct iris_context *ice = (struct iris_context *) ctx;
975 struct iris_depth_stencil_alpha_state *old_cso = ice->state.cso_zsa;
976 struct iris_depth_stencil_alpha_state *new_cso = state;
977
978 if (new_cso) {
979 if (cso_changed(alpha.ref_value))
980 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
981
982 if (cso_changed(alpha.enabled))
983 ice->state.dirty |= IRIS_DIRTY_PS_BLEND | IRIS_DIRTY_BLEND_STATE;
984
985 if (cso_changed(alpha.func))
986 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
987
988 ice->state.depth_writes_enabled = new_cso->depth_writes_enabled;
989 ice->state.stencil_writes_enabled = new_cso->stencil_writes_enabled;
990 }
991
992 ice->state.cso_zsa = new_cso;
993 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
994 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
995 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_DEPTH_STENCIL_ALPHA];
996 }
997
998 /**
999 * Gallium CSO for rasterizer state.
1000 */
1001 struct iris_rasterizer_state {
1002 uint32_t sf[GENX(3DSTATE_SF_length)];
1003 uint32_t clip[GENX(3DSTATE_CLIP_length)];
1004 uint32_t raster[GENX(3DSTATE_RASTER_length)];
1005 uint32_t wm[GENX(3DSTATE_WM_length)];
1006 uint32_t line_stipple[GENX(3DSTATE_LINE_STIPPLE_length)];
1007
1008 uint8_t num_clip_plane_consts;
1009 bool clip_halfz; /* for CC_VIEWPORT */
1010 bool depth_clip_near; /* for CC_VIEWPORT */
1011 bool depth_clip_far; /* for CC_VIEWPORT */
1012 bool flatshade; /* for shader state */
1013 bool flatshade_first; /* for stream output */
1014 bool clamp_fragment_color; /* for shader state */
1015 bool light_twoside; /* for shader state */
1016 bool rasterizer_discard; /* for 3DSTATE_STREAMOUT */
1017 bool half_pixel_center; /* for 3DSTATE_MULTISAMPLE */
1018 bool line_stipple_enable;
1019 bool poly_stipple_enable;
1020 bool multisample;
1021 bool force_persample_interp;
1022 enum pipe_sprite_coord_mode sprite_coord_mode; /* PIPE_SPRITE_* */
1023 uint16_t sprite_coord_enable;
1024 };
1025
1026 static float
1027 get_line_width(const struct pipe_rasterizer_state *state)
1028 {
1029 float line_width = state->line_width;
1030
1031 /* From the OpenGL 4.4 spec:
1032 *
1033 * "The actual width of non-antialiased lines is determined by rounding
1034 * the supplied width to the nearest integer, then clamping it to the
1035 * implementation-dependent maximum non-antialiased line width."
1036 */
1037 if (!state->multisample && !state->line_smooth)
1038 line_width = roundf(state->line_width);
1039
1040 if (!state->multisample && state->line_smooth && line_width < 1.5f) {
1041 /* For 1 pixel line thickness or less, the general anti-aliasing
1042 * algorithm gives up, and a garbage line is generated. Setting a
1043 * Line Width of 0.0 specifies the rasterization of the "thinnest"
1044 * (one-pixel-wide), non-antialiased lines.
1045 *
1046 * Lines rendered with zero Line Width are rasterized using the
1047 * "Grid Intersection Quantization" rules as specified by the
1048 * "Zero-Width (Cosmetic) Line Rasterization" section of the docs.
1049 */
1050 line_width = 0.0f;
1051 }
1052
1053 return line_width;
1054 }
1055
1056 /**
1057 * The pipe->create_rasterizer_state() driver hook.
1058 */
1059 static void *
1060 iris_create_rasterizer_state(struct pipe_context *ctx,
1061 const struct pipe_rasterizer_state *state)
1062 {
1063 struct iris_rasterizer_state *cso =
1064 malloc(sizeof(struct iris_rasterizer_state));
1065
1066 #if 0
1067 point_quad_rasterization -> SBE?
1068
1069 not necessary?
1070 {
1071 poly_smooth
1072 bottom_edge_rule
1073
1074 offset_units_unscaled - cap not exposed
1075 }
1076 #endif
1077
1078 // XXX: it may make more sense just to store the pipe_rasterizer_state,
1079 // we're copying a lot of booleans here. But we don't need all of them...
1080
1081 cso->multisample = state->multisample;
1082 cso->force_persample_interp = state->force_persample_interp;
1083 cso->clip_halfz = state->clip_halfz;
1084 cso->depth_clip_near = state->depth_clip_near;
1085 cso->depth_clip_far = state->depth_clip_far;
1086 cso->flatshade = state->flatshade;
1087 cso->flatshade_first = state->flatshade_first;
1088 cso->clamp_fragment_color = state->clamp_fragment_color;
1089 cso->light_twoside = state->light_twoside;
1090 cso->rasterizer_discard = state->rasterizer_discard;
1091 cso->half_pixel_center = state->half_pixel_center;
1092 cso->sprite_coord_mode = state->sprite_coord_mode;
1093 cso->sprite_coord_enable = state->sprite_coord_enable;
1094 cso->line_stipple_enable = state->line_stipple_enable;
1095 cso->poly_stipple_enable = state->poly_stipple_enable;
1096
1097 if (state->clip_plane_enable != 0)
1098 cso->num_clip_plane_consts = util_logbase2(state->clip_plane_enable) + 1;
1099 else
1100 cso->num_clip_plane_consts = 0;
1101
1102 float line_width = get_line_width(state);
1103
1104 iris_pack_command(GENX(3DSTATE_SF), cso->sf, sf) {
1105 sf.StatisticsEnable = true;
1106 sf.ViewportTransformEnable = true;
1107 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
1108 sf.LineEndCapAntialiasingRegionWidth =
1109 state->line_smooth ? _10pixels : _05pixels;
1110 sf.LastPixelEnable = state->line_last_pixel;
1111 sf.LineWidth = line_width;
1112 sf.SmoothPointEnable = state->point_smooth || state->multisample;
1113 sf.PointWidthSource = state->point_size_per_vertex ? Vertex : State;
1114 sf.PointWidth = state->point_size;
1115
1116 if (state->flatshade_first) {
1117 sf.TriangleFanProvokingVertexSelect = 1;
1118 } else {
1119 sf.TriangleStripListProvokingVertexSelect = 2;
1120 sf.TriangleFanProvokingVertexSelect = 2;
1121 sf.LineStripListProvokingVertexSelect = 1;
1122 }
1123 }
1124
1125 iris_pack_command(GENX(3DSTATE_RASTER), cso->raster, rr) {
1126 rr.FrontWinding = state->front_ccw ? CounterClockwise : Clockwise;
1127 rr.CullMode = translate_cull_mode(state->cull_face);
1128 rr.FrontFaceFillMode = translate_fill_mode(state->fill_front);
1129 rr.BackFaceFillMode = translate_fill_mode(state->fill_back);
1130 rr.DXMultisampleRasterizationEnable = state->multisample;
1131 rr.GlobalDepthOffsetEnableSolid = state->offset_tri;
1132 rr.GlobalDepthOffsetEnableWireframe = state->offset_line;
1133 rr.GlobalDepthOffsetEnablePoint = state->offset_point;
1134 rr.GlobalDepthOffsetConstant = state->offset_units * 2;
1135 rr.GlobalDepthOffsetScale = state->offset_scale;
1136 rr.GlobalDepthOffsetClamp = state->offset_clamp;
1137 rr.SmoothPointEnable = state->point_smooth || state->multisample;
1138 rr.AntialiasingEnable = state->line_smooth;
1139 rr.ScissorRectangleEnable = state->scissor;
1140 rr.ViewportZNearClipTestEnable = state->depth_clip_near;
1141 rr.ViewportZFarClipTestEnable = state->depth_clip_far;
1142 //rr.ConservativeRasterizationEnable = not yet supported by Gallium...
1143 }
1144
1145 iris_pack_command(GENX(3DSTATE_CLIP), cso->clip, cl) {
1146 /* cl.NonPerspectiveBarycentricEnable is filled in at draw time from
1147 * the FS program; cl.ForceZeroRTAIndexEnable is filled in from the FB.
1148 */
1149 cl.EarlyCullEnable = true;
1150 cl.UserClipDistanceClipTestEnableBitmask = state->clip_plane_enable;
1151 cl.ForceUserClipDistanceClipTestEnableBitmask = true;
1152 cl.APIMode = state->clip_halfz ? APIMODE_D3D : APIMODE_OGL;
1153 cl.GuardbandClipTestEnable = true;
1154 cl.ClipEnable = true;
1155 cl.ViewportXYClipTestEnable = state->point_tri_clip;
1156 cl.MinimumPointWidth = 0.125;
1157 cl.MaximumPointWidth = 255.875;
1158
1159 if (state->flatshade_first) {
1160 cl.TriangleFanProvokingVertexSelect = 1;
1161 } else {
1162 cl.TriangleStripListProvokingVertexSelect = 2;
1163 cl.TriangleFanProvokingVertexSelect = 2;
1164 cl.LineStripListProvokingVertexSelect = 1;
1165 }
1166 }
1167
1168 iris_pack_command(GENX(3DSTATE_WM), cso->wm, wm) {
1169 /* wm.BarycentricInterpolationMode and wm.EarlyDepthStencilControl are
1170 * filled in at draw time from the FS program.
1171 */
1172 wm.LineAntialiasingRegionWidth = _10pixels;
1173 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1174 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1175 wm.LineStippleEnable = state->line_stipple_enable;
1176 wm.PolygonStippleEnable = state->poly_stipple_enable;
1177 }
1178
1179 /* Remap from 0..255 back to 1..256 */
1180 const unsigned line_stipple_factor = state->line_stipple_factor + 1;
1181
1182 iris_pack_command(GENX(3DSTATE_LINE_STIPPLE), cso->line_stipple, line) {
1183 line.LineStipplePattern = state->line_stipple_pattern;
1184 line.LineStippleInverseRepeatCount = 1.0f / line_stipple_factor;
1185 line.LineStippleRepeatCount = line_stipple_factor;
1186 }
1187
1188 return cso;
1189 }
1190
1191 /**
1192 * The pipe->bind_rasterizer_state() driver hook.
1193 *
1194 * Bind a rasterizer CSO and flag related dirty bits.
1195 */
1196 static void
1197 iris_bind_rasterizer_state(struct pipe_context *ctx, void *state)
1198 {
1199 struct iris_context *ice = (struct iris_context *) ctx;
1200 struct iris_rasterizer_state *old_cso = ice->state.cso_rast;
1201 struct iris_rasterizer_state *new_cso = state;
1202
1203 if (new_cso) {
1204 /* Try to avoid re-emitting 3DSTATE_LINE_STIPPLE, it's non-pipelined */
1205 if (cso_changed_memcmp(line_stipple))
1206 ice->state.dirty |= IRIS_DIRTY_LINE_STIPPLE;
1207
1208 if (cso_changed(half_pixel_center))
1209 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
1210
1211 if (cso_changed(line_stipple_enable) || cso_changed(poly_stipple_enable))
1212 ice->state.dirty |= IRIS_DIRTY_WM;
1213
1214 if (cso_changed(rasterizer_discard) || cso_changed(flatshade_first))
1215 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
1216
1217 if (cso_changed(depth_clip_near) || cso_changed(depth_clip_far) ||
1218 cso_changed(clip_halfz))
1219 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1220
1221 if (cso_changed(sprite_coord_enable) ||
1222 cso_changed(sprite_coord_mode) ||
1223 cso_changed(light_twoside))
1224 ice->state.dirty |= IRIS_DIRTY_SBE;
1225 }
1226
1227 ice->state.cso_rast = new_cso;
1228 ice->state.dirty |= IRIS_DIRTY_RASTER;
1229 ice->state.dirty |= IRIS_DIRTY_CLIP;
1230 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_RASTERIZER];
1231 }
1232
1233 /**
1234 * Return true if the given wrap mode requires the border color to exist.
1235 *
1236 * (We can skip uploading it if the sampler isn't going to use it.)
1237 */
1238 static bool
1239 wrap_mode_needs_border_color(unsigned wrap_mode)
1240 {
1241 return wrap_mode == TCM_CLAMP_BORDER || wrap_mode == TCM_HALF_BORDER;
1242 }
1243
1244 /**
1245 * Gallium CSO for sampler state.
1246 */
1247 struct iris_sampler_state {
1248 union pipe_color_union border_color;
1249 bool needs_border_color;
1250
1251 uint32_t sampler_state[GENX(SAMPLER_STATE_length)];
1252 };
1253
1254 /**
1255 * The pipe->create_sampler_state() driver hook.
1256 *
1257 * We fill out SAMPLER_STATE (except for the border color pointer), and
1258 * store that on the CPU. It doesn't make sense to upload it to a GPU
1259 * buffer object yet, because 3DSTATE_SAMPLER_STATE_POINTERS requires
1260 * all bound sampler states to be in contiguous memor.
1261 */
1262 static void *
1263 iris_create_sampler_state(struct pipe_context *ctx,
1264 const struct pipe_sampler_state *state)
1265 {
1266 struct iris_sampler_state *cso = CALLOC_STRUCT(iris_sampler_state);
1267
1268 if (!cso)
1269 return NULL;
1270
1271 STATIC_ASSERT(PIPE_TEX_FILTER_NEAREST == MAPFILTER_NEAREST);
1272 STATIC_ASSERT(PIPE_TEX_FILTER_LINEAR == MAPFILTER_LINEAR);
1273
1274 unsigned wrap_s = translate_wrap(state->wrap_s);
1275 unsigned wrap_t = translate_wrap(state->wrap_t);
1276 unsigned wrap_r = translate_wrap(state->wrap_r);
1277
1278 memcpy(&cso->border_color, &state->border_color, sizeof(cso->border_color));
1279
1280 cso->needs_border_color = wrap_mode_needs_border_color(wrap_s) ||
1281 wrap_mode_needs_border_color(wrap_t) ||
1282 wrap_mode_needs_border_color(wrap_r);
1283
1284 float min_lod = state->min_lod;
1285 unsigned mag_img_filter = state->mag_img_filter;
1286
1287 // XXX: explain this code ported from ilo...I don't get it at all...
1288 if (state->min_mip_filter == PIPE_TEX_MIPFILTER_NONE &&
1289 state->min_lod > 0.0f) {
1290 min_lod = 0.0f;
1291 mag_img_filter = state->min_img_filter;
1292 }
1293
1294 iris_pack_state(GENX(SAMPLER_STATE), cso->sampler_state, samp) {
1295 samp.TCXAddressControlMode = wrap_s;
1296 samp.TCYAddressControlMode = wrap_t;
1297 samp.TCZAddressControlMode = wrap_r;
1298 samp.CubeSurfaceControlMode = state->seamless_cube_map;
1299 samp.NonnormalizedCoordinateEnable = !state->normalized_coords;
1300 samp.MinModeFilter = state->min_img_filter;
1301 samp.MagModeFilter = mag_img_filter;
1302 samp.MipModeFilter = translate_mip_filter(state->min_mip_filter);
1303 samp.MaximumAnisotropy = RATIO21;
1304
1305 if (state->max_anisotropy >= 2) {
1306 if (state->min_img_filter == PIPE_TEX_FILTER_LINEAR) {
1307 samp.MinModeFilter = MAPFILTER_ANISOTROPIC;
1308 samp.AnisotropicAlgorithm = EWAApproximation;
1309 }
1310
1311 if (state->mag_img_filter == PIPE_TEX_FILTER_LINEAR)
1312 samp.MagModeFilter = MAPFILTER_ANISOTROPIC;
1313
1314 samp.MaximumAnisotropy =
1315 MIN2((state->max_anisotropy - 2) / 2, RATIO161);
1316 }
1317
1318 /* Set address rounding bits if not using nearest filtering. */
1319 if (state->min_img_filter != PIPE_TEX_FILTER_NEAREST) {
1320 samp.UAddressMinFilterRoundingEnable = true;
1321 samp.VAddressMinFilterRoundingEnable = true;
1322 samp.RAddressMinFilterRoundingEnable = true;
1323 }
1324
1325 if (state->mag_img_filter != PIPE_TEX_FILTER_NEAREST) {
1326 samp.UAddressMagFilterRoundingEnable = true;
1327 samp.VAddressMagFilterRoundingEnable = true;
1328 samp.RAddressMagFilterRoundingEnable = true;
1329 }
1330
1331 if (state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE)
1332 samp.ShadowFunction = translate_shadow_func(state->compare_func);
1333
1334 const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
1335
1336 samp.LODPreClampMode = CLAMP_MODE_OGL;
1337 samp.MinLOD = CLAMP(min_lod, 0, hw_max_lod);
1338 samp.MaxLOD = CLAMP(state->max_lod, 0, hw_max_lod);
1339 samp.TextureLODBias = CLAMP(state->lod_bias, -16, 15);
1340
1341 /* .BorderColorPointer is filled in by iris_bind_sampler_states. */
1342 }
1343
1344 return cso;
1345 }
1346
1347 /**
1348 * The pipe->bind_sampler_states() driver hook.
1349 *
1350 * Now that we know all the sampler states, we upload them all into a
1351 * contiguous area of GPU memory, for 3DSTATE_SAMPLER_STATE_POINTERS_*.
1352 * We also fill out the border color state pointers at this point.
1353 *
1354 * We could defer this work to draw time, but we assume that binding
1355 * will be less frequent than drawing.
1356 */
1357 // XXX: this may be a bad idea, need to make sure that st/mesa calls us
1358 // XXX: with the complete set of shaders. If it makes multiple calls to
1359 // XXX: things one at a time, we could waste a lot of time assembling things.
1360 // XXX: it doesn't even BUY us anything to do it here, because we only flag
1361 // XXX: IRIS_DIRTY_SAMPLER_STATE when this is called...
1362 static void
1363 iris_bind_sampler_states(struct pipe_context *ctx,
1364 enum pipe_shader_type p_stage,
1365 unsigned start, unsigned count,
1366 void **states)
1367 {
1368 struct iris_context *ice = (struct iris_context *) ctx;
1369 gl_shader_stage stage = stage_from_pipe(p_stage);
1370 struct iris_shader_state *shs = &ice->state.shaders[stage];
1371
1372 assert(start + count <= IRIS_MAX_TEXTURE_SAMPLERS);
1373
1374 for (int i = 0; i < count; i++) {
1375 shs->samplers[start + i] = states[i];
1376 }
1377
1378 /* Assemble the SAMPLER_STATEs into a contiguous table that lives
1379 * in the dynamic state memory zone, so we can point to it via the
1380 * 3DSTATE_SAMPLER_STATE_POINTERS_* commands.
1381 */
1382 uint32_t *map =
1383 upload_state(ice->state.dynamic_uploader, &shs->sampler_table,
1384 count * 4 * GENX(SAMPLER_STATE_length), 32);
1385 if (unlikely(!map))
1386 return;
1387
1388 struct pipe_resource *res = shs->sampler_table.res;
1389 shs->sampler_table.offset +=
1390 iris_bo_offset_from_base_address(iris_resource_bo(res));
1391
1392 /* Make sure all land in the same BO */
1393 iris_border_color_pool_reserve(ice, IRIS_MAX_TEXTURE_SAMPLERS);
1394
1395 for (int i = 0; i < count; i++) {
1396 struct iris_sampler_state *state = shs->samplers[i];
1397
1398 if (!state) {
1399 memset(map, 0, 4 * GENX(SAMPLER_STATE_length));
1400 } else if (!state->needs_border_color) {
1401 memcpy(map, state->sampler_state, 4 * GENX(SAMPLER_STATE_length));
1402 } else {
1403 ice->state.need_border_colors = true;
1404
1405 /* Stream out the border color and merge the pointer. */
1406 uint32_t offset =
1407 iris_upload_border_color(ice, &state->border_color);
1408
1409 uint32_t dynamic[GENX(SAMPLER_STATE_length)];
1410 iris_pack_state(GENX(SAMPLER_STATE), dynamic, dyns) {
1411 dyns.BorderColorPointer = offset;
1412 }
1413
1414 for (uint32_t j = 0; j < GENX(SAMPLER_STATE_length); j++)
1415 map[j] = state->sampler_state[j] | dynamic[j];
1416 }
1417
1418 map += GENX(SAMPLER_STATE_length);
1419 }
1420
1421 ice->state.dirty |= IRIS_DIRTY_SAMPLER_STATES_VS << stage;
1422 }
1423
1424 static enum isl_channel_select
1425 fmt_swizzle(const struct iris_format_info *fmt, enum pipe_swizzle swz)
1426 {
1427 switch (swz) {
1428 case PIPE_SWIZZLE_X: return fmt->swizzle.r;
1429 case PIPE_SWIZZLE_Y: return fmt->swizzle.g;
1430 case PIPE_SWIZZLE_Z: return fmt->swizzle.b;
1431 case PIPE_SWIZZLE_W: return fmt->swizzle.a;
1432 case PIPE_SWIZZLE_1: return SCS_ONE;
1433 case PIPE_SWIZZLE_0: return SCS_ZERO;
1434 default: unreachable("invalid swizzle");
1435 }
1436 }
1437
1438 static void
1439 fill_buffer_surface_state(struct isl_device *isl_dev,
1440 struct iris_bo *bo,
1441 void *map,
1442 enum isl_format format,
1443 unsigned offset,
1444 unsigned size)
1445 {
1446 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
1447 const unsigned cpp = fmtl->bpb / 8;
1448
1449 /* The ARB_texture_buffer_specification says:
1450 *
1451 * "The number of texels in the buffer texture's texel array is given by
1452 *
1453 * floor(<buffer_size> / (<components> * sizeof(<base_type>)),
1454 *
1455 * where <buffer_size> is the size of the buffer object, in basic
1456 * machine units and <components> and <base_type> are the element count
1457 * and base data type for elements, as specified in Table X.1. The
1458 * number of texels in the texel array is then clamped to the
1459 * implementation-dependent limit MAX_TEXTURE_BUFFER_SIZE_ARB."
1460 *
1461 * We need to clamp the size in bytes to MAX_TEXTURE_BUFFER_SIZE * stride,
1462 * so that when ISL divides by stride to obtain the number of texels, that
1463 * texel count is clamped to MAX_TEXTURE_BUFFER_SIZE.
1464 */
1465 unsigned final_size =
1466 MIN3(size, bo->size - offset, IRIS_MAX_TEXTURE_BUFFER_SIZE * cpp);
1467
1468 isl_buffer_fill_state(isl_dev, map,
1469 .address = bo->gtt_offset + offset,
1470 .size_B = final_size,
1471 .format = format,
1472 .stride_B = cpp,
1473 .mocs = MOCS_WB);
1474 }
1475
1476 /**
1477 * The pipe->create_sampler_view() driver hook.
1478 */
1479 static struct pipe_sampler_view *
1480 iris_create_sampler_view(struct pipe_context *ctx,
1481 struct pipe_resource *tex,
1482 const struct pipe_sampler_view *tmpl)
1483 {
1484 struct iris_context *ice = (struct iris_context *) ctx;
1485 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1486 const struct gen_device_info *devinfo = &screen->devinfo;
1487 struct iris_sampler_view *isv = calloc(1, sizeof(struct iris_sampler_view));
1488
1489 if (!isv)
1490 return NULL;
1491
1492 /* initialize base object */
1493 isv->base = *tmpl;
1494 isv->base.context = ctx;
1495 isv->base.texture = NULL;
1496 pipe_reference_init(&isv->base.reference, 1);
1497 pipe_resource_reference(&isv->base.texture, tex);
1498
1499 void *map = upload_state(ice->state.surface_uploader, &isv->surface_state,
1500 4 * GENX(RENDER_SURFACE_STATE_length), 64);
1501 if (!unlikely(map))
1502 return NULL;
1503
1504 struct iris_bo *state_bo = iris_resource_bo(isv->surface_state.res);
1505 isv->surface_state.offset += iris_bo_offset_from_base_address(state_bo);
1506
1507 if (util_format_is_depth_or_stencil(tmpl->format)) {
1508 struct iris_resource *zres, *sres;
1509 const struct util_format_description *desc =
1510 util_format_description(tmpl->format);
1511
1512 iris_get_depth_stencil_resources(tex, &zres, &sres);
1513
1514 tex = util_format_has_depth(desc) ? &zres->base : &sres->base;
1515 }
1516
1517 isv->res = (struct iris_resource *) tex;
1518
1519 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_TEXTURE_BIT;
1520
1521 if (isv->base.target == PIPE_TEXTURE_CUBE ||
1522 isv->base.target == PIPE_TEXTURE_CUBE_ARRAY)
1523 usage |= ISL_SURF_USAGE_CUBE_BIT;
1524
1525 const struct iris_format_info fmt =
1526 iris_format_for_usage(devinfo, tmpl->format, usage);
1527
1528 isv->view = (struct isl_view) {
1529 .format = fmt.fmt,
1530 .swizzle = (struct isl_swizzle) {
1531 .r = fmt_swizzle(&fmt, tmpl->swizzle_r),
1532 .g = fmt_swizzle(&fmt, tmpl->swizzle_g),
1533 .b = fmt_swizzle(&fmt, tmpl->swizzle_b),
1534 .a = fmt_swizzle(&fmt, tmpl->swizzle_a),
1535 },
1536 .usage = usage,
1537 };
1538
1539 /* Fill out SURFACE_STATE for this view. */
1540 if (tmpl->target != PIPE_BUFFER) {
1541 isv->view.base_level = tmpl->u.tex.first_level;
1542 isv->view.levels = tmpl->u.tex.last_level - tmpl->u.tex.first_level + 1;
1543 // XXX: do I need to port f9fd0cf4790cb2a530e75d1a2206dbb9d8af7cb2?
1544 isv->view.base_array_layer = tmpl->u.tex.first_layer;
1545 isv->view.array_len =
1546 tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
1547
1548 isl_surf_fill_state(&screen->isl_dev, map,
1549 .surf = &isv->res->surf, .view = &isv->view,
1550 .mocs = MOCS_WB,
1551 .address = isv->res->bo->gtt_offset);
1552 // .aux_surf =
1553 // .clear_color = clear_color,
1554 } else {
1555 fill_buffer_surface_state(&screen->isl_dev, isv->res->bo, map,
1556 isv->view.format, tmpl->u.buf.offset,
1557 tmpl->u.buf.size);
1558 }
1559
1560 return &isv->base;
1561 }
1562
1563 static void
1564 iris_sampler_view_destroy(struct pipe_context *ctx,
1565 struct pipe_sampler_view *state)
1566 {
1567 struct iris_sampler_view *isv = (void *) state;
1568 pipe_resource_reference(&state->texture, NULL);
1569 pipe_resource_reference(&isv->surface_state.res, NULL);
1570 free(isv);
1571 }
1572
1573 /**
1574 * The pipe->create_surface() driver hook.
1575 *
1576 * In Gallium nomenclature, "surfaces" are a view of a resource that
1577 * can be bound as a render target or depth/stencil buffer.
1578 */
1579 static struct pipe_surface *
1580 iris_create_surface(struct pipe_context *ctx,
1581 struct pipe_resource *tex,
1582 const struct pipe_surface *tmpl)
1583 {
1584 struct iris_context *ice = (struct iris_context *) ctx;
1585 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1586 const struct gen_device_info *devinfo = &screen->devinfo;
1587 struct iris_surface *surf = calloc(1, sizeof(struct iris_surface));
1588 struct pipe_surface *psurf = &surf->base;
1589 struct iris_resource *res = (struct iris_resource *) tex;
1590
1591 if (!surf)
1592 return NULL;
1593
1594 pipe_reference_init(&psurf->reference, 1);
1595 pipe_resource_reference(&psurf->texture, tex);
1596 psurf->context = ctx;
1597 psurf->format = tmpl->format;
1598 psurf->width = tex->width0;
1599 psurf->height = tex->height0;
1600 psurf->texture = tex;
1601 psurf->u.tex.first_layer = tmpl->u.tex.first_layer;
1602 psurf->u.tex.last_layer = tmpl->u.tex.last_layer;
1603 psurf->u.tex.level = tmpl->u.tex.level;
1604
1605 isl_surf_usage_flags_t usage = 0;
1606 if (tmpl->writable)
1607 usage = ISL_SURF_USAGE_STORAGE_BIT;
1608 else if (util_format_is_depth_or_stencil(tmpl->format))
1609 usage = ISL_SURF_USAGE_DEPTH_BIT;
1610 else
1611 usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
1612
1613 const struct iris_format_info fmt =
1614 iris_format_for_usage(devinfo, psurf->format, usage);
1615
1616 if ((usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) &&
1617 !isl_format_supports_rendering(devinfo, fmt.fmt)) {
1618 /* Framebuffer validation will reject this invalid case, but it
1619 * hasn't had the opportunity yet. In the meantime, we need to
1620 * avoid hitting ISL asserts about unsupported formats below.
1621 */
1622 free(surf);
1623 return NULL;
1624 }
1625
1626 surf->view = (struct isl_view) {
1627 .format = fmt.fmt,
1628 .base_level = tmpl->u.tex.level,
1629 .levels = 1,
1630 .base_array_layer = tmpl->u.tex.first_layer,
1631 .array_len = tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1,
1632 .swizzle = ISL_SWIZZLE_IDENTITY,
1633 .usage = usage,
1634 };
1635
1636 /* Bail early for depth/stencil - we don't want SURFACE_STATE for them. */
1637 if (res->surf.usage & (ISL_SURF_USAGE_DEPTH_BIT |
1638 ISL_SURF_USAGE_STENCIL_BIT))
1639 return psurf;
1640
1641
1642 void *map = upload_state(ice->state.surface_uploader, &surf->surface_state,
1643 4 * GENX(RENDER_SURFACE_STATE_length), 64);
1644 if (!unlikely(map))
1645 return NULL;
1646
1647 struct iris_bo *state_bo = iris_resource_bo(surf->surface_state.res);
1648 surf->surface_state.offset += iris_bo_offset_from_base_address(state_bo);
1649
1650 isl_surf_fill_state(&screen->isl_dev, map,
1651 .surf = &res->surf, .view = &surf->view,
1652 .mocs = MOCS_WB,
1653 .address = res->bo->gtt_offset);
1654 // .aux_surf =
1655 // .clear_color = clear_color,
1656
1657 return psurf;
1658 }
1659
1660 /**
1661 * The pipe->set_shader_images() driver hook.
1662 */
1663 static void
1664 iris_set_shader_images(struct pipe_context *ctx,
1665 enum pipe_shader_type p_stage,
1666 unsigned start_slot, unsigned count,
1667 const struct pipe_image_view *p_images)
1668 {
1669 struct iris_context *ice = (struct iris_context *) ctx;
1670 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1671 const struct gen_device_info *devinfo = &screen->devinfo;
1672 gl_shader_stage stage = stage_from_pipe(p_stage);
1673 struct iris_shader_state *shs = &ice->state.shaders[stage];
1674
1675 shs->bound_image_views &= ~u_bit_consecutive(start_slot, count);
1676
1677 for (unsigned i = 0; i < count; i++) {
1678 if (p_images && p_images[i].resource) {
1679 const struct pipe_image_view *img = &p_images[i];
1680 struct iris_resource *res = (void *) img->resource;
1681 pipe_resource_reference(&shs->image[start_slot + i].res, &res->base);
1682
1683 shs->bound_image_views |= 1 << (start_slot + i);
1684
1685 res->bind_history |= PIPE_BIND_SHADER_IMAGE;
1686
1687 // XXX: these are not retained forever, use a separate uploader?
1688 void *map =
1689 upload_state(ice->state.surface_uploader,
1690 &shs->image[start_slot + i].surface_state,
1691 4 * GENX(RENDER_SURFACE_STATE_length), 64);
1692 if (!unlikely(map)) {
1693 pipe_resource_reference(&shs->image[start_slot + i].res, NULL);
1694 return;
1695 }
1696
1697 struct iris_bo *surf_state_bo =
1698 iris_resource_bo(shs->image[start_slot + i].surface_state.res);
1699 shs->image[start_slot + i].surface_state.offset +=
1700 iris_bo_offset_from_base_address(surf_state_bo);
1701
1702 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_STORAGE_BIT;
1703 enum isl_format isl_format =
1704 iris_format_for_usage(devinfo, img->format, usage).fmt;
1705
1706 if (img->shader_access & PIPE_IMAGE_ACCESS_READ)
1707 isl_format = isl_lower_storage_image_format(devinfo, isl_format);
1708
1709 shs->image[start_slot + i].access = img->shader_access;
1710
1711 if (res->base.target != PIPE_BUFFER) {
1712 struct isl_view view = {
1713 .format = isl_format,
1714 .base_level = img->u.tex.level,
1715 .levels = 1,
1716 .base_array_layer = img->u.tex.first_layer,
1717 .array_len = img->u.tex.last_layer - img->u.tex.first_layer + 1,
1718 .swizzle = ISL_SWIZZLE_IDENTITY,
1719 .usage = usage,
1720 };
1721
1722 isl_surf_fill_state(&screen->isl_dev, map,
1723 .surf = &res->surf, .view = &view,
1724 .mocs = MOCS_WB,
1725 .address = res->bo->gtt_offset);
1726 // .aux_surf =
1727 // .clear_color = clear_color,
1728 } else {
1729 fill_buffer_surface_state(&screen->isl_dev, res->bo, map,
1730 isl_format, img->u.buf.offset,
1731 img->u.buf.size);
1732 }
1733 } else {
1734 pipe_resource_reference(&shs->image[start_slot + i].res, NULL);
1735 pipe_resource_reference(&shs->image[start_slot + i].surface_state.res,
1736 NULL);
1737 }
1738 }
1739
1740 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
1741 }
1742
1743
1744 /**
1745 * The pipe->set_sampler_views() driver hook.
1746 */
1747 static void
1748 iris_set_sampler_views(struct pipe_context *ctx,
1749 enum pipe_shader_type p_stage,
1750 unsigned start, unsigned count,
1751 struct pipe_sampler_view **views)
1752 {
1753 struct iris_context *ice = (struct iris_context *) ctx;
1754 gl_shader_stage stage = stage_from_pipe(p_stage);
1755 struct iris_shader_state *shs = &ice->state.shaders[stage];
1756
1757 shs->bound_sampler_views &= ~u_bit_consecutive(start, count);
1758
1759 for (unsigned i = 0; i < count; i++) {
1760 pipe_sampler_view_reference((struct pipe_sampler_view **)
1761 &shs->textures[start + i], views[i]);
1762 struct iris_sampler_view *view = (void *) views[i];
1763 if (view) {
1764 view->res->bind_history |= PIPE_BIND_SAMPLER_VIEW;
1765 shs->bound_sampler_views |= 1 << (start + i);
1766 }
1767 }
1768
1769 ice->state.dirty |= (IRIS_DIRTY_BINDINGS_VS << stage);
1770 }
1771
1772 /**
1773 * The pipe->set_tess_state() driver hook.
1774 */
1775 static void
1776 iris_set_tess_state(struct pipe_context *ctx,
1777 const float default_outer_level[4],
1778 const float default_inner_level[2])
1779 {
1780 struct iris_context *ice = (struct iris_context *) ctx;
1781
1782 memcpy(&ice->state.default_outer_level[0], &default_outer_level[0], 4 * sizeof(float));
1783 memcpy(&ice->state.default_inner_level[0], &default_inner_level[0], 2 * sizeof(float));
1784
1785 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_TCS;
1786 }
1787
1788 static void
1789 iris_surface_destroy(struct pipe_context *ctx, struct pipe_surface *p_surf)
1790 {
1791 struct iris_surface *surf = (void *) p_surf;
1792 pipe_resource_reference(&p_surf->texture, NULL);
1793 pipe_resource_reference(&surf->surface_state.res, NULL);
1794 free(surf);
1795 }
1796
1797 static void
1798 iris_set_clip_state(struct pipe_context *ctx,
1799 const struct pipe_clip_state *state)
1800 {
1801 struct iris_context *ice = (struct iris_context *) ctx;
1802 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_VERTEX];
1803
1804 memcpy(&ice->state.clip_planes, state, sizeof(*state));
1805
1806 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS;
1807 shs->cbuf0_needs_upload = true;
1808 }
1809
1810 /**
1811 * The pipe->set_polygon_stipple() driver hook.
1812 */
1813 static void
1814 iris_set_polygon_stipple(struct pipe_context *ctx,
1815 const struct pipe_poly_stipple *state)
1816 {
1817 struct iris_context *ice = (struct iris_context *) ctx;
1818 memcpy(&ice->state.poly_stipple, state, sizeof(*state));
1819 ice->state.dirty |= IRIS_DIRTY_POLYGON_STIPPLE;
1820 }
1821
1822 /**
1823 * The pipe->set_sample_mask() driver hook.
1824 */
1825 static void
1826 iris_set_sample_mask(struct pipe_context *ctx, unsigned sample_mask)
1827 {
1828 struct iris_context *ice = (struct iris_context *) ctx;
1829
1830 /* We only support 16x MSAA, so we have 16 bits of sample maks.
1831 * st/mesa may pass us 0xffffffff though, meaning "enable all samples".
1832 */
1833 ice->state.sample_mask = sample_mask & 0xffff;
1834 ice->state.dirty |= IRIS_DIRTY_SAMPLE_MASK;
1835 }
1836
1837 /**
1838 * The pipe->set_scissor_states() driver hook.
1839 *
1840 * This corresponds to our SCISSOR_RECT state structures. It's an
1841 * exact match, so we just store them, and memcpy them out later.
1842 */
1843 static void
1844 iris_set_scissor_states(struct pipe_context *ctx,
1845 unsigned start_slot,
1846 unsigned num_scissors,
1847 const struct pipe_scissor_state *rects)
1848 {
1849 struct iris_context *ice = (struct iris_context *) ctx;
1850
1851 for (unsigned i = 0; i < num_scissors; i++) {
1852 if (rects[i].minx == rects[i].maxx || rects[i].miny == rects[i].maxy) {
1853 /* If the scissor was out of bounds and got clamped to 0 width/height
1854 * at the bounds, the subtraction of 1 from maximums could produce a
1855 * negative number and thus not clip anything. Instead, just provide
1856 * a min > max scissor inside the bounds, which produces the expected
1857 * no rendering.
1858 */
1859 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
1860 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
1861 };
1862 } else {
1863 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
1864 .minx = rects[i].minx, .miny = rects[i].miny,
1865 .maxx = rects[i].maxx - 1, .maxy = rects[i].maxy - 1,
1866 };
1867 }
1868 }
1869
1870 ice->state.dirty |= IRIS_DIRTY_SCISSOR_RECT;
1871 }
1872
1873 /**
1874 * The pipe->set_stencil_ref() driver hook.
1875 *
1876 * This is added to 3DSTATE_WM_DEPTH_STENCIL dynamically at draw time.
1877 */
1878 static void
1879 iris_set_stencil_ref(struct pipe_context *ctx,
1880 const struct pipe_stencil_ref *state)
1881 {
1882 struct iris_context *ice = (struct iris_context *) ctx;
1883 memcpy(&ice->state.stencil_ref, state, sizeof(*state));
1884 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
1885 }
1886
1887 static float
1888 viewport_extent(const struct pipe_viewport_state *state, int axis, float sign)
1889 {
1890 return copysignf(state->scale[axis], sign) + state->translate[axis];
1891 }
1892
1893 #if 0
1894 static void
1895 calculate_guardband_size(uint32_t fb_width, uint32_t fb_height,
1896 float m00, float m11, float m30, float m31,
1897 float *xmin, float *xmax,
1898 float *ymin, float *ymax)
1899 {
1900 /* According to the "Vertex X,Y Clamping and Quantization" section of the
1901 * Strips and Fans documentation:
1902 *
1903 * "The vertex X and Y screen-space coordinates are also /clamped/ to the
1904 * fixed-point "guardband" range supported by the rasterization hardware"
1905 *
1906 * and
1907 *
1908 * "In almost all circumstances, if an object’s vertices are actually
1909 * modified by this clamping (i.e., had X or Y coordinates outside of
1910 * the guardband extent the rendered object will not match the intended
1911 * result. Therefore software should take steps to ensure that this does
1912 * not happen - e.g., by clipping objects such that they do not exceed
1913 * these limits after the Drawing Rectangle is applied."
1914 *
1915 * I believe the fundamental restriction is that the rasterizer (in
1916 * the SF/WM stages) have a limit on the number of pixels that can be
1917 * rasterized. We need to ensure any coordinates beyond the rasterizer
1918 * limit are handled by the clipper. So effectively that limit becomes
1919 * the clipper's guardband size.
1920 *
1921 * It goes on to say:
1922 *
1923 * "In addition, in order to be correctly rendered, objects must have a
1924 * screenspace bounding box not exceeding 8K in the X or Y direction.
1925 * This additional restriction must also be comprehended by software,
1926 * i.e., enforced by use of clipping."
1927 *
1928 * This makes no sense. Gen7+ hardware supports 16K render targets,
1929 * and you definitely need to be able to draw polygons that fill the
1930 * surface. Our assumption is that the rasterizer was limited to 8K
1931 * on Sandybridge, which only supports 8K surfaces, and it was actually
1932 * increased to 16K on Ivybridge and later.
1933 *
1934 * So, limit the guardband to 16K on Gen7+ and 8K on Sandybridge.
1935 */
1936 const float gb_size = GEN_GEN >= 7 ? 16384.0f : 8192.0f;
1937
1938 if (m00 != 0 && m11 != 0) {
1939 /* First, we compute the screen-space render area */
1940 const float ss_ra_xmin = MIN3( 0, m30 + m00, m30 - m00);
1941 const float ss_ra_xmax = MAX3( fb_width, m30 + m00, m30 - m00);
1942 const float ss_ra_ymin = MIN3( 0, m31 + m11, m31 - m11);
1943 const float ss_ra_ymax = MAX3(fb_height, m31 + m11, m31 - m11);
1944
1945 /* We want the guardband to be centered on that */
1946 const float ss_gb_xmin = (ss_ra_xmin + ss_ra_xmax) / 2 - gb_size;
1947 const float ss_gb_xmax = (ss_ra_xmin + ss_ra_xmax) / 2 + gb_size;
1948 const float ss_gb_ymin = (ss_ra_ymin + ss_ra_ymax) / 2 - gb_size;
1949 const float ss_gb_ymax = (ss_ra_ymin + ss_ra_ymax) / 2 + gb_size;
1950
1951 /* Now we need it in native device coordinates */
1952 const float ndc_gb_xmin = (ss_gb_xmin - m30) / m00;
1953 const float ndc_gb_xmax = (ss_gb_xmax - m30) / m00;
1954 const float ndc_gb_ymin = (ss_gb_ymin - m31) / m11;
1955 const float ndc_gb_ymax = (ss_gb_ymax - m31) / m11;
1956
1957 /* Thanks to Y-flipping and ORIGIN_UPPER_LEFT, the Y coordinates may be
1958 * flipped upside-down. X should be fine though.
1959 */
1960 assert(ndc_gb_xmin <= ndc_gb_xmax);
1961 *xmin = ndc_gb_xmin;
1962 *xmax = ndc_gb_xmax;
1963 *ymin = MIN2(ndc_gb_ymin, ndc_gb_ymax);
1964 *ymax = MAX2(ndc_gb_ymin, ndc_gb_ymax);
1965 } else {
1966 /* The viewport scales to 0, so nothing will be rendered. */
1967 *xmin = 0.0f;
1968 *xmax = 0.0f;
1969 *ymin = 0.0f;
1970 *ymax = 0.0f;
1971 }
1972 }
1973 #endif
1974
1975 /**
1976 * The pipe->set_viewport_states() driver hook.
1977 *
1978 * This corresponds to our SF_CLIP_VIEWPORT states. We can't calculate
1979 * the guardband yet, as we need the framebuffer dimensions, but we can
1980 * at least fill out the rest.
1981 */
1982 static void
1983 iris_set_viewport_states(struct pipe_context *ctx,
1984 unsigned start_slot,
1985 unsigned count,
1986 const struct pipe_viewport_state *states)
1987 {
1988 struct iris_context *ice = (struct iris_context *) ctx;
1989
1990 memcpy(&ice->state.viewports[start_slot], states, sizeof(*states) * count);
1991
1992 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
1993
1994 if (ice->state.cso_rast && (!ice->state.cso_rast->depth_clip_near ||
1995 !ice->state.cso_rast->depth_clip_far))
1996 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1997 }
1998
1999 /**
2000 * The pipe->set_framebuffer_state() driver hook.
2001 *
2002 * Sets the current draw FBO, including color render targets, depth,
2003 * and stencil buffers.
2004 */
2005 static void
2006 iris_set_framebuffer_state(struct pipe_context *ctx,
2007 const struct pipe_framebuffer_state *state)
2008 {
2009 struct iris_context *ice = (struct iris_context *) ctx;
2010 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2011 struct isl_device *isl_dev = &screen->isl_dev;
2012 struct pipe_framebuffer_state *cso = &ice->state.framebuffer;
2013 struct iris_resource *zres;
2014 struct iris_resource *stencil_res;
2015
2016 unsigned samples = util_framebuffer_get_num_samples(state);
2017
2018 if (cso->samples != samples) {
2019 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
2020 }
2021
2022 if (cso->nr_cbufs != state->nr_cbufs) {
2023 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
2024 }
2025
2026 if ((cso->layers == 0) != (state->layers == 0)) {
2027 ice->state.dirty |= IRIS_DIRTY_CLIP;
2028 }
2029
2030 if (cso->width != state->width || cso->height != state->height) {
2031 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2032 }
2033
2034 util_copy_framebuffer_state(cso, state);
2035 cso->samples = samples;
2036
2037 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
2038
2039 struct isl_view view = {
2040 .base_level = 0,
2041 .levels = 1,
2042 .base_array_layer = 0,
2043 .array_len = 1,
2044 .swizzle = ISL_SWIZZLE_IDENTITY,
2045 };
2046
2047 struct isl_depth_stencil_hiz_emit_info info = {
2048 .view = &view,
2049 .mocs = MOCS_WB,
2050 };
2051
2052 if (cso->zsbuf) {
2053 iris_get_depth_stencil_resources(cso->zsbuf->texture, &zres,
2054 &stencil_res);
2055
2056 view.base_level = cso->zsbuf->u.tex.level;
2057 view.base_array_layer = cso->zsbuf->u.tex.first_layer;
2058 view.array_len =
2059 cso->zsbuf->u.tex.last_layer - cso->zsbuf->u.tex.first_layer + 1;
2060
2061 if (zres) {
2062 view.usage |= ISL_SURF_USAGE_DEPTH_BIT;
2063
2064 info.depth_surf = &zres->surf;
2065 info.depth_address = zres->bo->gtt_offset;
2066 info.hiz_usage = ISL_AUX_USAGE_NONE;
2067
2068 view.format = zres->surf.format;
2069 }
2070
2071 if (stencil_res) {
2072 view.usage |= ISL_SURF_USAGE_STENCIL_BIT;
2073 info.stencil_surf = &stencil_res->surf;
2074 info.stencil_address = stencil_res->bo->gtt_offset;
2075 if (!zres)
2076 view.format = stencil_res->surf.format;
2077 }
2078 }
2079
2080 isl_emit_depth_stencil_hiz_s(isl_dev, cso_z->packets, &info);
2081
2082 /* Make a null surface for unbound buffers */
2083 void *null_surf_map =
2084 upload_state(ice->state.surface_uploader, &ice->state.null_fb,
2085 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2086 isl_null_fill_state(&screen->isl_dev, null_surf_map,
2087 isl_extent3d(MAX2(cso->width, 1),
2088 MAX2(cso->height, 1),
2089 cso->layers ? cso->layers : 1));
2090 ice->state.null_fb.offset +=
2091 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.null_fb.res));
2092
2093 ice->state.dirty |= IRIS_DIRTY_DEPTH_BUFFER;
2094
2095 /* Render target change */
2096 ice->state.dirty |= IRIS_DIRTY_BINDINGS_FS;
2097
2098 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_FRAMEBUFFER];
2099
2100 #if GEN_GEN == 11
2101 // XXX: we may want to flag IRIS_DIRTY_MULTISAMPLE (or SAMPLE_MASK?)
2102 // XXX: see commit 979fc1bc9bcc64027ff2cfafd285676f31b930a6
2103
2104 /* The PIPE_CONTROL command description says:
2105 *
2106 * "Whenever a Binding Table Index (BTI) used by a Render Target Message
2107 * points to a different RENDER_SURFACE_STATE, SW must issue a Render
2108 * Target Cache Flush by enabling this bit. When render target flush
2109 * is set due to new association of BTI, PS Scoreboard Stall bit must
2110 * be set in this packet."
2111 */
2112 // XXX: does this need to happen at 3DSTATE_BTP_PS time?
2113 iris_emit_pipe_control_flush(&ice->batches[IRIS_BATCH_RENDER],
2114 PIPE_CONTROL_RENDER_TARGET_FLUSH |
2115 PIPE_CONTROL_STALL_AT_SCOREBOARD);
2116 #endif
2117 }
2118
2119 static void
2120 upload_ubo_surf_state(struct iris_context *ice,
2121 struct iris_const_buffer *cbuf,
2122 unsigned buffer_size)
2123 {
2124 struct pipe_context *ctx = &ice->ctx;
2125 struct iris_screen *screen = (struct iris_screen *) ctx->screen;
2126
2127 // XXX: these are not retained forever, use a separate uploader?
2128 void *map =
2129 upload_state(ice->state.surface_uploader, &cbuf->surface_state,
2130 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2131 if (!unlikely(map)) {
2132 pipe_resource_reference(&cbuf->data.res, NULL);
2133 return;
2134 }
2135
2136 struct iris_resource *res = (void *) cbuf->data.res;
2137 struct iris_bo *surf_bo = iris_resource_bo(cbuf->surface_state.res);
2138 cbuf->surface_state.offset += iris_bo_offset_from_base_address(surf_bo);
2139
2140 isl_buffer_fill_state(&screen->isl_dev, map,
2141 .address = res->bo->gtt_offset + cbuf->data.offset,
2142 .size_B = MIN2(buffer_size,
2143 res->bo->size - cbuf->data.offset),
2144 .format = ISL_FORMAT_R32G32B32A32_FLOAT,
2145 .stride_B = 1,
2146 .mocs = MOCS_WB)
2147 }
2148
2149 /**
2150 * The pipe->set_constant_buffer() driver hook.
2151 *
2152 * This uploads any constant data in user buffers, and references
2153 * any UBO resources containing constant data.
2154 */
2155 static void
2156 iris_set_constant_buffer(struct pipe_context *ctx,
2157 enum pipe_shader_type p_stage, unsigned index,
2158 const struct pipe_constant_buffer *input)
2159 {
2160 struct iris_context *ice = (struct iris_context *) ctx;
2161 gl_shader_stage stage = stage_from_pipe(p_stage);
2162 struct iris_shader_state *shs = &ice->state.shaders[stage];
2163 struct iris_const_buffer *cbuf = &shs->constbuf[index];
2164
2165 if (input && input->buffer) {
2166 assert(index > 0);
2167
2168 pipe_resource_reference(&cbuf->data.res, input->buffer);
2169 cbuf->data.offset = input->buffer_offset;
2170
2171 struct iris_resource *res = (void *) cbuf->data.res;
2172 res->bind_history |= PIPE_BIND_CONSTANT_BUFFER;
2173
2174 upload_ubo_surf_state(ice, cbuf, input->buffer_size);
2175 } else {
2176 pipe_resource_reference(&cbuf->data.res, NULL);
2177 pipe_resource_reference(&cbuf->surface_state.res, NULL);
2178 }
2179
2180 if (index == 0) {
2181 if (input)
2182 memcpy(&shs->cbuf0, input, sizeof(shs->cbuf0));
2183 else
2184 memset(&shs->cbuf0, 0, sizeof(shs->cbuf0));
2185
2186 shs->cbuf0_needs_upload = true;
2187 }
2188
2189 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
2190 // XXX: maybe not necessary all the time...?
2191 // XXX: we need 3DS_BTP to commit these changes, and if we fell back to
2192 // XXX: pull model we may need actual new bindings...
2193 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2194 }
2195
2196 static void
2197 upload_uniforms(struct iris_context *ice,
2198 gl_shader_stage stage)
2199 {
2200 struct iris_shader_state *shs = &ice->state.shaders[stage];
2201 struct iris_const_buffer *cbuf = &shs->constbuf[0];
2202 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
2203
2204 unsigned upload_size = shader->num_system_values * sizeof(uint32_t) +
2205 shs->cbuf0.buffer_size;
2206
2207 if (upload_size == 0)
2208 return;
2209
2210 uint32_t *map =
2211 upload_state(ice->ctx.const_uploader, &cbuf->data, upload_size, 64);
2212
2213 for (int i = 0; i < shader->num_system_values; i++) {
2214 uint32_t sysval = shader->system_values[i];
2215 uint32_t value = 0;
2216
2217 if (BRW_PARAM_BUILTIN_IS_CLIP_PLANE(sysval)) {
2218 int plane = BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(sysval);
2219 int comp = BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(sysval);
2220 value = fui(ice->state.clip_planes.ucp[plane][comp]);
2221 } else {
2222 assert(!"unhandled system value");
2223 }
2224
2225 *map++ = value;
2226 }
2227
2228 if (shs->cbuf0.user_buffer) {
2229 memcpy(map, shs->cbuf0.user_buffer, shs->cbuf0.buffer_size);
2230 }
2231
2232 upload_ubo_surf_state(ice, cbuf, upload_size);
2233 }
2234
2235 /**
2236 * The pipe->set_shader_buffers() driver hook.
2237 *
2238 * This binds SSBOs and ABOs. Unfortunately, we need to stream out
2239 * SURFACE_STATE here, as the buffer offset may change each time.
2240 */
2241 static void
2242 iris_set_shader_buffers(struct pipe_context *ctx,
2243 enum pipe_shader_type p_stage,
2244 unsigned start_slot, unsigned count,
2245 const struct pipe_shader_buffer *buffers)
2246 {
2247 struct iris_context *ice = (struct iris_context *) ctx;
2248 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2249 gl_shader_stage stage = stage_from_pipe(p_stage);
2250 struct iris_shader_state *shs = &ice->state.shaders[stage];
2251
2252 for (unsigned i = 0; i < count; i++) {
2253 if (buffers && buffers[i].buffer) {
2254 const struct pipe_shader_buffer *buffer = &buffers[i];
2255 struct iris_resource *res = (void *) buffer->buffer;
2256 pipe_resource_reference(&shs->ssbo[start_slot + i], &res->base);
2257
2258 res->bind_history |= PIPE_BIND_SHADER_BUFFER;
2259
2260 // XXX: these are not retained forever, use a separate uploader?
2261 void *map =
2262 upload_state(ice->state.surface_uploader,
2263 &shs->ssbo_surface_state[start_slot + i],
2264 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2265 if (!unlikely(map)) {
2266 pipe_resource_reference(&shs->ssbo[start_slot + i], NULL);
2267 return;
2268 }
2269
2270 struct iris_bo *surf_state_bo =
2271 iris_resource_bo(shs->ssbo_surface_state[start_slot + i].res);
2272 shs->ssbo_surface_state[start_slot + i].offset +=
2273 iris_bo_offset_from_base_address(surf_state_bo);
2274
2275 isl_buffer_fill_state(&screen->isl_dev, map,
2276 .address =
2277 res->bo->gtt_offset + buffer->buffer_offset,
2278 .size_B =
2279 MIN2(buffer->buffer_size,
2280 res->bo->size - buffer->buffer_offset),
2281 .format = ISL_FORMAT_RAW,
2282 .stride_B = 1,
2283 .mocs = MOCS_WB);
2284 } else {
2285 pipe_resource_reference(&shs->ssbo[start_slot + i], NULL);
2286 pipe_resource_reference(&shs->ssbo_surface_state[start_slot + i].res,
2287 NULL);
2288 }
2289 }
2290
2291 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2292 }
2293
2294 static void
2295 iris_delete_state(struct pipe_context *ctx, void *state)
2296 {
2297 free(state);
2298 }
2299
2300 static void
2301 iris_free_vertex_buffers(struct iris_vertex_buffer_state *cso)
2302 {
2303 for (unsigned i = 0; i < cso->num_buffers; i++)
2304 pipe_resource_reference(&cso->resources[i], NULL);
2305 }
2306
2307 /**
2308 * The pipe->set_vertex_buffers() driver hook.
2309 *
2310 * This translates pipe_vertex_buffer to our 3DSTATE_VERTEX_BUFFERS packet.
2311 */
2312 static void
2313 iris_set_vertex_buffers(struct pipe_context *ctx,
2314 unsigned start_slot, unsigned count,
2315 const struct pipe_vertex_buffer *buffers)
2316 {
2317 struct iris_context *ice = (struct iris_context *) ctx;
2318 struct iris_vertex_buffer_state *cso = &ice->state.genx->vertex_buffers;
2319
2320 iris_free_vertex_buffers(&ice->state.genx->vertex_buffers);
2321
2322 if (!buffers)
2323 count = 0;
2324
2325 cso->num_buffers = count;
2326
2327 iris_pack_command(GENX(3DSTATE_VERTEX_BUFFERS), cso->vertex_buffers, vb) {
2328 vb.DWordLength = 4 * MAX2(cso->num_buffers, 1) - 1;
2329 }
2330
2331 uint32_t *vb_pack_dest = &cso->vertex_buffers[1];
2332
2333 if (count == 0) {
2334 iris_pack_state(GENX(VERTEX_BUFFER_STATE), vb_pack_dest, vb) {
2335 vb.VertexBufferIndex = start_slot;
2336 vb.NullVertexBuffer = true;
2337 vb.AddressModifyEnable = true;
2338 }
2339 }
2340
2341 for (unsigned i = 0; i < count; i++) {
2342 assert(!buffers[i].is_user_buffer);
2343
2344 pipe_resource_reference(&cso->resources[i], buffers[i].buffer.resource);
2345 struct iris_resource *res = (void *) cso->resources[i];
2346
2347 if (res)
2348 res->bind_history |= PIPE_BIND_VERTEX_BUFFER;
2349
2350 iris_pack_state(GENX(VERTEX_BUFFER_STATE), vb_pack_dest, vb) {
2351 vb.VertexBufferIndex = start_slot + i;
2352 vb.MOCS = MOCS_WB;
2353 vb.AddressModifyEnable = true;
2354 vb.BufferPitch = buffers[i].stride;
2355 if (res) {
2356 vb.BufferSize = res->bo->size;
2357 vb.BufferStartingAddress =
2358 ro_bo(NULL, res->bo->gtt_offset + buffers[i].buffer_offset);
2359 } else {
2360 vb.NullVertexBuffer = true;
2361 }
2362 }
2363
2364 vb_pack_dest += GENX(VERTEX_BUFFER_STATE_length);
2365 }
2366
2367 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
2368 }
2369
2370 /**
2371 * Gallium CSO for vertex elements.
2372 */
2373 struct iris_vertex_element_state {
2374 uint32_t vertex_elements[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
2375 uint32_t vf_instancing[33 * GENX(3DSTATE_VF_INSTANCING_length)];
2376 unsigned count;
2377 };
2378
2379 /**
2380 * The pipe->create_vertex_elements() driver hook.
2381 *
2382 * This translates pipe_vertex_element to our 3DSTATE_VERTEX_ELEMENTS
2383 * and 3DSTATE_VF_INSTANCING commands. SGVs are handled at draw time.
2384 */
2385 static void *
2386 iris_create_vertex_elements(struct pipe_context *ctx,
2387 unsigned count,
2388 const struct pipe_vertex_element *state)
2389 {
2390 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2391 const struct gen_device_info *devinfo = &screen->devinfo;
2392 struct iris_vertex_element_state *cso =
2393 malloc(sizeof(struct iris_vertex_element_state));
2394
2395 cso->count = count;
2396
2397 /* TODO:
2398 * - create edge flag one
2399 * - create SGV ones
2400 * - if those are necessary, use count + 1/2/3... OR in the length
2401 */
2402 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS), cso->vertex_elements, ve) {
2403 ve.DWordLength =
2404 1 + GENX(VERTEX_ELEMENT_STATE_length) * MAX2(count, 1) - 2;
2405 }
2406
2407 uint32_t *ve_pack_dest = &cso->vertex_elements[1];
2408 uint32_t *vfi_pack_dest = cso->vf_instancing;
2409
2410 if (count == 0) {
2411 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
2412 ve.Valid = true;
2413 ve.SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT;
2414 ve.Component0Control = VFCOMP_STORE_0;
2415 ve.Component1Control = VFCOMP_STORE_0;
2416 ve.Component2Control = VFCOMP_STORE_0;
2417 ve.Component3Control = VFCOMP_STORE_1_FP;
2418 }
2419
2420 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
2421 }
2422 }
2423
2424 for (int i = 0; i < count; i++) {
2425 const struct iris_format_info fmt =
2426 iris_format_for_usage(devinfo, state[i].src_format, 0);
2427 unsigned comp[4] = { VFCOMP_STORE_SRC, VFCOMP_STORE_SRC,
2428 VFCOMP_STORE_SRC, VFCOMP_STORE_SRC };
2429
2430 switch (isl_format_get_num_channels(fmt.fmt)) {
2431 case 0: comp[0] = VFCOMP_STORE_0;
2432 case 1: comp[1] = VFCOMP_STORE_0;
2433 case 2: comp[2] = VFCOMP_STORE_0;
2434 case 3:
2435 comp[3] = isl_format_has_int_channel(fmt.fmt) ? VFCOMP_STORE_1_INT
2436 : VFCOMP_STORE_1_FP;
2437 break;
2438 }
2439 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
2440 ve.VertexBufferIndex = state[i].vertex_buffer_index;
2441 ve.Valid = true;
2442 ve.SourceElementOffset = state[i].src_offset;
2443 ve.SourceElementFormat = fmt.fmt;
2444 ve.Component0Control = comp[0];
2445 ve.Component1Control = comp[1];
2446 ve.Component2Control = comp[2];
2447 ve.Component3Control = comp[3];
2448 }
2449
2450 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
2451 vi.VertexElementIndex = i;
2452 vi.InstancingEnable = state[i].instance_divisor > 0;
2453 vi.InstanceDataStepRate = state[i].instance_divisor;
2454 }
2455
2456 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
2457 vfi_pack_dest += GENX(3DSTATE_VF_INSTANCING_length);
2458 }
2459
2460 return cso;
2461 }
2462
2463 /**
2464 * The pipe->bind_vertex_elements_state() driver hook.
2465 */
2466 static void
2467 iris_bind_vertex_elements_state(struct pipe_context *ctx, void *state)
2468 {
2469 struct iris_context *ice = (struct iris_context *) ctx;
2470 struct iris_vertex_element_state *old_cso = ice->state.cso_vertex_elements;
2471 struct iris_vertex_element_state *new_cso = state;
2472
2473 /* 3DSTATE_VF_SGVs overrides the last VE, so if the count is changing,
2474 * we need to re-emit it to ensure we're overriding the right one.
2475 */
2476 if (new_cso && cso_changed(count))
2477 ice->state.dirty |= IRIS_DIRTY_VF_SGVS;
2478
2479 ice->state.cso_vertex_elements = state;
2480 ice->state.dirty |= IRIS_DIRTY_VERTEX_ELEMENTS;
2481 }
2482
2483 /**
2484 * Gallium CSO for stream output (transform feedback) targets.
2485 */
2486 struct iris_stream_output_target {
2487 struct pipe_stream_output_target base;
2488
2489 uint32_t so_buffer[GENX(3DSTATE_SO_BUFFER_length)];
2490
2491 /** Storage holding the offset where we're writing in the buffer */
2492 struct iris_state_ref offset;
2493 };
2494
2495 /**
2496 * The pipe->create_stream_output_target() driver hook.
2497 *
2498 * "Target" here refers to a destination buffer. We translate this into
2499 * a 3DSTATE_SO_BUFFER packet. We can handle most fields, but don't yet
2500 * know which buffer this represents, or whether we ought to zero the
2501 * write-offsets, or append. Those are handled in the set() hook.
2502 */
2503 static struct pipe_stream_output_target *
2504 iris_create_stream_output_target(struct pipe_context *ctx,
2505 struct pipe_resource *p_res,
2506 unsigned buffer_offset,
2507 unsigned buffer_size)
2508 {
2509 struct iris_resource *res = (void *) p_res;
2510 struct iris_stream_output_target *cso = calloc(1, sizeof(*cso));
2511 if (!cso)
2512 return NULL;
2513
2514 res->bind_history |= PIPE_BIND_STREAM_OUTPUT;
2515
2516 pipe_reference_init(&cso->base.reference, 1);
2517 pipe_resource_reference(&cso->base.buffer, p_res);
2518 cso->base.buffer_offset = buffer_offset;
2519 cso->base.buffer_size = buffer_size;
2520 cso->base.context = ctx;
2521
2522 upload_state(ctx->stream_uploader, &cso->offset, 4 * sizeof(uint32_t), 4);
2523
2524 iris_pack_command(GENX(3DSTATE_SO_BUFFER), cso->so_buffer, sob) {
2525 sob.SurfaceBaseAddress =
2526 rw_bo(NULL, res->bo->gtt_offset + buffer_offset);
2527 sob.SOBufferEnable = true;
2528 sob.StreamOffsetWriteEnable = true;
2529 sob.StreamOutputBufferOffsetAddressEnable = true;
2530 sob.MOCS = MOCS_WB; // XXX: MOCS
2531
2532 sob.SurfaceSize = MAX2(buffer_size / 4, 1) - 1;
2533
2534 /* .SOBufferIndex, .StreamOffset, and .StreamOutputBufferOffsetAddress
2535 * are filled in later when we have stream IDs.
2536 */
2537 }
2538
2539 return &cso->base;
2540 }
2541
2542 static void
2543 iris_stream_output_target_destroy(struct pipe_context *ctx,
2544 struct pipe_stream_output_target *state)
2545 {
2546 struct iris_stream_output_target *cso = (void *) state;
2547
2548 pipe_resource_reference(&cso->base.buffer, NULL);
2549 pipe_resource_reference(&cso->offset.res, NULL);
2550
2551 free(cso);
2552 }
2553
2554 /**
2555 * The pipe->set_stream_output_targets() driver hook.
2556 *
2557 * At this point, we know which targets are bound to a particular index,
2558 * and also whether we want to append or start over. We can finish the
2559 * 3DSTATE_SO_BUFFER packets we started earlier.
2560 */
2561 static void
2562 iris_set_stream_output_targets(struct pipe_context *ctx,
2563 unsigned num_targets,
2564 struct pipe_stream_output_target **targets,
2565 const unsigned *offsets)
2566 {
2567 struct iris_context *ice = (struct iris_context *) ctx;
2568 struct iris_genx_state *genx = ice->state.genx;
2569 uint32_t *so_buffers = genx->so_buffers;
2570
2571 const bool active = num_targets > 0;
2572 if (ice->state.streamout_active != active) {
2573 ice->state.streamout_active = active;
2574 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
2575
2576 /* We only emit 3DSTATE_SO_DECL_LIST when streamout is active, because
2577 * it's a non-pipelined command. If we're switching streamout on, we
2578 * may have missed emitting it earlier, so do so now. (We're already
2579 * taking a stall to update 3DSTATE_SO_BUFFERS anyway...)
2580 */
2581 if (active)
2582 ice->state.dirty |= IRIS_DIRTY_SO_DECL_LIST;
2583 }
2584
2585 for (int i = 0; i < 4; i++) {
2586 pipe_so_target_reference(&ice->state.so_target[i],
2587 i < num_targets ? targets[i] : NULL);
2588 }
2589
2590 /* No need to update 3DSTATE_SO_BUFFER unless SOL is active. */
2591 if (!active)
2592 return;
2593
2594 for (unsigned i = 0; i < 4; i++,
2595 so_buffers += GENX(3DSTATE_SO_BUFFER_length)) {
2596
2597 if (i >= num_targets || !targets[i]) {
2598 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob)
2599 sob.SOBufferIndex = i;
2600 continue;
2601 }
2602
2603 struct iris_stream_output_target *tgt = (void *) targets[i];
2604
2605 /* Note that offsets[i] will either be 0, causing us to zero
2606 * the value in the buffer, or 0xFFFFFFFF, which happens to mean
2607 * "continue appending at the existing offset."
2608 */
2609 assert(offsets[i] == 0 || offsets[i] == 0xFFFFFFFF);
2610
2611 uint32_t dynamic[GENX(3DSTATE_SO_BUFFER_length)];
2612 iris_pack_state(GENX(3DSTATE_SO_BUFFER), dynamic, dyns) {
2613 dyns.SOBufferIndex = i;
2614 dyns.StreamOffset = offsets[i];
2615 dyns.StreamOutputBufferOffsetAddress =
2616 rw_bo(NULL, iris_resource_bo(tgt->offset.res)->gtt_offset + tgt->offset.offset + i * sizeof(uint32_t));
2617 }
2618
2619 for (uint32_t j = 0; j < GENX(3DSTATE_SO_BUFFER_length); j++) {
2620 so_buffers[j] = tgt->so_buffer[j] | dynamic[j];
2621 }
2622 }
2623
2624 ice->state.dirty |= IRIS_DIRTY_SO_BUFFERS;
2625 }
2626
2627 /**
2628 * An iris-vtable helper for encoding the 3DSTATE_SO_DECL_LIST and
2629 * 3DSTATE_STREAMOUT packets.
2630 *
2631 * 3DSTATE_SO_DECL_LIST is a list of shader outputs we want the streamout
2632 * hardware to record. We can create it entirely based on the shader, with
2633 * no dynamic state dependencies.
2634 *
2635 * 3DSTATE_STREAMOUT is an annoying mix of shader-based information and
2636 * state-based settings. We capture the shader-related ones here, and merge
2637 * the rest in at draw time.
2638 */
2639 static uint32_t *
2640 iris_create_so_decl_list(const struct pipe_stream_output_info *info,
2641 const struct brw_vue_map *vue_map)
2642 {
2643 struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
2644 int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2645 int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2646 int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2647 int max_decls = 0;
2648 STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
2649
2650 memset(so_decl, 0, sizeof(so_decl));
2651
2652 /* Construct the list of SO_DECLs to be emitted. The formatting of the
2653 * command feels strange -- each dword pair contains a SO_DECL per stream.
2654 */
2655 for (unsigned i = 0; i < info->num_outputs; i++) {
2656 const struct pipe_stream_output *output = &info->output[i];
2657 const int buffer = output->output_buffer;
2658 const int varying = output->register_index;
2659 const unsigned stream_id = output->stream;
2660 assert(stream_id < MAX_VERTEX_STREAMS);
2661
2662 buffer_mask[stream_id] |= 1 << buffer;
2663
2664 assert(vue_map->varying_to_slot[varying] >= 0);
2665
2666 /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
2667 * array. Instead, it simply increments DstOffset for the following
2668 * input by the number of components that should be skipped.
2669 *
2670 * Our hardware is unusual in that it requires us to program SO_DECLs
2671 * for fake "hole" components, rather than simply taking the offset
2672 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
2673 * program as many size = 4 holes as we can, then a final hole to
2674 * accommodate the final 1, 2, or 3 remaining.
2675 */
2676 int skip_components = output->dst_offset - next_offset[buffer];
2677
2678 while (skip_components > 0) {
2679 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
2680 .HoleFlag = 1,
2681 .OutputBufferSlot = output->output_buffer,
2682 .ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
2683 };
2684 skip_components -= 4;
2685 }
2686
2687 next_offset[buffer] = output->dst_offset + output->num_components;
2688
2689 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
2690 .OutputBufferSlot = output->output_buffer,
2691 .RegisterIndex = vue_map->varying_to_slot[varying],
2692 .ComponentMask =
2693 ((1 << output->num_components) - 1) << output->start_component,
2694 };
2695
2696 if (decls[stream_id] > max_decls)
2697 max_decls = decls[stream_id];
2698 }
2699
2700 unsigned dwords = GENX(3DSTATE_STREAMOUT_length) + (3 + 2 * max_decls);
2701 uint32_t *map = ralloc_size(NULL, sizeof(uint32_t) * dwords);
2702 uint32_t *so_decl_map = map + GENX(3DSTATE_STREAMOUT_length);
2703
2704 iris_pack_command(GENX(3DSTATE_STREAMOUT), map, sol) {
2705 int urb_entry_read_offset = 0;
2706 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
2707 urb_entry_read_offset;
2708
2709 /* We always read the whole vertex. This could be reduced at some
2710 * point by reading less and offsetting the register index in the
2711 * SO_DECLs.
2712 */
2713 sol.Stream0VertexReadOffset = urb_entry_read_offset;
2714 sol.Stream0VertexReadLength = urb_entry_read_length - 1;
2715 sol.Stream1VertexReadOffset = urb_entry_read_offset;
2716 sol.Stream1VertexReadLength = urb_entry_read_length - 1;
2717 sol.Stream2VertexReadOffset = urb_entry_read_offset;
2718 sol.Stream2VertexReadLength = urb_entry_read_length - 1;
2719 sol.Stream3VertexReadOffset = urb_entry_read_offset;
2720 sol.Stream3VertexReadLength = urb_entry_read_length - 1;
2721
2722 /* Set buffer pitches; 0 means unbound. */
2723 sol.Buffer0SurfacePitch = 4 * info->stride[0];
2724 sol.Buffer1SurfacePitch = 4 * info->stride[1];
2725 sol.Buffer2SurfacePitch = 4 * info->stride[2];
2726 sol.Buffer3SurfacePitch = 4 * info->stride[3];
2727 }
2728
2729 iris_pack_command(GENX(3DSTATE_SO_DECL_LIST), so_decl_map, list) {
2730 list.DWordLength = 3 + 2 * max_decls - 2;
2731 list.StreamtoBufferSelects0 = buffer_mask[0];
2732 list.StreamtoBufferSelects1 = buffer_mask[1];
2733 list.StreamtoBufferSelects2 = buffer_mask[2];
2734 list.StreamtoBufferSelects3 = buffer_mask[3];
2735 list.NumEntries0 = decls[0];
2736 list.NumEntries1 = decls[1];
2737 list.NumEntries2 = decls[2];
2738 list.NumEntries3 = decls[3];
2739 }
2740
2741 for (int i = 0; i < max_decls; i++) {
2742 iris_pack_state(GENX(SO_DECL_ENTRY), so_decl_map + 3 + i * 2, entry) {
2743 entry.Stream0Decl = so_decl[0][i];
2744 entry.Stream1Decl = so_decl[1][i];
2745 entry.Stream2Decl = so_decl[2][i];
2746 entry.Stream3Decl = so_decl[3][i];
2747 }
2748 }
2749
2750 return map;
2751 }
2752
2753 static void
2754 iris_compute_sbe_urb_read_interval(uint64_t fs_input_slots,
2755 const struct brw_vue_map *last_vue_map,
2756 bool two_sided_color,
2757 unsigned *out_offset,
2758 unsigned *out_length)
2759 {
2760 /* The compiler computes the first URB slot without considering COL/BFC
2761 * swizzling (because it doesn't know whether it's enabled), so we need
2762 * to do that here too. This may result in a smaller offset, which
2763 * should be safe.
2764 */
2765 const unsigned first_slot =
2766 brw_compute_first_urb_slot_required(fs_input_slots, last_vue_map);
2767
2768 /* This becomes the URB read offset (counted in pairs of slots). */
2769 assert(first_slot % 2 == 0);
2770 *out_offset = first_slot / 2;
2771
2772 /* We need to adjust the inputs read to account for front/back color
2773 * swizzling, as it can make the URB length longer.
2774 */
2775 for (int c = 0; c <= 1; c++) {
2776 if (fs_input_slots & (VARYING_BIT_COL0 << c)) {
2777 /* If two sided color is enabled, the fragment shader's gl_Color
2778 * (COL0) input comes from either the gl_FrontColor (COL0) or
2779 * gl_BackColor (BFC0) input varyings. Mark BFC as used, too.
2780 */
2781 if (two_sided_color)
2782 fs_input_slots |= (VARYING_BIT_BFC0 << c);
2783
2784 /* If front color isn't written, we opt to give them back color
2785 * instead of an undefined value. Switch from COL to BFC.
2786 */
2787 if (last_vue_map->varying_to_slot[VARYING_SLOT_COL0 + c] == -1) {
2788 fs_input_slots &= ~(VARYING_BIT_COL0 << c);
2789 fs_input_slots |= (VARYING_BIT_BFC0 << c);
2790 }
2791 }
2792 }
2793
2794 /* Compute the minimum URB Read Length necessary for the FS inputs.
2795 *
2796 * From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
2797 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
2798 *
2799 * "This field should be set to the minimum length required to read the
2800 * maximum source attribute. The maximum source attribute is indicated
2801 * by the maximum value of the enabled Attribute # Source Attribute if
2802 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
2803 * enable is not set.
2804 * read_length = ceiling((max_source_attr + 1) / 2)
2805 *
2806 * [errata] Corruption/Hang possible if length programmed larger than
2807 * recommended"
2808 *
2809 * Similar text exists for Ivy Bridge.
2810 *
2811 * We find the last URB slot that's actually read by the FS.
2812 */
2813 unsigned last_read_slot = last_vue_map->num_slots - 1;
2814 while (last_read_slot > first_slot && !(fs_input_slots &
2815 (1ull << last_vue_map->slot_to_varying[last_read_slot])))
2816 --last_read_slot;
2817
2818 /* The URB read length is the difference of the two, counted in pairs. */
2819 *out_length = DIV_ROUND_UP(last_read_slot - first_slot + 1, 2);
2820 }
2821
2822 static void
2823 iris_emit_sbe_swiz(struct iris_batch *batch,
2824 const struct iris_context *ice,
2825 unsigned urb_read_offset,
2826 unsigned sprite_coord_enables)
2827 {
2828 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = {};
2829 const struct brw_wm_prog_data *wm_prog_data = (void *)
2830 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
2831 const struct brw_vue_map *vue_map = ice->shaders.last_vue_map;
2832 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
2833
2834 /* XXX: this should be generated when putting programs in place */
2835
2836 // XXX: raster->sprite_coord_enable
2837
2838 for (int fs_attr = 0; fs_attr < VARYING_SLOT_MAX; fs_attr++) {
2839 const int input_index = wm_prog_data->urb_setup[fs_attr];
2840 if (input_index < 0 || input_index >= 16)
2841 continue;
2842
2843 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr =
2844 &attr_overrides[input_index];
2845 int slot = vue_map->varying_to_slot[fs_attr];
2846
2847 /* Viewport and Layer are stored in the VUE header. We need to override
2848 * them to zero if earlier stages didn't write them, as GL requires that
2849 * they read back as zero when not explicitly set.
2850 */
2851 switch (fs_attr) {
2852 case VARYING_SLOT_VIEWPORT:
2853 case VARYING_SLOT_LAYER:
2854 attr->ComponentOverrideX = true;
2855 attr->ComponentOverrideW = true;
2856 attr->ConstantSource = CONST_0000;
2857
2858 if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
2859 attr->ComponentOverrideY = true;
2860 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
2861 attr->ComponentOverrideZ = true;
2862 continue;
2863
2864 case VARYING_SLOT_PRIMITIVE_ID:
2865 /* Override if the previous shader stage didn't write gl_PrimitiveID. */
2866 if (slot == -1) {
2867 attr->ComponentOverrideX = true;
2868 attr->ComponentOverrideY = true;
2869 attr->ComponentOverrideZ = true;
2870 attr->ComponentOverrideW = true;
2871 attr->ConstantSource = PRIM_ID;
2872 continue;
2873 }
2874
2875 default:
2876 break;
2877 }
2878
2879 if (sprite_coord_enables & (1 << input_index))
2880 continue;
2881
2882 /* If there was only a back color written but not front, use back
2883 * as the color instead of undefined.
2884 */
2885 if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
2886 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
2887 if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
2888 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
2889
2890 /* Not written by the previous stage - undefined. */
2891 if (slot == -1) {
2892 attr->ComponentOverrideX = true;
2893 attr->ComponentOverrideY = true;
2894 attr->ComponentOverrideZ = true;
2895 attr->ComponentOverrideW = true;
2896 attr->ConstantSource = CONST_0001_FLOAT;
2897 continue;
2898 }
2899
2900 /* Compute the location of the attribute relative to the read offset,
2901 * which is counted in 256-bit increments (two 128-bit VUE slots).
2902 */
2903 const int source_attr = slot - 2 * urb_read_offset;
2904 assert(source_attr >= 0 && source_attr <= 32);
2905 attr->SourceAttribute = source_attr;
2906
2907 /* If we are doing two-sided color, and the VUE slot following this one
2908 * represents a back-facing color, then we need to instruct the SF unit
2909 * to do back-facing swizzling.
2910 */
2911 if (cso_rast->light_twoside &&
2912 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
2913 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
2914 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
2915 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1)))
2916 attr->SwizzleSelect = INPUTATTR_FACING;
2917 }
2918
2919 iris_emit_cmd(batch, GENX(3DSTATE_SBE_SWIZ), sbes) {
2920 for (int i = 0; i < 16; i++)
2921 sbes.Attribute[i] = attr_overrides[i];
2922 }
2923 }
2924
2925 static unsigned
2926 iris_calculate_point_sprite_overrides(const struct brw_wm_prog_data *prog_data,
2927 const struct iris_rasterizer_state *cso)
2928 {
2929 unsigned overrides = 0;
2930
2931 if (prog_data->urb_setup[VARYING_SLOT_PNTC] != -1)
2932 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_PNTC];
2933
2934 for (int i = 0; i < 8; i++) {
2935 if ((cso->sprite_coord_enable & (1 << i)) &&
2936 prog_data->urb_setup[VARYING_SLOT_TEX0 + i] != -1)
2937 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_TEX0 + i];
2938 }
2939
2940 return overrides;
2941 }
2942
2943 static void
2944 iris_emit_sbe(struct iris_batch *batch, const struct iris_context *ice)
2945 {
2946 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
2947 const struct brw_wm_prog_data *wm_prog_data = (void *)
2948 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
2949 const struct shader_info *fs_info =
2950 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
2951
2952 unsigned urb_read_offset, urb_read_length;
2953 iris_compute_sbe_urb_read_interval(fs_info->inputs_read,
2954 ice->shaders.last_vue_map,
2955 cso_rast->light_twoside,
2956 &urb_read_offset, &urb_read_length);
2957
2958 unsigned sprite_coord_overrides =
2959 iris_calculate_point_sprite_overrides(wm_prog_data, cso_rast);
2960
2961 iris_emit_cmd(batch, GENX(3DSTATE_SBE), sbe) {
2962 sbe.AttributeSwizzleEnable = true;
2963 sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
2964 sbe.PointSpriteTextureCoordinateOrigin = cso_rast->sprite_coord_mode;
2965 sbe.VertexURBEntryReadOffset = urb_read_offset;
2966 sbe.VertexURBEntryReadLength = urb_read_length;
2967 sbe.ForceVertexURBEntryReadOffset = true;
2968 sbe.ForceVertexURBEntryReadLength = true;
2969 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
2970 sbe.PointSpriteTextureCoordinateEnable = sprite_coord_overrides;
2971
2972 for (int i = 0; i < 32; i++) {
2973 sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW;
2974 }
2975 }
2976
2977 iris_emit_sbe_swiz(batch, ice, urb_read_offset, sprite_coord_overrides);
2978 }
2979
2980 /* ------------------------------------------------------------------- */
2981
2982 /**
2983 * Populate VS program key fields based on the current state.
2984 */
2985 static void
2986 iris_populate_vs_key(const struct iris_context *ice,
2987 const struct shader_info *info,
2988 struct brw_vs_prog_key *key)
2989 {
2990 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
2991
2992 if (info->clip_distance_array_size == 0 &&
2993 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)))
2994 key->nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
2995 }
2996
2997 /**
2998 * Populate TCS program key fields based on the current state.
2999 */
3000 static void
3001 iris_populate_tcs_key(const struct iris_context *ice,
3002 struct brw_tcs_prog_key *key)
3003 {
3004 }
3005
3006 /**
3007 * Populate TES program key fields based on the current state.
3008 */
3009 static void
3010 iris_populate_tes_key(const struct iris_context *ice,
3011 struct brw_tes_prog_key *key)
3012 {
3013 }
3014
3015 /**
3016 * Populate GS program key fields based on the current state.
3017 */
3018 static void
3019 iris_populate_gs_key(const struct iris_context *ice,
3020 struct brw_gs_prog_key *key)
3021 {
3022 }
3023
3024 /**
3025 * Populate FS program key fields based on the current state.
3026 */
3027 static void
3028 iris_populate_fs_key(const struct iris_context *ice,
3029 struct brw_wm_prog_key *key)
3030 {
3031 /* XXX: dirty flags? */
3032 const struct pipe_framebuffer_state *fb = &ice->state.framebuffer;
3033 const struct iris_depth_stencil_alpha_state *zsa = ice->state.cso_zsa;
3034 const struct iris_rasterizer_state *rast = ice->state.cso_rast;
3035 const struct iris_blend_state *blend = ice->state.cso_blend;
3036
3037 key->nr_color_regions = fb->nr_cbufs;
3038
3039 key->clamp_fragment_color = rast->clamp_fragment_color;
3040
3041 key->replicate_alpha = fb->nr_cbufs > 1 &&
3042 (zsa->alpha.enabled || blend->alpha_to_coverage);
3043
3044 /* XXX: only bother if COL0/1 are read */
3045 key->flat_shade = rast->flatshade;
3046
3047 key->persample_interp = rast->force_persample_interp;
3048 key->multisample_fbo = rast->multisample && fb->samples > 1;
3049
3050 key->coherent_fb_fetch = true;
3051
3052 // XXX: uint64_t input_slots_valid; - for >16 inputs
3053
3054 // XXX: key->force_dual_color_blend for unigine
3055 // XXX: respect hint for high_quality_derivatives:1;
3056 }
3057
3058 static void
3059 iris_populate_cs_key(const struct iris_context *ice,
3060 struct brw_cs_prog_key *key)
3061 {
3062 }
3063
3064 #if 0
3065 // XXX: these need to go in INIT_THREAD_DISPATCH_FIELDS
3066 pkt.SamplerCount = \
3067 DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4); \
3068
3069 #endif
3070
3071 static uint64_t
3072 KSP(const struct iris_compiled_shader *shader)
3073 {
3074 struct iris_resource *res = (void *) shader->assembly.res;
3075 return iris_bo_offset_from_base_address(res->bo) + shader->assembly.offset;
3076 }
3077
3078 // Gen11 workaround table #2056 WABTPPrefetchDisable suggests to disable
3079 // prefetching of binding tables in A0 and B0 steppings. XXX: Revisit
3080 // this WA on C0 stepping.
3081
3082 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix, stage) \
3083 pkt.KernelStartPointer = KSP(shader); \
3084 pkt.BindingTableEntryCount = GEN_GEN == 11 ? 0 : \
3085 prog_data->binding_table.size_bytes / 4; \
3086 pkt.FloatingPointMode = prog_data->use_alt_mode; \
3087 \
3088 pkt.DispatchGRFStartRegisterForURBData = \
3089 prog_data->dispatch_grf_start_reg; \
3090 pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
3091 pkt.prefix##URBEntryReadOffset = 0; \
3092 \
3093 pkt.StatisticsEnable = true; \
3094 pkt.Enable = true; \
3095 \
3096 if (prog_data->total_scratch) { \
3097 uint32_t scratch_addr = \
3098 iris_get_scratch_space(ice, prog_data->total_scratch, stage); \
3099 pkt.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11; \
3100 pkt.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr); \
3101 }
3102
3103 /**
3104 * Encode most of 3DSTATE_VS based on the compiled shader.
3105 */
3106 static void
3107 iris_store_vs_state(struct iris_context *ice,
3108 const struct gen_device_info *devinfo,
3109 struct iris_compiled_shader *shader)
3110 {
3111 struct brw_stage_prog_data *prog_data = shader->prog_data;
3112 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3113
3114 iris_pack_command(GENX(3DSTATE_VS), shader->derived_data, vs) {
3115 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex, MESA_SHADER_VERTEX);
3116 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
3117 vs.SIMD8DispatchEnable = true;
3118 vs.UserClipDistanceCullTestEnableBitmask =
3119 vue_prog_data->cull_distance_mask;
3120 }
3121 }
3122
3123 /**
3124 * Encode most of 3DSTATE_HS based on the compiled shader.
3125 */
3126 static void
3127 iris_store_tcs_state(struct iris_context *ice,
3128 const struct gen_device_info *devinfo,
3129 struct iris_compiled_shader *shader)
3130 {
3131 struct brw_stage_prog_data *prog_data = shader->prog_data;
3132 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3133 struct brw_tcs_prog_data *tcs_prog_data = (void *) prog_data;
3134
3135 iris_pack_command(GENX(3DSTATE_HS), shader->derived_data, hs) {
3136 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex, MESA_SHADER_TESS_CTRL);
3137
3138 hs.InstanceCount = tcs_prog_data->instances - 1;
3139 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
3140 hs.IncludeVertexHandles = true;
3141 }
3142 }
3143
3144 /**
3145 * Encode 3DSTATE_TE and most of 3DSTATE_DS based on the compiled shader.
3146 */
3147 static void
3148 iris_store_tes_state(struct iris_context *ice,
3149 const struct gen_device_info *devinfo,
3150 struct iris_compiled_shader *shader)
3151 {
3152 struct brw_stage_prog_data *prog_data = shader->prog_data;
3153 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3154 struct brw_tes_prog_data *tes_prog_data = (void *) prog_data;
3155
3156 uint32_t *te_state = (void *) shader->derived_data;
3157 uint32_t *ds_state = te_state + GENX(3DSTATE_TE_length);
3158
3159 iris_pack_command(GENX(3DSTATE_TE), te_state, te) {
3160 te.Partitioning = tes_prog_data->partitioning;
3161 te.OutputTopology = tes_prog_data->output_topology;
3162 te.TEDomain = tes_prog_data->domain;
3163 te.TEEnable = true;
3164 te.MaximumTessellationFactorOdd = 63.0;
3165 te.MaximumTessellationFactorNotOdd = 64.0;
3166 }
3167
3168 iris_pack_command(GENX(3DSTATE_DS), ds_state, ds) {
3169 INIT_THREAD_DISPATCH_FIELDS(ds, Patch, MESA_SHADER_TESS_EVAL);
3170
3171 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
3172 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
3173 ds.ComputeWCoordinateEnable =
3174 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
3175
3176 ds.UserClipDistanceCullTestEnableBitmask =
3177 vue_prog_data->cull_distance_mask;
3178 }
3179
3180 }
3181
3182 /**
3183 * Encode most of 3DSTATE_GS based on the compiled shader.
3184 */
3185 static void
3186 iris_store_gs_state(struct iris_context *ice,
3187 const struct gen_device_info *devinfo,
3188 struct iris_compiled_shader *shader)
3189 {
3190 struct brw_stage_prog_data *prog_data = shader->prog_data;
3191 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3192 struct brw_gs_prog_data *gs_prog_data = (void *) prog_data;
3193
3194 iris_pack_command(GENX(3DSTATE_GS), shader->derived_data, gs) {
3195 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex, MESA_SHADER_GEOMETRY);
3196
3197 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
3198 gs.OutputTopology = gs_prog_data->output_topology;
3199 gs.ControlDataHeaderSize =
3200 gs_prog_data->control_data_header_size_hwords;
3201 gs.InstanceControl = gs_prog_data->invocations - 1;
3202 gs.DispatchMode = DISPATCH_MODE_SIMD8;
3203 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
3204 gs.ControlDataFormat = gs_prog_data->control_data_format;
3205 gs.ReorderMode = TRAILING;
3206 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
3207 gs.MaximumNumberofThreads =
3208 GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
3209 : (devinfo->max_gs_threads - 1);
3210
3211 if (gs_prog_data->static_vertex_count != -1) {
3212 gs.StaticOutput = true;
3213 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
3214 }
3215 gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
3216
3217 gs.UserClipDistanceCullTestEnableBitmask =
3218 vue_prog_data->cull_distance_mask;
3219
3220 const int urb_entry_write_offset = 1;
3221 const uint32_t urb_entry_output_length =
3222 DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
3223 urb_entry_write_offset;
3224
3225 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
3226 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
3227 }
3228 }
3229
3230 /**
3231 * Encode most of 3DSTATE_PS and 3DSTATE_PS_EXTRA based on the shader.
3232 */
3233 static void
3234 iris_store_fs_state(struct iris_context *ice,
3235 const struct gen_device_info *devinfo,
3236 struct iris_compiled_shader *shader)
3237 {
3238 struct brw_stage_prog_data *prog_data = shader->prog_data;
3239 struct brw_wm_prog_data *wm_prog_data = (void *) shader->prog_data;
3240
3241 uint32_t *ps_state = (void *) shader->derived_data;
3242 uint32_t *psx_state = ps_state + GENX(3DSTATE_PS_length);
3243
3244 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
3245 ps.VectorMaskEnable = true;
3246 //ps.SamplerCount = ...
3247 // XXX: WABTPPrefetchDisable, see above, drop at C0
3248 ps.BindingTableEntryCount = GEN_GEN == 11 ? 0 :
3249 prog_data->binding_table.size_bytes / 4;
3250 ps.FloatingPointMode = prog_data->use_alt_mode;
3251 ps.MaximumNumberofThreadsPerPSD = 64 - (GEN_GEN == 8 ? 2 : 1);
3252
3253 ps.PushConstantEnable = shader->num_system_values > 0 ||
3254 prog_data->ubo_ranges[0].length > 0;
3255
3256 /* From the documentation for this packet:
3257 * "If the PS kernel does not need the Position XY Offsets to
3258 * compute a Position Value, then this field should be programmed
3259 * to POSOFFSET_NONE."
3260 *
3261 * "SW Recommendation: If the PS kernel needs the Position Offsets
3262 * to compute a Position XY value, this field should match Position
3263 * ZW Interpolation Mode to ensure a consistent position.xyzw
3264 * computation."
3265 *
3266 * We only require XY sample offsets. So, this recommendation doesn't
3267 * look useful at the moment. We might need this in future.
3268 */
3269 ps.PositionXYOffsetSelect =
3270 wm_prog_data->uses_pos_offset ? POSOFFSET_SAMPLE : POSOFFSET_NONE;
3271 ps._8PixelDispatchEnable = wm_prog_data->dispatch_8;
3272 ps._16PixelDispatchEnable = wm_prog_data->dispatch_16;
3273 ps._32PixelDispatchEnable = wm_prog_data->dispatch_32;
3274
3275 // XXX: Disable SIMD32 with 16x MSAA
3276
3277 ps.DispatchGRFStartRegisterForConstantSetupData0 =
3278 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
3279 ps.DispatchGRFStartRegisterForConstantSetupData1 =
3280 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
3281 ps.DispatchGRFStartRegisterForConstantSetupData2 =
3282 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
3283
3284 ps.KernelStartPointer0 =
3285 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
3286 ps.KernelStartPointer1 =
3287 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
3288 ps.KernelStartPointer2 =
3289 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
3290
3291 if (prog_data->total_scratch) {
3292 uint32_t scratch_addr =
3293 iris_get_scratch_space(ice, prog_data->total_scratch,
3294 MESA_SHADER_FRAGMENT);
3295 ps.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
3296 ps.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr);
3297 }
3298 }
3299
3300 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
3301 psx.PixelShaderValid = true;
3302 psx.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
3303 // XXX: alpha test / alpha to coverage :/
3304 psx.PixelShaderKillsPixel = wm_prog_data->uses_kill ||
3305 wm_prog_data->uses_omask;
3306 psx.AttributeEnable = wm_prog_data->num_varying_inputs != 0;
3307 psx.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
3308 psx.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
3309 psx.PixelShaderIsPerSample = wm_prog_data->persample_dispatch;
3310
3311 if (wm_prog_data->uses_sample_mask) {
3312 /* TODO: conservative rasterization */
3313 if (wm_prog_data->post_depth_coverage)
3314 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
3315 else
3316 psx.InputCoverageMaskState = ICMS_NORMAL;
3317 }
3318
3319 psx.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
3320 psx.PixelShaderPullsBary = wm_prog_data->pulls_bary;
3321 psx.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
3322
3323 // XXX: UAV bit
3324 }
3325 }
3326
3327 /**
3328 * Compute the size of the derived data (shader command packets).
3329 *
3330 * This must match the data written by the iris_store_xs_state() functions.
3331 */
3332 static void
3333 iris_store_cs_state(struct iris_context *ice,
3334 const struct gen_device_info *devinfo,
3335 struct iris_compiled_shader *shader)
3336 {
3337 struct brw_stage_prog_data *prog_data = shader->prog_data;
3338 struct brw_cs_prog_data *cs_prog_data = (void *) shader->prog_data;
3339 void *map = shader->derived_data;
3340
3341 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), map, desc) {
3342 desc.KernelStartPointer = KSP(shader);
3343 desc.ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs;
3344 desc.NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads;
3345 desc.SharedLocalMemorySize =
3346 encode_slm_size(GEN_GEN, prog_data->total_shared);
3347 desc.BarrierEnable = cs_prog_data->uses_barrier;
3348 desc.CrossThreadConstantDataReadLength =
3349 cs_prog_data->push.cross_thread.regs;
3350 }
3351 }
3352
3353 static unsigned
3354 iris_derived_program_state_size(enum iris_program_cache_id cache_id)
3355 {
3356 assert(cache_id <= IRIS_CACHE_BLORP);
3357
3358 static const unsigned dwords[] = {
3359 [IRIS_CACHE_VS] = GENX(3DSTATE_VS_length),
3360 [IRIS_CACHE_TCS] = GENX(3DSTATE_HS_length),
3361 [IRIS_CACHE_TES] = GENX(3DSTATE_TE_length) + GENX(3DSTATE_DS_length),
3362 [IRIS_CACHE_GS] = GENX(3DSTATE_GS_length),
3363 [IRIS_CACHE_FS] =
3364 GENX(3DSTATE_PS_length) + GENX(3DSTATE_PS_EXTRA_length),
3365 [IRIS_CACHE_CS] = GENX(INTERFACE_DESCRIPTOR_DATA_length),
3366 [IRIS_CACHE_BLORP] = 0,
3367 };
3368
3369 return sizeof(uint32_t) * dwords[cache_id];
3370 }
3371
3372 /**
3373 * Create any state packets corresponding to the given shader stage
3374 * (i.e. 3DSTATE_VS) and save them as "derived data" in the shader variant.
3375 * This means that we can look up a program in the in-memory cache and
3376 * get most of the state packet without having to reconstruct it.
3377 */
3378 static void
3379 iris_store_derived_program_state(struct iris_context *ice,
3380 enum iris_program_cache_id cache_id,
3381 struct iris_compiled_shader *shader)
3382 {
3383 struct iris_screen *screen = (void *) ice->ctx.screen;
3384 const struct gen_device_info *devinfo = &screen->devinfo;
3385
3386 switch (cache_id) {
3387 case IRIS_CACHE_VS:
3388 iris_store_vs_state(ice, devinfo, shader);
3389 break;
3390 case IRIS_CACHE_TCS:
3391 iris_store_tcs_state(ice, devinfo, shader);
3392 break;
3393 case IRIS_CACHE_TES:
3394 iris_store_tes_state(ice, devinfo, shader);
3395 break;
3396 case IRIS_CACHE_GS:
3397 iris_store_gs_state(ice, devinfo, shader);
3398 break;
3399 case IRIS_CACHE_FS:
3400 iris_store_fs_state(ice, devinfo, shader);
3401 break;
3402 case IRIS_CACHE_CS:
3403 iris_store_cs_state(ice, devinfo, shader);
3404 case IRIS_CACHE_BLORP:
3405 break;
3406 default:
3407 break;
3408 }
3409 }
3410
3411 /* ------------------------------------------------------------------- */
3412
3413 /**
3414 * Configure the URB.
3415 *
3416 * XXX: write a real comment.
3417 */
3418 static void
3419 iris_upload_urb_config(struct iris_context *ice, struct iris_batch *batch)
3420 {
3421 const struct gen_device_info *devinfo = &batch->screen->devinfo;
3422 const unsigned push_size_kB = 32;
3423 unsigned entries[4];
3424 unsigned start[4];
3425 unsigned size[4];
3426
3427 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
3428 if (!ice->shaders.prog[i]) {
3429 size[i] = 1;
3430 } else {
3431 struct brw_vue_prog_data *vue_prog_data =
3432 (void *) ice->shaders.prog[i]->prog_data;
3433 size[i] = vue_prog_data->urb_entry_size;
3434 }
3435 assert(size[i] != 0);
3436 }
3437
3438 gen_get_urb_config(devinfo, 1024 * push_size_kB,
3439 1024 * ice->shaders.urb_size,
3440 ice->shaders.prog[MESA_SHADER_TESS_EVAL] != NULL,
3441 ice->shaders.prog[MESA_SHADER_GEOMETRY] != NULL,
3442 size, entries, start);
3443
3444 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
3445 iris_emit_cmd(batch, GENX(3DSTATE_URB_VS), urb) {
3446 urb._3DCommandSubOpcode += i;
3447 urb.VSURBStartingAddress = start[i];
3448 urb.VSURBEntryAllocationSize = size[i] - 1;
3449 urb.VSNumberofURBEntries = entries[i];
3450 }
3451 }
3452 }
3453
3454 static const uint32_t push_constant_opcodes[] = {
3455 [MESA_SHADER_VERTEX] = 21,
3456 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
3457 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
3458 [MESA_SHADER_GEOMETRY] = 22,
3459 [MESA_SHADER_FRAGMENT] = 23,
3460 [MESA_SHADER_COMPUTE] = 0,
3461 };
3462
3463 static uint32_t
3464 use_null_surface(struct iris_batch *batch, struct iris_context *ice)
3465 {
3466 struct iris_bo *state_bo = iris_resource_bo(ice->state.unbound_tex.res);
3467
3468 iris_use_pinned_bo(batch, state_bo, false);
3469
3470 return ice->state.unbound_tex.offset;
3471 }
3472
3473 static uint32_t
3474 use_null_fb_surface(struct iris_batch *batch, struct iris_context *ice)
3475 {
3476 /* If set_framebuffer_state() was never called, fall back to 1x1x1 */
3477 if (!ice->state.null_fb.res)
3478 return use_null_surface(batch, ice);
3479
3480 struct iris_bo *state_bo = iris_resource_bo(ice->state.null_fb.res);
3481
3482 iris_use_pinned_bo(batch, state_bo, false);
3483
3484 return ice->state.null_fb.offset;
3485 }
3486
3487 /**
3488 * Add a surface to the validation list, as well as the buffer containing
3489 * the corresponding SURFACE_STATE.
3490 *
3491 * Returns the binding table entry (offset to SURFACE_STATE).
3492 */
3493 static uint32_t
3494 use_surface(struct iris_batch *batch,
3495 struct pipe_surface *p_surf,
3496 bool writeable)
3497 {
3498 struct iris_surface *surf = (void *) p_surf;
3499
3500 iris_use_pinned_bo(batch, iris_resource_bo(p_surf->texture), writeable);
3501 iris_use_pinned_bo(batch, iris_resource_bo(surf->surface_state.res), false);
3502
3503 return surf->surface_state.offset;
3504 }
3505
3506 static uint32_t
3507 use_sampler_view(struct iris_batch *batch, struct iris_sampler_view *isv)
3508 {
3509 iris_use_pinned_bo(batch, isv->res->bo, false);
3510 iris_use_pinned_bo(batch, iris_resource_bo(isv->surface_state.res), false);
3511
3512 return isv->surface_state.offset;
3513 }
3514
3515 static uint32_t
3516 use_const_buffer(struct iris_batch *batch,
3517 struct iris_context *ice,
3518 struct iris_const_buffer *cbuf)
3519 {
3520 if (!cbuf->surface_state.res)
3521 return use_null_surface(batch, ice);
3522
3523 iris_use_pinned_bo(batch, iris_resource_bo(cbuf->data.res), false);
3524 iris_use_pinned_bo(batch, iris_resource_bo(cbuf->surface_state.res), false);
3525
3526 return cbuf->surface_state.offset;
3527 }
3528
3529 static uint32_t
3530 use_ssbo(struct iris_batch *batch, struct iris_context *ice,
3531 struct iris_shader_state *shs, int i)
3532 {
3533 if (!shs->ssbo[i])
3534 return use_null_surface(batch, ice);
3535
3536 struct iris_state_ref *surf_state = &shs->ssbo_surface_state[i];
3537
3538 iris_use_pinned_bo(batch, iris_resource_bo(shs->ssbo[i]), true);
3539 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false);
3540
3541 return surf_state->offset;
3542 }
3543
3544 static uint32_t
3545 use_image(struct iris_batch *batch, struct iris_context *ice,
3546 struct iris_shader_state *shs, int i)
3547 {
3548 if (!shs->image[i].res)
3549 return use_null_surface(batch, ice);
3550
3551 struct iris_state_ref *surf_state = &shs->image[i].surface_state;
3552
3553 iris_use_pinned_bo(batch, iris_resource_bo(shs->image[i].res),
3554 shs->image[i].access & PIPE_IMAGE_ACCESS_WRITE);
3555 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false);
3556
3557 return surf_state->offset;
3558 }
3559
3560 #define push_bt_entry(addr) \
3561 assert(addr >= binder_addr); \
3562 assert(s < prog_data->binding_table.size_bytes / sizeof(uint32_t)); \
3563 if (!pin_only) bt_map[s++] = (addr) - binder_addr;
3564
3565 #define bt_assert(section, exists) \
3566 if (!pin_only) assert(prog_data->binding_table.section == \
3567 (exists) ? s : 0xd0d0d0d0)
3568
3569 /**
3570 * Populate the binding table for a given shader stage.
3571 *
3572 * This fills out the table of pointers to surfaces required by the shader,
3573 * and also adds those buffers to the validation list so the kernel can make
3574 * resident before running our batch.
3575 */
3576 static void
3577 iris_populate_binding_table(struct iris_context *ice,
3578 struct iris_batch *batch,
3579 gl_shader_stage stage,
3580 bool pin_only)
3581 {
3582 const struct iris_binder *binder = &ice->state.binder;
3583 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3584 if (!shader)
3585 return;
3586
3587 UNUSED struct brw_stage_prog_data *prog_data = shader->prog_data;
3588 struct iris_shader_state *shs = &ice->state.shaders[stage];
3589 uint32_t binder_addr = binder->bo->gtt_offset;
3590
3591 //struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
3592 uint32_t *bt_map = binder->map + binder->bt_offset[stage];
3593 int s = 0;
3594
3595 const struct shader_info *info = iris_get_shader_info(ice, stage);
3596 if (!info) {
3597 /* TCS passthrough doesn't need a binding table. */
3598 assert(stage == MESA_SHADER_TESS_CTRL);
3599 return;
3600 }
3601
3602 if (stage == MESA_SHADER_COMPUTE) {
3603 /* surface for gl_NumWorkGroups */
3604 struct iris_state_ref *grid_data = &ice->state.grid_size;
3605 struct iris_state_ref *grid_state = &ice->state.grid_surf_state;
3606 iris_use_pinned_bo(batch, iris_resource_bo(grid_data->res), false);
3607 iris_use_pinned_bo(batch, iris_resource_bo(grid_state->res), false);
3608 push_bt_entry(grid_state->offset);
3609 }
3610
3611 if (stage == MESA_SHADER_FRAGMENT) {
3612 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
3613 /* Note that cso_fb->nr_cbufs == fs_key->nr_color_regions. */
3614 if (cso_fb->nr_cbufs) {
3615 for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
3616 uint32_t addr =
3617 cso_fb->cbufs[i] ? use_surface(batch, cso_fb->cbufs[i], true)
3618 : use_null_fb_surface(batch, ice);
3619 push_bt_entry(addr);
3620 }
3621 } else {
3622 uint32_t addr = use_null_fb_surface(batch, ice);
3623 push_bt_entry(addr);
3624 }
3625 }
3626
3627 bt_assert(texture_start, info->num_textures > 0);
3628
3629 for (int i = 0; i < info->num_textures; i++) {
3630 struct iris_sampler_view *view = shs->textures[i];
3631 uint32_t addr = view ? use_sampler_view(batch, view)
3632 : use_null_surface(batch, ice);
3633 push_bt_entry(addr);
3634 }
3635
3636 bt_assert(image_start, info->num_images > 0);
3637
3638 for (int i = 0; i < info->num_images; i++) {
3639 uint32_t addr = use_image(batch, ice, shs, i);
3640 push_bt_entry(addr);
3641 }
3642
3643 const int num_ubos = iris_get_shader_num_ubos(ice, stage);
3644
3645 bt_assert(ubo_start, num_ubos > 0);
3646
3647 for (int i = 0; i < num_ubos; i++) {
3648 uint32_t addr = use_const_buffer(batch, ice, &shs->constbuf[i]);
3649 push_bt_entry(addr);
3650 }
3651
3652 bt_assert(ssbo_start, info->num_abos + info->num_ssbos > 0);
3653
3654 /* XXX: st is wasting 16 binding table slots for ABOs. Should add a cap
3655 * for changing nir_lower_atomics_to_ssbos setting and buffer_base offset
3656 * in st_atom_storagebuf.c so it'll compact them into one range, with
3657 * SSBOs starting at info->num_abos. Ideally it'd reset num_abos to 0 too
3658 */
3659 if (info->num_abos + info->num_ssbos > 0) {
3660 for (int i = 0; i < IRIS_MAX_ABOS + info->num_ssbos; i++) {
3661 uint32_t addr = use_ssbo(batch, ice, shs, i);
3662 push_bt_entry(addr);
3663 }
3664 }
3665
3666 #if 0
3667 // XXX: not implemented yet
3668 bt_assert(plane_start[1], ...);
3669 bt_assert(plane_start[2], ...);
3670 #endif
3671 }
3672
3673 static void
3674 iris_use_optional_res(struct iris_batch *batch,
3675 struct pipe_resource *res,
3676 bool writeable)
3677 {
3678 if (res) {
3679 struct iris_bo *bo = iris_resource_bo(res);
3680 iris_use_pinned_bo(batch, bo, writeable);
3681 }
3682 }
3683
3684 /* ------------------------------------------------------------------- */
3685
3686 /**
3687 * Pin any BOs which were installed by a previous batch, and restored
3688 * via the hardware logical context mechanism.
3689 *
3690 * We don't need to re-emit all state every batch - the hardware context
3691 * mechanism will save and restore it for us. This includes pointers to
3692 * various BOs...which won't exist unless we ask the kernel to pin them
3693 * by adding them to the validation list.
3694 *
3695 * We can skip buffers if we've re-emitted those packets, as we're
3696 * overwriting those stale pointers with new ones, and don't actually
3697 * refer to the old BOs.
3698 */
3699 static void
3700 iris_restore_render_saved_bos(struct iris_context *ice,
3701 struct iris_batch *batch,
3702 const struct pipe_draw_info *draw)
3703 {
3704 // XXX: whack IRIS_SHADER_DIRTY_BINDING_TABLE on new batch
3705
3706 const uint64_t clean = ~ice->state.dirty;
3707
3708 if (clean & IRIS_DIRTY_CC_VIEWPORT) {
3709 iris_use_optional_res(batch, ice->state.last_res.cc_vp, false);
3710 }
3711
3712 if (clean & IRIS_DIRTY_SF_CL_VIEWPORT) {
3713 iris_use_optional_res(batch, ice->state.last_res.sf_cl_vp, false);
3714 }
3715
3716 if (clean & IRIS_DIRTY_BLEND_STATE) {
3717 iris_use_optional_res(batch, ice->state.last_res.blend, false);
3718 }
3719
3720 if (clean & IRIS_DIRTY_COLOR_CALC_STATE) {
3721 iris_use_optional_res(batch, ice->state.last_res.color_calc, false);
3722 }
3723
3724 if (clean & IRIS_DIRTY_SCISSOR_RECT) {
3725 iris_use_optional_res(batch, ice->state.last_res.scissor, false);
3726 }
3727
3728 if (ice->state.streamout_active && (clean & IRIS_DIRTY_SO_BUFFERS)) {
3729 for (int i = 0; i < 4; i++) {
3730 struct iris_stream_output_target *tgt =
3731 (void *) ice->state.so_target[i];
3732 if (tgt) {
3733 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
3734 true);
3735 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
3736 true);
3737 }
3738 }
3739 }
3740
3741 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3742 if (!(clean & (IRIS_DIRTY_CONSTANTS_VS << stage)))
3743 continue;
3744
3745 struct iris_shader_state *shs = &ice->state.shaders[stage];
3746 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3747
3748 if (!shader)
3749 continue;
3750
3751 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
3752
3753 for (int i = 0; i < 4; i++) {
3754 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
3755
3756 if (range->length == 0)
3757 continue;
3758
3759 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
3760 struct iris_resource *res = (void *) cbuf->data.res;
3761
3762 if (res)
3763 iris_use_pinned_bo(batch, res->bo, false);
3764 else
3765 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
3766 }
3767 }
3768
3769 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3770 if (clean & (IRIS_DIRTY_BINDINGS_VS << stage)) {
3771 /* Re-pin any buffers referred to by the binding table. */
3772 iris_populate_binding_table(ice, batch, stage, true);
3773 }
3774 }
3775
3776 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3777 struct iris_shader_state *shs = &ice->state.shaders[stage];
3778 struct pipe_resource *res = shs->sampler_table.res;
3779 if (res)
3780 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
3781 }
3782
3783 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3784 if (clean & (IRIS_DIRTY_VS << stage)) {
3785 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3786 if (shader) {
3787 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
3788 iris_use_pinned_bo(batch, bo, false);
3789 }
3790
3791 // XXX: scratch buffer
3792 }
3793 }
3794
3795 if (clean & IRIS_DIRTY_DEPTH_BUFFER) {
3796 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
3797
3798 if (cso_fb->zsbuf) {
3799 struct iris_resource *zres, *sres;
3800 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
3801 &zres, &sres);
3802 // XXX: might not be writable...
3803 if (zres)
3804 iris_use_pinned_bo(batch, zres->bo, true);
3805 if (sres)
3806 iris_use_pinned_bo(batch, sres->bo, true);
3807 }
3808 }
3809
3810 if (draw->index_size == 0 && ice->state.last_res.index_buffer) {
3811 /* This draw didn't emit a new index buffer, so we are inheriting the
3812 * older index buffer. This draw didn't need it, but future ones may.
3813 */
3814 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
3815 iris_use_pinned_bo(batch, bo, false);
3816 }
3817
3818 if (clean & IRIS_DIRTY_VERTEX_BUFFERS) {
3819 struct iris_vertex_buffer_state *cso = &ice->state.genx->vertex_buffers;
3820 for (unsigned i = 0; i < cso->num_buffers; i++) {
3821 struct iris_resource *res = (void *) cso->resources[i];
3822 iris_use_pinned_bo(batch, res->bo, false);
3823 }
3824 }
3825 }
3826
3827 static void
3828 iris_restore_compute_saved_bos(struct iris_context *ice,
3829 struct iris_batch *batch,
3830 const struct pipe_grid_info *grid)
3831 {
3832 const uint64_t clean = ~ice->state.dirty;
3833
3834 const int stage = MESA_SHADER_COMPUTE;
3835 struct iris_shader_state *shs = &ice->state.shaders[stage];
3836
3837 if (clean & IRIS_DIRTY_CONSTANTS_CS) {
3838 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3839
3840 if (shader) {
3841 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
3842 const struct brw_ubo_range *range = &prog_data->ubo_ranges[0];
3843
3844 if (range->length > 0) {
3845 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
3846 struct iris_resource *res = (void *) cbuf->data.res;
3847
3848 if (res)
3849 iris_use_pinned_bo(batch, res->bo, false);
3850 else
3851 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
3852 }
3853 }
3854 }
3855
3856 if (clean & IRIS_DIRTY_BINDINGS_CS) {
3857 /* Re-pin any buffers referred to by the binding table. */
3858 iris_populate_binding_table(ice, batch, stage, true);
3859 }
3860
3861 struct pipe_resource *sampler_res = shs->sampler_table.res;
3862 if (sampler_res)
3863 iris_use_pinned_bo(batch, iris_resource_bo(sampler_res), false);
3864
3865 if (clean & IRIS_DIRTY_CS) {
3866 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3867 if (shader) {
3868 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
3869 iris_use_pinned_bo(batch, bo, false);
3870 }
3871
3872 // XXX: scratch buffer
3873 }
3874 }
3875
3876 /**
3877 * Possibly emit STATE_BASE_ADDRESS to update Surface State Base Address.
3878 */
3879 static void
3880 iris_update_surface_base_address(struct iris_batch *batch,
3881 struct iris_binder *binder)
3882 {
3883 if (batch->last_surface_base_address == binder->bo->gtt_offset)
3884 return;
3885
3886 flush_for_state_base_change(batch);
3887
3888 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
3889 // XXX: sba.SurfaceStateMemoryObjectControlState = MOCS_WB;
3890 sba.SurfaceStateBaseAddressModifyEnable = true;
3891 sba.SurfaceStateBaseAddress = ro_bo(binder->bo, 0);
3892 }
3893
3894 batch->last_surface_base_address = binder->bo->gtt_offset;
3895 }
3896
3897 static void
3898 iris_upload_dirty_render_state(struct iris_context *ice,
3899 struct iris_batch *batch,
3900 const struct pipe_draw_info *draw)
3901 {
3902 const uint64_t dirty = ice->state.dirty;
3903
3904 if (!(dirty & IRIS_ALL_DIRTY_FOR_RENDER))
3905 return;
3906
3907 struct iris_genx_state *genx = ice->state.genx;
3908 struct iris_binder *binder = &ice->state.binder;
3909 struct brw_wm_prog_data *wm_prog_data = (void *)
3910 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3911
3912 if (dirty & IRIS_DIRTY_CC_VIEWPORT) {
3913 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3914 uint32_t cc_vp_address;
3915
3916 /* XXX: could avoid streaming for depth_clip [0,1] case. */
3917 uint32_t *cc_vp_map =
3918 stream_state(batch, ice->state.dynamic_uploader,
3919 &ice->state.last_res.cc_vp,
3920 4 * ice->state.num_viewports *
3921 GENX(CC_VIEWPORT_length), 32, &cc_vp_address);
3922 for (int i = 0; i < ice->state.num_viewports; i++) {
3923 float zmin, zmax;
3924 util_viewport_zmin_zmax(&ice->state.viewports[i],
3925 cso_rast->clip_halfz, &zmin, &zmax);
3926 if (cso_rast->depth_clip_near)
3927 zmin = 0.0;
3928 if (cso_rast->depth_clip_far)
3929 zmax = 1.0;
3930
3931 iris_pack_state(GENX(CC_VIEWPORT), cc_vp_map, ccv) {
3932 ccv.MinimumDepth = zmin;
3933 ccv.MaximumDepth = zmax;
3934 }
3935
3936 cc_vp_map += GENX(CC_VIEWPORT_length);
3937 }
3938
3939 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
3940 ptr.CCViewportPointer = cc_vp_address;
3941 }
3942 }
3943
3944 if (dirty & IRIS_DIRTY_SF_CL_VIEWPORT) {
3945 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
3946 uint32_t sf_cl_vp_address;
3947 uint32_t *vp_map =
3948 stream_state(batch, ice->state.dynamic_uploader,
3949 &ice->state.last_res.sf_cl_vp,
3950 4 * ice->state.num_viewports *
3951 GENX(SF_CLIP_VIEWPORT_length), 64, &sf_cl_vp_address);
3952
3953 for (unsigned i = 0; i < ice->state.num_viewports; i++) {
3954 const struct pipe_viewport_state *state = &ice->state.viewports[i];
3955
3956 float vp_xmin = viewport_extent(state, 0, -1.0f);
3957 float vp_xmax = viewport_extent(state, 0, 1.0f);
3958 float vp_ymin = viewport_extent(state, 1, -1.0f);
3959 float vp_ymax = viewport_extent(state, 1, 1.0f);
3960
3961 iris_pack_state(GENX(SF_CLIP_VIEWPORT), vp_map, vp) {
3962 vp.ViewportMatrixElementm00 = state->scale[0];
3963 vp.ViewportMatrixElementm11 = state->scale[1];
3964 vp.ViewportMatrixElementm22 = state->scale[2];
3965 vp.ViewportMatrixElementm30 = state->translate[0];
3966 vp.ViewportMatrixElementm31 = state->translate[1];
3967 vp.ViewportMatrixElementm32 = state->translate[2];
3968 /* XXX: in i965 this is computed based on the drawbuffer size,
3969 * but we don't have that here...
3970 */
3971 vp.XMinClipGuardband = -1.0;
3972 vp.XMaxClipGuardband = 1.0;
3973 vp.YMinClipGuardband = -1.0;
3974 vp.YMaxClipGuardband = 1.0;
3975 vp.XMinViewPort = MAX2(vp_xmin, 0);
3976 vp.XMaxViewPort = MIN2(vp_xmax, cso_fb->width) - 1;
3977 vp.YMinViewPort = MAX2(vp_ymin, 0);
3978 vp.YMaxViewPort = MIN2(vp_ymax, cso_fb->height) - 1;
3979 }
3980
3981 vp_map += GENX(SF_CLIP_VIEWPORT_length);
3982 }
3983
3984 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
3985 ptr.SFClipViewportPointer = sf_cl_vp_address;
3986 }
3987 }
3988
3989 /* XXX: L3 State */
3990
3991 // XXX: this is only flagged at setup, we assume a static configuration
3992 if (dirty & IRIS_DIRTY_URB) {
3993 iris_upload_urb_config(ice, batch);
3994 }
3995
3996 if (dirty & IRIS_DIRTY_BLEND_STATE) {
3997 struct iris_blend_state *cso_blend = ice->state.cso_blend;
3998 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
3999 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
4000 const int header_dwords = GENX(BLEND_STATE_length);
4001 const int rt_dwords = cso_fb->nr_cbufs * GENX(BLEND_STATE_ENTRY_length);
4002 uint32_t blend_offset;
4003 uint32_t *blend_map =
4004 stream_state(batch, ice->state.dynamic_uploader,
4005 &ice->state.last_res.blend,
4006 4 * (header_dwords + rt_dwords), 64, &blend_offset);
4007
4008 uint32_t blend_state_header;
4009 iris_pack_state(GENX(BLEND_STATE), &blend_state_header, bs) {
4010 bs.AlphaTestEnable = cso_zsa->alpha.enabled;
4011 bs.AlphaTestFunction = translate_compare_func(cso_zsa->alpha.func);
4012 }
4013
4014 blend_map[0] = blend_state_header | cso_blend->blend_state[0];
4015 memcpy(&blend_map[1], &cso_blend->blend_state[1], 4 * rt_dwords);
4016
4017 iris_emit_cmd(batch, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
4018 ptr.BlendStatePointer = blend_offset;
4019 ptr.BlendStatePointerValid = true;
4020 }
4021 }
4022
4023 if (dirty & IRIS_DIRTY_COLOR_CALC_STATE) {
4024 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
4025 uint32_t cc_offset;
4026 void *cc_map =
4027 stream_state(batch, ice->state.dynamic_uploader,
4028 &ice->state.last_res.color_calc,
4029 sizeof(uint32_t) * GENX(COLOR_CALC_STATE_length),
4030 64, &cc_offset);
4031 iris_pack_state(GENX(COLOR_CALC_STATE), cc_map, cc) {
4032 cc.AlphaTestFormat = ALPHATEST_FLOAT32;
4033 cc.AlphaReferenceValueAsFLOAT32 = cso->alpha.ref_value;
4034 cc.BlendConstantColorRed = ice->state.blend_color.color[0];
4035 cc.BlendConstantColorGreen = ice->state.blend_color.color[1];
4036 cc.BlendConstantColorBlue = ice->state.blend_color.color[2];
4037 cc.BlendConstantColorAlpha = ice->state.blend_color.color[3];
4038 }
4039 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
4040 ptr.ColorCalcStatePointer = cc_offset;
4041 ptr.ColorCalcStatePointerValid = true;
4042 }
4043 }
4044
4045 /* Upload constants for TCS passthrough. */
4046 if ((dirty & IRIS_DIRTY_CONSTANTS_TCS) &&
4047 ice->shaders.prog[MESA_SHADER_TESS_CTRL] &&
4048 !ice->shaders.uncompiled[MESA_SHADER_TESS_CTRL]) {
4049 struct iris_compiled_shader *tes_shader = ice->shaders.prog[MESA_SHADER_TESS_EVAL];
4050 assert(tes_shader);
4051
4052 /* Passthrough always copies 2 vec4s, so when uploading data we ensure
4053 * it is in the right layout for TES.
4054 */
4055 float hdr[8] = {};
4056 struct brw_tes_prog_data *tes_prog_data = (void *) tes_shader->prog_data;
4057 switch (tes_prog_data->domain) {
4058 case BRW_TESS_DOMAIN_QUAD:
4059 for (int i = 0; i < 4; i++)
4060 hdr[7 - i] = ice->state.default_outer_level[i];
4061 hdr[3] = ice->state.default_inner_level[0];
4062 hdr[2] = ice->state.default_inner_level[1];
4063 break;
4064 case BRW_TESS_DOMAIN_TRI:
4065 for (int i = 0; i < 3; i++)
4066 hdr[7 - i] = ice->state.default_outer_level[i];
4067 hdr[4] = ice->state.default_inner_level[0];
4068 break;
4069 case BRW_TESS_DOMAIN_ISOLINE:
4070 hdr[7] = ice->state.default_outer_level[1];
4071 hdr[6] = ice->state.default_outer_level[0];
4072 break;
4073 }
4074
4075 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_TESS_CTRL];
4076 struct iris_const_buffer *cbuf = &shs->constbuf[0];
4077 u_upload_data(ice->ctx.const_uploader, 0, sizeof(hdr), 32,
4078 &hdr[0], &cbuf->data.offset,
4079 &cbuf->data.res);
4080 }
4081
4082 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4083 if (!(dirty & (IRIS_DIRTY_CONSTANTS_VS << stage)))
4084 continue;
4085
4086 struct iris_shader_state *shs = &ice->state.shaders[stage];
4087 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4088
4089 if (!shader)
4090 continue;
4091
4092 if (shs->cbuf0_needs_upload)
4093 upload_uniforms(ice, stage);
4094
4095 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4096
4097 iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_VS), pkt) {
4098 pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
4099 if (prog_data) {
4100 /* The Skylake PRM contains the following restriction:
4101 *
4102 * "The driver must ensure The following case does not occur
4103 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
4104 * buffer 3 read length equal to zero committed followed by a
4105 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
4106 * zero committed."
4107 *
4108 * To avoid this, we program the buffers in the highest slots.
4109 * This way, slot 0 is only used if slot 3 is also used.
4110 */
4111 int n = 3;
4112
4113 for (int i = 3; i >= 0; i--) {
4114 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4115
4116 if (range->length == 0)
4117 continue;
4118
4119 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
4120 struct iris_resource *res = (void *) cbuf->data.res;
4121
4122 assert(cbuf->data.offset % 32 == 0);
4123
4124 pkt.ConstantBody.ReadLength[n] = range->length;
4125 pkt.ConstantBody.Buffer[n] =
4126 res ? ro_bo(res->bo, range->start * 32 + cbuf->data.offset)
4127 : ro_bo(batch->screen->workaround_bo, 0);
4128 n--;
4129 }
4130 }
4131 }
4132 }
4133
4134 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4135 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4136 iris_emit_cmd(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), ptr) {
4137 ptr._3DCommandSubOpcode = 38 + stage;
4138 ptr.PointertoVSBindingTable = binder->bt_offset[stage];
4139 }
4140 }
4141 }
4142
4143 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4144 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4145 iris_populate_binding_table(ice, batch, stage, false);
4146 }
4147 }
4148
4149 if (ice->state.need_border_colors)
4150 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
4151
4152 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4153 if (!(dirty & (IRIS_DIRTY_SAMPLER_STATES_VS << stage)) ||
4154 !ice->shaders.prog[stage])
4155 continue;
4156
4157 struct iris_shader_state *shs = &ice->state.shaders[stage];
4158 struct pipe_resource *res = shs->sampler_table.res;
4159 if (res)
4160 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4161
4162 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
4163 ptr._3DCommandSubOpcode = 43 + stage;
4164 ptr.PointertoVSSamplerState = shs->sampler_table.offset;
4165 }
4166 }
4167
4168 if (dirty & IRIS_DIRTY_MULTISAMPLE) {
4169 iris_emit_cmd(batch, GENX(3DSTATE_MULTISAMPLE), ms) {
4170 ms.PixelLocation =
4171 ice->state.cso_rast->half_pixel_center ? CENTER : UL_CORNER;
4172 if (ice->state.framebuffer.samples > 0)
4173 ms.NumberofMultisamples = ffs(ice->state.framebuffer.samples) - 1;
4174 }
4175 }
4176
4177 if (dirty & IRIS_DIRTY_SAMPLE_MASK) {
4178 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_MASK), ms) {
4179 ms.SampleMask = MAX2(ice->state.sample_mask, 1);
4180 }
4181 }
4182
4183 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4184 if (!(dirty & (IRIS_DIRTY_VS << stage)))
4185 continue;
4186
4187 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4188
4189 if (shader) {
4190 struct iris_resource *cache = (void *) shader->assembly.res;
4191 iris_use_pinned_bo(batch, cache->bo, false);
4192 iris_batch_emit(batch, shader->derived_data,
4193 iris_derived_program_state_size(stage));
4194 } else {
4195 if (stage == MESA_SHADER_TESS_EVAL) {
4196 iris_emit_cmd(batch, GENX(3DSTATE_HS), hs);
4197 iris_emit_cmd(batch, GENX(3DSTATE_TE), te);
4198 iris_emit_cmd(batch, GENX(3DSTATE_DS), ds);
4199 } else if (stage == MESA_SHADER_GEOMETRY) {
4200 iris_emit_cmd(batch, GENX(3DSTATE_GS), gs);
4201 }
4202 }
4203 }
4204
4205 if (ice->state.streamout_active) {
4206 if (dirty & IRIS_DIRTY_SO_BUFFERS) {
4207 iris_batch_emit(batch, genx->so_buffers,
4208 4 * 4 * GENX(3DSTATE_SO_BUFFER_length));
4209 for (int i = 0; i < 4; i++) {
4210 struct iris_stream_output_target *tgt =
4211 (void *) ice->state.so_target[i];
4212 if (tgt) {
4213 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
4214 true);
4215 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
4216 true);
4217 }
4218 }
4219 }
4220
4221 if ((dirty & IRIS_DIRTY_SO_DECL_LIST) && ice->state.streamout) {
4222 uint32_t *decl_list =
4223 ice->state.streamout + GENX(3DSTATE_STREAMOUT_length);
4224 iris_batch_emit(batch, decl_list, 4 * ((decl_list[0] & 0xff) + 2));
4225 }
4226
4227 if (dirty & IRIS_DIRTY_STREAMOUT) {
4228 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4229
4230 uint32_t dynamic_sol[GENX(3DSTATE_STREAMOUT_length)];
4231 iris_pack_command(GENX(3DSTATE_STREAMOUT), dynamic_sol, sol) {
4232 sol.SOFunctionEnable = true;
4233 sol.SOStatisticsEnable = true;
4234
4235 sol.RenderingDisable = cso_rast->rasterizer_discard &&
4236 !ice->state.prims_generated_query_active;
4237 sol.ReorderMode = cso_rast->flatshade_first ? LEADING : TRAILING;
4238 }
4239
4240 assert(ice->state.streamout);
4241
4242 iris_emit_merge(batch, ice->state.streamout, dynamic_sol,
4243 GENX(3DSTATE_STREAMOUT_length));
4244 }
4245 } else {
4246 if (dirty & IRIS_DIRTY_STREAMOUT) {
4247 iris_emit_cmd(batch, GENX(3DSTATE_STREAMOUT), sol);
4248 }
4249 }
4250
4251 if (dirty & IRIS_DIRTY_CLIP) {
4252 struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4253 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4254
4255 bool reject = cso_rast->rasterizer_discard &&
4256 ice->state.prims_generated_query_active;
4257
4258 uint32_t dynamic_clip[GENX(3DSTATE_CLIP_length)];
4259 iris_pack_command(GENX(3DSTATE_CLIP), &dynamic_clip, cl) {
4260 cl.StatisticsEnable = ice->state.statistics_counters_enabled;
4261 cl.ClipMode = reject ? CLIPMODE_REJECT_ALL : CLIPMODE_NORMAL;
4262 if (wm_prog_data->barycentric_interp_modes &
4263 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
4264 cl.NonPerspectiveBarycentricEnable = true;
4265
4266 cl.ForceZeroRTAIndexEnable = cso_fb->layers == 0;
4267 cl.MaximumVPIndex = ice->state.num_viewports - 1;
4268 }
4269 iris_emit_merge(batch, cso_rast->clip, dynamic_clip,
4270 ARRAY_SIZE(cso_rast->clip));
4271 }
4272
4273 if (dirty & IRIS_DIRTY_RASTER) {
4274 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4275 iris_batch_emit(batch, cso->raster, sizeof(cso->raster));
4276 iris_batch_emit(batch, cso->sf, sizeof(cso->sf));
4277
4278 }
4279
4280 /* XXX: FS program updates needs to flag IRIS_DIRTY_WM */
4281 if (dirty & IRIS_DIRTY_WM) {
4282 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4283 uint32_t dynamic_wm[GENX(3DSTATE_WM_length)];
4284
4285 iris_pack_command(GENX(3DSTATE_WM), &dynamic_wm, wm) {
4286 wm.StatisticsEnable = ice->state.statistics_counters_enabled;
4287
4288 wm.BarycentricInterpolationMode =
4289 wm_prog_data->barycentric_interp_modes;
4290
4291 if (wm_prog_data->early_fragment_tests)
4292 wm.EarlyDepthStencilControl = EDSC_PREPS;
4293 else if (wm_prog_data->has_side_effects)
4294 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
4295 }
4296 iris_emit_merge(batch, cso->wm, dynamic_wm, ARRAY_SIZE(cso->wm));
4297 }
4298
4299 if (dirty & IRIS_DIRTY_SBE) {
4300 iris_emit_sbe(batch, ice);
4301 }
4302
4303 if (dirty & IRIS_DIRTY_PS_BLEND) {
4304 struct iris_blend_state *cso_blend = ice->state.cso_blend;
4305 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
4306 uint32_t dynamic_pb[GENX(3DSTATE_PS_BLEND_length)];
4307 iris_pack_command(GENX(3DSTATE_PS_BLEND), &dynamic_pb, pb) {
4308 pb.HasWriteableRT = true; // XXX: comes from somewhere :(
4309 pb.AlphaTestEnable = cso_zsa->alpha.enabled;
4310 }
4311
4312 iris_emit_merge(batch, cso_blend->ps_blend, dynamic_pb,
4313 ARRAY_SIZE(cso_blend->ps_blend));
4314 }
4315
4316 if (dirty & IRIS_DIRTY_WM_DEPTH_STENCIL) {
4317 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
4318 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
4319
4320 uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
4321 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
4322 wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
4323 wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
4324 }
4325 iris_emit_merge(batch, cso->wmds, stencil_refs, ARRAY_SIZE(cso->wmds));
4326 }
4327
4328 if (dirty & IRIS_DIRTY_SCISSOR_RECT) {
4329 uint32_t scissor_offset =
4330 emit_state(batch, ice->state.dynamic_uploader,
4331 &ice->state.last_res.scissor,
4332 ice->state.scissors,
4333 sizeof(struct pipe_scissor_state) *
4334 ice->state.num_viewports, 32);
4335
4336 iris_emit_cmd(batch, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
4337 ptr.ScissorRectPointer = scissor_offset;
4338 }
4339 }
4340
4341 if (dirty & IRIS_DIRTY_DEPTH_BUFFER) {
4342 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4343 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
4344
4345 iris_batch_emit(batch, cso_z->packets, sizeof(cso_z->packets));
4346
4347 if (cso_fb->zsbuf) {
4348 struct iris_resource *zres, *sres;
4349 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
4350 &zres, &sres);
4351 // XXX: might not be writable...
4352 if (zres)
4353 iris_use_pinned_bo(batch, zres->bo, true);
4354 if (sres)
4355 iris_use_pinned_bo(batch, sres->bo, true);
4356 }
4357 }
4358
4359 if (dirty & IRIS_DIRTY_POLYGON_STIPPLE) {
4360 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
4361 for (int i = 0; i < 32; i++) {
4362 poly.PatternRow[i] = ice->state.poly_stipple.stipple[i];
4363 }
4364 }
4365 }
4366
4367 if (dirty & IRIS_DIRTY_LINE_STIPPLE) {
4368 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4369 iris_batch_emit(batch, cso->line_stipple, sizeof(cso->line_stipple));
4370 }
4371
4372 if (dirty & IRIS_DIRTY_VF_TOPOLOGY) {
4373 iris_emit_cmd(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
4374 topo.PrimitiveTopologyType =
4375 translate_prim_type(draw->mode, draw->vertices_per_patch);
4376 }
4377 }
4378
4379 if (dirty & IRIS_DIRTY_VERTEX_BUFFERS) {
4380 struct iris_vertex_buffer_state *cso = &ice->state.genx->vertex_buffers;
4381 const unsigned vb_dwords = GENX(VERTEX_BUFFER_STATE_length);
4382
4383 if (cso->num_buffers > 0) {
4384 /* The VF cache designers cut corners, and made the cache key's
4385 * <VertexBufferIndex, Memory Address> tuple only consider the bottom
4386 * 32 bits of the address. If you have two vertex buffers which get
4387 * placed exactly 4 GiB apart and use them in back-to-back draw calls,
4388 * you can get collisions (even within a single batch).
4389 *
4390 * So, we need to do a VF cache invalidate if the buffer for a VB
4391 * slot slot changes [48:32] address bits from the previous time.
4392 */
4393 unsigned flush_flags = 0;
4394
4395 for (unsigned i = 0; i < cso->num_buffers; i++) {
4396 uint16_t high_bits = 0;
4397
4398 struct iris_resource *res = (void *) cso->resources[i];
4399 if (res) {
4400 iris_use_pinned_bo(batch, res->bo, false);
4401
4402 high_bits = res->bo->gtt_offset >> 32ull;
4403 if (high_bits != ice->state.last_vbo_high_bits[i]) {
4404 flush_flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
4405 ice->state.last_vbo_high_bits[i] = high_bits;
4406 }
4407
4408 /* If the buffer was written to by streamout, we may need
4409 * to stall so those writes land and become visible to the
4410 * vertex fetcher.
4411 *
4412 * TODO: This may stall more than necessary.
4413 */
4414 if (res->bind_history & PIPE_BIND_STREAM_OUTPUT)
4415 flush_flags |= PIPE_CONTROL_CS_STALL;
4416 }
4417 }
4418
4419 if (flush_flags)
4420 iris_emit_pipe_control_flush(batch, flush_flags);
4421
4422 iris_batch_emit(batch, cso->vertex_buffers, sizeof(uint32_t) *
4423 (1 + vb_dwords * cso->num_buffers));
4424 }
4425 }
4426
4427 if (dirty & IRIS_DIRTY_VERTEX_ELEMENTS) {
4428 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
4429 const unsigned entries = MAX2(cso->count, 1);
4430 iris_batch_emit(batch, cso->vertex_elements, sizeof(uint32_t) *
4431 (1 + entries * GENX(VERTEX_ELEMENT_STATE_length)));
4432 iris_batch_emit(batch, cso->vf_instancing, sizeof(uint32_t) *
4433 entries * GENX(3DSTATE_VF_INSTANCING_length));
4434 }
4435
4436 if (dirty & IRIS_DIRTY_VF_SGVS) {
4437 const struct brw_vs_prog_data *vs_prog_data = (void *)
4438 ice->shaders.prog[MESA_SHADER_VERTEX]->prog_data;
4439 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
4440
4441 iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS), sgv) {
4442 if (vs_prog_data->uses_vertexid) {
4443 sgv.VertexIDEnable = true;
4444 sgv.VertexIDComponentNumber = 2;
4445 sgv.VertexIDElementOffset = cso->count;
4446 }
4447
4448 if (vs_prog_data->uses_instanceid) {
4449 sgv.InstanceIDEnable = true;
4450 sgv.InstanceIDComponentNumber = 3;
4451 sgv.InstanceIDElementOffset = cso->count;
4452 }
4453 }
4454 }
4455
4456 if (dirty & IRIS_DIRTY_VF) {
4457 iris_emit_cmd(batch, GENX(3DSTATE_VF), vf) {
4458 if (draw->primitive_restart) {
4459 vf.IndexedDrawCutIndexEnable = true;
4460 vf.CutIndex = draw->restart_index;
4461 }
4462 }
4463 }
4464
4465 // XXX: Gen8 - PMA fix
4466 }
4467
4468 static void
4469 iris_upload_render_state(struct iris_context *ice,
4470 struct iris_batch *batch,
4471 const struct pipe_draw_info *draw)
4472 {
4473 /* Always pin the binder. If we're emitting new binding table pointers,
4474 * we need it. If not, we're probably inheriting old tables via the
4475 * context, and need it anyway. Since true zero-bindings cases are
4476 * practically non-existent, just pin it and avoid last_res tracking.
4477 */
4478 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
4479
4480 if (!batch->contains_draw) {
4481 iris_restore_render_saved_bos(ice, batch, draw);
4482 batch->contains_draw = true;
4483 }
4484
4485 iris_upload_dirty_render_state(ice, batch, draw);
4486
4487 if (draw->index_size > 0) {
4488 unsigned offset;
4489
4490 if (draw->has_user_indices) {
4491 u_upload_data(ice->ctx.stream_uploader, 0,
4492 draw->count * draw->index_size, 4, draw->index.user,
4493 &offset, &ice->state.last_res.index_buffer);
4494 } else {
4495 struct iris_resource *res = (void *) draw->index.resource;
4496 res->bind_history |= PIPE_BIND_INDEX_BUFFER;
4497
4498 pipe_resource_reference(&ice->state.last_res.index_buffer,
4499 draw->index.resource);
4500 offset = 0;
4501 }
4502
4503 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
4504
4505 iris_emit_cmd(batch, GENX(3DSTATE_INDEX_BUFFER), ib) {
4506 ib.IndexFormat = draw->index_size >> 1;
4507 ib.MOCS = MOCS_WB;
4508 ib.BufferSize = bo->size;
4509 ib.BufferStartingAddress = ro_bo(bo, offset);
4510 }
4511
4512 /* The VF cache key only uses 32-bits, see vertex buffer comment above */
4513 uint16_t high_bits = bo->gtt_offset >> 32ull;
4514 if (high_bits != ice->state.last_index_bo_high_bits) {
4515 iris_emit_pipe_control_flush(batch, PIPE_CONTROL_VF_CACHE_INVALIDATE);
4516 ice->state.last_index_bo_high_bits = high_bits;
4517 }
4518 }
4519
4520 #define _3DPRIM_END_OFFSET 0x2420
4521 #define _3DPRIM_START_VERTEX 0x2430
4522 #define _3DPRIM_VERTEX_COUNT 0x2434
4523 #define _3DPRIM_INSTANCE_COUNT 0x2438
4524 #define _3DPRIM_START_INSTANCE 0x243C
4525 #define _3DPRIM_BASE_VERTEX 0x2440
4526
4527 if (draw->indirect) {
4528 /* We don't support this MultidrawIndirect. */
4529 assert(!draw->indirect->indirect_draw_count);
4530
4531 struct iris_bo *bo = iris_resource_bo(draw->indirect->buffer);
4532 assert(bo);
4533
4534 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4535 lrm.RegisterAddress = _3DPRIM_VERTEX_COUNT;
4536 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 0);
4537 }
4538 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4539 lrm.RegisterAddress = _3DPRIM_INSTANCE_COUNT;
4540 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 4);
4541 }
4542 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4543 lrm.RegisterAddress = _3DPRIM_START_VERTEX;
4544 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 8);
4545 }
4546 if (draw->index_size) {
4547 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4548 lrm.RegisterAddress = _3DPRIM_BASE_VERTEX;
4549 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
4550 }
4551 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4552 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
4553 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 16);
4554 }
4555 } else {
4556 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4557 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
4558 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
4559 }
4560 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
4561 lri.RegisterOffset = _3DPRIM_BASE_VERTEX;
4562 lri.DataDWord = 0;
4563 }
4564 }
4565 }
4566
4567 iris_emit_cmd(batch, GENX(3DPRIMITIVE), prim) {
4568 prim.StartInstanceLocation = draw->start_instance;
4569 prim.InstanceCount = draw->instance_count;
4570 prim.VertexCountPerInstance = draw->count;
4571 prim.VertexAccessType = draw->index_size > 0 ? RANDOM : SEQUENTIAL;
4572 prim.PredicateEnable =
4573 ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT;
4574
4575 // XXX: this is probably bonkers.
4576 prim.StartVertexLocation = draw->start;
4577
4578 prim.IndirectParameterEnable = draw->indirect != NULL;
4579
4580 if (draw->index_size) {
4581 prim.BaseVertexLocation += draw->index_bias;
4582 } else {
4583 prim.StartVertexLocation += draw->index_bias;
4584 }
4585
4586 //prim.BaseVertexLocation = ...;
4587 }
4588 }
4589
4590 static void
4591 iris_upload_compute_state(struct iris_context *ice,
4592 struct iris_batch *batch,
4593 const struct pipe_grid_info *grid)
4594 {
4595 const uint64_t dirty = ice->state.dirty;
4596 struct iris_screen *screen = batch->screen;
4597 const struct gen_device_info *devinfo = &screen->devinfo;
4598 struct iris_binder *binder = &ice->state.binder;
4599 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
4600 struct iris_compiled_shader *shader =
4601 ice->shaders.prog[MESA_SHADER_COMPUTE];
4602 struct brw_stage_prog_data *prog_data = shader->prog_data;
4603 struct brw_cs_prog_data *cs_prog_data = (void *) prog_data;
4604
4605 if ((dirty & IRIS_DIRTY_CONSTANTS_CS) && shs->cbuf0_needs_upload)
4606 upload_uniforms(ice, MESA_SHADER_COMPUTE);
4607
4608 if (dirty & IRIS_DIRTY_BINDINGS_CS)
4609 iris_populate_binding_table(ice, batch, MESA_SHADER_COMPUTE, false);
4610
4611 iris_use_optional_res(batch, shs->sampler_table.res, false);
4612 iris_use_pinned_bo(batch, iris_resource_bo(shader->assembly.res), false);
4613
4614 if (ice->state.need_border_colors)
4615 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
4616
4617 if (dirty & IRIS_DIRTY_CS) {
4618 /* The MEDIA_VFE_STATE documentation for Gen8+ says:
4619 *
4620 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
4621 * the only bits that are changed are scoreboard related: Scoreboard
4622 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard Delta. For
4623 * these scoreboard related states, a MEDIA_STATE_FLUSH is
4624 * sufficient."
4625 */
4626 iris_emit_pipe_control_flush(batch, PIPE_CONTROL_CS_STALL);
4627
4628 iris_emit_cmd(batch, GENX(MEDIA_VFE_STATE), vfe) {
4629 if (prog_data->total_scratch) {
4630 uint32_t scratch_addr =
4631 iris_get_scratch_space(ice, prog_data->total_scratch,
4632 MESA_SHADER_COMPUTE);
4633 vfe.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
4634 vfe.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr);
4635 }
4636
4637 vfe.MaximumNumberofThreads =
4638 devinfo->max_cs_threads * screen->subslice_total - 1;
4639 #if GEN_GEN < 11
4640 vfe.ResetGatewayTimer =
4641 Resettingrelativetimerandlatchingtheglobaltimestamp;
4642 #endif
4643
4644 vfe.NumberofURBEntries = 2;
4645 vfe.URBEntryAllocationSize = 2;
4646
4647 // XXX: Use Indirect Payload Storage?
4648 vfe.CURBEAllocationSize =
4649 ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
4650 cs_prog_data->push.cross_thread.regs, 2);
4651 }
4652 }
4653
4654 // XXX: hack iris_set_constant_buffers to upload these thread counts
4655 // XXX: along with regular uniforms for compute shaders, somehow.
4656
4657 uint32_t curbe_data_offset = 0;
4658 // TODO: Move subgroup-id into uniforms ubo so we can push uniforms
4659 assert(cs_prog_data->push.cross_thread.dwords == 0 &&
4660 cs_prog_data->push.per_thread.dwords == 1 &&
4661 cs_prog_data->base.param[0] == BRW_PARAM_BUILTIN_SUBGROUP_ID);
4662 struct pipe_resource *curbe_data_res = NULL;
4663 uint32_t *curbe_data_map =
4664 stream_state(batch, ice->state.dynamic_uploader, &curbe_data_res,
4665 ALIGN(cs_prog_data->push.total.size, 64), 64,
4666 &curbe_data_offset);
4667 assert(curbe_data_map);
4668 memset(curbe_data_map, 0x5a, ALIGN(cs_prog_data->push.total.size, 64));
4669 iris_fill_cs_push_const_buffer(cs_prog_data, curbe_data_map);
4670
4671 if (dirty & IRIS_DIRTY_CONSTANTS_CS) {
4672 iris_emit_cmd(batch, GENX(MEDIA_CURBE_LOAD), curbe) {
4673 curbe.CURBETotalDataLength =
4674 ALIGN(cs_prog_data->push.total.size, 64);
4675 curbe.CURBEDataStartAddress = curbe_data_offset;
4676 }
4677 }
4678
4679 if (dirty & (IRIS_DIRTY_SAMPLER_STATES_CS |
4680 IRIS_DIRTY_BINDINGS_CS |
4681 IRIS_DIRTY_CONSTANTS_CS |
4682 IRIS_DIRTY_CS)) {
4683 struct pipe_resource *desc_res = NULL;
4684 uint32_t desc[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
4685
4686 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), desc, idd) {
4687 idd.SamplerStatePointer = shs->sampler_table.offset;
4688 idd.BindingTablePointer = binder->bt_offset[MESA_SHADER_COMPUTE];
4689 }
4690
4691 for (int i = 0; i < GENX(INTERFACE_DESCRIPTOR_DATA_length); i++)
4692 desc[i] |= ((uint32_t *) shader->derived_data)[i];
4693
4694 iris_emit_cmd(batch, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
4695 load.InterfaceDescriptorTotalLength =
4696 GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
4697 load.InterfaceDescriptorDataStartAddress =
4698 emit_state(batch, ice->state.dynamic_uploader,
4699 &desc_res, desc, sizeof(desc), 32);
4700 }
4701
4702 pipe_resource_reference(&desc_res, NULL);
4703 }
4704
4705 uint32_t group_size = grid->block[0] * grid->block[1] * grid->block[2];
4706 uint32_t remainder = group_size & (cs_prog_data->simd_size - 1);
4707 uint32_t right_mask;
4708
4709 if (remainder > 0)
4710 right_mask = ~0u >> (32 - remainder);
4711 else
4712 right_mask = ~0u >> (32 - cs_prog_data->simd_size);
4713
4714 #define GPGPU_DISPATCHDIMX 0x2500
4715 #define GPGPU_DISPATCHDIMY 0x2504
4716 #define GPGPU_DISPATCHDIMZ 0x2508
4717
4718 if (grid->indirect) {
4719 struct iris_state_ref *grid_size = &ice->state.grid_size;
4720 struct iris_bo *bo = iris_resource_bo(grid_size->res);
4721 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4722 lrm.RegisterAddress = GPGPU_DISPATCHDIMX;
4723 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 0);
4724 }
4725 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4726 lrm.RegisterAddress = GPGPU_DISPATCHDIMY;
4727 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 4);
4728 }
4729 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4730 lrm.RegisterAddress = GPGPU_DISPATCHDIMZ;
4731 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 8);
4732 }
4733 }
4734
4735 iris_emit_cmd(batch, GENX(GPGPU_WALKER), ggw) {
4736 ggw.IndirectParameterEnable = grid->indirect != NULL;
4737 ggw.SIMDSize = cs_prog_data->simd_size / 16;
4738 ggw.ThreadDepthCounterMaximum = 0;
4739 ggw.ThreadHeightCounterMaximum = 0;
4740 ggw.ThreadWidthCounterMaximum = cs_prog_data->threads - 1;
4741 ggw.ThreadGroupIDXDimension = grid->grid[0];
4742 ggw.ThreadGroupIDYDimension = grid->grid[1];
4743 ggw.ThreadGroupIDZDimension = grid->grid[2];
4744 ggw.RightExecutionMask = right_mask;
4745 ggw.BottomExecutionMask = 0xffffffff;
4746 }
4747
4748 iris_emit_cmd(batch, GENX(MEDIA_STATE_FLUSH), msf);
4749
4750 if (!batch->contains_draw) {
4751 iris_restore_compute_saved_bos(ice, batch, grid);
4752 batch->contains_draw = true;
4753 }
4754 }
4755
4756 /**
4757 * State module teardown.
4758 */
4759 static void
4760 iris_destroy_state(struct iris_context *ice)
4761 {
4762 iris_free_vertex_buffers(&ice->state.genx->vertex_buffers);
4763
4764 // XXX: unreference resources/surfaces.
4765 for (unsigned i = 0; i < ice->state.framebuffer.nr_cbufs; i++) {
4766 pipe_surface_reference(&ice->state.framebuffer.cbufs[i], NULL);
4767 }
4768 pipe_surface_reference(&ice->state.framebuffer.zsbuf, NULL);
4769
4770 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4771 struct iris_shader_state *shs = &ice->state.shaders[stage];
4772 pipe_resource_reference(&shs->sampler_table.res, NULL);
4773 }
4774 free(ice->state.genx);
4775
4776 pipe_resource_reference(&ice->state.unbound_tex.res, NULL);
4777
4778 pipe_resource_reference(&ice->state.last_res.cc_vp, NULL);
4779 pipe_resource_reference(&ice->state.last_res.sf_cl_vp, NULL);
4780 pipe_resource_reference(&ice->state.last_res.color_calc, NULL);
4781 pipe_resource_reference(&ice->state.last_res.scissor, NULL);
4782 pipe_resource_reference(&ice->state.last_res.blend, NULL);
4783 pipe_resource_reference(&ice->state.last_res.index_buffer, NULL);
4784 }
4785
4786 /* ------------------------------------------------------------------- */
4787
4788 static void
4789 iris_load_register_reg32(struct iris_batch *batch, uint32_t src,
4790 uint32_t dst)
4791 {
4792 _iris_emit_lrr(batch, src, dst);
4793 }
4794
4795 static void
4796 iris_load_register_reg64(struct iris_batch *batch, uint32_t src,
4797 uint32_t dst)
4798 {
4799 _iris_emit_lrr(batch, src, dst);
4800 _iris_emit_lrr(batch, src + 4, dst + 4);
4801 }
4802
4803 static void
4804 iris_load_register_imm32(struct iris_batch *batch, uint32_t reg,
4805 uint32_t val)
4806 {
4807 _iris_emit_lri(batch, reg, val);
4808 }
4809
4810 static void
4811 iris_load_register_imm64(struct iris_batch *batch, uint32_t reg,
4812 uint64_t val)
4813 {
4814 _iris_emit_lri(batch, reg + 0, val & 0xffffffff);
4815 _iris_emit_lri(batch, reg + 4, val >> 32);
4816 }
4817
4818 /**
4819 * Emit MI_LOAD_REGISTER_MEM to load a 32-bit MMIO register from a buffer.
4820 */
4821 static void
4822 iris_load_register_mem32(struct iris_batch *batch, uint32_t reg,
4823 struct iris_bo *bo, uint32_t offset)
4824 {
4825 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4826 lrm.RegisterAddress = reg;
4827 lrm.MemoryAddress = ro_bo(bo, offset);
4828 }
4829 }
4830
4831 /**
4832 * Load a 64-bit value from a buffer into a MMIO register via
4833 * two MI_LOAD_REGISTER_MEM commands.
4834 */
4835 static void
4836 iris_load_register_mem64(struct iris_batch *batch, uint32_t reg,
4837 struct iris_bo *bo, uint32_t offset)
4838 {
4839 iris_load_register_mem32(batch, reg + 0, bo, offset + 0);
4840 iris_load_register_mem32(batch, reg + 4, bo, offset + 4);
4841 }
4842
4843 static void
4844 iris_store_register_mem32(struct iris_batch *batch, uint32_t reg,
4845 struct iris_bo *bo, uint32_t offset,
4846 bool predicated)
4847 {
4848 iris_emit_cmd(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
4849 srm.RegisterAddress = reg;
4850 srm.MemoryAddress = rw_bo(bo, offset);
4851 srm.PredicateEnable = predicated;
4852 }
4853 }
4854
4855 static void
4856 iris_store_register_mem64(struct iris_batch *batch, uint32_t reg,
4857 struct iris_bo *bo, uint32_t offset,
4858 bool predicated)
4859 {
4860 iris_store_register_mem32(batch, reg + 0, bo, offset + 0, predicated);
4861 iris_store_register_mem32(batch, reg + 4, bo, offset + 4, predicated);
4862 }
4863
4864 static void
4865 iris_store_data_imm32(struct iris_batch *batch,
4866 struct iris_bo *bo, uint32_t offset,
4867 uint32_t imm)
4868 {
4869 iris_emit_cmd(batch, GENX(MI_STORE_DATA_IMM), sdi) {
4870 sdi.Address = rw_bo(bo, offset);
4871 sdi.ImmediateData = imm;
4872 }
4873 }
4874
4875 static void
4876 iris_store_data_imm64(struct iris_batch *batch,
4877 struct iris_bo *bo, uint32_t offset,
4878 uint64_t imm)
4879 {
4880 /* Can't use iris_emit_cmd because MI_STORE_DATA_IMM has a length of
4881 * 2 in genxml but it's actually variable length and we need 5 DWords.
4882 */
4883 void *map = iris_get_command_space(batch, 4 * 5);
4884 _iris_pack_command(batch, GENX(MI_STORE_DATA_IMM), map, sdi) {
4885 sdi.DWordLength = 5 - 2;
4886 sdi.Address = rw_bo(bo, offset);
4887 sdi.ImmediateData = imm;
4888 }
4889 }
4890
4891 static void
4892 iris_copy_mem_mem(struct iris_batch *batch,
4893 struct iris_bo *dst_bo, uint32_t dst_offset,
4894 struct iris_bo *src_bo, uint32_t src_offset,
4895 unsigned bytes)
4896 {
4897 /* MI_COPY_MEM_MEM operates on DWords. */
4898 assert(bytes % 4 == 0);
4899 assert(dst_offset % 4 == 0);
4900 assert(src_offset % 4 == 0);
4901
4902 for (unsigned i = 0; i < bytes; i += 4) {
4903 iris_emit_cmd(batch, GENX(MI_COPY_MEM_MEM), cp) {
4904 cp.DestinationMemoryAddress = rw_bo(dst_bo, dst_offset + i);
4905 cp.SourceMemoryAddress = ro_bo(src_bo, src_offset + i);
4906 }
4907 }
4908 }
4909
4910 /* ------------------------------------------------------------------- */
4911
4912 static unsigned
4913 flags_to_post_sync_op(uint32_t flags)
4914 {
4915 if (flags & PIPE_CONTROL_WRITE_IMMEDIATE)
4916 return WriteImmediateData;
4917
4918 if (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT)
4919 return WritePSDepthCount;
4920
4921 if (flags & PIPE_CONTROL_WRITE_TIMESTAMP)
4922 return WriteTimestamp;
4923
4924 return 0;
4925 }
4926
4927 /**
4928 * Do the given flags have a Post Sync or LRI Post Sync operation?
4929 */
4930 static enum pipe_control_flags
4931 get_post_sync_flags(enum pipe_control_flags flags)
4932 {
4933 flags &= PIPE_CONTROL_WRITE_IMMEDIATE |
4934 PIPE_CONTROL_WRITE_DEPTH_COUNT |
4935 PIPE_CONTROL_WRITE_TIMESTAMP |
4936 PIPE_CONTROL_LRI_POST_SYNC_OP;
4937
4938 /* Only one "Post Sync Op" is allowed, and it's mutually exclusive with
4939 * "LRI Post Sync Operation". So more than one bit set would be illegal.
4940 */
4941 assert(util_bitcount(flags) <= 1);
4942
4943 return flags;
4944 }
4945
4946 #define IS_COMPUTE_PIPELINE(batch) (batch->name == IRIS_BATCH_COMPUTE)
4947
4948 /**
4949 * Emit a series of PIPE_CONTROL commands, taking into account any
4950 * workarounds necessary to actually accomplish the caller's request.
4951 *
4952 * Unless otherwise noted, spec quotations in this function come from:
4953 *
4954 * Synchronization of the 3D Pipeline > PIPE_CONTROL Command > Programming
4955 * Restrictions for PIPE_CONTROL.
4956 *
4957 * You should not use this function directly. Use the helpers in
4958 * iris_pipe_control.c instead, which may split the pipe control further.
4959 */
4960 static void
4961 iris_emit_raw_pipe_control(struct iris_batch *batch, uint32_t flags,
4962 struct iris_bo *bo, uint32_t offset, uint64_t imm)
4963 {
4964 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
4965 enum pipe_control_flags post_sync_flags = get_post_sync_flags(flags);
4966 enum pipe_control_flags non_lri_post_sync_flags =
4967 post_sync_flags & ~PIPE_CONTROL_LRI_POST_SYNC_OP;
4968
4969 /* Recursive PIPE_CONTROL workarounds --------------------------------
4970 * (http://knowyourmeme.com/memes/xzibit-yo-dawg)
4971 *
4972 * We do these first because we want to look at the original operation,
4973 * rather than any workarounds we set.
4974 */
4975 if (GEN_GEN == 9 && (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE)) {
4976 /* The PIPE_CONTROL "VF Cache Invalidation Enable" bit description
4977 * lists several workarounds:
4978 *
4979 * "Project: SKL, KBL, BXT
4980 *
4981 * If the VF Cache Invalidation Enable is set to a 1 in a
4982 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields
4983 * sets to 0, with the VF Cache Invalidation Enable set to 0
4984 * needs to be sent prior to the PIPE_CONTROL with VF Cache
4985 * Invalidation Enable set to a 1."
4986 */
4987 iris_emit_raw_pipe_control(batch, 0, NULL, 0, 0);
4988 }
4989
4990 if (GEN_GEN == 9 && IS_COMPUTE_PIPELINE(batch) && post_sync_flags) {
4991 /* Project: SKL / Argument: LRI Post Sync Operation [23]
4992 *
4993 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
4994 * programmed prior to programming a PIPECONTROL command with "LRI
4995 * Post Sync Operation" in GPGPU mode of operation (i.e when
4996 * PIPELINE_SELECT command is set to GPGPU mode of operation)."
4997 *
4998 * The same text exists a few rows below for Post Sync Op.
4999 */
5000 iris_emit_raw_pipe_control(batch, PIPE_CONTROL_CS_STALL, bo, offset, imm);
5001 }
5002
5003 if (GEN_GEN == 10 && (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH)) {
5004 /* Cannonlake:
5005 * "Before sending a PIPE_CONTROL command with bit 12 set, SW must issue
5006 * another PIPE_CONTROL with Render Target Cache Flush Enable (bit 12)
5007 * = 0 and Pipe Control Flush Enable (bit 7) = 1"
5008 */
5009 iris_emit_raw_pipe_control(batch, PIPE_CONTROL_FLUSH_ENABLE, bo,
5010 offset, imm);
5011 }
5012
5013 /* "Flush Types" workarounds ---------------------------------------------
5014 * We do these now because they may add post-sync operations or CS stalls.
5015 */
5016
5017 if (GEN_GEN < 11 && flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) {
5018 /* Project: BDW, SKL+ (stopping at CNL) / Argument: VF Invalidate
5019 *
5020 * "'Post Sync Operation' must be enabled to 'Write Immediate Data' or
5021 * 'Write PS Depth Count' or 'Write Timestamp'."
5022 */
5023 if (!bo) {
5024 flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
5025 post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
5026 non_lri_post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
5027 bo = batch->screen->workaround_bo;
5028 }
5029 }
5030
5031 /* #1130 from Gen10 workarounds page:
5032 *
5033 * "Enable Depth Stall on every Post Sync Op if Render target Cache
5034 * Flush is not enabled in same PIPE CONTROL and Enable Pixel score
5035 * board stall if Render target cache flush is enabled."
5036 *
5037 * Applicable to CNL B0 and C0 steppings only.
5038 *
5039 * The wording here is unclear, and this workaround doesn't look anything
5040 * like the internal bug report recommendations, but leave it be for now...
5041 */
5042 if (GEN_GEN == 10) {
5043 if (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) {
5044 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
5045 } else if (flags & non_lri_post_sync_flags) {
5046 flags |= PIPE_CONTROL_DEPTH_STALL;
5047 }
5048 }
5049
5050 if (flags & PIPE_CONTROL_DEPTH_STALL) {
5051 /* From the PIPE_CONTROL instruction table, bit 13 (Depth Stall Enable):
5052 *
5053 * "This bit must be DISABLED for operations other than writing
5054 * PS_DEPTH_COUNT."
5055 *
5056 * This seems like nonsense. An Ivybridge workaround requires us to
5057 * emit a PIPE_CONTROL with a depth stall and write immediate post-sync
5058 * operation. Gen8+ requires us to emit depth stalls and depth cache
5059 * flushes together. So, it's hard to imagine this means anything other
5060 * than "we originally intended this to be used for PS_DEPTH_COUNT".
5061 *
5062 * We ignore the supposed restriction and do nothing.
5063 */
5064 }
5065
5066 if (flags & (PIPE_CONTROL_RENDER_TARGET_FLUSH |
5067 PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
5068 /* From the PIPE_CONTROL instruction table, bit 12 and bit 1:
5069 *
5070 * "This bit must be DISABLED for End-of-pipe (Read) fences,
5071 * PS_DEPTH_COUNT or TIMESTAMP queries."
5072 *
5073 * TODO: Implement end-of-pipe checking.
5074 */
5075 assert(!(post_sync_flags & (PIPE_CONTROL_WRITE_DEPTH_COUNT |
5076 PIPE_CONTROL_WRITE_TIMESTAMP)));
5077 }
5078
5079 if (GEN_GEN < 11 && (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
5080 /* From the PIPE_CONTROL instruction table, bit 1:
5081 *
5082 * "This bit is ignored if Depth Stall Enable is set.
5083 * Further, the render cache is not flushed even if Write Cache
5084 * Flush Enable bit is set."
5085 *
5086 * We assert that the caller doesn't do this combination, to try and
5087 * prevent mistakes. It shouldn't hurt the GPU, though.
5088 *
5089 * We skip this check on Gen11+ as the "Stall at Pixel Scoreboard"
5090 * and "Render Target Flush" combo is explicitly required for BTI
5091 * update workarounds.
5092 */
5093 assert(!(flags & (PIPE_CONTROL_DEPTH_STALL |
5094 PIPE_CONTROL_RENDER_TARGET_FLUSH)));
5095 }
5096
5097 /* PIPE_CONTROL page workarounds ------------------------------------- */
5098
5099 if (GEN_GEN <= 8 && (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE)) {
5100 /* From the PIPE_CONTROL page itself:
5101 *
5102 * "IVB, HSW, BDW
5103 * Restriction: Pipe_control with CS-stall bit set must be issued
5104 * before a pipe-control command that has the State Cache
5105 * Invalidate bit set."
5106 */
5107 flags |= PIPE_CONTROL_CS_STALL;
5108 }
5109
5110 if (flags & PIPE_CONTROL_FLUSH_LLC) {
5111 /* From the PIPE_CONTROL instruction table, bit 26 (Flush LLC):
5112 *
5113 * "Project: ALL
5114 * SW must always program Post-Sync Operation to "Write Immediate
5115 * Data" when Flush LLC is set."
5116 *
5117 * For now, we just require the caller to do it.
5118 */
5119 assert(flags & PIPE_CONTROL_WRITE_IMMEDIATE);
5120 }
5121
5122 /* "Post-Sync Operation" workarounds -------------------------------- */
5123
5124 /* Project: All / Argument: Global Snapshot Count Reset [19]
5125 *
5126 * "This bit must not be exercised on any product.
5127 * Requires stall bit ([20] of DW1) set."
5128 *
5129 * We don't use this, so we just assert that it isn't used. The
5130 * PIPE_CONTROL instruction page indicates that they intended this
5131 * as a debug feature and don't think it is useful in production,
5132 * but it may actually be usable, should we ever want to.
5133 */
5134 assert((flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) == 0);
5135
5136 if (flags & (PIPE_CONTROL_MEDIA_STATE_CLEAR |
5137 PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE)) {
5138 /* Project: All / Arguments:
5139 *
5140 * - Generic Media State Clear [16]
5141 * - Indirect State Pointers Disable [16]
5142 *
5143 * "Requires stall bit ([20] of DW1) set."
5144 *
5145 * Also, the PIPE_CONTROL instruction table, bit 16 (Generic Media
5146 * State Clear) says:
5147 *
5148 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
5149 * programmed prior to programming a PIPECONTROL command with "Media
5150 * State Clear" set in GPGPU mode of operation"
5151 *
5152 * This is a subset of the earlier rule, so there's nothing to do.
5153 */
5154 flags |= PIPE_CONTROL_CS_STALL;
5155 }
5156
5157 if (flags & PIPE_CONTROL_STORE_DATA_INDEX) {
5158 /* Project: All / Argument: Store Data Index
5159 *
5160 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
5161 * than '0'."
5162 *
5163 * For now, we just assert that the caller does this. We might want to
5164 * automatically add a write to the workaround BO...
5165 */
5166 assert(non_lri_post_sync_flags != 0);
5167 }
5168
5169 if (flags & PIPE_CONTROL_SYNC_GFDT) {
5170 /* Project: All / Argument: Sync GFDT
5171 *
5172 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
5173 * than '0' or 0x2520[13] must be set."
5174 *
5175 * For now, we just assert that the caller does this.
5176 */
5177 assert(non_lri_post_sync_flags != 0);
5178 }
5179
5180 if (flags & PIPE_CONTROL_TLB_INVALIDATE) {
5181 /* Project: IVB+ / Argument: TLB inv
5182 *
5183 * "Requires stall bit ([20] of DW1) set."
5184 *
5185 * Also, from the PIPE_CONTROL instruction table:
5186 *
5187 * "Project: SKL+
5188 * Post Sync Operation or CS stall must be set to ensure a TLB
5189 * invalidation occurs. Otherwise no cycle will occur to the TLB
5190 * cache to invalidate."
5191 *
5192 * This is not a subset of the earlier rule, so there's nothing to do.
5193 */
5194 flags |= PIPE_CONTROL_CS_STALL;
5195 }
5196
5197 if (GEN_GEN == 9 && devinfo->gt == 4) {
5198 /* TODO: The big Skylake GT4 post sync op workaround */
5199 }
5200
5201 /* "GPGPU specific workarounds" (both post-sync and flush) ------------ */
5202
5203 if (IS_COMPUTE_PIPELINE(batch)) {
5204 if (GEN_GEN >= 9 && (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE)) {
5205 /* Project: SKL+ / Argument: Tex Invalidate
5206 * "Requires stall bit ([20] of DW) set for all GPGPU Workloads."
5207 */
5208 flags |= PIPE_CONTROL_CS_STALL;
5209 }
5210
5211 if (GEN_GEN == 8 && (post_sync_flags ||
5212 (flags & (PIPE_CONTROL_NOTIFY_ENABLE |
5213 PIPE_CONTROL_DEPTH_STALL |
5214 PIPE_CONTROL_RENDER_TARGET_FLUSH |
5215 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
5216 PIPE_CONTROL_DATA_CACHE_FLUSH)))) {
5217 /* Project: BDW / Arguments:
5218 *
5219 * - LRI Post Sync Operation [23]
5220 * - Post Sync Op [15:14]
5221 * - Notify En [8]
5222 * - Depth Stall [13]
5223 * - Render Target Cache Flush [12]
5224 * - Depth Cache Flush [0]
5225 * - DC Flush Enable [5]
5226 *
5227 * "Requires stall bit ([20] of DW) set for all GPGPU and Media
5228 * Workloads."
5229 */
5230 flags |= PIPE_CONTROL_CS_STALL;
5231
5232 /* Also, from the PIPE_CONTROL instruction table, bit 20:
5233 *
5234 * "Project: BDW
5235 * This bit must be always set when PIPE_CONTROL command is
5236 * programmed by GPGPU and MEDIA workloads, except for the cases
5237 * when only Read Only Cache Invalidation bits are set (State
5238 * Cache Invalidation Enable, Instruction cache Invalidation
5239 * Enable, Texture Cache Invalidation Enable, Constant Cache
5240 * Invalidation Enable). This is to WA FFDOP CG issue, this WA
5241 * need not implemented when FF_DOP_CG is disable via "Fixed
5242 * Function DOP Clock Gate Disable" bit in RC_PSMI_CTRL register."
5243 *
5244 * It sounds like we could avoid CS stalls in some cases, but we
5245 * don't currently bother. This list isn't exactly the list above,
5246 * either...
5247 */
5248 }
5249 }
5250
5251 /* "Stall" workarounds ----------------------------------------------
5252 * These have to come after the earlier ones because we may have added
5253 * some additional CS stalls above.
5254 */
5255
5256 if (GEN_GEN < 9 && (flags & PIPE_CONTROL_CS_STALL)) {
5257 /* Project: PRE-SKL, VLV, CHV
5258 *
5259 * "[All Stepping][All SKUs]:
5260 *
5261 * One of the following must also be set:
5262 *
5263 * - Render Target Cache Flush Enable ([12] of DW1)
5264 * - Depth Cache Flush Enable ([0] of DW1)
5265 * - Stall at Pixel Scoreboard ([1] of DW1)
5266 * - Depth Stall ([13] of DW1)
5267 * - Post-Sync Operation ([13] of DW1)
5268 * - DC Flush Enable ([5] of DW1)"
5269 *
5270 * If we don't already have one of those bits set, we choose to add
5271 * "Stall at Pixel Scoreboard". Some of the other bits require a
5272 * CS stall as a workaround (see above), which would send us into
5273 * an infinite recursion of PIPE_CONTROLs. "Stall at Pixel Scoreboard"
5274 * appears to be safe, so we choose that.
5275 */
5276 const uint32_t wa_bits = PIPE_CONTROL_RENDER_TARGET_FLUSH |
5277 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
5278 PIPE_CONTROL_WRITE_IMMEDIATE |
5279 PIPE_CONTROL_WRITE_DEPTH_COUNT |
5280 PIPE_CONTROL_WRITE_TIMESTAMP |
5281 PIPE_CONTROL_STALL_AT_SCOREBOARD |
5282 PIPE_CONTROL_DEPTH_STALL |
5283 PIPE_CONTROL_DATA_CACHE_FLUSH;
5284 if (!(flags & wa_bits))
5285 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
5286 }
5287
5288 /* Emit --------------------------------------------------------------- */
5289
5290 iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
5291 pc.LRIPostSyncOperation = NoLRIOperation;
5292 pc.PipeControlFlushEnable = flags & PIPE_CONTROL_FLUSH_ENABLE;
5293 pc.DCFlushEnable = flags & PIPE_CONTROL_DATA_CACHE_FLUSH;
5294 pc.StoreDataIndex = 0;
5295 pc.CommandStreamerStallEnable = flags & PIPE_CONTROL_CS_STALL;
5296 pc.GlobalSnapshotCountReset =
5297 flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET;
5298 pc.TLBInvalidate = flags & PIPE_CONTROL_TLB_INVALIDATE;
5299 pc.GenericMediaStateClear = flags & PIPE_CONTROL_MEDIA_STATE_CLEAR;
5300 pc.StallAtPixelScoreboard = flags & PIPE_CONTROL_STALL_AT_SCOREBOARD;
5301 pc.RenderTargetCacheFlushEnable =
5302 flags & PIPE_CONTROL_RENDER_TARGET_FLUSH;
5303 pc.DepthCacheFlushEnable = flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH;
5304 pc.StateCacheInvalidationEnable =
5305 flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE;
5306 pc.VFCacheInvalidationEnable = flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
5307 pc.ConstantCacheInvalidationEnable =
5308 flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE;
5309 pc.PostSyncOperation = flags_to_post_sync_op(flags);
5310 pc.DepthStallEnable = flags & PIPE_CONTROL_DEPTH_STALL;
5311 pc.InstructionCacheInvalidateEnable =
5312 flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE;
5313 pc.NotifyEnable = flags & PIPE_CONTROL_NOTIFY_ENABLE;
5314 pc.IndirectStatePointersDisable =
5315 flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE;
5316 pc.TextureCacheInvalidationEnable =
5317 flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
5318 pc.Address = rw_bo(bo, offset);
5319 pc.ImmediateData = imm;
5320 }
5321 }
5322
5323 void
5324 genX(init_state)(struct iris_context *ice)
5325 {
5326 struct pipe_context *ctx = &ice->ctx;
5327 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
5328
5329 ctx->create_blend_state = iris_create_blend_state;
5330 ctx->create_depth_stencil_alpha_state = iris_create_zsa_state;
5331 ctx->create_rasterizer_state = iris_create_rasterizer_state;
5332 ctx->create_sampler_state = iris_create_sampler_state;
5333 ctx->create_sampler_view = iris_create_sampler_view;
5334 ctx->create_surface = iris_create_surface;
5335 ctx->create_vertex_elements_state = iris_create_vertex_elements;
5336 ctx->bind_blend_state = iris_bind_blend_state;
5337 ctx->bind_depth_stencil_alpha_state = iris_bind_zsa_state;
5338 ctx->bind_sampler_states = iris_bind_sampler_states;
5339 ctx->bind_rasterizer_state = iris_bind_rasterizer_state;
5340 ctx->bind_vertex_elements_state = iris_bind_vertex_elements_state;
5341 ctx->delete_blend_state = iris_delete_state;
5342 ctx->delete_depth_stencil_alpha_state = iris_delete_state;
5343 ctx->delete_rasterizer_state = iris_delete_state;
5344 ctx->delete_sampler_state = iris_delete_state;
5345 ctx->delete_vertex_elements_state = iris_delete_state;
5346 ctx->set_blend_color = iris_set_blend_color;
5347 ctx->set_clip_state = iris_set_clip_state;
5348 ctx->set_constant_buffer = iris_set_constant_buffer;
5349 ctx->set_shader_buffers = iris_set_shader_buffers;
5350 ctx->set_shader_images = iris_set_shader_images;
5351 ctx->set_sampler_views = iris_set_sampler_views;
5352 ctx->set_tess_state = iris_set_tess_state;
5353 ctx->set_framebuffer_state = iris_set_framebuffer_state;
5354 ctx->set_polygon_stipple = iris_set_polygon_stipple;
5355 ctx->set_sample_mask = iris_set_sample_mask;
5356 ctx->set_scissor_states = iris_set_scissor_states;
5357 ctx->set_stencil_ref = iris_set_stencil_ref;
5358 ctx->set_vertex_buffers = iris_set_vertex_buffers;
5359 ctx->set_viewport_states = iris_set_viewport_states;
5360 ctx->sampler_view_destroy = iris_sampler_view_destroy;
5361 ctx->surface_destroy = iris_surface_destroy;
5362 ctx->draw_vbo = iris_draw_vbo;
5363 ctx->launch_grid = iris_launch_grid;
5364 ctx->create_stream_output_target = iris_create_stream_output_target;
5365 ctx->stream_output_target_destroy = iris_stream_output_target_destroy;
5366 ctx->set_stream_output_targets = iris_set_stream_output_targets;
5367
5368 ice->vtbl.destroy_state = iris_destroy_state;
5369 ice->vtbl.init_render_context = iris_init_render_context;
5370 ice->vtbl.init_compute_context = iris_init_compute_context;
5371 ice->vtbl.upload_render_state = iris_upload_render_state;
5372 ice->vtbl.update_surface_base_address = iris_update_surface_base_address;
5373 ice->vtbl.upload_compute_state = iris_upload_compute_state;
5374 ice->vtbl.emit_raw_pipe_control = iris_emit_raw_pipe_control;
5375 ice->vtbl.load_register_reg32 = iris_load_register_reg32;
5376 ice->vtbl.load_register_reg64 = iris_load_register_reg64;
5377 ice->vtbl.load_register_imm32 = iris_load_register_imm32;
5378 ice->vtbl.load_register_imm64 = iris_load_register_imm64;
5379 ice->vtbl.load_register_mem32 = iris_load_register_mem32;
5380 ice->vtbl.load_register_mem64 = iris_load_register_mem64;
5381 ice->vtbl.store_register_mem32 = iris_store_register_mem32;
5382 ice->vtbl.store_register_mem64 = iris_store_register_mem64;
5383 ice->vtbl.store_data_imm32 = iris_store_data_imm32;
5384 ice->vtbl.store_data_imm64 = iris_store_data_imm64;
5385 ice->vtbl.copy_mem_mem = iris_copy_mem_mem;
5386 ice->vtbl.derived_program_state_size = iris_derived_program_state_size;
5387 ice->vtbl.store_derived_program_state = iris_store_derived_program_state;
5388 ice->vtbl.create_so_decl_list = iris_create_so_decl_list;
5389 ice->vtbl.populate_vs_key = iris_populate_vs_key;
5390 ice->vtbl.populate_tcs_key = iris_populate_tcs_key;
5391 ice->vtbl.populate_tes_key = iris_populate_tes_key;
5392 ice->vtbl.populate_gs_key = iris_populate_gs_key;
5393 ice->vtbl.populate_fs_key = iris_populate_fs_key;
5394 ice->vtbl.populate_cs_key = iris_populate_cs_key;
5395
5396 ice->state.dirty = ~0ull;
5397
5398 ice->state.statistics_counters_enabled = true;
5399
5400 ice->state.sample_mask = 0xffff;
5401 ice->state.num_viewports = 1;
5402 ice->state.genx = calloc(1, sizeof(struct iris_genx_state));
5403
5404 /* Make a 1x1x1 null surface for unbound textures */
5405 void *null_surf_map =
5406 upload_state(ice->state.surface_uploader, &ice->state.unbound_tex,
5407 4 * GENX(RENDER_SURFACE_STATE_length), 64);
5408 isl_null_fill_state(&screen->isl_dev, null_surf_map, isl_extent3d(1, 1, 1));
5409 ice->state.unbound_tex.offset +=
5410 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.unbound_tex.res));
5411
5412 /* Default all scissor rectangles to be empty regions. */
5413 for (int i = 0; i < IRIS_MAX_VIEWPORTS; i++) {
5414 ice->state.scissors[i] = (struct pipe_scissor_state) {
5415 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
5416 };
5417 }
5418 }