iris: Create binding table slot for num_work_groups only when needed
[mesa.git] / src / gallium / drivers / iris / iris_state.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included
12 * in all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
21 */
22
23 /**
24 * @file iris_state.c
25 *
26 * ============================= GENXML CODE =============================
27 * [This file is compiled once per generation.]
28 * =======================================================================
29 *
30 * This is the main state upload code.
31 *
32 * Gallium uses Constant State Objects, or CSOs, for most state. Large,
33 * complex, or highly reusable state can be created once, and bound and
34 * rebound multiple times. This is modeled with the pipe->create_*_state()
35 * and pipe->bind_*_state() hooks. Highly dynamic or inexpensive state is
36 * streamed out on the fly, via pipe->set_*_state() hooks.
37 *
38 * OpenGL involves frequently mutating context state, which is mirrored in
39 * core Mesa by highly mutable data structures. However, most applications
40 * typically draw the same things over and over - from frame to frame, most
41 * of the same objects are still visible and need to be redrawn. So, rather
42 * than inventing new state all the time, applications usually mutate to swap
43 * between known states that we've seen before.
44 *
45 * Gallium isolates us from this mutation by tracking API state, and
46 * distilling it into a set of Constant State Objects, or CSOs. Large,
47 * complex, or typically reusable state can be created once, then reused
48 * multiple times. Drivers can create and store their own associated data.
49 * This create/bind model corresponds to the pipe->create_*_state() and
50 * pipe->bind_*_state() driver hooks.
51 *
52 * Some state is cheap to create, or expected to be highly dynamic. Rather
53 * than creating and caching piles of CSOs for these, Gallium simply streams
54 * them out, via the pipe->set_*_state() driver hooks.
55 *
56 * To reduce draw time overhead, we try to compute as much state at create
57 * time as possible. Wherever possible, we translate the Gallium pipe state
58 * to 3DSTATE commands, and store those commands in the CSO. At draw time,
59 * we can simply memcpy them into a batch buffer.
60 *
61 * No hardware matches the abstraction perfectly, so some commands require
62 * information from multiple CSOs. In this case, we can store two copies
63 * of the packet (one in each CSO), and simply | together their DWords at
64 * draw time. Sometimes the second set is trivial (one or two fields), so
65 * we simply pack it at draw time.
66 *
67 * There are two main components in the file below. First, the CSO hooks
68 * create/bind/track state. The second are the draw-time upload functions,
69 * iris_upload_render_state() and iris_upload_compute_state(), which read
70 * the context state and emit the commands into the actual batch.
71 */
72
73 #include <stdio.h>
74 #include <errno.h>
75
76 #if HAVE_VALGRIND
77 #include <valgrind.h>
78 #include <memcheck.h>
79 #define VG(x) x
80 #ifdef DEBUG
81 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
82 #endif
83 #else
84 #define VG(x)
85 #endif
86
87 #include "pipe/p_defines.h"
88 #include "pipe/p_state.h"
89 #include "pipe/p_context.h"
90 #include "pipe/p_screen.h"
91 #include "util/u_dual_blend.h"
92 #include "util/u_inlines.h"
93 #include "util/u_format.h"
94 #include "util/u_framebuffer.h"
95 #include "util/u_transfer.h"
96 #include "util/u_upload_mgr.h"
97 #include "util/u_viewport.h"
98 #include "drm-uapi/i915_drm.h"
99 #include "nir.h"
100 #include "intel/compiler/brw_compiler.h"
101 #include "intel/common/gen_l3_config.h"
102 #include "intel/common/gen_sample_positions.h"
103 #include "iris_batch.h"
104 #include "iris_context.h"
105 #include "iris_defines.h"
106 #include "iris_pipe.h"
107 #include "iris_resource.h"
108
109 #define __gen_address_type struct iris_address
110 #define __gen_user_data struct iris_batch
111
112 #define ARRAY_BYTES(x) (sizeof(uint32_t) * ARRAY_SIZE(x))
113
114 static uint64_t
115 __gen_combine_address(struct iris_batch *batch, void *location,
116 struct iris_address addr, uint32_t delta)
117 {
118 uint64_t result = addr.offset + delta;
119
120 if (addr.bo) {
121 iris_use_pinned_bo(batch, addr.bo, addr.write);
122 /* Assume this is a general address, not relative to a base. */
123 result += addr.bo->gtt_offset;
124 }
125
126 return result;
127 }
128
129 #define __genxml_cmd_length(cmd) cmd ## _length
130 #define __genxml_cmd_length_bias(cmd) cmd ## _length_bias
131 #define __genxml_cmd_header(cmd) cmd ## _header
132 #define __genxml_cmd_pack(cmd) cmd ## _pack
133
134 #define _iris_pack_command(batch, cmd, dst, name) \
135 for (struct cmd name = { __genxml_cmd_header(cmd) }, \
136 *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
137 ({ __genxml_cmd_pack(cmd)(batch, (void *)_dst, &name); \
138 _dst = NULL; \
139 }))
140
141 #define iris_pack_command(cmd, dst, name) \
142 _iris_pack_command(NULL, cmd, dst, name)
143
144 #define iris_pack_state(cmd, dst, name) \
145 for (struct cmd name = {}, \
146 *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
147 __genxml_cmd_pack(cmd)(NULL, (void *)_dst, &name), \
148 _dst = NULL)
149
150 #define iris_emit_cmd(batch, cmd, name) \
151 _iris_pack_command(batch, cmd, iris_get_command_space(batch, 4 * __genxml_cmd_length(cmd)), name)
152
153 #define iris_emit_merge(batch, dwords0, dwords1, num_dwords) \
154 do { \
155 uint32_t *dw = iris_get_command_space(batch, 4 * num_dwords); \
156 for (uint32_t i = 0; i < num_dwords; i++) \
157 dw[i] = (dwords0)[i] | (dwords1)[i]; \
158 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, num_dwords)); \
159 } while (0)
160
161 #include "genxml/genX_pack.h"
162 #include "genxml/gen_macros.h"
163 #include "genxml/genX_bits.h"
164
165 #if GEN_GEN == 8
166 #define MOCS_PTE 0x18
167 #define MOCS_WB 0x78
168 #else
169 #define MOCS_PTE (1 << 1)
170 #define MOCS_WB (2 << 1)
171 #endif
172
173 static uint32_t
174 mocs(const struct iris_bo *bo)
175 {
176 return bo && bo->external ? MOCS_PTE : MOCS_WB;
177 }
178
179 /**
180 * Statically assert that PIPE_* enums match the hardware packets.
181 * (As long as they match, we don't need to translate them.)
182 */
183 UNUSED static void pipe_asserts()
184 {
185 #define PIPE_ASSERT(x) STATIC_ASSERT((int)x)
186
187 /* pipe_logicop happens to match the hardware. */
188 PIPE_ASSERT(PIPE_LOGICOP_CLEAR == LOGICOP_CLEAR);
189 PIPE_ASSERT(PIPE_LOGICOP_NOR == LOGICOP_NOR);
190 PIPE_ASSERT(PIPE_LOGICOP_AND_INVERTED == LOGICOP_AND_INVERTED);
191 PIPE_ASSERT(PIPE_LOGICOP_COPY_INVERTED == LOGICOP_COPY_INVERTED);
192 PIPE_ASSERT(PIPE_LOGICOP_AND_REVERSE == LOGICOP_AND_REVERSE);
193 PIPE_ASSERT(PIPE_LOGICOP_INVERT == LOGICOP_INVERT);
194 PIPE_ASSERT(PIPE_LOGICOP_XOR == LOGICOP_XOR);
195 PIPE_ASSERT(PIPE_LOGICOP_NAND == LOGICOP_NAND);
196 PIPE_ASSERT(PIPE_LOGICOP_AND == LOGICOP_AND);
197 PIPE_ASSERT(PIPE_LOGICOP_EQUIV == LOGICOP_EQUIV);
198 PIPE_ASSERT(PIPE_LOGICOP_NOOP == LOGICOP_NOOP);
199 PIPE_ASSERT(PIPE_LOGICOP_OR_INVERTED == LOGICOP_OR_INVERTED);
200 PIPE_ASSERT(PIPE_LOGICOP_COPY == LOGICOP_COPY);
201 PIPE_ASSERT(PIPE_LOGICOP_OR_REVERSE == LOGICOP_OR_REVERSE);
202 PIPE_ASSERT(PIPE_LOGICOP_OR == LOGICOP_OR);
203 PIPE_ASSERT(PIPE_LOGICOP_SET == LOGICOP_SET);
204
205 /* pipe_blend_func happens to match the hardware. */
206 PIPE_ASSERT(PIPE_BLENDFACTOR_ONE == BLENDFACTOR_ONE);
207 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_COLOR == BLENDFACTOR_SRC_COLOR);
208 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA == BLENDFACTOR_SRC_ALPHA);
209 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_ALPHA == BLENDFACTOR_DST_ALPHA);
210 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_COLOR == BLENDFACTOR_DST_COLOR);
211 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE == BLENDFACTOR_SRC_ALPHA_SATURATE);
212 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_COLOR == BLENDFACTOR_CONST_COLOR);
213 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_ALPHA == BLENDFACTOR_CONST_ALPHA);
214 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_COLOR == BLENDFACTOR_SRC1_COLOR);
215 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_ALPHA == BLENDFACTOR_SRC1_ALPHA);
216 PIPE_ASSERT(PIPE_BLENDFACTOR_ZERO == BLENDFACTOR_ZERO);
217 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_COLOR == BLENDFACTOR_INV_SRC_COLOR);
218 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_ALPHA == BLENDFACTOR_INV_SRC_ALPHA);
219 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_ALPHA == BLENDFACTOR_INV_DST_ALPHA);
220 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_COLOR == BLENDFACTOR_INV_DST_COLOR);
221 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_COLOR == BLENDFACTOR_INV_CONST_COLOR);
222 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_ALPHA == BLENDFACTOR_INV_CONST_ALPHA);
223 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_COLOR == BLENDFACTOR_INV_SRC1_COLOR);
224 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_ALPHA == BLENDFACTOR_INV_SRC1_ALPHA);
225
226 /* pipe_blend_func happens to match the hardware. */
227 PIPE_ASSERT(PIPE_BLEND_ADD == BLENDFUNCTION_ADD);
228 PIPE_ASSERT(PIPE_BLEND_SUBTRACT == BLENDFUNCTION_SUBTRACT);
229 PIPE_ASSERT(PIPE_BLEND_REVERSE_SUBTRACT == BLENDFUNCTION_REVERSE_SUBTRACT);
230 PIPE_ASSERT(PIPE_BLEND_MIN == BLENDFUNCTION_MIN);
231 PIPE_ASSERT(PIPE_BLEND_MAX == BLENDFUNCTION_MAX);
232
233 /* pipe_stencil_op happens to match the hardware. */
234 PIPE_ASSERT(PIPE_STENCIL_OP_KEEP == STENCILOP_KEEP);
235 PIPE_ASSERT(PIPE_STENCIL_OP_ZERO == STENCILOP_ZERO);
236 PIPE_ASSERT(PIPE_STENCIL_OP_REPLACE == STENCILOP_REPLACE);
237 PIPE_ASSERT(PIPE_STENCIL_OP_INCR == STENCILOP_INCRSAT);
238 PIPE_ASSERT(PIPE_STENCIL_OP_DECR == STENCILOP_DECRSAT);
239 PIPE_ASSERT(PIPE_STENCIL_OP_INCR_WRAP == STENCILOP_INCR);
240 PIPE_ASSERT(PIPE_STENCIL_OP_DECR_WRAP == STENCILOP_DECR);
241 PIPE_ASSERT(PIPE_STENCIL_OP_INVERT == STENCILOP_INVERT);
242
243 /* pipe_sprite_coord_mode happens to match 3DSTATE_SBE */
244 PIPE_ASSERT(PIPE_SPRITE_COORD_UPPER_LEFT == UPPERLEFT);
245 PIPE_ASSERT(PIPE_SPRITE_COORD_LOWER_LEFT == LOWERLEFT);
246 #undef PIPE_ASSERT
247 }
248
249 static unsigned
250 translate_prim_type(enum pipe_prim_type prim, uint8_t verts_per_patch)
251 {
252 static const unsigned map[] = {
253 [PIPE_PRIM_POINTS] = _3DPRIM_POINTLIST,
254 [PIPE_PRIM_LINES] = _3DPRIM_LINELIST,
255 [PIPE_PRIM_LINE_LOOP] = _3DPRIM_LINELOOP,
256 [PIPE_PRIM_LINE_STRIP] = _3DPRIM_LINESTRIP,
257 [PIPE_PRIM_TRIANGLES] = _3DPRIM_TRILIST,
258 [PIPE_PRIM_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
259 [PIPE_PRIM_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
260 [PIPE_PRIM_QUADS] = _3DPRIM_QUADLIST,
261 [PIPE_PRIM_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
262 [PIPE_PRIM_POLYGON] = _3DPRIM_POLYGON,
263 [PIPE_PRIM_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
264 [PIPE_PRIM_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
265 [PIPE_PRIM_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
266 [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
267 [PIPE_PRIM_PATCHES] = _3DPRIM_PATCHLIST_1 - 1,
268 };
269
270 return map[prim] + (prim == PIPE_PRIM_PATCHES ? verts_per_patch : 0);
271 }
272
273 static unsigned
274 translate_compare_func(enum pipe_compare_func pipe_func)
275 {
276 static const unsigned map[] = {
277 [PIPE_FUNC_NEVER] = COMPAREFUNCTION_NEVER,
278 [PIPE_FUNC_LESS] = COMPAREFUNCTION_LESS,
279 [PIPE_FUNC_EQUAL] = COMPAREFUNCTION_EQUAL,
280 [PIPE_FUNC_LEQUAL] = COMPAREFUNCTION_LEQUAL,
281 [PIPE_FUNC_GREATER] = COMPAREFUNCTION_GREATER,
282 [PIPE_FUNC_NOTEQUAL] = COMPAREFUNCTION_NOTEQUAL,
283 [PIPE_FUNC_GEQUAL] = COMPAREFUNCTION_GEQUAL,
284 [PIPE_FUNC_ALWAYS] = COMPAREFUNCTION_ALWAYS,
285 };
286 return map[pipe_func];
287 }
288
289 static unsigned
290 translate_shadow_func(enum pipe_compare_func pipe_func)
291 {
292 /* Gallium specifies the result of shadow comparisons as:
293 *
294 * 1 if ref <op> texel,
295 * 0 otherwise.
296 *
297 * The hardware does:
298 *
299 * 0 if texel <op> ref,
300 * 1 otherwise.
301 *
302 * So we need to flip the operator and also negate.
303 */
304 static const unsigned map[] = {
305 [PIPE_FUNC_NEVER] = PREFILTEROPALWAYS,
306 [PIPE_FUNC_LESS] = PREFILTEROPLEQUAL,
307 [PIPE_FUNC_EQUAL] = PREFILTEROPNOTEQUAL,
308 [PIPE_FUNC_LEQUAL] = PREFILTEROPLESS,
309 [PIPE_FUNC_GREATER] = PREFILTEROPGEQUAL,
310 [PIPE_FUNC_NOTEQUAL] = PREFILTEROPEQUAL,
311 [PIPE_FUNC_GEQUAL] = PREFILTEROPGREATER,
312 [PIPE_FUNC_ALWAYS] = PREFILTEROPNEVER,
313 };
314 return map[pipe_func];
315 }
316
317 static unsigned
318 translate_cull_mode(unsigned pipe_face)
319 {
320 static const unsigned map[4] = {
321 [PIPE_FACE_NONE] = CULLMODE_NONE,
322 [PIPE_FACE_FRONT] = CULLMODE_FRONT,
323 [PIPE_FACE_BACK] = CULLMODE_BACK,
324 [PIPE_FACE_FRONT_AND_BACK] = CULLMODE_BOTH,
325 };
326 return map[pipe_face];
327 }
328
329 static unsigned
330 translate_fill_mode(unsigned pipe_polymode)
331 {
332 static const unsigned map[4] = {
333 [PIPE_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
334 [PIPE_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
335 [PIPE_POLYGON_MODE_POINT] = FILL_MODE_POINT,
336 [PIPE_POLYGON_MODE_FILL_RECTANGLE] = FILL_MODE_SOLID,
337 };
338 return map[pipe_polymode];
339 }
340
341 static unsigned
342 translate_mip_filter(enum pipe_tex_mipfilter pipe_mip)
343 {
344 static const unsigned map[] = {
345 [PIPE_TEX_MIPFILTER_NEAREST] = MIPFILTER_NEAREST,
346 [PIPE_TEX_MIPFILTER_LINEAR] = MIPFILTER_LINEAR,
347 [PIPE_TEX_MIPFILTER_NONE] = MIPFILTER_NONE,
348 };
349 return map[pipe_mip];
350 }
351
352 static uint32_t
353 translate_wrap(unsigned pipe_wrap)
354 {
355 static const unsigned map[] = {
356 [PIPE_TEX_WRAP_REPEAT] = TCM_WRAP,
357 [PIPE_TEX_WRAP_CLAMP] = TCM_HALF_BORDER,
358 [PIPE_TEX_WRAP_CLAMP_TO_EDGE] = TCM_CLAMP,
359 [PIPE_TEX_WRAP_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER,
360 [PIPE_TEX_WRAP_MIRROR_REPEAT] = TCM_MIRROR,
361 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE,
362
363 /* These are unsupported. */
364 [PIPE_TEX_WRAP_MIRROR_CLAMP] = -1,
365 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER] = -1,
366 };
367 return map[pipe_wrap];
368 }
369
370 static struct iris_address
371 ro_bo(struct iris_bo *bo, uint64_t offset)
372 {
373 /* CSOs must pass NULL for bo! Otherwise it will add the BO to the
374 * validation list at CSO creation time, instead of draw time.
375 */
376 return (struct iris_address) { .bo = bo, .offset = offset };
377 }
378
379 static struct iris_address
380 rw_bo(struct iris_bo *bo, uint64_t offset)
381 {
382 /* CSOs must pass NULL for bo! Otherwise it will add the BO to the
383 * validation list at CSO creation time, instead of draw time.
384 */
385 return (struct iris_address) { .bo = bo, .offset = offset, .write = true };
386 }
387
388 /**
389 * Allocate space for some indirect state.
390 *
391 * Return a pointer to the map (to fill it out) and a state ref (for
392 * referring to the state in GPU commands).
393 */
394 static void *
395 upload_state(struct u_upload_mgr *uploader,
396 struct iris_state_ref *ref,
397 unsigned size,
398 unsigned alignment)
399 {
400 void *p = NULL;
401 u_upload_alloc(uploader, 0, size, alignment, &ref->offset, &ref->res, &p);
402 return p;
403 }
404
405 /**
406 * Stream out temporary/short-lived state.
407 *
408 * This allocates space, pins the BO, and includes the BO address in the
409 * returned offset (which works because all state lives in 32-bit memory
410 * zones).
411 */
412 static uint32_t *
413 stream_state(struct iris_batch *batch,
414 struct u_upload_mgr *uploader,
415 struct pipe_resource **out_res,
416 unsigned size,
417 unsigned alignment,
418 uint32_t *out_offset)
419 {
420 void *ptr = NULL;
421
422 u_upload_alloc(uploader, 0, size, alignment, out_offset, out_res, &ptr);
423
424 struct iris_bo *bo = iris_resource_bo(*out_res);
425 iris_use_pinned_bo(batch, bo, false);
426
427 *out_offset += iris_bo_offset_from_base_address(bo);
428
429 iris_record_state_size(batch->state_sizes, *out_offset, size);
430
431 return ptr;
432 }
433
434 /**
435 * stream_state() + memcpy.
436 */
437 static uint32_t
438 emit_state(struct iris_batch *batch,
439 struct u_upload_mgr *uploader,
440 struct pipe_resource **out_res,
441 const void *data,
442 unsigned size,
443 unsigned alignment)
444 {
445 unsigned offset = 0;
446 uint32_t *map =
447 stream_state(batch, uploader, out_res, size, alignment, &offset);
448
449 if (map)
450 memcpy(map, data, size);
451
452 return offset;
453 }
454
455 /**
456 * Did field 'x' change between 'old_cso' and 'new_cso'?
457 *
458 * (If so, we may want to set some dirty flags.)
459 */
460 #define cso_changed(x) (!old_cso || (old_cso->x != new_cso->x))
461 #define cso_changed_memcmp(x) \
462 (!old_cso || memcmp(old_cso->x, new_cso->x, sizeof(old_cso->x)) != 0)
463
464 static void
465 flush_for_state_base_change(struct iris_batch *batch)
466 {
467 /* Flush before emitting STATE_BASE_ADDRESS.
468 *
469 * This isn't documented anywhere in the PRM. However, it seems to be
470 * necessary prior to changing the surface state base adress. We've
471 * seen issues in Vulkan where we get GPU hangs when using multi-level
472 * command buffers which clear depth, reset state base address, and then
473 * go render stuff.
474 *
475 * Normally, in GL, we would trust the kernel to do sufficient stalls
476 * and flushes prior to executing our batch. However, it doesn't seem
477 * as if the kernel's flushing is always sufficient and we don't want to
478 * rely on it.
479 *
480 * We make this an end-of-pipe sync instead of a normal flush because we
481 * do not know the current status of the GPU. On Haswell at least,
482 * having a fast-clear operation in flight at the same time as a normal
483 * rendering operation can cause hangs. Since the kernel's flushing is
484 * insufficient, we need to ensure that any rendering operations from
485 * other processes are definitely complete before we try to do our own
486 * rendering. It's a bit of a big hammer but it appears to work.
487 */
488 iris_emit_end_of_pipe_sync(batch,
489 PIPE_CONTROL_RENDER_TARGET_FLUSH |
490 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
491 PIPE_CONTROL_DATA_CACHE_FLUSH);
492 }
493
494 static void
495 _iris_emit_lri(struct iris_batch *batch, uint32_t reg, uint32_t val)
496 {
497 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
498 lri.RegisterOffset = reg;
499 lri.DataDWord = val;
500 }
501 }
502 #define iris_emit_lri(b, r, v) _iris_emit_lri(b, GENX(r##_num), v)
503
504 static void
505 _iris_emit_lrr(struct iris_batch *batch, uint32_t dst, uint32_t src)
506 {
507 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
508 lrr.SourceRegisterAddress = src;
509 lrr.DestinationRegisterAddress = dst;
510 }
511 }
512
513 static void
514 emit_pipeline_select(struct iris_batch *batch, uint32_t pipeline)
515 {
516 #if GEN_GEN >= 8 && GEN_GEN < 10
517 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
518 *
519 * Software must clear the COLOR_CALC_STATE Valid field in
520 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
521 * with Pipeline Select set to GPGPU.
522 *
523 * The internal hardware docs recommend the same workaround for Gen9
524 * hardware too.
525 */
526 if (pipeline == GPGPU)
527 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
528 #endif
529
530
531 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
532 * PIPELINE_SELECT [DevBWR+]":
533 *
534 * "Project: DEVSNB+
535 *
536 * Software must ensure all the write caches are flushed through a
537 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
538 * command to invalidate read only caches prior to programming
539 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode."
540 */
541 iris_emit_pipe_control_flush(batch,
542 PIPE_CONTROL_RENDER_TARGET_FLUSH |
543 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
544 PIPE_CONTROL_DATA_CACHE_FLUSH |
545 PIPE_CONTROL_CS_STALL);
546
547 iris_emit_pipe_control_flush(batch,
548 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
549 PIPE_CONTROL_CONST_CACHE_INVALIDATE |
550 PIPE_CONTROL_STATE_CACHE_INVALIDATE |
551 PIPE_CONTROL_INSTRUCTION_INVALIDATE);
552
553 iris_emit_cmd(batch, GENX(PIPELINE_SELECT), sel) {
554 #if GEN_GEN >= 9
555 sel.MaskBits = 3;
556 #endif
557 sel.PipelineSelection = pipeline;
558 }
559 }
560
561 UNUSED static void
562 init_glk_barrier_mode(struct iris_batch *batch, uint32_t value)
563 {
564 #if GEN_GEN == 9
565 /* Project: DevGLK
566 *
567 * "This chicken bit works around a hardware issue with barrier
568 * logic encountered when switching between GPGPU and 3D pipelines.
569 * To workaround the issue, this mode bit should be set after a
570 * pipeline is selected."
571 */
572 uint32_t reg_val;
573 iris_pack_state(GENX(SLICE_COMMON_ECO_CHICKEN1), &reg_val, reg) {
574 reg.GLKBarrierMode = value;
575 reg.GLKBarrierModeMask = 1;
576 }
577 iris_emit_lri(batch, SLICE_COMMON_ECO_CHICKEN1, reg_val);
578 #endif
579 }
580
581 static void
582 init_state_base_address(struct iris_batch *batch)
583 {
584 flush_for_state_base_change(batch);
585
586 /* We program most base addresses once at context initialization time.
587 * Each base address points at a 4GB memory zone, and never needs to
588 * change. See iris_bufmgr.h for a description of the memory zones.
589 *
590 * The one exception is Surface State Base Address, which needs to be
591 * updated occasionally. See iris_binder.c for the details there.
592 */
593 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
594 sba.GeneralStateMOCS = MOCS_WB;
595 sba.StatelessDataPortAccessMOCS = MOCS_WB;
596 sba.DynamicStateMOCS = MOCS_WB;
597 sba.IndirectObjectMOCS = MOCS_WB;
598 sba.InstructionMOCS = MOCS_WB;
599
600 sba.GeneralStateBaseAddressModifyEnable = true;
601 sba.DynamicStateBaseAddressModifyEnable = true;
602 sba.IndirectObjectBaseAddressModifyEnable = true;
603 sba.InstructionBaseAddressModifyEnable = true;
604 sba.GeneralStateBufferSizeModifyEnable = true;
605 sba.DynamicStateBufferSizeModifyEnable = true;
606 #if (GEN_GEN >= 9)
607 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
608 sba.BindlessSurfaceStateMOCS = MOCS_WB;
609 #endif
610 sba.IndirectObjectBufferSizeModifyEnable = true;
611 sba.InstructionBuffersizeModifyEnable = true;
612
613 sba.InstructionBaseAddress = ro_bo(NULL, IRIS_MEMZONE_SHADER_START);
614 sba.DynamicStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_DYNAMIC_START);
615
616 sba.GeneralStateBufferSize = 0xfffff;
617 sba.IndirectObjectBufferSize = 0xfffff;
618 sba.InstructionBufferSize = 0xfffff;
619 sba.DynamicStateBufferSize = 0xfffff;
620 }
621 }
622
623 static void
624 iris_emit_l3_config(struct iris_batch *batch, const struct gen_l3_config *cfg,
625 bool has_slm, bool wants_dc_cache)
626 {
627 uint32_t reg_val;
628 iris_pack_state(GENX(L3CNTLREG), &reg_val, reg) {
629 reg.SLMEnable = has_slm;
630 #if GEN_GEN == 11
631 /* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set
632 * in L3CNTLREG register. The default setting of the bit is not the
633 * desirable behavior.
634 */
635 reg.ErrorDetectionBehaviorControl = true;
636 reg.UseFullWays = true;
637 #endif
638 reg.URBAllocation = cfg->n[GEN_L3P_URB];
639 reg.ROAllocation = cfg->n[GEN_L3P_RO];
640 reg.DCAllocation = cfg->n[GEN_L3P_DC];
641 reg.AllAllocation = cfg->n[GEN_L3P_ALL];
642 }
643 iris_emit_lri(batch, L3CNTLREG, reg_val);
644 }
645
646 static void
647 iris_emit_default_l3_config(struct iris_batch *batch,
648 const struct gen_device_info *devinfo,
649 bool compute)
650 {
651 bool wants_dc_cache = true;
652 bool has_slm = compute;
653 const struct gen_l3_weights w =
654 gen_get_default_l3_weights(devinfo, wants_dc_cache, has_slm);
655 const struct gen_l3_config *cfg = gen_get_l3_config(devinfo, w);
656 iris_emit_l3_config(batch, cfg, has_slm, wants_dc_cache);
657 }
658
659 #if GEN_GEN == 9 || GEN_GEN == 10
660 static void
661 iris_enable_obj_preemption(struct iris_batch *batch, bool enable)
662 {
663 uint32_t reg_val;
664
665 /* A fixed function pipe flush is required before modifying this field */
666 iris_emit_end_of_pipe_sync(batch, PIPE_CONTROL_RENDER_TARGET_FLUSH);
667
668 /* enable object level preemption */
669 iris_pack_state(GENX(CS_CHICKEN1), &reg_val, reg) {
670 reg.ReplayMode = enable;
671 reg.ReplayModeMask = true;
672 }
673 iris_emit_lri(batch, CS_CHICKEN1, reg_val);
674 }
675 #endif
676
677 /**
678 * Upload the initial GPU state for a render context.
679 *
680 * This sets some invariant state that needs to be programmed a particular
681 * way, but we never actually change.
682 */
683 static void
684 iris_init_render_context(struct iris_screen *screen,
685 struct iris_batch *batch,
686 struct iris_vtable *vtbl,
687 struct pipe_debug_callback *dbg)
688 {
689 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
690 uint32_t reg_val;
691
692 emit_pipeline_select(batch, _3D);
693
694 iris_emit_default_l3_config(batch, devinfo, false);
695
696 init_state_base_address(batch);
697
698 #if GEN_GEN >= 9
699 iris_pack_state(GENX(CS_DEBUG_MODE2), &reg_val, reg) {
700 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
701 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
702 }
703 iris_emit_lri(batch, CS_DEBUG_MODE2, reg_val);
704 #else
705 iris_pack_state(GENX(INSTPM), &reg_val, reg) {
706 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
707 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
708 }
709 iris_emit_lri(batch, INSTPM, reg_val);
710 #endif
711
712 #if GEN_GEN == 9
713 iris_pack_state(GENX(CACHE_MODE_1), &reg_val, reg) {
714 reg.FloatBlendOptimizationEnable = true;
715 reg.FloatBlendOptimizationEnableMask = true;
716 reg.PartialResolveDisableInVC = true;
717 reg.PartialResolveDisableInVCMask = true;
718 }
719 iris_emit_lri(batch, CACHE_MODE_1, reg_val);
720
721 if (devinfo->is_geminilake)
722 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_3D_HULL);
723 #endif
724
725 #if GEN_GEN == 11
726 iris_pack_state(GENX(SAMPLER_MODE), &reg_val, reg) {
727 reg.HeaderlessMessageforPreemptableContexts = 1;
728 reg.HeaderlessMessageforPreemptableContextsMask = 1;
729 }
730 iris_emit_lri(batch, SAMPLER_MODE, reg_val);
731
732 /* Bit 1 must be set in HALF_SLICE_CHICKEN7. */
733 iris_pack_state(GENX(HALF_SLICE_CHICKEN7), &reg_val, reg) {
734 reg.EnabledTexelOffsetPrecisionFix = 1;
735 reg.EnabledTexelOffsetPrecisionFixMask = 1;
736 }
737 iris_emit_lri(batch, HALF_SLICE_CHICKEN7, reg_val);
738
739 /* WA_2204188704: Pixel Shader Panic dispatch must be disabled. */
740 iris_pack_state(GENX(COMMON_SLICE_CHICKEN3), &reg_val, reg) {
741 reg.PSThreadPanicDispatch = 0x3;
742 reg.PSThreadPanicDispatchMask = 0x3;
743 }
744 iris_emit_lri(batch, COMMON_SLICE_CHICKEN3, reg_val);
745
746 iris_pack_state(GENX(SLICE_COMMON_ECO_CHICKEN1), &reg_val, reg) {
747 reg.StateCacheRedirectToCSSectionEnable = true;
748 reg.StateCacheRedirectToCSSectionEnableMask = true;
749 }
750 iris_emit_lri(batch, SLICE_COMMON_ECO_CHICKEN1, reg_val);
751
752
753 // XXX: 3D_MODE?
754 #endif
755
756 /* 3DSTATE_DRAWING_RECTANGLE is non-pipelined, so we want to avoid
757 * changing it dynamically. We set it to the maximum size here, and
758 * instead include the render target dimensions in the viewport, so
759 * viewport extents clipping takes care of pruning stray geometry.
760 */
761 iris_emit_cmd(batch, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
762 rect.ClippedDrawingRectangleXMax = UINT16_MAX;
763 rect.ClippedDrawingRectangleYMax = UINT16_MAX;
764 }
765
766 /* Set the initial MSAA sample positions. */
767 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_PATTERN), pat) {
768 GEN_SAMPLE_POS_1X(pat._1xSample);
769 GEN_SAMPLE_POS_2X(pat._2xSample);
770 GEN_SAMPLE_POS_4X(pat._4xSample);
771 GEN_SAMPLE_POS_8X(pat._8xSample);
772 #if GEN_GEN >= 9
773 GEN_SAMPLE_POS_16X(pat._16xSample);
774 #endif
775 }
776
777 /* Use the legacy AA line coverage computation. */
778 iris_emit_cmd(batch, GENX(3DSTATE_AA_LINE_PARAMETERS), foo);
779
780 /* Disable chromakeying (it's for media) */
781 iris_emit_cmd(batch, GENX(3DSTATE_WM_CHROMAKEY), foo);
782
783 /* We want regular rendering, not special HiZ operations. */
784 iris_emit_cmd(batch, GENX(3DSTATE_WM_HZ_OP), foo);
785
786 /* No polygon stippling offsets are necessary. */
787 /* TODO: may need to set an offset for origin-UL framebuffers */
788 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_OFFSET), foo);
789
790 /* Set a static partitioning of the push constant area. */
791 /* TODO: this may be a bad idea...could starve the push ringbuffers... */
792 for (int i = 0; i <= MESA_SHADER_FRAGMENT; i++) {
793 iris_emit_cmd(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
794 alloc._3DCommandSubOpcode = 18 + i;
795 alloc.ConstantBufferOffset = 6 * i;
796 alloc.ConstantBufferSize = i == MESA_SHADER_FRAGMENT ? 8 : 6;
797 }
798 }
799
800 #if GEN_GEN == 10
801 /* Gen11+ is enabled for us by the kernel. */
802 iris_enable_obj_preemption(batch, true);
803 #endif
804 }
805
806 static void
807 iris_init_compute_context(struct iris_screen *screen,
808 struct iris_batch *batch,
809 struct iris_vtable *vtbl,
810 struct pipe_debug_callback *dbg)
811 {
812 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
813
814 emit_pipeline_select(batch, GPGPU);
815
816 iris_emit_default_l3_config(batch, devinfo, true);
817
818 init_state_base_address(batch);
819
820 #if GEN_GEN == 9
821 if (devinfo->is_geminilake)
822 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_GPGPU);
823 #endif
824 }
825
826 struct iris_vertex_buffer_state {
827 /** The VERTEX_BUFFER_STATE hardware structure. */
828 uint32_t state[GENX(VERTEX_BUFFER_STATE_length)];
829
830 /** The resource to source vertex data from. */
831 struct pipe_resource *resource;
832 };
833
834 struct iris_depth_buffer_state {
835 /* Depth/HiZ/Stencil related hardware packets. */
836 uint32_t packets[GENX(3DSTATE_DEPTH_BUFFER_length) +
837 GENX(3DSTATE_STENCIL_BUFFER_length) +
838 GENX(3DSTATE_HIER_DEPTH_BUFFER_length) +
839 GENX(3DSTATE_CLEAR_PARAMS_length)];
840 };
841
842 /**
843 * Generation-specific context state (ice->state.genx->...).
844 *
845 * Most state can go in iris_context directly, but these encode hardware
846 * packets which vary by generation.
847 */
848 struct iris_genx_state {
849 struct iris_vertex_buffer_state vertex_buffers[33];
850
851 struct iris_depth_buffer_state depth_buffer;
852
853 uint32_t so_buffers[4 * GENX(3DSTATE_SO_BUFFER_length)];
854
855 #if GEN_GEN == 9
856 /* Is object level preemption enabled? */
857 bool object_preemption;
858 #endif
859
860 struct {
861 #if GEN_GEN == 8
862 struct brw_image_param image_param[PIPE_MAX_SHADER_IMAGES];
863 #endif
864 } shaders[MESA_SHADER_STAGES];
865 };
866
867 /**
868 * The pipe->set_blend_color() driver hook.
869 *
870 * This corresponds to our COLOR_CALC_STATE.
871 */
872 static void
873 iris_set_blend_color(struct pipe_context *ctx,
874 const struct pipe_blend_color *state)
875 {
876 struct iris_context *ice = (struct iris_context *) ctx;
877
878 /* Our COLOR_CALC_STATE is exactly pipe_blend_color, so just memcpy */
879 memcpy(&ice->state.blend_color, state, sizeof(struct pipe_blend_color));
880 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
881 }
882
883 /**
884 * Gallium CSO for blend state (see pipe_blend_state).
885 */
886 struct iris_blend_state {
887 /** Partial 3DSTATE_PS_BLEND */
888 uint32_t ps_blend[GENX(3DSTATE_PS_BLEND_length)];
889
890 /** Partial BLEND_STATE */
891 uint32_t blend_state[GENX(BLEND_STATE_length) +
892 BRW_MAX_DRAW_BUFFERS * GENX(BLEND_STATE_ENTRY_length)];
893
894 bool alpha_to_coverage; /* for shader key */
895
896 /** Bitfield of whether blending is enabled for RT[i] - for aux resolves */
897 uint8_t blend_enables;
898
899 /** Bitfield of whether color writes are enabled for RT[i] */
900 uint8_t color_write_enables;
901
902 /** Does RT[0] use dual color blending? */
903 bool dual_color_blending;
904 };
905
906 static enum pipe_blendfactor
907 fix_blendfactor(enum pipe_blendfactor f, bool alpha_to_one)
908 {
909 if (alpha_to_one) {
910 if (f == PIPE_BLENDFACTOR_SRC1_ALPHA)
911 return PIPE_BLENDFACTOR_ONE;
912
913 if (f == PIPE_BLENDFACTOR_INV_SRC1_ALPHA)
914 return PIPE_BLENDFACTOR_ZERO;
915 }
916
917 return f;
918 }
919
920 /**
921 * The pipe->create_blend_state() driver hook.
922 *
923 * Translates a pipe_blend_state into iris_blend_state.
924 */
925 static void *
926 iris_create_blend_state(struct pipe_context *ctx,
927 const struct pipe_blend_state *state)
928 {
929 struct iris_blend_state *cso = malloc(sizeof(struct iris_blend_state));
930 uint32_t *blend_entry = cso->blend_state + GENX(BLEND_STATE_length);
931
932 cso->blend_enables = 0;
933 cso->color_write_enables = 0;
934 STATIC_ASSERT(BRW_MAX_DRAW_BUFFERS <= 8);
935
936 cso->alpha_to_coverage = state->alpha_to_coverage;
937
938 bool indep_alpha_blend = false;
939
940 for (int i = 0; i < BRW_MAX_DRAW_BUFFERS; i++) {
941 const struct pipe_rt_blend_state *rt =
942 &state->rt[state->independent_blend_enable ? i : 0];
943
944 enum pipe_blendfactor src_rgb =
945 fix_blendfactor(rt->rgb_src_factor, state->alpha_to_one);
946 enum pipe_blendfactor src_alpha =
947 fix_blendfactor(rt->alpha_src_factor, state->alpha_to_one);
948 enum pipe_blendfactor dst_rgb =
949 fix_blendfactor(rt->rgb_dst_factor, state->alpha_to_one);
950 enum pipe_blendfactor dst_alpha =
951 fix_blendfactor(rt->alpha_dst_factor, state->alpha_to_one);
952
953 if (rt->rgb_func != rt->alpha_func ||
954 src_rgb != src_alpha || dst_rgb != dst_alpha)
955 indep_alpha_blend = true;
956
957 if (rt->blend_enable)
958 cso->blend_enables |= 1u << i;
959
960 if (rt->colormask)
961 cso->color_write_enables |= 1u << i;
962
963 iris_pack_state(GENX(BLEND_STATE_ENTRY), blend_entry, be) {
964 be.LogicOpEnable = state->logicop_enable;
965 be.LogicOpFunction = state->logicop_func;
966
967 be.PreBlendSourceOnlyClampEnable = false;
968 be.ColorClampRange = COLORCLAMP_RTFORMAT;
969 be.PreBlendColorClampEnable = true;
970 be.PostBlendColorClampEnable = true;
971
972 be.ColorBufferBlendEnable = rt->blend_enable;
973
974 be.ColorBlendFunction = rt->rgb_func;
975 be.AlphaBlendFunction = rt->alpha_func;
976 be.SourceBlendFactor = src_rgb;
977 be.SourceAlphaBlendFactor = src_alpha;
978 be.DestinationBlendFactor = dst_rgb;
979 be.DestinationAlphaBlendFactor = dst_alpha;
980
981 be.WriteDisableRed = !(rt->colormask & PIPE_MASK_R);
982 be.WriteDisableGreen = !(rt->colormask & PIPE_MASK_G);
983 be.WriteDisableBlue = !(rt->colormask & PIPE_MASK_B);
984 be.WriteDisableAlpha = !(rt->colormask & PIPE_MASK_A);
985 }
986 blend_entry += GENX(BLEND_STATE_ENTRY_length);
987 }
988
989 iris_pack_command(GENX(3DSTATE_PS_BLEND), cso->ps_blend, pb) {
990 /* pb.HasWriteableRT is filled in at draw time.
991 * pb.AlphaTestEnable is filled in at draw time.
992 *
993 * pb.ColorBufferBlendEnable is filled in at draw time so we can avoid
994 * setting it when dual color blending without an appropriate shader.
995 */
996
997 pb.AlphaToCoverageEnable = state->alpha_to_coverage;
998 pb.IndependentAlphaBlendEnable = indep_alpha_blend;
999
1000 pb.SourceBlendFactor =
1001 fix_blendfactor(state->rt[0].rgb_src_factor, state->alpha_to_one);
1002 pb.SourceAlphaBlendFactor =
1003 fix_blendfactor(state->rt[0].alpha_src_factor, state->alpha_to_one);
1004 pb.DestinationBlendFactor =
1005 fix_blendfactor(state->rt[0].rgb_dst_factor, state->alpha_to_one);
1006 pb.DestinationAlphaBlendFactor =
1007 fix_blendfactor(state->rt[0].alpha_dst_factor, state->alpha_to_one);
1008 }
1009
1010 iris_pack_state(GENX(BLEND_STATE), cso->blend_state, bs) {
1011 bs.AlphaToCoverageEnable = state->alpha_to_coverage;
1012 bs.IndependentAlphaBlendEnable = indep_alpha_blend;
1013 bs.AlphaToOneEnable = state->alpha_to_one;
1014 bs.AlphaToCoverageDitherEnable = state->alpha_to_coverage;
1015 bs.ColorDitherEnable = state->dither;
1016 /* bl.AlphaTestEnable and bs.AlphaTestFunction are filled in later. */
1017 }
1018
1019 cso->dual_color_blending = util_blend_state_is_dual(state, 0);
1020
1021 return cso;
1022 }
1023
1024 /**
1025 * The pipe->bind_blend_state() driver hook.
1026 *
1027 * Bind a blending CSO and flag related dirty bits.
1028 */
1029 static void
1030 iris_bind_blend_state(struct pipe_context *ctx, void *state)
1031 {
1032 struct iris_context *ice = (struct iris_context *) ctx;
1033 struct iris_blend_state *cso = state;
1034
1035 ice->state.cso_blend = cso;
1036 ice->state.blend_enables = cso ? cso->blend_enables : 0;
1037
1038 ice->state.dirty |= IRIS_DIRTY_PS_BLEND;
1039 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1040 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
1041 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_BLEND];
1042 }
1043
1044 /**
1045 * Return true if the FS writes to any color outputs which are not disabled
1046 * via color masking.
1047 */
1048 static bool
1049 has_writeable_rt(const struct iris_blend_state *cso_blend,
1050 const struct shader_info *fs_info)
1051 {
1052 if (!fs_info)
1053 return false;
1054
1055 unsigned rt_outputs = fs_info->outputs_written >> FRAG_RESULT_DATA0;
1056
1057 if (fs_info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_COLOR))
1058 rt_outputs = (1 << BRW_MAX_DRAW_BUFFERS) - 1;
1059
1060 return cso_blend->color_write_enables & rt_outputs;
1061 }
1062
1063 /**
1064 * Gallium CSO for depth, stencil, and alpha testing state.
1065 */
1066 struct iris_depth_stencil_alpha_state {
1067 /** Partial 3DSTATE_WM_DEPTH_STENCIL. */
1068 uint32_t wmds[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
1069
1070 /** Outbound to BLEND_STATE, 3DSTATE_PS_BLEND, COLOR_CALC_STATE. */
1071 struct pipe_alpha_state alpha;
1072
1073 /** Outbound to resolve and cache set tracking. */
1074 bool depth_writes_enabled;
1075 bool stencil_writes_enabled;
1076 };
1077
1078 /**
1079 * The pipe->create_depth_stencil_alpha_state() driver hook.
1080 *
1081 * We encode most of 3DSTATE_WM_DEPTH_STENCIL, and just save off the alpha
1082 * testing state since we need pieces of it in a variety of places.
1083 */
1084 static void *
1085 iris_create_zsa_state(struct pipe_context *ctx,
1086 const struct pipe_depth_stencil_alpha_state *state)
1087 {
1088 struct iris_depth_stencil_alpha_state *cso =
1089 malloc(sizeof(struct iris_depth_stencil_alpha_state));
1090
1091 bool two_sided_stencil = state->stencil[1].enabled;
1092
1093 cso->alpha = state->alpha;
1094 cso->depth_writes_enabled = state->depth.writemask;
1095 cso->stencil_writes_enabled =
1096 state->stencil[0].writemask != 0 ||
1097 (two_sided_stencil && state->stencil[1].writemask != 0);
1098
1099 /* The state tracker needs to optimize away EQUAL writes for us. */
1100 assert(!(state->depth.func == PIPE_FUNC_EQUAL && state->depth.writemask));
1101
1102 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), cso->wmds, wmds) {
1103 wmds.StencilFailOp = state->stencil[0].fail_op;
1104 wmds.StencilPassDepthFailOp = state->stencil[0].zfail_op;
1105 wmds.StencilPassDepthPassOp = state->stencil[0].zpass_op;
1106 wmds.StencilTestFunction =
1107 translate_compare_func(state->stencil[0].func);
1108 wmds.BackfaceStencilFailOp = state->stencil[1].fail_op;
1109 wmds.BackfaceStencilPassDepthFailOp = state->stencil[1].zfail_op;
1110 wmds.BackfaceStencilPassDepthPassOp = state->stencil[1].zpass_op;
1111 wmds.BackfaceStencilTestFunction =
1112 translate_compare_func(state->stencil[1].func);
1113 wmds.DepthTestFunction = translate_compare_func(state->depth.func);
1114 wmds.DoubleSidedStencilEnable = two_sided_stencil;
1115 wmds.StencilTestEnable = state->stencil[0].enabled;
1116 wmds.StencilBufferWriteEnable =
1117 state->stencil[0].writemask != 0 ||
1118 (two_sided_stencil && state->stencil[1].writemask != 0);
1119 wmds.DepthTestEnable = state->depth.enabled;
1120 wmds.DepthBufferWriteEnable = state->depth.writemask;
1121 wmds.StencilTestMask = state->stencil[0].valuemask;
1122 wmds.StencilWriteMask = state->stencil[0].writemask;
1123 wmds.BackfaceStencilTestMask = state->stencil[1].valuemask;
1124 wmds.BackfaceStencilWriteMask = state->stencil[1].writemask;
1125 /* wmds.[Backface]StencilReferenceValue are merged later */
1126 }
1127
1128 return cso;
1129 }
1130
1131 /**
1132 * The pipe->bind_depth_stencil_alpha_state() driver hook.
1133 *
1134 * Bind a depth/stencil/alpha CSO and flag related dirty bits.
1135 */
1136 static void
1137 iris_bind_zsa_state(struct pipe_context *ctx, void *state)
1138 {
1139 struct iris_context *ice = (struct iris_context *) ctx;
1140 struct iris_depth_stencil_alpha_state *old_cso = ice->state.cso_zsa;
1141 struct iris_depth_stencil_alpha_state *new_cso = state;
1142
1143 if (new_cso) {
1144 if (cso_changed(alpha.ref_value))
1145 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
1146
1147 if (cso_changed(alpha.enabled))
1148 ice->state.dirty |= IRIS_DIRTY_PS_BLEND | IRIS_DIRTY_BLEND_STATE;
1149
1150 if (cso_changed(alpha.func))
1151 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1152
1153 if (cso_changed(depth_writes_enabled))
1154 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
1155
1156 ice->state.depth_writes_enabled = new_cso->depth_writes_enabled;
1157 ice->state.stencil_writes_enabled = new_cso->stencil_writes_enabled;
1158 }
1159
1160 ice->state.cso_zsa = new_cso;
1161 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1162 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
1163 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_DEPTH_STENCIL_ALPHA];
1164 }
1165
1166 /**
1167 * Gallium CSO for rasterizer state.
1168 */
1169 struct iris_rasterizer_state {
1170 uint32_t sf[GENX(3DSTATE_SF_length)];
1171 uint32_t clip[GENX(3DSTATE_CLIP_length)];
1172 uint32_t raster[GENX(3DSTATE_RASTER_length)];
1173 uint32_t wm[GENX(3DSTATE_WM_length)];
1174 uint32_t line_stipple[GENX(3DSTATE_LINE_STIPPLE_length)];
1175
1176 uint8_t num_clip_plane_consts;
1177 bool clip_halfz; /* for CC_VIEWPORT */
1178 bool depth_clip_near; /* for CC_VIEWPORT */
1179 bool depth_clip_far; /* for CC_VIEWPORT */
1180 bool flatshade; /* for shader state */
1181 bool flatshade_first; /* for stream output */
1182 bool clamp_fragment_color; /* for shader state */
1183 bool light_twoside; /* for shader state */
1184 bool rasterizer_discard; /* for 3DSTATE_STREAMOUT and 3DSTATE_CLIP */
1185 bool half_pixel_center; /* for 3DSTATE_MULTISAMPLE */
1186 bool line_stipple_enable;
1187 bool poly_stipple_enable;
1188 bool multisample;
1189 bool force_persample_interp;
1190 bool conservative_rasterization;
1191 bool fill_mode_point_or_line;
1192 enum pipe_sprite_coord_mode sprite_coord_mode; /* PIPE_SPRITE_* */
1193 uint16_t sprite_coord_enable;
1194 };
1195
1196 static float
1197 get_line_width(const struct pipe_rasterizer_state *state)
1198 {
1199 float line_width = state->line_width;
1200
1201 /* From the OpenGL 4.4 spec:
1202 *
1203 * "The actual width of non-antialiased lines is determined by rounding
1204 * the supplied width to the nearest integer, then clamping it to the
1205 * implementation-dependent maximum non-antialiased line width."
1206 */
1207 if (!state->multisample && !state->line_smooth)
1208 line_width = roundf(state->line_width);
1209
1210 if (!state->multisample && state->line_smooth && line_width < 1.5f) {
1211 /* For 1 pixel line thickness or less, the general anti-aliasing
1212 * algorithm gives up, and a garbage line is generated. Setting a
1213 * Line Width of 0.0 specifies the rasterization of the "thinnest"
1214 * (one-pixel-wide), non-antialiased lines.
1215 *
1216 * Lines rendered with zero Line Width are rasterized using the
1217 * "Grid Intersection Quantization" rules as specified by the
1218 * "Zero-Width (Cosmetic) Line Rasterization" section of the docs.
1219 */
1220 line_width = 0.0f;
1221 }
1222
1223 return line_width;
1224 }
1225
1226 /**
1227 * The pipe->create_rasterizer_state() driver hook.
1228 */
1229 static void *
1230 iris_create_rasterizer_state(struct pipe_context *ctx,
1231 const struct pipe_rasterizer_state *state)
1232 {
1233 struct iris_rasterizer_state *cso =
1234 malloc(sizeof(struct iris_rasterizer_state));
1235
1236 cso->multisample = state->multisample;
1237 cso->force_persample_interp = state->force_persample_interp;
1238 cso->clip_halfz = state->clip_halfz;
1239 cso->depth_clip_near = state->depth_clip_near;
1240 cso->depth_clip_far = state->depth_clip_far;
1241 cso->flatshade = state->flatshade;
1242 cso->flatshade_first = state->flatshade_first;
1243 cso->clamp_fragment_color = state->clamp_fragment_color;
1244 cso->light_twoside = state->light_twoside;
1245 cso->rasterizer_discard = state->rasterizer_discard;
1246 cso->half_pixel_center = state->half_pixel_center;
1247 cso->sprite_coord_mode = state->sprite_coord_mode;
1248 cso->sprite_coord_enable = state->sprite_coord_enable;
1249 cso->line_stipple_enable = state->line_stipple_enable;
1250 cso->poly_stipple_enable = state->poly_stipple_enable;
1251 cso->conservative_rasterization =
1252 state->conservative_raster_mode == PIPE_CONSERVATIVE_RASTER_POST_SNAP;
1253
1254 cso->fill_mode_point_or_line =
1255 state->fill_front == PIPE_POLYGON_MODE_LINE ||
1256 state->fill_front == PIPE_POLYGON_MODE_POINT ||
1257 state->fill_back == PIPE_POLYGON_MODE_LINE ||
1258 state->fill_back == PIPE_POLYGON_MODE_POINT;
1259
1260 if (state->clip_plane_enable != 0)
1261 cso->num_clip_plane_consts = util_logbase2(state->clip_plane_enable) + 1;
1262 else
1263 cso->num_clip_plane_consts = 0;
1264
1265 float line_width = get_line_width(state);
1266
1267 iris_pack_command(GENX(3DSTATE_SF), cso->sf, sf) {
1268 sf.StatisticsEnable = true;
1269 sf.ViewportTransformEnable = true;
1270 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
1271 sf.LineEndCapAntialiasingRegionWidth =
1272 state->line_smooth ? _10pixels : _05pixels;
1273 sf.LastPixelEnable = state->line_last_pixel;
1274 sf.LineWidth = line_width;
1275 sf.SmoothPointEnable = (state->point_smooth || state->multisample) &&
1276 !state->point_quad_rasterization;
1277 sf.PointWidthSource = state->point_size_per_vertex ? Vertex : State;
1278 sf.PointWidth = state->point_size;
1279
1280 if (state->flatshade_first) {
1281 sf.TriangleFanProvokingVertexSelect = 1;
1282 } else {
1283 sf.TriangleStripListProvokingVertexSelect = 2;
1284 sf.TriangleFanProvokingVertexSelect = 2;
1285 sf.LineStripListProvokingVertexSelect = 1;
1286 }
1287 }
1288
1289 iris_pack_command(GENX(3DSTATE_RASTER), cso->raster, rr) {
1290 rr.FrontWinding = state->front_ccw ? CounterClockwise : Clockwise;
1291 rr.CullMode = translate_cull_mode(state->cull_face);
1292 rr.FrontFaceFillMode = translate_fill_mode(state->fill_front);
1293 rr.BackFaceFillMode = translate_fill_mode(state->fill_back);
1294 rr.DXMultisampleRasterizationEnable = state->multisample;
1295 rr.GlobalDepthOffsetEnableSolid = state->offset_tri;
1296 rr.GlobalDepthOffsetEnableWireframe = state->offset_line;
1297 rr.GlobalDepthOffsetEnablePoint = state->offset_point;
1298 rr.GlobalDepthOffsetConstant = state->offset_units * 2;
1299 rr.GlobalDepthOffsetScale = state->offset_scale;
1300 rr.GlobalDepthOffsetClamp = state->offset_clamp;
1301 rr.SmoothPointEnable = state->point_smooth;
1302 rr.AntialiasingEnable = state->line_smooth;
1303 rr.ScissorRectangleEnable = state->scissor;
1304 #if GEN_GEN >= 9
1305 rr.ViewportZNearClipTestEnable = state->depth_clip_near;
1306 rr.ViewportZFarClipTestEnable = state->depth_clip_far;
1307 rr.ConservativeRasterizationEnable =
1308 cso->conservative_rasterization;
1309 #else
1310 rr.ViewportZClipTestEnable = (state->depth_clip_near || state->depth_clip_far);
1311 #endif
1312 }
1313
1314 iris_pack_command(GENX(3DSTATE_CLIP), cso->clip, cl) {
1315 /* cl.NonPerspectiveBarycentricEnable is filled in at draw time from
1316 * the FS program; cl.ForceZeroRTAIndexEnable is filled in from the FB.
1317 */
1318 cl.EarlyCullEnable = true;
1319 cl.UserClipDistanceClipTestEnableBitmask = state->clip_plane_enable;
1320 cl.ForceUserClipDistanceClipTestEnableBitmask = true;
1321 cl.APIMode = state->clip_halfz ? APIMODE_D3D : APIMODE_OGL;
1322 cl.GuardbandClipTestEnable = true;
1323 cl.ClipEnable = true;
1324 cl.MinimumPointWidth = 0.125;
1325 cl.MaximumPointWidth = 255.875;
1326
1327 if (state->flatshade_first) {
1328 cl.TriangleFanProvokingVertexSelect = 1;
1329 } else {
1330 cl.TriangleStripListProvokingVertexSelect = 2;
1331 cl.TriangleFanProvokingVertexSelect = 2;
1332 cl.LineStripListProvokingVertexSelect = 1;
1333 }
1334 }
1335
1336 iris_pack_command(GENX(3DSTATE_WM), cso->wm, wm) {
1337 /* wm.BarycentricInterpolationMode and wm.EarlyDepthStencilControl are
1338 * filled in at draw time from the FS program.
1339 */
1340 wm.LineAntialiasingRegionWidth = _10pixels;
1341 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1342 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1343 wm.LineStippleEnable = state->line_stipple_enable;
1344 wm.PolygonStippleEnable = state->poly_stipple_enable;
1345 }
1346
1347 /* Remap from 0..255 back to 1..256 */
1348 const unsigned line_stipple_factor = state->line_stipple_factor + 1;
1349
1350 iris_pack_command(GENX(3DSTATE_LINE_STIPPLE), cso->line_stipple, line) {
1351 line.LineStipplePattern = state->line_stipple_pattern;
1352 line.LineStippleInverseRepeatCount = 1.0f / line_stipple_factor;
1353 line.LineStippleRepeatCount = line_stipple_factor;
1354 }
1355
1356 return cso;
1357 }
1358
1359 /**
1360 * The pipe->bind_rasterizer_state() driver hook.
1361 *
1362 * Bind a rasterizer CSO and flag related dirty bits.
1363 */
1364 static void
1365 iris_bind_rasterizer_state(struct pipe_context *ctx, void *state)
1366 {
1367 struct iris_context *ice = (struct iris_context *) ctx;
1368 struct iris_rasterizer_state *old_cso = ice->state.cso_rast;
1369 struct iris_rasterizer_state *new_cso = state;
1370
1371 if (new_cso) {
1372 /* Try to avoid re-emitting 3DSTATE_LINE_STIPPLE, it's non-pipelined */
1373 if (cso_changed_memcmp(line_stipple))
1374 ice->state.dirty |= IRIS_DIRTY_LINE_STIPPLE;
1375
1376 if (cso_changed(half_pixel_center))
1377 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
1378
1379 if (cso_changed(line_stipple_enable) || cso_changed(poly_stipple_enable))
1380 ice->state.dirty |= IRIS_DIRTY_WM;
1381
1382 if (cso_changed(rasterizer_discard))
1383 ice->state.dirty |= IRIS_DIRTY_STREAMOUT | IRIS_DIRTY_CLIP;
1384
1385 if (cso_changed(flatshade_first))
1386 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
1387
1388 if (cso_changed(depth_clip_near) || cso_changed(depth_clip_far) ||
1389 cso_changed(clip_halfz))
1390 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1391
1392 if (cso_changed(sprite_coord_enable) ||
1393 cso_changed(sprite_coord_mode) ||
1394 cso_changed(light_twoside))
1395 ice->state.dirty |= IRIS_DIRTY_SBE;
1396
1397 if (cso_changed(conservative_rasterization))
1398 ice->state.dirty |= IRIS_DIRTY_FS;
1399 }
1400
1401 ice->state.cso_rast = new_cso;
1402 ice->state.dirty |= IRIS_DIRTY_RASTER;
1403 ice->state.dirty |= IRIS_DIRTY_CLIP;
1404 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_RASTERIZER];
1405 }
1406
1407 /**
1408 * Return true if the given wrap mode requires the border color to exist.
1409 *
1410 * (We can skip uploading it if the sampler isn't going to use it.)
1411 */
1412 static bool
1413 wrap_mode_needs_border_color(unsigned wrap_mode)
1414 {
1415 return wrap_mode == TCM_CLAMP_BORDER || wrap_mode == TCM_HALF_BORDER;
1416 }
1417
1418 /**
1419 * Gallium CSO for sampler state.
1420 */
1421 struct iris_sampler_state {
1422 union pipe_color_union border_color;
1423 bool needs_border_color;
1424
1425 uint32_t sampler_state[GENX(SAMPLER_STATE_length)];
1426 };
1427
1428 /**
1429 * The pipe->create_sampler_state() driver hook.
1430 *
1431 * We fill out SAMPLER_STATE (except for the border color pointer), and
1432 * store that on the CPU. It doesn't make sense to upload it to a GPU
1433 * buffer object yet, because 3DSTATE_SAMPLER_STATE_POINTERS requires
1434 * all bound sampler states to be in contiguous memor.
1435 */
1436 static void *
1437 iris_create_sampler_state(struct pipe_context *ctx,
1438 const struct pipe_sampler_state *state)
1439 {
1440 struct iris_sampler_state *cso = CALLOC_STRUCT(iris_sampler_state);
1441
1442 if (!cso)
1443 return NULL;
1444
1445 STATIC_ASSERT(PIPE_TEX_FILTER_NEAREST == MAPFILTER_NEAREST);
1446 STATIC_ASSERT(PIPE_TEX_FILTER_LINEAR == MAPFILTER_LINEAR);
1447
1448 unsigned wrap_s = translate_wrap(state->wrap_s);
1449 unsigned wrap_t = translate_wrap(state->wrap_t);
1450 unsigned wrap_r = translate_wrap(state->wrap_r);
1451
1452 memcpy(&cso->border_color, &state->border_color, sizeof(cso->border_color));
1453
1454 cso->needs_border_color = wrap_mode_needs_border_color(wrap_s) ||
1455 wrap_mode_needs_border_color(wrap_t) ||
1456 wrap_mode_needs_border_color(wrap_r);
1457
1458 float min_lod = state->min_lod;
1459 unsigned mag_img_filter = state->mag_img_filter;
1460
1461 // XXX: explain this code ported from ilo...I don't get it at all...
1462 if (state->min_mip_filter == PIPE_TEX_MIPFILTER_NONE &&
1463 state->min_lod > 0.0f) {
1464 min_lod = 0.0f;
1465 mag_img_filter = state->min_img_filter;
1466 }
1467
1468 iris_pack_state(GENX(SAMPLER_STATE), cso->sampler_state, samp) {
1469 samp.TCXAddressControlMode = wrap_s;
1470 samp.TCYAddressControlMode = wrap_t;
1471 samp.TCZAddressControlMode = wrap_r;
1472 samp.CubeSurfaceControlMode = state->seamless_cube_map;
1473 samp.NonnormalizedCoordinateEnable = !state->normalized_coords;
1474 samp.MinModeFilter = state->min_img_filter;
1475 samp.MagModeFilter = mag_img_filter;
1476 samp.MipModeFilter = translate_mip_filter(state->min_mip_filter);
1477 samp.MaximumAnisotropy = RATIO21;
1478
1479 if (state->max_anisotropy >= 2) {
1480 if (state->min_img_filter == PIPE_TEX_FILTER_LINEAR) {
1481 samp.MinModeFilter = MAPFILTER_ANISOTROPIC;
1482 samp.AnisotropicAlgorithm = EWAApproximation;
1483 }
1484
1485 if (state->mag_img_filter == PIPE_TEX_FILTER_LINEAR)
1486 samp.MagModeFilter = MAPFILTER_ANISOTROPIC;
1487
1488 samp.MaximumAnisotropy =
1489 MIN2((state->max_anisotropy - 2) / 2, RATIO161);
1490 }
1491
1492 /* Set address rounding bits if not using nearest filtering. */
1493 if (state->min_img_filter != PIPE_TEX_FILTER_NEAREST) {
1494 samp.UAddressMinFilterRoundingEnable = true;
1495 samp.VAddressMinFilterRoundingEnable = true;
1496 samp.RAddressMinFilterRoundingEnable = true;
1497 }
1498
1499 if (state->mag_img_filter != PIPE_TEX_FILTER_NEAREST) {
1500 samp.UAddressMagFilterRoundingEnable = true;
1501 samp.VAddressMagFilterRoundingEnable = true;
1502 samp.RAddressMagFilterRoundingEnable = true;
1503 }
1504
1505 if (state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE)
1506 samp.ShadowFunction = translate_shadow_func(state->compare_func);
1507
1508 const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
1509
1510 samp.LODPreClampMode = CLAMP_MODE_OGL;
1511 samp.MinLOD = CLAMP(min_lod, 0, hw_max_lod);
1512 samp.MaxLOD = CLAMP(state->max_lod, 0, hw_max_lod);
1513 samp.TextureLODBias = CLAMP(state->lod_bias, -16, 15);
1514
1515 /* .BorderColorPointer is filled in by iris_bind_sampler_states. */
1516 }
1517
1518 return cso;
1519 }
1520
1521 /**
1522 * The pipe->bind_sampler_states() driver hook.
1523 */
1524 static void
1525 iris_bind_sampler_states(struct pipe_context *ctx,
1526 enum pipe_shader_type p_stage,
1527 unsigned start, unsigned count,
1528 void **states)
1529 {
1530 struct iris_context *ice = (struct iris_context *) ctx;
1531 gl_shader_stage stage = stage_from_pipe(p_stage);
1532 struct iris_shader_state *shs = &ice->state.shaders[stage];
1533
1534 assert(start + count <= IRIS_MAX_TEXTURE_SAMPLERS);
1535
1536 for (int i = 0; i < count; i++) {
1537 shs->samplers[start + i] = states[i];
1538 }
1539
1540 ice->state.dirty |= IRIS_DIRTY_SAMPLER_STATES_VS << stage;
1541 }
1542
1543 /**
1544 * Upload the sampler states into a contiguous area of GPU memory, for
1545 * for 3DSTATE_SAMPLER_STATE_POINTERS_*.
1546 *
1547 * Also fill out the border color state pointers.
1548 */
1549 static void
1550 iris_upload_sampler_states(struct iris_context *ice, gl_shader_stage stage)
1551 {
1552 struct iris_shader_state *shs = &ice->state.shaders[stage];
1553 const struct shader_info *info = iris_get_shader_info(ice, stage);
1554
1555 /* We assume the state tracker will call pipe->bind_sampler_states()
1556 * if the program's number of textures changes.
1557 */
1558 unsigned count = info ? util_last_bit(info->textures_used) : 0;
1559
1560 if (!count)
1561 return;
1562
1563 /* Assemble the SAMPLER_STATEs into a contiguous table that lives
1564 * in the dynamic state memory zone, so we can point to it via the
1565 * 3DSTATE_SAMPLER_STATE_POINTERS_* commands.
1566 */
1567 unsigned size = count * 4 * GENX(SAMPLER_STATE_length);
1568 uint32_t *map =
1569 upload_state(ice->state.dynamic_uploader, &shs->sampler_table, size, 32);
1570 if (unlikely(!map))
1571 return;
1572
1573 struct pipe_resource *res = shs->sampler_table.res;
1574 shs->sampler_table.offset +=
1575 iris_bo_offset_from_base_address(iris_resource_bo(res));
1576
1577 iris_record_state_size(ice->state.sizes, shs->sampler_table.offset, size);
1578
1579 /* Make sure all land in the same BO */
1580 iris_border_color_pool_reserve(ice, IRIS_MAX_TEXTURE_SAMPLERS);
1581
1582 ice->state.need_border_colors &= ~(1 << stage);
1583
1584 for (int i = 0; i < count; i++) {
1585 struct iris_sampler_state *state = shs->samplers[i];
1586 struct iris_sampler_view *tex = shs->textures[i];
1587
1588 if (!state) {
1589 memset(map, 0, 4 * GENX(SAMPLER_STATE_length));
1590 } else if (!state->needs_border_color) {
1591 memcpy(map, state->sampler_state, 4 * GENX(SAMPLER_STATE_length));
1592 } else {
1593 ice->state.need_border_colors |= 1 << stage;
1594
1595 /* We may need to swizzle the border color for format faking.
1596 * A/LA formats are faked as R/RG with 000R or R00G swizzles.
1597 * This means we need to move the border color's A channel into
1598 * the R or G channels so that those read swizzles will move it
1599 * back into A.
1600 */
1601 union pipe_color_union *color = &state->border_color;
1602 union pipe_color_union tmp;
1603 if (tex) {
1604 enum pipe_format internal_format = tex->res->internal_format;
1605
1606 if (util_format_is_alpha(internal_format)) {
1607 unsigned char swz[4] = {
1608 PIPE_SWIZZLE_W, PIPE_SWIZZLE_0,
1609 PIPE_SWIZZLE_0, PIPE_SWIZZLE_0
1610 };
1611 util_format_apply_color_swizzle(&tmp, color, swz, true);
1612 color = &tmp;
1613 } else if (util_format_is_luminance_alpha(internal_format) &&
1614 internal_format != PIPE_FORMAT_L8A8_SRGB) {
1615 unsigned char swz[4] = {
1616 PIPE_SWIZZLE_X, PIPE_SWIZZLE_W,
1617 PIPE_SWIZZLE_0, PIPE_SWIZZLE_0
1618 };
1619 util_format_apply_color_swizzle(&tmp, color, swz, true);
1620 color = &tmp;
1621 }
1622 }
1623
1624 /* Stream out the border color and merge the pointer. */
1625 uint32_t offset = iris_upload_border_color(ice, color);
1626
1627 uint32_t dynamic[GENX(SAMPLER_STATE_length)];
1628 iris_pack_state(GENX(SAMPLER_STATE), dynamic, dyns) {
1629 dyns.BorderColorPointer = offset;
1630 }
1631
1632 for (uint32_t j = 0; j < GENX(SAMPLER_STATE_length); j++)
1633 map[j] = state->sampler_state[j] | dynamic[j];
1634 }
1635
1636 map += GENX(SAMPLER_STATE_length);
1637 }
1638 }
1639
1640 static enum isl_channel_select
1641 fmt_swizzle(const struct iris_format_info *fmt, enum pipe_swizzle swz)
1642 {
1643 switch (swz) {
1644 case PIPE_SWIZZLE_X: return fmt->swizzle.r;
1645 case PIPE_SWIZZLE_Y: return fmt->swizzle.g;
1646 case PIPE_SWIZZLE_Z: return fmt->swizzle.b;
1647 case PIPE_SWIZZLE_W: return fmt->swizzle.a;
1648 case PIPE_SWIZZLE_1: return SCS_ONE;
1649 case PIPE_SWIZZLE_0: return SCS_ZERO;
1650 default: unreachable("invalid swizzle");
1651 }
1652 }
1653
1654 static void
1655 fill_buffer_surface_state(struct isl_device *isl_dev,
1656 struct iris_resource *res,
1657 void *map,
1658 enum isl_format format,
1659 struct isl_swizzle swizzle,
1660 unsigned offset,
1661 unsigned size)
1662 {
1663 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
1664 const unsigned cpp = format == ISL_FORMAT_RAW ? 1 : fmtl->bpb / 8;
1665
1666 /* The ARB_texture_buffer_specification says:
1667 *
1668 * "The number of texels in the buffer texture's texel array is given by
1669 *
1670 * floor(<buffer_size> / (<components> * sizeof(<base_type>)),
1671 *
1672 * where <buffer_size> is the size of the buffer object, in basic
1673 * machine units and <components> and <base_type> are the element count
1674 * and base data type for elements, as specified in Table X.1. The
1675 * number of texels in the texel array is then clamped to the
1676 * implementation-dependent limit MAX_TEXTURE_BUFFER_SIZE_ARB."
1677 *
1678 * We need to clamp the size in bytes to MAX_TEXTURE_BUFFER_SIZE * stride,
1679 * so that when ISL divides by stride to obtain the number of texels, that
1680 * texel count is clamped to MAX_TEXTURE_BUFFER_SIZE.
1681 */
1682 unsigned final_size =
1683 MIN3(size, res->bo->size - res->offset - offset,
1684 IRIS_MAX_TEXTURE_BUFFER_SIZE * cpp);
1685
1686 isl_buffer_fill_state(isl_dev, map,
1687 .address = res->bo->gtt_offset + res->offset + offset,
1688 .size_B = final_size,
1689 .format = format,
1690 .swizzle = swizzle,
1691 .stride_B = cpp,
1692 .mocs = mocs(res->bo));
1693 }
1694
1695 #define SURFACE_STATE_ALIGNMENT 64
1696
1697 /**
1698 * Allocate several contiguous SURFACE_STATE structures, one for each
1699 * supported auxiliary surface mode.
1700 */
1701 static void *
1702 alloc_surface_states(struct u_upload_mgr *mgr,
1703 struct iris_state_ref *ref,
1704 unsigned aux_usages)
1705 {
1706 const unsigned surf_size = 4 * GENX(RENDER_SURFACE_STATE_length);
1707
1708 /* If this changes, update this to explicitly align pointers */
1709 STATIC_ASSERT(surf_size == SURFACE_STATE_ALIGNMENT);
1710
1711 assert(aux_usages != 0);
1712
1713 void *map =
1714 upload_state(mgr, ref, util_bitcount(aux_usages) * surf_size,
1715 SURFACE_STATE_ALIGNMENT);
1716
1717 ref->offset += iris_bo_offset_from_base_address(iris_resource_bo(ref->res));
1718
1719 return map;
1720 }
1721
1722 static void
1723 fill_surface_state(struct isl_device *isl_dev,
1724 void *map,
1725 struct iris_resource *res,
1726 struct isl_view *view,
1727 unsigned aux_usage)
1728 {
1729 struct isl_surf_fill_state_info f = {
1730 .surf = &res->surf,
1731 .view = view,
1732 .mocs = mocs(res->bo),
1733 .address = res->bo->gtt_offset + res->offset,
1734 };
1735
1736 if (aux_usage != ISL_AUX_USAGE_NONE) {
1737 f.aux_surf = &res->aux.surf;
1738 f.aux_usage = aux_usage;
1739 f.aux_address = res->aux.bo->gtt_offset + res->aux.offset;
1740
1741 struct iris_bo *clear_bo = NULL;
1742 uint64_t clear_offset = 0;
1743 f.clear_color =
1744 iris_resource_get_clear_color(res, &clear_bo, &clear_offset);
1745 if (clear_bo) {
1746 f.clear_address = clear_bo->gtt_offset + clear_offset;
1747 f.use_clear_address = isl_dev->info->gen > 9;
1748 }
1749 }
1750
1751 isl_surf_fill_state_s(isl_dev, map, &f);
1752 }
1753
1754 /**
1755 * The pipe->create_sampler_view() driver hook.
1756 */
1757 static struct pipe_sampler_view *
1758 iris_create_sampler_view(struct pipe_context *ctx,
1759 struct pipe_resource *tex,
1760 const struct pipe_sampler_view *tmpl)
1761 {
1762 struct iris_context *ice = (struct iris_context *) ctx;
1763 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1764 const struct gen_device_info *devinfo = &screen->devinfo;
1765 struct iris_sampler_view *isv = calloc(1, sizeof(struct iris_sampler_view));
1766
1767 if (!isv)
1768 return NULL;
1769
1770 /* initialize base object */
1771 isv->base = *tmpl;
1772 isv->base.context = ctx;
1773 isv->base.texture = NULL;
1774 pipe_reference_init(&isv->base.reference, 1);
1775 pipe_resource_reference(&isv->base.texture, tex);
1776
1777 if (util_format_is_depth_or_stencil(tmpl->format)) {
1778 struct iris_resource *zres, *sres;
1779 const struct util_format_description *desc =
1780 util_format_description(tmpl->format);
1781
1782 iris_get_depth_stencil_resources(tex, &zres, &sres);
1783
1784 tex = util_format_has_depth(desc) ? &zres->base : &sres->base;
1785 }
1786
1787 isv->res = (struct iris_resource *) tex;
1788
1789 void *map = alloc_surface_states(ice->state.surface_uploader,
1790 &isv->surface_state,
1791 isv->res->aux.sampler_usages);
1792 if (!unlikely(map))
1793 return NULL;
1794
1795 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_TEXTURE_BIT;
1796
1797 if (isv->base.target == PIPE_TEXTURE_CUBE ||
1798 isv->base.target == PIPE_TEXTURE_CUBE_ARRAY)
1799 usage |= ISL_SURF_USAGE_CUBE_BIT;
1800
1801 const struct iris_format_info fmt =
1802 iris_format_for_usage(devinfo, tmpl->format, usage);
1803
1804 isv->clear_color = isv->res->aux.clear_color;
1805
1806 isv->view = (struct isl_view) {
1807 .format = fmt.fmt,
1808 .swizzle = (struct isl_swizzle) {
1809 .r = fmt_swizzle(&fmt, tmpl->swizzle_r),
1810 .g = fmt_swizzle(&fmt, tmpl->swizzle_g),
1811 .b = fmt_swizzle(&fmt, tmpl->swizzle_b),
1812 .a = fmt_swizzle(&fmt, tmpl->swizzle_a),
1813 },
1814 .usage = usage,
1815 };
1816
1817 /* Fill out SURFACE_STATE for this view. */
1818 if (tmpl->target != PIPE_BUFFER) {
1819 isv->view.base_level = tmpl->u.tex.first_level;
1820 isv->view.levels = tmpl->u.tex.last_level - tmpl->u.tex.first_level + 1;
1821 // XXX: do I need to port f9fd0cf4790cb2a530e75d1a2206dbb9d8af7cb2?
1822 isv->view.base_array_layer = tmpl->u.tex.first_layer;
1823 isv->view.array_len =
1824 tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
1825
1826 unsigned aux_modes = isv->res->aux.sampler_usages;
1827 while (aux_modes) {
1828 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
1829
1830 /* If we have a multisampled depth buffer, do not create a sampler
1831 * surface state with HiZ.
1832 */
1833 fill_surface_state(&screen->isl_dev, map, isv->res, &isv->view,
1834 aux_usage);
1835
1836 map += SURFACE_STATE_ALIGNMENT;
1837 }
1838 } else {
1839 fill_buffer_surface_state(&screen->isl_dev, isv->res, map,
1840 isv->view.format, isv->view.swizzle,
1841 tmpl->u.buf.offset, tmpl->u.buf.size);
1842 }
1843
1844 return &isv->base;
1845 }
1846
1847 static void
1848 iris_sampler_view_destroy(struct pipe_context *ctx,
1849 struct pipe_sampler_view *state)
1850 {
1851 struct iris_sampler_view *isv = (void *) state;
1852 pipe_resource_reference(&state->texture, NULL);
1853 pipe_resource_reference(&isv->surface_state.res, NULL);
1854 free(isv);
1855 }
1856
1857 /**
1858 * The pipe->create_surface() driver hook.
1859 *
1860 * In Gallium nomenclature, "surfaces" are a view of a resource that
1861 * can be bound as a render target or depth/stencil buffer.
1862 */
1863 static struct pipe_surface *
1864 iris_create_surface(struct pipe_context *ctx,
1865 struct pipe_resource *tex,
1866 const struct pipe_surface *tmpl)
1867 {
1868 struct iris_context *ice = (struct iris_context *) ctx;
1869 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1870 const struct gen_device_info *devinfo = &screen->devinfo;
1871 struct iris_surface *surf = calloc(1, sizeof(struct iris_surface));
1872 struct pipe_surface *psurf = &surf->base;
1873 struct iris_resource *res = (struct iris_resource *) tex;
1874
1875 if (!surf)
1876 return NULL;
1877
1878 pipe_reference_init(&psurf->reference, 1);
1879 pipe_resource_reference(&psurf->texture, tex);
1880 psurf->context = ctx;
1881 psurf->format = tmpl->format;
1882 psurf->width = tex->width0;
1883 psurf->height = tex->height0;
1884 psurf->texture = tex;
1885 psurf->u.tex.first_layer = tmpl->u.tex.first_layer;
1886 psurf->u.tex.last_layer = tmpl->u.tex.last_layer;
1887 psurf->u.tex.level = tmpl->u.tex.level;
1888
1889 isl_surf_usage_flags_t usage = 0;
1890 if (tmpl->writable)
1891 usage = ISL_SURF_USAGE_STORAGE_BIT;
1892 else if (util_format_is_depth_or_stencil(tmpl->format))
1893 usage = ISL_SURF_USAGE_DEPTH_BIT;
1894 else
1895 usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
1896
1897 const struct iris_format_info fmt =
1898 iris_format_for_usage(devinfo, psurf->format, usage);
1899
1900 if ((usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) &&
1901 !isl_format_supports_rendering(devinfo, fmt.fmt)) {
1902 /* Framebuffer validation will reject this invalid case, but it
1903 * hasn't had the opportunity yet. In the meantime, we need to
1904 * avoid hitting ISL asserts about unsupported formats below.
1905 */
1906 free(surf);
1907 return NULL;
1908 }
1909
1910 struct isl_view *view = &surf->view;
1911 *view = (struct isl_view) {
1912 .format = fmt.fmt,
1913 .base_level = tmpl->u.tex.level,
1914 .levels = 1,
1915 .base_array_layer = tmpl->u.tex.first_layer,
1916 .array_len = tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1,
1917 .swizzle = ISL_SWIZZLE_IDENTITY,
1918 .usage = usage,
1919 };
1920
1921 surf->clear_color = res->aux.clear_color;
1922
1923 /* Bail early for depth/stencil - we don't want SURFACE_STATE for them. */
1924 if (res->surf.usage & (ISL_SURF_USAGE_DEPTH_BIT |
1925 ISL_SURF_USAGE_STENCIL_BIT))
1926 return psurf;
1927
1928
1929 void *map = alloc_surface_states(ice->state.surface_uploader,
1930 &surf->surface_state,
1931 res->aux.possible_usages);
1932 if (!unlikely(map))
1933 return NULL;
1934
1935 if (!isl_format_is_compressed(res->surf.format)) {
1936 /* This is a normal surface. Fill out a SURFACE_STATE for each possible
1937 * auxiliary surface mode and return the pipe_surface.
1938 */
1939 unsigned aux_modes = res->aux.possible_usages;
1940 while (aux_modes) {
1941 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
1942
1943 fill_surface_state(&screen->isl_dev, map, res, view, aux_usage);
1944
1945 map += SURFACE_STATE_ALIGNMENT;
1946 }
1947
1948 return psurf;
1949 }
1950
1951 /* The resource has a compressed format, which is not renderable, but we
1952 * have a renderable view format. We must be attempting to upload blocks
1953 * of compressed data via an uncompressed view.
1954 *
1955 * In this case, we can assume there are no auxiliary buffers, a single
1956 * miplevel, and that the resource is single-sampled. Gallium may try
1957 * and create an uncompressed view with multiple layers, however.
1958 */
1959 assert(!isl_format_is_compressed(fmt.fmt));
1960 assert(res->aux.possible_usages == 1 << ISL_AUX_USAGE_NONE);
1961 assert(res->surf.samples == 1);
1962 assert(view->levels == 1);
1963
1964 struct isl_surf isl_surf;
1965 uint32_t offset_B = 0, tile_x_sa = 0, tile_y_sa = 0;
1966
1967 if (view->base_level > 0) {
1968 /* We can't rely on the hardware's miplevel selection with such
1969 * a substantial lie about the format, so we select a single image
1970 * using the Tile X/Y Offset fields. In this case, we can't handle
1971 * multiple array slices.
1972 *
1973 * On Broadwell, HALIGN and VALIGN are specified in pixels and are
1974 * hard-coded to align to exactly the block size of the compressed
1975 * texture. This means that, when reinterpreted as a non-compressed
1976 * texture, the tile offsets may be anything and we can't rely on
1977 * X/Y Offset.
1978 *
1979 * Return NULL to force the state tracker to take fallback paths.
1980 */
1981 if (view->array_len > 1 || GEN_GEN == 8)
1982 return NULL;
1983
1984 const bool is_3d = res->surf.dim == ISL_SURF_DIM_3D;
1985 isl_surf_get_image_surf(&screen->isl_dev, &res->surf,
1986 view->base_level,
1987 is_3d ? 0 : view->base_array_layer,
1988 is_3d ? view->base_array_layer : 0,
1989 &isl_surf,
1990 &offset_B, &tile_x_sa, &tile_y_sa);
1991
1992 /* We use address and tile offsets to access a single level/layer
1993 * as a subimage, so reset level/layer so it doesn't offset again.
1994 */
1995 view->base_array_layer = 0;
1996 view->base_level = 0;
1997 } else {
1998 /* Level 0 doesn't require tile offsets, and the hardware can find
1999 * array slices using QPitch even with the format override, so we
2000 * can allow layers in this case. Copy the original ISL surface.
2001 */
2002 memcpy(&isl_surf, &res->surf, sizeof(isl_surf));
2003 }
2004
2005 /* Scale down the image dimensions by the block size. */
2006 const struct isl_format_layout *fmtl =
2007 isl_format_get_layout(res->surf.format);
2008 isl_surf.format = fmt.fmt;
2009 isl_surf.logical_level0_px.width =
2010 DIV_ROUND_UP(isl_surf.logical_level0_px.width, fmtl->bw);
2011 isl_surf.logical_level0_px.height =
2012 DIV_ROUND_UP(isl_surf.logical_level0_px.height, fmtl->bh);
2013 isl_surf.phys_level0_sa.width /= fmtl->bw;
2014 isl_surf.phys_level0_sa.height /= fmtl->bh;
2015 tile_x_sa /= fmtl->bw;
2016 tile_y_sa /= fmtl->bh;
2017
2018 psurf->width = isl_surf.logical_level0_px.width;
2019 psurf->height = isl_surf.logical_level0_px.height;
2020
2021 struct isl_surf_fill_state_info f = {
2022 .surf = &isl_surf,
2023 .view = view,
2024 .mocs = mocs(res->bo),
2025 .address = res->bo->gtt_offset + offset_B,
2026 .x_offset_sa = tile_x_sa,
2027 .y_offset_sa = tile_y_sa,
2028 };
2029
2030 isl_surf_fill_state_s(&screen->isl_dev, map, &f);
2031 return psurf;
2032 }
2033
2034 #if GEN_GEN < 9
2035 static void
2036 fill_default_image_param(struct brw_image_param *param)
2037 {
2038 memset(param, 0, sizeof(*param));
2039 /* Set the swizzling shifts to all-ones to effectively disable swizzling --
2040 * See emit_address_calculation() in brw_fs_surface_builder.cpp for a more
2041 * detailed explanation of these parameters.
2042 */
2043 param->swizzling[0] = 0xff;
2044 param->swizzling[1] = 0xff;
2045 }
2046
2047 static void
2048 fill_buffer_image_param(struct brw_image_param *param,
2049 enum pipe_format pfmt,
2050 unsigned size)
2051 {
2052 const unsigned cpp = util_format_get_blocksize(pfmt);
2053
2054 fill_default_image_param(param);
2055 param->size[0] = size / cpp;
2056 param->stride[0] = cpp;
2057 }
2058 #else
2059 #define isl_surf_fill_image_param(x, ...)
2060 #define fill_default_image_param(x, ...)
2061 #define fill_buffer_image_param(x, ...)
2062 #endif
2063
2064 /**
2065 * The pipe->set_shader_images() driver hook.
2066 */
2067 static void
2068 iris_set_shader_images(struct pipe_context *ctx,
2069 enum pipe_shader_type p_stage,
2070 unsigned start_slot, unsigned count,
2071 const struct pipe_image_view *p_images)
2072 {
2073 struct iris_context *ice = (struct iris_context *) ctx;
2074 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2075 const struct gen_device_info *devinfo = &screen->devinfo;
2076 gl_shader_stage stage = stage_from_pipe(p_stage);
2077 struct iris_shader_state *shs = &ice->state.shaders[stage];
2078 #if GEN_GEN == 8
2079 struct iris_genx_state *genx = ice->state.genx;
2080 struct brw_image_param *image_params = genx->shaders[stage].image_param;
2081 #endif
2082
2083 shs->bound_image_views &= ~u_bit_consecutive(start_slot, count);
2084
2085 for (unsigned i = 0; i < count; i++) {
2086 struct iris_image_view *iv = &shs->image[start_slot + i];
2087
2088 if (p_images && p_images[i].resource) {
2089 const struct pipe_image_view *img = &p_images[i];
2090 struct iris_resource *res = (void *) img->resource;
2091
2092 // XXX: these are not retained forever, use a separate uploader?
2093 void *map =
2094 alloc_surface_states(ice->state.surface_uploader,
2095 &iv->surface_state, 1 << ISL_AUX_USAGE_NONE);
2096 if (!unlikely(map))
2097 return;
2098
2099 iv->base = *img;
2100 iv->base.resource = NULL;
2101 pipe_resource_reference(&iv->base.resource, &res->base);
2102
2103 shs->bound_image_views |= 1 << (start_slot + i);
2104
2105 res->bind_history |= PIPE_BIND_SHADER_IMAGE;
2106
2107 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_STORAGE_BIT;
2108 enum isl_format isl_fmt =
2109 iris_format_for_usage(devinfo, img->format, usage).fmt;
2110
2111 bool untyped_fallback = false;
2112
2113 if (img->shader_access & PIPE_IMAGE_ACCESS_READ) {
2114 /* On Gen8, try to use typed surfaces reads (which support a
2115 * limited number of formats), and if not possible, fall back
2116 * to untyped reads.
2117 */
2118 untyped_fallback = GEN_GEN == 8 &&
2119 !isl_has_matching_typed_storage_image_format(devinfo, isl_fmt);
2120
2121 if (untyped_fallback)
2122 isl_fmt = ISL_FORMAT_RAW;
2123 else
2124 isl_fmt = isl_lower_storage_image_format(devinfo, isl_fmt);
2125 }
2126
2127 if (res->base.target != PIPE_BUFFER) {
2128 struct isl_view view = {
2129 .format = isl_fmt,
2130 .base_level = img->u.tex.level,
2131 .levels = 1,
2132 .base_array_layer = img->u.tex.first_layer,
2133 .array_len = img->u.tex.last_layer - img->u.tex.first_layer + 1,
2134 .swizzle = ISL_SWIZZLE_IDENTITY,
2135 .usage = usage,
2136 };
2137
2138 if (untyped_fallback) {
2139 fill_buffer_surface_state(&screen->isl_dev, res, map,
2140 isl_fmt, ISL_SWIZZLE_IDENTITY,
2141 0, res->bo->size);
2142 } else {
2143 /* Images don't support compression */
2144 unsigned aux_modes = 1 << ISL_AUX_USAGE_NONE;
2145 while (aux_modes) {
2146 enum isl_aux_usage usage = u_bit_scan(&aux_modes);
2147
2148 fill_surface_state(&screen->isl_dev, map, res, &view, usage);
2149
2150 map += SURFACE_STATE_ALIGNMENT;
2151 }
2152 }
2153
2154 isl_surf_fill_image_param(&screen->isl_dev,
2155 &image_params[start_slot + i],
2156 &res->surf, &view);
2157 } else {
2158 util_range_add(&res->valid_buffer_range, img->u.buf.offset,
2159 img->u.buf.offset + img->u.buf.size);
2160
2161 fill_buffer_surface_state(&screen->isl_dev, res, map,
2162 isl_fmt, ISL_SWIZZLE_IDENTITY,
2163 img->u.buf.offset, img->u.buf.size);
2164 fill_buffer_image_param(&image_params[start_slot + i],
2165 img->format, img->u.buf.size);
2166 }
2167 } else {
2168 pipe_resource_reference(&iv->base.resource, NULL);
2169 pipe_resource_reference(&iv->surface_state.res, NULL);
2170 fill_default_image_param(&image_params[start_slot + i]);
2171 }
2172 }
2173
2174 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2175 ice->state.dirty |=
2176 stage == MESA_SHADER_COMPUTE ? IRIS_DIRTY_COMPUTE_RESOLVES_AND_FLUSHES
2177 : IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
2178
2179 /* Broadwell also needs brw_image_params re-uploaded */
2180 if (GEN_GEN < 9) {
2181 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
2182 shs->cbuf0_needs_upload = true;
2183 }
2184 }
2185
2186
2187 /**
2188 * The pipe->set_sampler_views() driver hook.
2189 */
2190 static void
2191 iris_set_sampler_views(struct pipe_context *ctx,
2192 enum pipe_shader_type p_stage,
2193 unsigned start, unsigned count,
2194 struct pipe_sampler_view **views)
2195 {
2196 struct iris_context *ice = (struct iris_context *) ctx;
2197 gl_shader_stage stage = stage_from_pipe(p_stage);
2198 struct iris_shader_state *shs = &ice->state.shaders[stage];
2199
2200 shs->bound_sampler_views &= ~u_bit_consecutive(start, count);
2201
2202 for (unsigned i = 0; i < count; i++) {
2203 struct pipe_sampler_view *pview = views ? views[i] : NULL;
2204 pipe_sampler_view_reference((struct pipe_sampler_view **)
2205 &shs->textures[start + i], pview);
2206 struct iris_sampler_view *view = (void *) pview;
2207 if (view) {
2208 view->res->bind_history |= PIPE_BIND_SAMPLER_VIEW;
2209 shs->bound_sampler_views |= 1 << (start + i);
2210 }
2211 }
2212
2213 ice->state.dirty |= (IRIS_DIRTY_BINDINGS_VS << stage);
2214 ice->state.dirty |=
2215 stage == MESA_SHADER_COMPUTE ? IRIS_DIRTY_COMPUTE_RESOLVES_AND_FLUSHES
2216 : IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
2217 }
2218
2219 /**
2220 * The pipe->set_tess_state() driver hook.
2221 */
2222 static void
2223 iris_set_tess_state(struct pipe_context *ctx,
2224 const float default_outer_level[4],
2225 const float default_inner_level[2])
2226 {
2227 struct iris_context *ice = (struct iris_context *) ctx;
2228 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_TESS_CTRL];
2229
2230 memcpy(&ice->state.default_outer_level[0], &default_outer_level[0], 4 * sizeof(float));
2231 memcpy(&ice->state.default_inner_level[0], &default_inner_level[0], 2 * sizeof(float));
2232
2233 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_TCS;
2234 shs->cbuf0_needs_upload = true;
2235 }
2236
2237 static void
2238 iris_surface_destroy(struct pipe_context *ctx, struct pipe_surface *p_surf)
2239 {
2240 struct iris_surface *surf = (void *) p_surf;
2241 pipe_resource_reference(&p_surf->texture, NULL);
2242 pipe_resource_reference(&surf->surface_state.res, NULL);
2243 free(surf);
2244 }
2245
2246 static void
2247 iris_set_clip_state(struct pipe_context *ctx,
2248 const struct pipe_clip_state *state)
2249 {
2250 struct iris_context *ice = (struct iris_context *) ctx;
2251 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_VERTEX];
2252
2253 memcpy(&ice->state.clip_planes, state, sizeof(*state));
2254
2255 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS;
2256 shs->cbuf0_needs_upload = true;
2257 }
2258
2259 /**
2260 * The pipe->set_polygon_stipple() driver hook.
2261 */
2262 static void
2263 iris_set_polygon_stipple(struct pipe_context *ctx,
2264 const struct pipe_poly_stipple *state)
2265 {
2266 struct iris_context *ice = (struct iris_context *) ctx;
2267 memcpy(&ice->state.poly_stipple, state, sizeof(*state));
2268 ice->state.dirty |= IRIS_DIRTY_POLYGON_STIPPLE;
2269 }
2270
2271 /**
2272 * The pipe->set_sample_mask() driver hook.
2273 */
2274 static void
2275 iris_set_sample_mask(struct pipe_context *ctx, unsigned sample_mask)
2276 {
2277 struct iris_context *ice = (struct iris_context *) ctx;
2278
2279 /* We only support 16x MSAA, so we have 16 bits of sample maks.
2280 * st/mesa may pass us 0xffffffff though, meaning "enable all samples".
2281 */
2282 ice->state.sample_mask = sample_mask & 0xffff;
2283 ice->state.dirty |= IRIS_DIRTY_SAMPLE_MASK;
2284 }
2285
2286 /**
2287 * The pipe->set_scissor_states() driver hook.
2288 *
2289 * This corresponds to our SCISSOR_RECT state structures. It's an
2290 * exact match, so we just store them, and memcpy them out later.
2291 */
2292 static void
2293 iris_set_scissor_states(struct pipe_context *ctx,
2294 unsigned start_slot,
2295 unsigned num_scissors,
2296 const struct pipe_scissor_state *rects)
2297 {
2298 struct iris_context *ice = (struct iris_context *) ctx;
2299
2300 for (unsigned i = 0; i < num_scissors; i++) {
2301 if (rects[i].minx == rects[i].maxx || rects[i].miny == rects[i].maxy) {
2302 /* If the scissor was out of bounds and got clamped to 0 width/height
2303 * at the bounds, the subtraction of 1 from maximums could produce a
2304 * negative number and thus not clip anything. Instead, just provide
2305 * a min > max scissor inside the bounds, which produces the expected
2306 * no rendering.
2307 */
2308 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
2309 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
2310 };
2311 } else {
2312 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
2313 .minx = rects[i].minx, .miny = rects[i].miny,
2314 .maxx = rects[i].maxx - 1, .maxy = rects[i].maxy - 1,
2315 };
2316 }
2317 }
2318
2319 ice->state.dirty |= IRIS_DIRTY_SCISSOR_RECT;
2320 }
2321
2322 /**
2323 * The pipe->set_stencil_ref() driver hook.
2324 *
2325 * This is added to 3DSTATE_WM_DEPTH_STENCIL dynamically at draw time.
2326 */
2327 static void
2328 iris_set_stencil_ref(struct pipe_context *ctx,
2329 const struct pipe_stencil_ref *state)
2330 {
2331 struct iris_context *ice = (struct iris_context *) ctx;
2332 memcpy(&ice->state.stencil_ref, state, sizeof(*state));
2333 if (GEN_GEN == 8)
2334 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
2335 else
2336 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
2337 }
2338
2339 static float
2340 viewport_extent(const struct pipe_viewport_state *state, int axis, float sign)
2341 {
2342 return copysignf(state->scale[axis], sign) + state->translate[axis];
2343 }
2344
2345 static void
2346 calculate_guardband_size(uint32_t fb_width, uint32_t fb_height,
2347 float m00, float m11, float m30, float m31,
2348 float *xmin, float *xmax,
2349 float *ymin, float *ymax)
2350 {
2351 /* According to the "Vertex X,Y Clamping and Quantization" section of the
2352 * Strips and Fans documentation:
2353 *
2354 * "The vertex X and Y screen-space coordinates are also /clamped/ to the
2355 * fixed-point "guardband" range supported by the rasterization hardware"
2356 *
2357 * and
2358 *
2359 * "In almost all circumstances, if an object’s vertices are actually
2360 * modified by this clamping (i.e., had X or Y coordinates outside of
2361 * the guardband extent the rendered object will not match the intended
2362 * result. Therefore software should take steps to ensure that this does
2363 * not happen - e.g., by clipping objects such that they do not exceed
2364 * these limits after the Drawing Rectangle is applied."
2365 *
2366 * I believe the fundamental restriction is that the rasterizer (in
2367 * the SF/WM stages) have a limit on the number of pixels that can be
2368 * rasterized. We need to ensure any coordinates beyond the rasterizer
2369 * limit are handled by the clipper. So effectively that limit becomes
2370 * the clipper's guardband size.
2371 *
2372 * It goes on to say:
2373 *
2374 * "In addition, in order to be correctly rendered, objects must have a
2375 * screenspace bounding box not exceeding 8K in the X or Y direction.
2376 * This additional restriction must also be comprehended by software,
2377 * i.e., enforced by use of clipping."
2378 *
2379 * This makes no sense. Gen7+ hardware supports 16K render targets,
2380 * and you definitely need to be able to draw polygons that fill the
2381 * surface. Our assumption is that the rasterizer was limited to 8K
2382 * on Sandybridge, which only supports 8K surfaces, and it was actually
2383 * increased to 16K on Ivybridge and later.
2384 *
2385 * So, limit the guardband to 16K on Gen7+ and 8K on Sandybridge.
2386 */
2387 const float gb_size = GEN_GEN >= 7 ? 16384.0f : 8192.0f;
2388
2389 if (m00 != 0 && m11 != 0) {
2390 /* First, we compute the screen-space render area */
2391 const float ss_ra_xmin = MIN3( 0, m30 + m00, m30 - m00);
2392 const float ss_ra_xmax = MAX3( fb_width, m30 + m00, m30 - m00);
2393 const float ss_ra_ymin = MIN3( 0, m31 + m11, m31 - m11);
2394 const float ss_ra_ymax = MAX3(fb_height, m31 + m11, m31 - m11);
2395
2396 /* We want the guardband to be centered on that */
2397 const float ss_gb_xmin = (ss_ra_xmin + ss_ra_xmax) / 2 - gb_size;
2398 const float ss_gb_xmax = (ss_ra_xmin + ss_ra_xmax) / 2 + gb_size;
2399 const float ss_gb_ymin = (ss_ra_ymin + ss_ra_ymax) / 2 - gb_size;
2400 const float ss_gb_ymax = (ss_ra_ymin + ss_ra_ymax) / 2 + gb_size;
2401
2402 /* Now we need it in native device coordinates */
2403 const float ndc_gb_xmin = (ss_gb_xmin - m30) / m00;
2404 const float ndc_gb_xmax = (ss_gb_xmax - m30) / m00;
2405 const float ndc_gb_ymin = (ss_gb_ymin - m31) / m11;
2406 const float ndc_gb_ymax = (ss_gb_ymax - m31) / m11;
2407
2408 /* Thanks to Y-flipping and ORIGIN_UPPER_LEFT, the Y coordinates may be
2409 * flipped upside-down. X should be fine though.
2410 */
2411 assert(ndc_gb_xmin <= ndc_gb_xmax);
2412 *xmin = ndc_gb_xmin;
2413 *xmax = ndc_gb_xmax;
2414 *ymin = MIN2(ndc_gb_ymin, ndc_gb_ymax);
2415 *ymax = MAX2(ndc_gb_ymin, ndc_gb_ymax);
2416 } else {
2417 /* The viewport scales to 0, so nothing will be rendered. */
2418 *xmin = 0.0f;
2419 *xmax = 0.0f;
2420 *ymin = 0.0f;
2421 *ymax = 0.0f;
2422 }
2423 }
2424
2425 /**
2426 * The pipe->set_viewport_states() driver hook.
2427 *
2428 * This corresponds to our SF_CLIP_VIEWPORT states. We can't calculate
2429 * the guardband yet, as we need the framebuffer dimensions, but we can
2430 * at least fill out the rest.
2431 */
2432 static void
2433 iris_set_viewport_states(struct pipe_context *ctx,
2434 unsigned start_slot,
2435 unsigned count,
2436 const struct pipe_viewport_state *states)
2437 {
2438 struct iris_context *ice = (struct iris_context *) ctx;
2439
2440 memcpy(&ice->state.viewports[start_slot], states, sizeof(*states) * count);
2441
2442 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2443
2444 if (ice->state.cso_rast && (!ice->state.cso_rast->depth_clip_near ||
2445 !ice->state.cso_rast->depth_clip_far))
2446 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
2447 }
2448
2449 /**
2450 * The pipe->set_framebuffer_state() driver hook.
2451 *
2452 * Sets the current draw FBO, including color render targets, depth,
2453 * and stencil buffers.
2454 */
2455 static void
2456 iris_set_framebuffer_state(struct pipe_context *ctx,
2457 const struct pipe_framebuffer_state *state)
2458 {
2459 struct iris_context *ice = (struct iris_context *) ctx;
2460 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2461 struct isl_device *isl_dev = &screen->isl_dev;
2462 struct pipe_framebuffer_state *cso = &ice->state.framebuffer;
2463 struct iris_resource *zres;
2464 struct iris_resource *stencil_res;
2465
2466 unsigned samples = util_framebuffer_get_num_samples(state);
2467 unsigned layers = util_framebuffer_get_num_layers(state);
2468
2469 if (cso->samples != samples) {
2470 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
2471 }
2472
2473 if (cso->nr_cbufs != state->nr_cbufs) {
2474 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
2475 }
2476
2477 if ((cso->layers == 0) != (layers == 0)) {
2478 ice->state.dirty |= IRIS_DIRTY_CLIP;
2479 }
2480
2481 if (cso->width != state->width || cso->height != state->height) {
2482 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2483 }
2484
2485 util_copy_framebuffer_state(cso, state);
2486 cso->samples = samples;
2487 cso->layers = layers;
2488
2489 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
2490
2491 struct isl_view view = {
2492 .base_level = 0,
2493 .levels = 1,
2494 .base_array_layer = 0,
2495 .array_len = 1,
2496 .swizzle = ISL_SWIZZLE_IDENTITY,
2497 };
2498
2499 struct isl_depth_stencil_hiz_emit_info info = { .view = &view };
2500
2501 if (cso->zsbuf) {
2502 iris_get_depth_stencil_resources(cso->zsbuf->texture, &zres,
2503 &stencil_res);
2504
2505 view.base_level = cso->zsbuf->u.tex.level;
2506 view.base_array_layer = cso->zsbuf->u.tex.first_layer;
2507 view.array_len =
2508 cso->zsbuf->u.tex.last_layer - cso->zsbuf->u.tex.first_layer + 1;
2509
2510 if (zres) {
2511 view.usage |= ISL_SURF_USAGE_DEPTH_BIT;
2512
2513 info.depth_surf = &zres->surf;
2514 info.depth_address = zres->bo->gtt_offset + zres->offset;
2515 info.mocs = mocs(zres->bo);
2516
2517 view.format = zres->surf.format;
2518
2519 if (iris_resource_level_has_hiz(zres, view.base_level)) {
2520 info.hiz_usage = ISL_AUX_USAGE_HIZ;
2521 info.hiz_surf = &zres->aux.surf;
2522 info.hiz_address = zres->aux.bo->gtt_offset;
2523 }
2524 }
2525
2526 if (stencil_res) {
2527 view.usage |= ISL_SURF_USAGE_STENCIL_BIT;
2528 info.stencil_surf = &stencil_res->surf;
2529 info.stencil_address = stencil_res->bo->gtt_offset + stencil_res->offset;
2530 if (!zres) {
2531 view.format = stencil_res->surf.format;
2532 info.mocs = mocs(stencil_res->bo);
2533 }
2534 }
2535 }
2536
2537 isl_emit_depth_stencil_hiz_s(isl_dev, cso_z->packets, &info);
2538
2539 /* Make a null surface for unbound buffers */
2540 void *null_surf_map =
2541 upload_state(ice->state.surface_uploader, &ice->state.null_fb,
2542 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2543 isl_null_fill_state(&screen->isl_dev, null_surf_map,
2544 isl_extent3d(MAX2(cso->width, 1),
2545 MAX2(cso->height, 1),
2546 cso->layers ? cso->layers : 1));
2547 ice->state.null_fb.offset +=
2548 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.null_fb.res));
2549
2550 ice->state.dirty |= IRIS_DIRTY_DEPTH_BUFFER;
2551
2552 /* Render target change */
2553 ice->state.dirty |= IRIS_DIRTY_BINDINGS_FS;
2554
2555 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
2556
2557 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_FRAMEBUFFER];
2558
2559 #if GEN_GEN == 11
2560 // XXX: we may want to flag IRIS_DIRTY_MULTISAMPLE (or SAMPLE_MASK?)
2561 // XXX: see commit 979fc1bc9bcc64027ff2cfafd285676f31b930a6
2562
2563 /* The PIPE_CONTROL command description says:
2564 *
2565 * "Whenever a Binding Table Index (BTI) used by a Render Target Message
2566 * points to a different RENDER_SURFACE_STATE, SW must issue a Render
2567 * Target Cache Flush by enabling this bit. When render target flush
2568 * is set due to new association of BTI, PS Scoreboard Stall bit must
2569 * be set in this packet."
2570 */
2571 // XXX: does this need to happen at 3DSTATE_BTP_PS time?
2572 iris_emit_pipe_control_flush(&ice->batches[IRIS_BATCH_RENDER],
2573 PIPE_CONTROL_RENDER_TARGET_FLUSH |
2574 PIPE_CONTROL_STALL_AT_SCOREBOARD);
2575 #endif
2576 }
2577
2578 /**
2579 * The pipe->set_constant_buffer() driver hook.
2580 *
2581 * This uploads any constant data in user buffers, and references
2582 * any UBO resources containing constant data.
2583 */
2584 static void
2585 iris_set_constant_buffer(struct pipe_context *ctx,
2586 enum pipe_shader_type p_stage, unsigned index,
2587 const struct pipe_constant_buffer *input)
2588 {
2589 struct iris_context *ice = (struct iris_context *) ctx;
2590 gl_shader_stage stage = stage_from_pipe(p_stage);
2591 struct iris_shader_state *shs = &ice->state.shaders[stage];
2592 struct pipe_shader_buffer *cbuf = &shs->constbuf[index];
2593
2594 if (input && input->buffer) {
2595 shs->bound_cbufs |= 1u << index;
2596
2597 assert(index > 0);
2598
2599 pipe_resource_reference(&cbuf->buffer, input->buffer);
2600 cbuf->buffer_offset = input->buffer_offset;
2601 cbuf->buffer_size =
2602 MIN2(input->buffer_size,
2603 iris_resource_bo(input->buffer)->size - cbuf->buffer_offset);
2604
2605 struct iris_resource *res = (void *) cbuf->buffer;
2606 res->bind_history |= PIPE_BIND_CONSTANT_BUFFER;
2607
2608 iris_upload_ubo_ssbo_surf_state(ice, cbuf,
2609 &shs->constbuf_surf_state[index],
2610 false);
2611 } else {
2612 shs->bound_cbufs &= ~(1u << index);
2613 pipe_resource_reference(&cbuf->buffer, NULL);
2614 pipe_resource_reference(&shs->constbuf_surf_state[index].res, NULL);
2615 }
2616
2617 if (index == 0) {
2618 if (input)
2619 memcpy(&shs->cbuf0, input, sizeof(shs->cbuf0));
2620 else
2621 memset(&shs->cbuf0, 0, sizeof(shs->cbuf0));
2622
2623 shs->cbuf0_needs_upload = true;
2624 }
2625
2626 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
2627 // XXX: maybe not necessary all the time...?
2628 // XXX: we need 3DS_BTP to commit these changes, and if we fell back to
2629 // XXX: pull model we may need actual new bindings...
2630 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2631 }
2632
2633 static void
2634 upload_uniforms(struct iris_context *ice,
2635 gl_shader_stage stage)
2636 {
2637 UNUSED struct iris_genx_state *genx = ice->state.genx;
2638 struct iris_shader_state *shs = &ice->state.shaders[stage];
2639 struct pipe_shader_buffer *cbuf = &shs->constbuf[0];
2640 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
2641
2642 unsigned upload_size = shader->num_system_values * sizeof(uint32_t) +
2643 shs->cbuf0.buffer_size;
2644
2645 if (upload_size == 0)
2646 return;
2647
2648 uint32_t *map = NULL;
2649 u_upload_alloc(ice->ctx.const_uploader, 0, upload_size, 64,
2650 &cbuf->buffer_offset, &cbuf->buffer, (void **) &map);
2651
2652 for (int i = 0; i < shader->num_system_values; i++) {
2653 uint32_t sysval = shader->system_values[i];
2654 uint32_t value = 0;
2655
2656 if (BRW_PARAM_DOMAIN(sysval) == BRW_PARAM_DOMAIN_IMAGE) {
2657 #if GEN_GEN == 8
2658 unsigned img = BRW_PARAM_IMAGE_IDX(sysval);
2659 unsigned offset = BRW_PARAM_IMAGE_OFFSET(sysval);
2660 struct brw_image_param *param =
2661 &genx->shaders[stage].image_param[img];
2662
2663 assert(offset < sizeof(struct brw_image_param));
2664 value = ((uint32_t *) param)[offset];
2665 #endif
2666 } else if (sysval == BRW_PARAM_BUILTIN_ZERO) {
2667 value = 0;
2668 } else if (BRW_PARAM_BUILTIN_IS_CLIP_PLANE(sysval)) {
2669 int plane = BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(sysval);
2670 int comp = BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(sysval);
2671 value = fui(ice->state.clip_planes.ucp[plane][comp]);
2672 } else if (sysval == BRW_PARAM_BUILTIN_PATCH_VERTICES_IN) {
2673 if (stage == MESA_SHADER_TESS_CTRL) {
2674 value = ice->state.vertices_per_patch;
2675 } else {
2676 assert(stage == MESA_SHADER_TESS_EVAL);
2677 const struct shader_info *tcs_info =
2678 iris_get_shader_info(ice, MESA_SHADER_TESS_CTRL);
2679 if (tcs_info)
2680 value = tcs_info->tess.tcs_vertices_out;
2681 else
2682 value = ice->state.vertices_per_patch;
2683 }
2684 } else if (sysval >= BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X &&
2685 sysval <= BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W) {
2686 unsigned i = sysval - BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X;
2687 value = fui(ice->state.default_outer_level[i]);
2688 } else if (sysval == BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X) {
2689 value = fui(ice->state.default_inner_level[0]);
2690 } else if (sysval == BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y) {
2691 value = fui(ice->state.default_inner_level[1]);
2692 } else {
2693 assert(!"unhandled system value");
2694 }
2695
2696 *map++ = value;
2697 }
2698
2699 if (shs->cbuf0.user_buffer) {
2700 memcpy(map, shs->cbuf0.user_buffer, shs->cbuf0.buffer_size);
2701 }
2702
2703 cbuf->buffer_size = upload_size;
2704 iris_upload_ubo_ssbo_surf_state(ice, cbuf,
2705 &shs->constbuf_surf_state[0], false);
2706 }
2707
2708 /**
2709 * The pipe->set_shader_buffers() driver hook.
2710 *
2711 * This binds SSBOs and ABOs. Unfortunately, we need to stream out
2712 * SURFACE_STATE here, as the buffer offset may change each time.
2713 */
2714 static void
2715 iris_set_shader_buffers(struct pipe_context *ctx,
2716 enum pipe_shader_type p_stage,
2717 unsigned start_slot, unsigned count,
2718 const struct pipe_shader_buffer *buffers,
2719 unsigned writable_bitmask)
2720 {
2721 struct iris_context *ice = (struct iris_context *) ctx;
2722 gl_shader_stage stage = stage_from_pipe(p_stage);
2723 struct iris_shader_state *shs = &ice->state.shaders[stage];
2724
2725 unsigned modified_bits = u_bit_consecutive(start_slot, count);
2726
2727 shs->bound_ssbos &= ~modified_bits;
2728 shs->writable_ssbos &= ~modified_bits;
2729 shs->writable_ssbos |= writable_bitmask << start_slot;
2730
2731 for (unsigned i = 0; i < count; i++) {
2732 if (buffers && buffers[i].buffer) {
2733 struct iris_resource *res = (void *) buffers[i].buffer;
2734 struct pipe_shader_buffer *ssbo = &shs->ssbo[start_slot + i];
2735 struct iris_state_ref *surf_state =
2736 &shs->ssbo_surf_state[start_slot + i];
2737 pipe_resource_reference(&ssbo->buffer, &res->base);
2738 ssbo->buffer_offset = buffers[i].buffer_offset;
2739 ssbo->buffer_size =
2740 MIN2(buffers[i].buffer_size, res->bo->size - ssbo->buffer_offset);
2741
2742 shs->bound_ssbos |= 1 << (start_slot + i);
2743
2744 iris_upload_ubo_ssbo_surf_state(ice, ssbo, surf_state, true);
2745
2746 res->bind_history |= PIPE_BIND_SHADER_BUFFER;
2747
2748 util_range_add(&res->valid_buffer_range, ssbo->buffer_offset,
2749 ssbo->buffer_offset + ssbo->buffer_size);
2750 } else {
2751 pipe_resource_reference(&shs->ssbo[start_slot + i].buffer, NULL);
2752 pipe_resource_reference(&shs->ssbo_surf_state[start_slot + i].res,
2753 NULL);
2754 }
2755 }
2756
2757 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2758 }
2759
2760 static void
2761 iris_delete_state(struct pipe_context *ctx, void *state)
2762 {
2763 free(state);
2764 }
2765
2766 /**
2767 * The pipe->set_vertex_buffers() driver hook.
2768 *
2769 * This translates pipe_vertex_buffer to our 3DSTATE_VERTEX_BUFFERS packet.
2770 */
2771 static void
2772 iris_set_vertex_buffers(struct pipe_context *ctx,
2773 unsigned start_slot, unsigned count,
2774 const struct pipe_vertex_buffer *buffers)
2775 {
2776 struct iris_context *ice = (struct iris_context *) ctx;
2777 struct iris_genx_state *genx = ice->state.genx;
2778
2779 ice->state.bound_vertex_buffers &= ~u_bit_consecutive64(start_slot, count);
2780
2781 for (unsigned i = 0; i < count; i++) {
2782 const struct pipe_vertex_buffer *buffer = buffers ? &buffers[i] : NULL;
2783 struct iris_vertex_buffer_state *state =
2784 &genx->vertex_buffers[start_slot + i];
2785
2786 if (!buffer) {
2787 pipe_resource_reference(&state->resource, NULL);
2788 continue;
2789 }
2790
2791 /* We may see user buffers that are NULL bindings. */
2792 assert(!(buffer->is_user_buffer && buffer->buffer.user != NULL));
2793
2794 pipe_resource_reference(&state->resource, buffer->buffer.resource);
2795 struct iris_resource *res = (void *) state->resource;
2796
2797 if (res) {
2798 ice->state.bound_vertex_buffers |= 1ull << (start_slot + i);
2799 res->bind_history |= PIPE_BIND_VERTEX_BUFFER;
2800 }
2801
2802 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
2803 vb.VertexBufferIndex = start_slot + i;
2804 vb.AddressModifyEnable = true;
2805 vb.BufferPitch = buffer->stride;
2806 if (res) {
2807 vb.BufferSize = res->bo->size - (int) buffer->buffer_offset;
2808 vb.BufferStartingAddress =
2809 ro_bo(NULL, res->bo->gtt_offset + (int) buffer->buffer_offset);
2810 vb.MOCS = mocs(res->bo);
2811 } else {
2812 vb.NullVertexBuffer = true;
2813 }
2814 }
2815 }
2816
2817 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
2818 }
2819
2820 /**
2821 * Gallium CSO for vertex elements.
2822 */
2823 struct iris_vertex_element_state {
2824 uint32_t vertex_elements[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
2825 uint32_t vf_instancing[33 * GENX(3DSTATE_VF_INSTANCING_length)];
2826 uint32_t edgeflag_ve[GENX(VERTEX_ELEMENT_STATE_length)];
2827 uint32_t edgeflag_vfi[GENX(3DSTATE_VF_INSTANCING_length)];
2828 unsigned count;
2829 };
2830
2831 /**
2832 * The pipe->create_vertex_elements() driver hook.
2833 *
2834 * This translates pipe_vertex_element to our 3DSTATE_VERTEX_ELEMENTS
2835 * and 3DSTATE_VF_INSTANCING commands. The vertex_elements and vf_instancing
2836 * arrays are ready to be emitted at draw time if no EdgeFlag or SGVs are
2837 * needed. In these cases we will need information available at draw time.
2838 * We setup edgeflag_ve and edgeflag_vfi as alternatives last
2839 * 3DSTATE_VERTEX_ELEMENT and 3DSTATE_VF_INSTANCING that can be used at
2840 * draw time if we detect that EdgeFlag is needed by the Vertex Shader.
2841 */
2842 static void *
2843 iris_create_vertex_elements(struct pipe_context *ctx,
2844 unsigned count,
2845 const struct pipe_vertex_element *state)
2846 {
2847 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2848 const struct gen_device_info *devinfo = &screen->devinfo;
2849 struct iris_vertex_element_state *cso =
2850 malloc(sizeof(struct iris_vertex_element_state));
2851
2852 cso->count = count;
2853
2854 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS), cso->vertex_elements, ve) {
2855 ve.DWordLength =
2856 1 + GENX(VERTEX_ELEMENT_STATE_length) * MAX2(count, 1) - 2;
2857 }
2858
2859 uint32_t *ve_pack_dest = &cso->vertex_elements[1];
2860 uint32_t *vfi_pack_dest = cso->vf_instancing;
2861
2862 if (count == 0) {
2863 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
2864 ve.Valid = true;
2865 ve.SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT;
2866 ve.Component0Control = VFCOMP_STORE_0;
2867 ve.Component1Control = VFCOMP_STORE_0;
2868 ve.Component2Control = VFCOMP_STORE_0;
2869 ve.Component3Control = VFCOMP_STORE_1_FP;
2870 }
2871
2872 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
2873 }
2874 }
2875
2876 for (int i = 0; i < count; i++) {
2877 const struct iris_format_info fmt =
2878 iris_format_for_usage(devinfo, state[i].src_format, 0);
2879 unsigned comp[4] = { VFCOMP_STORE_SRC, VFCOMP_STORE_SRC,
2880 VFCOMP_STORE_SRC, VFCOMP_STORE_SRC };
2881
2882 switch (isl_format_get_num_channels(fmt.fmt)) {
2883 case 0: comp[0] = VFCOMP_STORE_0; /* fallthrough */
2884 case 1: comp[1] = VFCOMP_STORE_0; /* fallthrough */
2885 case 2: comp[2] = VFCOMP_STORE_0; /* fallthrough */
2886 case 3:
2887 comp[3] = isl_format_has_int_channel(fmt.fmt) ? VFCOMP_STORE_1_INT
2888 : VFCOMP_STORE_1_FP;
2889 break;
2890 }
2891 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
2892 ve.EdgeFlagEnable = false;
2893 ve.VertexBufferIndex = state[i].vertex_buffer_index;
2894 ve.Valid = true;
2895 ve.SourceElementOffset = state[i].src_offset;
2896 ve.SourceElementFormat = fmt.fmt;
2897 ve.Component0Control = comp[0];
2898 ve.Component1Control = comp[1];
2899 ve.Component2Control = comp[2];
2900 ve.Component3Control = comp[3];
2901 }
2902
2903 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
2904 vi.VertexElementIndex = i;
2905 vi.InstancingEnable = state[i].instance_divisor > 0;
2906 vi.InstanceDataStepRate = state[i].instance_divisor;
2907 }
2908
2909 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
2910 vfi_pack_dest += GENX(3DSTATE_VF_INSTANCING_length);
2911 }
2912
2913 /* An alternative version of the last VE and VFI is stored so it
2914 * can be used at draw time in case Vertex Shader uses EdgeFlag
2915 */
2916 if (count) {
2917 const unsigned edgeflag_index = count - 1;
2918 const struct iris_format_info fmt =
2919 iris_format_for_usage(devinfo, state[edgeflag_index].src_format, 0);
2920 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), cso->edgeflag_ve, ve) {
2921 ve.EdgeFlagEnable = true ;
2922 ve.VertexBufferIndex = state[edgeflag_index].vertex_buffer_index;
2923 ve.Valid = true;
2924 ve.SourceElementOffset = state[edgeflag_index].src_offset;
2925 ve.SourceElementFormat = fmt.fmt;
2926 ve.Component0Control = VFCOMP_STORE_SRC;
2927 ve.Component1Control = VFCOMP_STORE_0;
2928 ve.Component2Control = VFCOMP_STORE_0;
2929 ve.Component3Control = VFCOMP_STORE_0;
2930 }
2931 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), cso->edgeflag_vfi, vi) {
2932 /* The vi.VertexElementIndex of the EdgeFlag Vertex Element is filled
2933 * at draw time, as it should change if SGVs are emitted.
2934 */
2935 vi.InstancingEnable = state[edgeflag_index].instance_divisor > 0;
2936 vi.InstanceDataStepRate = state[edgeflag_index].instance_divisor;
2937 }
2938 }
2939
2940 return cso;
2941 }
2942
2943 /**
2944 * The pipe->bind_vertex_elements_state() driver hook.
2945 */
2946 static void
2947 iris_bind_vertex_elements_state(struct pipe_context *ctx, void *state)
2948 {
2949 struct iris_context *ice = (struct iris_context *) ctx;
2950 struct iris_vertex_element_state *old_cso = ice->state.cso_vertex_elements;
2951 struct iris_vertex_element_state *new_cso = state;
2952
2953 /* 3DSTATE_VF_SGVs overrides the last VE, so if the count is changing,
2954 * we need to re-emit it to ensure we're overriding the right one.
2955 */
2956 if (new_cso && cso_changed(count))
2957 ice->state.dirty |= IRIS_DIRTY_VF_SGVS;
2958
2959 ice->state.cso_vertex_elements = state;
2960 ice->state.dirty |= IRIS_DIRTY_VERTEX_ELEMENTS;
2961 }
2962
2963 /**
2964 * The pipe->create_stream_output_target() driver hook.
2965 *
2966 * "Target" here refers to a destination buffer. We translate this into
2967 * a 3DSTATE_SO_BUFFER packet. We can handle most fields, but don't yet
2968 * know which buffer this represents, or whether we ought to zero the
2969 * write-offsets, or append. Those are handled in the set() hook.
2970 */
2971 static struct pipe_stream_output_target *
2972 iris_create_stream_output_target(struct pipe_context *ctx,
2973 struct pipe_resource *p_res,
2974 unsigned buffer_offset,
2975 unsigned buffer_size)
2976 {
2977 struct iris_resource *res = (void *) p_res;
2978 struct iris_stream_output_target *cso = calloc(1, sizeof(*cso));
2979 if (!cso)
2980 return NULL;
2981
2982 res->bind_history |= PIPE_BIND_STREAM_OUTPUT;
2983
2984 pipe_reference_init(&cso->base.reference, 1);
2985 pipe_resource_reference(&cso->base.buffer, p_res);
2986 cso->base.buffer_offset = buffer_offset;
2987 cso->base.buffer_size = buffer_size;
2988 cso->base.context = ctx;
2989
2990 util_range_add(&res->valid_buffer_range, buffer_offset,
2991 buffer_offset + buffer_size);
2992
2993 upload_state(ctx->stream_uploader, &cso->offset, sizeof(uint32_t), 4);
2994
2995 return &cso->base;
2996 }
2997
2998 static void
2999 iris_stream_output_target_destroy(struct pipe_context *ctx,
3000 struct pipe_stream_output_target *state)
3001 {
3002 struct iris_stream_output_target *cso = (void *) state;
3003
3004 pipe_resource_reference(&cso->base.buffer, NULL);
3005 pipe_resource_reference(&cso->offset.res, NULL);
3006
3007 free(cso);
3008 }
3009
3010 /**
3011 * The pipe->set_stream_output_targets() driver hook.
3012 *
3013 * At this point, we know which targets are bound to a particular index,
3014 * and also whether we want to append or start over. We can finish the
3015 * 3DSTATE_SO_BUFFER packets we started earlier.
3016 */
3017 static void
3018 iris_set_stream_output_targets(struct pipe_context *ctx,
3019 unsigned num_targets,
3020 struct pipe_stream_output_target **targets,
3021 const unsigned *offsets)
3022 {
3023 struct iris_context *ice = (struct iris_context *) ctx;
3024 struct iris_genx_state *genx = ice->state.genx;
3025 uint32_t *so_buffers = genx->so_buffers;
3026
3027 const bool active = num_targets > 0;
3028 if (ice->state.streamout_active != active) {
3029 ice->state.streamout_active = active;
3030 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
3031
3032 /* We only emit 3DSTATE_SO_DECL_LIST when streamout is active, because
3033 * it's a non-pipelined command. If we're switching streamout on, we
3034 * may have missed emitting it earlier, so do so now. (We're already
3035 * taking a stall to update 3DSTATE_SO_BUFFERS anyway...)
3036 */
3037 if (active) {
3038 ice->state.dirty |= IRIS_DIRTY_SO_DECL_LIST;
3039 } else {
3040 uint32_t flush = 0;
3041 for (int i = 0; i < PIPE_MAX_SO_BUFFERS; i++) {
3042 struct iris_stream_output_target *tgt =
3043 (void *) ice->state.so_target[i];
3044 if (tgt) {
3045 struct iris_resource *res = (void *) tgt->base.buffer;
3046
3047 flush |= iris_flush_bits_for_history(res);
3048 iris_dirty_for_history(ice, res);
3049 }
3050 }
3051 iris_emit_pipe_control_flush(&ice->batches[IRIS_BATCH_RENDER], flush);
3052 }
3053 }
3054
3055 for (int i = 0; i < 4; i++) {
3056 pipe_so_target_reference(&ice->state.so_target[i],
3057 i < num_targets ? targets[i] : NULL);
3058 }
3059
3060 /* No need to update 3DSTATE_SO_BUFFER unless SOL is active. */
3061 if (!active)
3062 return;
3063
3064 for (unsigned i = 0; i < 4; i++,
3065 so_buffers += GENX(3DSTATE_SO_BUFFER_length)) {
3066
3067 struct iris_stream_output_target *tgt = (void *) ice->state.so_target[i];
3068 unsigned offset = offsets[i];
3069
3070 if (!tgt) {
3071 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob)
3072 sob.SOBufferIndex = i;
3073 continue;
3074 }
3075
3076 struct iris_resource *res = (void *) tgt->base.buffer;
3077
3078 /* Note that offsets[i] will either be 0, causing us to zero
3079 * the value in the buffer, or 0xFFFFFFFF, which happens to mean
3080 * "continue appending at the existing offset."
3081 */
3082 assert(offset == 0 || offset == 0xFFFFFFFF);
3083
3084 /* We might be called by Begin (offset = 0), Pause, then Resume
3085 * (offset = 0xFFFFFFFF) before ever drawing (where these commands
3086 * will actually be sent to the GPU). In this case, we don't want
3087 * to append - we still want to do our initial zeroing.
3088 */
3089 if (!tgt->zeroed)
3090 offset = 0;
3091
3092 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob) {
3093 sob.SurfaceBaseAddress =
3094 rw_bo(NULL, res->bo->gtt_offset + tgt->base.buffer_offset);
3095 sob.SOBufferEnable = true;
3096 sob.StreamOffsetWriteEnable = true;
3097 sob.StreamOutputBufferOffsetAddressEnable = true;
3098 sob.MOCS = mocs(res->bo);
3099
3100 sob.SurfaceSize = MAX2(tgt->base.buffer_size / 4, 1) - 1;
3101
3102 sob.SOBufferIndex = i;
3103 sob.StreamOffset = offset;
3104 sob.StreamOutputBufferOffsetAddress =
3105 rw_bo(NULL, iris_resource_bo(tgt->offset.res)->gtt_offset +
3106 tgt->offset.offset);
3107 }
3108 }
3109
3110 ice->state.dirty |= IRIS_DIRTY_SO_BUFFERS;
3111 }
3112
3113 /**
3114 * An iris-vtable helper for encoding the 3DSTATE_SO_DECL_LIST and
3115 * 3DSTATE_STREAMOUT packets.
3116 *
3117 * 3DSTATE_SO_DECL_LIST is a list of shader outputs we want the streamout
3118 * hardware to record. We can create it entirely based on the shader, with
3119 * no dynamic state dependencies.
3120 *
3121 * 3DSTATE_STREAMOUT is an annoying mix of shader-based information and
3122 * state-based settings. We capture the shader-related ones here, and merge
3123 * the rest in at draw time.
3124 */
3125 static uint32_t *
3126 iris_create_so_decl_list(const struct pipe_stream_output_info *info,
3127 const struct brw_vue_map *vue_map)
3128 {
3129 struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
3130 int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3131 int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3132 int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3133 int max_decls = 0;
3134 STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
3135
3136 memset(so_decl, 0, sizeof(so_decl));
3137
3138 /* Construct the list of SO_DECLs to be emitted. The formatting of the
3139 * command feels strange -- each dword pair contains a SO_DECL per stream.
3140 */
3141 for (unsigned i = 0; i < info->num_outputs; i++) {
3142 const struct pipe_stream_output *output = &info->output[i];
3143 const int buffer = output->output_buffer;
3144 const int varying = output->register_index;
3145 const unsigned stream_id = output->stream;
3146 assert(stream_id < MAX_VERTEX_STREAMS);
3147
3148 buffer_mask[stream_id] |= 1 << buffer;
3149
3150 assert(vue_map->varying_to_slot[varying] >= 0);
3151
3152 /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
3153 * array. Instead, it simply increments DstOffset for the following
3154 * input by the number of components that should be skipped.
3155 *
3156 * Our hardware is unusual in that it requires us to program SO_DECLs
3157 * for fake "hole" components, rather than simply taking the offset
3158 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
3159 * program as many size = 4 holes as we can, then a final hole to
3160 * accommodate the final 1, 2, or 3 remaining.
3161 */
3162 int skip_components = output->dst_offset - next_offset[buffer];
3163
3164 while (skip_components > 0) {
3165 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3166 .HoleFlag = 1,
3167 .OutputBufferSlot = output->output_buffer,
3168 .ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
3169 };
3170 skip_components -= 4;
3171 }
3172
3173 next_offset[buffer] = output->dst_offset + output->num_components;
3174
3175 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3176 .OutputBufferSlot = output->output_buffer,
3177 .RegisterIndex = vue_map->varying_to_slot[varying],
3178 .ComponentMask =
3179 ((1 << output->num_components) - 1) << output->start_component,
3180 };
3181
3182 if (decls[stream_id] > max_decls)
3183 max_decls = decls[stream_id];
3184 }
3185
3186 unsigned dwords = GENX(3DSTATE_STREAMOUT_length) + (3 + 2 * max_decls);
3187 uint32_t *map = ralloc_size(NULL, sizeof(uint32_t) * dwords);
3188 uint32_t *so_decl_map = map + GENX(3DSTATE_STREAMOUT_length);
3189
3190 iris_pack_command(GENX(3DSTATE_STREAMOUT), map, sol) {
3191 int urb_entry_read_offset = 0;
3192 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
3193 urb_entry_read_offset;
3194
3195 /* We always read the whole vertex. This could be reduced at some
3196 * point by reading less and offsetting the register index in the
3197 * SO_DECLs.
3198 */
3199 sol.Stream0VertexReadOffset = urb_entry_read_offset;
3200 sol.Stream0VertexReadLength = urb_entry_read_length - 1;
3201 sol.Stream1VertexReadOffset = urb_entry_read_offset;
3202 sol.Stream1VertexReadLength = urb_entry_read_length - 1;
3203 sol.Stream2VertexReadOffset = urb_entry_read_offset;
3204 sol.Stream2VertexReadLength = urb_entry_read_length - 1;
3205 sol.Stream3VertexReadOffset = urb_entry_read_offset;
3206 sol.Stream3VertexReadLength = urb_entry_read_length - 1;
3207
3208 /* Set buffer pitches; 0 means unbound. */
3209 sol.Buffer0SurfacePitch = 4 * info->stride[0];
3210 sol.Buffer1SurfacePitch = 4 * info->stride[1];
3211 sol.Buffer2SurfacePitch = 4 * info->stride[2];
3212 sol.Buffer3SurfacePitch = 4 * info->stride[3];
3213 }
3214
3215 iris_pack_command(GENX(3DSTATE_SO_DECL_LIST), so_decl_map, list) {
3216 list.DWordLength = 3 + 2 * max_decls - 2;
3217 list.StreamtoBufferSelects0 = buffer_mask[0];
3218 list.StreamtoBufferSelects1 = buffer_mask[1];
3219 list.StreamtoBufferSelects2 = buffer_mask[2];
3220 list.StreamtoBufferSelects3 = buffer_mask[3];
3221 list.NumEntries0 = decls[0];
3222 list.NumEntries1 = decls[1];
3223 list.NumEntries2 = decls[2];
3224 list.NumEntries3 = decls[3];
3225 }
3226
3227 for (int i = 0; i < max_decls; i++) {
3228 iris_pack_state(GENX(SO_DECL_ENTRY), so_decl_map + 3 + i * 2, entry) {
3229 entry.Stream0Decl = so_decl[0][i];
3230 entry.Stream1Decl = so_decl[1][i];
3231 entry.Stream2Decl = so_decl[2][i];
3232 entry.Stream3Decl = so_decl[3][i];
3233 }
3234 }
3235
3236 return map;
3237 }
3238
3239 static void
3240 iris_compute_sbe_urb_read_interval(uint64_t fs_input_slots,
3241 const struct brw_vue_map *last_vue_map,
3242 bool two_sided_color,
3243 unsigned *out_offset,
3244 unsigned *out_length)
3245 {
3246 /* The compiler computes the first URB slot without considering COL/BFC
3247 * swizzling (because it doesn't know whether it's enabled), so we need
3248 * to do that here too. This may result in a smaller offset, which
3249 * should be safe.
3250 */
3251 const unsigned first_slot =
3252 brw_compute_first_urb_slot_required(fs_input_slots, last_vue_map);
3253
3254 /* This becomes the URB read offset (counted in pairs of slots). */
3255 assert(first_slot % 2 == 0);
3256 *out_offset = first_slot / 2;
3257
3258 /* We need to adjust the inputs read to account for front/back color
3259 * swizzling, as it can make the URB length longer.
3260 */
3261 for (int c = 0; c <= 1; c++) {
3262 if (fs_input_slots & (VARYING_BIT_COL0 << c)) {
3263 /* If two sided color is enabled, the fragment shader's gl_Color
3264 * (COL0) input comes from either the gl_FrontColor (COL0) or
3265 * gl_BackColor (BFC0) input varyings. Mark BFC as used, too.
3266 */
3267 if (two_sided_color)
3268 fs_input_slots |= (VARYING_BIT_BFC0 << c);
3269
3270 /* If front color isn't written, we opt to give them back color
3271 * instead of an undefined value. Switch from COL to BFC.
3272 */
3273 if (last_vue_map->varying_to_slot[VARYING_SLOT_COL0 + c] == -1) {
3274 fs_input_slots &= ~(VARYING_BIT_COL0 << c);
3275 fs_input_slots |= (VARYING_BIT_BFC0 << c);
3276 }
3277 }
3278 }
3279
3280 /* Compute the minimum URB Read Length necessary for the FS inputs.
3281 *
3282 * From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
3283 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
3284 *
3285 * "This field should be set to the minimum length required to read the
3286 * maximum source attribute. The maximum source attribute is indicated
3287 * by the maximum value of the enabled Attribute # Source Attribute if
3288 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
3289 * enable is not set.
3290 * read_length = ceiling((max_source_attr + 1) / 2)
3291 *
3292 * [errata] Corruption/Hang possible if length programmed larger than
3293 * recommended"
3294 *
3295 * Similar text exists for Ivy Bridge.
3296 *
3297 * We find the last URB slot that's actually read by the FS.
3298 */
3299 unsigned last_read_slot = last_vue_map->num_slots - 1;
3300 while (last_read_slot > first_slot && !(fs_input_slots &
3301 (1ull << last_vue_map->slot_to_varying[last_read_slot])))
3302 --last_read_slot;
3303
3304 /* The URB read length is the difference of the two, counted in pairs. */
3305 *out_length = DIV_ROUND_UP(last_read_slot - first_slot + 1, 2);
3306 }
3307
3308 static void
3309 iris_emit_sbe_swiz(struct iris_batch *batch,
3310 const struct iris_context *ice,
3311 unsigned urb_read_offset,
3312 unsigned sprite_coord_enables)
3313 {
3314 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = {};
3315 const struct brw_wm_prog_data *wm_prog_data = (void *)
3316 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3317 const struct brw_vue_map *vue_map = ice->shaders.last_vue_map;
3318 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3319
3320 /* XXX: this should be generated when putting programs in place */
3321
3322 for (int fs_attr = 0; fs_attr < VARYING_SLOT_MAX; fs_attr++) {
3323 const int input_index = wm_prog_data->urb_setup[fs_attr];
3324 if (input_index < 0 || input_index >= 16)
3325 continue;
3326
3327 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr =
3328 &attr_overrides[input_index];
3329 int slot = vue_map->varying_to_slot[fs_attr];
3330
3331 /* Viewport and Layer are stored in the VUE header. We need to override
3332 * them to zero if earlier stages didn't write them, as GL requires that
3333 * they read back as zero when not explicitly set.
3334 */
3335 switch (fs_attr) {
3336 case VARYING_SLOT_VIEWPORT:
3337 case VARYING_SLOT_LAYER:
3338 attr->ComponentOverrideX = true;
3339 attr->ComponentOverrideW = true;
3340 attr->ConstantSource = CONST_0000;
3341
3342 if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
3343 attr->ComponentOverrideY = true;
3344 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
3345 attr->ComponentOverrideZ = true;
3346 continue;
3347
3348 case VARYING_SLOT_PRIMITIVE_ID:
3349 /* Override if the previous shader stage didn't write gl_PrimitiveID. */
3350 if (slot == -1) {
3351 attr->ComponentOverrideX = true;
3352 attr->ComponentOverrideY = true;
3353 attr->ComponentOverrideZ = true;
3354 attr->ComponentOverrideW = true;
3355 attr->ConstantSource = PRIM_ID;
3356 continue;
3357 }
3358
3359 default:
3360 break;
3361 }
3362
3363 if (sprite_coord_enables & (1 << input_index))
3364 continue;
3365
3366 /* If there was only a back color written but not front, use back
3367 * as the color instead of undefined.
3368 */
3369 if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
3370 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
3371 if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
3372 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
3373
3374 /* Not written by the previous stage - undefined. */
3375 if (slot == -1) {
3376 attr->ComponentOverrideX = true;
3377 attr->ComponentOverrideY = true;
3378 attr->ComponentOverrideZ = true;
3379 attr->ComponentOverrideW = true;
3380 attr->ConstantSource = CONST_0001_FLOAT;
3381 continue;
3382 }
3383
3384 /* Compute the location of the attribute relative to the read offset,
3385 * which is counted in 256-bit increments (two 128-bit VUE slots).
3386 */
3387 const int source_attr = slot - 2 * urb_read_offset;
3388 assert(source_attr >= 0 && source_attr <= 32);
3389 attr->SourceAttribute = source_attr;
3390
3391 /* If we are doing two-sided color, and the VUE slot following this one
3392 * represents a back-facing color, then we need to instruct the SF unit
3393 * to do back-facing swizzling.
3394 */
3395 if (cso_rast->light_twoside &&
3396 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
3397 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
3398 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
3399 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1)))
3400 attr->SwizzleSelect = INPUTATTR_FACING;
3401 }
3402
3403 iris_emit_cmd(batch, GENX(3DSTATE_SBE_SWIZ), sbes) {
3404 for (int i = 0; i < 16; i++)
3405 sbes.Attribute[i] = attr_overrides[i];
3406 }
3407 }
3408
3409 static unsigned
3410 iris_calculate_point_sprite_overrides(const struct brw_wm_prog_data *prog_data,
3411 const struct iris_rasterizer_state *cso)
3412 {
3413 unsigned overrides = 0;
3414
3415 if (prog_data->urb_setup[VARYING_SLOT_PNTC] != -1)
3416 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_PNTC];
3417
3418 for (int i = 0; i < 8; i++) {
3419 if ((cso->sprite_coord_enable & (1 << i)) &&
3420 prog_data->urb_setup[VARYING_SLOT_TEX0 + i] != -1)
3421 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_TEX0 + i];
3422 }
3423
3424 return overrides;
3425 }
3426
3427 static void
3428 iris_emit_sbe(struct iris_batch *batch, const struct iris_context *ice)
3429 {
3430 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3431 const struct brw_wm_prog_data *wm_prog_data = (void *)
3432 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3433 const struct shader_info *fs_info =
3434 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
3435
3436 unsigned urb_read_offset, urb_read_length;
3437 iris_compute_sbe_urb_read_interval(fs_info->inputs_read,
3438 ice->shaders.last_vue_map,
3439 cso_rast->light_twoside,
3440 &urb_read_offset, &urb_read_length);
3441
3442 unsigned sprite_coord_overrides =
3443 iris_calculate_point_sprite_overrides(wm_prog_data, cso_rast);
3444
3445 iris_emit_cmd(batch, GENX(3DSTATE_SBE), sbe) {
3446 sbe.AttributeSwizzleEnable = true;
3447 sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
3448 sbe.PointSpriteTextureCoordinateOrigin = cso_rast->sprite_coord_mode;
3449 sbe.VertexURBEntryReadOffset = urb_read_offset;
3450 sbe.VertexURBEntryReadLength = urb_read_length;
3451 sbe.ForceVertexURBEntryReadOffset = true;
3452 sbe.ForceVertexURBEntryReadLength = true;
3453 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
3454 sbe.PointSpriteTextureCoordinateEnable = sprite_coord_overrides;
3455 #if GEN_GEN >= 9
3456 for (int i = 0; i < 32; i++) {
3457 sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW;
3458 }
3459 #endif
3460 }
3461
3462 iris_emit_sbe_swiz(batch, ice, urb_read_offset, sprite_coord_overrides);
3463 }
3464
3465 /* ------------------------------------------------------------------- */
3466
3467 /**
3468 * Populate VS program key fields based on the current state.
3469 */
3470 static void
3471 iris_populate_vs_key(const struct iris_context *ice,
3472 const struct shader_info *info,
3473 struct brw_vs_prog_key *key)
3474 {
3475 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3476
3477 if (info->clip_distance_array_size == 0 &&
3478 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)))
3479 key->nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
3480 }
3481
3482 /**
3483 * Populate TCS program key fields based on the current state.
3484 */
3485 static void
3486 iris_populate_tcs_key(const struct iris_context *ice,
3487 struct brw_tcs_prog_key *key)
3488 {
3489 }
3490
3491 /**
3492 * Populate TES program key fields based on the current state.
3493 */
3494 static void
3495 iris_populate_tes_key(const struct iris_context *ice,
3496 struct brw_tes_prog_key *key)
3497 {
3498 }
3499
3500 /**
3501 * Populate GS program key fields based on the current state.
3502 */
3503 static void
3504 iris_populate_gs_key(const struct iris_context *ice,
3505 struct brw_gs_prog_key *key)
3506 {
3507 }
3508
3509 /**
3510 * Populate FS program key fields based on the current state.
3511 */
3512 static void
3513 iris_populate_fs_key(const struct iris_context *ice,
3514 struct brw_wm_prog_key *key)
3515 {
3516 struct iris_screen *screen = (void *) ice->ctx.screen;
3517 const struct pipe_framebuffer_state *fb = &ice->state.framebuffer;
3518 const struct iris_depth_stencil_alpha_state *zsa = ice->state.cso_zsa;
3519 const struct iris_rasterizer_state *rast = ice->state.cso_rast;
3520 const struct iris_blend_state *blend = ice->state.cso_blend;
3521
3522 key->nr_color_regions = fb->nr_cbufs;
3523
3524 key->clamp_fragment_color = rast->clamp_fragment_color;
3525
3526 key->alpha_to_coverage = blend->alpha_to_coverage;
3527
3528 key->alpha_test_replicate_alpha = fb->nr_cbufs > 1 && zsa->alpha.enabled;
3529
3530 /* XXX: only bother if COL0/1 are read */
3531 key->flat_shade = rast->flatshade;
3532
3533 key->persample_interp = rast->force_persample_interp;
3534 key->multisample_fbo = rast->multisample && fb->samples > 1;
3535
3536 key->coherent_fb_fetch = true;
3537
3538 key->force_dual_color_blend =
3539 screen->driconf.dual_color_blend_by_location &&
3540 (blend->blend_enables & 1) && blend->dual_color_blending;
3541
3542 /* TODO: support key->force_dual_color_blend for Unigine */
3543 /* TODO: Respect glHint for key->high_quality_derivatives */
3544 }
3545
3546 static void
3547 iris_populate_cs_key(const struct iris_context *ice,
3548 struct brw_cs_prog_key *key)
3549 {
3550 }
3551
3552 static uint64_t
3553 KSP(const struct iris_compiled_shader *shader)
3554 {
3555 struct iris_resource *res = (void *) shader->assembly.res;
3556 return iris_bo_offset_from_base_address(res->bo) + shader->assembly.offset;
3557 }
3558
3559 /* Gen11 workaround table #2056 WABTPPrefetchDisable suggests to disable
3560 * prefetching of binding tables in A0 and B0 steppings. XXX: Revisit
3561 * this WA on C0 stepping.
3562 *
3563 * TODO: Fill out SamplerCount for prefetching?
3564 */
3565
3566 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix, stage) \
3567 pkt.KernelStartPointer = KSP(shader); \
3568 pkt.BindingTableEntryCount = GEN_GEN == 11 ? 0 : \
3569 shader->bt.size_bytes / 4; \
3570 pkt.FloatingPointMode = prog_data->use_alt_mode; \
3571 \
3572 pkt.DispatchGRFStartRegisterForURBData = \
3573 prog_data->dispatch_grf_start_reg; \
3574 pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
3575 pkt.prefix##URBEntryReadOffset = 0; \
3576 \
3577 pkt.StatisticsEnable = true; \
3578 pkt.Enable = true; \
3579 \
3580 if (prog_data->total_scratch) { \
3581 struct iris_bo *bo = \
3582 iris_get_scratch_space(ice, prog_data->total_scratch, stage); \
3583 uint32_t scratch_addr = bo->gtt_offset; \
3584 pkt.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11; \
3585 pkt.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr); \
3586 }
3587
3588 /**
3589 * Encode most of 3DSTATE_VS based on the compiled shader.
3590 */
3591 static void
3592 iris_store_vs_state(struct iris_context *ice,
3593 const struct gen_device_info *devinfo,
3594 struct iris_compiled_shader *shader)
3595 {
3596 struct brw_stage_prog_data *prog_data = shader->prog_data;
3597 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3598
3599 iris_pack_command(GENX(3DSTATE_VS), shader->derived_data, vs) {
3600 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex, MESA_SHADER_VERTEX);
3601 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
3602 vs.SIMD8DispatchEnable = true;
3603 vs.UserClipDistanceCullTestEnableBitmask =
3604 vue_prog_data->cull_distance_mask;
3605 }
3606 }
3607
3608 /**
3609 * Encode most of 3DSTATE_HS based on the compiled shader.
3610 */
3611 static void
3612 iris_store_tcs_state(struct iris_context *ice,
3613 const struct gen_device_info *devinfo,
3614 struct iris_compiled_shader *shader)
3615 {
3616 struct brw_stage_prog_data *prog_data = shader->prog_data;
3617 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3618 struct brw_tcs_prog_data *tcs_prog_data = (void *) prog_data;
3619
3620 iris_pack_command(GENX(3DSTATE_HS), shader->derived_data, hs) {
3621 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex, MESA_SHADER_TESS_CTRL);
3622
3623 hs.InstanceCount = tcs_prog_data->instances - 1;
3624 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
3625 hs.IncludeVertexHandles = true;
3626
3627 #if GEN_GEN >= 9
3628 hs.DispatchMode = vue_prog_data->dispatch_mode;
3629 hs.IncludePrimitiveID = tcs_prog_data->include_primitive_id;
3630 #endif
3631 }
3632 }
3633
3634 /**
3635 * Encode 3DSTATE_TE and most of 3DSTATE_DS based on the compiled shader.
3636 */
3637 static void
3638 iris_store_tes_state(struct iris_context *ice,
3639 const struct gen_device_info *devinfo,
3640 struct iris_compiled_shader *shader)
3641 {
3642 struct brw_stage_prog_data *prog_data = shader->prog_data;
3643 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3644 struct brw_tes_prog_data *tes_prog_data = (void *) prog_data;
3645
3646 uint32_t *te_state = (void *) shader->derived_data;
3647 uint32_t *ds_state = te_state + GENX(3DSTATE_TE_length);
3648
3649 iris_pack_command(GENX(3DSTATE_TE), te_state, te) {
3650 te.Partitioning = tes_prog_data->partitioning;
3651 te.OutputTopology = tes_prog_data->output_topology;
3652 te.TEDomain = tes_prog_data->domain;
3653 te.TEEnable = true;
3654 te.MaximumTessellationFactorOdd = 63.0;
3655 te.MaximumTessellationFactorNotOdd = 64.0;
3656 }
3657
3658 iris_pack_command(GENX(3DSTATE_DS), ds_state, ds) {
3659 INIT_THREAD_DISPATCH_FIELDS(ds, Patch, MESA_SHADER_TESS_EVAL);
3660
3661 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
3662 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
3663 ds.ComputeWCoordinateEnable =
3664 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
3665
3666 ds.UserClipDistanceCullTestEnableBitmask =
3667 vue_prog_data->cull_distance_mask;
3668 }
3669
3670 }
3671
3672 /**
3673 * Encode most of 3DSTATE_GS based on the compiled shader.
3674 */
3675 static void
3676 iris_store_gs_state(struct iris_context *ice,
3677 const struct gen_device_info *devinfo,
3678 struct iris_compiled_shader *shader)
3679 {
3680 struct brw_stage_prog_data *prog_data = shader->prog_data;
3681 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3682 struct brw_gs_prog_data *gs_prog_data = (void *) prog_data;
3683
3684 iris_pack_command(GENX(3DSTATE_GS), shader->derived_data, gs) {
3685 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex, MESA_SHADER_GEOMETRY);
3686
3687 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
3688 gs.OutputTopology = gs_prog_data->output_topology;
3689 gs.ControlDataHeaderSize =
3690 gs_prog_data->control_data_header_size_hwords;
3691 gs.InstanceControl = gs_prog_data->invocations - 1;
3692 gs.DispatchMode = DISPATCH_MODE_SIMD8;
3693 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
3694 gs.ControlDataFormat = gs_prog_data->control_data_format;
3695 gs.ReorderMode = TRAILING;
3696 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
3697 gs.MaximumNumberofThreads =
3698 GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
3699 : (devinfo->max_gs_threads - 1);
3700
3701 if (gs_prog_data->static_vertex_count != -1) {
3702 gs.StaticOutput = true;
3703 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
3704 }
3705 gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
3706
3707 gs.UserClipDistanceCullTestEnableBitmask =
3708 vue_prog_data->cull_distance_mask;
3709
3710 const int urb_entry_write_offset = 1;
3711 const uint32_t urb_entry_output_length =
3712 DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
3713 urb_entry_write_offset;
3714
3715 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
3716 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
3717 }
3718 }
3719
3720 /**
3721 * Encode most of 3DSTATE_PS and 3DSTATE_PS_EXTRA based on the shader.
3722 */
3723 static void
3724 iris_store_fs_state(struct iris_context *ice,
3725 const struct gen_device_info *devinfo,
3726 struct iris_compiled_shader *shader)
3727 {
3728 struct brw_stage_prog_data *prog_data = shader->prog_data;
3729 struct brw_wm_prog_data *wm_prog_data = (void *) shader->prog_data;
3730
3731 uint32_t *ps_state = (void *) shader->derived_data;
3732 uint32_t *psx_state = ps_state + GENX(3DSTATE_PS_length);
3733
3734 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
3735 ps.VectorMaskEnable = true;
3736 // XXX: WABTPPrefetchDisable, see above, drop at C0
3737 ps.BindingTableEntryCount = GEN_GEN == 11 ? 0 :
3738 shader->bt.size_bytes / 4;
3739 ps.FloatingPointMode = prog_data->use_alt_mode;
3740 ps.MaximumNumberofThreadsPerPSD = 64 - (GEN_GEN == 8 ? 2 : 1);
3741
3742 ps.PushConstantEnable = prog_data->ubo_ranges[0].length > 0;
3743
3744 /* From the documentation for this packet:
3745 * "If the PS kernel does not need the Position XY Offsets to
3746 * compute a Position Value, then this field should be programmed
3747 * to POSOFFSET_NONE."
3748 *
3749 * "SW Recommendation: If the PS kernel needs the Position Offsets
3750 * to compute a Position XY value, this field should match Position
3751 * ZW Interpolation Mode to ensure a consistent position.xyzw
3752 * computation."
3753 *
3754 * We only require XY sample offsets. So, this recommendation doesn't
3755 * look useful at the moment. We might need this in future.
3756 */
3757 ps.PositionXYOffsetSelect =
3758 wm_prog_data->uses_pos_offset ? POSOFFSET_SAMPLE : POSOFFSET_NONE;
3759 ps._8PixelDispatchEnable = wm_prog_data->dispatch_8;
3760 ps._16PixelDispatchEnable = wm_prog_data->dispatch_16;
3761 ps._32PixelDispatchEnable = wm_prog_data->dispatch_32;
3762
3763 // XXX: Disable SIMD32 with 16x MSAA
3764
3765 ps.DispatchGRFStartRegisterForConstantSetupData0 =
3766 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
3767 ps.DispatchGRFStartRegisterForConstantSetupData1 =
3768 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
3769 ps.DispatchGRFStartRegisterForConstantSetupData2 =
3770 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
3771
3772 ps.KernelStartPointer0 =
3773 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
3774 ps.KernelStartPointer1 =
3775 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
3776 ps.KernelStartPointer2 =
3777 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
3778
3779 if (prog_data->total_scratch) {
3780 struct iris_bo *bo =
3781 iris_get_scratch_space(ice, prog_data->total_scratch,
3782 MESA_SHADER_FRAGMENT);
3783 uint32_t scratch_addr = bo->gtt_offset;
3784 ps.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
3785 ps.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr);
3786 }
3787 }
3788
3789 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
3790 psx.PixelShaderValid = true;
3791 psx.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
3792 psx.PixelShaderKillsPixel = wm_prog_data->uses_kill;
3793 psx.AttributeEnable = wm_prog_data->num_varying_inputs != 0;
3794 psx.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
3795 psx.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
3796 psx.PixelShaderIsPerSample = wm_prog_data->persample_dispatch;
3797 psx.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
3798
3799 #if GEN_GEN >= 9
3800 psx.PixelShaderPullsBary = wm_prog_data->pulls_bary;
3801 psx.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
3802 #else
3803 psx.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
3804 #endif
3805 // XXX: UAV bit
3806 }
3807 }
3808
3809 /**
3810 * Compute the size of the derived data (shader command packets).
3811 *
3812 * This must match the data written by the iris_store_xs_state() functions.
3813 */
3814 static void
3815 iris_store_cs_state(struct iris_context *ice,
3816 const struct gen_device_info *devinfo,
3817 struct iris_compiled_shader *shader)
3818 {
3819 struct brw_stage_prog_data *prog_data = shader->prog_data;
3820 struct brw_cs_prog_data *cs_prog_data = (void *) shader->prog_data;
3821 void *map = shader->derived_data;
3822
3823 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), map, desc) {
3824 desc.KernelStartPointer = KSP(shader);
3825 desc.ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs;
3826 desc.NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads;
3827 desc.SharedLocalMemorySize =
3828 encode_slm_size(GEN_GEN, prog_data->total_shared);
3829 desc.BarrierEnable = cs_prog_data->uses_barrier;
3830 desc.CrossThreadConstantDataReadLength =
3831 cs_prog_data->push.cross_thread.regs;
3832 }
3833 }
3834
3835 static unsigned
3836 iris_derived_program_state_size(enum iris_program_cache_id cache_id)
3837 {
3838 assert(cache_id <= IRIS_CACHE_BLORP);
3839
3840 static const unsigned dwords[] = {
3841 [IRIS_CACHE_VS] = GENX(3DSTATE_VS_length),
3842 [IRIS_CACHE_TCS] = GENX(3DSTATE_HS_length),
3843 [IRIS_CACHE_TES] = GENX(3DSTATE_TE_length) + GENX(3DSTATE_DS_length),
3844 [IRIS_CACHE_GS] = GENX(3DSTATE_GS_length),
3845 [IRIS_CACHE_FS] =
3846 GENX(3DSTATE_PS_length) + GENX(3DSTATE_PS_EXTRA_length),
3847 [IRIS_CACHE_CS] = GENX(INTERFACE_DESCRIPTOR_DATA_length),
3848 [IRIS_CACHE_BLORP] = 0,
3849 };
3850
3851 return sizeof(uint32_t) * dwords[cache_id];
3852 }
3853
3854 /**
3855 * Create any state packets corresponding to the given shader stage
3856 * (i.e. 3DSTATE_VS) and save them as "derived data" in the shader variant.
3857 * This means that we can look up a program in the in-memory cache and
3858 * get most of the state packet without having to reconstruct it.
3859 */
3860 static void
3861 iris_store_derived_program_state(struct iris_context *ice,
3862 enum iris_program_cache_id cache_id,
3863 struct iris_compiled_shader *shader)
3864 {
3865 struct iris_screen *screen = (void *) ice->ctx.screen;
3866 const struct gen_device_info *devinfo = &screen->devinfo;
3867
3868 switch (cache_id) {
3869 case IRIS_CACHE_VS:
3870 iris_store_vs_state(ice, devinfo, shader);
3871 break;
3872 case IRIS_CACHE_TCS:
3873 iris_store_tcs_state(ice, devinfo, shader);
3874 break;
3875 case IRIS_CACHE_TES:
3876 iris_store_tes_state(ice, devinfo, shader);
3877 break;
3878 case IRIS_CACHE_GS:
3879 iris_store_gs_state(ice, devinfo, shader);
3880 break;
3881 case IRIS_CACHE_FS:
3882 iris_store_fs_state(ice, devinfo, shader);
3883 break;
3884 case IRIS_CACHE_CS:
3885 iris_store_cs_state(ice, devinfo, shader);
3886 case IRIS_CACHE_BLORP:
3887 break;
3888 default:
3889 break;
3890 }
3891 }
3892
3893 /* ------------------------------------------------------------------- */
3894
3895 static const uint32_t push_constant_opcodes[] = {
3896 [MESA_SHADER_VERTEX] = 21,
3897 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
3898 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
3899 [MESA_SHADER_GEOMETRY] = 22,
3900 [MESA_SHADER_FRAGMENT] = 23,
3901 [MESA_SHADER_COMPUTE] = 0,
3902 };
3903
3904 static uint32_t
3905 use_null_surface(struct iris_batch *batch, struct iris_context *ice)
3906 {
3907 struct iris_bo *state_bo = iris_resource_bo(ice->state.unbound_tex.res);
3908
3909 iris_use_pinned_bo(batch, state_bo, false);
3910
3911 return ice->state.unbound_tex.offset;
3912 }
3913
3914 static uint32_t
3915 use_null_fb_surface(struct iris_batch *batch, struct iris_context *ice)
3916 {
3917 /* If set_framebuffer_state() was never called, fall back to 1x1x1 */
3918 if (!ice->state.null_fb.res)
3919 return use_null_surface(batch, ice);
3920
3921 struct iris_bo *state_bo = iris_resource_bo(ice->state.null_fb.res);
3922
3923 iris_use_pinned_bo(batch, state_bo, false);
3924
3925 return ice->state.null_fb.offset;
3926 }
3927
3928 static uint32_t
3929 surf_state_offset_for_aux(struct iris_resource *res,
3930 unsigned aux_modes,
3931 enum isl_aux_usage aux_usage)
3932 {
3933 return SURFACE_STATE_ALIGNMENT *
3934 util_bitcount(res->aux.possible_usages & ((1 << aux_usage) - 1));
3935 }
3936
3937 static void
3938 surf_state_update_clear_value(struct iris_batch *batch,
3939 struct iris_resource *res,
3940 struct iris_state_ref *state,
3941 unsigned aux_modes,
3942 enum isl_aux_usage aux_usage)
3943 {
3944 struct isl_device *isl_dev = &batch->screen->isl_dev;
3945 struct iris_bo *state_bo = iris_resource_bo(state->res);
3946 uint64_t real_offset = state->offset +
3947 IRIS_MEMZONE_BINDER_START;
3948 uint32_t offset_into_bo = real_offset - state_bo->gtt_offset;
3949 uint32_t clear_offset = offset_into_bo +
3950 isl_dev->ss.clear_value_offset +
3951 surf_state_offset_for_aux(res, aux_modes, aux_usage);
3952
3953 batch->vtbl->copy_mem_mem(batch, state_bo, clear_offset,
3954 res->aux.clear_color_bo,
3955 res->aux.clear_color_offset,
3956 isl_dev->ss.clear_value_size);
3957 }
3958
3959 static void
3960 update_clear_value(struct iris_context *ice,
3961 struct iris_batch *batch,
3962 struct iris_resource *res,
3963 struct iris_state_ref *state,
3964 unsigned aux_modes,
3965 struct isl_view *view)
3966 {
3967 struct iris_screen *screen = batch->screen;
3968 const struct gen_device_info *devinfo = &screen->devinfo;
3969
3970 /* We only need to update the clear color in the surface state for gen8 and
3971 * gen9. Newer gens can read it directly from the clear color state buffer.
3972 */
3973 if (devinfo->gen > 9)
3974 return;
3975
3976 if (devinfo->gen == 9) {
3977 /* Skip updating the ISL_AUX_USAGE_NONE surface state */
3978 aux_modes &= ~(1 << ISL_AUX_USAGE_NONE);
3979
3980 while (aux_modes) {
3981 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
3982
3983 surf_state_update_clear_value(batch, res, state, aux_modes,
3984 aux_usage);
3985 }
3986 } else if (devinfo->gen == 8) {
3987 pipe_resource_reference(&state->res, NULL);
3988 void *map = alloc_surface_states(ice->state.surface_uploader,
3989 state, res->aux.possible_usages);
3990 while (aux_modes) {
3991 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
3992 fill_surface_state(&screen->isl_dev, map, res, view, aux_usage);
3993 map += SURFACE_STATE_ALIGNMENT;
3994 }
3995 }
3996 }
3997
3998 /**
3999 * Add a surface to the validation list, as well as the buffer containing
4000 * the corresponding SURFACE_STATE.
4001 *
4002 * Returns the binding table entry (offset to SURFACE_STATE).
4003 */
4004 static uint32_t
4005 use_surface(struct iris_context *ice,
4006 struct iris_batch *batch,
4007 struct pipe_surface *p_surf,
4008 bool writeable,
4009 enum isl_aux_usage aux_usage)
4010 {
4011 struct iris_surface *surf = (void *) p_surf;
4012 struct iris_resource *res = (void *) p_surf->texture;
4013
4014 iris_use_pinned_bo(batch, iris_resource_bo(p_surf->texture), writeable);
4015 iris_use_pinned_bo(batch, iris_resource_bo(surf->surface_state.res), false);
4016
4017 if (res->aux.bo) {
4018 iris_use_pinned_bo(batch, res->aux.bo, writeable);
4019 if (res->aux.clear_color_bo)
4020 iris_use_pinned_bo(batch, res->aux.clear_color_bo, false);
4021
4022 if (memcmp(&res->aux.clear_color, &surf->clear_color,
4023 sizeof(surf->clear_color)) != 0) {
4024 update_clear_value(ice, batch, res, &surf->surface_state,
4025 res->aux.possible_usages, &surf->view);
4026 surf->clear_color = res->aux.clear_color;
4027 }
4028 }
4029
4030 return surf->surface_state.offset +
4031 surf_state_offset_for_aux(res, res->aux.possible_usages, aux_usage);
4032 }
4033
4034 static uint32_t
4035 use_sampler_view(struct iris_context *ice,
4036 struct iris_batch *batch,
4037 struct iris_sampler_view *isv)
4038 {
4039 // XXX: ASTC hacks
4040 enum isl_aux_usage aux_usage =
4041 iris_resource_texture_aux_usage(ice, isv->res, isv->view.format, 0);
4042
4043 iris_use_pinned_bo(batch, isv->res->bo, false);
4044 iris_use_pinned_bo(batch, iris_resource_bo(isv->surface_state.res), false);
4045
4046 if (isv->res->aux.bo) {
4047 iris_use_pinned_bo(batch, isv->res->aux.bo, false);
4048 if (isv->res->aux.clear_color_bo)
4049 iris_use_pinned_bo(batch, isv->res->aux.clear_color_bo, false);
4050 if (memcmp(&isv->res->aux.clear_color, &isv->clear_color,
4051 sizeof(isv->clear_color)) != 0) {
4052 update_clear_value(ice, batch, isv->res, &isv->surface_state,
4053 isv->res->aux.sampler_usages, &isv->view);
4054 isv->clear_color = isv->res->aux.clear_color;
4055 }
4056 }
4057
4058 return isv->surface_state.offset +
4059 surf_state_offset_for_aux(isv->res, isv->res->aux.sampler_usages,
4060 aux_usage);
4061 }
4062
4063 static uint32_t
4064 use_ubo_ssbo(struct iris_batch *batch,
4065 struct iris_context *ice,
4066 struct pipe_shader_buffer *buf,
4067 struct iris_state_ref *surf_state,
4068 bool writable)
4069 {
4070 if (!buf->buffer)
4071 return use_null_surface(batch, ice);
4072
4073 iris_use_pinned_bo(batch, iris_resource_bo(buf->buffer), writable);
4074 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false);
4075
4076 return surf_state->offset;
4077 }
4078
4079 static uint32_t
4080 use_image(struct iris_batch *batch, struct iris_context *ice,
4081 struct iris_shader_state *shs, int i)
4082 {
4083 struct iris_image_view *iv = &shs->image[i];
4084 struct iris_resource *res = (void *) iv->base.resource;
4085
4086 if (!res)
4087 return use_null_surface(batch, ice);
4088
4089 bool write = iv->base.shader_access & PIPE_IMAGE_ACCESS_WRITE;
4090
4091 iris_use_pinned_bo(batch, res->bo, write);
4092 iris_use_pinned_bo(batch, iris_resource_bo(iv->surface_state.res), false);
4093
4094 if (res->aux.bo)
4095 iris_use_pinned_bo(batch, res->aux.bo, write);
4096
4097 return iv->surface_state.offset;
4098 }
4099
4100 #define push_bt_entry(addr) \
4101 assert(addr >= binder_addr); \
4102 assert(s < shader->bt.size_bytes / sizeof(uint32_t)); \
4103 if (!pin_only) bt_map[s++] = (addr) - binder_addr;
4104
4105 #define bt_assert(section) \
4106 if (!pin_only && shader->bt.used_mask[section] != 0) \
4107 assert(shader->bt.offsets[section] == s);
4108
4109 /**
4110 * Populate the binding table for a given shader stage.
4111 *
4112 * This fills out the table of pointers to surfaces required by the shader,
4113 * and also adds those buffers to the validation list so the kernel can make
4114 * resident before running our batch.
4115 */
4116 static void
4117 iris_populate_binding_table(struct iris_context *ice,
4118 struct iris_batch *batch,
4119 gl_shader_stage stage,
4120 bool pin_only)
4121 {
4122 const struct iris_binder *binder = &ice->state.binder;
4123 struct iris_uncompiled_shader *ish = ice->shaders.uncompiled[stage];
4124 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4125 if (!shader)
4126 return;
4127
4128 struct iris_binding_table *bt = &shader->bt;
4129 UNUSED struct brw_stage_prog_data *prog_data = shader->prog_data;
4130 struct iris_shader_state *shs = &ice->state.shaders[stage];
4131 uint32_t binder_addr = binder->bo->gtt_offset;
4132
4133 //struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4134 uint32_t *bt_map = binder->map + binder->bt_offset[stage];
4135 int s = 0;
4136
4137 const struct shader_info *info = iris_get_shader_info(ice, stage);
4138 if (!info) {
4139 /* TCS passthrough doesn't need a binding table. */
4140 assert(stage == MESA_SHADER_TESS_CTRL);
4141 return;
4142 }
4143
4144 if (stage == MESA_SHADER_COMPUTE &&
4145 shader->bt.used_mask[IRIS_SURFACE_GROUP_CS_WORK_GROUPS]) {
4146 /* surface for gl_NumWorkGroups */
4147 struct iris_state_ref *grid_data = &ice->state.grid_size;
4148 struct iris_state_ref *grid_state = &ice->state.grid_surf_state;
4149 iris_use_pinned_bo(batch, iris_resource_bo(grid_data->res), false);
4150 iris_use_pinned_bo(batch, iris_resource_bo(grid_state->res), false);
4151 push_bt_entry(grid_state->offset);
4152 }
4153
4154 if (stage == MESA_SHADER_FRAGMENT) {
4155 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4156 /* Note that cso_fb->nr_cbufs == fs_key->nr_color_regions. */
4157 if (cso_fb->nr_cbufs) {
4158 for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
4159 uint32_t addr;
4160 if (cso_fb->cbufs[i]) {
4161 addr = use_surface(ice, batch, cso_fb->cbufs[i], true,
4162 ice->state.draw_aux_usage[i]);
4163 } else {
4164 addr = use_null_fb_surface(batch, ice);
4165 }
4166 push_bt_entry(addr);
4167 }
4168 } else {
4169 uint32_t addr = use_null_fb_surface(batch, ice);
4170 push_bt_entry(addr);
4171 }
4172 }
4173
4174 #define foreach_surface_used(index, group) \
4175 bt_assert(group); \
4176 for (int index = 0; index < bt->sizes[group]; index++) \
4177 if (iris_group_index_to_bti(bt, group, index) != \
4178 IRIS_SURFACE_NOT_USED)
4179
4180 foreach_surface_used(i, IRIS_SURFACE_GROUP_TEXTURE) {
4181 struct iris_sampler_view *view = shs->textures[i];
4182 uint32_t addr = view ? use_sampler_view(ice, batch, view)
4183 : use_null_surface(batch, ice);
4184 push_bt_entry(addr);
4185 }
4186
4187 foreach_surface_used(i, IRIS_SURFACE_GROUP_IMAGE) {
4188 uint32_t addr = use_image(batch, ice, shs, i);
4189 push_bt_entry(addr);
4190 }
4191
4192 foreach_surface_used(i, IRIS_SURFACE_GROUP_UBO) {
4193 uint32_t addr;
4194
4195 if (i == bt->sizes[IRIS_SURFACE_GROUP_UBO] - 1) {
4196 if (ish->const_data) {
4197 iris_use_pinned_bo(batch, iris_resource_bo(ish->const_data), false);
4198 iris_use_pinned_bo(batch, iris_resource_bo(ish->const_data_state.res),
4199 false);
4200 addr = ish->const_data_state.offset;
4201 } else {
4202 /* This can only happen with INTEL_DISABLE_COMPACT_BINDING_TABLE=1. */
4203 addr = use_null_surface(batch, ice);
4204 }
4205 } else {
4206 addr = use_ubo_ssbo(batch, ice, &shs->constbuf[i],
4207 &shs->constbuf_surf_state[i], false);
4208 }
4209
4210 push_bt_entry(addr);
4211 }
4212
4213 foreach_surface_used(i, IRIS_SURFACE_GROUP_SSBO) {
4214 uint32_t addr =
4215 use_ubo_ssbo(batch, ice, &shs->ssbo[i], &shs->ssbo_surf_state[i],
4216 shs->writable_ssbos & (1u << i));
4217 push_bt_entry(addr);
4218 }
4219
4220 #if 0
4221 /* XXX: YUV surfaces not implemented yet */
4222 bt_assert(plane_start[1], ...);
4223 bt_assert(plane_start[2], ...);
4224 #endif
4225 }
4226
4227 static void
4228 iris_use_optional_res(struct iris_batch *batch,
4229 struct pipe_resource *res,
4230 bool writeable)
4231 {
4232 if (res) {
4233 struct iris_bo *bo = iris_resource_bo(res);
4234 iris_use_pinned_bo(batch, bo, writeable);
4235 }
4236 }
4237
4238 static void
4239 pin_depth_and_stencil_buffers(struct iris_batch *batch,
4240 struct pipe_surface *zsbuf,
4241 struct iris_depth_stencil_alpha_state *cso_zsa)
4242 {
4243 if (!zsbuf)
4244 return;
4245
4246 struct iris_resource *zres, *sres;
4247 iris_get_depth_stencil_resources(zsbuf->texture, &zres, &sres);
4248
4249 if (zres) {
4250 iris_use_pinned_bo(batch, zres->bo, cso_zsa->depth_writes_enabled);
4251 if (zres->aux.bo) {
4252 iris_use_pinned_bo(batch, zres->aux.bo,
4253 cso_zsa->depth_writes_enabled);
4254 }
4255 }
4256
4257 if (sres) {
4258 iris_use_pinned_bo(batch, sres->bo, cso_zsa->stencil_writes_enabled);
4259 }
4260 }
4261
4262 /* ------------------------------------------------------------------- */
4263
4264 /**
4265 * Pin any BOs which were installed by a previous batch, and restored
4266 * via the hardware logical context mechanism.
4267 *
4268 * We don't need to re-emit all state every batch - the hardware context
4269 * mechanism will save and restore it for us. This includes pointers to
4270 * various BOs...which won't exist unless we ask the kernel to pin them
4271 * by adding them to the validation list.
4272 *
4273 * We can skip buffers if we've re-emitted those packets, as we're
4274 * overwriting those stale pointers with new ones, and don't actually
4275 * refer to the old BOs.
4276 */
4277 static void
4278 iris_restore_render_saved_bos(struct iris_context *ice,
4279 struct iris_batch *batch,
4280 const struct pipe_draw_info *draw)
4281 {
4282 struct iris_genx_state *genx = ice->state.genx;
4283
4284 const uint64_t clean = ~ice->state.dirty;
4285
4286 if (clean & IRIS_DIRTY_CC_VIEWPORT) {
4287 iris_use_optional_res(batch, ice->state.last_res.cc_vp, false);
4288 }
4289
4290 if (clean & IRIS_DIRTY_SF_CL_VIEWPORT) {
4291 iris_use_optional_res(batch, ice->state.last_res.sf_cl_vp, false);
4292 }
4293
4294 if (clean & IRIS_DIRTY_BLEND_STATE) {
4295 iris_use_optional_res(batch, ice->state.last_res.blend, false);
4296 }
4297
4298 if (clean & IRIS_DIRTY_COLOR_CALC_STATE) {
4299 iris_use_optional_res(batch, ice->state.last_res.color_calc, false);
4300 }
4301
4302 if (clean & IRIS_DIRTY_SCISSOR_RECT) {
4303 iris_use_optional_res(batch, ice->state.last_res.scissor, false);
4304 }
4305
4306 if (ice->state.streamout_active && (clean & IRIS_DIRTY_SO_BUFFERS)) {
4307 for (int i = 0; i < 4; i++) {
4308 struct iris_stream_output_target *tgt =
4309 (void *) ice->state.so_target[i];
4310 if (tgt) {
4311 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
4312 true);
4313 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
4314 true);
4315 }
4316 }
4317 }
4318
4319 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4320 if (!(clean & (IRIS_DIRTY_CONSTANTS_VS << stage)))
4321 continue;
4322
4323 struct iris_shader_state *shs = &ice->state.shaders[stage];
4324 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4325
4326 if (!shader)
4327 continue;
4328
4329 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4330
4331 for (int i = 0; i < 4; i++) {
4332 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4333
4334 if (range->length == 0)
4335 continue;
4336
4337 /* Range block is a binding table index, map back to UBO index. */
4338 unsigned block_index = iris_bti_to_group_index(
4339 &shader->bt, IRIS_SURFACE_GROUP_UBO, range->block);
4340 assert(block_index != IRIS_SURFACE_NOT_USED);
4341
4342 struct pipe_shader_buffer *cbuf = &shs->constbuf[block_index];
4343 struct iris_resource *res = (void *) cbuf->buffer;
4344
4345 if (res)
4346 iris_use_pinned_bo(batch, res->bo, false);
4347 else
4348 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
4349 }
4350 }
4351
4352 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4353 if (clean & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4354 /* Re-pin any buffers referred to by the binding table. */
4355 iris_populate_binding_table(ice, batch, stage, true);
4356 }
4357 }
4358
4359 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4360 struct iris_shader_state *shs = &ice->state.shaders[stage];
4361 struct pipe_resource *res = shs->sampler_table.res;
4362 if (res)
4363 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4364 }
4365
4366 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4367 if (clean & (IRIS_DIRTY_VS << stage)) {
4368 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4369
4370 if (shader) {
4371 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
4372 iris_use_pinned_bo(batch, bo, false);
4373
4374 struct brw_stage_prog_data *prog_data = shader->prog_data;
4375
4376 if (prog_data->total_scratch > 0) {
4377 struct iris_bo *bo =
4378 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4379 iris_use_pinned_bo(batch, bo, true);
4380 }
4381 }
4382 }
4383 }
4384
4385 if ((clean & IRIS_DIRTY_DEPTH_BUFFER) &&
4386 (clean & IRIS_DIRTY_WM_DEPTH_STENCIL)) {
4387 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4388 pin_depth_and_stencil_buffers(batch, cso_fb->zsbuf, ice->state.cso_zsa);
4389 }
4390
4391 if (draw->index_size == 0 && ice->state.last_res.index_buffer) {
4392 /* This draw didn't emit a new index buffer, so we are inheriting the
4393 * older index buffer. This draw didn't need it, but future ones may.
4394 */
4395 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
4396 iris_use_pinned_bo(batch, bo, false);
4397 }
4398
4399 if (clean & IRIS_DIRTY_VERTEX_BUFFERS) {
4400 uint64_t bound = ice->state.bound_vertex_buffers;
4401 while (bound) {
4402 const int i = u_bit_scan64(&bound);
4403 struct pipe_resource *res = genx->vertex_buffers[i].resource;
4404 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4405 }
4406 }
4407 }
4408
4409 static void
4410 iris_restore_compute_saved_bos(struct iris_context *ice,
4411 struct iris_batch *batch,
4412 const struct pipe_grid_info *grid)
4413 {
4414 const uint64_t clean = ~ice->state.dirty;
4415
4416 const int stage = MESA_SHADER_COMPUTE;
4417 struct iris_shader_state *shs = &ice->state.shaders[stage];
4418
4419 if (clean & IRIS_DIRTY_CONSTANTS_CS) {
4420 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4421
4422 if (shader) {
4423 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4424 const struct brw_ubo_range *range = &prog_data->ubo_ranges[0];
4425
4426 if (range->length > 0) {
4427 /* Range block is a binding table index, map back to UBO index. */
4428 unsigned block_index = iris_bti_to_group_index(
4429 &shader->bt, IRIS_SURFACE_GROUP_UBO, range->block);
4430 assert(block_index != IRIS_SURFACE_NOT_USED);
4431
4432 struct pipe_shader_buffer *cbuf = &shs->constbuf[block_index];
4433 struct iris_resource *res = (void *) cbuf->buffer;
4434
4435 if (res)
4436 iris_use_pinned_bo(batch, res->bo, false);
4437 else
4438 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
4439 }
4440 }
4441 }
4442
4443 if (clean & IRIS_DIRTY_BINDINGS_CS) {
4444 /* Re-pin any buffers referred to by the binding table. */
4445 iris_populate_binding_table(ice, batch, stage, true);
4446 }
4447
4448 struct pipe_resource *sampler_res = shs->sampler_table.res;
4449 if (sampler_res)
4450 iris_use_pinned_bo(batch, iris_resource_bo(sampler_res), false);
4451
4452 if (clean & IRIS_DIRTY_CS) {
4453 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4454
4455 if (shader) {
4456 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
4457 iris_use_pinned_bo(batch, bo, false);
4458
4459 struct brw_stage_prog_data *prog_data = shader->prog_data;
4460
4461 if (prog_data->total_scratch > 0) {
4462 struct iris_bo *bo =
4463 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4464 iris_use_pinned_bo(batch, bo, true);
4465 }
4466 }
4467 }
4468 }
4469
4470 /**
4471 * Possibly emit STATE_BASE_ADDRESS to update Surface State Base Address.
4472 */
4473 static void
4474 iris_update_surface_base_address(struct iris_batch *batch,
4475 struct iris_binder *binder)
4476 {
4477 if (batch->last_surface_base_address == binder->bo->gtt_offset)
4478 return;
4479
4480 flush_for_state_base_change(batch);
4481
4482 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
4483 sba.SurfaceStateMOCS = MOCS_WB;
4484 sba.SurfaceStateBaseAddressModifyEnable = true;
4485 sba.SurfaceStateBaseAddress = ro_bo(binder->bo, 0);
4486 }
4487
4488 batch->last_surface_base_address = binder->bo->gtt_offset;
4489 }
4490
4491 static void
4492 iris_upload_dirty_render_state(struct iris_context *ice,
4493 struct iris_batch *batch,
4494 const struct pipe_draw_info *draw)
4495 {
4496 const uint64_t dirty = ice->state.dirty;
4497
4498 if (!(dirty & IRIS_ALL_DIRTY_FOR_RENDER))
4499 return;
4500
4501 struct iris_genx_state *genx = ice->state.genx;
4502 struct iris_binder *binder = &ice->state.binder;
4503 struct brw_wm_prog_data *wm_prog_data = (void *)
4504 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
4505
4506 if (dirty & IRIS_DIRTY_CC_VIEWPORT) {
4507 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4508 uint32_t cc_vp_address;
4509
4510 /* XXX: could avoid streaming for depth_clip [0,1] case. */
4511 uint32_t *cc_vp_map =
4512 stream_state(batch, ice->state.dynamic_uploader,
4513 &ice->state.last_res.cc_vp,
4514 4 * ice->state.num_viewports *
4515 GENX(CC_VIEWPORT_length), 32, &cc_vp_address);
4516 for (int i = 0; i < ice->state.num_viewports; i++) {
4517 float zmin, zmax;
4518 util_viewport_zmin_zmax(&ice->state.viewports[i],
4519 cso_rast->clip_halfz, &zmin, &zmax);
4520 if (cso_rast->depth_clip_near)
4521 zmin = 0.0;
4522 if (cso_rast->depth_clip_far)
4523 zmax = 1.0;
4524
4525 iris_pack_state(GENX(CC_VIEWPORT), cc_vp_map, ccv) {
4526 ccv.MinimumDepth = zmin;
4527 ccv.MaximumDepth = zmax;
4528 }
4529
4530 cc_vp_map += GENX(CC_VIEWPORT_length);
4531 }
4532
4533 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
4534 ptr.CCViewportPointer = cc_vp_address;
4535 }
4536 }
4537
4538 if (dirty & IRIS_DIRTY_SF_CL_VIEWPORT) {
4539 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4540 uint32_t sf_cl_vp_address;
4541 uint32_t *vp_map =
4542 stream_state(batch, ice->state.dynamic_uploader,
4543 &ice->state.last_res.sf_cl_vp,
4544 4 * ice->state.num_viewports *
4545 GENX(SF_CLIP_VIEWPORT_length), 64, &sf_cl_vp_address);
4546
4547 for (unsigned i = 0; i < ice->state.num_viewports; i++) {
4548 const struct pipe_viewport_state *state = &ice->state.viewports[i];
4549 float gb_xmin, gb_xmax, gb_ymin, gb_ymax;
4550
4551 float vp_xmin = viewport_extent(state, 0, -1.0f);
4552 float vp_xmax = viewport_extent(state, 0, 1.0f);
4553 float vp_ymin = viewport_extent(state, 1, -1.0f);
4554 float vp_ymax = viewport_extent(state, 1, 1.0f);
4555
4556 calculate_guardband_size(cso_fb->width, cso_fb->height,
4557 state->scale[0], state->scale[1],
4558 state->translate[0], state->translate[1],
4559 &gb_xmin, &gb_xmax, &gb_ymin, &gb_ymax);
4560
4561 iris_pack_state(GENX(SF_CLIP_VIEWPORT), vp_map, vp) {
4562 vp.ViewportMatrixElementm00 = state->scale[0];
4563 vp.ViewportMatrixElementm11 = state->scale[1];
4564 vp.ViewportMatrixElementm22 = state->scale[2];
4565 vp.ViewportMatrixElementm30 = state->translate[0];
4566 vp.ViewportMatrixElementm31 = state->translate[1];
4567 vp.ViewportMatrixElementm32 = state->translate[2];
4568 vp.XMinClipGuardband = gb_xmin;
4569 vp.XMaxClipGuardband = gb_xmax;
4570 vp.YMinClipGuardband = gb_ymin;
4571 vp.YMaxClipGuardband = gb_ymax;
4572 vp.XMinViewPort = MAX2(vp_xmin, 0);
4573 vp.XMaxViewPort = MIN2(vp_xmax, cso_fb->width) - 1;
4574 vp.YMinViewPort = MAX2(vp_ymin, 0);
4575 vp.YMaxViewPort = MIN2(vp_ymax, cso_fb->height) - 1;
4576 }
4577
4578 vp_map += GENX(SF_CLIP_VIEWPORT_length);
4579 }
4580
4581 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
4582 ptr.SFClipViewportPointer = sf_cl_vp_address;
4583 }
4584 }
4585
4586 if (dirty & IRIS_DIRTY_URB) {
4587 unsigned size[4];
4588
4589 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
4590 if (!ice->shaders.prog[i]) {
4591 size[i] = 1;
4592 } else {
4593 struct brw_vue_prog_data *vue_prog_data =
4594 (void *) ice->shaders.prog[i]->prog_data;
4595 size[i] = vue_prog_data->urb_entry_size;
4596 }
4597 assert(size[i] != 0);
4598 }
4599
4600 genX(emit_urb_setup)(ice, batch, size,
4601 ice->shaders.prog[MESA_SHADER_TESS_EVAL] != NULL,
4602 ice->shaders.prog[MESA_SHADER_GEOMETRY] != NULL);
4603 }
4604
4605 if (dirty & IRIS_DIRTY_BLEND_STATE) {
4606 struct iris_blend_state *cso_blend = ice->state.cso_blend;
4607 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4608 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
4609 const int header_dwords = GENX(BLEND_STATE_length);
4610
4611 /* Always write at least one BLEND_STATE - the final RT message will
4612 * reference BLEND_STATE[0] even if there aren't color writes. There
4613 * may still be alpha testing, computed depth, and so on.
4614 */
4615 const int rt_dwords =
4616 MAX2(cso_fb->nr_cbufs, 1) * GENX(BLEND_STATE_ENTRY_length);
4617
4618 uint32_t blend_offset;
4619 uint32_t *blend_map =
4620 stream_state(batch, ice->state.dynamic_uploader,
4621 &ice->state.last_res.blend,
4622 4 * (header_dwords + rt_dwords), 64, &blend_offset);
4623
4624 uint32_t blend_state_header;
4625 iris_pack_state(GENX(BLEND_STATE), &blend_state_header, bs) {
4626 bs.AlphaTestEnable = cso_zsa->alpha.enabled;
4627 bs.AlphaTestFunction = translate_compare_func(cso_zsa->alpha.func);
4628 }
4629
4630 blend_map[0] = blend_state_header | cso_blend->blend_state[0];
4631 memcpy(&blend_map[1], &cso_blend->blend_state[1], 4 * rt_dwords);
4632
4633 iris_emit_cmd(batch, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
4634 ptr.BlendStatePointer = blend_offset;
4635 ptr.BlendStatePointerValid = true;
4636 }
4637 }
4638
4639 if (dirty & IRIS_DIRTY_COLOR_CALC_STATE) {
4640 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
4641 #if GEN_GEN == 8
4642 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
4643 #endif
4644 uint32_t cc_offset;
4645 void *cc_map =
4646 stream_state(batch, ice->state.dynamic_uploader,
4647 &ice->state.last_res.color_calc,
4648 sizeof(uint32_t) * GENX(COLOR_CALC_STATE_length),
4649 64, &cc_offset);
4650 iris_pack_state(GENX(COLOR_CALC_STATE), cc_map, cc) {
4651 cc.AlphaTestFormat = ALPHATEST_FLOAT32;
4652 cc.AlphaReferenceValueAsFLOAT32 = cso->alpha.ref_value;
4653 cc.BlendConstantColorRed = ice->state.blend_color.color[0];
4654 cc.BlendConstantColorGreen = ice->state.blend_color.color[1];
4655 cc.BlendConstantColorBlue = ice->state.blend_color.color[2];
4656 cc.BlendConstantColorAlpha = ice->state.blend_color.color[3];
4657 #if GEN_GEN == 8
4658 cc.StencilReferenceValue = p_stencil_refs->ref_value[0];
4659 cc.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
4660 #endif
4661 }
4662 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
4663 ptr.ColorCalcStatePointer = cc_offset;
4664 ptr.ColorCalcStatePointerValid = true;
4665 }
4666 }
4667
4668 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4669 if (!(dirty & (IRIS_DIRTY_CONSTANTS_VS << stage)))
4670 continue;
4671
4672 struct iris_shader_state *shs = &ice->state.shaders[stage];
4673 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4674
4675 if (!shader)
4676 continue;
4677
4678 if (shs->cbuf0_needs_upload)
4679 upload_uniforms(ice, stage);
4680
4681 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4682
4683 iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_VS), pkt) {
4684 pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
4685 if (prog_data) {
4686 /* The Skylake PRM contains the following restriction:
4687 *
4688 * "The driver must ensure The following case does not occur
4689 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
4690 * buffer 3 read length equal to zero committed followed by a
4691 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
4692 * zero committed."
4693 *
4694 * To avoid this, we program the buffers in the highest slots.
4695 * This way, slot 0 is only used if slot 3 is also used.
4696 */
4697 int n = 3;
4698
4699 for (int i = 3; i >= 0; i--) {
4700 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4701
4702 if (range->length == 0)
4703 continue;
4704
4705 /* Range block is a binding table index, map back to UBO index. */
4706 unsigned block_index = iris_bti_to_group_index(
4707 &shader->bt, IRIS_SURFACE_GROUP_UBO, range->block);
4708 assert(block_index != IRIS_SURFACE_NOT_USED);
4709
4710 struct pipe_shader_buffer *cbuf = &shs->constbuf[block_index];
4711 struct iris_resource *res = (void *) cbuf->buffer;
4712
4713 assert(cbuf->buffer_offset % 32 == 0);
4714
4715 pkt.ConstantBody.ReadLength[n] = range->length;
4716 pkt.ConstantBody.Buffer[n] =
4717 res ? ro_bo(res->bo, range->start * 32 + cbuf->buffer_offset)
4718 : ro_bo(batch->screen->workaround_bo, 0);
4719 n--;
4720 }
4721 }
4722 }
4723 }
4724
4725 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4726 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4727 iris_emit_cmd(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), ptr) {
4728 ptr._3DCommandSubOpcode = 38 + stage;
4729 ptr.PointertoVSBindingTable = binder->bt_offset[stage];
4730 }
4731 }
4732 }
4733
4734 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4735 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4736 iris_populate_binding_table(ice, batch, stage, false);
4737 }
4738 }
4739
4740 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4741 if (!(dirty & (IRIS_DIRTY_SAMPLER_STATES_VS << stage)) ||
4742 !ice->shaders.prog[stage])
4743 continue;
4744
4745 iris_upload_sampler_states(ice, stage);
4746
4747 struct iris_shader_state *shs = &ice->state.shaders[stage];
4748 struct pipe_resource *res = shs->sampler_table.res;
4749 if (res)
4750 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4751
4752 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
4753 ptr._3DCommandSubOpcode = 43 + stage;
4754 ptr.PointertoVSSamplerState = shs->sampler_table.offset;
4755 }
4756 }
4757
4758 if (ice->state.need_border_colors)
4759 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
4760
4761 if (dirty & IRIS_DIRTY_MULTISAMPLE) {
4762 iris_emit_cmd(batch, GENX(3DSTATE_MULTISAMPLE), ms) {
4763 ms.PixelLocation =
4764 ice->state.cso_rast->half_pixel_center ? CENTER : UL_CORNER;
4765 if (ice->state.framebuffer.samples > 0)
4766 ms.NumberofMultisamples = ffs(ice->state.framebuffer.samples) - 1;
4767 }
4768 }
4769
4770 if (dirty & IRIS_DIRTY_SAMPLE_MASK) {
4771 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_MASK), ms) {
4772 ms.SampleMask = ice->state.sample_mask;
4773 }
4774 }
4775
4776 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4777 if (!(dirty & (IRIS_DIRTY_VS << stage)))
4778 continue;
4779
4780 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4781
4782 if (shader) {
4783 struct brw_stage_prog_data *prog_data = shader->prog_data;
4784 struct iris_resource *cache = (void *) shader->assembly.res;
4785 iris_use_pinned_bo(batch, cache->bo, false);
4786
4787 if (prog_data->total_scratch > 0) {
4788 struct iris_bo *bo =
4789 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4790 iris_use_pinned_bo(batch, bo, true);
4791 }
4792 #if GEN_GEN >= 9
4793 if (stage == MESA_SHADER_FRAGMENT && wm_prog_data->uses_sample_mask) {
4794 uint32_t psx_state[GENX(3DSTATE_PS_EXTRA_length)] = {0};
4795 uint32_t *shader_psx = ((uint32_t*)shader->derived_data) +
4796 GENX(3DSTATE_PS_length);
4797 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4798
4799 iris_pack_command(GENX(3DSTATE_PS_EXTRA), &psx_state, psx) {
4800 if (wm_prog_data->post_depth_coverage)
4801 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
4802 else if (wm_prog_data->inner_coverage && cso->conservative_rasterization)
4803 psx.InputCoverageMaskState = ICMS_INNER_CONSERVATIVE;
4804 else
4805 psx.InputCoverageMaskState = ICMS_NORMAL;
4806 }
4807
4808 iris_batch_emit(batch, shader->derived_data,
4809 sizeof(uint32_t) * GENX(3DSTATE_PS_length));
4810 iris_emit_merge(batch,
4811 shader_psx,
4812 psx_state,
4813 GENX(3DSTATE_PS_EXTRA_length));
4814 } else
4815 #endif
4816 iris_batch_emit(batch, shader->derived_data,
4817 iris_derived_program_state_size(stage));
4818 } else {
4819 if (stage == MESA_SHADER_TESS_EVAL) {
4820 iris_emit_cmd(batch, GENX(3DSTATE_HS), hs);
4821 iris_emit_cmd(batch, GENX(3DSTATE_TE), te);
4822 iris_emit_cmd(batch, GENX(3DSTATE_DS), ds);
4823 } else if (stage == MESA_SHADER_GEOMETRY) {
4824 iris_emit_cmd(batch, GENX(3DSTATE_GS), gs);
4825 }
4826 }
4827 }
4828
4829 if (ice->state.streamout_active) {
4830 if (dirty & IRIS_DIRTY_SO_BUFFERS) {
4831 iris_batch_emit(batch, genx->so_buffers,
4832 4 * 4 * GENX(3DSTATE_SO_BUFFER_length));
4833 for (int i = 0; i < 4; i++) {
4834 struct iris_stream_output_target *tgt =
4835 (void *) ice->state.so_target[i];
4836 if (tgt) {
4837 tgt->zeroed = true;
4838 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
4839 true);
4840 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
4841 true);
4842 }
4843 }
4844 }
4845
4846 if ((dirty & IRIS_DIRTY_SO_DECL_LIST) && ice->state.streamout) {
4847 uint32_t *decl_list =
4848 ice->state.streamout + GENX(3DSTATE_STREAMOUT_length);
4849 iris_batch_emit(batch, decl_list, 4 * ((decl_list[0] & 0xff) + 2));
4850 }
4851
4852 if (dirty & IRIS_DIRTY_STREAMOUT) {
4853 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4854
4855 uint32_t dynamic_sol[GENX(3DSTATE_STREAMOUT_length)];
4856 iris_pack_command(GENX(3DSTATE_STREAMOUT), dynamic_sol, sol) {
4857 sol.SOFunctionEnable = true;
4858 sol.SOStatisticsEnable = true;
4859
4860 sol.RenderingDisable = cso_rast->rasterizer_discard &&
4861 !ice->state.prims_generated_query_active;
4862 sol.ReorderMode = cso_rast->flatshade_first ? LEADING : TRAILING;
4863 }
4864
4865 assert(ice->state.streamout);
4866
4867 iris_emit_merge(batch, ice->state.streamout, dynamic_sol,
4868 GENX(3DSTATE_STREAMOUT_length));
4869 }
4870 } else {
4871 if (dirty & IRIS_DIRTY_STREAMOUT) {
4872 iris_emit_cmd(batch, GENX(3DSTATE_STREAMOUT), sol);
4873 }
4874 }
4875
4876 if (dirty & IRIS_DIRTY_CLIP) {
4877 struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4878 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4879
4880 bool gs_or_tes = ice->shaders.prog[MESA_SHADER_GEOMETRY] ||
4881 ice->shaders.prog[MESA_SHADER_TESS_EVAL];
4882 bool points_or_lines = cso_rast->fill_mode_point_or_line ||
4883 (gs_or_tes ? ice->shaders.output_topology_is_points_or_lines
4884 : ice->state.prim_is_points_or_lines);
4885
4886 uint32_t dynamic_clip[GENX(3DSTATE_CLIP_length)];
4887 iris_pack_command(GENX(3DSTATE_CLIP), &dynamic_clip, cl) {
4888 cl.StatisticsEnable = ice->state.statistics_counters_enabled;
4889 cl.ClipMode = cso_rast->rasterizer_discard ? CLIPMODE_REJECT_ALL
4890 : CLIPMODE_NORMAL;
4891 cl.ViewportXYClipTestEnable = !points_or_lines;
4892
4893 if (wm_prog_data->barycentric_interp_modes &
4894 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
4895 cl.NonPerspectiveBarycentricEnable = true;
4896
4897 cl.ForceZeroRTAIndexEnable = cso_fb->layers == 0;
4898 cl.MaximumVPIndex = ice->state.num_viewports - 1;
4899 }
4900 iris_emit_merge(batch, cso_rast->clip, dynamic_clip,
4901 ARRAY_SIZE(cso_rast->clip));
4902 }
4903
4904 if (dirty & IRIS_DIRTY_RASTER) {
4905 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4906 iris_batch_emit(batch, cso->raster, sizeof(cso->raster));
4907 iris_batch_emit(batch, cso->sf, sizeof(cso->sf));
4908
4909 }
4910
4911 if (dirty & IRIS_DIRTY_WM) {
4912 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4913 uint32_t dynamic_wm[GENX(3DSTATE_WM_length)];
4914
4915 iris_pack_command(GENX(3DSTATE_WM), &dynamic_wm, wm) {
4916 wm.StatisticsEnable = ice->state.statistics_counters_enabled;
4917
4918 wm.BarycentricInterpolationMode =
4919 wm_prog_data->barycentric_interp_modes;
4920
4921 if (wm_prog_data->early_fragment_tests)
4922 wm.EarlyDepthStencilControl = EDSC_PREPS;
4923 else if (wm_prog_data->has_side_effects)
4924 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
4925
4926 /* We could skip this bit if color writes are enabled. */
4927 if (wm_prog_data->has_side_effects || wm_prog_data->uses_kill)
4928 wm.ForceThreadDispatchEnable = ForceON;
4929 }
4930 iris_emit_merge(batch, cso->wm, dynamic_wm, ARRAY_SIZE(cso->wm));
4931 }
4932
4933 if (dirty & IRIS_DIRTY_SBE) {
4934 iris_emit_sbe(batch, ice);
4935 }
4936
4937 if (dirty & IRIS_DIRTY_PS_BLEND) {
4938 struct iris_blend_state *cso_blend = ice->state.cso_blend;
4939 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
4940 const struct shader_info *fs_info =
4941 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
4942
4943 uint32_t dynamic_pb[GENX(3DSTATE_PS_BLEND_length)];
4944 iris_pack_command(GENX(3DSTATE_PS_BLEND), &dynamic_pb, pb) {
4945 pb.HasWriteableRT = has_writeable_rt(cso_blend, fs_info);
4946 pb.AlphaTestEnable = cso_zsa->alpha.enabled;
4947
4948 /* The dual source blending docs caution against using SRC1 factors
4949 * when the shader doesn't use a dual source render target write.
4950 * Empirically, this can lead to GPU hangs, and the results are
4951 * undefined anyway, so simply disable blending to avoid the hang.
4952 */
4953 pb.ColorBufferBlendEnable = (cso_blend->blend_enables & 1) &&
4954 (!cso_blend->dual_color_blending || wm_prog_data->dual_src_blend);
4955 }
4956
4957 iris_emit_merge(batch, cso_blend->ps_blend, dynamic_pb,
4958 ARRAY_SIZE(cso_blend->ps_blend));
4959 }
4960
4961 if (dirty & IRIS_DIRTY_WM_DEPTH_STENCIL) {
4962 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
4963 #if GEN_GEN >= 9
4964 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
4965 uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
4966 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
4967 wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
4968 wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
4969 }
4970 iris_emit_merge(batch, cso->wmds, stencil_refs, ARRAY_SIZE(cso->wmds));
4971 #else
4972 iris_batch_emit(batch, cso->wmds, sizeof(cso->wmds));
4973 #endif
4974 }
4975
4976 if (dirty & IRIS_DIRTY_SCISSOR_RECT) {
4977 uint32_t scissor_offset =
4978 emit_state(batch, ice->state.dynamic_uploader,
4979 &ice->state.last_res.scissor,
4980 ice->state.scissors,
4981 sizeof(struct pipe_scissor_state) *
4982 ice->state.num_viewports, 32);
4983
4984 iris_emit_cmd(batch, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
4985 ptr.ScissorRectPointer = scissor_offset;
4986 }
4987 }
4988
4989 if (dirty & IRIS_DIRTY_DEPTH_BUFFER) {
4990 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
4991
4992 /* Do not emit the clear params yets. We need to update the clear value
4993 * first.
4994 */
4995 uint32_t clear_length = GENX(3DSTATE_CLEAR_PARAMS_length) * 4;
4996 uint32_t cso_z_size = sizeof(cso_z->packets) - clear_length;
4997 iris_batch_emit(batch, cso_z->packets, cso_z_size);
4998
4999 union isl_color_value clear_value = { .f32 = { 0, } };
5000
5001 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5002 if (cso_fb->zsbuf) {
5003 struct iris_resource *zres, *sres;
5004 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
5005 &zres, &sres);
5006 if (zres && zres->aux.bo)
5007 clear_value = iris_resource_get_clear_color(zres, NULL, NULL);
5008 }
5009
5010 uint32_t clear_params[GENX(3DSTATE_CLEAR_PARAMS_length)];
5011 iris_pack_command(GENX(3DSTATE_CLEAR_PARAMS), clear_params, clear) {
5012 clear.DepthClearValueValid = true;
5013 clear.DepthClearValue = clear_value.f32[0];
5014 }
5015 iris_batch_emit(batch, clear_params, clear_length);
5016 }
5017
5018 if (dirty & (IRIS_DIRTY_DEPTH_BUFFER | IRIS_DIRTY_WM_DEPTH_STENCIL)) {
5019 /* Listen for buffer changes, and also write enable changes. */
5020 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5021 pin_depth_and_stencil_buffers(batch, cso_fb->zsbuf, ice->state.cso_zsa);
5022 }
5023
5024 if (dirty & IRIS_DIRTY_POLYGON_STIPPLE) {
5025 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
5026 for (int i = 0; i < 32; i++) {
5027 poly.PatternRow[i] = ice->state.poly_stipple.stipple[i];
5028 }
5029 }
5030 }
5031
5032 if (dirty & IRIS_DIRTY_LINE_STIPPLE) {
5033 struct iris_rasterizer_state *cso = ice->state.cso_rast;
5034 iris_batch_emit(batch, cso->line_stipple, sizeof(cso->line_stipple));
5035 }
5036
5037 if (dirty & IRIS_DIRTY_VF_TOPOLOGY) {
5038 iris_emit_cmd(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
5039 topo.PrimitiveTopologyType =
5040 translate_prim_type(draw->mode, draw->vertices_per_patch);
5041 }
5042 }
5043
5044 if (dirty & IRIS_DIRTY_VERTEX_BUFFERS) {
5045 int count = util_bitcount64(ice->state.bound_vertex_buffers);
5046 int dynamic_bound = ice->state.bound_vertex_buffers;
5047
5048 if (ice->state.vs_uses_draw_params) {
5049 if (ice->draw.draw_params_offset == 0) {
5050 u_upload_data(ice->state.dynamic_uploader, 0, sizeof(ice->draw.params),
5051 4, &ice->draw.params, &ice->draw.draw_params_offset,
5052 &ice->draw.draw_params_res);
5053 }
5054 assert(ice->draw.draw_params_res);
5055
5056 struct iris_vertex_buffer_state *state =
5057 &(ice->state.genx->vertex_buffers[count]);
5058 pipe_resource_reference(&state->resource, ice->draw.draw_params_res);
5059 struct iris_resource *res = (void *) state->resource;
5060
5061 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
5062 vb.VertexBufferIndex = count;
5063 vb.AddressModifyEnable = true;
5064 vb.BufferPitch = 0;
5065 vb.BufferSize = res->bo->size - ice->draw.draw_params_offset;
5066 vb.BufferStartingAddress =
5067 ro_bo(NULL, res->bo->gtt_offset +
5068 (int) ice->draw.draw_params_offset);
5069 vb.MOCS = mocs(res->bo);
5070 }
5071 dynamic_bound |= 1ull << count;
5072 count++;
5073 }
5074
5075 if (ice->state.vs_uses_derived_draw_params) {
5076 u_upload_data(ice->state.dynamic_uploader, 0,
5077 sizeof(ice->draw.derived_params), 4,
5078 &ice->draw.derived_params,
5079 &ice->draw.derived_draw_params_offset,
5080 &ice->draw.derived_draw_params_res);
5081
5082 struct iris_vertex_buffer_state *state =
5083 &(ice->state.genx->vertex_buffers[count]);
5084 pipe_resource_reference(&state->resource,
5085 ice->draw.derived_draw_params_res);
5086 struct iris_resource *res = (void *) ice->draw.derived_draw_params_res;
5087
5088 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
5089 vb.VertexBufferIndex = count;
5090 vb.AddressModifyEnable = true;
5091 vb.BufferPitch = 0;
5092 vb.BufferSize =
5093 res->bo->size - ice->draw.derived_draw_params_offset;
5094 vb.BufferStartingAddress =
5095 ro_bo(NULL, res->bo->gtt_offset +
5096 (int) ice->draw.derived_draw_params_offset);
5097 vb.MOCS = mocs(res->bo);
5098 }
5099 dynamic_bound |= 1ull << count;
5100 count++;
5101 }
5102
5103 if (count) {
5104 /* The VF cache designers cut corners, and made the cache key's
5105 * <VertexBufferIndex, Memory Address> tuple only consider the bottom
5106 * 32 bits of the address. If you have two vertex buffers which get
5107 * placed exactly 4 GiB apart and use them in back-to-back draw calls,
5108 * you can get collisions (even within a single batch).
5109 *
5110 * So, we need to do a VF cache invalidate if the buffer for a VB
5111 * slot slot changes [48:32] address bits from the previous time.
5112 */
5113 unsigned flush_flags = 0;
5114
5115 uint64_t bound = dynamic_bound;
5116 while (bound) {
5117 const int i = u_bit_scan64(&bound);
5118 uint16_t high_bits = 0;
5119
5120 struct iris_resource *res =
5121 (void *) genx->vertex_buffers[i].resource;
5122 if (res) {
5123 iris_use_pinned_bo(batch, res->bo, false);
5124
5125 high_bits = res->bo->gtt_offset >> 32ull;
5126 if (high_bits != ice->state.last_vbo_high_bits[i]) {
5127 flush_flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE |
5128 PIPE_CONTROL_CS_STALL;
5129 ice->state.last_vbo_high_bits[i] = high_bits;
5130 }
5131 }
5132 }
5133
5134 if (flush_flags)
5135 iris_emit_pipe_control_flush(batch, flush_flags);
5136
5137 const unsigned vb_dwords = GENX(VERTEX_BUFFER_STATE_length);
5138
5139 uint32_t *map =
5140 iris_get_command_space(batch, 4 * (1 + vb_dwords * count));
5141 _iris_pack_command(batch, GENX(3DSTATE_VERTEX_BUFFERS), map, vb) {
5142 vb.DWordLength = (vb_dwords * count + 1) - 2;
5143 }
5144 map += 1;
5145
5146 bound = dynamic_bound;
5147 while (bound) {
5148 const int i = u_bit_scan64(&bound);
5149 memcpy(map, genx->vertex_buffers[i].state,
5150 sizeof(uint32_t) * vb_dwords);
5151 map += vb_dwords;
5152 }
5153 }
5154 }
5155
5156 if (dirty & IRIS_DIRTY_VERTEX_ELEMENTS) {
5157 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
5158 const unsigned entries = MAX2(cso->count, 1);
5159 if (!(ice->state.vs_needs_sgvs_element ||
5160 ice->state.vs_uses_derived_draw_params ||
5161 ice->state.vs_needs_edge_flag)) {
5162 iris_batch_emit(batch, cso->vertex_elements, sizeof(uint32_t) *
5163 (1 + entries * GENX(VERTEX_ELEMENT_STATE_length)));
5164 } else {
5165 uint32_t dynamic_ves[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
5166 const unsigned dyn_count = cso->count +
5167 ice->state.vs_needs_sgvs_element +
5168 ice->state.vs_uses_derived_draw_params;
5169
5170 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS),
5171 &dynamic_ves, ve) {
5172 ve.DWordLength =
5173 1 + GENX(VERTEX_ELEMENT_STATE_length) * dyn_count - 2;
5174 }
5175 memcpy(&dynamic_ves[1], &cso->vertex_elements[1],
5176 (cso->count - ice->state.vs_needs_edge_flag) *
5177 GENX(VERTEX_ELEMENT_STATE_length) * sizeof(uint32_t));
5178 uint32_t *ve_pack_dest =
5179 &dynamic_ves[1 + (cso->count - ice->state.vs_needs_edge_flag) *
5180 GENX(VERTEX_ELEMENT_STATE_length)];
5181
5182 if (ice->state.vs_needs_sgvs_element) {
5183 uint32_t base_ctrl = ice->state.vs_uses_draw_params ?
5184 VFCOMP_STORE_SRC : VFCOMP_STORE_0;
5185 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
5186 ve.Valid = true;
5187 ve.VertexBufferIndex =
5188 util_bitcount64(ice->state.bound_vertex_buffers);
5189 ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
5190 ve.Component0Control = base_ctrl;
5191 ve.Component1Control = base_ctrl;
5192 ve.Component2Control = VFCOMP_STORE_0;
5193 ve.Component3Control = VFCOMP_STORE_0;
5194 }
5195 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
5196 }
5197 if (ice->state.vs_uses_derived_draw_params) {
5198 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
5199 ve.Valid = true;
5200 ve.VertexBufferIndex =
5201 util_bitcount64(ice->state.bound_vertex_buffers) +
5202 ice->state.vs_uses_draw_params;
5203 ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
5204 ve.Component0Control = VFCOMP_STORE_SRC;
5205 ve.Component1Control = VFCOMP_STORE_SRC;
5206 ve.Component2Control = VFCOMP_STORE_0;
5207 ve.Component3Control = VFCOMP_STORE_0;
5208 }
5209 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
5210 }
5211 if (ice->state.vs_needs_edge_flag) {
5212 for (int i = 0; i < GENX(VERTEX_ELEMENT_STATE_length); i++)
5213 ve_pack_dest[i] = cso->edgeflag_ve[i];
5214 }
5215
5216 iris_batch_emit(batch, &dynamic_ves, sizeof(uint32_t) *
5217 (1 + dyn_count * GENX(VERTEX_ELEMENT_STATE_length)));
5218 }
5219
5220 if (!ice->state.vs_needs_edge_flag) {
5221 iris_batch_emit(batch, cso->vf_instancing, sizeof(uint32_t) *
5222 entries * GENX(3DSTATE_VF_INSTANCING_length));
5223 } else {
5224 assert(cso->count > 0);
5225 const unsigned edgeflag_index = cso->count - 1;
5226 uint32_t dynamic_vfi[33 * GENX(3DSTATE_VF_INSTANCING_length)];
5227 memcpy(&dynamic_vfi[0], cso->vf_instancing, edgeflag_index *
5228 GENX(3DSTATE_VF_INSTANCING_length) * sizeof(uint32_t));
5229
5230 uint32_t *vfi_pack_dest = &dynamic_vfi[0] +
5231 edgeflag_index * GENX(3DSTATE_VF_INSTANCING_length);
5232 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
5233 vi.VertexElementIndex = edgeflag_index +
5234 ice->state.vs_needs_sgvs_element +
5235 ice->state.vs_uses_derived_draw_params;
5236 }
5237 for (int i = 0; i < GENX(3DSTATE_VF_INSTANCING_length); i++)
5238 vfi_pack_dest[i] |= cso->edgeflag_vfi[i];
5239
5240 iris_batch_emit(batch, &dynamic_vfi[0], sizeof(uint32_t) *
5241 entries * GENX(3DSTATE_VF_INSTANCING_length));
5242 }
5243 }
5244
5245 if (dirty & IRIS_DIRTY_VF_SGVS) {
5246 const struct brw_vs_prog_data *vs_prog_data = (void *)
5247 ice->shaders.prog[MESA_SHADER_VERTEX]->prog_data;
5248 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
5249
5250 iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS), sgv) {
5251 if (vs_prog_data->uses_vertexid) {
5252 sgv.VertexIDEnable = true;
5253 sgv.VertexIDComponentNumber = 2;
5254 sgv.VertexIDElementOffset =
5255 cso->count - ice->state.vs_needs_edge_flag;
5256 }
5257
5258 if (vs_prog_data->uses_instanceid) {
5259 sgv.InstanceIDEnable = true;
5260 sgv.InstanceIDComponentNumber = 3;
5261 sgv.InstanceIDElementOffset =
5262 cso->count - ice->state.vs_needs_edge_flag;
5263 }
5264 }
5265 }
5266
5267 if (dirty & IRIS_DIRTY_VF) {
5268 iris_emit_cmd(batch, GENX(3DSTATE_VF), vf) {
5269 if (draw->primitive_restart) {
5270 vf.IndexedDrawCutIndexEnable = true;
5271 vf.CutIndex = draw->restart_index;
5272 }
5273 }
5274 }
5275
5276 if (dirty & IRIS_DIRTY_VF_STATISTICS) {
5277 iris_emit_cmd(batch, GENX(3DSTATE_VF_STATISTICS), vf) {
5278 vf.StatisticsEnable = true;
5279 }
5280 }
5281
5282 /* TODO: Gen8 PMA fix */
5283 }
5284
5285 static void
5286 iris_upload_render_state(struct iris_context *ice,
5287 struct iris_batch *batch,
5288 const struct pipe_draw_info *draw)
5289 {
5290 bool use_predicate = ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT;
5291
5292 /* Always pin the binder. If we're emitting new binding table pointers,
5293 * we need it. If not, we're probably inheriting old tables via the
5294 * context, and need it anyway. Since true zero-bindings cases are
5295 * practically non-existent, just pin it and avoid last_res tracking.
5296 */
5297 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
5298
5299 if (!batch->contains_draw) {
5300 iris_restore_render_saved_bos(ice, batch, draw);
5301 batch->contains_draw = true;
5302 }
5303
5304 iris_upload_dirty_render_state(ice, batch, draw);
5305
5306 if (draw->index_size > 0) {
5307 unsigned offset;
5308
5309 if (draw->has_user_indices) {
5310 u_upload_data(ice->ctx.stream_uploader, 0,
5311 draw->count * draw->index_size, 4, draw->index.user,
5312 &offset, &ice->state.last_res.index_buffer);
5313 } else {
5314 struct iris_resource *res = (void *) draw->index.resource;
5315 res->bind_history |= PIPE_BIND_INDEX_BUFFER;
5316
5317 pipe_resource_reference(&ice->state.last_res.index_buffer,
5318 draw->index.resource);
5319 offset = 0;
5320 }
5321
5322 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
5323
5324 iris_emit_cmd(batch, GENX(3DSTATE_INDEX_BUFFER), ib) {
5325 ib.IndexFormat = draw->index_size >> 1;
5326 ib.MOCS = mocs(bo);
5327 ib.BufferSize = bo->size - offset;
5328 ib.BufferStartingAddress = ro_bo(bo, offset);
5329 }
5330
5331 /* The VF cache key only uses 32-bits, see vertex buffer comment above */
5332 uint16_t high_bits = bo->gtt_offset >> 32ull;
5333 if (high_bits != ice->state.last_index_bo_high_bits) {
5334 iris_emit_pipe_control_flush(batch, PIPE_CONTROL_VF_CACHE_INVALIDATE |
5335 PIPE_CONTROL_CS_STALL);
5336 ice->state.last_index_bo_high_bits = high_bits;
5337 }
5338 }
5339
5340 #define _3DPRIM_END_OFFSET 0x2420
5341 #define _3DPRIM_START_VERTEX 0x2430
5342 #define _3DPRIM_VERTEX_COUNT 0x2434
5343 #define _3DPRIM_INSTANCE_COUNT 0x2438
5344 #define _3DPRIM_START_INSTANCE 0x243C
5345 #define _3DPRIM_BASE_VERTEX 0x2440
5346
5347 if (draw->indirect) {
5348 if (draw->indirect->indirect_draw_count) {
5349 use_predicate = true;
5350
5351 struct iris_bo *draw_count_bo =
5352 iris_resource_bo(draw->indirect->indirect_draw_count);
5353 unsigned draw_count_offset =
5354 draw->indirect->indirect_draw_count_offset;
5355
5356 iris_emit_pipe_control_flush(batch, PIPE_CONTROL_FLUSH_ENABLE);
5357
5358 if (ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT) {
5359 static const uint32_t math[] = {
5360 MI_MATH | (9 - 2),
5361 /* Compute (draw index < draw count).
5362 * We do this by subtracting and storing the carry bit.
5363 */
5364 MI_ALU2(LOAD, SRCA, R0),
5365 MI_ALU2(LOAD, SRCB, R1),
5366 MI_ALU0(SUB),
5367 MI_ALU2(STORE, R3, CF),
5368 /* Compute (subtracting result & MI_PREDICATE). */
5369 MI_ALU2(LOAD, SRCA, R3),
5370 MI_ALU2(LOAD, SRCB, R2),
5371 MI_ALU0(AND),
5372 MI_ALU2(STORE, R3, ACCU),
5373 };
5374
5375 /* Upload the current draw count from the draw parameters
5376 * buffer to GPR1.
5377 */
5378 ice->vtbl.load_register_mem32(batch, CS_GPR(1), draw_count_bo,
5379 draw_count_offset);
5380 /* Zero the top 32-bits of GPR1. */
5381 ice->vtbl.load_register_imm32(batch, CS_GPR(1) + 4, 0);
5382 /* Upload the id of the current primitive to GPR0. */
5383 ice->vtbl.load_register_imm64(batch, CS_GPR(0), draw->drawid);
5384
5385 iris_batch_emit(batch, math, sizeof(math));
5386
5387 /* Store result of MI_MATH computations to MI_PREDICATE_RESULT. */
5388 ice->vtbl.load_register_reg64(batch,
5389 MI_PREDICATE_RESULT, CS_GPR(3));
5390 } else {
5391 uint32_t mi_predicate;
5392
5393 /* Upload the id of the current primitive to MI_PREDICATE_SRC1. */
5394 ice->vtbl.load_register_imm64(batch, MI_PREDICATE_SRC1,
5395 draw->drawid);
5396 /* Upload the current draw count from the draw parameters buffer
5397 * to MI_PREDICATE_SRC0.
5398 */
5399 ice->vtbl.load_register_mem32(batch, MI_PREDICATE_SRC0,
5400 draw_count_bo, draw_count_offset);
5401 /* Zero the top 32-bits of MI_PREDICATE_SRC0 */
5402 ice->vtbl.load_register_imm32(batch, MI_PREDICATE_SRC0 + 4, 0);
5403
5404 if (draw->drawid == 0) {
5405 mi_predicate = MI_PREDICATE | MI_PREDICATE_LOADOP_LOADINV |
5406 MI_PREDICATE_COMBINEOP_SET |
5407 MI_PREDICATE_COMPAREOP_SRCS_EQUAL;
5408 } else {
5409 /* While draw_index < draw_count the predicate's result will be
5410 * (draw_index == draw_count) ^ TRUE = TRUE
5411 * When draw_index == draw_count the result is
5412 * (TRUE) ^ TRUE = FALSE
5413 * After this all results will be:
5414 * (FALSE) ^ FALSE = FALSE
5415 */
5416 mi_predicate = MI_PREDICATE | MI_PREDICATE_LOADOP_LOAD |
5417 MI_PREDICATE_COMBINEOP_XOR |
5418 MI_PREDICATE_COMPAREOP_SRCS_EQUAL;
5419 }
5420 iris_batch_emit(batch, &mi_predicate, sizeof(uint32_t));
5421 }
5422 }
5423 struct iris_bo *bo = iris_resource_bo(draw->indirect->buffer);
5424 assert(bo);
5425
5426 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5427 lrm.RegisterAddress = _3DPRIM_VERTEX_COUNT;
5428 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 0);
5429 }
5430 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5431 lrm.RegisterAddress = _3DPRIM_INSTANCE_COUNT;
5432 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 4);
5433 }
5434 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5435 lrm.RegisterAddress = _3DPRIM_START_VERTEX;
5436 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 8);
5437 }
5438 if (draw->index_size) {
5439 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5440 lrm.RegisterAddress = _3DPRIM_BASE_VERTEX;
5441 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
5442 }
5443 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5444 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
5445 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 16);
5446 }
5447 } else {
5448 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5449 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
5450 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
5451 }
5452 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
5453 lri.RegisterOffset = _3DPRIM_BASE_VERTEX;
5454 lri.DataDWord = 0;
5455 }
5456 }
5457 } else if (draw->count_from_stream_output) {
5458 struct iris_stream_output_target *so =
5459 (void *) draw->count_from_stream_output;
5460
5461 /* XXX: Replace with actual cache tracking */
5462 iris_emit_pipe_control_flush(batch, PIPE_CONTROL_CS_STALL);
5463
5464 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5465 lrm.RegisterAddress = CS_GPR(0);
5466 lrm.MemoryAddress =
5467 ro_bo(iris_resource_bo(so->offset.res), so->offset.offset);
5468 }
5469 if (so->base.buffer_offset)
5470 iris_math_add32_gpr0(ice, batch, -so->base.buffer_offset);
5471 iris_math_div32_gpr0(ice, batch, so->stride);
5472 _iris_emit_lrr(batch, _3DPRIM_VERTEX_COUNT, CS_GPR(0));
5473
5474 _iris_emit_lri(batch, _3DPRIM_START_VERTEX, 0);
5475 _iris_emit_lri(batch, _3DPRIM_BASE_VERTEX, 0);
5476 _iris_emit_lri(batch, _3DPRIM_START_INSTANCE, 0);
5477 _iris_emit_lri(batch, _3DPRIM_INSTANCE_COUNT, draw->instance_count);
5478 }
5479
5480 iris_emit_cmd(batch, GENX(3DPRIMITIVE), prim) {
5481 prim.VertexAccessType = draw->index_size > 0 ? RANDOM : SEQUENTIAL;
5482 prim.PredicateEnable = use_predicate;
5483
5484 if (draw->indirect || draw->count_from_stream_output) {
5485 prim.IndirectParameterEnable = true;
5486 } else {
5487 prim.StartInstanceLocation = draw->start_instance;
5488 prim.InstanceCount = draw->instance_count;
5489 prim.VertexCountPerInstance = draw->count;
5490
5491 // XXX: this is probably bonkers.
5492 prim.StartVertexLocation = draw->start;
5493
5494 if (draw->index_size) {
5495 prim.BaseVertexLocation += draw->index_bias;
5496 } else {
5497 prim.StartVertexLocation += draw->index_bias;
5498 }
5499
5500 //prim.BaseVertexLocation = ...;
5501 }
5502 }
5503 }
5504
5505 static void
5506 iris_upload_compute_state(struct iris_context *ice,
5507 struct iris_batch *batch,
5508 const struct pipe_grid_info *grid)
5509 {
5510 const uint64_t dirty = ice->state.dirty;
5511 struct iris_screen *screen = batch->screen;
5512 const struct gen_device_info *devinfo = &screen->devinfo;
5513 struct iris_binder *binder = &ice->state.binder;
5514 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
5515 struct iris_compiled_shader *shader =
5516 ice->shaders.prog[MESA_SHADER_COMPUTE];
5517 struct brw_stage_prog_data *prog_data = shader->prog_data;
5518 struct brw_cs_prog_data *cs_prog_data = (void *) prog_data;
5519
5520 /* Always pin the binder. If we're emitting new binding table pointers,
5521 * we need it. If not, we're probably inheriting old tables via the
5522 * context, and need it anyway. Since true zero-bindings cases are
5523 * practically non-existent, just pin it and avoid last_res tracking.
5524 */
5525 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
5526
5527 if ((dirty & IRIS_DIRTY_CONSTANTS_CS) && shs->cbuf0_needs_upload)
5528 upload_uniforms(ice, MESA_SHADER_COMPUTE);
5529
5530 if (dirty & IRIS_DIRTY_BINDINGS_CS)
5531 iris_populate_binding_table(ice, batch, MESA_SHADER_COMPUTE, false);
5532
5533 if (dirty & IRIS_DIRTY_SAMPLER_STATES_CS)
5534 iris_upload_sampler_states(ice, MESA_SHADER_COMPUTE);
5535
5536 iris_use_optional_res(batch, shs->sampler_table.res, false);
5537 iris_use_pinned_bo(batch, iris_resource_bo(shader->assembly.res), false);
5538
5539 if (ice->state.need_border_colors)
5540 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
5541
5542 if (dirty & IRIS_DIRTY_CS) {
5543 /* The MEDIA_VFE_STATE documentation for Gen8+ says:
5544 *
5545 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
5546 * the only bits that are changed are scoreboard related: Scoreboard
5547 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard Delta. For
5548 * these scoreboard related states, a MEDIA_STATE_FLUSH is
5549 * sufficient."
5550 */
5551 iris_emit_pipe_control_flush(batch, PIPE_CONTROL_CS_STALL);
5552
5553 iris_emit_cmd(batch, GENX(MEDIA_VFE_STATE), vfe) {
5554 if (prog_data->total_scratch) {
5555 struct iris_bo *bo =
5556 iris_get_scratch_space(ice, prog_data->total_scratch,
5557 MESA_SHADER_COMPUTE);
5558 vfe.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
5559 vfe.ScratchSpaceBasePointer = rw_bo(bo, 0);
5560 }
5561
5562 vfe.MaximumNumberofThreads =
5563 devinfo->max_cs_threads * screen->subslice_total - 1;
5564 #if GEN_GEN < 11
5565 vfe.ResetGatewayTimer =
5566 Resettingrelativetimerandlatchingtheglobaltimestamp;
5567 #endif
5568 #if GEN_GEN == 8
5569 vfe.BypassGatewayControl = true;
5570 #endif
5571 vfe.NumberofURBEntries = 2;
5572 vfe.URBEntryAllocationSize = 2;
5573
5574 vfe.CURBEAllocationSize =
5575 ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
5576 cs_prog_data->push.cross_thread.regs, 2);
5577 }
5578 }
5579
5580 /* TODO: Combine subgroup-id with cbuf0 so we can push regular uniforms */
5581 uint32_t curbe_data_offset = 0;
5582 assert(cs_prog_data->push.cross_thread.dwords == 0 &&
5583 cs_prog_data->push.per_thread.dwords == 1 &&
5584 cs_prog_data->base.param[0] == BRW_PARAM_BUILTIN_SUBGROUP_ID);
5585 struct pipe_resource *curbe_data_res = NULL;
5586 uint32_t *curbe_data_map =
5587 stream_state(batch, ice->state.dynamic_uploader, &curbe_data_res,
5588 ALIGN(cs_prog_data->push.total.size, 64), 64,
5589 &curbe_data_offset);
5590 assert(curbe_data_map);
5591 memset(curbe_data_map, 0x5a, ALIGN(cs_prog_data->push.total.size, 64));
5592 iris_fill_cs_push_const_buffer(cs_prog_data, curbe_data_map);
5593
5594 if (dirty & IRIS_DIRTY_CONSTANTS_CS) {
5595 iris_emit_cmd(batch, GENX(MEDIA_CURBE_LOAD), curbe) {
5596 curbe.CURBETotalDataLength =
5597 ALIGN(cs_prog_data->push.total.size, 64);
5598 curbe.CURBEDataStartAddress = curbe_data_offset;
5599 }
5600 }
5601
5602 if (dirty & (IRIS_DIRTY_SAMPLER_STATES_CS |
5603 IRIS_DIRTY_BINDINGS_CS |
5604 IRIS_DIRTY_CONSTANTS_CS |
5605 IRIS_DIRTY_CS)) {
5606 struct pipe_resource *desc_res = NULL;
5607 uint32_t desc[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
5608
5609 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), desc, idd) {
5610 idd.SamplerStatePointer = shs->sampler_table.offset;
5611 idd.BindingTablePointer = binder->bt_offset[MESA_SHADER_COMPUTE];
5612 }
5613
5614 for (int i = 0; i < GENX(INTERFACE_DESCRIPTOR_DATA_length); i++)
5615 desc[i] |= ((uint32_t *) shader->derived_data)[i];
5616
5617 iris_emit_cmd(batch, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
5618 load.InterfaceDescriptorTotalLength =
5619 GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
5620 load.InterfaceDescriptorDataStartAddress =
5621 emit_state(batch, ice->state.dynamic_uploader,
5622 &desc_res, desc, sizeof(desc), 32);
5623 }
5624
5625 pipe_resource_reference(&desc_res, NULL);
5626 }
5627
5628 uint32_t group_size = grid->block[0] * grid->block[1] * grid->block[2];
5629 uint32_t remainder = group_size & (cs_prog_data->simd_size - 1);
5630 uint32_t right_mask;
5631
5632 if (remainder > 0)
5633 right_mask = ~0u >> (32 - remainder);
5634 else
5635 right_mask = ~0u >> (32 - cs_prog_data->simd_size);
5636
5637 #define GPGPU_DISPATCHDIMX 0x2500
5638 #define GPGPU_DISPATCHDIMY 0x2504
5639 #define GPGPU_DISPATCHDIMZ 0x2508
5640
5641 if (grid->indirect) {
5642 struct iris_state_ref *grid_size = &ice->state.grid_size;
5643 struct iris_bo *bo = iris_resource_bo(grid_size->res);
5644 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5645 lrm.RegisterAddress = GPGPU_DISPATCHDIMX;
5646 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 0);
5647 }
5648 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5649 lrm.RegisterAddress = GPGPU_DISPATCHDIMY;
5650 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 4);
5651 }
5652 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5653 lrm.RegisterAddress = GPGPU_DISPATCHDIMZ;
5654 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 8);
5655 }
5656 }
5657
5658 iris_emit_cmd(batch, GENX(GPGPU_WALKER), ggw) {
5659 ggw.IndirectParameterEnable = grid->indirect != NULL;
5660 ggw.SIMDSize = cs_prog_data->simd_size / 16;
5661 ggw.ThreadDepthCounterMaximum = 0;
5662 ggw.ThreadHeightCounterMaximum = 0;
5663 ggw.ThreadWidthCounterMaximum = cs_prog_data->threads - 1;
5664 ggw.ThreadGroupIDXDimension = grid->grid[0];
5665 ggw.ThreadGroupIDYDimension = grid->grid[1];
5666 ggw.ThreadGroupIDZDimension = grid->grid[2];
5667 ggw.RightExecutionMask = right_mask;
5668 ggw.BottomExecutionMask = 0xffffffff;
5669 }
5670
5671 iris_emit_cmd(batch, GENX(MEDIA_STATE_FLUSH), msf);
5672
5673 if (!batch->contains_draw) {
5674 iris_restore_compute_saved_bos(ice, batch, grid);
5675 batch->contains_draw = true;
5676 }
5677 }
5678
5679 /**
5680 * State module teardown.
5681 */
5682 static void
5683 iris_destroy_state(struct iris_context *ice)
5684 {
5685 struct iris_genx_state *genx = ice->state.genx;
5686
5687 uint64_t bound_vbs = ice->state.bound_vertex_buffers;
5688 while (bound_vbs) {
5689 const int i = u_bit_scan64(&bound_vbs);
5690 pipe_resource_reference(&genx->vertex_buffers[i].resource, NULL);
5691 }
5692 free(ice->state.genx);
5693
5694 for (unsigned i = 0; i < ice->state.framebuffer.nr_cbufs; i++) {
5695 pipe_surface_reference(&ice->state.framebuffer.cbufs[i], NULL);
5696 }
5697 pipe_surface_reference(&ice->state.framebuffer.zsbuf, NULL);
5698
5699 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
5700 struct iris_shader_state *shs = &ice->state.shaders[stage];
5701 pipe_resource_reference(&shs->sampler_table.res, NULL);
5702 for (int i = 0; i < PIPE_MAX_CONSTANT_BUFFERS; i++) {
5703 pipe_resource_reference(&shs->constbuf[i].buffer, NULL);
5704 pipe_resource_reference(&shs->constbuf_surf_state[i].res, NULL);
5705 }
5706 for (int i = 0; i < PIPE_MAX_SHADER_IMAGES; i++) {
5707 pipe_resource_reference(&shs->image[i].base.resource, NULL);
5708 pipe_resource_reference(&shs->image[i].surface_state.res, NULL);
5709 }
5710 for (int i = 0; i < PIPE_MAX_SHADER_BUFFERS; i++) {
5711 pipe_resource_reference(&shs->ssbo[i].buffer, NULL);
5712 pipe_resource_reference(&shs->ssbo_surf_state[i].res, NULL);
5713 }
5714 for (int i = 0; i < IRIS_MAX_TEXTURE_SAMPLERS; i++) {
5715 pipe_sampler_view_reference((struct pipe_sampler_view **)
5716 &shs->textures[i], NULL);
5717 }
5718 }
5719
5720 pipe_resource_reference(&ice->state.grid_size.res, NULL);
5721 pipe_resource_reference(&ice->state.grid_surf_state.res, NULL);
5722
5723 pipe_resource_reference(&ice->state.null_fb.res, NULL);
5724 pipe_resource_reference(&ice->state.unbound_tex.res, NULL);
5725
5726 pipe_resource_reference(&ice->state.last_res.cc_vp, NULL);
5727 pipe_resource_reference(&ice->state.last_res.sf_cl_vp, NULL);
5728 pipe_resource_reference(&ice->state.last_res.color_calc, NULL);
5729 pipe_resource_reference(&ice->state.last_res.scissor, NULL);
5730 pipe_resource_reference(&ice->state.last_res.blend, NULL);
5731 pipe_resource_reference(&ice->state.last_res.index_buffer, NULL);
5732 }
5733
5734 /* ------------------------------------------------------------------- */
5735
5736 static void
5737 iris_rebind_buffer(struct iris_context *ice,
5738 struct iris_resource *res,
5739 uint64_t old_address)
5740 {
5741 struct pipe_context *ctx = &ice->ctx;
5742 struct iris_screen *screen = (void *) ctx->screen;
5743 struct iris_genx_state *genx = ice->state.genx;
5744
5745 assert(res->base.target == PIPE_BUFFER);
5746
5747 /* Buffers can't be framebuffer attachments, nor display related,
5748 * and we don't have upstream Clover support.
5749 */
5750 assert(!(res->bind_history & (PIPE_BIND_DEPTH_STENCIL |
5751 PIPE_BIND_RENDER_TARGET |
5752 PIPE_BIND_BLENDABLE |
5753 PIPE_BIND_DISPLAY_TARGET |
5754 PIPE_BIND_CURSOR |
5755 PIPE_BIND_COMPUTE_RESOURCE |
5756 PIPE_BIND_GLOBAL)));
5757
5758 if (res->bind_history & PIPE_BIND_VERTEX_BUFFER) {
5759 uint64_t bound_vbs = ice->state.bound_vertex_buffers;
5760 while (bound_vbs) {
5761 const int i = u_bit_scan64(&bound_vbs);
5762 struct iris_vertex_buffer_state *state = &genx->vertex_buffers[i];
5763
5764 /* Update the CPU struct */
5765 STATIC_ASSERT(GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_start) == 32);
5766 STATIC_ASSERT(GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_bits) == 64);
5767 uint64_t *addr = (uint64_t *) &state->state[1];
5768
5769 if (*addr == old_address) {
5770 *addr = res->bo->gtt_offset;
5771 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
5772 }
5773 }
5774 }
5775
5776 /* No need to handle these:
5777 * - PIPE_BIND_INDEX_BUFFER (emitted for every indexed draw)
5778 * - PIPE_BIND_COMMAND_ARGS_BUFFER (emitted for every indirect draw)
5779 * - PIPE_BIND_QUERY_BUFFER (no persistent state references)
5780 */
5781
5782 if (res->bind_history & PIPE_BIND_STREAM_OUTPUT) {
5783 /* XXX: be careful about resetting vs appending... */
5784 assert(false);
5785 }
5786
5787 for (int s = MESA_SHADER_VERTEX; s < MESA_SHADER_STAGES; s++) {
5788 struct iris_shader_state *shs = &ice->state.shaders[s];
5789 enum pipe_shader_type p_stage = stage_to_pipe(s);
5790
5791 if (res->bind_history & PIPE_BIND_CONSTANT_BUFFER) {
5792 /* Skip constant buffer 0, it's for regular uniforms, not UBOs */
5793 uint32_t bound_cbufs = shs->bound_cbufs & ~1u;
5794 while (bound_cbufs) {
5795 const int i = u_bit_scan(&bound_cbufs);
5796 struct pipe_shader_buffer *cbuf = &shs->constbuf[i];
5797 struct iris_state_ref *surf_state = &shs->constbuf_surf_state[i];
5798
5799 if (res->bo == iris_resource_bo(cbuf->buffer)) {
5800 iris_upload_ubo_ssbo_surf_state(ice, cbuf, surf_state, false);
5801 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << s;
5802 }
5803 }
5804 }
5805
5806 if (res->bind_history & PIPE_BIND_SHADER_BUFFER) {
5807 uint32_t bound_ssbos = shs->bound_ssbos;
5808 while (bound_ssbos) {
5809 const int i = u_bit_scan(&bound_ssbos);
5810 struct pipe_shader_buffer *ssbo = &shs->ssbo[i];
5811
5812 if (res->bo == iris_resource_bo(ssbo->buffer)) {
5813 struct pipe_shader_buffer buf = {
5814 .buffer = &res->base,
5815 .buffer_offset = ssbo->buffer_offset,
5816 .buffer_size = ssbo->buffer_size,
5817 };
5818 iris_set_shader_buffers(ctx, p_stage, i, 1, &buf,
5819 (shs->writable_ssbos >> i) & 1);
5820 }
5821 }
5822 }
5823
5824 if (res->bind_history & PIPE_BIND_SAMPLER_VIEW) {
5825 uint32_t bound_sampler_views = shs->bound_sampler_views;
5826 while (bound_sampler_views) {
5827 const int i = u_bit_scan(&bound_sampler_views);
5828 struct iris_sampler_view *isv = shs->textures[i];
5829
5830 if (res->bo == iris_resource_bo(isv->base.texture)) {
5831 void *map = alloc_surface_states(ice->state.surface_uploader,
5832 &isv->surface_state,
5833 isv->res->aux.sampler_usages);
5834 assert(map);
5835 fill_buffer_surface_state(&screen->isl_dev, isv->res, map,
5836 isv->view.format, isv->view.swizzle,
5837 isv->base.u.buf.offset,
5838 isv->base.u.buf.size);
5839 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << s;
5840 }
5841 }
5842 }
5843
5844 if (res->bind_history & PIPE_BIND_SHADER_IMAGE) {
5845 uint32_t bound_image_views = shs->bound_image_views;
5846 while (bound_image_views) {
5847 const int i = u_bit_scan(&bound_image_views);
5848 struct iris_image_view *iv = &shs->image[i];
5849
5850 if (res->bo == iris_resource_bo(iv->base.resource)) {
5851 iris_set_shader_images(ctx, p_stage, i, 1, &iv->base);
5852 }
5853 }
5854 }
5855 }
5856 }
5857
5858 /* ------------------------------------------------------------------- */
5859
5860 static void
5861 iris_load_register_reg32(struct iris_batch *batch, uint32_t dst,
5862 uint32_t src)
5863 {
5864 _iris_emit_lrr(batch, dst, src);
5865 }
5866
5867 static void
5868 iris_load_register_reg64(struct iris_batch *batch, uint32_t dst,
5869 uint32_t src)
5870 {
5871 _iris_emit_lrr(batch, dst, src);
5872 _iris_emit_lrr(batch, dst + 4, src + 4);
5873 }
5874
5875 static void
5876 iris_load_register_imm32(struct iris_batch *batch, uint32_t reg,
5877 uint32_t val)
5878 {
5879 _iris_emit_lri(batch, reg, val);
5880 }
5881
5882 static void
5883 iris_load_register_imm64(struct iris_batch *batch, uint32_t reg,
5884 uint64_t val)
5885 {
5886 _iris_emit_lri(batch, reg + 0, val & 0xffffffff);
5887 _iris_emit_lri(batch, reg + 4, val >> 32);
5888 }
5889
5890 /**
5891 * Emit MI_LOAD_REGISTER_MEM to load a 32-bit MMIO register from a buffer.
5892 */
5893 static void
5894 iris_load_register_mem32(struct iris_batch *batch, uint32_t reg,
5895 struct iris_bo *bo, uint32_t offset)
5896 {
5897 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5898 lrm.RegisterAddress = reg;
5899 lrm.MemoryAddress = ro_bo(bo, offset);
5900 }
5901 }
5902
5903 /**
5904 * Load a 64-bit value from a buffer into a MMIO register via
5905 * two MI_LOAD_REGISTER_MEM commands.
5906 */
5907 static void
5908 iris_load_register_mem64(struct iris_batch *batch, uint32_t reg,
5909 struct iris_bo *bo, uint32_t offset)
5910 {
5911 iris_load_register_mem32(batch, reg + 0, bo, offset + 0);
5912 iris_load_register_mem32(batch, reg + 4, bo, offset + 4);
5913 }
5914
5915 static void
5916 iris_store_register_mem32(struct iris_batch *batch, uint32_t reg,
5917 struct iris_bo *bo, uint32_t offset,
5918 bool predicated)
5919 {
5920 iris_emit_cmd(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
5921 srm.RegisterAddress = reg;
5922 srm.MemoryAddress = rw_bo(bo, offset);
5923 srm.PredicateEnable = predicated;
5924 }
5925 }
5926
5927 static void
5928 iris_store_register_mem64(struct iris_batch *batch, uint32_t reg,
5929 struct iris_bo *bo, uint32_t offset,
5930 bool predicated)
5931 {
5932 iris_store_register_mem32(batch, reg + 0, bo, offset + 0, predicated);
5933 iris_store_register_mem32(batch, reg + 4, bo, offset + 4, predicated);
5934 }
5935
5936 static void
5937 iris_store_data_imm32(struct iris_batch *batch,
5938 struct iris_bo *bo, uint32_t offset,
5939 uint32_t imm)
5940 {
5941 iris_emit_cmd(batch, GENX(MI_STORE_DATA_IMM), sdi) {
5942 sdi.Address = rw_bo(bo, offset);
5943 sdi.ImmediateData = imm;
5944 }
5945 }
5946
5947 static void
5948 iris_store_data_imm64(struct iris_batch *batch,
5949 struct iris_bo *bo, uint32_t offset,
5950 uint64_t imm)
5951 {
5952 /* Can't use iris_emit_cmd because MI_STORE_DATA_IMM has a length of
5953 * 2 in genxml but it's actually variable length and we need 5 DWords.
5954 */
5955 void *map = iris_get_command_space(batch, 4 * 5);
5956 _iris_pack_command(batch, GENX(MI_STORE_DATA_IMM), map, sdi) {
5957 sdi.DWordLength = 5 - 2;
5958 sdi.Address = rw_bo(bo, offset);
5959 sdi.ImmediateData = imm;
5960 }
5961 }
5962
5963 static void
5964 iris_copy_mem_mem(struct iris_batch *batch,
5965 struct iris_bo *dst_bo, uint32_t dst_offset,
5966 struct iris_bo *src_bo, uint32_t src_offset,
5967 unsigned bytes)
5968 {
5969 /* MI_COPY_MEM_MEM operates on DWords. */
5970 assert(bytes % 4 == 0);
5971 assert(dst_offset % 4 == 0);
5972 assert(src_offset % 4 == 0);
5973
5974 for (unsigned i = 0; i < bytes; i += 4) {
5975 iris_emit_cmd(batch, GENX(MI_COPY_MEM_MEM), cp) {
5976 cp.DestinationMemoryAddress = rw_bo(dst_bo, dst_offset + i);
5977 cp.SourceMemoryAddress = ro_bo(src_bo, src_offset + i);
5978 }
5979 }
5980 }
5981
5982 /* ------------------------------------------------------------------- */
5983
5984 static unsigned
5985 flags_to_post_sync_op(uint32_t flags)
5986 {
5987 if (flags & PIPE_CONTROL_WRITE_IMMEDIATE)
5988 return WriteImmediateData;
5989
5990 if (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT)
5991 return WritePSDepthCount;
5992
5993 if (flags & PIPE_CONTROL_WRITE_TIMESTAMP)
5994 return WriteTimestamp;
5995
5996 return 0;
5997 }
5998
5999 /**
6000 * Do the given flags have a Post Sync or LRI Post Sync operation?
6001 */
6002 static enum pipe_control_flags
6003 get_post_sync_flags(enum pipe_control_flags flags)
6004 {
6005 flags &= PIPE_CONTROL_WRITE_IMMEDIATE |
6006 PIPE_CONTROL_WRITE_DEPTH_COUNT |
6007 PIPE_CONTROL_WRITE_TIMESTAMP |
6008 PIPE_CONTROL_LRI_POST_SYNC_OP;
6009
6010 /* Only one "Post Sync Op" is allowed, and it's mutually exclusive with
6011 * "LRI Post Sync Operation". So more than one bit set would be illegal.
6012 */
6013 assert(util_bitcount(flags) <= 1);
6014
6015 return flags;
6016 }
6017
6018 #define IS_COMPUTE_PIPELINE(batch) (batch->name == IRIS_BATCH_COMPUTE)
6019
6020 /**
6021 * Emit a series of PIPE_CONTROL commands, taking into account any
6022 * workarounds necessary to actually accomplish the caller's request.
6023 *
6024 * Unless otherwise noted, spec quotations in this function come from:
6025 *
6026 * Synchronization of the 3D Pipeline > PIPE_CONTROL Command > Programming
6027 * Restrictions for PIPE_CONTROL.
6028 *
6029 * You should not use this function directly. Use the helpers in
6030 * iris_pipe_control.c instead, which may split the pipe control further.
6031 */
6032 static void
6033 iris_emit_raw_pipe_control(struct iris_batch *batch, uint32_t flags,
6034 struct iris_bo *bo, uint32_t offset, uint64_t imm)
6035 {
6036 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
6037 enum pipe_control_flags post_sync_flags = get_post_sync_flags(flags);
6038 enum pipe_control_flags non_lri_post_sync_flags =
6039 post_sync_flags & ~PIPE_CONTROL_LRI_POST_SYNC_OP;
6040
6041 /* Recursive PIPE_CONTROL workarounds --------------------------------
6042 * (http://knowyourmeme.com/memes/xzibit-yo-dawg)
6043 *
6044 * We do these first because we want to look at the original operation,
6045 * rather than any workarounds we set.
6046 */
6047 if (GEN_GEN == 9 && (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE)) {
6048 /* The PIPE_CONTROL "VF Cache Invalidation Enable" bit description
6049 * lists several workarounds:
6050 *
6051 * "Project: SKL, KBL, BXT
6052 *
6053 * If the VF Cache Invalidation Enable is set to a 1 in a
6054 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields
6055 * sets to 0, with the VF Cache Invalidation Enable set to 0
6056 * needs to be sent prior to the PIPE_CONTROL with VF Cache
6057 * Invalidation Enable set to a 1."
6058 */
6059 iris_emit_raw_pipe_control(batch, 0, NULL, 0, 0);
6060 }
6061
6062 if (GEN_GEN == 9 && IS_COMPUTE_PIPELINE(batch) && post_sync_flags) {
6063 /* Project: SKL / Argument: LRI Post Sync Operation [23]
6064 *
6065 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
6066 * programmed prior to programming a PIPECONTROL command with "LRI
6067 * Post Sync Operation" in GPGPU mode of operation (i.e when
6068 * PIPELINE_SELECT command is set to GPGPU mode of operation)."
6069 *
6070 * The same text exists a few rows below for Post Sync Op.
6071 */
6072 iris_emit_raw_pipe_control(batch, PIPE_CONTROL_CS_STALL, bo, offset, imm);
6073 }
6074
6075 if (GEN_GEN == 10 && (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH)) {
6076 /* Cannonlake:
6077 * "Before sending a PIPE_CONTROL command with bit 12 set, SW must issue
6078 * another PIPE_CONTROL with Render Target Cache Flush Enable (bit 12)
6079 * = 0 and Pipe Control Flush Enable (bit 7) = 1"
6080 */
6081 iris_emit_raw_pipe_control(batch, PIPE_CONTROL_FLUSH_ENABLE, bo,
6082 offset, imm);
6083 }
6084
6085 /* "Flush Types" workarounds ---------------------------------------------
6086 * We do these now because they may add post-sync operations or CS stalls.
6087 */
6088
6089 if (GEN_GEN < 11 && flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) {
6090 /* Project: BDW, SKL+ (stopping at CNL) / Argument: VF Invalidate
6091 *
6092 * "'Post Sync Operation' must be enabled to 'Write Immediate Data' or
6093 * 'Write PS Depth Count' or 'Write Timestamp'."
6094 */
6095 if (!bo) {
6096 flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
6097 post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
6098 non_lri_post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
6099 bo = batch->screen->workaround_bo;
6100 }
6101 }
6102
6103 /* #1130 from Gen10 workarounds page:
6104 *
6105 * "Enable Depth Stall on every Post Sync Op if Render target Cache
6106 * Flush is not enabled in same PIPE CONTROL and Enable Pixel score
6107 * board stall if Render target cache flush is enabled."
6108 *
6109 * Applicable to CNL B0 and C0 steppings only.
6110 *
6111 * The wording here is unclear, and this workaround doesn't look anything
6112 * like the internal bug report recommendations, but leave it be for now...
6113 */
6114 if (GEN_GEN == 10) {
6115 if (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) {
6116 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
6117 } else if (flags & non_lri_post_sync_flags) {
6118 flags |= PIPE_CONTROL_DEPTH_STALL;
6119 }
6120 }
6121
6122 if (flags & PIPE_CONTROL_DEPTH_STALL) {
6123 /* From the PIPE_CONTROL instruction table, bit 13 (Depth Stall Enable):
6124 *
6125 * "This bit must be DISABLED for operations other than writing
6126 * PS_DEPTH_COUNT."
6127 *
6128 * This seems like nonsense. An Ivybridge workaround requires us to
6129 * emit a PIPE_CONTROL with a depth stall and write immediate post-sync
6130 * operation. Gen8+ requires us to emit depth stalls and depth cache
6131 * flushes together. So, it's hard to imagine this means anything other
6132 * than "we originally intended this to be used for PS_DEPTH_COUNT".
6133 *
6134 * We ignore the supposed restriction and do nothing.
6135 */
6136 }
6137
6138 if (flags & (PIPE_CONTROL_RENDER_TARGET_FLUSH |
6139 PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
6140 /* From the PIPE_CONTROL instruction table, bit 12 and bit 1:
6141 *
6142 * "This bit must be DISABLED for End-of-pipe (Read) fences,
6143 * PS_DEPTH_COUNT or TIMESTAMP queries."
6144 *
6145 * TODO: Implement end-of-pipe checking.
6146 */
6147 assert(!(post_sync_flags & (PIPE_CONTROL_WRITE_DEPTH_COUNT |
6148 PIPE_CONTROL_WRITE_TIMESTAMP)));
6149 }
6150
6151 if (GEN_GEN < 11 && (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
6152 /* From the PIPE_CONTROL instruction table, bit 1:
6153 *
6154 * "This bit is ignored if Depth Stall Enable is set.
6155 * Further, the render cache is not flushed even if Write Cache
6156 * Flush Enable bit is set."
6157 *
6158 * We assert that the caller doesn't do this combination, to try and
6159 * prevent mistakes. It shouldn't hurt the GPU, though.
6160 *
6161 * We skip this check on Gen11+ as the "Stall at Pixel Scoreboard"
6162 * and "Render Target Flush" combo is explicitly required for BTI
6163 * update workarounds.
6164 */
6165 assert(!(flags & (PIPE_CONTROL_DEPTH_STALL |
6166 PIPE_CONTROL_RENDER_TARGET_FLUSH)));
6167 }
6168
6169 /* PIPE_CONTROL page workarounds ------------------------------------- */
6170
6171 if (GEN_GEN <= 8 && (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE)) {
6172 /* From the PIPE_CONTROL page itself:
6173 *
6174 * "IVB, HSW, BDW
6175 * Restriction: Pipe_control with CS-stall bit set must be issued
6176 * before a pipe-control command that has the State Cache
6177 * Invalidate bit set."
6178 */
6179 flags |= PIPE_CONTROL_CS_STALL;
6180 }
6181
6182 if (flags & PIPE_CONTROL_FLUSH_LLC) {
6183 /* From the PIPE_CONTROL instruction table, bit 26 (Flush LLC):
6184 *
6185 * "Project: ALL
6186 * SW must always program Post-Sync Operation to "Write Immediate
6187 * Data" when Flush LLC is set."
6188 *
6189 * For now, we just require the caller to do it.
6190 */
6191 assert(flags & PIPE_CONTROL_WRITE_IMMEDIATE);
6192 }
6193
6194 /* "Post-Sync Operation" workarounds -------------------------------- */
6195
6196 /* Project: All / Argument: Global Snapshot Count Reset [19]
6197 *
6198 * "This bit must not be exercised on any product.
6199 * Requires stall bit ([20] of DW1) set."
6200 *
6201 * We don't use this, so we just assert that it isn't used. The
6202 * PIPE_CONTROL instruction page indicates that they intended this
6203 * as a debug feature and don't think it is useful in production,
6204 * but it may actually be usable, should we ever want to.
6205 */
6206 assert((flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) == 0);
6207
6208 if (flags & (PIPE_CONTROL_MEDIA_STATE_CLEAR |
6209 PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE)) {
6210 /* Project: All / Arguments:
6211 *
6212 * - Generic Media State Clear [16]
6213 * - Indirect State Pointers Disable [16]
6214 *
6215 * "Requires stall bit ([20] of DW1) set."
6216 *
6217 * Also, the PIPE_CONTROL instruction table, bit 16 (Generic Media
6218 * State Clear) says:
6219 *
6220 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
6221 * programmed prior to programming a PIPECONTROL command with "Media
6222 * State Clear" set in GPGPU mode of operation"
6223 *
6224 * This is a subset of the earlier rule, so there's nothing to do.
6225 */
6226 flags |= PIPE_CONTROL_CS_STALL;
6227 }
6228
6229 if (flags & PIPE_CONTROL_STORE_DATA_INDEX) {
6230 /* Project: All / Argument: Store Data Index
6231 *
6232 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
6233 * than '0'."
6234 *
6235 * For now, we just assert that the caller does this. We might want to
6236 * automatically add a write to the workaround BO...
6237 */
6238 assert(non_lri_post_sync_flags != 0);
6239 }
6240
6241 if (flags & PIPE_CONTROL_SYNC_GFDT) {
6242 /* Project: All / Argument: Sync GFDT
6243 *
6244 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
6245 * than '0' or 0x2520[13] must be set."
6246 *
6247 * For now, we just assert that the caller does this.
6248 */
6249 assert(non_lri_post_sync_flags != 0);
6250 }
6251
6252 if (flags & PIPE_CONTROL_TLB_INVALIDATE) {
6253 /* Project: IVB+ / Argument: TLB inv
6254 *
6255 * "Requires stall bit ([20] of DW1) set."
6256 *
6257 * Also, from the PIPE_CONTROL instruction table:
6258 *
6259 * "Project: SKL+
6260 * Post Sync Operation or CS stall must be set to ensure a TLB
6261 * invalidation occurs. Otherwise no cycle will occur to the TLB
6262 * cache to invalidate."
6263 *
6264 * This is not a subset of the earlier rule, so there's nothing to do.
6265 */
6266 flags |= PIPE_CONTROL_CS_STALL;
6267 }
6268
6269 if (GEN_GEN == 9 && devinfo->gt == 4) {
6270 /* TODO: The big Skylake GT4 post sync op workaround */
6271 }
6272
6273 /* "GPGPU specific workarounds" (both post-sync and flush) ------------ */
6274
6275 if (IS_COMPUTE_PIPELINE(batch)) {
6276 if (GEN_GEN >= 9 && (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE)) {
6277 /* Project: SKL+ / Argument: Tex Invalidate
6278 * "Requires stall bit ([20] of DW) set for all GPGPU Workloads."
6279 */
6280 flags |= PIPE_CONTROL_CS_STALL;
6281 }
6282
6283 if (GEN_GEN == 8 && (post_sync_flags ||
6284 (flags & (PIPE_CONTROL_NOTIFY_ENABLE |
6285 PIPE_CONTROL_DEPTH_STALL |
6286 PIPE_CONTROL_RENDER_TARGET_FLUSH |
6287 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
6288 PIPE_CONTROL_DATA_CACHE_FLUSH)))) {
6289 /* Project: BDW / Arguments:
6290 *
6291 * - LRI Post Sync Operation [23]
6292 * - Post Sync Op [15:14]
6293 * - Notify En [8]
6294 * - Depth Stall [13]
6295 * - Render Target Cache Flush [12]
6296 * - Depth Cache Flush [0]
6297 * - DC Flush Enable [5]
6298 *
6299 * "Requires stall bit ([20] of DW) set for all GPGPU and Media
6300 * Workloads."
6301 */
6302 flags |= PIPE_CONTROL_CS_STALL;
6303
6304 /* Also, from the PIPE_CONTROL instruction table, bit 20:
6305 *
6306 * "Project: BDW
6307 * This bit must be always set when PIPE_CONTROL command is
6308 * programmed by GPGPU and MEDIA workloads, except for the cases
6309 * when only Read Only Cache Invalidation bits are set (State
6310 * Cache Invalidation Enable, Instruction cache Invalidation
6311 * Enable, Texture Cache Invalidation Enable, Constant Cache
6312 * Invalidation Enable). This is to WA FFDOP CG issue, this WA
6313 * need not implemented when FF_DOP_CG is disable via "Fixed
6314 * Function DOP Clock Gate Disable" bit in RC_PSMI_CTRL register."
6315 *
6316 * It sounds like we could avoid CS stalls in some cases, but we
6317 * don't currently bother. This list isn't exactly the list above,
6318 * either...
6319 */
6320 }
6321 }
6322
6323 /* "Stall" workarounds ----------------------------------------------
6324 * These have to come after the earlier ones because we may have added
6325 * some additional CS stalls above.
6326 */
6327
6328 if (GEN_GEN < 9 && (flags & PIPE_CONTROL_CS_STALL)) {
6329 /* Project: PRE-SKL, VLV, CHV
6330 *
6331 * "[All Stepping][All SKUs]:
6332 *
6333 * One of the following must also be set:
6334 *
6335 * - Render Target Cache Flush Enable ([12] of DW1)
6336 * - Depth Cache Flush Enable ([0] of DW1)
6337 * - Stall at Pixel Scoreboard ([1] of DW1)
6338 * - Depth Stall ([13] of DW1)
6339 * - Post-Sync Operation ([13] of DW1)
6340 * - DC Flush Enable ([5] of DW1)"
6341 *
6342 * If we don't already have one of those bits set, we choose to add
6343 * "Stall at Pixel Scoreboard". Some of the other bits require a
6344 * CS stall as a workaround (see above), which would send us into
6345 * an infinite recursion of PIPE_CONTROLs. "Stall at Pixel Scoreboard"
6346 * appears to be safe, so we choose that.
6347 */
6348 const uint32_t wa_bits = PIPE_CONTROL_RENDER_TARGET_FLUSH |
6349 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
6350 PIPE_CONTROL_WRITE_IMMEDIATE |
6351 PIPE_CONTROL_WRITE_DEPTH_COUNT |
6352 PIPE_CONTROL_WRITE_TIMESTAMP |
6353 PIPE_CONTROL_STALL_AT_SCOREBOARD |
6354 PIPE_CONTROL_DEPTH_STALL |
6355 PIPE_CONTROL_DATA_CACHE_FLUSH;
6356 if (!(flags & wa_bits))
6357 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
6358 }
6359
6360 /* Emit --------------------------------------------------------------- */
6361
6362 iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
6363 pc.LRIPostSyncOperation = NoLRIOperation;
6364 pc.PipeControlFlushEnable = flags & PIPE_CONTROL_FLUSH_ENABLE;
6365 pc.DCFlushEnable = flags & PIPE_CONTROL_DATA_CACHE_FLUSH;
6366 pc.StoreDataIndex = 0;
6367 pc.CommandStreamerStallEnable = flags & PIPE_CONTROL_CS_STALL;
6368 pc.GlobalSnapshotCountReset =
6369 flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET;
6370 pc.TLBInvalidate = flags & PIPE_CONTROL_TLB_INVALIDATE;
6371 pc.GenericMediaStateClear = flags & PIPE_CONTROL_MEDIA_STATE_CLEAR;
6372 pc.StallAtPixelScoreboard = flags & PIPE_CONTROL_STALL_AT_SCOREBOARD;
6373 pc.RenderTargetCacheFlushEnable =
6374 flags & PIPE_CONTROL_RENDER_TARGET_FLUSH;
6375 pc.DepthCacheFlushEnable = flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH;
6376 pc.StateCacheInvalidationEnable =
6377 flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE;
6378 pc.VFCacheInvalidationEnable = flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
6379 pc.ConstantCacheInvalidationEnable =
6380 flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE;
6381 pc.PostSyncOperation = flags_to_post_sync_op(flags);
6382 pc.DepthStallEnable = flags & PIPE_CONTROL_DEPTH_STALL;
6383 pc.InstructionCacheInvalidateEnable =
6384 flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE;
6385 pc.NotifyEnable = flags & PIPE_CONTROL_NOTIFY_ENABLE;
6386 pc.IndirectStatePointersDisable =
6387 flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE;
6388 pc.TextureCacheInvalidationEnable =
6389 flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
6390 pc.Address = rw_bo(bo, offset);
6391 pc.ImmediateData = imm;
6392 }
6393 }
6394
6395 void
6396 genX(emit_urb_setup)(struct iris_context *ice,
6397 struct iris_batch *batch,
6398 const unsigned size[4],
6399 bool tess_present, bool gs_present)
6400 {
6401 const struct gen_device_info *devinfo = &batch->screen->devinfo;
6402 const unsigned push_size_kB = 32;
6403 unsigned entries[4];
6404 unsigned start[4];
6405
6406 ice->shaders.last_vs_entry_size = size[MESA_SHADER_VERTEX];
6407
6408 gen_get_urb_config(devinfo, 1024 * push_size_kB,
6409 1024 * ice->shaders.urb_size,
6410 tess_present, gs_present,
6411 size, entries, start);
6412
6413 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
6414 iris_emit_cmd(batch, GENX(3DSTATE_URB_VS), urb) {
6415 urb._3DCommandSubOpcode += i;
6416 urb.VSURBStartingAddress = start[i];
6417 urb.VSURBEntryAllocationSize = size[i] - 1;
6418 urb.VSNumberofURBEntries = entries[i];
6419 }
6420 }
6421 }
6422
6423 #if GEN_GEN == 9
6424 /**
6425 * Preemption on Gen9 has to be enabled or disabled in various cases.
6426 *
6427 * See these workarounds for preemption:
6428 * - WaDisableMidObjectPreemptionForGSLineStripAdj
6429 * - WaDisableMidObjectPreemptionForTrifanOrPolygon
6430 * - WaDisableMidObjectPreemptionForLineLoop
6431 * - WA#0798
6432 *
6433 * We don't put this in the vtable because it's only used on Gen9.
6434 */
6435 void
6436 gen9_toggle_preemption(struct iris_context *ice,
6437 struct iris_batch *batch,
6438 const struct pipe_draw_info *draw)
6439 {
6440 struct iris_genx_state *genx = ice->state.genx;
6441 bool object_preemption = true;
6442
6443 /* WaDisableMidObjectPreemptionForGSLineStripAdj
6444 *
6445 * "WA: Disable mid-draw preemption when draw-call is a linestrip_adj
6446 * and GS is enabled."
6447 */
6448 if (draw->mode == PIPE_PRIM_LINE_STRIP_ADJACENCY &&
6449 ice->shaders.prog[MESA_SHADER_GEOMETRY])
6450 object_preemption = false;
6451
6452 /* WaDisableMidObjectPreemptionForTrifanOrPolygon
6453 *
6454 * "TriFan miscompare in Execlist Preemption test. Cut index that is
6455 * on a previous context. End the previous, the resume another context
6456 * with a tri-fan or polygon, and the vertex count is corrupted. If we
6457 * prempt again we will cause corruption.
6458 *
6459 * WA: Disable mid-draw preemption when draw-call has a tri-fan."
6460 */
6461 if (draw->mode == PIPE_PRIM_TRIANGLE_FAN)
6462 object_preemption = false;
6463
6464 /* WaDisableMidObjectPreemptionForLineLoop
6465 *
6466 * "VF Stats Counters Missing a vertex when preemption enabled.
6467 *
6468 * WA: Disable mid-draw preemption when the draw uses a lineloop
6469 * topology."
6470 */
6471 if (draw->mode == PIPE_PRIM_LINE_LOOP)
6472 object_preemption = false;
6473
6474 /* WA#0798
6475 *
6476 * "VF is corrupting GAFS data when preempted on an instance boundary
6477 * and replayed with instancing enabled.
6478 *
6479 * WA: Disable preemption when using instanceing."
6480 */
6481 if (draw->instance_count > 1)
6482 object_preemption = false;
6483
6484 if (genx->object_preemption != object_preemption) {
6485 iris_enable_obj_preemption(batch, object_preemption);
6486 genx->object_preemption = object_preemption;
6487 }
6488 }
6489 #endif
6490
6491 void
6492 genX(init_state)(struct iris_context *ice)
6493 {
6494 struct pipe_context *ctx = &ice->ctx;
6495 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
6496
6497 ctx->create_blend_state = iris_create_blend_state;
6498 ctx->create_depth_stencil_alpha_state = iris_create_zsa_state;
6499 ctx->create_rasterizer_state = iris_create_rasterizer_state;
6500 ctx->create_sampler_state = iris_create_sampler_state;
6501 ctx->create_sampler_view = iris_create_sampler_view;
6502 ctx->create_surface = iris_create_surface;
6503 ctx->create_vertex_elements_state = iris_create_vertex_elements;
6504 ctx->bind_blend_state = iris_bind_blend_state;
6505 ctx->bind_depth_stencil_alpha_state = iris_bind_zsa_state;
6506 ctx->bind_sampler_states = iris_bind_sampler_states;
6507 ctx->bind_rasterizer_state = iris_bind_rasterizer_state;
6508 ctx->bind_vertex_elements_state = iris_bind_vertex_elements_state;
6509 ctx->delete_blend_state = iris_delete_state;
6510 ctx->delete_depth_stencil_alpha_state = iris_delete_state;
6511 ctx->delete_rasterizer_state = iris_delete_state;
6512 ctx->delete_sampler_state = iris_delete_state;
6513 ctx->delete_vertex_elements_state = iris_delete_state;
6514 ctx->set_blend_color = iris_set_blend_color;
6515 ctx->set_clip_state = iris_set_clip_state;
6516 ctx->set_constant_buffer = iris_set_constant_buffer;
6517 ctx->set_shader_buffers = iris_set_shader_buffers;
6518 ctx->set_shader_images = iris_set_shader_images;
6519 ctx->set_sampler_views = iris_set_sampler_views;
6520 ctx->set_tess_state = iris_set_tess_state;
6521 ctx->set_framebuffer_state = iris_set_framebuffer_state;
6522 ctx->set_polygon_stipple = iris_set_polygon_stipple;
6523 ctx->set_sample_mask = iris_set_sample_mask;
6524 ctx->set_scissor_states = iris_set_scissor_states;
6525 ctx->set_stencil_ref = iris_set_stencil_ref;
6526 ctx->set_vertex_buffers = iris_set_vertex_buffers;
6527 ctx->set_viewport_states = iris_set_viewport_states;
6528 ctx->sampler_view_destroy = iris_sampler_view_destroy;
6529 ctx->surface_destroy = iris_surface_destroy;
6530 ctx->draw_vbo = iris_draw_vbo;
6531 ctx->launch_grid = iris_launch_grid;
6532 ctx->create_stream_output_target = iris_create_stream_output_target;
6533 ctx->stream_output_target_destroy = iris_stream_output_target_destroy;
6534 ctx->set_stream_output_targets = iris_set_stream_output_targets;
6535
6536 ice->vtbl.destroy_state = iris_destroy_state;
6537 ice->vtbl.init_render_context = iris_init_render_context;
6538 ice->vtbl.init_compute_context = iris_init_compute_context;
6539 ice->vtbl.upload_render_state = iris_upload_render_state;
6540 ice->vtbl.update_surface_base_address = iris_update_surface_base_address;
6541 ice->vtbl.upload_compute_state = iris_upload_compute_state;
6542 ice->vtbl.emit_raw_pipe_control = iris_emit_raw_pipe_control;
6543 ice->vtbl.rebind_buffer = iris_rebind_buffer;
6544 ice->vtbl.load_register_reg32 = iris_load_register_reg32;
6545 ice->vtbl.load_register_reg64 = iris_load_register_reg64;
6546 ice->vtbl.load_register_imm32 = iris_load_register_imm32;
6547 ice->vtbl.load_register_imm64 = iris_load_register_imm64;
6548 ice->vtbl.load_register_mem32 = iris_load_register_mem32;
6549 ice->vtbl.load_register_mem64 = iris_load_register_mem64;
6550 ice->vtbl.store_register_mem32 = iris_store_register_mem32;
6551 ice->vtbl.store_register_mem64 = iris_store_register_mem64;
6552 ice->vtbl.store_data_imm32 = iris_store_data_imm32;
6553 ice->vtbl.store_data_imm64 = iris_store_data_imm64;
6554 ice->vtbl.copy_mem_mem = iris_copy_mem_mem;
6555 ice->vtbl.derived_program_state_size = iris_derived_program_state_size;
6556 ice->vtbl.store_derived_program_state = iris_store_derived_program_state;
6557 ice->vtbl.create_so_decl_list = iris_create_so_decl_list;
6558 ice->vtbl.populate_vs_key = iris_populate_vs_key;
6559 ice->vtbl.populate_tcs_key = iris_populate_tcs_key;
6560 ice->vtbl.populate_tes_key = iris_populate_tes_key;
6561 ice->vtbl.populate_gs_key = iris_populate_gs_key;
6562 ice->vtbl.populate_fs_key = iris_populate_fs_key;
6563 ice->vtbl.populate_cs_key = iris_populate_cs_key;
6564 ice->vtbl.mocs = mocs;
6565
6566 ice->state.dirty = ~0ull;
6567
6568 ice->state.statistics_counters_enabled = true;
6569
6570 ice->state.sample_mask = 0xffff;
6571 ice->state.num_viewports = 1;
6572 ice->state.genx = calloc(1, sizeof(struct iris_genx_state));
6573
6574 /* Make a 1x1x1 null surface for unbound textures */
6575 void *null_surf_map =
6576 upload_state(ice->state.surface_uploader, &ice->state.unbound_tex,
6577 4 * GENX(RENDER_SURFACE_STATE_length), 64);
6578 isl_null_fill_state(&screen->isl_dev, null_surf_map, isl_extent3d(1, 1, 1));
6579 ice->state.unbound_tex.offset +=
6580 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.unbound_tex.res));
6581
6582 /* Default all scissor rectangles to be empty regions. */
6583 for (int i = 0; i < IRIS_MAX_VIEWPORTS; i++) {
6584 ice->state.scissors[i] = (struct pipe_scissor_state) {
6585 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
6586 };
6587 }
6588 }