iris: actually init num_viewports
[mesa.git] / src / gallium / drivers / iris / iris_state.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * on the rights to use, copy, modify, merge, publish, distribute, sub
8 * license, and/or sell copies of the Software, and to permit persons to whom
9 * the Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 */
23 #include <stdio.h>
24 #include <errno.h>
25
26 #if HAVE_VALGRIND
27 #include <valgrind.h>
28 #include <memcheck.h>
29 #define VG(x) x
30 #ifndef NDEBUG
31 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
32 #endif
33 #else
34 #define VG(x)
35 #endif
36
37 #include "pipe/p_defines.h"
38 #include "pipe/p_state.h"
39 #include "pipe/p_context.h"
40 #include "pipe/p_screen.h"
41 #include "util/u_inlines.h"
42 #include "util/u_format.h"
43 #include "util/u_framebuffer.h"
44 #include "util/u_transfer.h"
45 #include "util/u_upload_mgr.h"
46 #include "i915_drm.h"
47 #include "nir.h"
48 #include "intel/compiler/brw_compiler.h"
49 #include "intel/common/gen_l3_config.h"
50 #include "intel/common/gen_sample_positions.h"
51 #include "iris_batch.h"
52 #include "iris_context.h"
53 #include "iris_pipe.h"
54 #include "iris_resource.h"
55
56 #define __gen_address_type struct iris_address
57 #define __gen_user_data struct iris_batch
58
59 #define ARRAY_BYTES(x) (sizeof(uint32_t) * ARRAY_SIZE(x))
60
61 static uint64_t
62 __gen_combine_address(struct iris_batch *batch, void *location,
63 struct iris_address addr, uint32_t delta)
64 {
65 uint64_t result = addr.offset + delta;
66
67 if (addr.bo) {
68 iris_use_pinned_bo(batch, addr.bo, addr.write);
69 /* Assume this is a general address, not relative to a base. */
70 result += addr.bo->gtt_offset;
71 }
72
73 return result;
74 }
75
76 #define __genxml_cmd_length(cmd) cmd ## _length
77 #define __genxml_cmd_length_bias(cmd) cmd ## _length_bias
78 #define __genxml_cmd_header(cmd) cmd ## _header
79 #define __genxml_cmd_pack(cmd) cmd ## _pack
80
81 #define _iris_pack_command(batch, cmd, dst, name) \
82 for (struct cmd name = { __genxml_cmd_header(cmd) }, \
83 *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
84 ({ __genxml_cmd_pack(cmd)(batch, (void *)_dst, &name); \
85 _dst = NULL; \
86 }))
87
88 #define iris_pack_command(cmd, dst, name) \
89 _iris_pack_command(NULL, cmd, dst, name)
90
91 #define iris_pack_state(cmd, dst, name) \
92 for (struct cmd name = {}, \
93 *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
94 __genxml_cmd_pack(cmd)(NULL, (void *)_dst, &name), \
95 _dst = NULL)
96
97 #define iris_emit_cmd(batch, cmd, name) \
98 _iris_pack_command(batch, cmd, iris_get_command_space(batch, 4 * __genxml_cmd_length(cmd)), name)
99
100 #define iris_emit_merge(batch, dwords0, dwords1, num_dwords) \
101 do { \
102 uint32_t *dw = iris_get_command_space(batch, 4 * num_dwords); \
103 for (uint32_t i = 0; i < num_dwords; i++) \
104 dw[i] = (dwords0)[i] | (dwords1)[i]; \
105 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, num_dwords)); \
106 } while (0)
107
108 #include "genxml/genX_pack.h"
109 #include "genxml/gen_macros.h"
110 #include "genxml/genX_bits.h"
111
112 #define MOCS_WB (2 << 1)
113
114 UNUSED static void pipe_asserts()
115 {
116 #define PIPE_ASSERT(x) STATIC_ASSERT((int)x)
117
118 /* pipe_logicop happens to match the hardware. */
119 PIPE_ASSERT(PIPE_LOGICOP_CLEAR == LOGICOP_CLEAR);
120 PIPE_ASSERT(PIPE_LOGICOP_NOR == LOGICOP_NOR);
121 PIPE_ASSERT(PIPE_LOGICOP_AND_INVERTED == LOGICOP_AND_INVERTED);
122 PIPE_ASSERT(PIPE_LOGICOP_COPY_INVERTED == LOGICOP_COPY_INVERTED);
123 PIPE_ASSERT(PIPE_LOGICOP_AND_REVERSE == LOGICOP_AND_REVERSE);
124 PIPE_ASSERT(PIPE_LOGICOP_INVERT == LOGICOP_INVERT);
125 PIPE_ASSERT(PIPE_LOGICOP_XOR == LOGICOP_XOR);
126 PIPE_ASSERT(PIPE_LOGICOP_NAND == LOGICOP_NAND);
127 PIPE_ASSERT(PIPE_LOGICOP_AND == LOGICOP_AND);
128 PIPE_ASSERT(PIPE_LOGICOP_EQUIV == LOGICOP_EQUIV);
129 PIPE_ASSERT(PIPE_LOGICOP_NOOP == LOGICOP_NOOP);
130 PIPE_ASSERT(PIPE_LOGICOP_OR_INVERTED == LOGICOP_OR_INVERTED);
131 PIPE_ASSERT(PIPE_LOGICOP_COPY == LOGICOP_COPY);
132 PIPE_ASSERT(PIPE_LOGICOP_OR_REVERSE == LOGICOP_OR_REVERSE);
133 PIPE_ASSERT(PIPE_LOGICOP_OR == LOGICOP_OR);
134 PIPE_ASSERT(PIPE_LOGICOP_SET == LOGICOP_SET);
135
136 /* pipe_blend_func happens to match the hardware. */
137 PIPE_ASSERT(PIPE_BLENDFACTOR_ONE == BLENDFACTOR_ONE);
138 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_COLOR == BLENDFACTOR_SRC_COLOR);
139 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA == BLENDFACTOR_SRC_ALPHA);
140 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_ALPHA == BLENDFACTOR_DST_ALPHA);
141 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_COLOR == BLENDFACTOR_DST_COLOR);
142 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE == BLENDFACTOR_SRC_ALPHA_SATURATE);
143 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_COLOR == BLENDFACTOR_CONST_COLOR);
144 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_ALPHA == BLENDFACTOR_CONST_ALPHA);
145 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_COLOR == BLENDFACTOR_SRC1_COLOR);
146 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_ALPHA == BLENDFACTOR_SRC1_ALPHA);
147 PIPE_ASSERT(PIPE_BLENDFACTOR_ZERO == BLENDFACTOR_ZERO);
148 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_COLOR == BLENDFACTOR_INV_SRC_COLOR);
149 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_ALPHA == BLENDFACTOR_INV_SRC_ALPHA);
150 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_ALPHA == BLENDFACTOR_INV_DST_ALPHA);
151 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_COLOR == BLENDFACTOR_INV_DST_COLOR);
152 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_COLOR == BLENDFACTOR_INV_CONST_COLOR);
153 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_ALPHA == BLENDFACTOR_INV_CONST_ALPHA);
154 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_COLOR == BLENDFACTOR_INV_SRC1_COLOR);
155 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_ALPHA == BLENDFACTOR_INV_SRC1_ALPHA);
156
157 /* pipe_blend_func happens to match the hardware. */
158 PIPE_ASSERT(PIPE_BLEND_ADD == BLENDFUNCTION_ADD);
159 PIPE_ASSERT(PIPE_BLEND_SUBTRACT == BLENDFUNCTION_SUBTRACT);
160 PIPE_ASSERT(PIPE_BLEND_REVERSE_SUBTRACT == BLENDFUNCTION_REVERSE_SUBTRACT);
161 PIPE_ASSERT(PIPE_BLEND_MIN == BLENDFUNCTION_MIN);
162 PIPE_ASSERT(PIPE_BLEND_MAX == BLENDFUNCTION_MAX);
163
164 /* pipe_stencil_op happens to match the hardware. */
165 PIPE_ASSERT(PIPE_STENCIL_OP_KEEP == STENCILOP_KEEP);
166 PIPE_ASSERT(PIPE_STENCIL_OP_ZERO == STENCILOP_ZERO);
167 PIPE_ASSERT(PIPE_STENCIL_OP_REPLACE == STENCILOP_REPLACE);
168 PIPE_ASSERT(PIPE_STENCIL_OP_INCR == STENCILOP_INCRSAT);
169 PIPE_ASSERT(PIPE_STENCIL_OP_DECR == STENCILOP_DECRSAT);
170 PIPE_ASSERT(PIPE_STENCIL_OP_INCR_WRAP == STENCILOP_INCR);
171 PIPE_ASSERT(PIPE_STENCIL_OP_DECR_WRAP == STENCILOP_DECR);
172 PIPE_ASSERT(PIPE_STENCIL_OP_INVERT == STENCILOP_INVERT);
173
174 /* pipe_sprite_coord_mode happens to match 3DSTATE_SBE */
175 PIPE_ASSERT(PIPE_SPRITE_COORD_UPPER_LEFT == UPPERLEFT);
176 PIPE_ASSERT(PIPE_SPRITE_COORD_LOWER_LEFT == LOWERLEFT);
177 #undef PIPE_ASSERT
178 }
179
180 static unsigned
181 translate_prim_type(enum pipe_prim_type prim, uint8_t verts_per_patch)
182 {
183 static const unsigned map[] = {
184 [PIPE_PRIM_POINTS] = _3DPRIM_POINTLIST,
185 [PIPE_PRIM_LINES] = _3DPRIM_LINELIST,
186 [PIPE_PRIM_LINE_LOOP] = _3DPRIM_LINELOOP,
187 [PIPE_PRIM_LINE_STRIP] = _3DPRIM_LINESTRIP,
188 [PIPE_PRIM_TRIANGLES] = _3DPRIM_TRILIST,
189 [PIPE_PRIM_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
190 [PIPE_PRIM_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
191 [PIPE_PRIM_QUADS] = _3DPRIM_QUADLIST,
192 [PIPE_PRIM_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
193 [PIPE_PRIM_POLYGON] = _3DPRIM_POLYGON,
194 [PIPE_PRIM_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
195 [PIPE_PRIM_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
196 [PIPE_PRIM_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
197 [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
198 [PIPE_PRIM_PATCHES] = _3DPRIM_PATCHLIST_1 - 1,
199 };
200
201 return map[prim] + (prim == PIPE_PRIM_PATCHES ? verts_per_patch : 0);
202 }
203
204 static unsigned
205 translate_compare_func(enum pipe_compare_func pipe_func)
206 {
207 static const unsigned map[] = {
208 [PIPE_FUNC_NEVER] = COMPAREFUNCTION_NEVER,
209 [PIPE_FUNC_LESS] = COMPAREFUNCTION_LESS,
210 [PIPE_FUNC_EQUAL] = COMPAREFUNCTION_EQUAL,
211 [PIPE_FUNC_LEQUAL] = COMPAREFUNCTION_LEQUAL,
212 [PIPE_FUNC_GREATER] = COMPAREFUNCTION_GREATER,
213 [PIPE_FUNC_NOTEQUAL] = COMPAREFUNCTION_NOTEQUAL,
214 [PIPE_FUNC_GEQUAL] = COMPAREFUNCTION_GEQUAL,
215 [PIPE_FUNC_ALWAYS] = COMPAREFUNCTION_ALWAYS,
216 };
217 return map[pipe_func];
218 }
219
220 static unsigned
221 translate_shadow_func(enum pipe_compare_func pipe_func)
222 {
223 /* Gallium specifies the result of shadow comparisons as:
224 *
225 * 1 if ref <op> texel,
226 * 0 otherwise.
227 *
228 * The hardware does:
229 *
230 * 0 if texel <op> ref,
231 * 1 otherwise.
232 *
233 * So we need to flip the operator and also negate.
234 */
235 static const unsigned map[] = {
236 [PIPE_FUNC_NEVER] = PREFILTEROPALWAYS,
237 [PIPE_FUNC_LESS] = PREFILTEROPLEQUAL,
238 [PIPE_FUNC_EQUAL] = PREFILTEROPNOTEQUAL,
239 [PIPE_FUNC_LEQUAL] = PREFILTEROPLESS,
240 [PIPE_FUNC_GREATER] = PREFILTEROPGEQUAL,
241 [PIPE_FUNC_NOTEQUAL] = PREFILTEROPEQUAL,
242 [PIPE_FUNC_GEQUAL] = PREFILTEROPGREATER,
243 [PIPE_FUNC_ALWAYS] = PREFILTEROPNEVER,
244 };
245 return map[pipe_func];
246 }
247
248 static unsigned
249 translate_cull_mode(unsigned pipe_face)
250 {
251 static const unsigned map[4] = {
252 [PIPE_FACE_NONE] = CULLMODE_NONE,
253 [PIPE_FACE_FRONT] = CULLMODE_FRONT,
254 [PIPE_FACE_BACK] = CULLMODE_BACK,
255 [PIPE_FACE_FRONT_AND_BACK] = CULLMODE_BOTH,
256 };
257 return map[pipe_face];
258 }
259
260 static unsigned
261 translate_fill_mode(unsigned pipe_polymode)
262 {
263 static const unsigned map[4] = {
264 [PIPE_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
265 [PIPE_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
266 [PIPE_POLYGON_MODE_POINT] = FILL_MODE_POINT,
267 [PIPE_POLYGON_MODE_FILL_RECTANGLE] = FILL_MODE_SOLID,
268 };
269 return map[pipe_polymode];
270 }
271
272 static struct iris_address
273 ro_bo(struct iris_bo *bo, uint64_t offset)
274 {
275 /* Not for CSOs! */
276 return (struct iris_address) { .bo = bo, .offset = offset };
277 }
278
279 static uint32_t *
280 stream_state(struct iris_batch *batch,
281 struct u_upload_mgr *uploader,
282 struct pipe_resource **out_res,
283 unsigned size,
284 unsigned alignment,
285 uint32_t *out_offset)
286 {
287 void *ptr = NULL;
288
289 u_upload_alloc(uploader, 0, size, alignment, out_offset, out_res, &ptr);
290
291 struct iris_bo *bo = iris_resource_bo(*out_res);
292 iris_use_pinned_bo(batch, bo, false);
293
294 *out_offset += iris_bo_offset_from_base_address(bo);
295
296 return ptr;
297 }
298
299 static uint32_t
300 emit_state(struct iris_batch *batch,
301 struct u_upload_mgr *uploader,
302 struct pipe_resource **out_res,
303 const void *data,
304 unsigned size,
305 unsigned alignment)
306 {
307 unsigned offset = 0;
308 uint32_t *map =
309 stream_state(batch, uploader, out_res, size, alignment, &offset);
310
311 if (map)
312 memcpy(map, data, size);
313
314 return offset;
315 }
316
317 #define cso_changed(x) (!old_cso || (old_cso->x != new_cso->x))
318 #define cso_changed_memcmp(x) \
319 (!old_cso || memcmp(old_cso->x, new_cso->x, sizeof(old_cso->x)) != 0)
320
321 static void
322 iris_init_render_context(struct iris_screen *screen,
323 struct iris_batch *batch,
324 struct iris_vtable *vtbl,
325 struct pipe_debug_callback *dbg)
326 {
327 iris_init_batch(batch, screen, vtbl, dbg, I915_EXEC_RENDER);
328
329 /* XXX: PIPE_CONTROLs */
330
331 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
332 #if 0
333 // XXX: MOCS is stupid for this.
334 sba.GeneralStateMemoryObjectControlState = MOCS_WB;
335 sba.StatelessDataPortAccessMemoryObjectControlState = MOCS_WB;
336 sba.SurfaceStateMemoryObjectControlState = MOCS_WB;
337 sba.DynamicStateMemoryObjectControlState = MOCS_WB;
338 sba.IndirectObjectMemoryObjectControlState = MOCS_WB;
339 sba.InstructionMemoryObjectControlState = MOCS_WB;
340 sba.BindlessSurfaceStateMemoryObjectControlState = MOCS_WB;
341 #endif
342
343 sba.GeneralStateBaseAddressModifyEnable = true;
344 sba.SurfaceStateBaseAddressModifyEnable = true;
345 sba.DynamicStateBaseAddressModifyEnable = true;
346 sba.IndirectObjectBaseAddressModifyEnable = true;
347 sba.InstructionBaseAddressModifyEnable = true;
348 sba.GeneralStateBufferSizeModifyEnable = true;
349 sba.DynamicStateBufferSizeModifyEnable = true;
350 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
351 sba.IndirectObjectBufferSizeModifyEnable = true;
352 sba.InstructionBuffersizeModifyEnable = true;
353
354 sba.InstructionBaseAddress = ro_bo(NULL, IRIS_MEMZONE_SHADER_START);
355 sba.SurfaceStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_SURFACE_START);
356 sba.DynamicStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_DYNAMIC_START);
357
358 sba.GeneralStateBufferSize = 0xfffff;
359 sba.IndirectObjectBufferSize = 0xfffff;
360 sba.InstructionBufferSize = 0xfffff;
361 sba.DynamicStateBufferSize = 0xfffff;
362 }
363
364 iris_emit_cmd(batch, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
365 rect.ClippedDrawingRectangleXMax = UINT16_MAX;
366 rect.ClippedDrawingRectangleYMax = UINT16_MAX;
367 }
368 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_PATTERN), pat) {
369 GEN_SAMPLE_POS_1X(pat._1xSample);
370 GEN_SAMPLE_POS_2X(pat._2xSample);
371 GEN_SAMPLE_POS_4X(pat._4xSample);
372 GEN_SAMPLE_POS_8X(pat._8xSample);
373 GEN_SAMPLE_POS_16X(pat._16xSample);
374 }
375 iris_emit_cmd(batch, GENX(3DSTATE_AA_LINE_PARAMETERS), foo);
376 iris_emit_cmd(batch, GENX(3DSTATE_WM_CHROMAKEY), foo);
377 iris_emit_cmd(batch, GENX(3DSTATE_WM_HZ_OP), foo);
378 /* XXX: may need to set an offset for origin-UL framebuffers */
379 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_OFFSET), foo);
380
381 /* Just assign a static partitioning. */
382 for (int i = 0; i <= MESA_SHADER_FRAGMENT; i++) {
383 iris_emit_cmd(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
384 alloc._3DCommandSubOpcode = 18 + i;
385 alloc.ConstantBufferOffset = 6 * i;
386 alloc.ConstantBufferSize = i == MESA_SHADER_FRAGMENT ? 8 : 6;
387 }
388 }
389 }
390
391 static void
392 iris_launch_grid(struct pipe_context *ctx, const struct pipe_grid_info *info)
393 {
394 }
395
396 static void
397 iris_set_blend_color(struct pipe_context *ctx,
398 const struct pipe_blend_color *state)
399 {
400 struct iris_context *ice = (struct iris_context *) ctx;
401
402 memcpy(&ice->state.blend_color, state, sizeof(struct pipe_blend_color));
403 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
404 }
405
406 struct iris_blend_state {
407 /** Partial 3DSTATE_PS_BLEND */
408 uint32_t ps_blend[GENX(3DSTATE_PS_BLEND_length)];
409
410 /** Partial BLEND_STATE */
411 uint32_t blend_state[GENX(BLEND_STATE_length) +
412 BRW_MAX_DRAW_BUFFERS * GENX(BLEND_STATE_ENTRY_length)];
413
414 bool alpha_to_coverage; /* for shader key */
415 };
416
417 static void *
418 iris_create_blend_state(struct pipe_context *ctx,
419 const struct pipe_blend_state *state)
420 {
421 struct iris_blend_state *cso = malloc(sizeof(struct iris_blend_state));
422 uint32_t *blend_state = cso->blend_state;
423
424 cso->alpha_to_coverage = state->alpha_to_coverage;
425
426 iris_pack_command(GENX(3DSTATE_PS_BLEND), cso->ps_blend, pb) {
427 /* pb.HasWriteableRT is filled in at draw time. */
428 /* pb.AlphaTestEnable is filled in at draw time. */
429 pb.AlphaToCoverageEnable = state->alpha_to_coverage;
430 pb.IndependentAlphaBlendEnable = state->independent_blend_enable;
431
432 pb.ColorBufferBlendEnable = state->rt[0].blend_enable;
433
434 pb.SourceBlendFactor = state->rt[0].rgb_src_factor;
435 pb.SourceAlphaBlendFactor = state->rt[0].alpha_func;
436 pb.DestinationBlendFactor = state->rt[0].rgb_dst_factor;
437 pb.DestinationAlphaBlendFactor = state->rt[0].alpha_dst_factor;
438 }
439
440 iris_pack_state(GENX(BLEND_STATE), blend_state, bs) {
441 bs.AlphaToCoverageEnable = state->alpha_to_coverage;
442 bs.IndependentAlphaBlendEnable = state->independent_blend_enable;
443 bs.AlphaToOneEnable = state->alpha_to_one;
444 bs.AlphaToCoverageDitherEnable = state->alpha_to_coverage;
445 bs.ColorDitherEnable = state->dither;
446 /* bl.AlphaTestEnable and bs.AlphaTestFunction are filled in later. */
447 }
448
449 blend_state += GENX(BLEND_STATE_length);
450
451 for (int i = 0; i < BRW_MAX_DRAW_BUFFERS; i++) {
452 iris_pack_state(GENX(BLEND_STATE_ENTRY), blend_state, be) {
453 be.LogicOpEnable = state->logicop_enable;
454 be.LogicOpFunction = state->logicop_func;
455
456 be.PreBlendSourceOnlyClampEnable = false;
457 be.ColorClampRange = COLORCLAMP_RTFORMAT;
458 be.PreBlendColorClampEnable = true;
459 be.PostBlendColorClampEnable = true;
460
461 be.ColorBufferBlendEnable = state->rt[i].blend_enable;
462
463 be.ColorBlendFunction = state->rt[i].rgb_func;
464 be.AlphaBlendFunction = state->rt[i].alpha_func;
465 be.SourceBlendFactor = state->rt[i].rgb_src_factor;
466 be.SourceAlphaBlendFactor = state->rt[i].alpha_func;
467 be.DestinationBlendFactor = state->rt[i].rgb_dst_factor;
468 be.DestinationAlphaBlendFactor = state->rt[i].alpha_dst_factor;
469
470 be.WriteDisableRed = !(state->rt[i].colormask & PIPE_MASK_R);
471 be.WriteDisableGreen = !(state->rt[i].colormask & PIPE_MASK_G);
472 be.WriteDisableBlue = !(state->rt[i].colormask & PIPE_MASK_B);
473 be.WriteDisableAlpha = !(state->rt[i].colormask & PIPE_MASK_A);
474 }
475 blend_state += GENX(BLEND_STATE_ENTRY_length);
476 }
477
478 return cso;
479 }
480
481 static void
482 iris_bind_blend_state(struct pipe_context *ctx, void *state)
483 {
484 struct iris_context *ice = (struct iris_context *) ctx;
485 ice->state.cso_blend = state;
486 ice->state.dirty |= IRIS_DIRTY_PS_BLEND;
487 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
488 }
489
490 struct iris_depth_stencil_alpha_state {
491 /** Partial 3DSTATE_WM_DEPTH_STENCIL */
492 uint32_t wmds[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
493
494 /** Complete CC_VIEWPORT */
495 uint32_t cc_vp[GENX(CC_VIEWPORT_length)];
496
497 /** Outbound to BLEND_STATE, 3DSTATE_PS_BLEND, COLOR_CALC_STATE */
498 struct pipe_alpha_state alpha;
499 };
500
501 static void *
502 iris_create_zsa_state(struct pipe_context *ctx,
503 const struct pipe_depth_stencil_alpha_state *state)
504 {
505 struct iris_depth_stencil_alpha_state *cso =
506 malloc(sizeof(struct iris_depth_stencil_alpha_state));
507
508 cso->alpha = state->alpha;
509
510 bool two_sided_stencil = state->stencil[1].enabled;
511
512 /* The state tracker needs to optimize away EQUAL writes for us. */
513 assert(!(state->depth.func == PIPE_FUNC_EQUAL && state->depth.writemask));
514
515 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), cso->wmds, wmds) {
516 wmds.StencilFailOp = state->stencil[0].fail_op;
517 wmds.StencilPassDepthFailOp = state->stencil[0].zfail_op;
518 wmds.StencilPassDepthPassOp = state->stencil[0].zpass_op;
519 wmds.StencilTestFunction =
520 translate_compare_func(state->stencil[0].func);
521 wmds.BackfaceStencilFailOp = state->stencil[1].fail_op;
522 wmds.BackfaceStencilPassDepthFailOp = state->stencil[1].zfail_op;
523 wmds.BackfaceStencilPassDepthPassOp = state->stencil[1].zpass_op;
524 wmds.BackfaceStencilTestFunction =
525 translate_compare_func(state->stencil[1].func);
526 wmds.DepthTestFunction = translate_compare_func(state->depth.func);
527 wmds.DoubleSidedStencilEnable = two_sided_stencil;
528 wmds.StencilTestEnable = state->stencil[0].enabled;
529 wmds.StencilBufferWriteEnable =
530 state->stencil[0].writemask != 0 ||
531 (two_sided_stencil && state->stencil[1].writemask != 0);
532 wmds.DepthTestEnable = state->depth.enabled;
533 wmds.DepthBufferWriteEnable = state->depth.writemask;
534 wmds.StencilTestMask = state->stencil[0].valuemask;
535 wmds.StencilWriteMask = state->stencil[0].writemask;
536 wmds.BackfaceStencilTestMask = state->stencil[1].valuemask;
537 wmds.BackfaceStencilWriteMask = state->stencil[1].writemask;
538 /* wmds.[Backface]StencilReferenceValue are merged later */
539 }
540
541 iris_pack_state(GENX(CC_VIEWPORT), cso->cc_vp, ccvp) {
542 ccvp.MinimumDepth = state->depth.bounds_min;
543 ccvp.MaximumDepth = state->depth.bounds_max;
544 }
545
546 return cso;
547 }
548
549 static void
550 iris_bind_zsa_state(struct pipe_context *ctx, void *state)
551 {
552 struct iris_context *ice = (struct iris_context *) ctx;
553 struct iris_depth_stencil_alpha_state *old_cso = ice->state.cso_zsa;
554 struct iris_depth_stencil_alpha_state *new_cso = state;
555
556 if (new_cso) {
557 if (cso_changed(alpha.ref_value))
558 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
559
560 if (cso_changed(alpha.enabled))
561 ice->state.dirty |= IRIS_DIRTY_PS_BLEND | IRIS_DIRTY_BLEND_STATE;
562 }
563
564 ice->state.cso_zsa = new_cso;
565 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
566 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
567 }
568
569 struct iris_rasterizer_state {
570 uint32_t sf[GENX(3DSTATE_SF_length)];
571 uint32_t clip[GENX(3DSTATE_CLIP_length)];
572 uint32_t raster[GENX(3DSTATE_RASTER_length)];
573 uint32_t wm[GENX(3DSTATE_WM_length)];
574 uint32_t line_stipple[GENX(3DSTATE_LINE_STIPPLE_length)];
575
576 bool flatshade; /* for shader state */
577 bool clamp_fragment_color; /* for shader state */
578 bool light_twoside; /* for shader state */
579 bool rasterizer_discard; /* for 3DSTATE_STREAMOUT */
580 bool half_pixel_center; /* for 3DSTATE_MULTISAMPLE */
581 bool line_stipple_enable;
582 bool poly_stipple_enable;
583 enum pipe_sprite_coord_mode sprite_coord_mode; /* PIPE_SPRITE_* */
584 uint16_t sprite_coord_enable;
585 };
586
587 static void *
588 iris_create_rasterizer_state(struct pipe_context *ctx,
589 const struct pipe_rasterizer_state *state)
590 {
591 struct iris_rasterizer_state *cso =
592 malloc(sizeof(struct iris_rasterizer_state));
593
594 #if 0
595 point_quad_rasterization -> SBE?
596
597 not necessary?
598 {
599 poly_smooth
600 force_persample_interp - ?
601 bottom_edge_rule
602
603 offset_units_unscaled - cap not exposed
604 }
605 #endif
606
607 cso->flatshade = state->flatshade;
608 cso->clamp_fragment_color = state->clamp_fragment_color;
609 cso->light_twoside = state->light_twoside;
610 cso->rasterizer_discard = state->rasterizer_discard;
611 cso->half_pixel_center = state->half_pixel_center;
612 cso->sprite_coord_mode = state->sprite_coord_mode;
613 cso->sprite_coord_enable = state->sprite_coord_enable;
614 cso->line_stipple_enable = state->line_stipple_enable;
615 cso->poly_stipple_enable = state->poly_stipple_enable;
616
617 iris_pack_command(GENX(3DSTATE_SF), cso->sf, sf) {
618 sf.StatisticsEnable = true;
619 sf.ViewportTransformEnable = true;
620 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
621 sf.LineEndCapAntialiasingRegionWidth =
622 state->line_smooth ? _10pixels : _05pixels;
623 sf.LastPixelEnable = state->line_last_pixel;
624 sf.LineWidth = state->line_width;
625 sf.SmoothPointEnable = state->point_smooth;
626 sf.PointWidthSource = state->point_size_per_vertex ? Vertex : State;
627 sf.PointWidth = state->point_size;
628
629 if (state->flatshade_first) {
630 sf.TriangleStripListProvokingVertexSelect = 2;
631 sf.TriangleFanProvokingVertexSelect = 2;
632 sf.LineStripListProvokingVertexSelect = 1;
633 } else {
634 sf.TriangleFanProvokingVertexSelect = 1;
635 }
636 }
637
638 iris_pack_command(GENX(3DSTATE_RASTER), cso->raster, rr) {
639 rr.FrontWinding = state->front_ccw ? CounterClockwise : Clockwise;
640 rr.CullMode = translate_cull_mode(state->cull_face);
641 rr.FrontFaceFillMode = translate_fill_mode(state->fill_front);
642 rr.BackFaceFillMode = translate_fill_mode(state->fill_back);
643 rr.DXMultisampleRasterizationEnable = state->multisample;
644 rr.GlobalDepthOffsetEnableSolid = state->offset_tri;
645 rr.GlobalDepthOffsetEnableWireframe = state->offset_line;
646 rr.GlobalDepthOffsetEnablePoint = state->offset_point;
647 rr.GlobalDepthOffsetConstant = state->offset_units;
648 rr.GlobalDepthOffsetScale = state->offset_scale;
649 rr.GlobalDepthOffsetClamp = state->offset_clamp;
650 rr.SmoothPointEnable = state->point_smooth;
651 rr.AntialiasingEnable = state->line_smooth;
652 rr.ScissorRectangleEnable = state->scissor;
653 rr.ViewportZNearClipTestEnable = state->depth_clip_near;
654 rr.ViewportZFarClipTestEnable = state->depth_clip_far;
655 //rr.ConservativeRasterizationEnable = not yet supported by Gallium...
656 }
657
658 iris_pack_command(GENX(3DSTATE_CLIP), cso->clip, cl) {
659 /* cl.NonPerspectiveBarycentricEnable is filled in at draw time from
660 * the FS program; cl.ForceZeroRTAIndexEnable is filled in from the FB.
661 */
662 cl.StatisticsEnable = true;
663 cl.EarlyCullEnable = true;
664 cl.UserClipDistanceClipTestEnableBitmask = state->clip_plane_enable;
665 cl.ForceUserClipDistanceClipTestEnableBitmask = true;
666 cl.APIMode = state->clip_halfz ? APIMODE_D3D : APIMODE_OGL;
667 cl.GuardbandClipTestEnable = true;
668 cl.ClipMode = CLIPMODE_NORMAL;
669 cl.ClipEnable = true;
670 cl.ViewportXYClipTestEnable = state->point_tri_clip;
671 cl.MinimumPointWidth = 0.125;
672 cl.MaximumPointWidth = 255.875;
673
674 if (state->flatshade_first) {
675 cl.TriangleStripListProvokingVertexSelect = 2;
676 cl.TriangleFanProvokingVertexSelect = 2;
677 cl.LineStripListProvokingVertexSelect = 1;
678 } else {
679 cl.TriangleFanProvokingVertexSelect = 1;
680 }
681 }
682
683 iris_pack_command(GENX(3DSTATE_WM), cso->wm, wm) {
684 /* wm.BarycentricInterpolationMode and wm.EarlyDepthStencilControl are
685 * filled in at draw time from the FS program.
686 */
687 wm.LineAntialiasingRegionWidth = _10pixels;
688 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
689 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
690 wm.StatisticsEnable = true;
691 wm.LineStippleEnable = state->line_stipple_enable;
692 wm.PolygonStippleEnable = state->poly_stipple_enable;
693 }
694
695 /* Remap from 0..255 back to 1..256 */
696 const unsigned line_stipple_factor = state->line_stipple_factor + 1;
697
698 iris_pack_command(GENX(3DSTATE_LINE_STIPPLE), cso->line_stipple, line) {
699 line.LineStipplePattern = state->line_stipple_pattern;
700 line.LineStippleInverseRepeatCount = 1.0f / line_stipple_factor;
701 line.LineStippleRepeatCount = line_stipple_factor;
702 }
703
704 return cso;
705 }
706
707 static void
708 iris_bind_rasterizer_state(struct pipe_context *ctx, void *state)
709 {
710 struct iris_context *ice = (struct iris_context *) ctx;
711 struct iris_rasterizer_state *old_cso = ice->state.cso_rast;
712 struct iris_rasterizer_state *new_cso = state;
713
714 if (new_cso) {
715 /* Try to avoid re-emitting 3DSTATE_LINE_STIPPLE, it's non-pipelined */
716 if (cso_changed_memcmp(line_stipple))
717 ice->state.dirty |= IRIS_DIRTY_LINE_STIPPLE;
718
719 if (cso_changed(half_pixel_center))
720 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
721
722 if (cso_changed(line_stipple_enable) || cso_changed(poly_stipple_enable))
723 ice->state.dirty |= IRIS_DIRTY_WM;
724 }
725
726 ice->state.cso_rast = new_cso;
727 ice->state.dirty |= IRIS_DIRTY_RASTER;
728 ice->state.dirty |= IRIS_DIRTY_CLIP;
729 }
730
731 static uint32_t
732 translate_wrap(unsigned pipe_wrap)
733 {
734 static const unsigned map[] = {
735 [PIPE_TEX_WRAP_REPEAT] = TCM_WRAP,
736 [PIPE_TEX_WRAP_CLAMP] = TCM_HALF_BORDER,
737 [PIPE_TEX_WRAP_CLAMP_TO_EDGE] = TCM_CLAMP,
738 [PIPE_TEX_WRAP_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER,
739 [PIPE_TEX_WRAP_MIRROR_REPEAT] = TCM_MIRROR,
740 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE,
741 [PIPE_TEX_WRAP_MIRROR_CLAMP] = -1, // XXX: ???
742 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER] = -1, // XXX: ???
743 };
744 return map[pipe_wrap];
745 }
746
747 /**
748 * Return true if the given wrap mode requires the border color to exist.
749 */
750 static bool
751 wrap_mode_needs_border_color(unsigned wrap_mode)
752 {
753 return wrap_mode == TCM_CLAMP_BORDER || wrap_mode == TCM_HALF_BORDER;
754 }
755
756 static unsigned
757 translate_mip_filter(enum pipe_tex_mipfilter pipe_mip)
758 {
759 static const unsigned map[] = {
760 [PIPE_TEX_MIPFILTER_NEAREST] = MIPFILTER_NEAREST,
761 [PIPE_TEX_MIPFILTER_LINEAR] = MIPFILTER_LINEAR,
762 [PIPE_TEX_MIPFILTER_NONE] = MIPFILTER_NONE,
763 };
764 return map[pipe_mip];
765 }
766
767 struct iris_sampler_state {
768 struct pipe_sampler_state base;
769
770 bool needs_border_color;
771
772 uint32_t sampler_state[GENX(SAMPLER_STATE_length)];
773 };
774
775 static void *
776 iris_create_sampler_state(struct pipe_context *pctx,
777 const struct pipe_sampler_state *state)
778 {
779 struct iris_sampler_state *cso = CALLOC_STRUCT(iris_sampler_state);
780
781 if (!cso)
782 return NULL;
783
784 STATIC_ASSERT(PIPE_TEX_FILTER_NEAREST == MAPFILTER_NEAREST);
785 STATIC_ASSERT(PIPE_TEX_FILTER_LINEAR == MAPFILTER_LINEAR);
786
787 unsigned wrap_s = translate_wrap(state->wrap_s);
788 unsigned wrap_t = translate_wrap(state->wrap_t);
789 unsigned wrap_r = translate_wrap(state->wrap_r);
790
791 cso->needs_border_color = wrap_mode_needs_border_color(wrap_s) ||
792 wrap_mode_needs_border_color(wrap_t) ||
793 wrap_mode_needs_border_color(wrap_r);
794
795 iris_pack_state(GENX(SAMPLER_STATE), cso->sampler_state, samp) {
796 samp.TCXAddressControlMode = wrap_s;
797 samp.TCYAddressControlMode = wrap_t;
798 samp.TCZAddressControlMode = wrap_r;
799 samp.CubeSurfaceControlMode = state->seamless_cube_map;
800 samp.NonnormalizedCoordinateEnable = !state->normalized_coords;
801 samp.MinModeFilter = state->min_img_filter;
802 samp.MagModeFilter = state->mag_img_filter;
803 samp.MipModeFilter = translate_mip_filter(state->min_mip_filter);
804 samp.MaximumAnisotropy = RATIO21;
805
806 if (state->max_anisotropy >= 2) {
807 if (state->min_img_filter == PIPE_TEX_FILTER_LINEAR) {
808 samp.MinModeFilter = MAPFILTER_ANISOTROPIC;
809 samp.AnisotropicAlgorithm = EWAApproximation;
810 }
811
812 if (state->mag_img_filter == PIPE_TEX_FILTER_LINEAR)
813 samp.MagModeFilter = MAPFILTER_ANISOTROPIC;
814
815 samp.MaximumAnisotropy =
816 MIN2((state->max_anisotropy - 2) / 2, RATIO161);
817 }
818
819 /* Set address rounding bits if not using nearest filtering. */
820 if (state->min_img_filter != PIPE_TEX_FILTER_NEAREST) {
821 samp.UAddressMinFilterRoundingEnable = true;
822 samp.VAddressMinFilterRoundingEnable = true;
823 samp.RAddressMinFilterRoundingEnable = true;
824 }
825
826 if (state->mag_img_filter != PIPE_TEX_FILTER_NEAREST) {
827 samp.UAddressMagFilterRoundingEnable = true;
828 samp.VAddressMagFilterRoundingEnable = true;
829 samp.RAddressMagFilterRoundingEnable = true;
830 }
831
832 if (state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE)
833 samp.ShadowFunction = translate_shadow_func(state->compare_func);
834
835 const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
836
837 samp.LODPreClampMode = CLAMP_MODE_OGL;
838 samp.MinLOD = CLAMP(state->min_lod, 0, hw_max_lod);
839 samp.MaxLOD = CLAMP(state->max_lod, 0, hw_max_lod);
840 samp.TextureLODBias = CLAMP(state->lod_bias, -16, 15);
841
842 //samp.BorderColorPointer = <<comes from elsewhere>>
843 }
844
845 return cso;
846 }
847
848 static void
849 iris_bind_sampler_states(struct pipe_context *ctx,
850 enum pipe_shader_type p_stage,
851 unsigned start, unsigned count,
852 void **states)
853 {
854 struct iris_context *ice = (struct iris_context *) ctx;
855 gl_shader_stage stage = stage_from_pipe(p_stage);
856
857 assert(start + count <= IRIS_MAX_TEXTURE_SAMPLERS);
858
859 /* Assemble the SAMPLER_STATEs into a contiguous chunk of memory
860 * relative to Dynamic State Base Address.
861 */
862 void *map = NULL;
863 u_upload_alloc(ice->state.dynamic_uploader, 0,
864 count * 4 * GENX(SAMPLER_STATE_length), 32,
865 &ice->state.sampler_table_offset[stage],
866 &ice->state.sampler_table_resource[stage],
867 &map);
868 if (unlikely(!map))
869 return;
870
871 struct pipe_resource *res = ice->state.sampler_table_resource[stage];
872 ice->state.sampler_table_offset[stage] +=
873 iris_bo_offset_from_base_address(iris_resource_bo(res));
874
875 for (int i = 0; i < count; i++) {
876 struct iris_sampler_state *state = states[i];
877
878 /* Save a pointer to the iris_sampler_state, a few fields need
879 * to inform draw-time decisions.
880 */
881 ice->state.samplers[stage][start + i] = state;
882
883 if (state)
884 memcpy(map, state->sampler_state, 4 * GENX(SAMPLER_STATE_length));
885
886 map += GENX(SAMPLER_STATE_length);
887 }
888
889 ice->state.num_samplers[stage] = count;
890
891 ice->state.dirty |= IRIS_DIRTY_SAMPLER_STATES_VS << stage;
892 }
893
894 struct iris_sampler_view {
895 struct pipe_sampler_view pipe;
896 struct isl_view view;
897
898 /** The resource (BO) holding our SURFACE_STATE. */
899 struct pipe_resource *surface_state_resource;
900 unsigned surface_state_offset;
901 };
902
903 /**
904 * Convert an swizzle enumeration (i.e. PIPE_SWIZZLE_X) to one of the Gen7.5+
905 * "Shader Channel Select" enumerations (i.e. HSW_SCS_RED). The mappings are
906 *
907 * SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W, SWIZZLE_ZERO, SWIZZLE_ONE
908 * 0 1 2 3 4 5
909 * 4 5 6 7 0 1
910 * SCS_RED, SCS_GREEN, SCS_BLUE, SCS_ALPHA, SCS_ZERO, SCS_ONE
911 *
912 * which is simply adding 4 then modding by 8 (or anding with 7).
913 *
914 * We then may need to apply workarounds for textureGather hardware bugs.
915 */
916 static enum isl_channel_select
917 pipe_swizzle_to_isl_channel(enum pipe_swizzle swizzle)
918 {
919 return (swizzle + 4) & 7;
920 }
921
922 static struct pipe_sampler_view *
923 iris_create_sampler_view(struct pipe_context *ctx,
924 struct pipe_resource *tex,
925 const struct pipe_sampler_view *tmpl)
926 {
927 struct iris_context *ice = (struct iris_context *) ctx;
928 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
929 struct iris_resource *itex = (struct iris_resource *) tex;
930 struct iris_sampler_view *isv = calloc(1, sizeof(struct iris_sampler_view));
931
932 if (!isv)
933 return NULL;
934
935 /* initialize base object */
936 isv->pipe = *tmpl;
937 isv->pipe.context = ctx;
938 isv->pipe.texture = NULL;
939 pipe_reference_init(&isv->pipe.reference, 1);
940 pipe_resource_reference(&isv->pipe.texture, tex);
941
942 /* XXX: do we need brw_get_texture_swizzle hacks here? */
943
944 isv->view = (struct isl_view) {
945 .format = iris_isl_format_for_pipe_format(tmpl->format),
946 .base_level = tmpl->u.tex.first_level,
947 .levels = tmpl->u.tex.last_level - tmpl->u.tex.first_level + 1,
948 .base_array_layer = tmpl->u.tex.first_layer,
949 .array_len = tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1,
950 .swizzle = (struct isl_swizzle) {
951 .r = pipe_swizzle_to_isl_channel(tmpl->swizzle_r),
952 .g = pipe_swizzle_to_isl_channel(tmpl->swizzle_g),
953 .b = pipe_swizzle_to_isl_channel(tmpl->swizzle_b),
954 .a = pipe_swizzle_to_isl_channel(tmpl->swizzle_a),
955 },
956 .usage = ISL_SURF_USAGE_TEXTURE_BIT,
957 };
958
959 void *map = NULL;
960 u_upload_alloc(ice->state.surface_uploader, 0,
961 4 * GENX(RENDER_SURFACE_STATE_length), 64,
962 &isv->surface_state_offset,
963 &isv->surface_state_resource,
964 &map);
965 if (!unlikely(map))
966 return NULL;
967
968 struct iris_bo *state_bo = iris_resource_bo(isv->surface_state_resource);
969 isv->surface_state_offset += iris_bo_offset_from_base_address(state_bo);
970
971 isl_surf_fill_state(&screen->isl_dev, map,
972 .surf = &itex->surf, .view = &isv->view,
973 .mocs = MOCS_WB,
974 .address = itex->bo->gtt_offset);
975 // .aux_surf =
976 // .clear_color = clear_color,
977
978 return &isv->pipe;
979 }
980
981 struct iris_surface {
982 struct pipe_surface pipe;
983 struct isl_view view;
984
985 /** The resource (BO) holding our SURFACE_STATE. */
986 struct pipe_resource *surface_state_resource;
987 unsigned surface_state_offset;
988 };
989
990 static struct pipe_surface *
991 iris_create_surface(struct pipe_context *ctx,
992 struct pipe_resource *tex,
993 const struct pipe_surface *tmpl)
994 {
995 struct iris_context *ice = (struct iris_context *) ctx;
996 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
997 struct iris_surface *surf = calloc(1, sizeof(struct iris_surface));
998 struct pipe_surface *psurf = &surf->pipe;
999 struct iris_resource *res = (struct iris_resource *) tex;
1000
1001 if (!surf)
1002 return NULL;
1003
1004 pipe_reference_init(&psurf->reference, 1);
1005 pipe_resource_reference(&psurf->texture, tex);
1006 psurf->context = ctx;
1007 psurf->format = tmpl->format;
1008 psurf->width = tex->width0;
1009 psurf->height = tex->height0;
1010 psurf->texture = tex;
1011 psurf->u.tex.first_layer = tmpl->u.tex.first_layer;
1012 psurf->u.tex.last_layer = tmpl->u.tex.last_layer;
1013 psurf->u.tex.level = tmpl->u.tex.level;
1014
1015 unsigned usage = 0;
1016 if (tmpl->writable)
1017 usage = ISL_SURF_USAGE_STORAGE_BIT;
1018 else if (util_format_is_depth_or_stencil(tmpl->format))
1019 usage = ISL_SURF_USAGE_DEPTH_BIT;
1020 else
1021 usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
1022
1023 surf->view = (struct isl_view) {
1024 .format = iris_isl_format_for_pipe_format(tmpl->format),
1025 .base_level = tmpl->u.tex.level,
1026 .levels = 1,
1027 .base_array_layer = tmpl->u.tex.first_layer,
1028 .array_len = tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1,
1029 .swizzle = ISL_SWIZZLE_IDENTITY,
1030 .usage = usage,
1031 };
1032
1033 /* Bail early for depth/stencil */
1034 if (res->surf.usage & (ISL_SURF_USAGE_DEPTH_BIT |
1035 ISL_SURF_USAGE_STENCIL_BIT))
1036 return psurf;
1037
1038 void *map = NULL;
1039 u_upload_alloc(ice->state.surface_uploader, 0,
1040 4 * GENX(RENDER_SURFACE_STATE_length), 64,
1041 &surf->surface_state_offset,
1042 &surf->surface_state_resource,
1043 &map);
1044 if (!unlikely(map))
1045 return NULL;
1046
1047 struct iris_bo *state_bo = iris_resource_bo(surf->surface_state_resource);
1048 surf->surface_state_offset += iris_bo_offset_from_base_address(state_bo);
1049
1050 isl_surf_fill_state(&screen->isl_dev, map,
1051 .surf = &res->surf, .view = &surf->view,
1052 .mocs = MOCS_WB,
1053 .address = res->bo->gtt_offset);
1054 // .aux_surf =
1055 // .clear_color = clear_color,
1056
1057 return psurf;
1058 }
1059
1060 static void
1061 iris_set_sampler_views(struct pipe_context *ctx,
1062 enum pipe_shader_type p_stage,
1063 unsigned start, unsigned count,
1064 struct pipe_sampler_view **views)
1065 {
1066 struct iris_context *ice = (struct iris_context *) ctx;
1067 gl_shader_stage stage = stage_from_pipe(p_stage);
1068
1069 unsigned i;
1070 for (i = 0; i < count; i++) {
1071 pipe_sampler_view_reference((struct pipe_sampler_view **)
1072 &ice->state.textures[stage][i], views[i]);
1073 }
1074 for (; i < ice->state.num_textures[stage]; i++) {
1075 pipe_sampler_view_reference((struct pipe_sampler_view **)
1076 &ice->state.textures[stage][i], NULL);
1077 }
1078
1079 ice->state.num_textures[stage] = count;
1080
1081 ice->state.dirty |= (IRIS_DIRTY_BINDINGS_VS << stage);
1082 }
1083
1084 static void
1085 iris_set_clip_state(struct pipe_context *ctx,
1086 const struct pipe_clip_state *state)
1087 {
1088 }
1089
1090 static void
1091 iris_set_polygon_stipple(struct pipe_context *ctx,
1092 const struct pipe_poly_stipple *state)
1093 {
1094 struct iris_context *ice = (struct iris_context *) ctx;
1095 memcpy(&ice->state.poly_stipple, state, sizeof(*state));
1096 ice->state.dirty |= IRIS_DIRTY_POLYGON_STIPPLE;
1097 }
1098
1099 static void
1100 iris_set_sample_mask(struct pipe_context *ctx, unsigned sample_mask)
1101 {
1102 struct iris_context *ice = (struct iris_context *) ctx;
1103
1104 ice->state.sample_mask = sample_mask;
1105 ice->state.dirty |= IRIS_DIRTY_SAMPLE_MASK;
1106 }
1107
1108 static void
1109 iris_set_scissor_states(struct pipe_context *ctx,
1110 unsigned start_slot,
1111 unsigned num_scissors,
1112 const struct pipe_scissor_state *states)
1113 {
1114 struct iris_context *ice = (struct iris_context *) ctx;
1115
1116 for (unsigned i = 0; i < num_scissors; i++) {
1117 ice->state.scissors[start_slot + i] = states[i];
1118 }
1119
1120 ice->state.dirty |= IRIS_DIRTY_SCISSOR_RECT;
1121 }
1122
1123 static void
1124 iris_set_stencil_ref(struct pipe_context *ctx,
1125 const struct pipe_stencil_ref *state)
1126 {
1127 struct iris_context *ice = (struct iris_context *) ctx;
1128 memcpy(&ice->state.stencil_ref, state, sizeof(*state));
1129 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
1130 }
1131
1132
1133 struct iris_viewport_state {
1134 uint32_t sf_cl_vp[GENX(SF_CLIP_VIEWPORT_length) * IRIS_MAX_VIEWPORTS];
1135 };
1136
1137 static float
1138 viewport_extent(const struct pipe_viewport_state *state, int axis, float sign)
1139 {
1140 return copysignf(state->scale[axis], sign) + state->translate[axis];
1141 }
1142
1143 #if 0
1144 static void
1145 calculate_guardband_size(uint32_t fb_width, uint32_t fb_height,
1146 float m00, float m11, float m30, float m31,
1147 float *xmin, float *xmax,
1148 float *ymin, float *ymax)
1149 {
1150 /* According to the "Vertex X,Y Clamping and Quantization" section of the
1151 * Strips and Fans documentation:
1152 *
1153 * "The vertex X and Y screen-space coordinates are also /clamped/ to the
1154 * fixed-point "guardband" range supported by the rasterization hardware"
1155 *
1156 * and
1157 *
1158 * "In almost all circumstances, if an object’s vertices are actually
1159 * modified by this clamping (i.e., had X or Y coordinates outside of
1160 * the guardband extent the rendered object will not match the intended
1161 * result. Therefore software should take steps to ensure that this does
1162 * not happen - e.g., by clipping objects such that they do not exceed
1163 * these limits after the Drawing Rectangle is applied."
1164 *
1165 * I believe the fundamental restriction is that the rasterizer (in
1166 * the SF/WM stages) have a limit on the number of pixels that can be
1167 * rasterized. We need to ensure any coordinates beyond the rasterizer
1168 * limit are handled by the clipper. So effectively that limit becomes
1169 * the clipper's guardband size.
1170 *
1171 * It goes on to say:
1172 *
1173 * "In addition, in order to be correctly rendered, objects must have a
1174 * screenspace bounding box not exceeding 8K in the X or Y direction.
1175 * This additional restriction must also be comprehended by software,
1176 * i.e., enforced by use of clipping."
1177 *
1178 * This makes no sense. Gen7+ hardware supports 16K render targets,
1179 * and you definitely need to be able to draw polygons that fill the
1180 * surface. Our assumption is that the rasterizer was limited to 8K
1181 * on Sandybridge, which only supports 8K surfaces, and it was actually
1182 * increased to 16K on Ivybridge and later.
1183 *
1184 * So, limit the guardband to 16K on Gen7+ and 8K on Sandybridge.
1185 */
1186 const float gb_size = GEN_GEN >= 7 ? 16384.0f : 8192.0f;
1187
1188 if (m00 != 0 && m11 != 0) {
1189 /* First, we compute the screen-space render area */
1190 const float ss_ra_xmin = MIN3( 0, m30 + m00, m30 - m00);
1191 const float ss_ra_xmax = MAX3( fb_width, m30 + m00, m30 - m00);
1192 const float ss_ra_ymin = MIN3( 0, m31 + m11, m31 - m11);
1193 const float ss_ra_ymax = MAX3(fb_height, m31 + m11, m31 - m11);
1194
1195 /* We want the guardband to be centered on that */
1196 const float ss_gb_xmin = (ss_ra_xmin + ss_ra_xmax) / 2 - gb_size;
1197 const float ss_gb_xmax = (ss_ra_xmin + ss_ra_xmax) / 2 + gb_size;
1198 const float ss_gb_ymin = (ss_ra_ymin + ss_ra_ymax) / 2 - gb_size;
1199 const float ss_gb_ymax = (ss_ra_ymin + ss_ra_ymax) / 2 + gb_size;
1200
1201 /* Now we need it in native device coordinates */
1202 const float ndc_gb_xmin = (ss_gb_xmin - m30) / m00;
1203 const float ndc_gb_xmax = (ss_gb_xmax - m30) / m00;
1204 const float ndc_gb_ymin = (ss_gb_ymin - m31) / m11;
1205 const float ndc_gb_ymax = (ss_gb_ymax - m31) / m11;
1206
1207 /* Thanks to Y-flipping and ORIGIN_UPPER_LEFT, the Y coordinates may be
1208 * flipped upside-down. X should be fine though.
1209 */
1210 assert(ndc_gb_xmin <= ndc_gb_xmax);
1211 *xmin = ndc_gb_xmin;
1212 *xmax = ndc_gb_xmax;
1213 *ymin = MIN2(ndc_gb_ymin, ndc_gb_ymax);
1214 *ymax = MAX2(ndc_gb_ymin, ndc_gb_ymax);
1215 } else {
1216 /* The viewport scales to 0, so nothing will be rendered. */
1217 *xmin = 0.0f;
1218 *xmax = 0.0f;
1219 *ymin = 0.0f;
1220 *ymax = 0.0f;
1221 }
1222 }
1223 #endif
1224
1225 static void
1226 iris_set_viewport_states(struct pipe_context *ctx,
1227 unsigned start_slot,
1228 unsigned count,
1229 const struct pipe_viewport_state *states)
1230 {
1231 struct iris_context *ice = (struct iris_context *) ctx;
1232 struct iris_viewport_state *cso = ice->state.cso_vp;
1233 uint32_t *vp_map = &cso->sf_cl_vp[start_slot];
1234
1235 // XXX: sf_cl_vp is only big enough for one slot, we don't iterate right
1236 for (unsigned i = 0; i < count; i++) {
1237 const struct pipe_viewport_state *state = &states[start_slot + i];
1238 iris_pack_state(GENX(SF_CLIP_VIEWPORT), vp_map, vp) {
1239 vp.ViewportMatrixElementm00 = state->scale[0];
1240 vp.ViewportMatrixElementm11 = state->scale[1];
1241 vp.ViewportMatrixElementm22 = state->scale[2];
1242 vp.ViewportMatrixElementm30 = state->translate[0];
1243 vp.ViewportMatrixElementm31 = state->translate[1];
1244 vp.ViewportMatrixElementm32 = state->translate[2];
1245 /* XXX: in i965 this is computed based on the drawbuffer size,
1246 * but we don't have that here...
1247 */
1248 vp.XMinClipGuardband = -1.0;
1249 vp.XMaxClipGuardband = 1.0;
1250 vp.YMinClipGuardband = -1.0;
1251 vp.YMaxClipGuardband = 1.0;
1252 vp.XMinViewPort = viewport_extent(state, 0, -1.0f);
1253 vp.XMaxViewPort = viewport_extent(state, 0, 1.0f) - 1;
1254 vp.YMinViewPort = viewport_extent(state, 1, -1.0f);
1255 vp.YMaxViewPort = viewport_extent(state, 1, 1.0f) - 1;
1256 }
1257
1258 vp_map += GENX(SF_CLIP_VIEWPORT_length);
1259 }
1260
1261 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
1262 }
1263
1264 struct iris_depth_buffer_state
1265 {
1266 uint32_t packets[GENX(3DSTATE_DEPTH_BUFFER_length) +
1267 GENX(3DSTATE_STENCIL_BUFFER_length) +
1268 GENX(3DSTATE_HIER_DEPTH_BUFFER_length) +
1269 GENX(3DSTATE_CLEAR_PARAMS_length)];
1270 };
1271
1272 static void
1273 iris_set_framebuffer_state(struct pipe_context *ctx,
1274 const struct pipe_framebuffer_state *state)
1275 {
1276 struct iris_context *ice = (struct iris_context *) ctx;
1277 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1278 struct isl_device *isl_dev = &screen->isl_dev;
1279 struct pipe_framebuffer_state *cso = &ice->state.framebuffer;
1280
1281 if (cso->samples != state->samples) {
1282 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
1283 }
1284
1285 if (cso->nr_cbufs != state->nr_cbufs) {
1286 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1287 }
1288
1289 if ((cso->layers == 0) == (state->layers == 0)) {
1290 ice->state.dirty |= IRIS_DIRTY_CLIP;
1291 }
1292
1293 util_copy_framebuffer_state(cso, state);
1294
1295 struct iris_depth_buffer_state *cso_z =
1296 malloc(sizeof(struct iris_depth_buffer_state));
1297
1298 struct isl_view view = {
1299 .base_level = 0,
1300 .levels = 1,
1301 .base_array_layer = 0,
1302 .array_len = 1,
1303 .swizzle = ISL_SWIZZLE_IDENTITY,
1304 };
1305
1306 struct isl_depth_stencil_hiz_emit_info info = {
1307 .view = &view,
1308 .mocs = MOCS_WB,
1309 };
1310
1311 struct iris_resource *zres =
1312 (void *) (cso->zsbuf ? cso->zsbuf->texture : NULL);
1313
1314 if (zres) {
1315 view.usage |= ISL_SURF_USAGE_DEPTH_BIT;
1316
1317 info.depth_surf = &zres->surf;
1318 info.depth_address = zres->bo->gtt_offset;
1319
1320 view.format = zres->surf.format;
1321
1322 view.base_level = cso->zsbuf->u.tex.level;
1323 view.base_array_layer = cso->zsbuf->u.tex.first_layer;
1324 view.array_len =
1325 cso->zsbuf->u.tex.last_layer - cso->zsbuf->u.tex.first_layer + 1;
1326
1327 info.hiz_usage = ISL_AUX_USAGE_NONE;
1328 }
1329
1330 #if 0
1331 if (stencil_mt) {
1332 view.usage |= ISL_SURF_USAGE_STENCIL_BIT;
1333 info.stencil_surf = &stencil_mt->surf;
1334
1335 if (!depth_mt) {
1336 view.base_level = stencil_irb->mt_level - stencil_irb->mt->first_level;
1337 view.base_array_layer = stencil_irb->mt_layer;
1338 view.array_len = MAX2(stencil_irb->layer_count, 1);
1339 view.format = stencil_mt->surf.format;
1340 }
1341
1342 uint32_t stencil_offset = 0;
1343 info.stencil_address = stencil_mt->bo->gtt_offset + stencil_mt->offset;
1344 }
1345 #endif
1346
1347 isl_emit_depth_stencil_hiz_s(isl_dev, cso_z->packets, &info);
1348
1349 free(ice->state.cso_depthbuffer);
1350 ice->state.cso_depthbuffer = cso_z;
1351 ice->state.dirty |= IRIS_DIRTY_DEPTH_BUFFER;
1352
1353 /* Render target change */
1354 ice->state.dirty |= IRIS_DIRTY_BINDINGS_FS;
1355 }
1356
1357 static void
1358 iris_set_constant_buffer(struct pipe_context *ctx,
1359 enum pipe_shader_type p_stage, unsigned index,
1360 const struct pipe_constant_buffer *input)
1361 {
1362 struct iris_context *ice = (struct iris_context *) ctx;
1363 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1364 gl_shader_stage stage = stage_from_pipe(p_stage);
1365 struct iris_shader_state *shs = &ice->shaders.state[stage];
1366 struct iris_const_buffer *cbuf = &shs->constbuf[index];
1367
1368 if (input && (input->buffer || input->user_buffer)) {
1369 if (input->user_buffer) {
1370 u_upload_data(ctx->const_uploader, 0, input->buffer_size, 32,
1371 input->user_buffer, &cbuf->offset, &cbuf->resource);
1372 } else {
1373 pipe_resource_reference(&cbuf->resource, input->buffer);
1374 }
1375
1376 void *map = NULL;
1377 // XXX: these are not retained forever, use a separate uploader?
1378 u_upload_alloc(ice->state.surface_uploader, 0,
1379 4 * GENX(RENDER_SURFACE_STATE_length), 64,
1380 &cbuf->surface_state_offset,
1381 &cbuf->surface_state_resource,
1382 &map);
1383 if (!unlikely(map)) {
1384 pipe_resource_reference(&cbuf->resource, NULL);
1385 return;
1386 }
1387
1388 struct iris_resource *res = (void *) cbuf->resource;
1389 struct iris_bo *surf_bo = iris_resource_bo(cbuf->surface_state_resource);
1390 cbuf->surface_state_offset += iris_bo_offset_from_base_address(surf_bo);
1391
1392 isl_buffer_fill_state(&screen->isl_dev, map,
1393 .address = res->bo->gtt_offset + cbuf->offset,
1394 .size_B = input->buffer_size,
1395 .format = ISL_FORMAT_R32G32B32A32_FLOAT,
1396 .stride_B = 1,
1397 .mocs = MOCS_WB)
1398 } else {
1399 pipe_resource_reference(&cbuf->resource, NULL);
1400 pipe_resource_reference(&cbuf->surface_state_resource, NULL);
1401 }
1402
1403 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
1404 // XXX: maybe not necessary all the time...?
1405 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
1406 }
1407
1408 static void
1409 iris_sampler_view_destroy(struct pipe_context *ctx,
1410 struct pipe_sampler_view *state)
1411 {
1412 struct iris_sampler_view *isv = (void *) state;
1413 pipe_resource_reference(&state->texture, NULL);
1414 pipe_resource_reference(&isv->surface_state_resource, NULL);
1415 free(isv);
1416 }
1417
1418
1419 static void
1420 iris_surface_destroy(struct pipe_context *ctx, struct pipe_surface *p_surf)
1421 {
1422 struct iris_surface *surf = (void *) p_surf;
1423 pipe_resource_reference(&p_surf->texture, NULL);
1424 pipe_resource_reference(&surf->surface_state_resource, NULL);
1425 free(surf);
1426 }
1427
1428 static void
1429 iris_delete_state(struct pipe_context *ctx, void *state)
1430 {
1431 free(state);
1432 }
1433
1434 struct iris_vertex_buffer_state {
1435 uint32_t vertex_buffers[1 + 33 * GENX(VERTEX_BUFFER_STATE_length)];
1436 struct pipe_resource *resources[33];
1437 unsigned num_buffers;
1438 };
1439
1440 static void
1441 iris_free_vertex_buffers(struct iris_vertex_buffer_state *cso)
1442 {
1443 for (unsigned i = 0; i < cso->num_buffers; i++)
1444 pipe_resource_reference(&cso->resources[i], NULL);
1445 }
1446
1447 static void
1448 iris_set_vertex_buffers(struct pipe_context *ctx,
1449 unsigned start_slot, unsigned count,
1450 const struct pipe_vertex_buffer *buffers)
1451 {
1452 struct iris_context *ice = (struct iris_context *) ctx;
1453 struct iris_vertex_buffer_state *cso = ice->state.cso_vertex_buffers;
1454
1455 iris_free_vertex_buffers(ice->state.cso_vertex_buffers);
1456
1457 if (!buffers)
1458 count = 0;
1459
1460 cso->num_buffers = count;
1461
1462 iris_pack_command(GENX(3DSTATE_VERTEX_BUFFERS), cso->vertex_buffers, vb) {
1463 vb.DWordLength = 4 * MAX2(cso->num_buffers, 1) - 1;
1464 }
1465
1466 uint32_t *vb_pack_dest = &cso->vertex_buffers[1];
1467
1468 if (count == 0) {
1469 iris_pack_state(GENX(VERTEX_BUFFER_STATE), vb_pack_dest, vb) {
1470 vb.VertexBufferIndex = start_slot;
1471 vb.NullVertexBuffer = true;
1472 vb.AddressModifyEnable = true;
1473 }
1474 }
1475
1476 for (unsigned i = 0; i < count; i++) {
1477 assert(!buffers[i].is_user_buffer);
1478
1479 pipe_resource_reference(&cso->resources[i], buffers[i].buffer.resource);
1480 struct iris_resource *res = (void *) cso->resources[i];
1481
1482 iris_pack_state(GENX(VERTEX_BUFFER_STATE), vb_pack_dest, vb) {
1483 vb.VertexBufferIndex = start_slot + i;
1484 vb.MOCS = MOCS_WB;
1485 vb.AddressModifyEnable = true;
1486 vb.BufferPitch = buffers[i].stride;
1487 vb.BufferSize = res->bo->size;
1488 vb.BufferStartingAddress =
1489 ro_bo(NULL, res->bo->gtt_offset + buffers[i].buffer_offset);
1490 }
1491
1492 vb_pack_dest += GENX(VERTEX_BUFFER_STATE_length);
1493 }
1494
1495 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
1496 }
1497
1498 struct iris_vertex_element_state {
1499 uint32_t vertex_elements[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
1500 uint32_t vf_instancing[33 * GENX(3DSTATE_VF_INSTANCING_length)];
1501 unsigned count;
1502 };
1503
1504 static void *
1505 iris_create_vertex_elements(struct pipe_context *ctx,
1506 unsigned count,
1507 const struct pipe_vertex_element *state)
1508 {
1509 struct iris_vertex_element_state *cso =
1510 malloc(sizeof(struct iris_vertex_element_state));
1511
1512 cso->count = count;
1513
1514 /* TODO:
1515 * - create edge flag one
1516 * - create SGV ones
1517 * - if those are necessary, use count + 1/2/3... OR in the length
1518 */
1519 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS), cso->vertex_elements, ve) {
1520 ve.DWordLength =
1521 1 + GENX(VERTEX_ELEMENT_STATE_length) * MAX2(count, 1) - 2;
1522 }
1523
1524 uint32_t *ve_pack_dest = &cso->vertex_elements[1];
1525 uint32_t *vfi_pack_dest = cso->vf_instancing;
1526
1527 for (int i = 0; i < count; i++) {
1528 enum isl_format isl_format =
1529 iris_isl_format_for_pipe_format(state[i].src_format);
1530 unsigned comp[4] = { VFCOMP_STORE_SRC, VFCOMP_STORE_SRC,
1531 VFCOMP_STORE_SRC, VFCOMP_STORE_SRC };
1532
1533 switch (isl_format_get_num_channels(isl_format)) {
1534 case 0: comp[0] = VFCOMP_STORE_0;
1535 case 1: comp[1] = VFCOMP_STORE_0;
1536 case 2: comp[2] = VFCOMP_STORE_0;
1537 case 3:
1538 comp[3] = isl_format_has_int_channel(isl_format) ? VFCOMP_STORE_1_INT
1539 : VFCOMP_STORE_1_FP;
1540 break;
1541 }
1542 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
1543 ve.VertexBufferIndex = state[i].vertex_buffer_index;
1544 ve.Valid = true;
1545 ve.SourceElementOffset = state[i].src_offset;
1546 ve.SourceElementFormat = isl_format;
1547 ve.Component0Control = comp[0];
1548 ve.Component1Control = comp[1];
1549 ve.Component2Control = comp[2];
1550 ve.Component3Control = comp[3];
1551 }
1552
1553 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
1554 vi.VertexElementIndex = i;
1555 vi.InstancingEnable = state[i].instance_divisor > 0;
1556 vi.InstanceDataStepRate = state[i].instance_divisor;
1557 }
1558
1559 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
1560 vfi_pack_dest += GENX(3DSTATE_VF_INSTANCING_length);
1561 }
1562
1563 return cso;
1564 }
1565
1566 static void
1567 iris_bind_vertex_elements_state(struct pipe_context *ctx, void *state)
1568 {
1569 struct iris_context *ice = (struct iris_context *) ctx;
1570
1571 ice->state.cso_vertex_elements = state;
1572 ice->state.dirty |= IRIS_DIRTY_VERTEX_ELEMENTS;
1573 }
1574
1575 static void *
1576 iris_create_compute_state(struct pipe_context *ctx,
1577 const struct pipe_compute_state *state)
1578 {
1579 return malloc(1);
1580 }
1581
1582 static struct pipe_stream_output_target *
1583 iris_create_stream_output_target(struct pipe_context *ctx,
1584 struct pipe_resource *res,
1585 unsigned buffer_offset,
1586 unsigned buffer_size)
1587 {
1588 struct pipe_stream_output_target *t =
1589 CALLOC_STRUCT(pipe_stream_output_target);
1590 if (!t)
1591 return NULL;
1592
1593 pipe_reference_init(&t->reference, 1);
1594 pipe_resource_reference(&t->buffer, res);
1595 t->buffer_offset = buffer_offset;
1596 t->buffer_size = buffer_size;
1597 return t;
1598 }
1599
1600 static void
1601 iris_stream_output_target_destroy(struct pipe_context *ctx,
1602 struct pipe_stream_output_target *t)
1603 {
1604 pipe_resource_reference(&t->buffer, NULL);
1605 free(t);
1606 }
1607
1608 static void
1609 iris_set_stream_output_targets(struct pipe_context *ctx,
1610 unsigned num_targets,
1611 struct pipe_stream_output_target **targets,
1612 const unsigned *offsets)
1613 {
1614 }
1615
1616 static void
1617 iris_compute_sbe_urb_read_interval(uint64_t fs_input_slots,
1618 const struct brw_vue_map *last_vue_map,
1619 bool two_sided_color,
1620 unsigned *out_offset,
1621 unsigned *out_length)
1622 {
1623 /* The compiler computes the first URB slot without considering COL/BFC
1624 * swizzling (because it doesn't know whether it's enabled), so we need
1625 * to do that here too. This may result in a smaller offset, which
1626 * should be safe.
1627 */
1628 const unsigned first_slot =
1629 brw_compute_first_urb_slot_required(fs_input_slots, last_vue_map);
1630
1631 /* This becomes the URB read offset (counted in pairs of slots). */
1632 assert(first_slot % 2 == 0);
1633 *out_offset = first_slot / 2;
1634
1635 /* We need to adjust the inputs read to account for front/back color
1636 * swizzling, as it can make the URB length longer.
1637 */
1638 for (int c = 0; c <= 1; c++) {
1639 if (fs_input_slots & (VARYING_BIT_COL0 << c)) {
1640 /* If two sided color is enabled, the fragment shader's gl_Color
1641 * (COL0) input comes from either the gl_FrontColor (COL0) or
1642 * gl_BackColor (BFC0) input varyings. Mark BFC as used, too.
1643 */
1644 if (two_sided_color)
1645 fs_input_slots |= (VARYING_BIT_BFC0 << c);
1646
1647 /* If front color isn't written, we opt to give them back color
1648 * instead of an undefined value. Switch from COL to BFC.
1649 */
1650 if (last_vue_map->varying_to_slot[VARYING_SLOT_COL0 + c] == -1) {
1651 fs_input_slots &= ~(VARYING_BIT_COL0 << c);
1652 fs_input_slots |= (VARYING_BIT_BFC0 << c);
1653 }
1654 }
1655 }
1656
1657 /* Compute the minimum URB Read Length necessary for the FS inputs.
1658 *
1659 * From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
1660 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
1661 *
1662 * "This field should be set to the minimum length required to read the
1663 * maximum source attribute. The maximum source attribute is indicated
1664 * by the maximum value of the enabled Attribute # Source Attribute if
1665 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
1666 * enable is not set.
1667 * read_length = ceiling((max_source_attr + 1) / 2)
1668 *
1669 * [errata] Corruption/Hang possible if length programmed larger than
1670 * recommended"
1671 *
1672 * Similar text exists for Ivy Bridge.
1673 *
1674 * We find the last URB slot that's actually read by the FS.
1675 */
1676 unsigned last_read_slot = last_vue_map->num_slots - 1;
1677 while (last_read_slot > first_slot && !(fs_input_slots &
1678 (1ull << last_vue_map->slot_to_varying[last_read_slot])))
1679 --last_read_slot;
1680
1681 /* The URB read length is the difference of the two, counted in pairs. */
1682 *out_length = DIV_ROUND_UP(last_read_slot - first_slot + 1, 2);
1683 }
1684
1685 static void
1686 iris_emit_sbe_swiz(struct iris_batch *batch,
1687 const struct iris_context *ice,
1688 unsigned urb_read_offset)
1689 {
1690 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = {};
1691 const struct brw_wm_prog_data *wm_prog_data = (void *)
1692 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
1693 const struct brw_vue_map *vue_map = ice->shaders.last_vue_map;
1694 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
1695
1696 /* XXX: this should be generated when putting programs in place */
1697
1698 // XXX: raster->sprite_coord_enable
1699
1700 for (int fs_attr = 0; fs_attr < VARYING_SLOT_MAX; fs_attr++) {
1701 const int input_index = wm_prog_data->urb_setup[fs_attr];
1702 if (input_index < 0 || input_index >= 16)
1703 continue;
1704
1705 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr =
1706 &attr_overrides[input_index];
1707
1708 /* Viewport and Layer are stored in the VUE header. We need to override
1709 * them to zero if earlier stages didn't write them, as GL requires that
1710 * they read back as zero when not explicitly set.
1711 */
1712 switch (fs_attr) {
1713 case VARYING_SLOT_VIEWPORT:
1714 case VARYING_SLOT_LAYER:
1715 attr->ComponentOverrideX = true;
1716 attr->ComponentOverrideW = true;
1717 attr->ConstantSource = CONST_0000;
1718
1719 if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
1720 attr->ComponentOverrideY = true;
1721 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
1722 attr->ComponentOverrideZ = true;
1723 continue;
1724
1725 case VARYING_SLOT_PRIMITIVE_ID:
1726 attr->ComponentOverrideX = true;
1727 attr->ComponentOverrideY = true;
1728 attr->ComponentOverrideZ = true;
1729 attr->ComponentOverrideW = true;
1730 attr->ConstantSource = PRIM_ID;
1731 continue;
1732
1733 default:
1734 break;
1735 }
1736
1737 int slot = vue_map->varying_to_slot[fs_attr];
1738
1739 /* If there was only a back color written but not front, use back
1740 * as the color instead of undefined.
1741 */
1742 if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
1743 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
1744 if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
1745 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
1746
1747 /* Not written by the previous stage - undefined. */
1748 if (slot == -1) {
1749 attr->ComponentOverrideX = true;
1750 attr->ComponentOverrideY = true;
1751 attr->ComponentOverrideZ = true;
1752 attr->ComponentOverrideW = true;
1753 attr->ConstantSource = CONST_0001_FLOAT;
1754 continue;
1755 }
1756
1757 /* Compute the location of the attribute relative to the read offset,
1758 * which is counted in 256-bit increments (two 128-bit VUE slots).
1759 */
1760 const int source_attr = slot - 2 * urb_read_offset;
1761 assert(source_attr >= 0 && source_attr <= 32);
1762 attr->SourceAttribute = source_attr;
1763
1764 /* If we are doing two-sided color, and the VUE slot following this one
1765 * represents a back-facing color, then we need to instruct the SF unit
1766 * to do back-facing swizzling.
1767 */
1768 if (cso_rast->light_twoside &&
1769 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
1770 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
1771 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
1772 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1)))
1773 attr->SwizzleSelect = INPUTATTR_FACING;
1774 }
1775
1776 iris_emit_cmd(batch, GENX(3DSTATE_SBE_SWIZ), sbes) {
1777 for (int i = 0; i < 16; i++)
1778 sbes.Attribute[i] = attr_overrides[i];
1779 }
1780 }
1781
1782 static void
1783 iris_emit_sbe(struct iris_batch *batch, const struct iris_context *ice)
1784 {
1785 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
1786 const struct brw_wm_prog_data *wm_prog_data = (void *)
1787 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
1788 struct pipe_shader_state *p_fs =
1789 (void *) ice->shaders.uncompiled[MESA_SHADER_FRAGMENT];
1790 assert(p_fs->type == PIPE_SHADER_IR_NIR);
1791 nir_shader *fs_nir = p_fs->ir.nir;
1792
1793 unsigned urb_read_offset, urb_read_length;
1794 iris_compute_sbe_urb_read_interval(fs_nir->info.inputs_read,
1795 ice->shaders.last_vue_map,
1796 cso_rast->light_twoside,
1797 &urb_read_offset, &urb_read_length);
1798
1799 iris_emit_cmd(batch, GENX(3DSTATE_SBE), sbe) {
1800 sbe.AttributeSwizzleEnable = true;
1801 sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
1802 sbe.PointSpriteTextureCoordinateOrigin = cso_rast->sprite_coord_mode;
1803 sbe.VertexURBEntryReadOffset = urb_read_offset;
1804 sbe.VertexURBEntryReadLength = urb_read_length;
1805 sbe.ForceVertexURBEntryReadOffset = true;
1806 sbe.ForceVertexURBEntryReadLength = true;
1807 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
1808
1809 for (int i = 0; i < 32; i++) {
1810 sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW;
1811 }
1812 }
1813
1814 iris_emit_sbe_swiz(batch, ice, urb_read_offset);
1815 }
1816
1817 static void
1818 iris_bind_compute_state(struct pipe_context *ctx, void *state)
1819 {
1820 }
1821
1822 static void
1823 iris_populate_sampler_key(const struct iris_context *ice,
1824 struct brw_sampler_prog_key_data *key)
1825 {
1826 for (int i = 0; i < MAX_SAMPLERS; i++) {
1827 key->swizzles[i] = 0x688; /* XYZW */
1828 }
1829 }
1830
1831 static void
1832 iris_populate_vs_key(const struct iris_context *ice,
1833 struct brw_vs_prog_key *key)
1834 {
1835 memset(key, 0, sizeof(*key));
1836 iris_populate_sampler_key(ice, &key->tex);
1837 }
1838
1839 static void
1840 iris_populate_tcs_key(const struct iris_context *ice,
1841 struct brw_tcs_prog_key *key)
1842 {
1843 memset(key, 0, sizeof(*key));
1844 iris_populate_sampler_key(ice, &key->tex);
1845 }
1846
1847 static void
1848 iris_populate_tes_key(const struct iris_context *ice,
1849 struct brw_tes_prog_key *key)
1850 {
1851 memset(key, 0, sizeof(*key));
1852 iris_populate_sampler_key(ice, &key->tex);
1853 }
1854
1855 static void
1856 iris_populate_gs_key(const struct iris_context *ice,
1857 struct brw_gs_prog_key *key)
1858 {
1859 memset(key, 0, sizeof(*key));
1860 iris_populate_sampler_key(ice, &key->tex);
1861 }
1862
1863 static void
1864 iris_populate_fs_key(const struct iris_context *ice,
1865 struct brw_wm_prog_key *key)
1866 {
1867 memset(key, 0, sizeof(*key));
1868 iris_populate_sampler_key(ice, &key->tex);
1869
1870 /* XXX: dirty flags? */
1871 const struct pipe_framebuffer_state *fb = &ice->state.framebuffer;
1872 const struct iris_depth_stencil_alpha_state *zsa = ice->state.cso_zsa;
1873 const struct iris_rasterizer_state *rast = ice->state.cso_rast;
1874 const struct iris_blend_state *blend = ice->state.cso_blend;
1875
1876 key->nr_color_regions = fb->nr_cbufs;
1877
1878 key->clamp_fragment_color = rast->clamp_fragment_color;
1879
1880 key->replicate_alpha = fb->nr_cbufs > 1 &&
1881 (zsa->alpha.enabled || blend->alpha_to_coverage);
1882
1883 // key->force_dual_color_blend for unigine
1884 #if 0
1885 if (cso_rast->multisample) {
1886 key->persample_interp =
1887 ctx->Multisample.SampleShading &&
1888 (ctx->Multisample.MinSampleShadingValue *
1889 _mesa_geometric_samples(ctx->DrawBuffer) > 1);
1890
1891 key->multisample_fbo = fb->samples > 1;
1892 }
1893 #endif
1894
1895 key->coherent_fb_fetch = true;
1896 }
1897
1898 #if 0
1899 // XXX: these need to go in INIT_THREAD_DISPATCH_FIELDS
1900 pkt.SamplerCount = \
1901 DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4); \
1902 pkt.PerThreadScratchSpace = prog_data->total_scratch == 0 ? 0 : \
1903 ffs(stage_state->per_thread_scratch) - 11; \
1904
1905 #endif
1906
1907 static uint64_t
1908 KSP(const struct iris_compiled_shader *shader)
1909 {
1910 struct iris_resource *res = (void *) shader->buffer;
1911 return res->bo->gtt_offset + shader->offset;
1912 }
1913
1914 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix) \
1915 pkt.KernelStartPointer = KSP(shader); \
1916 pkt.BindingTableEntryCount = prog_data->binding_table.size_bytes / 4; \
1917 pkt.FloatingPointMode = prog_data->use_alt_mode; \
1918 \
1919 pkt.DispatchGRFStartRegisterForURBData = \
1920 prog_data->dispatch_grf_start_reg; \
1921 pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
1922 pkt.prefix##URBEntryReadOffset = 0; \
1923 \
1924 pkt.StatisticsEnable = true; \
1925 pkt.Enable = true;
1926
1927 static void
1928 iris_store_vs_state(const struct gen_device_info *devinfo,
1929 struct iris_compiled_shader *shader)
1930 {
1931 struct brw_stage_prog_data *prog_data = shader->prog_data;
1932 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
1933
1934 iris_pack_command(GENX(3DSTATE_VS), shader->derived_data, vs) {
1935 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex);
1936 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
1937 vs.SIMD8DispatchEnable = true;
1938 vs.UserClipDistanceCullTestEnableBitmask =
1939 vue_prog_data->cull_distance_mask;
1940 }
1941 }
1942
1943 static void
1944 iris_store_tcs_state(const struct gen_device_info *devinfo,
1945 struct iris_compiled_shader *shader)
1946 {
1947 struct brw_stage_prog_data *prog_data = shader->prog_data;
1948 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
1949 struct brw_tcs_prog_data *tcs_prog_data = (void *) prog_data;
1950
1951 iris_pack_command(GENX(3DSTATE_HS), shader->derived_data, hs) {
1952 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex);
1953
1954 hs.InstanceCount = tcs_prog_data->instances - 1;
1955 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
1956 hs.IncludeVertexHandles = true;
1957 }
1958 }
1959
1960 static void
1961 iris_store_tes_state(const struct gen_device_info *devinfo,
1962 struct iris_compiled_shader *shader)
1963 {
1964 struct brw_stage_prog_data *prog_data = shader->prog_data;
1965 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
1966 struct brw_tes_prog_data *tes_prog_data = (void *) prog_data;
1967
1968 uint32_t *te_state = (void *) shader->derived_data;
1969 uint32_t *ds_state = te_state + GENX(3DSTATE_TE_length);
1970
1971 iris_pack_command(GENX(3DSTATE_TE), te_state, te) {
1972 te.Partitioning = tes_prog_data->partitioning;
1973 te.OutputTopology = tes_prog_data->output_topology;
1974 te.TEDomain = tes_prog_data->domain;
1975 te.TEEnable = true;
1976 te.MaximumTessellationFactorOdd = 63.0;
1977 te.MaximumTessellationFactorNotOdd = 64.0;
1978 }
1979
1980 iris_pack_command(GENX(3DSTATE_DS), ds_state, ds) {
1981 INIT_THREAD_DISPATCH_FIELDS(ds, Patch);
1982
1983 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
1984 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
1985 ds.ComputeWCoordinateEnable =
1986 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
1987
1988 ds.UserClipDistanceCullTestEnableBitmask =
1989 vue_prog_data->cull_distance_mask;
1990 }
1991
1992 }
1993
1994 static void
1995 iris_store_gs_state(const struct gen_device_info *devinfo,
1996 struct iris_compiled_shader *shader)
1997 {
1998 struct brw_stage_prog_data *prog_data = shader->prog_data;
1999 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
2000 struct brw_gs_prog_data *gs_prog_data = (void *) prog_data;
2001
2002 iris_pack_command(GENX(3DSTATE_GS), shader->derived_data, gs) {
2003 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex);
2004
2005 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
2006 gs.OutputTopology = gs_prog_data->output_topology;
2007 gs.ControlDataHeaderSize =
2008 gs_prog_data->control_data_header_size_hwords;
2009 gs.InstanceControl = gs_prog_data->invocations - 1;
2010 gs.DispatchMode = SIMD8;
2011 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
2012 gs.ControlDataFormat = gs_prog_data->control_data_format;
2013 gs.ReorderMode = TRAILING;
2014 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
2015 gs.MaximumNumberofThreads =
2016 GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
2017 : (devinfo->max_gs_threads - 1);
2018
2019 if (gs_prog_data->static_vertex_count != -1) {
2020 gs.StaticOutput = true;
2021 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
2022 }
2023 gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
2024
2025 gs.UserClipDistanceCullTestEnableBitmask =
2026 vue_prog_data->cull_distance_mask;
2027
2028 const int urb_entry_write_offset = 1;
2029 const uint32_t urb_entry_output_length =
2030 DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
2031 urb_entry_write_offset;
2032
2033 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
2034 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
2035 }
2036 }
2037
2038 static void
2039 iris_store_fs_state(const struct gen_device_info *devinfo,
2040 struct iris_compiled_shader *shader)
2041 {
2042 struct brw_stage_prog_data *prog_data = shader->prog_data;
2043 struct brw_wm_prog_data *wm_prog_data = (void *) shader->prog_data;
2044
2045 uint32_t *ps_state = (void *) shader->derived_data;
2046 uint32_t *psx_state = ps_state + GENX(3DSTATE_PS_length);
2047
2048 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
2049 ps.VectorMaskEnable = true;
2050 //ps.SamplerCount = ...
2051 ps.BindingTableEntryCount = prog_data->binding_table.size_bytes / 4;
2052 ps.FloatingPointMode = prog_data->use_alt_mode;
2053 ps.MaximumNumberofThreadsPerPSD = 64 - (GEN_GEN == 8 ? 2 : 1);
2054
2055 ps.PushConstantEnable = prog_data->nr_params > 0 ||
2056 prog_data->ubo_ranges[0].length > 0;
2057
2058 /* From the documentation for this packet:
2059 * "If the PS kernel does not need the Position XY Offsets to
2060 * compute a Position Value, then this field should be programmed
2061 * to POSOFFSET_NONE."
2062 *
2063 * "SW Recommendation: If the PS kernel needs the Position Offsets
2064 * to compute a Position XY value, this field should match Position
2065 * ZW Interpolation Mode to ensure a consistent position.xyzw
2066 * computation."
2067 *
2068 * We only require XY sample offsets. So, this recommendation doesn't
2069 * look useful at the moment. We might need this in future.
2070 */
2071 ps.PositionXYOffsetSelect =
2072 wm_prog_data->uses_pos_offset ? POSOFFSET_SAMPLE : POSOFFSET_NONE;
2073 ps._8PixelDispatchEnable = wm_prog_data->dispatch_8;
2074 ps._16PixelDispatchEnable = wm_prog_data->dispatch_16;
2075 ps._32PixelDispatchEnable = wm_prog_data->dispatch_32;
2076
2077 // XXX: Disable SIMD32 with 16x MSAA
2078
2079 ps.DispatchGRFStartRegisterForConstantSetupData0 =
2080 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
2081 ps.DispatchGRFStartRegisterForConstantSetupData1 =
2082 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
2083 ps.DispatchGRFStartRegisterForConstantSetupData2 =
2084 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
2085
2086 ps.KernelStartPointer0 =
2087 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
2088 ps.KernelStartPointer1 =
2089 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
2090 ps.KernelStartPointer2 =
2091 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
2092 }
2093
2094 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
2095 psx.PixelShaderValid = true;
2096 psx.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
2097 psx.PixelShaderKillsPixel = wm_prog_data->uses_kill;
2098 psx.AttributeEnable = wm_prog_data->num_varying_inputs != 0;
2099 psx.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
2100 psx.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
2101 psx.PixelShaderIsPerSample = wm_prog_data->persample_dispatch;
2102
2103 if (wm_prog_data->uses_sample_mask) {
2104 /* TODO: conservative rasterization */
2105 if (wm_prog_data->post_depth_coverage)
2106 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
2107 else
2108 psx.InputCoverageMaskState = ICMS_NORMAL;
2109 }
2110
2111 psx.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
2112 psx.PixelShaderPullsBary = wm_prog_data->pulls_bary;
2113 psx.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
2114
2115 // XXX: UAV bit
2116 }
2117 }
2118
2119 static unsigned
2120 iris_derived_program_state_size(enum iris_program_cache_id cache_id)
2121 {
2122 assert(cache_id <= IRIS_CACHE_BLORP);
2123
2124 static const unsigned dwords[] = {
2125 [IRIS_CACHE_VS] = GENX(3DSTATE_VS_length),
2126 [IRIS_CACHE_TCS] = GENX(3DSTATE_HS_length),
2127 [IRIS_CACHE_TES] = GENX(3DSTATE_TE_length) + GENX(3DSTATE_DS_length),
2128 [IRIS_CACHE_GS] = GENX(3DSTATE_GS_length),
2129 [IRIS_CACHE_FS] =
2130 GENX(3DSTATE_PS_length) + GENX(3DSTATE_PS_EXTRA_length),
2131 [IRIS_CACHE_CS] = 0,
2132 [IRIS_CACHE_BLORP] = 0,
2133 };
2134
2135 return sizeof(uint32_t) * dwords[cache_id];
2136 }
2137
2138 static void
2139 iris_store_derived_program_state(const struct gen_device_info *devinfo,
2140 enum iris_program_cache_id cache_id,
2141 struct iris_compiled_shader *shader)
2142 {
2143 switch (cache_id) {
2144 case IRIS_CACHE_VS:
2145 iris_store_vs_state(devinfo, shader);
2146 break;
2147 case IRIS_CACHE_TCS:
2148 iris_store_tcs_state(devinfo, shader);
2149 break;
2150 case IRIS_CACHE_TES:
2151 iris_store_tes_state(devinfo, shader);
2152 break;
2153 case IRIS_CACHE_GS:
2154 iris_store_gs_state(devinfo, shader);
2155 break;
2156 case IRIS_CACHE_FS:
2157 iris_store_fs_state(devinfo, shader);
2158 break;
2159 case IRIS_CACHE_CS:
2160 case IRIS_CACHE_BLORP:
2161 break;
2162 default:
2163 break;
2164 }
2165 }
2166
2167 static void
2168 iris_upload_urb_config(struct iris_context *ice, struct iris_batch *batch)
2169 {
2170 const struct gen_device_info *devinfo = &batch->screen->devinfo;
2171 const unsigned push_size_kB = 32;
2172 unsigned entries[4];
2173 unsigned start[4];
2174 unsigned size[4];
2175
2176 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
2177 if (!ice->shaders.prog[i]) {
2178 size[i] = 1;
2179 } else {
2180 struct brw_vue_prog_data *vue_prog_data =
2181 (void *) ice->shaders.prog[i]->prog_data;
2182 size[i] = vue_prog_data->urb_entry_size;
2183 }
2184 assert(size[i] != 0);
2185 }
2186
2187 gen_get_urb_config(devinfo, 1024 * push_size_kB,
2188 1024 * ice->shaders.urb_size,
2189 ice->shaders.prog[MESA_SHADER_TESS_EVAL] != NULL,
2190 ice->shaders.prog[MESA_SHADER_GEOMETRY] != NULL,
2191 size, entries, start);
2192
2193 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
2194 iris_emit_cmd(batch, GENX(3DSTATE_URB_VS), urb) {
2195 urb._3DCommandSubOpcode += i;
2196 urb.VSURBStartingAddress = start[i];
2197 urb.VSURBEntryAllocationSize = size[i] - 1;
2198 urb.VSNumberofURBEntries = entries[i];
2199 }
2200 }
2201 }
2202
2203 static const uint32_t push_constant_opcodes[] = {
2204 [MESA_SHADER_VERTEX] = 21,
2205 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
2206 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
2207 [MESA_SHADER_GEOMETRY] = 22,
2208 [MESA_SHADER_FRAGMENT] = 23,
2209 [MESA_SHADER_COMPUTE] = 0,
2210 };
2211
2212 /**
2213 * Add a surface to the validation list, as well as the buffer containing
2214 * the corresponding SURFACE_STATE.
2215 *
2216 * Returns the binding table entry (offset to SURFACE_STATE).
2217 */
2218 static uint32_t
2219 use_surface(struct iris_batch *batch,
2220 struct pipe_surface *p_surf,
2221 bool writeable)
2222 {
2223 struct iris_surface *surf = (void *) p_surf;
2224 struct iris_resource *res = (void *) p_surf->texture;
2225 struct iris_resource *state_res = (void *) surf->surface_state_resource;
2226 iris_use_pinned_bo(batch, res->bo, writeable);
2227 iris_use_pinned_bo(batch, state_res->bo, false);
2228
2229 return surf->surface_state_offset;
2230 }
2231
2232 static uint32_t
2233 use_sampler_view(struct iris_batch *batch, struct iris_sampler_view *isv)
2234 {
2235 struct iris_resource *res = (void *) isv->pipe.texture;
2236 struct iris_resource *state_res = (void *) isv->surface_state_resource;
2237 iris_use_pinned_bo(batch, res->bo, false);
2238 iris_use_pinned_bo(batch, state_res->bo, false);
2239
2240 return isv->surface_state_offset;
2241 }
2242
2243 static uint32_t
2244 use_const_buffer(struct iris_batch *batch, struct iris_const_buffer *cbuf)
2245 {
2246 struct iris_resource *res = (void *) cbuf->resource;
2247 struct iris_resource *state_res = (void *) cbuf->surface_state_resource;
2248 iris_use_pinned_bo(batch, res->bo, false);
2249 iris_use_pinned_bo(batch, state_res->bo, false);
2250
2251 return cbuf->surface_state_offset;
2252 }
2253
2254 static void
2255 iris_populate_binding_table(struct iris_context *ice,
2256 struct iris_batch *batch,
2257 gl_shader_stage stage)
2258 {
2259 const struct iris_binder *binder = &batch->binder;
2260 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
2261 if (!shader)
2262 return;
2263
2264 // Surfaces:
2265 // - pull constants
2266 // - ubos/ssbos/abos
2267 // - images
2268 // - textures
2269 // - render targets - write and read
2270
2271 //struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
2272 uint32_t *bt_map = binder->map + binder->bt_offset[stage];
2273 int s = 0;
2274
2275 if (stage == MESA_SHADER_FRAGMENT) {
2276 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
2277 for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
2278 bt_map[s++] = use_surface(batch, cso_fb->cbufs[i], true);
2279 }
2280 }
2281
2282 //assert(prog_data->binding_table.texture_start ==
2283 //(ice->state.num_textures[stage] ? s : 0xd0d0d0d0));
2284
2285 for (int i = 0; i < ice->state.num_textures[stage]; i++) {
2286 struct iris_sampler_view *view = ice->state.textures[stage][i];
2287 bt_map[s++] = use_sampler_view(batch, view);
2288 }
2289
2290 // XXX: want the number of BTE's to shorten this loop
2291 struct iris_shader_state *shs = &ice->shaders.state[stage];
2292 for (int i = 0; i < PIPE_MAX_CONSTANT_BUFFERS; i++) {
2293 struct iris_const_buffer *cbuf = &shs->constbuf[i];
2294 if (!cbuf->surface_state_resource)
2295 break;
2296
2297 bt_map[s++] = use_const_buffer(batch, cbuf);
2298 }
2299 #if 0
2300 // XXX: not implemented yet
2301 assert(prog_data->binding_table.pull_constants_start == 0xd0d0d0d0);
2302 assert(prog_data->binding_table.ubo_start == 0xd0d0d0d0);
2303 assert(prog_data->binding_table.ssbo_start == 0xd0d0d0d0);
2304 assert(prog_data->binding_table.image_start == 0xd0d0d0d0);
2305 assert(prog_data->binding_table.shader_time_start == 0xd0d0d0d0);
2306 //assert(prog_data->binding_table.plane_start[1] == 0xd0d0d0d0);
2307 //assert(prog_data->binding_table.plane_start[2] == 0xd0d0d0d0);
2308 #endif
2309 }
2310
2311 static void
2312 iris_use_optional_res(struct iris_batch *batch,
2313 struct pipe_resource *res,
2314 bool writeable)
2315 {
2316 if (res) {
2317 struct iris_bo *bo = iris_resource_bo(res);
2318 iris_use_pinned_bo(batch, bo, writeable);
2319 }
2320 }
2321
2322
2323 /**
2324 * Pin any BOs which were installed by a previous batch, and restored
2325 * via the hardware logical context mechanism.
2326 *
2327 * We don't need to re-emit all state every batch - the hardware context
2328 * mechanism will save and restore it for us. This includes pointers to
2329 * various BOs...which won't exist unless we ask the kernel to pin them
2330 * by adding them to the validation list.
2331 *
2332 * We can skip buffers if we've re-emitted those packets, as we're
2333 * overwriting those stale pointers with new ones, and don't actually
2334 * refer to the old BOs.
2335 */
2336 static void
2337 iris_restore_context_saved_bos(struct iris_context *ice,
2338 struct iris_batch *batch,
2339 const struct pipe_draw_info *draw)
2340 {
2341 // XXX: whack IRIS_SHADER_DIRTY_BINDING_TABLE on new batch
2342
2343 const uint64_t clean =
2344 unlikely(INTEL_DEBUG & DEBUG_REEMIT) ? 0ull : ~ice->state.dirty;
2345
2346 if (clean & IRIS_DIRTY_CC_VIEWPORT) {
2347 iris_use_optional_res(batch, ice->state.last_res.cc_vp, false);
2348 }
2349
2350 if (clean & IRIS_DIRTY_SF_CL_VIEWPORT) {
2351 iris_use_optional_res(batch, ice->state.last_res.sf_cl_vp, false);
2352 }
2353
2354 if (clean & IRIS_DIRTY_BLEND_STATE) {
2355 iris_use_optional_res(batch, ice->state.last_res.blend, false);
2356 }
2357
2358 if (clean & IRIS_DIRTY_COLOR_CALC_STATE) {
2359 iris_use_optional_res(batch, ice->state.last_res.color_calc, false);
2360 }
2361
2362 if (clean & IRIS_DIRTY_SCISSOR_RECT) {
2363 iris_use_optional_res(batch, ice->state.last_res.scissor, false);
2364 }
2365
2366 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
2367 if (clean & (IRIS_DIRTY_CONSTANTS_VS << stage))
2368 continue;
2369
2370 struct iris_shader_state *shs = &ice->shaders.state[stage];
2371 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
2372
2373 if (!shader)
2374 continue;
2375
2376 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
2377
2378 for (int i = 0; i < 4; i++) {
2379 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
2380
2381 if (range->length == 0)
2382 continue;
2383
2384 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
2385 struct iris_resource *res = (void *) cbuf->resource;
2386
2387 if (res)
2388 iris_use_pinned_bo(batch, res->bo, false);
2389 else
2390 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
2391 }
2392 }
2393
2394 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
2395 struct pipe_resource *res = ice->state.sampler_table_resource[stage];
2396 if (res)
2397 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
2398 }
2399
2400 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
2401 if (clean & (IRIS_DIRTY_VS << stage)) {
2402 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
2403 if (shader)
2404 iris_use_pinned_bo(batch, iris_resource_bo(shader->buffer), false);
2405
2406 // XXX: scratch buffer
2407 }
2408 }
2409
2410 // XXX: 3DSTATE_SO_BUFFER
2411
2412 if (clean & IRIS_DIRTY_DEPTH_BUFFER) {
2413 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
2414
2415 if (cso_fb->zsbuf) {
2416 struct iris_resource *zres = (void *) cso_fb->zsbuf->texture;
2417 // XXX: depth might not be writable...
2418 iris_use_pinned_bo(batch, zres->bo, true);
2419 }
2420 }
2421
2422 if (draw->index_size > 0) {
2423 // XXX: index buffer
2424 }
2425
2426 if (clean & IRIS_DIRTY_VERTEX_BUFFERS) {
2427 struct iris_vertex_buffer_state *cso = ice->state.cso_vertex_buffers;
2428 for (unsigned i = 0; i < cso->num_buffers; i++) {
2429 struct iris_resource *res = (void *) cso->resources[i];
2430 iris_use_pinned_bo(batch, res->bo, false);
2431 }
2432 }
2433 }
2434
2435 static void
2436 iris_upload_render_state(struct iris_context *ice,
2437 struct iris_batch *batch,
2438 const struct pipe_draw_info *draw)
2439 {
2440 const uint64_t dirty =
2441 unlikely(INTEL_DEBUG & DEBUG_REEMIT) ? ~0ull : ice->state.dirty;
2442
2443 struct brw_wm_prog_data *wm_prog_data = (void *)
2444 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
2445
2446 if (dirty & IRIS_DIRTY_CC_VIEWPORT) {
2447 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
2448 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
2449 ptr.CCViewportPointer =
2450 emit_state(batch, ice->state.dynamic_uploader,
2451 &ice->state.last_res.cc_vp,
2452 cso->cc_vp, sizeof(cso->cc_vp), 32);
2453 }
2454 }
2455
2456 if (dirty & IRIS_DIRTY_SF_CL_VIEWPORT) {
2457 struct iris_viewport_state *cso = ice->state.cso_vp;
2458 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
2459 ptr.SFClipViewportPointer =
2460 emit_state(batch, ice->state.dynamic_uploader,
2461 &ice->state.last_res.sf_cl_vp,
2462 cso->sf_cl_vp, 4 * GENX(SF_CLIP_VIEWPORT_length) *
2463 ice->state.num_viewports, 64);
2464 }
2465 }
2466
2467 /* XXX: L3 State */
2468
2469 // XXX: this is only flagged at setup, we assume a static configuration
2470 if (dirty & IRIS_DIRTY_URB) {
2471 iris_upload_urb_config(ice, batch);
2472 }
2473
2474 if (dirty & IRIS_DIRTY_BLEND_STATE) {
2475 struct iris_blend_state *cso_blend = ice->state.cso_blend;
2476 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
2477 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
2478 const int num_dwords = 4 * (GENX(BLEND_STATE_length) +
2479 cso_fb->nr_cbufs * GENX(BLEND_STATE_ENTRY_length));
2480 uint32_t blend_offset;
2481 uint32_t *blend_map =
2482 stream_state(batch, ice->state.dynamic_uploader,
2483 &ice->state.last_res.blend,
2484 4 * num_dwords, 64, &blend_offset);
2485
2486 uint32_t blend_state_header;
2487 iris_pack_state(GENX(BLEND_STATE), &blend_state_header, bs) {
2488 bs.AlphaTestEnable = cso_zsa->alpha.enabled;
2489 bs.AlphaTestFunction = translate_compare_func(cso_zsa->alpha.func);
2490 }
2491
2492 blend_map[0] = blend_state_header | cso_blend->blend_state[0];
2493 memcpy(&blend_map[1], &cso_blend->blend_state[1],
2494 sizeof(cso_blend->blend_state) - sizeof(uint32_t));
2495
2496 iris_emit_cmd(batch, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
2497 ptr.BlendStatePointer = blend_offset;
2498 ptr.BlendStatePointerValid = true;
2499 }
2500 }
2501
2502 if (dirty & IRIS_DIRTY_COLOR_CALC_STATE) {
2503 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
2504 uint32_t cc_offset;
2505 void *cc_map =
2506 stream_state(batch, ice->state.dynamic_uploader,
2507 &ice->state.last_res.color_calc,
2508 sizeof(uint32_t) * GENX(COLOR_CALC_STATE_length),
2509 64, &cc_offset);
2510 iris_pack_state(GENX(COLOR_CALC_STATE), cc_map, cc) {
2511 cc.AlphaTestFormat = ALPHATEST_FLOAT32;
2512 cc.AlphaReferenceValueAsFLOAT32 = cso->alpha.ref_value;
2513 cc.BlendConstantColorRed = ice->state.blend_color.color[0];
2514 cc.BlendConstantColorGreen = ice->state.blend_color.color[1];
2515 cc.BlendConstantColorBlue = ice->state.blend_color.color[2];
2516 cc.BlendConstantColorAlpha = ice->state.blend_color.color[3];
2517 }
2518 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
2519 ptr.ColorCalcStatePointer = cc_offset;
2520 ptr.ColorCalcStatePointerValid = true;
2521 }
2522 }
2523
2524 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
2525 // XXX: wrong dirty tracking...
2526 if (!(dirty & (IRIS_DIRTY_CONSTANTS_VS << stage)))
2527 continue;
2528
2529 struct iris_shader_state *shs = &ice->shaders.state[stage];
2530 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
2531
2532 if (!shader)
2533 continue;
2534
2535 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
2536
2537 iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_VS), pkt) {
2538 pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
2539 if (prog_data) {
2540 /* The Skylake PRM contains the following restriction:
2541 *
2542 * "The driver must ensure The following case does not occur
2543 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
2544 * buffer 3 read length equal to zero committed followed by a
2545 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
2546 * zero committed."
2547 *
2548 * To avoid this, we program the buffers in the highest slots.
2549 * This way, slot 0 is only used if slot 3 is also used.
2550 */
2551 int n = 3;
2552
2553 for (int i = 3; i >= 0; i--) {
2554 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
2555
2556 if (range->length == 0)
2557 continue;
2558
2559 // XXX: is range->block a constbuf index? it would be nice
2560 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
2561 struct iris_resource *res = (void *) cbuf->resource;
2562
2563 assert(cbuf->offset % 32 == 0);
2564
2565 pkt.ConstantBody.ReadLength[n] = range->length;
2566 pkt.ConstantBody.Buffer[n] =
2567 res ? ro_bo(res->bo, range->start * 32 + cbuf->offset)
2568 : ro_bo(batch->screen->workaround_bo, 0);
2569 n--;
2570 }
2571 }
2572 }
2573 }
2574
2575 struct iris_binder *binder = &batch->binder;
2576
2577 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
2578 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
2579 iris_emit_cmd(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), ptr) {
2580 ptr._3DCommandSubOpcode = 38 + stage;
2581 ptr.PointertoVSBindingTable = binder->bt_offset[stage];
2582 }
2583 }
2584 }
2585
2586 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
2587 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
2588 iris_populate_binding_table(ice, batch, stage);
2589 }
2590 }
2591
2592 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
2593 if (!(dirty & (IRIS_DIRTY_SAMPLER_STATES_VS << stage)) ||
2594 !ice->shaders.prog[stage])
2595 continue;
2596
2597 struct pipe_resource *res = ice->state.sampler_table_resource[stage];
2598 if (res)
2599 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
2600
2601 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
2602 ptr._3DCommandSubOpcode = 43 + stage;
2603 ptr.PointertoVSSamplerState = ice->state.sampler_table_offset[stage];
2604 }
2605 }
2606
2607 if (dirty & IRIS_DIRTY_MULTISAMPLE) {
2608 iris_emit_cmd(batch, GENX(3DSTATE_MULTISAMPLE), ms) {
2609 ms.PixelLocation =
2610 ice->state.cso_rast->half_pixel_center ? CENTER : UL_CORNER;
2611 if (ice->state.framebuffer.samples > 0)
2612 ms.NumberofMultisamples = ffs(ice->state.framebuffer.samples) - 1;
2613 }
2614 }
2615
2616 if (dirty & IRIS_DIRTY_SAMPLE_MASK) {
2617 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_MASK), ms) {
2618 ms.SampleMask = MAX2(ice->state.sample_mask, 1);
2619 }
2620 }
2621
2622 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
2623 if (!(dirty & (IRIS_DIRTY_VS << stage)))
2624 continue;
2625
2626 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
2627
2628 if (shader) {
2629 struct iris_resource *cache = (void *) shader->buffer;
2630 iris_use_pinned_bo(batch, cache->bo, false);
2631 iris_batch_emit(batch, shader->derived_data,
2632 iris_derived_program_state_size(stage));
2633 } else {
2634 if (stage == MESA_SHADER_TESS_EVAL) {
2635 iris_emit_cmd(batch, GENX(3DSTATE_HS), hs);
2636 iris_emit_cmd(batch, GENX(3DSTATE_TE), te);
2637 iris_emit_cmd(batch, GENX(3DSTATE_DS), ds);
2638 } else if (stage == MESA_SHADER_GEOMETRY) {
2639 iris_emit_cmd(batch, GENX(3DSTATE_GS), gs);
2640 }
2641 }
2642 }
2643
2644 // XXX: SOL:
2645 // 3DSTATE_STREAMOUT
2646 // 3DSTATE_SO_BUFFER
2647 // 3DSTATE_SO_DECL_LIST
2648
2649 if (dirty & IRIS_DIRTY_CLIP) {
2650 struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
2651 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
2652
2653 uint32_t dynamic_clip[GENX(3DSTATE_CLIP_length)];
2654 iris_pack_command(GENX(3DSTATE_CLIP), &dynamic_clip, cl) {
2655 if (wm_prog_data->barycentric_interp_modes &
2656 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
2657 cl.NonPerspectiveBarycentricEnable = true;
2658
2659 cl.ForceZeroRTAIndexEnable = cso_fb->layers == 0;
2660 cl.MaximumVPIndex = ice->state.num_viewports - 1;
2661 }
2662 iris_emit_merge(batch, cso_rast->clip, dynamic_clip,
2663 ARRAY_SIZE(cso_rast->clip));
2664 }
2665
2666 if (dirty & IRIS_DIRTY_RASTER) {
2667 struct iris_rasterizer_state *cso = ice->state.cso_rast;
2668 iris_batch_emit(batch, cso->raster, sizeof(cso->raster));
2669 iris_batch_emit(batch, cso->sf, sizeof(cso->sf));
2670
2671 }
2672
2673 /* XXX: FS program updates needs to flag IRIS_DIRTY_WM */
2674 if (dirty & IRIS_DIRTY_WM) {
2675 struct iris_rasterizer_state *cso = ice->state.cso_rast;
2676 uint32_t dynamic_wm[GENX(3DSTATE_WM_length)];
2677
2678 iris_pack_command(GENX(3DSTATE_WM), &dynamic_wm, wm) {
2679 wm.BarycentricInterpolationMode =
2680 wm_prog_data->barycentric_interp_modes;
2681
2682 if (wm_prog_data->early_fragment_tests)
2683 wm.EarlyDepthStencilControl = EDSC_PREPS;
2684 else if (wm_prog_data->has_side_effects)
2685 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
2686 }
2687 iris_emit_merge(batch, cso->wm, dynamic_wm, ARRAY_SIZE(cso->wm));
2688 }
2689
2690 if (1) {
2691 // XXX: 3DSTATE_SBE, 3DSTATE_SBE_SWIZ
2692 // -> iris_raster_state (point sprite texture coordinate origin)
2693 // -> bunch of shader state...
2694 iris_emit_sbe(batch, ice);
2695 }
2696
2697 if (dirty & IRIS_DIRTY_PS_BLEND) {
2698 struct iris_blend_state *cso_blend = ice->state.cso_blend;
2699 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
2700 uint32_t dynamic_pb[GENX(3DSTATE_PS_BLEND_length)];
2701 iris_pack_command(GENX(3DSTATE_PS_BLEND), &dynamic_pb, pb) {
2702 pb.HasWriteableRT = true; // XXX: comes from somewhere :(
2703 pb.AlphaTestEnable = cso_zsa->alpha.enabled;
2704 }
2705
2706 iris_emit_merge(batch, cso_blend->ps_blend, dynamic_pb,
2707 ARRAY_SIZE(cso_blend->ps_blend));
2708 }
2709
2710 if (dirty & IRIS_DIRTY_WM_DEPTH_STENCIL) {
2711 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
2712 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
2713
2714 uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
2715 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
2716 wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
2717 wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
2718 }
2719 iris_emit_merge(batch, cso->wmds, stencil_refs, ARRAY_SIZE(cso->wmds));
2720 }
2721
2722 if (dirty & IRIS_DIRTY_SCISSOR_RECT) {
2723 uint32_t scissor_offset =
2724 emit_state(batch, ice->state.dynamic_uploader,
2725 &ice->state.last_res.scissor,
2726 ice->state.scissors,
2727 sizeof(struct pipe_scissor_state) *
2728 ice->state.num_viewports, 32);
2729
2730 iris_emit_cmd(batch, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
2731 ptr.ScissorRectPointer = scissor_offset;
2732 }
2733 }
2734
2735 if (dirty & IRIS_DIRTY_DEPTH_BUFFER) {
2736 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
2737 struct iris_depth_buffer_state *cso_z = ice->state.cso_depthbuffer;
2738
2739 iris_batch_emit(batch, cso_z->packets, sizeof(cso_z->packets));
2740
2741 if (cso_fb->zsbuf) {
2742 struct iris_resource *zres = (void *) cso_fb->zsbuf->texture;
2743 // XXX: depth might not be writable...
2744 iris_use_pinned_bo(batch, zres->bo, true);
2745 }
2746 }
2747
2748 if (dirty & IRIS_DIRTY_POLYGON_STIPPLE) {
2749 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
2750 for (int i = 0; i < 32; i++) {
2751 poly.PatternRow[i] = ice->state.poly_stipple.stipple[i];
2752 }
2753 }
2754 }
2755
2756 if (dirty & IRIS_DIRTY_LINE_STIPPLE) {
2757 struct iris_rasterizer_state *cso = ice->state.cso_rast;
2758 iris_batch_emit(batch, cso->line_stipple, sizeof(cso->line_stipple));
2759 }
2760
2761 if (1) {
2762 iris_emit_cmd(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
2763 topo.PrimitiveTopologyType =
2764 translate_prim_type(draw->mode, draw->vertices_per_patch);
2765 }
2766 }
2767
2768 if (draw->index_size > 0) {
2769 struct iris_resource *res = NULL;
2770 unsigned offset;
2771
2772 if (draw->has_user_indices) {
2773 u_upload_data(ice->ctx.stream_uploader, 0,
2774 draw->count * draw->index_size, 4, draw->index.user,
2775 &offset, (struct pipe_resource **) &res);
2776 } else {
2777 res = (struct iris_resource *) draw->index.resource;
2778 offset = 0;
2779 }
2780
2781 iris_emit_cmd(batch, GENX(3DSTATE_INDEX_BUFFER), ib) {
2782 ib.IndexFormat = draw->index_size >> 1;
2783 ib.MOCS = MOCS_WB;
2784 ib.BufferSize = res->bo->size;
2785 ib.BufferStartingAddress = ro_bo(res->bo, offset);
2786 }
2787 }
2788
2789 if (dirty & IRIS_DIRTY_VERTEX_BUFFERS) {
2790 struct iris_vertex_buffer_state *cso = ice->state.cso_vertex_buffers;
2791 const unsigned vb_dwords = GENX(VERTEX_BUFFER_STATE_length);
2792
2793 iris_batch_emit(batch, cso->vertex_buffers,
2794 sizeof(uint32_t) * (1 + vb_dwords * cso->num_buffers));
2795
2796 for (unsigned i = 0; i < cso->num_buffers; i++) {
2797 struct iris_resource *res = (void *) cso->resources[i];
2798 iris_use_pinned_bo(batch, res->bo, false);
2799 }
2800 }
2801
2802 if (dirty & IRIS_DIRTY_VERTEX_ELEMENTS) {
2803 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
2804 iris_batch_emit(batch, cso->vertex_elements, sizeof(uint32_t) *
2805 (1 + cso->count * GENX(VERTEX_ELEMENT_STATE_length)));
2806 iris_batch_emit(batch, cso->vf_instancing, sizeof(uint32_t) *
2807 cso->count * GENX(3DSTATE_VF_INSTANCING_length));
2808 for (int i = 0; i < cso->count; i++) {
2809 /* TODO: vertexid, instanceid support */
2810 iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS), sgvs);
2811 }
2812 }
2813
2814 if (1) {
2815 iris_emit_cmd(batch, GENX(3DSTATE_VF), vf) {
2816 if (draw->primitive_restart) {
2817 vf.IndexedDrawCutIndexEnable = true;
2818 vf.CutIndex = draw->restart_index;
2819 }
2820 }
2821 }
2822
2823 // XXX: Gen8 - PMA fix
2824
2825 assert(!draw->indirect); // XXX: indirect support
2826
2827 iris_emit_cmd(batch, GENX(3DPRIMITIVE), prim) {
2828 prim.StartInstanceLocation = draw->start_instance;
2829 prim.InstanceCount = draw->instance_count;
2830 prim.VertexCountPerInstance = draw->count;
2831 prim.VertexAccessType = draw->index_size > 0 ? RANDOM : SEQUENTIAL;
2832
2833 // XXX: this is probably bonkers.
2834 prim.StartVertexLocation = draw->start;
2835
2836 if (draw->index_size) {
2837 prim.BaseVertexLocation += draw->index_bias;
2838 } else {
2839 prim.StartVertexLocation += draw->index_bias;
2840 }
2841
2842 //prim.BaseVertexLocation = ...;
2843 }
2844
2845 if (!batch->contains_draw) {
2846 iris_restore_context_saved_bos(ice, batch, draw);
2847 batch->contains_draw = true;
2848 }
2849 }
2850
2851 /**
2852 * State module teardown.
2853 */
2854 static void
2855 iris_destroy_state(struct iris_context *ice)
2856 {
2857 iris_free_vertex_buffers(ice->state.cso_vertex_buffers);
2858
2859 // XXX: unreference resources/surfaces.
2860 for (unsigned i = 0; i < ice->state.framebuffer.nr_cbufs; i++) {
2861 pipe_surface_reference(&ice->state.framebuffer.cbufs[i], NULL);
2862 }
2863 pipe_surface_reference(&ice->state.framebuffer.zsbuf, NULL);
2864
2865 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
2866 pipe_resource_reference(&ice->state.sampler_table_resource[stage], NULL);
2867 }
2868 free(ice->state.cso_vp);
2869 free(ice->state.cso_depthbuffer);
2870
2871 pipe_resource_reference(&ice->state.last_res.cc_vp, NULL);
2872 pipe_resource_reference(&ice->state.last_res.sf_cl_vp, NULL);
2873 pipe_resource_reference(&ice->state.last_res.color_calc, NULL);
2874 pipe_resource_reference(&ice->state.last_res.scissor, NULL);
2875 pipe_resource_reference(&ice->state.last_res.blend, NULL);
2876 }
2877
2878 static unsigned
2879 flags_to_post_sync_op(uint32_t flags)
2880 {
2881 if (flags & PIPE_CONTROL_WRITE_IMMEDIATE)
2882 return WriteImmediateData;
2883
2884 if (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT)
2885 return WritePSDepthCount;
2886
2887 if (flags & PIPE_CONTROL_WRITE_TIMESTAMP)
2888 return WriteTimestamp;
2889
2890 return 0;
2891 }
2892
2893 /**
2894 * Do the given flags have a Post Sync or LRI Post Sync operation?
2895 */
2896 static enum pipe_control_flags
2897 get_post_sync_flags(enum pipe_control_flags flags)
2898 {
2899 flags &= PIPE_CONTROL_WRITE_IMMEDIATE |
2900 PIPE_CONTROL_WRITE_DEPTH_COUNT |
2901 PIPE_CONTROL_WRITE_TIMESTAMP |
2902 PIPE_CONTROL_LRI_POST_SYNC_OP;
2903
2904 /* Only one "Post Sync Op" is allowed, and it's mutually exclusive with
2905 * "LRI Post Sync Operation". So more than one bit set would be illegal.
2906 */
2907 assert(util_bitcount(flags) <= 1);
2908
2909 return flags;
2910 }
2911
2912 // XXX: compute support
2913 #define IS_COMPUTE_PIPELINE(batch) (batch->ring != I915_EXEC_RENDER)
2914
2915 /**
2916 * Emit a series of PIPE_CONTROL commands, taking into account any
2917 * workarounds necessary to actually accomplish the caller's request.
2918 *
2919 * Unless otherwise noted, spec quotations in this function come from:
2920 *
2921 * Synchronization of the 3D Pipeline > PIPE_CONTROL Command > Programming
2922 * Restrictions for PIPE_CONTROL.
2923 */
2924 static void
2925 iris_emit_raw_pipe_control(struct iris_batch *batch, uint32_t flags,
2926 struct iris_bo *bo, uint32_t offset, uint64_t imm)
2927 {
2928 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
2929 enum pipe_control_flags post_sync_flags = get_post_sync_flags(flags);
2930 enum pipe_control_flags non_lri_post_sync_flags =
2931 post_sync_flags & ~PIPE_CONTROL_LRI_POST_SYNC_OP;
2932
2933 /* Recursive PIPE_CONTROL workarounds --------------------------------
2934 * (http://knowyourmeme.com/memes/xzibit-yo-dawg)
2935 *
2936 * We do these first because we want to look at the original operation,
2937 * rather than any workarounds we set.
2938 */
2939 if (GEN_GEN == 9 && (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE)) {
2940 /* The PIPE_CONTROL "VF Cache Invalidation Enable" bit description
2941 * lists several workarounds:
2942 *
2943 * "Project: SKL, KBL, BXT
2944 *
2945 * If the VF Cache Invalidation Enable is set to a 1 in a
2946 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields
2947 * sets to 0, with the VF Cache Invalidation Enable set to 0
2948 * needs to be sent prior to the PIPE_CONTROL with VF Cache
2949 * Invalidation Enable set to a 1."
2950 */
2951 iris_emit_raw_pipe_control(batch, 0, NULL, 0, 0);
2952 }
2953
2954 if (GEN_GEN == 9 && IS_COMPUTE_PIPELINE(batch) && post_sync_flags) {
2955 /* Project: SKL / Argument: LRI Post Sync Operation [23]
2956 *
2957 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
2958 * programmed prior to programming a PIPECONTROL command with "LRI
2959 * Post Sync Operation" in GPGPU mode of operation (i.e when
2960 * PIPELINE_SELECT command is set to GPGPU mode of operation)."
2961 *
2962 * The same text exists a few rows below for Post Sync Op.
2963 */
2964 iris_emit_raw_pipe_control(batch, PIPE_CONTROL_CS_STALL, bo, offset, imm);
2965 }
2966
2967 if (GEN_GEN == 10 && (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH)) {
2968 /* Cannonlake:
2969 * "Before sending a PIPE_CONTROL command with bit 12 set, SW must issue
2970 * another PIPE_CONTROL with Render Target Cache Flush Enable (bit 12)
2971 * = 0 and Pipe Control Flush Enable (bit 7) = 1"
2972 */
2973 iris_emit_raw_pipe_control(batch, PIPE_CONTROL_FLUSH_ENABLE, bo,
2974 offset, imm);
2975 }
2976
2977 /* "Flush Types" workarounds ---------------------------------------------
2978 * We do these now because they may add post-sync operations or CS stalls.
2979 */
2980
2981 if (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) {
2982 /* Project: BDW, SKL+ (stopping at CNL) / Argument: VF Invalidate
2983 *
2984 * "'Post Sync Operation' must be enabled to 'Write Immediate Data' or
2985 * 'Write PS Depth Count' or 'Write Timestamp'."
2986 */
2987 if (!bo) {
2988 flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
2989 post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
2990 non_lri_post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
2991 bo = batch->screen->workaround_bo;
2992 }
2993 }
2994
2995 /* #1130 from Gen10 workarounds page:
2996 *
2997 * "Enable Depth Stall on every Post Sync Op if Render target Cache
2998 * Flush is not enabled in same PIPE CONTROL and Enable Pixel score
2999 * board stall if Render target cache flush is enabled."
3000 *
3001 * Applicable to CNL B0 and C0 steppings only.
3002 *
3003 * The wording here is unclear, and this workaround doesn't look anything
3004 * like the internal bug report recommendations, but leave it be for now...
3005 */
3006 if (GEN_GEN == 10) {
3007 if (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) {
3008 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
3009 } else if (flags & non_lri_post_sync_flags) {
3010 flags |= PIPE_CONTROL_DEPTH_STALL;
3011 }
3012 }
3013
3014 if (flags & PIPE_CONTROL_DEPTH_STALL) {
3015 /* From the PIPE_CONTROL instruction table, bit 13 (Depth Stall Enable):
3016 *
3017 * "This bit must be DISABLED for operations other than writing
3018 * PS_DEPTH_COUNT."
3019 *
3020 * This seems like nonsense. An Ivybridge workaround requires us to
3021 * emit a PIPE_CONTROL with a depth stall and write immediate post-sync
3022 * operation. Gen8+ requires us to emit depth stalls and depth cache
3023 * flushes together. So, it's hard to imagine this means anything other
3024 * than "we originally intended this to be used for PS_DEPTH_COUNT".
3025 *
3026 * We ignore the supposed restriction and do nothing.
3027 */
3028 }
3029
3030 if (flags & (PIPE_CONTROL_RENDER_TARGET_FLUSH |
3031 PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
3032 /* From the PIPE_CONTROL instruction table, bit 12 and bit 1:
3033 *
3034 * "This bit must be DISABLED for End-of-pipe (Read) fences,
3035 * PS_DEPTH_COUNT or TIMESTAMP queries."
3036 *
3037 * TODO: Implement end-of-pipe checking.
3038 */
3039 assert(!(post_sync_flags & (PIPE_CONTROL_WRITE_DEPTH_COUNT |
3040 PIPE_CONTROL_WRITE_TIMESTAMP)));
3041 }
3042
3043 if (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD) {
3044 /* From the PIPE_CONTROL instruction table, bit 1:
3045 *
3046 * "This bit is ignored if Depth Stall Enable is set.
3047 * Further, the render cache is not flushed even if Write Cache
3048 * Flush Enable bit is set."
3049 *
3050 * We assert that the caller doesn't do this combination, to try and
3051 * prevent mistakes. It shouldn't hurt the GPU, though.
3052 */
3053 assert(!(flags & (PIPE_CONTROL_DEPTH_STALL |
3054 PIPE_CONTROL_RENDER_TARGET_FLUSH)));
3055 }
3056
3057 /* PIPE_CONTROL page workarounds ------------------------------------- */
3058
3059 if (GEN_GEN <= 8 && (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE)) {
3060 /* From the PIPE_CONTROL page itself:
3061 *
3062 * "IVB, HSW, BDW
3063 * Restriction: Pipe_control with CS-stall bit set must be issued
3064 * before a pipe-control command that has the State Cache
3065 * Invalidate bit set."
3066 */
3067 flags |= PIPE_CONTROL_CS_STALL;
3068 }
3069
3070 if (flags & PIPE_CONTROL_FLUSH_LLC) {
3071 /* From the PIPE_CONTROL instruction table, bit 26 (Flush LLC):
3072 *
3073 * "Project: ALL
3074 * SW must always program Post-Sync Operation to "Write Immediate
3075 * Data" when Flush LLC is set."
3076 *
3077 * For now, we just require the caller to do it.
3078 */
3079 assert(flags & PIPE_CONTROL_WRITE_IMMEDIATE);
3080 }
3081
3082 /* "Post-Sync Operation" workarounds -------------------------------- */
3083
3084 /* Project: All / Argument: Global Snapshot Count Reset [19]
3085 *
3086 * "This bit must not be exercised on any product.
3087 * Requires stall bit ([20] of DW1) set."
3088 *
3089 * We don't use this, so we just assert that it isn't used. The
3090 * PIPE_CONTROL instruction page indicates that they intended this
3091 * as a debug feature and don't think it is useful in production,
3092 * but it may actually be usable, should we ever want to.
3093 */
3094 assert((flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) == 0);
3095
3096 if (flags & (PIPE_CONTROL_MEDIA_STATE_CLEAR |
3097 PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE)) {
3098 /* Project: All / Arguments:
3099 *
3100 * - Generic Media State Clear [16]
3101 * - Indirect State Pointers Disable [16]
3102 *
3103 * "Requires stall bit ([20] of DW1) set."
3104 *
3105 * Also, the PIPE_CONTROL instruction table, bit 16 (Generic Media
3106 * State Clear) says:
3107 *
3108 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
3109 * programmed prior to programming a PIPECONTROL command with "Media
3110 * State Clear" set in GPGPU mode of operation"
3111 *
3112 * This is a subset of the earlier rule, so there's nothing to do.
3113 */
3114 flags |= PIPE_CONTROL_CS_STALL;
3115 }
3116
3117 if (flags & PIPE_CONTROL_STORE_DATA_INDEX) {
3118 /* Project: All / Argument: Store Data Index
3119 *
3120 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
3121 * than '0'."
3122 *
3123 * For now, we just assert that the caller does this. We might want to
3124 * automatically add a write to the workaround BO...
3125 */
3126 assert(non_lri_post_sync_flags != 0);
3127 }
3128
3129 if (flags & PIPE_CONTROL_SYNC_GFDT) {
3130 /* Project: All / Argument: Sync GFDT
3131 *
3132 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
3133 * than '0' or 0x2520[13] must be set."
3134 *
3135 * For now, we just assert that the caller does this.
3136 */
3137 assert(non_lri_post_sync_flags != 0);
3138 }
3139
3140 if (flags & PIPE_CONTROL_TLB_INVALIDATE) {
3141 /* Project: IVB+ / Argument: TLB inv
3142 *
3143 * "Requires stall bit ([20] of DW1) set."
3144 *
3145 * Also, from the PIPE_CONTROL instruction table:
3146 *
3147 * "Project: SKL+
3148 * Post Sync Operation or CS stall must be set to ensure a TLB
3149 * invalidation occurs. Otherwise no cycle will occur to the TLB
3150 * cache to invalidate."
3151 *
3152 * This is not a subset of the earlier rule, so there's nothing to do.
3153 */
3154 flags |= PIPE_CONTROL_CS_STALL;
3155 }
3156
3157 if (GEN_GEN == 9 && devinfo->gt == 4) {
3158 /* TODO: The big Skylake GT4 post sync op workaround */
3159 }
3160
3161 /* "GPGPU specific workarounds" (both post-sync and flush) ------------ */
3162
3163 if (IS_COMPUTE_PIPELINE(batch)) {
3164 if (GEN_GEN >= 9 && (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE)) {
3165 /* Project: SKL+ / Argument: Tex Invalidate
3166 * "Requires stall bit ([20] of DW) set for all GPGPU Workloads."
3167 */
3168 flags |= PIPE_CONTROL_CS_STALL;
3169 }
3170
3171 if (GEN_GEN == 8 && (post_sync_flags ||
3172 (flags & (PIPE_CONTROL_NOTIFY_ENABLE |
3173 PIPE_CONTROL_DEPTH_STALL |
3174 PIPE_CONTROL_RENDER_TARGET_FLUSH |
3175 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
3176 PIPE_CONTROL_DATA_CACHE_FLUSH)))) {
3177 /* Project: BDW / Arguments:
3178 *
3179 * - LRI Post Sync Operation [23]
3180 * - Post Sync Op [15:14]
3181 * - Notify En [8]
3182 * - Depth Stall [13]
3183 * - Render Target Cache Flush [12]
3184 * - Depth Cache Flush [0]
3185 * - DC Flush Enable [5]
3186 *
3187 * "Requires stall bit ([20] of DW) set for all GPGPU and Media
3188 * Workloads."
3189 */
3190 flags |= PIPE_CONTROL_CS_STALL;
3191
3192 /* Also, from the PIPE_CONTROL instruction table, bit 20:
3193 *
3194 * "Project: BDW
3195 * This bit must be always set when PIPE_CONTROL command is
3196 * programmed by GPGPU and MEDIA workloads, except for the cases
3197 * when only Read Only Cache Invalidation bits are set (State
3198 * Cache Invalidation Enable, Instruction cache Invalidation
3199 * Enable, Texture Cache Invalidation Enable, Constant Cache
3200 * Invalidation Enable). This is to WA FFDOP CG issue, this WA
3201 * need not implemented when FF_DOP_CG is disable via "Fixed
3202 * Function DOP Clock Gate Disable" bit in RC_PSMI_CTRL register."
3203 *
3204 * It sounds like we could avoid CS stalls in some cases, but we
3205 * don't currently bother. This list isn't exactly the list above,
3206 * either...
3207 */
3208 }
3209 }
3210
3211 /* "Stall" workarounds ----------------------------------------------
3212 * These have to come after the earlier ones because we may have added
3213 * some additional CS stalls above.
3214 */
3215
3216 if (GEN_GEN < 9 && (flags & PIPE_CONTROL_CS_STALL)) {
3217 /* Project: PRE-SKL, VLV, CHV
3218 *
3219 * "[All Stepping][All SKUs]:
3220 *
3221 * One of the following must also be set:
3222 *
3223 * - Render Target Cache Flush Enable ([12] of DW1)
3224 * - Depth Cache Flush Enable ([0] of DW1)
3225 * - Stall at Pixel Scoreboard ([1] of DW1)
3226 * - Depth Stall ([13] of DW1)
3227 * - Post-Sync Operation ([13] of DW1)
3228 * - DC Flush Enable ([5] of DW1)"
3229 *
3230 * If we don't already have one of those bits set, we choose to add
3231 * "Stall at Pixel Scoreboard". Some of the other bits require a
3232 * CS stall as a workaround (see above), which would send us into
3233 * an infinite recursion of PIPE_CONTROLs. "Stall at Pixel Scoreboard"
3234 * appears to be safe, so we choose that.
3235 */
3236 const uint32_t wa_bits = PIPE_CONTROL_RENDER_TARGET_FLUSH |
3237 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
3238 PIPE_CONTROL_WRITE_IMMEDIATE |
3239 PIPE_CONTROL_WRITE_DEPTH_COUNT |
3240 PIPE_CONTROL_WRITE_TIMESTAMP |
3241 PIPE_CONTROL_STALL_AT_SCOREBOARD |
3242 PIPE_CONTROL_DEPTH_STALL |
3243 PIPE_CONTROL_DATA_CACHE_FLUSH;
3244 if (!(flags & wa_bits))
3245 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
3246 }
3247
3248 /* Emit --------------------------------------------------------------- */
3249
3250 iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
3251 pc.LRIPostSyncOperation = NoLRIOperation;
3252 pc.PipeControlFlushEnable = flags & PIPE_CONTROL_FLUSH_ENABLE;
3253 pc.DCFlushEnable = flags & PIPE_CONTROL_DATA_CACHE_FLUSH;
3254 pc.StoreDataIndex = 0;
3255 pc.CommandStreamerStallEnable = flags & PIPE_CONTROL_CS_STALL;
3256 pc.GlobalSnapshotCountReset =
3257 flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET;
3258 pc.TLBInvalidate = flags & PIPE_CONTROL_TLB_INVALIDATE;
3259 pc.GenericMediaStateClear = flags & PIPE_CONTROL_MEDIA_STATE_CLEAR;
3260 pc.StallAtPixelScoreboard = flags & PIPE_CONTROL_STALL_AT_SCOREBOARD;
3261 pc.RenderTargetCacheFlushEnable =
3262 flags & PIPE_CONTROL_RENDER_TARGET_FLUSH;
3263 pc.DepthCacheFlushEnable = flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH;
3264 pc.StateCacheInvalidationEnable =
3265 flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE;
3266 pc.VFCacheInvalidationEnable = flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
3267 pc.ConstantCacheInvalidationEnable =
3268 flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE;
3269 pc.PostSyncOperation = flags_to_post_sync_op(flags);
3270 pc.DepthStallEnable = flags & PIPE_CONTROL_DEPTH_STALL;
3271 pc.InstructionCacheInvalidateEnable =
3272 flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE;
3273 pc.NotifyEnable = flags & PIPE_CONTROL_NOTIFY_ENABLE;
3274 pc.IndirectStatePointersDisable =
3275 flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE;
3276 pc.TextureCacheInvalidationEnable =
3277 flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
3278 pc.Address = ro_bo(bo, offset);
3279 pc.ImmediateData = imm;
3280 }
3281 }
3282
3283 void
3284 genX(init_state)(struct iris_context *ice)
3285 {
3286 struct pipe_context *ctx = &ice->ctx;
3287
3288 ctx->create_blend_state = iris_create_blend_state;
3289 ctx->create_depth_stencil_alpha_state = iris_create_zsa_state;
3290 ctx->create_rasterizer_state = iris_create_rasterizer_state;
3291 ctx->create_sampler_state = iris_create_sampler_state;
3292 ctx->create_sampler_view = iris_create_sampler_view;
3293 ctx->create_surface = iris_create_surface;
3294 ctx->create_vertex_elements_state = iris_create_vertex_elements;
3295 ctx->create_compute_state = iris_create_compute_state;
3296 ctx->bind_blend_state = iris_bind_blend_state;
3297 ctx->bind_depth_stencil_alpha_state = iris_bind_zsa_state;
3298 ctx->bind_sampler_states = iris_bind_sampler_states;
3299 ctx->bind_rasterizer_state = iris_bind_rasterizer_state;
3300 ctx->bind_vertex_elements_state = iris_bind_vertex_elements_state;
3301 ctx->bind_compute_state = iris_bind_compute_state;
3302 ctx->delete_blend_state = iris_delete_state;
3303 ctx->delete_depth_stencil_alpha_state = iris_delete_state;
3304 ctx->delete_fs_state = iris_delete_state;
3305 ctx->delete_rasterizer_state = iris_delete_state;
3306 ctx->delete_sampler_state = iris_delete_state;
3307 ctx->delete_vertex_elements_state = iris_delete_state;
3308 ctx->delete_compute_state = iris_delete_state;
3309 ctx->delete_tcs_state = iris_delete_state;
3310 ctx->delete_tes_state = iris_delete_state;
3311 ctx->delete_gs_state = iris_delete_state;
3312 ctx->delete_vs_state = iris_delete_state;
3313 ctx->set_blend_color = iris_set_blend_color;
3314 ctx->set_clip_state = iris_set_clip_state;
3315 ctx->set_constant_buffer = iris_set_constant_buffer;
3316 ctx->set_sampler_views = iris_set_sampler_views;
3317 ctx->set_framebuffer_state = iris_set_framebuffer_state;
3318 ctx->set_polygon_stipple = iris_set_polygon_stipple;
3319 ctx->set_sample_mask = iris_set_sample_mask;
3320 ctx->set_scissor_states = iris_set_scissor_states;
3321 ctx->set_stencil_ref = iris_set_stencil_ref;
3322 ctx->set_vertex_buffers = iris_set_vertex_buffers;
3323 ctx->set_viewport_states = iris_set_viewport_states;
3324 ctx->sampler_view_destroy = iris_sampler_view_destroy;
3325 ctx->surface_destroy = iris_surface_destroy;
3326 ctx->draw_vbo = iris_draw_vbo;
3327 ctx->launch_grid = iris_launch_grid;
3328 ctx->create_stream_output_target = iris_create_stream_output_target;
3329 ctx->stream_output_target_destroy = iris_stream_output_target_destroy;
3330 ctx->set_stream_output_targets = iris_set_stream_output_targets;
3331
3332 ice->vtbl.destroy_state = iris_destroy_state;
3333 ice->vtbl.init_render_context = iris_init_render_context;
3334 ice->vtbl.upload_render_state = iris_upload_render_state;
3335 ice->vtbl.emit_raw_pipe_control = iris_emit_raw_pipe_control;
3336 ice->vtbl.derived_program_state_size = iris_derived_program_state_size;
3337 ice->vtbl.store_derived_program_state = iris_store_derived_program_state;
3338 ice->vtbl.populate_vs_key = iris_populate_vs_key;
3339 ice->vtbl.populate_tcs_key = iris_populate_tcs_key;
3340 ice->vtbl.populate_tes_key = iris_populate_tes_key;
3341 ice->vtbl.populate_gs_key = iris_populate_gs_key;
3342 ice->vtbl.populate_fs_key = iris_populate_fs_key;
3343
3344 ice->state.dirty = ~0ull;
3345
3346 ice->state.num_viewports = 1;
3347 ice->state.cso_vp = calloc(1, sizeof(struct iris_viewport_state));
3348 ice->state.cso_vertex_buffers =
3349 calloc(1, sizeof(struct iris_vertex_buffer_state));
3350 }