iris: Make iris_query.c a genxml-compiled file.
[mesa.git] / src / gallium / drivers / iris / iris_state.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included
12 * in all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
21 */
22
23 /**
24 * @file iris_state.c
25 *
26 * ============================= GENXML CODE =============================
27 * [This file is compiled once per generation.]
28 * =======================================================================
29 *
30 * This is the main state upload code.
31 *
32 * Gallium uses Constant State Objects, or CSOs, for most state. Large,
33 * complex, or highly reusable state can be created once, and bound and
34 * rebound multiple times. This is modeled with the pipe->create_*_state()
35 * and pipe->bind_*_state() hooks. Highly dynamic or inexpensive state is
36 * streamed out on the fly, via pipe->set_*_state() hooks.
37 *
38 * OpenGL involves frequently mutating context state, which is mirrored in
39 * core Mesa by highly mutable data structures. However, most applications
40 * typically draw the same things over and over - from frame to frame, most
41 * of the same objects are still visible and need to be redrawn. So, rather
42 * than inventing new state all the time, applications usually mutate to swap
43 * between known states that we've seen before.
44 *
45 * Gallium isolates us from this mutation by tracking API state, and
46 * distilling it into a set of Constant State Objects, or CSOs. Large,
47 * complex, or typically reusable state can be created once, then reused
48 * multiple times. Drivers can create and store their own associated data.
49 * This create/bind model corresponds to the pipe->create_*_state() and
50 * pipe->bind_*_state() driver hooks.
51 *
52 * Some state is cheap to create, or expected to be highly dynamic. Rather
53 * than creating and caching piles of CSOs for these, Gallium simply streams
54 * them out, via the pipe->set_*_state() driver hooks.
55 *
56 * To reduce draw time overhead, we try to compute as much state at create
57 * time as possible. Wherever possible, we translate the Gallium pipe state
58 * to 3DSTATE commands, and store those commands in the CSO. At draw time,
59 * we can simply memcpy them into a batch buffer.
60 *
61 * No hardware matches the abstraction perfectly, so some commands require
62 * information from multiple CSOs. In this case, we can store two copies
63 * of the packet (one in each CSO), and simply | together their DWords at
64 * draw time. Sometimes the second set is trivial (one or two fields), so
65 * we simply pack it at draw time.
66 *
67 * There are two main components in the file below. First, the CSO hooks
68 * create/bind/track state. The second are the draw-time upload functions,
69 * iris_upload_render_state() and iris_upload_compute_state(), which read
70 * the context state and emit the commands into the actual batch.
71 */
72
73 #include <stdio.h>
74 #include <errno.h>
75
76 #if HAVE_VALGRIND
77 #include <valgrind.h>
78 #include <memcheck.h>
79 #define VG(x) x
80 #ifdef DEBUG
81 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
82 #endif
83 #else
84 #define VG(x)
85 #endif
86
87 #include "pipe/p_defines.h"
88 #include "pipe/p_state.h"
89 #include "pipe/p_context.h"
90 #include "pipe/p_screen.h"
91 #include "util/u_dual_blend.h"
92 #include "util/u_inlines.h"
93 #include "util/u_format.h"
94 #include "util/u_framebuffer.h"
95 #include "util/u_transfer.h"
96 #include "util/u_upload_mgr.h"
97 #include "util/u_viewport.h"
98 #include "drm-uapi/i915_drm.h"
99 #include "nir.h"
100 #include "intel/compiler/brw_compiler.h"
101 #include "intel/common/gen_l3_config.h"
102 #include "intel/common/gen_sample_positions.h"
103 #include "iris_batch.h"
104 #include "iris_context.h"
105 #include "iris_defines.h"
106 #include "iris_pipe.h"
107 #include "iris_resource.h"
108
109 #include "iris_genx_macros.h"
110 #include "intel/common/gen_guardband.h"
111
112 #if GEN_GEN == 8
113 #define MOCS_PTE 0x18
114 #define MOCS_WB 0x78
115 #else
116 #define MOCS_PTE (1 << 1)
117 #define MOCS_WB (2 << 1)
118 #endif
119
120 static uint32_t
121 mocs(const struct iris_bo *bo)
122 {
123 return bo && bo->external ? MOCS_PTE : MOCS_WB;
124 }
125
126 /**
127 * Statically assert that PIPE_* enums match the hardware packets.
128 * (As long as they match, we don't need to translate them.)
129 */
130 UNUSED static void pipe_asserts()
131 {
132 #define PIPE_ASSERT(x) STATIC_ASSERT((int)x)
133
134 /* pipe_logicop happens to match the hardware. */
135 PIPE_ASSERT(PIPE_LOGICOP_CLEAR == LOGICOP_CLEAR);
136 PIPE_ASSERT(PIPE_LOGICOP_NOR == LOGICOP_NOR);
137 PIPE_ASSERT(PIPE_LOGICOP_AND_INVERTED == LOGICOP_AND_INVERTED);
138 PIPE_ASSERT(PIPE_LOGICOP_COPY_INVERTED == LOGICOP_COPY_INVERTED);
139 PIPE_ASSERT(PIPE_LOGICOP_AND_REVERSE == LOGICOP_AND_REVERSE);
140 PIPE_ASSERT(PIPE_LOGICOP_INVERT == LOGICOP_INVERT);
141 PIPE_ASSERT(PIPE_LOGICOP_XOR == LOGICOP_XOR);
142 PIPE_ASSERT(PIPE_LOGICOP_NAND == LOGICOP_NAND);
143 PIPE_ASSERT(PIPE_LOGICOP_AND == LOGICOP_AND);
144 PIPE_ASSERT(PIPE_LOGICOP_EQUIV == LOGICOP_EQUIV);
145 PIPE_ASSERT(PIPE_LOGICOP_NOOP == LOGICOP_NOOP);
146 PIPE_ASSERT(PIPE_LOGICOP_OR_INVERTED == LOGICOP_OR_INVERTED);
147 PIPE_ASSERT(PIPE_LOGICOP_COPY == LOGICOP_COPY);
148 PIPE_ASSERT(PIPE_LOGICOP_OR_REVERSE == LOGICOP_OR_REVERSE);
149 PIPE_ASSERT(PIPE_LOGICOP_OR == LOGICOP_OR);
150 PIPE_ASSERT(PIPE_LOGICOP_SET == LOGICOP_SET);
151
152 /* pipe_blend_func happens to match the hardware. */
153 PIPE_ASSERT(PIPE_BLENDFACTOR_ONE == BLENDFACTOR_ONE);
154 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_COLOR == BLENDFACTOR_SRC_COLOR);
155 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA == BLENDFACTOR_SRC_ALPHA);
156 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_ALPHA == BLENDFACTOR_DST_ALPHA);
157 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_COLOR == BLENDFACTOR_DST_COLOR);
158 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE == BLENDFACTOR_SRC_ALPHA_SATURATE);
159 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_COLOR == BLENDFACTOR_CONST_COLOR);
160 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_ALPHA == BLENDFACTOR_CONST_ALPHA);
161 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_COLOR == BLENDFACTOR_SRC1_COLOR);
162 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_ALPHA == BLENDFACTOR_SRC1_ALPHA);
163 PIPE_ASSERT(PIPE_BLENDFACTOR_ZERO == BLENDFACTOR_ZERO);
164 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_COLOR == BLENDFACTOR_INV_SRC_COLOR);
165 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_ALPHA == BLENDFACTOR_INV_SRC_ALPHA);
166 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_ALPHA == BLENDFACTOR_INV_DST_ALPHA);
167 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_COLOR == BLENDFACTOR_INV_DST_COLOR);
168 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_COLOR == BLENDFACTOR_INV_CONST_COLOR);
169 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_ALPHA == BLENDFACTOR_INV_CONST_ALPHA);
170 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_COLOR == BLENDFACTOR_INV_SRC1_COLOR);
171 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_ALPHA == BLENDFACTOR_INV_SRC1_ALPHA);
172
173 /* pipe_blend_func happens to match the hardware. */
174 PIPE_ASSERT(PIPE_BLEND_ADD == BLENDFUNCTION_ADD);
175 PIPE_ASSERT(PIPE_BLEND_SUBTRACT == BLENDFUNCTION_SUBTRACT);
176 PIPE_ASSERT(PIPE_BLEND_REVERSE_SUBTRACT == BLENDFUNCTION_REVERSE_SUBTRACT);
177 PIPE_ASSERT(PIPE_BLEND_MIN == BLENDFUNCTION_MIN);
178 PIPE_ASSERT(PIPE_BLEND_MAX == BLENDFUNCTION_MAX);
179
180 /* pipe_stencil_op happens to match the hardware. */
181 PIPE_ASSERT(PIPE_STENCIL_OP_KEEP == STENCILOP_KEEP);
182 PIPE_ASSERT(PIPE_STENCIL_OP_ZERO == STENCILOP_ZERO);
183 PIPE_ASSERT(PIPE_STENCIL_OP_REPLACE == STENCILOP_REPLACE);
184 PIPE_ASSERT(PIPE_STENCIL_OP_INCR == STENCILOP_INCRSAT);
185 PIPE_ASSERT(PIPE_STENCIL_OP_DECR == STENCILOP_DECRSAT);
186 PIPE_ASSERT(PIPE_STENCIL_OP_INCR_WRAP == STENCILOP_INCR);
187 PIPE_ASSERT(PIPE_STENCIL_OP_DECR_WRAP == STENCILOP_DECR);
188 PIPE_ASSERT(PIPE_STENCIL_OP_INVERT == STENCILOP_INVERT);
189
190 /* pipe_sprite_coord_mode happens to match 3DSTATE_SBE */
191 PIPE_ASSERT(PIPE_SPRITE_COORD_UPPER_LEFT == UPPERLEFT);
192 PIPE_ASSERT(PIPE_SPRITE_COORD_LOWER_LEFT == LOWERLEFT);
193 #undef PIPE_ASSERT
194 }
195
196 static unsigned
197 translate_prim_type(enum pipe_prim_type prim, uint8_t verts_per_patch)
198 {
199 static const unsigned map[] = {
200 [PIPE_PRIM_POINTS] = _3DPRIM_POINTLIST,
201 [PIPE_PRIM_LINES] = _3DPRIM_LINELIST,
202 [PIPE_PRIM_LINE_LOOP] = _3DPRIM_LINELOOP,
203 [PIPE_PRIM_LINE_STRIP] = _3DPRIM_LINESTRIP,
204 [PIPE_PRIM_TRIANGLES] = _3DPRIM_TRILIST,
205 [PIPE_PRIM_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
206 [PIPE_PRIM_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
207 [PIPE_PRIM_QUADS] = _3DPRIM_QUADLIST,
208 [PIPE_PRIM_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
209 [PIPE_PRIM_POLYGON] = _3DPRIM_POLYGON,
210 [PIPE_PRIM_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
211 [PIPE_PRIM_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
212 [PIPE_PRIM_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
213 [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
214 [PIPE_PRIM_PATCHES] = _3DPRIM_PATCHLIST_1 - 1,
215 };
216
217 return map[prim] + (prim == PIPE_PRIM_PATCHES ? verts_per_patch : 0);
218 }
219
220 static unsigned
221 translate_compare_func(enum pipe_compare_func pipe_func)
222 {
223 static const unsigned map[] = {
224 [PIPE_FUNC_NEVER] = COMPAREFUNCTION_NEVER,
225 [PIPE_FUNC_LESS] = COMPAREFUNCTION_LESS,
226 [PIPE_FUNC_EQUAL] = COMPAREFUNCTION_EQUAL,
227 [PIPE_FUNC_LEQUAL] = COMPAREFUNCTION_LEQUAL,
228 [PIPE_FUNC_GREATER] = COMPAREFUNCTION_GREATER,
229 [PIPE_FUNC_NOTEQUAL] = COMPAREFUNCTION_NOTEQUAL,
230 [PIPE_FUNC_GEQUAL] = COMPAREFUNCTION_GEQUAL,
231 [PIPE_FUNC_ALWAYS] = COMPAREFUNCTION_ALWAYS,
232 };
233 return map[pipe_func];
234 }
235
236 static unsigned
237 translate_shadow_func(enum pipe_compare_func pipe_func)
238 {
239 /* Gallium specifies the result of shadow comparisons as:
240 *
241 * 1 if ref <op> texel,
242 * 0 otherwise.
243 *
244 * The hardware does:
245 *
246 * 0 if texel <op> ref,
247 * 1 otherwise.
248 *
249 * So we need to flip the operator and also negate.
250 */
251 static const unsigned map[] = {
252 [PIPE_FUNC_NEVER] = PREFILTEROPALWAYS,
253 [PIPE_FUNC_LESS] = PREFILTEROPLEQUAL,
254 [PIPE_FUNC_EQUAL] = PREFILTEROPNOTEQUAL,
255 [PIPE_FUNC_LEQUAL] = PREFILTEROPLESS,
256 [PIPE_FUNC_GREATER] = PREFILTEROPGEQUAL,
257 [PIPE_FUNC_NOTEQUAL] = PREFILTEROPEQUAL,
258 [PIPE_FUNC_GEQUAL] = PREFILTEROPGREATER,
259 [PIPE_FUNC_ALWAYS] = PREFILTEROPNEVER,
260 };
261 return map[pipe_func];
262 }
263
264 static unsigned
265 translate_cull_mode(unsigned pipe_face)
266 {
267 static const unsigned map[4] = {
268 [PIPE_FACE_NONE] = CULLMODE_NONE,
269 [PIPE_FACE_FRONT] = CULLMODE_FRONT,
270 [PIPE_FACE_BACK] = CULLMODE_BACK,
271 [PIPE_FACE_FRONT_AND_BACK] = CULLMODE_BOTH,
272 };
273 return map[pipe_face];
274 }
275
276 static unsigned
277 translate_fill_mode(unsigned pipe_polymode)
278 {
279 static const unsigned map[4] = {
280 [PIPE_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
281 [PIPE_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
282 [PIPE_POLYGON_MODE_POINT] = FILL_MODE_POINT,
283 [PIPE_POLYGON_MODE_FILL_RECTANGLE] = FILL_MODE_SOLID,
284 };
285 return map[pipe_polymode];
286 }
287
288 static unsigned
289 translate_mip_filter(enum pipe_tex_mipfilter pipe_mip)
290 {
291 static const unsigned map[] = {
292 [PIPE_TEX_MIPFILTER_NEAREST] = MIPFILTER_NEAREST,
293 [PIPE_TEX_MIPFILTER_LINEAR] = MIPFILTER_LINEAR,
294 [PIPE_TEX_MIPFILTER_NONE] = MIPFILTER_NONE,
295 };
296 return map[pipe_mip];
297 }
298
299 static uint32_t
300 translate_wrap(unsigned pipe_wrap)
301 {
302 static const unsigned map[] = {
303 [PIPE_TEX_WRAP_REPEAT] = TCM_WRAP,
304 [PIPE_TEX_WRAP_CLAMP] = TCM_HALF_BORDER,
305 [PIPE_TEX_WRAP_CLAMP_TO_EDGE] = TCM_CLAMP,
306 [PIPE_TEX_WRAP_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER,
307 [PIPE_TEX_WRAP_MIRROR_REPEAT] = TCM_MIRROR,
308 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE,
309
310 /* These are unsupported. */
311 [PIPE_TEX_WRAP_MIRROR_CLAMP] = -1,
312 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER] = -1,
313 };
314 return map[pipe_wrap];
315 }
316
317 /**
318 * Allocate space for some indirect state.
319 *
320 * Return a pointer to the map (to fill it out) and a state ref (for
321 * referring to the state in GPU commands).
322 */
323 static void *
324 upload_state(struct u_upload_mgr *uploader,
325 struct iris_state_ref *ref,
326 unsigned size,
327 unsigned alignment)
328 {
329 void *p = NULL;
330 u_upload_alloc(uploader, 0, size, alignment, &ref->offset, &ref->res, &p);
331 return p;
332 }
333
334 /**
335 * Stream out temporary/short-lived state.
336 *
337 * This allocates space, pins the BO, and includes the BO address in the
338 * returned offset (which works because all state lives in 32-bit memory
339 * zones).
340 */
341 static uint32_t *
342 stream_state(struct iris_batch *batch,
343 struct u_upload_mgr *uploader,
344 struct pipe_resource **out_res,
345 unsigned size,
346 unsigned alignment,
347 uint32_t *out_offset)
348 {
349 void *ptr = NULL;
350
351 u_upload_alloc(uploader, 0, size, alignment, out_offset, out_res, &ptr);
352
353 struct iris_bo *bo = iris_resource_bo(*out_res);
354 iris_use_pinned_bo(batch, bo, false);
355
356 *out_offset += iris_bo_offset_from_base_address(bo);
357
358 iris_record_state_size(batch->state_sizes, *out_offset, size);
359
360 return ptr;
361 }
362
363 /**
364 * stream_state() + memcpy.
365 */
366 static uint32_t
367 emit_state(struct iris_batch *batch,
368 struct u_upload_mgr *uploader,
369 struct pipe_resource **out_res,
370 const void *data,
371 unsigned size,
372 unsigned alignment)
373 {
374 unsigned offset = 0;
375 uint32_t *map =
376 stream_state(batch, uploader, out_res, size, alignment, &offset);
377
378 if (map)
379 memcpy(map, data, size);
380
381 return offset;
382 }
383
384 /**
385 * Did field 'x' change between 'old_cso' and 'new_cso'?
386 *
387 * (If so, we may want to set some dirty flags.)
388 */
389 #define cso_changed(x) (!old_cso || (old_cso->x != new_cso->x))
390 #define cso_changed_memcmp(x) \
391 (!old_cso || memcmp(old_cso->x, new_cso->x, sizeof(old_cso->x)) != 0)
392
393 static void
394 flush_for_state_base_change(struct iris_batch *batch)
395 {
396 /* Flush before emitting STATE_BASE_ADDRESS.
397 *
398 * This isn't documented anywhere in the PRM. However, it seems to be
399 * necessary prior to changing the surface state base adress. We've
400 * seen issues in Vulkan where we get GPU hangs when using multi-level
401 * command buffers which clear depth, reset state base address, and then
402 * go render stuff.
403 *
404 * Normally, in GL, we would trust the kernel to do sufficient stalls
405 * and flushes prior to executing our batch. However, it doesn't seem
406 * as if the kernel's flushing is always sufficient and we don't want to
407 * rely on it.
408 *
409 * We make this an end-of-pipe sync instead of a normal flush because we
410 * do not know the current status of the GPU. On Haswell at least,
411 * having a fast-clear operation in flight at the same time as a normal
412 * rendering operation can cause hangs. Since the kernel's flushing is
413 * insufficient, we need to ensure that any rendering operations from
414 * other processes are definitely complete before we try to do our own
415 * rendering. It's a bit of a big hammer but it appears to work.
416 */
417 iris_emit_end_of_pipe_sync(batch,
418 "change STATE_BASE_ADDRESS",
419 PIPE_CONTROL_RENDER_TARGET_FLUSH |
420 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
421 PIPE_CONTROL_DATA_CACHE_FLUSH);
422 }
423
424 static void
425 _iris_emit_lri(struct iris_batch *batch, uint32_t reg, uint32_t val)
426 {
427 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
428 lri.RegisterOffset = reg;
429 lri.DataDWord = val;
430 }
431 }
432 #define iris_emit_lri(b, r, v) _iris_emit_lri(b, GENX(r##_num), v)
433
434 static void
435 _iris_emit_lrr(struct iris_batch *batch, uint32_t dst, uint32_t src)
436 {
437 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
438 lrr.SourceRegisterAddress = src;
439 lrr.DestinationRegisterAddress = dst;
440 }
441 }
442
443 static void
444 emit_pipeline_select(struct iris_batch *batch, uint32_t pipeline)
445 {
446 #if GEN_GEN >= 8 && GEN_GEN < 10
447 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
448 *
449 * Software must clear the COLOR_CALC_STATE Valid field in
450 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
451 * with Pipeline Select set to GPGPU.
452 *
453 * The internal hardware docs recommend the same workaround for Gen9
454 * hardware too.
455 */
456 if (pipeline == GPGPU)
457 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
458 #endif
459
460
461 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
462 * PIPELINE_SELECT [DevBWR+]":
463 *
464 * "Project: DEVSNB+
465 *
466 * Software must ensure all the write caches are flushed through a
467 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
468 * command to invalidate read only caches prior to programming
469 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode."
470 */
471 iris_emit_pipe_control_flush(batch,
472 "workaround: PIPELINE_SELECT flushes (1/2)",
473 PIPE_CONTROL_RENDER_TARGET_FLUSH |
474 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
475 PIPE_CONTROL_DATA_CACHE_FLUSH |
476 PIPE_CONTROL_CS_STALL);
477
478 iris_emit_pipe_control_flush(batch,
479 "workaround: PIPELINE_SELECT flushes (2/2)",
480 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
481 PIPE_CONTROL_CONST_CACHE_INVALIDATE |
482 PIPE_CONTROL_STATE_CACHE_INVALIDATE |
483 PIPE_CONTROL_INSTRUCTION_INVALIDATE);
484
485 iris_emit_cmd(batch, GENX(PIPELINE_SELECT), sel) {
486 #if GEN_GEN >= 9
487 sel.MaskBits = 3;
488 #endif
489 sel.PipelineSelection = pipeline;
490 }
491 }
492
493 UNUSED static void
494 init_glk_barrier_mode(struct iris_batch *batch, uint32_t value)
495 {
496 #if GEN_GEN == 9
497 /* Project: DevGLK
498 *
499 * "This chicken bit works around a hardware issue with barrier
500 * logic encountered when switching between GPGPU and 3D pipelines.
501 * To workaround the issue, this mode bit should be set after a
502 * pipeline is selected."
503 */
504 uint32_t reg_val;
505 iris_pack_state(GENX(SLICE_COMMON_ECO_CHICKEN1), &reg_val, reg) {
506 reg.GLKBarrierMode = value;
507 reg.GLKBarrierModeMask = 1;
508 }
509 iris_emit_lri(batch, SLICE_COMMON_ECO_CHICKEN1, reg_val);
510 #endif
511 }
512
513 static void
514 init_state_base_address(struct iris_batch *batch)
515 {
516 flush_for_state_base_change(batch);
517
518 /* We program most base addresses once at context initialization time.
519 * Each base address points at a 4GB memory zone, and never needs to
520 * change. See iris_bufmgr.h for a description of the memory zones.
521 *
522 * The one exception is Surface State Base Address, which needs to be
523 * updated occasionally. See iris_binder.c for the details there.
524 */
525 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
526 sba.GeneralStateMOCS = MOCS_WB;
527 sba.StatelessDataPortAccessMOCS = MOCS_WB;
528 sba.DynamicStateMOCS = MOCS_WB;
529 sba.IndirectObjectMOCS = MOCS_WB;
530 sba.InstructionMOCS = MOCS_WB;
531
532 sba.GeneralStateBaseAddressModifyEnable = true;
533 sba.DynamicStateBaseAddressModifyEnable = true;
534 sba.IndirectObjectBaseAddressModifyEnable = true;
535 sba.InstructionBaseAddressModifyEnable = true;
536 sba.GeneralStateBufferSizeModifyEnable = true;
537 sba.DynamicStateBufferSizeModifyEnable = true;
538 #if (GEN_GEN >= 9)
539 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
540 sba.BindlessSurfaceStateMOCS = MOCS_WB;
541 #endif
542 sba.IndirectObjectBufferSizeModifyEnable = true;
543 sba.InstructionBuffersizeModifyEnable = true;
544
545 sba.InstructionBaseAddress = ro_bo(NULL, IRIS_MEMZONE_SHADER_START);
546 sba.DynamicStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_DYNAMIC_START);
547
548 sba.GeneralStateBufferSize = 0xfffff;
549 sba.IndirectObjectBufferSize = 0xfffff;
550 sba.InstructionBufferSize = 0xfffff;
551 sba.DynamicStateBufferSize = 0xfffff;
552 }
553 }
554
555 static void
556 iris_emit_l3_config(struct iris_batch *batch, const struct gen_l3_config *cfg,
557 bool has_slm, bool wants_dc_cache)
558 {
559 uint32_t reg_val;
560 iris_pack_state(GENX(L3CNTLREG), &reg_val, reg) {
561 reg.SLMEnable = has_slm;
562 #if GEN_GEN == 11
563 /* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set
564 * in L3CNTLREG register. The default setting of the bit is not the
565 * desirable behavior.
566 */
567 reg.ErrorDetectionBehaviorControl = true;
568 reg.UseFullWays = true;
569 #endif
570 reg.URBAllocation = cfg->n[GEN_L3P_URB];
571 reg.ROAllocation = cfg->n[GEN_L3P_RO];
572 reg.DCAllocation = cfg->n[GEN_L3P_DC];
573 reg.AllAllocation = cfg->n[GEN_L3P_ALL];
574 }
575 iris_emit_lri(batch, L3CNTLREG, reg_val);
576 }
577
578 static void
579 iris_emit_default_l3_config(struct iris_batch *batch,
580 const struct gen_device_info *devinfo,
581 bool compute)
582 {
583 bool wants_dc_cache = true;
584 bool has_slm = compute;
585 const struct gen_l3_weights w =
586 gen_get_default_l3_weights(devinfo, wants_dc_cache, has_slm);
587 const struct gen_l3_config *cfg = gen_get_l3_config(devinfo, w);
588 iris_emit_l3_config(batch, cfg, has_slm, wants_dc_cache);
589 }
590
591 #if GEN_GEN == 9 || GEN_GEN == 10
592 static void
593 iris_enable_obj_preemption(struct iris_batch *batch, bool enable)
594 {
595 uint32_t reg_val;
596
597 /* A fixed function pipe flush is required before modifying this field */
598 iris_emit_end_of_pipe_sync(batch, enable ? "enable preemption"
599 : "disable preemption",
600 PIPE_CONTROL_RENDER_TARGET_FLUSH);
601
602 /* enable object level preemption */
603 iris_pack_state(GENX(CS_CHICKEN1), &reg_val, reg) {
604 reg.ReplayMode = enable;
605 reg.ReplayModeMask = true;
606 }
607 iris_emit_lri(batch, CS_CHICKEN1, reg_val);
608 }
609 #endif
610
611 /**
612 * Upload the initial GPU state for a render context.
613 *
614 * This sets some invariant state that needs to be programmed a particular
615 * way, but we never actually change.
616 */
617 static void
618 iris_init_render_context(struct iris_screen *screen,
619 struct iris_batch *batch,
620 struct iris_vtable *vtbl,
621 struct pipe_debug_callback *dbg)
622 {
623 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
624 uint32_t reg_val;
625
626 emit_pipeline_select(batch, _3D);
627
628 iris_emit_default_l3_config(batch, devinfo, false);
629
630 init_state_base_address(batch);
631
632 #if GEN_GEN >= 9
633 iris_pack_state(GENX(CS_DEBUG_MODE2), &reg_val, reg) {
634 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
635 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
636 }
637 iris_emit_lri(batch, CS_DEBUG_MODE2, reg_val);
638 #else
639 iris_pack_state(GENX(INSTPM), &reg_val, reg) {
640 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
641 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
642 }
643 iris_emit_lri(batch, INSTPM, reg_val);
644 #endif
645
646 #if GEN_GEN == 9
647 iris_pack_state(GENX(CACHE_MODE_1), &reg_val, reg) {
648 reg.FloatBlendOptimizationEnable = true;
649 reg.FloatBlendOptimizationEnableMask = true;
650 reg.PartialResolveDisableInVC = true;
651 reg.PartialResolveDisableInVCMask = true;
652 }
653 iris_emit_lri(batch, CACHE_MODE_1, reg_val);
654
655 if (devinfo->is_geminilake)
656 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_3D_HULL);
657 #endif
658
659 #if GEN_GEN == 11
660 iris_pack_state(GENX(SAMPLER_MODE), &reg_val, reg) {
661 reg.HeaderlessMessageforPreemptableContexts = 1;
662 reg.HeaderlessMessageforPreemptableContextsMask = 1;
663 }
664 iris_emit_lri(batch, SAMPLER_MODE, reg_val);
665
666 /* Bit 1 must be set in HALF_SLICE_CHICKEN7. */
667 iris_pack_state(GENX(HALF_SLICE_CHICKEN7), &reg_val, reg) {
668 reg.EnabledTexelOffsetPrecisionFix = 1;
669 reg.EnabledTexelOffsetPrecisionFixMask = 1;
670 }
671 iris_emit_lri(batch, HALF_SLICE_CHICKEN7, reg_val);
672
673 iris_pack_state(GENX(SLICE_COMMON_ECO_CHICKEN1), &reg_val, reg) {
674 reg.StateCacheRedirectToCSSectionEnable = true;
675 reg.StateCacheRedirectToCSSectionEnableMask = true;
676 }
677 iris_emit_lri(batch, SLICE_COMMON_ECO_CHICKEN1, reg_val);
678
679 /* Hardware specification recommends disabling repacking for the
680 * compatibility with decompression mechanism in display controller.
681 */
682 if (devinfo->disable_ccs_repack) {
683 iris_pack_state(GENX(CACHE_MODE_0), &reg_val, reg) {
684 reg.DisableRepackingforCompression = true;
685 reg.DisableRepackingforCompressionMask = true;
686 }
687 iris_emit_lri(batch, CACHE_MODE_0, reg_val);
688 }
689
690 // XXX: 3D_MODE?
691 #endif
692
693 /* 3DSTATE_DRAWING_RECTANGLE is non-pipelined, so we want to avoid
694 * changing it dynamically. We set it to the maximum size here, and
695 * instead include the render target dimensions in the viewport, so
696 * viewport extents clipping takes care of pruning stray geometry.
697 */
698 iris_emit_cmd(batch, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
699 rect.ClippedDrawingRectangleXMax = UINT16_MAX;
700 rect.ClippedDrawingRectangleYMax = UINT16_MAX;
701 }
702
703 /* Set the initial MSAA sample positions. */
704 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_PATTERN), pat) {
705 GEN_SAMPLE_POS_1X(pat._1xSample);
706 GEN_SAMPLE_POS_2X(pat._2xSample);
707 GEN_SAMPLE_POS_4X(pat._4xSample);
708 GEN_SAMPLE_POS_8X(pat._8xSample);
709 #if GEN_GEN >= 9
710 GEN_SAMPLE_POS_16X(pat._16xSample);
711 #endif
712 }
713
714 /* Use the legacy AA line coverage computation. */
715 iris_emit_cmd(batch, GENX(3DSTATE_AA_LINE_PARAMETERS), foo);
716
717 /* Disable chromakeying (it's for media) */
718 iris_emit_cmd(batch, GENX(3DSTATE_WM_CHROMAKEY), foo);
719
720 /* We want regular rendering, not special HiZ operations. */
721 iris_emit_cmd(batch, GENX(3DSTATE_WM_HZ_OP), foo);
722
723 /* No polygon stippling offsets are necessary. */
724 /* TODO: may need to set an offset for origin-UL framebuffers */
725 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_OFFSET), foo);
726
727 /* Set a static partitioning of the push constant area. */
728 /* TODO: this may be a bad idea...could starve the push ringbuffers... */
729 for (int i = 0; i <= MESA_SHADER_FRAGMENT; i++) {
730 iris_emit_cmd(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
731 alloc._3DCommandSubOpcode = 18 + i;
732 alloc.ConstantBufferOffset = 6 * i;
733 alloc.ConstantBufferSize = i == MESA_SHADER_FRAGMENT ? 8 : 6;
734 }
735 }
736
737 #if GEN_GEN == 10
738 /* Gen11+ is enabled for us by the kernel. */
739 iris_enable_obj_preemption(batch, true);
740 #endif
741 }
742
743 static void
744 iris_init_compute_context(struct iris_screen *screen,
745 struct iris_batch *batch,
746 struct iris_vtable *vtbl,
747 struct pipe_debug_callback *dbg)
748 {
749 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
750
751 emit_pipeline_select(batch, GPGPU);
752
753 iris_emit_default_l3_config(batch, devinfo, true);
754
755 init_state_base_address(batch);
756
757 #if GEN_GEN == 9
758 if (devinfo->is_geminilake)
759 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_GPGPU);
760 #endif
761 }
762
763 struct iris_vertex_buffer_state {
764 /** The VERTEX_BUFFER_STATE hardware structure. */
765 uint32_t state[GENX(VERTEX_BUFFER_STATE_length)];
766
767 /** The resource to source vertex data from. */
768 struct pipe_resource *resource;
769 };
770
771 struct iris_depth_buffer_state {
772 /* Depth/HiZ/Stencil related hardware packets. */
773 uint32_t packets[GENX(3DSTATE_DEPTH_BUFFER_length) +
774 GENX(3DSTATE_STENCIL_BUFFER_length) +
775 GENX(3DSTATE_HIER_DEPTH_BUFFER_length) +
776 GENX(3DSTATE_CLEAR_PARAMS_length)];
777 };
778
779 /**
780 * Generation-specific context state (ice->state.genx->...).
781 *
782 * Most state can go in iris_context directly, but these encode hardware
783 * packets which vary by generation.
784 */
785 struct iris_genx_state {
786 struct iris_vertex_buffer_state vertex_buffers[33];
787
788 struct iris_depth_buffer_state depth_buffer;
789
790 uint32_t so_buffers[4 * GENX(3DSTATE_SO_BUFFER_length)];
791
792 #if GEN_GEN == 9
793 /* Is object level preemption enabled? */
794 bool object_preemption;
795 #endif
796
797 struct {
798 #if GEN_GEN == 8
799 struct brw_image_param image_param[PIPE_MAX_SHADER_IMAGES];
800 #endif
801 } shaders[MESA_SHADER_STAGES];
802 };
803
804 /**
805 * The pipe->set_blend_color() driver hook.
806 *
807 * This corresponds to our COLOR_CALC_STATE.
808 */
809 static void
810 iris_set_blend_color(struct pipe_context *ctx,
811 const struct pipe_blend_color *state)
812 {
813 struct iris_context *ice = (struct iris_context *) ctx;
814
815 /* Our COLOR_CALC_STATE is exactly pipe_blend_color, so just memcpy */
816 memcpy(&ice->state.blend_color, state, sizeof(struct pipe_blend_color));
817 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
818 }
819
820 /**
821 * Gallium CSO for blend state (see pipe_blend_state).
822 */
823 struct iris_blend_state {
824 /** Partial 3DSTATE_PS_BLEND */
825 uint32_t ps_blend[GENX(3DSTATE_PS_BLEND_length)];
826
827 /** Partial BLEND_STATE */
828 uint32_t blend_state[GENX(BLEND_STATE_length) +
829 BRW_MAX_DRAW_BUFFERS * GENX(BLEND_STATE_ENTRY_length)];
830
831 bool alpha_to_coverage; /* for shader key */
832
833 /** Bitfield of whether blending is enabled for RT[i] - for aux resolves */
834 uint8_t blend_enables;
835
836 /** Bitfield of whether color writes are enabled for RT[i] */
837 uint8_t color_write_enables;
838
839 /** Does RT[0] use dual color blending? */
840 bool dual_color_blending;
841 };
842
843 static enum pipe_blendfactor
844 fix_blendfactor(enum pipe_blendfactor f, bool alpha_to_one)
845 {
846 if (alpha_to_one) {
847 if (f == PIPE_BLENDFACTOR_SRC1_ALPHA)
848 return PIPE_BLENDFACTOR_ONE;
849
850 if (f == PIPE_BLENDFACTOR_INV_SRC1_ALPHA)
851 return PIPE_BLENDFACTOR_ZERO;
852 }
853
854 return f;
855 }
856
857 /**
858 * The pipe->create_blend_state() driver hook.
859 *
860 * Translates a pipe_blend_state into iris_blend_state.
861 */
862 static void *
863 iris_create_blend_state(struct pipe_context *ctx,
864 const struct pipe_blend_state *state)
865 {
866 struct iris_blend_state *cso = malloc(sizeof(struct iris_blend_state));
867 uint32_t *blend_entry = cso->blend_state + GENX(BLEND_STATE_length);
868
869 cso->blend_enables = 0;
870 cso->color_write_enables = 0;
871 STATIC_ASSERT(BRW_MAX_DRAW_BUFFERS <= 8);
872
873 cso->alpha_to_coverage = state->alpha_to_coverage;
874
875 bool indep_alpha_blend = false;
876
877 for (int i = 0; i < BRW_MAX_DRAW_BUFFERS; i++) {
878 const struct pipe_rt_blend_state *rt =
879 &state->rt[state->independent_blend_enable ? i : 0];
880
881 enum pipe_blendfactor src_rgb =
882 fix_blendfactor(rt->rgb_src_factor, state->alpha_to_one);
883 enum pipe_blendfactor src_alpha =
884 fix_blendfactor(rt->alpha_src_factor, state->alpha_to_one);
885 enum pipe_blendfactor dst_rgb =
886 fix_blendfactor(rt->rgb_dst_factor, state->alpha_to_one);
887 enum pipe_blendfactor dst_alpha =
888 fix_blendfactor(rt->alpha_dst_factor, state->alpha_to_one);
889
890 if (rt->rgb_func != rt->alpha_func ||
891 src_rgb != src_alpha || dst_rgb != dst_alpha)
892 indep_alpha_blend = true;
893
894 if (rt->blend_enable)
895 cso->blend_enables |= 1u << i;
896
897 if (rt->colormask)
898 cso->color_write_enables |= 1u << i;
899
900 iris_pack_state(GENX(BLEND_STATE_ENTRY), blend_entry, be) {
901 be.LogicOpEnable = state->logicop_enable;
902 be.LogicOpFunction = state->logicop_func;
903
904 be.PreBlendSourceOnlyClampEnable = false;
905 be.ColorClampRange = COLORCLAMP_RTFORMAT;
906 be.PreBlendColorClampEnable = true;
907 be.PostBlendColorClampEnable = true;
908
909 be.ColorBufferBlendEnable = rt->blend_enable;
910
911 be.ColorBlendFunction = rt->rgb_func;
912 be.AlphaBlendFunction = rt->alpha_func;
913 be.SourceBlendFactor = src_rgb;
914 be.SourceAlphaBlendFactor = src_alpha;
915 be.DestinationBlendFactor = dst_rgb;
916 be.DestinationAlphaBlendFactor = dst_alpha;
917
918 be.WriteDisableRed = !(rt->colormask & PIPE_MASK_R);
919 be.WriteDisableGreen = !(rt->colormask & PIPE_MASK_G);
920 be.WriteDisableBlue = !(rt->colormask & PIPE_MASK_B);
921 be.WriteDisableAlpha = !(rt->colormask & PIPE_MASK_A);
922 }
923 blend_entry += GENX(BLEND_STATE_ENTRY_length);
924 }
925
926 iris_pack_command(GENX(3DSTATE_PS_BLEND), cso->ps_blend, pb) {
927 /* pb.HasWriteableRT is filled in at draw time.
928 * pb.AlphaTestEnable is filled in at draw time.
929 *
930 * pb.ColorBufferBlendEnable is filled in at draw time so we can avoid
931 * setting it when dual color blending without an appropriate shader.
932 */
933
934 pb.AlphaToCoverageEnable = state->alpha_to_coverage;
935 pb.IndependentAlphaBlendEnable = indep_alpha_blend;
936
937 pb.SourceBlendFactor =
938 fix_blendfactor(state->rt[0].rgb_src_factor, state->alpha_to_one);
939 pb.SourceAlphaBlendFactor =
940 fix_blendfactor(state->rt[0].alpha_src_factor, state->alpha_to_one);
941 pb.DestinationBlendFactor =
942 fix_blendfactor(state->rt[0].rgb_dst_factor, state->alpha_to_one);
943 pb.DestinationAlphaBlendFactor =
944 fix_blendfactor(state->rt[0].alpha_dst_factor, state->alpha_to_one);
945 }
946
947 iris_pack_state(GENX(BLEND_STATE), cso->blend_state, bs) {
948 bs.AlphaToCoverageEnable = state->alpha_to_coverage;
949 bs.IndependentAlphaBlendEnable = indep_alpha_blend;
950 bs.AlphaToOneEnable = state->alpha_to_one;
951 bs.AlphaToCoverageDitherEnable = state->alpha_to_coverage;
952 bs.ColorDitherEnable = state->dither;
953 /* bl.AlphaTestEnable and bs.AlphaTestFunction are filled in later. */
954 }
955
956 cso->dual_color_blending = util_blend_state_is_dual(state, 0);
957
958 return cso;
959 }
960
961 /**
962 * The pipe->bind_blend_state() driver hook.
963 *
964 * Bind a blending CSO and flag related dirty bits.
965 */
966 static void
967 iris_bind_blend_state(struct pipe_context *ctx, void *state)
968 {
969 struct iris_context *ice = (struct iris_context *) ctx;
970 struct iris_blend_state *cso = state;
971
972 ice->state.cso_blend = cso;
973 ice->state.blend_enables = cso ? cso->blend_enables : 0;
974
975 ice->state.dirty |= IRIS_DIRTY_PS_BLEND;
976 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
977 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
978 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_BLEND];
979 }
980
981 /**
982 * Return true if the FS writes to any color outputs which are not disabled
983 * via color masking.
984 */
985 static bool
986 has_writeable_rt(const struct iris_blend_state *cso_blend,
987 const struct shader_info *fs_info)
988 {
989 if (!fs_info)
990 return false;
991
992 unsigned rt_outputs = fs_info->outputs_written >> FRAG_RESULT_DATA0;
993
994 if (fs_info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_COLOR))
995 rt_outputs = (1 << BRW_MAX_DRAW_BUFFERS) - 1;
996
997 return cso_blend->color_write_enables & rt_outputs;
998 }
999
1000 /**
1001 * Gallium CSO for depth, stencil, and alpha testing state.
1002 */
1003 struct iris_depth_stencil_alpha_state {
1004 /** Partial 3DSTATE_WM_DEPTH_STENCIL. */
1005 uint32_t wmds[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
1006
1007 /** Outbound to BLEND_STATE, 3DSTATE_PS_BLEND, COLOR_CALC_STATE. */
1008 struct pipe_alpha_state alpha;
1009
1010 /** Outbound to resolve and cache set tracking. */
1011 bool depth_writes_enabled;
1012 bool stencil_writes_enabled;
1013 };
1014
1015 /**
1016 * The pipe->create_depth_stencil_alpha_state() driver hook.
1017 *
1018 * We encode most of 3DSTATE_WM_DEPTH_STENCIL, and just save off the alpha
1019 * testing state since we need pieces of it in a variety of places.
1020 */
1021 static void *
1022 iris_create_zsa_state(struct pipe_context *ctx,
1023 const struct pipe_depth_stencil_alpha_state *state)
1024 {
1025 struct iris_depth_stencil_alpha_state *cso =
1026 malloc(sizeof(struct iris_depth_stencil_alpha_state));
1027
1028 bool two_sided_stencil = state->stencil[1].enabled;
1029
1030 cso->alpha = state->alpha;
1031 cso->depth_writes_enabled = state->depth.writemask;
1032 cso->stencil_writes_enabled =
1033 state->stencil[0].writemask != 0 ||
1034 (two_sided_stencil && state->stencil[1].writemask != 0);
1035
1036 /* The state tracker needs to optimize away EQUAL writes for us. */
1037 assert(!(state->depth.func == PIPE_FUNC_EQUAL && state->depth.writemask));
1038
1039 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), cso->wmds, wmds) {
1040 wmds.StencilFailOp = state->stencil[0].fail_op;
1041 wmds.StencilPassDepthFailOp = state->stencil[0].zfail_op;
1042 wmds.StencilPassDepthPassOp = state->stencil[0].zpass_op;
1043 wmds.StencilTestFunction =
1044 translate_compare_func(state->stencil[0].func);
1045 wmds.BackfaceStencilFailOp = state->stencil[1].fail_op;
1046 wmds.BackfaceStencilPassDepthFailOp = state->stencil[1].zfail_op;
1047 wmds.BackfaceStencilPassDepthPassOp = state->stencil[1].zpass_op;
1048 wmds.BackfaceStencilTestFunction =
1049 translate_compare_func(state->stencil[1].func);
1050 wmds.DepthTestFunction = translate_compare_func(state->depth.func);
1051 wmds.DoubleSidedStencilEnable = two_sided_stencil;
1052 wmds.StencilTestEnable = state->stencil[0].enabled;
1053 wmds.StencilBufferWriteEnable =
1054 state->stencil[0].writemask != 0 ||
1055 (two_sided_stencil && state->stencil[1].writemask != 0);
1056 wmds.DepthTestEnable = state->depth.enabled;
1057 wmds.DepthBufferWriteEnable = state->depth.writemask;
1058 wmds.StencilTestMask = state->stencil[0].valuemask;
1059 wmds.StencilWriteMask = state->stencil[0].writemask;
1060 wmds.BackfaceStencilTestMask = state->stencil[1].valuemask;
1061 wmds.BackfaceStencilWriteMask = state->stencil[1].writemask;
1062 /* wmds.[Backface]StencilReferenceValue are merged later */
1063 }
1064
1065 return cso;
1066 }
1067
1068 /**
1069 * The pipe->bind_depth_stencil_alpha_state() driver hook.
1070 *
1071 * Bind a depth/stencil/alpha CSO and flag related dirty bits.
1072 */
1073 static void
1074 iris_bind_zsa_state(struct pipe_context *ctx, void *state)
1075 {
1076 struct iris_context *ice = (struct iris_context *) ctx;
1077 struct iris_depth_stencil_alpha_state *old_cso = ice->state.cso_zsa;
1078 struct iris_depth_stencil_alpha_state *new_cso = state;
1079
1080 if (new_cso) {
1081 if (cso_changed(alpha.ref_value))
1082 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
1083
1084 if (cso_changed(alpha.enabled))
1085 ice->state.dirty |= IRIS_DIRTY_PS_BLEND | IRIS_DIRTY_BLEND_STATE;
1086
1087 if (cso_changed(alpha.func))
1088 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1089
1090 if (cso_changed(depth_writes_enabled))
1091 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
1092
1093 ice->state.depth_writes_enabled = new_cso->depth_writes_enabled;
1094 ice->state.stencil_writes_enabled = new_cso->stencil_writes_enabled;
1095 }
1096
1097 ice->state.cso_zsa = new_cso;
1098 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1099 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
1100 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_DEPTH_STENCIL_ALPHA];
1101 }
1102
1103 /**
1104 * Gallium CSO for rasterizer state.
1105 */
1106 struct iris_rasterizer_state {
1107 uint32_t sf[GENX(3DSTATE_SF_length)];
1108 uint32_t clip[GENX(3DSTATE_CLIP_length)];
1109 uint32_t raster[GENX(3DSTATE_RASTER_length)];
1110 uint32_t wm[GENX(3DSTATE_WM_length)];
1111 uint32_t line_stipple[GENX(3DSTATE_LINE_STIPPLE_length)];
1112
1113 uint8_t num_clip_plane_consts;
1114 bool clip_halfz; /* for CC_VIEWPORT */
1115 bool depth_clip_near; /* for CC_VIEWPORT */
1116 bool depth_clip_far; /* for CC_VIEWPORT */
1117 bool flatshade; /* for shader state */
1118 bool flatshade_first; /* for stream output */
1119 bool clamp_fragment_color; /* for shader state */
1120 bool light_twoside; /* for shader state */
1121 bool rasterizer_discard; /* for 3DSTATE_STREAMOUT and 3DSTATE_CLIP */
1122 bool half_pixel_center; /* for 3DSTATE_MULTISAMPLE */
1123 bool line_stipple_enable;
1124 bool poly_stipple_enable;
1125 bool multisample;
1126 bool force_persample_interp;
1127 bool conservative_rasterization;
1128 bool fill_mode_point_or_line;
1129 enum pipe_sprite_coord_mode sprite_coord_mode; /* PIPE_SPRITE_* */
1130 uint16_t sprite_coord_enable;
1131 };
1132
1133 static float
1134 get_line_width(const struct pipe_rasterizer_state *state)
1135 {
1136 float line_width = state->line_width;
1137
1138 /* From the OpenGL 4.4 spec:
1139 *
1140 * "The actual width of non-antialiased lines is determined by rounding
1141 * the supplied width to the nearest integer, then clamping it to the
1142 * implementation-dependent maximum non-antialiased line width."
1143 */
1144 if (!state->multisample && !state->line_smooth)
1145 line_width = roundf(state->line_width);
1146
1147 if (!state->multisample && state->line_smooth && line_width < 1.5f) {
1148 /* For 1 pixel line thickness or less, the general anti-aliasing
1149 * algorithm gives up, and a garbage line is generated. Setting a
1150 * Line Width of 0.0 specifies the rasterization of the "thinnest"
1151 * (one-pixel-wide), non-antialiased lines.
1152 *
1153 * Lines rendered with zero Line Width are rasterized using the
1154 * "Grid Intersection Quantization" rules as specified by the
1155 * "Zero-Width (Cosmetic) Line Rasterization" section of the docs.
1156 */
1157 line_width = 0.0f;
1158 }
1159
1160 return line_width;
1161 }
1162
1163 /**
1164 * The pipe->create_rasterizer_state() driver hook.
1165 */
1166 static void *
1167 iris_create_rasterizer_state(struct pipe_context *ctx,
1168 const struct pipe_rasterizer_state *state)
1169 {
1170 struct iris_rasterizer_state *cso =
1171 malloc(sizeof(struct iris_rasterizer_state));
1172
1173 cso->multisample = state->multisample;
1174 cso->force_persample_interp = state->force_persample_interp;
1175 cso->clip_halfz = state->clip_halfz;
1176 cso->depth_clip_near = state->depth_clip_near;
1177 cso->depth_clip_far = state->depth_clip_far;
1178 cso->flatshade = state->flatshade;
1179 cso->flatshade_first = state->flatshade_first;
1180 cso->clamp_fragment_color = state->clamp_fragment_color;
1181 cso->light_twoside = state->light_twoside;
1182 cso->rasterizer_discard = state->rasterizer_discard;
1183 cso->half_pixel_center = state->half_pixel_center;
1184 cso->sprite_coord_mode = state->sprite_coord_mode;
1185 cso->sprite_coord_enable = state->sprite_coord_enable;
1186 cso->line_stipple_enable = state->line_stipple_enable;
1187 cso->poly_stipple_enable = state->poly_stipple_enable;
1188 cso->conservative_rasterization =
1189 state->conservative_raster_mode == PIPE_CONSERVATIVE_RASTER_POST_SNAP;
1190
1191 cso->fill_mode_point_or_line =
1192 state->fill_front == PIPE_POLYGON_MODE_LINE ||
1193 state->fill_front == PIPE_POLYGON_MODE_POINT ||
1194 state->fill_back == PIPE_POLYGON_MODE_LINE ||
1195 state->fill_back == PIPE_POLYGON_MODE_POINT;
1196
1197 if (state->clip_plane_enable != 0)
1198 cso->num_clip_plane_consts = util_logbase2(state->clip_plane_enable) + 1;
1199 else
1200 cso->num_clip_plane_consts = 0;
1201
1202 float line_width = get_line_width(state);
1203
1204 iris_pack_command(GENX(3DSTATE_SF), cso->sf, sf) {
1205 sf.StatisticsEnable = true;
1206 sf.ViewportTransformEnable = true;
1207 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
1208 sf.LineEndCapAntialiasingRegionWidth =
1209 state->line_smooth ? _10pixels : _05pixels;
1210 sf.LastPixelEnable = state->line_last_pixel;
1211 sf.LineWidth = line_width;
1212 sf.SmoothPointEnable = (state->point_smooth || state->multisample) &&
1213 !state->point_quad_rasterization;
1214 sf.PointWidthSource = state->point_size_per_vertex ? Vertex : State;
1215 sf.PointWidth = state->point_size;
1216
1217 if (state->flatshade_first) {
1218 sf.TriangleFanProvokingVertexSelect = 1;
1219 } else {
1220 sf.TriangleStripListProvokingVertexSelect = 2;
1221 sf.TriangleFanProvokingVertexSelect = 2;
1222 sf.LineStripListProvokingVertexSelect = 1;
1223 }
1224 }
1225
1226 iris_pack_command(GENX(3DSTATE_RASTER), cso->raster, rr) {
1227 rr.FrontWinding = state->front_ccw ? CounterClockwise : Clockwise;
1228 rr.CullMode = translate_cull_mode(state->cull_face);
1229 rr.FrontFaceFillMode = translate_fill_mode(state->fill_front);
1230 rr.BackFaceFillMode = translate_fill_mode(state->fill_back);
1231 rr.DXMultisampleRasterizationEnable = state->multisample;
1232 rr.GlobalDepthOffsetEnableSolid = state->offset_tri;
1233 rr.GlobalDepthOffsetEnableWireframe = state->offset_line;
1234 rr.GlobalDepthOffsetEnablePoint = state->offset_point;
1235 rr.GlobalDepthOffsetConstant = state->offset_units * 2;
1236 rr.GlobalDepthOffsetScale = state->offset_scale;
1237 rr.GlobalDepthOffsetClamp = state->offset_clamp;
1238 rr.SmoothPointEnable = state->point_smooth;
1239 rr.AntialiasingEnable = state->line_smooth;
1240 rr.ScissorRectangleEnable = state->scissor;
1241 #if GEN_GEN >= 9
1242 rr.ViewportZNearClipTestEnable = state->depth_clip_near;
1243 rr.ViewportZFarClipTestEnable = state->depth_clip_far;
1244 rr.ConservativeRasterizationEnable =
1245 cso->conservative_rasterization;
1246 #else
1247 rr.ViewportZClipTestEnable = (state->depth_clip_near || state->depth_clip_far);
1248 #endif
1249 }
1250
1251 iris_pack_command(GENX(3DSTATE_CLIP), cso->clip, cl) {
1252 /* cl.NonPerspectiveBarycentricEnable is filled in at draw time from
1253 * the FS program; cl.ForceZeroRTAIndexEnable is filled in from the FB.
1254 */
1255 cl.EarlyCullEnable = true;
1256 cl.UserClipDistanceClipTestEnableBitmask = state->clip_plane_enable;
1257 cl.ForceUserClipDistanceClipTestEnableBitmask = true;
1258 cl.APIMode = state->clip_halfz ? APIMODE_D3D : APIMODE_OGL;
1259 cl.GuardbandClipTestEnable = true;
1260 cl.ClipEnable = true;
1261 cl.MinimumPointWidth = 0.125;
1262 cl.MaximumPointWidth = 255.875;
1263
1264 if (state->flatshade_first) {
1265 cl.TriangleFanProvokingVertexSelect = 1;
1266 } else {
1267 cl.TriangleStripListProvokingVertexSelect = 2;
1268 cl.TriangleFanProvokingVertexSelect = 2;
1269 cl.LineStripListProvokingVertexSelect = 1;
1270 }
1271 }
1272
1273 iris_pack_command(GENX(3DSTATE_WM), cso->wm, wm) {
1274 /* wm.BarycentricInterpolationMode and wm.EarlyDepthStencilControl are
1275 * filled in at draw time from the FS program.
1276 */
1277 wm.LineAntialiasingRegionWidth = _10pixels;
1278 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1279 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1280 wm.LineStippleEnable = state->line_stipple_enable;
1281 wm.PolygonStippleEnable = state->poly_stipple_enable;
1282 }
1283
1284 /* Remap from 0..255 back to 1..256 */
1285 const unsigned line_stipple_factor = state->line_stipple_factor + 1;
1286
1287 iris_pack_command(GENX(3DSTATE_LINE_STIPPLE), cso->line_stipple, line) {
1288 line.LineStipplePattern = state->line_stipple_pattern;
1289 line.LineStippleInverseRepeatCount = 1.0f / line_stipple_factor;
1290 line.LineStippleRepeatCount = line_stipple_factor;
1291 }
1292
1293 return cso;
1294 }
1295
1296 /**
1297 * The pipe->bind_rasterizer_state() driver hook.
1298 *
1299 * Bind a rasterizer CSO and flag related dirty bits.
1300 */
1301 static void
1302 iris_bind_rasterizer_state(struct pipe_context *ctx, void *state)
1303 {
1304 struct iris_context *ice = (struct iris_context *) ctx;
1305 struct iris_rasterizer_state *old_cso = ice->state.cso_rast;
1306 struct iris_rasterizer_state *new_cso = state;
1307
1308 if (new_cso) {
1309 /* Try to avoid re-emitting 3DSTATE_LINE_STIPPLE, it's non-pipelined */
1310 if (cso_changed_memcmp(line_stipple))
1311 ice->state.dirty |= IRIS_DIRTY_LINE_STIPPLE;
1312
1313 if (cso_changed(half_pixel_center))
1314 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
1315
1316 if (cso_changed(line_stipple_enable) || cso_changed(poly_stipple_enable))
1317 ice->state.dirty |= IRIS_DIRTY_WM;
1318
1319 if (cso_changed(rasterizer_discard))
1320 ice->state.dirty |= IRIS_DIRTY_STREAMOUT | IRIS_DIRTY_CLIP;
1321
1322 if (cso_changed(flatshade_first))
1323 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
1324
1325 if (cso_changed(depth_clip_near) || cso_changed(depth_clip_far) ||
1326 cso_changed(clip_halfz))
1327 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1328
1329 if (cso_changed(sprite_coord_enable) ||
1330 cso_changed(sprite_coord_mode) ||
1331 cso_changed(light_twoside))
1332 ice->state.dirty |= IRIS_DIRTY_SBE;
1333
1334 if (cso_changed(conservative_rasterization))
1335 ice->state.dirty |= IRIS_DIRTY_FS;
1336 }
1337
1338 ice->state.cso_rast = new_cso;
1339 ice->state.dirty |= IRIS_DIRTY_RASTER;
1340 ice->state.dirty |= IRIS_DIRTY_CLIP;
1341 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_RASTERIZER];
1342 }
1343
1344 /**
1345 * Return true if the given wrap mode requires the border color to exist.
1346 *
1347 * (We can skip uploading it if the sampler isn't going to use it.)
1348 */
1349 static bool
1350 wrap_mode_needs_border_color(unsigned wrap_mode)
1351 {
1352 return wrap_mode == TCM_CLAMP_BORDER || wrap_mode == TCM_HALF_BORDER;
1353 }
1354
1355 /**
1356 * Gallium CSO for sampler state.
1357 */
1358 struct iris_sampler_state {
1359 union pipe_color_union border_color;
1360 bool needs_border_color;
1361
1362 uint32_t sampler_state[GENX(SAMPLER_STATE_length)];
1363 };
1364
1365 /**
1366 * The pipe->create_sampler_state() driver hook.
1367 *
1368 * We fill out SAMPLER_STATE (except for the border color pointer), and
1369 * store that on the CPU. It doesn't make sense to upload it to a GPU
1370 * buffer object yet, because 3DSTATE_SAMPLER_STATE_POINTERS requires
1371 * all bound sampler states to be in contiguous memor.
1372 */
1373 static void *
1374 iris_create_sampler_state(struct pipe_context *ctx,
1375 const struct pipe_sampler_state *state)
1376 {
1377 struct iris_sampler_state *cso = CALLOC_STRUCT(iris_sampler_state);
1378
1379 if (!cso)
1380 return NULL;
1381
1382 STATIC_ASSERT(PIPE_TEX_FILTER_NEAREST == MAPFILTER_NEAREST);
1383 STATIC_ASSERT(PIPE_TEX_FILTER_LINEAR == MAPFILTER_LINEAR);
1384
1385 unsigned wrap_s = translate_wrap(state->wrap_s);
1386 unsigned wrap_t = translate_wrap(state->wrap_t);
1387 unsigned wrap_r = translate_wrap(state->wrap_r);
1388
1389 memcpy(&cso->border_color, &state->border_color, sizeof(cso->border_color));
1390
1391 cso->needs_border_color = wrap_mode_needs_border_color(wrap_s) ||
1392 wrap_mode_needs_border_color(wrap_t) ||
1393 wrap_mode_needs_border_color(wrap_r);
1394
1395 float min_lod = state->min_lod;
1396 unsigned mag_img_filter = state->mag_img_filter;
1397
1398 // XXX: explain this code ported from ilo...I don't get it at all...
1399 if (state->min_mip_filter == PIPE_TEX_MIPFILTER_NONE &&
1400 state->min_lod > 0.0f) {
1401 min_lod = 0.0f;
1402 mag_img_filter = state->min_img_filter;
1403 }
1404
1405 iris_pack_state(GENX(SAMPLER_STATE), cso->sampler_state, samp) {
1406 samp.TCXAddressControlMode = wrap_s;
1407 samp.TCYAddressControlMode = wrap_t;
1408 samp.TCZAddressControlMode = wrap_r;
1409 samp.CubeSurfaceControlMode = state->seamless_cube_map;
1410 samp.NonnormalizedCoordinateEnable = !state->normalized_coords;
1411 samp.MinModeFilter = state->min_img_filter;
1412 samp.MagModeFilter = mag_img_filter;
1413 samp.MipModeFilter = translate_mip_filter(state->min_mip_filter);
1414 samp.MaximumAnisotropy = RATIO21;
1415
1416 if (state->max_anisotropy >= 2) {
1417 if (state->min_img_filter == PIPE_TEX_FILTER_LINEAR) {
1418 samp.MinModeFilter = MAPFILTER_ANISOTROPIC;
1419 samp.AnisotropicAlgorithm = EWAApproximation;
1420 }
1421
1422 if (state->mag_img_filter == PIPE_TEX_FILTER_LINEAR)
1423 samp.MagModeFilter = MAPFILTER_ANISOTROPIC;
1424
1425 samp.MaximumAnisotropy =
1426 MIN2((state->max_anisotropy - 2) / 2, RATIO161);
1427 }
1428
1429 /* Set address rounding bits if not using nearest filtering. */
1430 if (state->min_img_filter != PIPE_TEX_FILTER_NEAREST) {
1431 samp.UAddressMinFilterRoundingEnable = true;
1432 samp.VAddressMinFilterRoundingEnable = true;
1433 samp.RAddressMinFilterRoundingEnable = true;
1434 }
1435
1436 if (state->mag_img_filter != PIPE_TEX_FILTER_NEAREST) {
1437 samp.UAddressMagFilterRoundingEnable = true;
1438 samp.VAddressMagFilterRoundingEnable = true;
1439 samp.RAddressMagFilterRoundingEnable = true;
1440 }
1441
1442 if (state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE)
1443 samp.ShadowFunction = translate_shadow_func(state->compare_func);
1444
1445 const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
1446
1447 samp.LODPreClampMode = CLAMP_MODE_OGL;
1448 samp.MinLOD = CLAMP(min_lod, 0, hw_max_lod);
1449 samp.MaxLOD = CLAMP(state->max_lod, 0, hw_max_lod);
1450 samp.TextureLODBias = CLAMP(state->lod_bias, -16, 15);
1451
1452 /* .BorderColorPointer is filled in by iris_bind_sampler_states. */
1453 }
1454
1455 return cso;
1456 }
1457
1458 /**
1459 * The pipe->bind_sampler_states() driver hook.
1460 */
1461 static void
1462 iris_bind_sampler_states(struct pipe_context *ctx,
1463 enum pipe_shader_type p_stage,
1464 unsigned start, unsigned count,
1465 void **states)
1466 {
1467 struct iris_context *ice = (struct iris_context *) ctx;
1468 gl_shader_stage stage = stage_from_pipe(p_stage);
1469 struct iris_shader_state *shs = &ice->state.shaders[stage];
1470
1471 assert(start + count <= IRIS_MAX_TEXTURE_SAMPLERS);
1472
1473 for (int i = 0; i < count; i++) {
1474 shs->samplers[start + i] = states[i];
1475 }
1476
1477 ice->state.dirty |= IRIS_DIRTY_SAMPLER_STATES_VS << stage;
1478 }
1479
1480 /**
1481 * Upload the sampler states into a contiguous area of GPU memory, for
1482 * for 3DSTATE_SAMPLER_STATE_POINTERS_*.
1483 *
1484 * Also fill out the border color state pointers.
1485 */
1486 static void
1487 iris_upload_sampler_states(struct iris_context *ice, gl_shader_stage stage)
1488 {
1489 struct iris_shader_state *shs = &ice->state.shaders[stage];
1490 const struct shader_info *info = iris_get_shader_info(ice, stage);
1491
1492 /* We assume the state tracker will call pipe->bind_sampler_states()
1493 * if the program's number of textures changes.
1494 */
1495 unsigned count = info ? util_last_bit(info->textures_used) : 0;
1496
1497 if (!count)
1498 return;
1499
1500 /* Assemble the SAMPLER_STATEs into a contiguous table that lives
1501 * in the dynamic state memory zone, so we can point to it via the
1502 * 3DSTATE_SAMPLER_STATE_POINTERS_* commands.
1503 */
1504 unsigned size = count * 4 * GENX(SAMPLER_STATE_length);
1505 uint32_t *map =
1506 upload_state(ice->state.dynamic_uploader, &shs->sampler_table, size, 32);
1507 if (unlikely(!map))
1508 return;
1509
1510 struct pipe_resource *res = shs->sampler_table.res;
1511 shs->sampler_table.offset +=
1512 iris_bo_offset_from_base_address(iris_resource_bo(res));
1513
1514 iris_record_state_size(ice->state.sizes, shs->sampler_table.offset, size);
1515
1516 /* Make sure all land in the same BO */
1517 iris_border_color_pool_reserve(ice, IRIS_MAX_TEXTURE_SAMPLERS);
1518
1519 ice->state.need_border_colors &= ~(1 << stage);
1520
1521 for (int i = 0; i < count; i++) {
1522 struct iris_sampler_state *state = shs->samplers[i];
1523 struct iris_sampler_view *tex = shs->textures[i];
1524
1525 if (!state) {
1526 memset(map, 0, 4 * GENX(SAMPLER_STATE_length));
1527 } else if (!state->needs_border_color) {
1528 memcpy(map, state->sampler_state, 4 * GENX(SAMPLER_STATE_length));
1529 } else {
1530 ice->state.need_border_colors |= 1 << stage;
1531
1532 /* We may need to swizzle the border color for format faking.
1533 * A/LA formats are faked as R/RG with 000R or R00G swizzles.
1534 * This means we need to move the border color's A channel into
1535 * the R or G channels so that those read swizzles will move it
1536 * back into A.
1537 */
1538 union pipe_color_union *color = &state->border_color;
1539 union pipe_color_union tmp;
1540 if (tex) {
1541 enum pipe_format internal_format = tex->res->internal_format;
1542
1543 if (util_format_is_alpha(internal_format)) {
1544 unsigned char swz[4] = {
1545 PIPE_SWIZZLE_W, PIPE_SWIZZLE_0,
1546 PIPE_SWIZZLE_0, PIPE_SWIZZLE_0
1547 };
1548 util_format_apply_color_swizzle(&tmp, color, swz, true);
1549 color = &tmp;
1550 } else if (util_format_is_luminance_alpha(internal_format) &&
1551 internal_format != PIPE_FORMAT_L8A8_SRGB) {
1552 unsigned char swz[4] = {
1553 PIPE_SWIZZLE_X, PIPE_SWIZZLE_W,
1554 PIPE_SWIZZLE_0, PIPE_SWIZZLE_0
1555 };
1556 util_format_apply_color_swizzle(&tmp, color, swz, true);
1557 color = &tmp;
1558 }
1559 }
1560
1561 /* Stream out the border color and merge the pointer. */
1562 uint32_t offset = iris_upload_border_color(ice, color);
1563
1564 uint32_t dynamic[GENX(SAMPLER_STATE_length)];
1565 iris_pack_state(GENX(SAMPLER_STATE), dynamic, dyns) {
1566 dyns.BorderColorPointer = offset;
1567 }
1568
1569 for (uint32_t j = 0; j < GENX(SAMPLER_STATE_length); j++)
1570 map[j] = state->sampler_state[j] | dynamic[j];
1571 }
1572
1573 map += GENX(SAMPLER_STATE_length);
1574 }
1575 }
1576
1577 static enum isl_channel_select
1578 fmt_swizzle(const struct iris_format_info *fmt, enum pipe_swizzle swz)
1579 {
1580 switch (swz) {
1581 case PIPE_SWIZZLE_X: return fmt->swizzle.r;
1582 case PIPE_SWIZZLE_Y: return fmt->swizzle.g;
1583 case PIPE_SWIZZLE_Z: return fmt->swizzle.b;
1584 case PIPE_SWIZZLE_W: return fmt->swizzle.a;
1585 case PIPE_SWIZZLE_1: return SCS_ONE;
1586 case PIPE_SWIZZLE_0: return SCS_ZERO;
1587 default: unreachable("invalid swizzle");
1588 }
1589 }
1590
1591 static void
1592 fill_buffer_surface_state(struct isl_device *isl_dev,
1593 struct iris_resource *res,
1594 void *map,
1595 enum isl_format format,
1596 struct isl_swizzle swizzle,
1597 unsigned offset,
1598 unsigned size)
1599 {
1600 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
1601 const unsigned cpp = format == ISL_FORMAT_RAW ? 1 : fmtl->bpb / 8;
1602
1603 /* The ARB_texture_buffer_specification says:
1604 *
1605 * "The number of texels in the buffer texture's texel array is given by
1606 *
1607 * floor(<buffer_size> / (<components> * sizeof(<base_type>)),
1608 *
1609 * where <buffer_size> is the size of the buffer object, in basic
1610 * machine units and <components> and <base_type> are the element count
1611 * and base data type for elements, as specified in Table X.1. The
1612 * number of texels in the texel array is then clamped to the
1613 * implementation-dependent limit MAX_TEXTURE_BUFFER_SIZE_ARB."
1614 *
1615 * We need to clamp the size in bytes to MAX_TEXTURE_BUFFER_SIZE * stride,
1616 * so that when ISL divides by stride to obtain the number of texels, that
1617 * texel count is clamped to MAX_TEXTURE_BUFFER_SIZE.
1618 */
1619 unsigned final_size =
1620 MIN3(size, res->bo->size - res->offset - offset,
1621 IRIS_MAX_TEXTURE_BUFFER_SIZE * cpp);
1622
1623 isl_buffer_fill_state(isl_dev, map,
1624 .address = res->bo->gtt_offset + res->offset + offset,
1625 .size_B = final_size,
1626 .format = format,
1627 .swizzle = swizzle,
1628 .stride_B = cpp,
1629 .mocs = mocs(res->bo));
1630 }
1631
1632 #define SURFACE_STATE_ALIGNMENT 64
1633
1634 /**
1635 * Allocate several contiguous SURFACE_STATE structures, one for each
1636 * supported auxiliary surface mode.
1637 */
1638 static void *
1639 alloc_surface_states(struct u_upload_mgr *mgr,
1640 struct iris_state_ref *ref,
1641 unsigned aux_usages)
1642 {
1643 const unsigned surf_size = 4 * GENX(RENDER_SURFACE_STATE_length);
1644
1645 /* If this changes, update this to explicitly align pointers */
1646 STATIC_ASSERT(surf_size == SURFACE_STATE_ALIGNMENT);
1647
1648 assert(aux_usages != 0);
1649
1650 void *map =
1651 upload_state(mgr, ref, util_bitcount(aux_usages) * surf_size,
1652 SURFACE_STATE_ALIGNMENT);
1653
1654 ref->offset += iris_bo_offset_from_base_address(iris_resource_bo(ref->res));
1655
1656 return map;
1657 }
1658
1659 static void
1660 fill_surface_state(struct isl_device *isl_dev,
1661 void *map,
1662 struct iris_resource *res,
1663 struct isl_view *view,
1664 unsigned aux_usage)
1665 {
1666 struct isl_surf_fill_state_info f = {
1667 .surf = &res->surf,
1668 .view = view,
1669 .mocs = mocs(res->bo),
1670 .address = res->bo->gtt_offset + res->offset,
1671 };
1672
1673 if (aux_usage != ISL_AUX_USAGE_NONE) {
1674 f.aux_surf = &res->aux.surf;
1675 f.aux_usage = aux_usage;
1676 f.aux_address = res->aux.bo->gtt_offset + res->aux.offset;
1677
1678 struct iris_bo *clear_bo = NULL;
1679 uint64_t clear_offset = 0;
1680 f.clear_color =
1681 iris_resource_get_clear_color(res, &clear_bo, &clear_offset);
1682 if (clear_bo) {
1683 f.clear_address = clear_bo->gtt_offset + clear_offset;
1684 f.use_clear_address = isl_dev->info->gen > 9;
1685 }
1686 }
1687
1688 isl_surf_fill_state_s(isl_dev, map, &f);
1689 }
1690
1691 /**
1692 * The pipe->create_sampler_view() driver hook.
1693 */
1694 static struct pipe_sampler_view *
1695 iris_create_sampler_view(struct pipe_context *ctx,
1696 struct pipe_resource *tex,
1697 const struct pipe_sampler_view *tmpl)
1698 {
1699 struct iris_context *ice = (struct iris_context *) ctx;
1700 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1701 const struct gen_device_info *devinfo = &screen->devinfo;
1702 struct iris_sampler_view *isv = calloc(1, sizeof(struct iris_sampler_view));
1703
1704 if (!isv)
1705 return NULL;
1706
1707 /* initialize base object */
1708 isv->base = *tmpl;
1709 isv->base.context = ctx;
1710 isv->base.texture = NULL;
1711 pipe_reference_init(&isv->base.reference, 1);
1712 pipe_resource_reference(&isv->base.texture, tex);
1713
1714 if (util_format_is_depth_or_stencil(tmpl->format)) {
1715 struct iris_resource *zres, *sres;
1716 const struct util_format_description *desc =
1717 util_format_description(tmpl->format);
1718
1719 iris_get_depth_stencil_resources(tex, &zres, &sres);
1720
1721 tex = util_format_has_depth(desc) ? &zres->base : &sres->base;
1722 }
1723
1724 isv->res = (struct iris_resource *) tex;
1725
1726 void *map = alloc_surface_states(ice->state.surface_uploader,
1727 &isv->surface_state,
1728 isv->res->aux.sampler_usages);
1729 if (!unlikely(map))
1730 return NULL;
1731
1732 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_TEXTURE_BIT;
1733
1734 if (isv->base.target == PIPE_TEXTURE_CUBE ||
1735 isv->base.target == PIPE_TEXTURE_CUBE_ARRAY)
1736 usage |= ISL_SURF_USAGE_CUBE_BIT;
1737
1738 const struct iris_format_info fmt =
1739 iris_format_for_usage(devinfo, tmpl->format, usage);
1740
1741 isv->clear_color = isv->res->aux.clear_color;
1742
1743 isv->view = (struct isl_view) {
1744 .format = fmt.fmt,
1745 .swizzle = (struct isl_swizzle) {
1746 .r = fmt_swizzle(&fmt, tmpl->swizzle_r),
1747 .g = fmt_swizzle(&fmt, tmpl->swizzle_g),
1748 .b = fmt_swizzle(&fmt, tmpl->swizzle_b),
1749 .a = fmt_swizzle(&fmt, tmpl->swizzle_a),
1750 },
1751 .usage = usage,
1752 };
1753
1754 /* Fill out SURFACE_STATE for this view. */
1755 if (tmpl->target != PIPE_BUFFER) {
1756 isv->view.base_level = tmpl->u.tex.first_level;
1757 isv->view.levels = tmpl->u.tex.last_level - tmpl->u.tex.first_level + 1;
1758 // XXX: do I need to port f9fd0cf4790cb2a530e75d1a2206dbb9d8af7cb2?
1759 isv->view.base_array_layer = tmpl->u.tex.first_layer;
1760 isv->view.array_len =
1761 tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
1762
1763 unsigned aux_modes = isv->res->aux.sampler_usages;
1764 while (aux_modes) {
1765 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
1766
1767 /* If we have a multisampled depth buffer, do not create a sampler
1768 * surface state with HiZ.
1769 */
1770 fill_surface_state(&screen->isl_dev, map, isv->res, &isv->view,
1771 aux_usage);
1772
1773 map += SURFACE_STATE_ALIGNMENT;
1774 }
1775 } else {
1776 fill_buffer_surface_state(&screen->isl_dev, isv->res, map,
1777 isv->view.format, isv->view.swizzle,
1778 tmpl->u.buf.offset, tmpl->u.buf.size);
1779 }
1780
1781 return &isv->base;
1782 }
1783
1784 static void
1785 iris_sampler_view_destroy(struct pipe_context *ctx,
1786 struct pipe_sampler_view *state)
1787 {
1788 struct iris_sampler_view *isv = (void *) state;
1789 pipe_resource_reference(&state->texture, NULL);
1790 pipe_resource_reference(&isv->surface_state.res, NULL);
1791 free(isv);
1792 }
1793
1794 /**
1795 * The pipe->create_surface() driver hook.
1796 *
1797 * In Gallium nomenclature, "surfaces" are a view of a resource that
1798 * can be bound as a render target or depth/stencil buffer.
1799 */
1800 static struct pipe_surface *
1801 iris_create_surface(struct pipe_context *ctx,
1802 struct pipe_resource *tex,
1803 const struct pipe_surface *tmpl)
1804 {
1805 struct iris_context *ice = (struct iris_context *) ctx;
1806 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1807 const struct gen_device_info *devinfo = &screen->devinfo;
1808
1809 isl_surf_usage_flags_t usage = 0;
1810 if (tmpl->writable)
1811 usage = ISL_SURF_USAGE_STORAGE_BIT;
1812 else if (util_format_is_depth_or_stencil(tmpl->format))
1813 usage = ISL_SURF_USAGE_DEPTH_BIT;
1814 else
1815 usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
1816
1817 const struct iris_format_info fmt =
1818 iris_format_for_usage(devinfo, tmpl->format, usage);
1819
1820 if ((usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) &&
1821 !isl_format_supports_rendering(devinfo, fmt.fmt)) {
1822 /* Framebuffer validation will reject this invalid case, but it
1823 * hasn't had the opportunity yet. In the meantime, we need to
1824 * avoid hitting ISL asserts about unsupported formats below.
1825 */
1826 return NULL;
1827 }
1828
1829 struct iris_surface *surf = calloc(1, sizeof(struct iris_surface));
1830 struct pipe_surface *psurf = &surf->base;
1831 struct iris_resource *res = (struct iris_resource *) tex;
1832
1833 if (!surf)
1834 return NULL;
1835
1836 pipe_reference_init(&psurf->reference, 1);
1837 pipe_resource_reference(&psurf->texture, tex);
1838 psurf->context = ctx;
1839 psurf->format = tmpl->format;
1840 psurf->width = tex->width0;
1841 psurf->height = tex->height0;
1842 psurf->texture = tex;
1843 psurf->u.tex.first_layer = tmpl->u.tex.first_layer;
1844 psurf->u.tex.last_layer = tmpl->u.tex.last_layer;
1845 psurf->u.tex.level = tmpl->u.tex.level;
1846
1847 struct isl_view *view = &surf->view;
1848 *view = (struct isl_view) {
1849 .format = fmt.fmt,
1850 .base_level = tmpl->u.tex.level,
1851 .levels = 1,
1852 .base_array_layer = tmpl->u.tex.first_layer,
1853 .array_len = tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1,
1854 .swizzle = ISL_SWIZZLE_IDENTITY,
1855 .usage = usage,
1856 };
1857
1858 surf->clear_color = res->aux.clear_color;
1859
1860 /* Bail early for depth/stencil - we don't want SURFACE_STATE for them. */
1861 if (res->surf.usage & (ISL_SURF_USAGE_DEPTH_BIT |
1862 ISL_SURF_USAGE_STENCIL_BIT))
1863 return psurf;
1864
1865
1866 void *map = alloc_surface_states(ice->state.surface_uploader,
1867 &surf->surface_state,
1868 res->aux.possible_usages);
1869 if (!unlikely(map))
1870 return NULL;
1871
1872 if (!isl_format_is_compressed(res->surf.format)) {
1873 /* This is a normal surface. Fill out a SURFACE_STATE for each possible
1874 * auxiliary surface mode and return the pipe_surface.
1875 */
1876 unsigned aux_modes = res->aux.possible_usages;
1877 while (aux_modes) {
1878 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
1879
1880 fill_surface_state(&screen->isl_dev, map, res, view, aux_usage);
1881
1882 map += SURFACE_STATE_ALIGNMENT;
1883 }
1884
1885 return psurf;
1886 }
1887
1888 /* The resource has a compressed format, which is not renderable, but we
1889 * have a renderable view format. We must be attempting to upload blocks
1890 * of compressed data via an uncompressed view.
1891 *
1892 * In this case, we can assume there are no auxiliary buffers, a single
1893 * miplevel, and that the resource is single-sampled. Gallium may try
1894 * and create an uncompressed view with multiple layers, however.
1895 */
1896 assert(!isl_format_is_compressed(fmt.fmt));
1897 assert(res->aux.possible_usages == 1 << ISL_AUX_USAGE_NONE);
1898 assert(res->surf.samples == 1);
1899 assert(view->levels == 1);
1900
1901 struct isl_surf isl_surf;
1902 uint32_t offset_B = 0, tile_x_sa = 0, tile_y_sa = 0;
1903
1904 if (view->base_level > 0) {
1905 /* We can't rely on the hardware's miplevel selection with such
1906 * a substantial lie about the format, so we select a single image
1907 * using the Tile X/Y Offset fields. In this case, we can't handle
1908 * multiple array slices.
1909 *
1910 * On Broadwell, HALIGN and VALIGN are specified in pixels and are
1911 * hard-coded to align to exactly the block size of the compressed
1912 * texture. This means that, when reinterpreted as a non-compressed
1913 * texture, the tile offsets may be anything and we can't rely on
1914 * X/Y Offset.
1915 *
1916 * Return NULL to force the state tracker to take fallback paths.
1917 */
1918 if (view->array_len > 1 || GEN_GEN == 8)
1919 return NULL;
1920
1921 const bool is_3d = res->surf.dim == ISL_SURF_DIM_3D;
1922 isl_surf_get_image_surf(&screen->isl_dev, &res->surf,
1923 view->base_level,
1924 is_3d ? 0 : view->base_array_layer,
1925 is_3d ? view->base_array_layer : 0,
1926 &isl_surf,
1927 &offset_B, &tile_x_sa, &tile_y_sa);
1928
1929 /* We use address and tile offsets to access a single level/layer
1930 * as a subimage, so reset level/layer so it doesn't offset again.
1931 */
1932 view->base_array_layer = 0;
1933 view->base_level = 0;
1934 } else {
1935 /* Level 0 doesn't require tile offsets, and the hardware can find
1936 * array slices using QPitch even with the format override, so we
1937 * can allow layers in this case. Copy the original ISL surface.
1938 */
1939 memcpy(&isl_surf, &res->surf, sizeof(isl_surf));
1940 }
1941
1942 /* Scale down the image dimensions by the block size. */
1943 const struct isl_format_layout *fmtl =
1944 isl_format_get_layout(res->surf.format);
1945 isl_surf.format = fmt.fmt;
1946 isl_surf.logical_level0_px = isl_surf_get_logical_level0_el(&isl_surf);
1947 isl_surf.phys_level0_sa = isl_surf_get_phys_level0_el(&isl_surf);
1948 tile_x_sa /= fmtl->bw;
1949 tile_y_sa /= fmtl->bh;
1950
1951 psurf->width = isl_surf.logical_level0_px.width;
1952 psurf->height = isl_surf.logical_level0_px.height;
1953
1954 struct isl_surf_fill_state_info f = {
1955 .surf = &isl_surf,
1956 .view = view,
1957 .mocs = mocs(res->bo),
1958 .address = res->bo->gtt_offset + offset_B,
1959 .x_offset_sa = tile_x_sa,
1960 .y_offset_sa = tile_y_sa,
1961 };
1962
1963 isl_surf_fill_state_s(&screen->isl_dev, map, &f);
1964 return psurf;
1965 }
1966
1967 #if GEN_GEN < 9
1968 static void
1969 fill_default_image_param(struct brw_image_param *param)
1970 {
1971 memset(param, 0, sizeof(*param));
1972 /* Set the swizzling shifts to all-ones to effectively disable swizzling --
1973 * See emit_address_calculation() in brw_fs_surface_builder.cpp for a more
1974 * detailed explanation of these parameters.
1975 */
1976 param->swizzling[0] = 0xff;
1977 param->swizzling[1] = 0xff;
1978 }
1979
1980 static void
1981 fill_buffer_image_param(struct brw_image_param *param,
1982 enum pipe_format pfmt,
1983 unsigned size)
1984 {
1985 const unsigned cpp = util_format_get_blocksize(pfmt);
1986
1987 fill_default_image_param(param);
1988 param->size[0] = size / cpp;
1989 param->stride[0] = cpp;
1990 }
1991 #else
1992 #define isl_surf_fill_image_param(x, ...)
1993 #define fill_default_image_param(x, ...)
1994 #define fill_buffer_image_param(x, ...)
1995 #endif
1996
1997 /**
1998 * The pipe->set_shader_images() driver hook.
1999 */
2000 static void
2001 iris_set_shader_images(struct pipe_context *ctx,
2002 enum pipe_shader_type p_stage,
2003 unsigned start_slot, unsigned count,
2004 const struct pipe_image_view *p_images)
2005 {
2006 struct iris_context *ice = (struct iris_context *) ctx;
2007 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2008 const struct gen_device_info *devinfo = &screen->devinfo;
2009 gl_shader_stage stage = stage_from_pipe(p_stage);
2010 struct iris_shader_state *shs = &ice->state.shaders[stage];
2011 #if GEN_GEN == 8
2012 struct iris_genx_state *genx = ice->state.genx;
2013 struct brw_image_param *image_params = genx->shaders[stage].image_param;
2014 #endif
2015
2016 shs->bound_image_views &= ~u_bit_consecutive(start_slot, count);
2017
2018 for (unsigned i = 0; i < count; i++) {
2019 struct iris_image_view *iv = &shs->image[start_slot + i];
2020
2021 if (p_images && p_images[i].resource) {
2022 const struct pipe_image_view *img = &p_images[i];
2023 struct iris_resource *res = (void *) img->resource;
2024
2025 void *map =
2026 alloc_surface_states(ice->state.surface_uploader,
2027 &iv->surface_state, 1 << ISL_AUX_USAGE_NONE);
2028 if (!unlikely(map))
2029 return;
2030
2031 util_copy_image_view(&iv->base, img);
2032
2033 shs->bound_image_views |= 1 << (start_slot + i);
2034
2035 res->bind_history |= PIPE_BIND_SHADER_IMAGE;
2036
2037 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_STORAGE_BIT;
2038 enum isl_format isl_fmt =
2039 iris_format_for_usage(devinfo, img->format, usage).fmt;
2040
2041 bool untyped_fallback = false;
2042
2043 if (img->shader_access & PIPE_IMAGE_ACCESS_READ) {
2044 /* On Gen8, try to use typed surfaces reads (which support a
2045 * limited number of formats), and if not possible, fall back
2046 * to untyped reads.
2047 */
2048 untyped_fallback = GEN_GEN == 8 &&
2049 !isl_has_matching_typed_storage_image_format(devinfo, isl_fmt);
2050
2051 if (untyped_fallback)
2052 isl_fmt = ISL_FORMAT_RAW;
2053 else
2054 isl_fmt = isl_lower_storage_image_format(devinfo, isl_fmt);
2055 }
2056
2057 if (res->base.target != PIPE_BUFFER) {
2058 struct isl_view view = {
2059 .format = isl_fmt,
2060 .base_level = img->u.tex.level,
2061 .levels = 1,
2062 .base_array_layer = img->u.tex.first_layer,
2063 .array_len = img->u.tex.last_layer - img->u.tex.first_layer + 1,
2064 .swizzle = ISL_SWIZZLE_IDENTITY,
2065 .usage = usage,
2066 };
2067
2068 if (untyped_fallback) {
2069 fill_buffer_surface_state(&screen->isl_dev, res, map,
2070 isl_fmt, ISL_SWIZZLE_IDENTITY,
2071 0, res->bo->size);
2072 } else {
2073 /* Images don't support compression */
2074 unsigned aux_modes = 1 << ISL_AUX_USAGE_NONE;
2075 while (aux_modes) {
2076 enum isl_aux_usage usage = u_bit_scan(&aux_modes);
2077
2078 fill_surface_state(&screen->isl_dev, map, res, &view, usage);
2079
2080 map += SURFACE_STATE_ALIGNMENT;
2081 }
2082 }
2083
2084 isl_surf_fill_image_param(&screen->isl_dev,
2085 &image_params[start_slot + i],
2086 &res->surf, &view);
2087 } else {
2088 util_range_add(&res->valid_buffer_range, img->u.buf.offset,
2089 img->u.buf.offset + img->u.buf.size);
2090
2091 fill_buffer_surface_state(&screen->isl_dev, res, map,
2092 isl_fmt, ISL_SWIZZLE_IDENTITY,
2093 img->u.buf.offset, img->u.buf.size);
2094 fill_buffer_image_param(&image_params[start_slot + i],
2095 img->format, img->u.buf.size);
2096 }
2097 } else {
2098 pipe_resource_reference(&iv->base.resource, NULL);
2099 pipe_resource_reference(&iv->surface_state.res, NULL);
2100 fill_default_image_param(&image_params[start_slot + i]);
2101 }
2102 }
2103
2104 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2105 ice->state.dirty |=
2106 stage == MESA_SHADER_COMPUTE ? IRIS_DIRTY_COMPUTE_RESOLVES_AND_FLUSHES
2107 : IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
2108
2109 /* Broadwell also needs brw_image_params re-uploaded */
2110 if (GEN_GEN < 9) {
2111 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
2112 shs->sysvals_need_upload = true;
2113 }
2114 }
2115
2116
2117 /**
2118 * The pipe->set_sampler_views() driver hook.
2119 */
2120 static void
2121 iris_set_sampler_views(struct pipe_context *ctx,
2122 enum pipe_shader_type p_stage,
2123 unsigned start, unsigned count,
2124 struct pipe_sampler_view **views)
2125 {
2126 struct iris_context *ice = (struct iris_context *) ctx;
2127 gl_shader_stage stage = stage_from_pipe(p_stage);
2128 struct iris_shader_state *shs = &ice->state.shaders[stage];
2129
2130 shs->bound_sampler_views &= ~u_bit_consecutive(start, count);
2131
2132 for (unsigned i = 0; i < count; i++) {
2133 struct pipe_sampler_view *pview = views ? views[i] : NULL;
2134 pipe_sampler_view_reference((struct pipe_sampler_view **)
2135 &shs->textures[start + i], pview);
2136 struct iris_sampler_view *view = (void *) pview;
2137 if (view) {
2138 view->res->bind_history |= PIPE_BIND_SAMPLER_VIEW;
2139 shs->bound_sampler_views |= 1 << (start + i);
2140 }
2141 }
2142
2143 ice->state.dirty |= (IRIS_DIRTY_BINDINGS_VS << stage);
2144 ice->state.dirty |=
2145 stage == MESA_SHADER_COMPUTE ? IRIS_DIRTY_COMPUTE_RESOLVES_AND_FLUSHES
2146 : IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
2147 }
2148
2149 /**
2150 * The pipe->set_tess_state() driver hook.
2151 */
2152 static void
2153 iris_set_tess_state(struct pipe_context *ctx,
2154 const float default_outer_level[4],
2155 const float default_inner_level[2])
2156 {
2157 struct iris_context *ice = (struct iris_context *) ctx;
2158 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_TESS_CTRL];
2159
2160 memcpy(&ice->state.default_outer_level[0], &default_outer_level[0], 4 * sizeof(float));
2161 memcpy(&ice->state.default_inner_level[0], &default_inner_level[0], 2 * sizeof(float));
2162
2163 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_TCS;
2164 shs->sysvals_need_upload = true;
2165 }
2166
2167 static void
2168 iris_surface_destroy(struct pipe_context *ctx, struct pipe_surface *p_surf)
2169 {
2170 struct iris_surface *surf = (void *) p_surf;
2171 pipe_resource_reference(&p_surf->texture, NULL);
2172 pipe_resource_reference(&surf->surface_state.res, NULL);
2173 free(surf);
2174 }
2175
2176 static void
2177 iris_set_clip_state(struct pipe_context *ctx,
2178 const struct pipe_clip_state *state)
2179 {
2180 struct iris_context *ice = (struct iris_context *) ctx;
2181 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_VERTEX];
2182
2183 memcpy(&ice->state.clip_planes, state, sizeof(*state));
2184
2185 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS;
2186 shs->sysvals_need_upload = true;
2187 }
2188
2189 /**
2190 * The pipe->set_polygon_stipple() driver hook.
2191 */
2192 static void
2193 iris_set_polygon_stipple(struct pipe_context *ctx,
2194 const struct pipe_poly_stipple *state)
2195 {
2196 struct iris_context *ice = (struct iris_context *) ctx;
2197 memcpy(&ice->state.poly_stipple, state, sizeof(*state));
2198 ice->state.dirty |= IRIS_DIRTY_POLYGON_STIPPLE;
2199 }
2200
2201 /**
2202 * The pipe->set_sample_mask() driver hook.
2203 */
2204 static void
2205 iris_set_sample_mask(struct pipe_context *ctx, unsigned sample_mask)
2206 {
2207 struct iris_context *ice = (struct iris_context *) ctx;
2208
2209 /* We only support 16x MSAA, so we have 16 bits of sample maks.
2210 * st/mesa may pass us 0xffffffff though, meaning "enable all samples".
2211 */
2212 ice->state.sample_mask = sample_mask & 0xffff;
2213 ice->state.dirty |= IRIS_DIRTY_SAMPLE_MASK;
2214 }
2215
2216 /**
2217 * The pipe->set_scissor_states() driver hook.
2218 *
2219 * This corresponds to our SCISSOR_RECT state structures. It's an
2220 * exact match, so we just store them, and memcpy them out later.
2221 */
2222 static void
2223 iris_set_scissor_states(struct pipe_context *ctx,
2224 unsigned start_slot,
2225 unsigned num_scissors,
2226 const struct pipe_scissor_state *rects)
2227 {
2228 struct iris_context *ice = (struct iris_context *) ctx;
2229
2230 for (unsigned i = 0; i < num_scissors; i++) {
2231 if (rects[i].minx == rects[i].maxx || rects[i].miny == rects[i].maxy) {
2232 /* If the scissor was out of bounds and got clamped to 0 width/height
2233 * at the bounds, the subtraction of 1 from maximums could produce a
2234 * negative number and thus not clip anything. Instead, just provide
2235 * a min > max scissor inside the bounds, which produces the expected
2236 * no rendering.
2237 */
2238 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
2239 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
2240 };
2241 } else {
2242 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
2243 .minx = rects[i].minx, .miny = rects[i].miny,
2244 .maxx = rects[i].maxx - 1, .maxy = rects[i].maxy - 1,
2245 };
2246 }
2247 }
2248
2249 ice->state.dirty |= IRIS_DIRTY_SCISSOR_RECT;
2250 }
2251
2252 /**
2253 * The pipe->set_stencil_ref() driver hook.
2254 *
2255 * This is added to 3DSTATE_WM_DEPTH_STENCIL dynamically at draw time.
2256 */
2257 static void
2258 iris_set_stencil_ref(struct pipe_context *ctx,
2259 const struct pipe_stencil_ref *state)
2260 {
2261 struct iris_context *ice = (struct iris_context *) ctx;
2262 memcpy(&ice->state.stencil_ref, state, sizeof(*state));
2263 if (GEN_GEN == 8)
2264 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
2265 else
2266 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
2267 }
2268
2269 static float
2270 viewport_extent(const struct pipe_viewport_state *state, int axis, float sign)
2271 {
2272 return copysignf(state->scale[axis], sign) + state->translate[axis];
2273 }
2274
2275 /**
2276 * The pipe->set_viewport_states() driver hook.
2277 *
2278 * This corresponds to our SF_CLIP_VIEWPORT states. We can't calculate
2279 * the guardband yet, as we need the framebuffer dimensions, but we can
2280 * at least fill out the rest.
2281 */
2282 static void
2283 iris_set_viewport_states(struct pipe_context *ctx,
2284 unsigned start_slot,
2285 unsigned count,
2286 const struct pipe_viewport_state *states)
2287 {
2288 struct iris_context *ice = (struct iris_context *) ctx;
2289
2290 memcpy(&ice->state.viewports[start_slot], states, sizeof(*states) * count);
2291
2292 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2293
2294 if (ice->state.cso_rast && (!ice->state.cso_rast->depth_clip_near ||
2295 !ice->state.cso_rast->depth_clip_far))
2296 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
2297 }
2298
2299 /**
2300 * The pipe->set_framebuffer_state() driver hook.
2301 *
2302 * Sets the current draw FBO, including color render targets, depth,
2303 * and stencil buffers.
2304 */
2305 static void
2306 iris_set_framebuffer_state(struct pipe_context *ctx,
2307 const struct pipe_framebuffer_state *state)
2308 {
2309 struct iris_context *ice = (struct iris_context *) ctx;
2310 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2311 struct isl_device *isl_dev = &screen->isl_dev;
2312 struct pipe_framebuffer_state *cso = &ice->state.framebuffer;
2313 struct iris_resource *zres;
2314 struct iris_resource *stencil_res;
2315
2316 unsigned samples = util_framebuffer_get_num_samples(state);
2317 unsigned layers = util_framebuffer_get_num_layers(state);
2318
2319 if (cso->samples != samples) {
2320 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
2321
2322 /* We need to toggle 3DSTATE_PS::32 Pixel Dispatch Enable */
2323 if (GEN_GEN >= 9 && (cso->samples == 16 || samples == 16))
2324 ice->state.dirty |= IRIS_DIRTY_FS;
2325 }
2326
2327 if (cso->nr_cbufs != state->nr_cbufs) {
2328 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
2329 }
2330
2331 if ((cso->layers == 0) != (layers == 0)) {
2332 ice->state.dirty |= IRIS_DIRTY_CLIP;
2333 }
2334
2335 if (cso->width != state->width || cso->height != state->height) {
2336 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2337 }
2338
2339 util_copy_framebuffer_state(cso, state);
2340 cso->samples = samples;
2341 cso->layers = layers;
2342
2343 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
2344
2345 struct isl_view view = {
2346 .base_level = 0,
2347 .levels = 1,
2348 .base_array_layer = 0,
2349 .array_len = 1,
2350 .swizzle = ISL_SWIZZLE_IDENTITY,
2351 };
2352
2353 struct isl_depth_stencil_hiz_emit_info info = { .view = &view };
2354
2355 if (cso->zsbuf) {
2356 iris_get_depth_stencil_resources(cso->zsbuf->texture, &zres,
2357 &stencil_res);
2358
2359 view.base_level = cso->zsbuf->u.tex.level;
2360 view.base_array_layer = cso->zsbuf->u.tex.first_layer;
2361 view.array_len =
2362 cso->zsbuf->u.tex.last_layer - cso->zsbuf->u.tex.first_layer + 1;
2363
2364 if (zres) {
2365 view.usage |= ISL_SURF_USAGE_DEPTH_BIT;
2366
2367 info.depth_surf = &zres->surf;
2368 info.depth_address = zres->bo->gtt_offset + zres->offset;
2369 info.mocs = mocs(zres->bo);
2370
2371 view.format = zres->surf.format;
2372
2373 if (iris_resource_level_has_hiz(zres, view.base_level)) {
2374 info.hiz_usage = ISL_AUX_USAGE_HIZ;
2375 info.hiz_surf = &zres->aux.surf;
2376 info.hiz_address = zres->aux.bo->gtt_offset;
2377 }
2378 }
2379
2380 if (stencil_res) {
2381 view.usage |= ISL_SURF_USAGE_STENCIL_BIT;
2382 info.stencil_surf = &stencil_res->surf;
2383 info.stencil_address = stencil_res->bo->gtt_offset + stencil_res->offset;
2384 if (!zres) {
2385 view.format = stencil_res->surf.format;
2386 info.mocs = mocs(stencil_res->bo);
2387 }
2388 }
2389 }
2390
2391 isl_emit_depth_stencil_hiz_s(isl_dev, cso_z->packets, &info);
2392
2393 /* Make a null surface for unbound buffers */
2394 void *null_surf_map =
2395 upload_state(ice->state.surface_uploader, &ice->state.null_fb,
2396 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2397 isl_null_fill_state(&screen->isl_dev, null_surf_map,
2398 isl_extent3d(MAX2(cso->width, 1),
2399 MAX2(cso->height, 1),
2400 cso->layers ? cso->layers : 1));
2401 ice->state.null_fb.offset +=
2402 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.null_fb.res));
2403
2404 ice->state.dirty |= IRIS_DIRTY_DEPTH_BUFFER;
2405
2406 /* Render target change */
2407 ice->state.dirty |= IRIS_DIRTY_BINDINGS_FS;
2408
2409 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
2410
2411 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_FRAMEBUFFER];
2412
2413 #if GEN_GEN == 11
2414 // XXX: we may want to flag IRIS_DIRTY_MULTISAMPLE (or SAMPLE_MASK?)
2415 // XXX: see commit 979fc1bc9bcc64027ff2cfafd285676f31b930a6
2416
2417 /* The PIPE_CONTROL command description says:
2418 *
2419 * "Whenever a Binding Table Index (BTI) used by a Render Target Message
2420 * points to a different RENDER_SURFACE_STATE, SW must issue a Render
2421 * Target Cache Flush by enabling this bit. When render target flush
2422 * is set due to new association of BTI, PS Scoreboard Stall bit must
2423 * be set in this packet."
2424 */
2425 // XXX: does this need to happen at 3DSTATE_BTP_PS time?
2426 iris_emit_pipe_control_flush(&ice->batches[IRIS_BATCH_RENDER],
2427 "workaround: RT BTI change [draw]",
2428 PIPE_CONTROL_RENDER_TARGET_FLUSH |
2429 PIPE_CONTROL_STALL_AT_SCOREBOARD);
2430 #endif
2431 }
2432
2433 /**
2434 * The pipe->set_constant_buffer() driver hook.
2435 *
2436 * This uploads any constant data in user buffers, and references
2437 * any UBO resources containing constant data.
2438 */
2439 static void
2440 iris_set_constant_buffer(struct pipe_context *ctx,
2441 enum pipe_shader_type p_stage, unsigned index,
2442 const struct pipe_constant_buffer *input)
2443 {
2444 struct iris_context *ice = (struct iris_context *) ctx;
2445 gl_shader_stage stage = stage_from_pipe(p_stage);
2446 struct iris_shader_state *shs = &ice->state.shaders[stage];
2447 struct pipe_shader_buffer *cbuf = &shs->constbuf[index];
2448
2449 if (input && input->buffer_size && (input->buffer || input->user_buffer)) {
2450 shs->bound_cbufs |= 1u << index;
2451
2452 if (input->user_buffer) {
2453 void *map = NULL;
2454 pipe_resource_reference(&cbuf->buffer, NULL);
2455 u_upload_alloc(ice->ctx.const_uploader, 0, input->buffer_size, 64,
2456 &cbuf->buffer_offset, &cbuf->buffer, (void **) &map);
2457
2458 if (!cbuf->buffer) {
2459 /* Allocation was unsuccessful - just unbind */
2460 iris_set_constant_buffer(ctx, p_stage, index, NULL);
2461 return;
2462 }
2463
2464 assert(map);
2465 memcpy(map, input->user_buffer, input->buffer_size);
2466 } else if (input->buffer) {
2467 pipe_resource_reference(&cbuf->buffer, input->buffer);
2468
2469 cbuf->buffer_offset = input->buffer_offset;
2470 cbuf->buffer_size =
2471 MIN2(input->buffer_size,
2472 iris_resource_bo(cbuf->buffer)->size - cbuf->buffer_offset);
2473 }
2474
2475 struct iris_resource *res = (void *) cbuf->buffer;
2476 res->bind_history |= PIPE_BIND_CONSTANT_BUFFER;
2477
2478 iris_upload_ubo_ssbo_surf_state(ice, cbuf,
2479 &shs->constbuf_surf_state[index],
2480 false);
2481 } else {
2482 shs->bound_cbufs &= ~(1u << index);
2483 pipe_resource_reference(&cbuf->buffer, NULL);
2484 pipe_resource_reference(&shs->constbuf_surf_state[index].res, NULL);
2485 }
2486
2487 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
2488 // XXX: maybe not necessary all the time...?
2489 // XXX: we need 3DS_BTP to commit these changes, and if we fell back to
2490 // XXX: pull model we may need actual new bindings...
2491 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2492 }
2493
2494 static void
2495 upload_sysvals(struct iris_context *ice,
2496 gl_shader_stage stage)
2497 {
2498 UNUSED struct iris_genx_state *genx = ice->state.genx;
2499 struct iris_shader_state *shs = &ice->state.shaders[stage];
2500
2501 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
2502 if (!shader || shader->num_system_values == 0)
2503 return;
2504
2505 assert(shader->num_cbufs > 0);
2506
2507 unsigned sysval_cbuf_index = shader->num_cbufs - 1;
2508 struct pipe_shader_buffer *cbuf = &shs->constbuf[sysval_cbuf_index];
2509 unsigned upload_size = shader->num_system_values * sizeof(uint32_t);
2510 uint32_t *map = NULL;
2511
2512 assert(sysval_cbuf_index < PIPE_MAX_CONSTANT_BUFFERS);
2513 u_upload_alloc(ice->ctx.const_uploader, 0, upload_size, 64,
2514 &cbuf->buffer_offset, &cbuf->buffer, (void **) &map);
2515
2516 for (int i = 0; i < shader->num_system_values; i++) {
2517 uint32_t sysval = shader->system_values[i];
2518 uint32_t value = 0;
2519
2520 if (BRW_PARAM_DOMAIN(sysval) == BRW_PARAM_DOMAIN_IMAGE) {
2521 #if GEN_GEN == 8
2522 unsigned img = BRW_PARAM_IMAGE_IDX(sysval);
2523 unsigned offset = BRW_PARAM_IMAGE_OFFSET(sysval);
2524 struct brw_image_param *param =
2525 &genx->shaders[stage].image_param[img];
2526
2527 assert(offset < sizeof(struct brw_image_param));
2528 value = ((uint32_t *) param)[offset];
2529 #endif
2530 } else if (sysval == BRW_PARAM_BUILTIN_ZERO) {
2531 value = 0;
2532 } else if (BRW_PARAM_BUILTIN_IS_CLIP_PLANE(sysval)) {
2533 int plane = BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(sysval);
2534 int comp = BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(sysval);
2535 value = fui(ice->state.clip_planes.ucp[plane][comp]);
2536 } else if (sysval == BRW_PARAM_BUILTIN_PATCH_VERTICES_IN) {
2537 if (stage == MESA_SHADER_TESS_CTRL) {
2538 value = ice->state.vertices_per_patch;
2539 } else {
2540 assert(stage == MESA_SHADER_TESS_EVAL);
2541 const struct shader_info *tcs_info =
2542 iris_get_shader_info(ice, MESA_SHADER_TESS_CTRL);
2543 if (tcs_info)
2544 value = tcs_info->tess.tcs_vertices_out;
2545 else
2546 value = ice->state.vertices_per_patch;
2547 }
2548 } else if (sysval >= BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X &&
2549 sysval <= BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W) {
2550 unsigned i = sysval - BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X;
2551 value = fui(ice->state.default_outer_level[i]);
2552 } else if (sysval == BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X) {
2553 value = fui(ice->state.default_inner_level[0]);
2554 } else if (sysval == BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y) {
2555 value = fui(ice->state.default_inner_level[1]);
2556 } else {
2557 assert(!"unhandled system value");
2558 }
2559
2560 *map++ = value;
2561 }
2562
2563 cbuf->buffer_size = upload_size;
2564 iris_upload_ubo_ssbo_surf_state(ice, cbuf,
2565 &shs->constbuf_surf_state[sysval_cbuf_index], false);
2566
2567 shs->sysvals_need_upload = false;
2568 }
2569
2570 /**
2571 * The pipe->set_shader_buffers() driver hook.
2572 *
2573 * This binds SSBOs and ABOs. Unfortunately, we need to stream out
2574 * SURFACE_STATE here, as the buffer offset may change each time.
2575 */
2576 static void
2577 iris_set_shader_buffers(struct pipe_context *ctx,
2578 enum pipe_shader_type p_stage,
2579 unsigned start_slot, unsigned count,
2580 const struct pipe_shader_buffer *buffers,
2581 unsigned writable_bitmask)
2582 {
2583 struct iris_context *ice = (struct iris_context *) ctx;
2584 gl_shader_stage stage = stage_from_pipe(p_stage);
2585 struct iris_shader_state *shs = &ice->state.shaders[stage];
2586
2587 unsigned modified_bits = u_bit_consecutive(start_slot, count);
2588
2589 shs->bound_ssbos &= ~modified_bits;
2590 shs->writable_ssbos &= ~modified_bits;
2591 shs->writable_ssbos |= writable_bitmask << start_slot;
2592
2593 for (unsigned i = 0; i < count; i++) {
2594 if (buffers && buffers[i].buffer) {
2595 struct iris_resource *res = (void *) buffers[i].buffer;
2596 struct pipe_shader_buffer *ssbo = &shs->ssbo[start_slot + i];
2597 struct iris_state_ref *surf_state =
2598 &shs->ssbo_surf_state[start_slot + i];
2599 pipe_resource_reference(&ssbo->buffer, &res->base);
2600 ssbo->buffer_offset = buffers[i].buffer_offset;
2601 ssbo->buffer_size =
2602 MIN2(buffers[i].buffer_size, res->bo->size - ssbo->buffer_offset);
2603
2604 shs->bound_ssbos |= 1 << (start_slot + i);
2605
2606 iris_upload_ubo_ssbo_surf_state(ice, ssbo, surf_state, true);
2607
2608 res->bind_history |= PIPE_BIND_SHADER_BUFFER;
2609
2610 util_range_add(&res->valid_buffer_range, ssbo->buffer_offset,
2611 ssbo->buffer_offset + ssbo->buffer_size);
2612 } else {
2613 pipe_resource_reference(&shs->ssbo[start_slot + i].buffer, NULL);
2614 pipe_resource_reference(&shs->ssbo_surf_state[start_slot + i].res,
2615 NULL);
2616 }
2617 }
2618
2619 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2620 }
2621
2622 static void
2623 iris_delete_state(struct pipe_context *ctx, void *state)
2624 {
2625 free(state);
2626 }
2627
2628 /**
2629 * The pipe->set_vertex_buffers() driver hook.
2630 *
2631 * This translates pipe_vertex_buffer to our 3DSTATE_VERTEX_BUFFERS packet.
2632 */
2633 static void
2634 iris_set_vertex_buffers(struct pipe_context *ctx,
2635 unsigned start_slot, unsigned count,
2636 const struct pipe_vertex_buffer *buffers)
2637 {
2638 struct iris_context *ice = (struct iris_context *) ctx;
2639 struct iris_genx_state *genx = ice->state.genx;
2640
2641 ice->state.bound_vertex_buffers &= ~u_bit_consecutive64(start_slot, count);
2642
2643 for (unsigned i = 0; i < count; i++) {
2644 const struct pipe_vertex_buffer *buffer = buffers ? &buffers[i] : NULL;
2645 struct iris_vertex_buffer_state *state =
2646 &genx->vertex_buffers[start_slot + i];
2647
2648 if (!buffer) {
2649 pipe_resource_reference(&state->resource, NULL);
2650 continue;
2651 }
2652
2653 /* We may see user buffers that are NULL bindings. */
2654 assert(!(buffer->is_user_buffer && buffer->buffer.user != NULL));
2655
2656 pipe_resource_reference(&state->resource, buffer->buffer.resource);
2657 struct iris_resource *res = (void *) state->resource;
2658
2659 if (res) {
2660 ice->state.bound_vertex_buffers |= 1ull << (start_slot + i);
2661 res->bind_history |= PIPE_BIND_VERTEX_BUFFER;
2662 }
2663
2664 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
2665 vb.VertexBufferIndex = start_slot + i;
2666 vb.AddressModifyEnable = true;
2667 vb.BufferPitch = buffer->stride;
2668 if (res) {
2669 vb.BufferSize = res->bo->size - (int) buffer->buffer_offset;
2670 vb.BufferStartingAddress =
2671 ro_bo(NULL, res->bo->gtt_offset + (int) buffer->buffer_offset);
2672 vb.MOCS = mocs(res->bo);
2673 } else {
2674 vb.NullVertexBuffer = true;
2675 }
2676 }
2677 }
2678
2679 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
2680 }
2681
2682 /**
2683 * Gallium CSO for vertex elements.
2684 */
2685 struct iris_vertex_element_state {
2686 uint32_t vertex_elements[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
2687 uint32_t vf_instancing[33 * GENX(3DSTATE_VF_INSTANCING_length)];
2688 uint32_t edgeflag_ve[GENX(VERTEX_ELEMENT_STATE_length)];
2689 uint32_t edgeflag_vfi[GENX(3DSTATE_VF_INSTANCING_length)];
2690 unsigned count;
2691 };
2692
2693 /**
2694 * The pipe->create_vertex_elements() driver hook.
2695 *
2696 * This translates pipe_vertex_element to our 3DSTATE_VERTEX_ELEMENTS
2697 * and 3DSTATE_VF_INSTANCING commands. The vertex_elements and vf_instancing
2698 * arrays are ready to be emitted at draw time if no EdgeFlag or SGVs are
2699 * needed. In these cases we will need information available at draw time.
2700 * We setup edgeflag_ve and edgeflag_vfi as alternatives last
2701 * 3DSTATE_VERTEX_ELEMENT and 3DSTATE_VF_INSTANCING that can be used at
2702 * draw time if we detect that EdgeFlag is needed by the Vertex Shader.
2703 */
2704 static void *
2705 iris_create_vertex_elements(struct pipe_context *ctx,
2706 unsigned count,
2707 const struct pipe_vertex_element *state)
2708 {
2709 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2710 const struct gen_device_info *devinfo = &screen->devinfo;
2711 struct iris_vertex_element_state *cso =
2712 malloc(sizeof(struct iris_vertex_element_state));
2713
2714 cso->count = count;
2715
2716 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS), cso->vertex_elements, ve) {
2717 ve.DWordLength =
2718 1 + GENX(VERTEX_ELEMENT_STATE_length) * MAX2(count, 1) - 2;
2719 }
2720
2721 uint32_t *ve_pack_dest = &cso->vertex_elements[1];
2722 uint32_t *vfi_pack_dest = cso->vf_instancing;
2723
2724 if (count == 0) {
2725 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
2726 ve.Valid = true;
2727 ve.SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT;
2728 ve.Component0Control = VFCOMP_STORE_0;
2729 ve.Component1Control = VFCOMP_STORE_0;
2730 ve.Component2Control = VFCOMP_STORE_0;
2731 ve.Component3Control = VFCOMP_STORE_1_FP;
2732 }
2733
2734 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
2735 }
2736 }
2737
2738 for (int i = 0; i < count; i++) {
2739 const struct iris_format_info fmt =
2740 iris_format_for_usage(devinfo, state[i].src_format, 0);
2741 unsigned comp[4] = { VFCOMP_STORE_SRC, VFCOMP_STORE_SRC,
2742 VFCOMP_STORE_SRC, VFCOMP_STORE_SRC };
2743
2744 switch (isl_format_get_num_channels(fmt.fmt)) {
2745 case 0: comp[0] = VFCOMP_STORE_0; /* fallthrough */
2746 case 1: comp[1] = VFCOMP_STORE_0; /* fallthrough */
2747 case 2: comp[2] = VFCOMP_STORE_0; /* fallthrough */
2748 case 3:
2749 comp[3] = isl_format_has_int_channel(fmt.fmt) ? VFCOMP_STORE_1_INT
2750 : VFCOMP_STORE_1_FP;
2751 break;
2752 }
2753 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
2754 ve.EdgeFlagEnable = false;
2755 ve.VertexBufferIndex = state[i].vertex_buffer_index;
2756 ve.Valid = true;
2757 ve.SourceElementOffset = state[i].src_offset;
2758 ve.SourceElementFormat = fmt.fmt;
2759 ve.Component0Control = comp[0];
2760 ve.Component1Control = comp[1];
2761 ve.Component2Control = comp[2];
2762 ve.Component3Control = comp[3];
2763 }
2764
2765 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
2766 vi.VertexElementIndex = i;
2767 vi.InstancingEnable = state[i].instance_divisor > 0;
2768 vi.InstanceDataStepRate = state[i].instance_divisor;
2769 }
2770
2771 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
2772 vfi_pack_dest += GENX(3DSTATE_VF_INSTANCING_length);
2773 }
2774
2775 /* An alternative version of the last VE and VFI is stored so it
2776 * can be used at draw time in case Vertex Shader uses EdgeFlag
2777 */
2778 if (count) {
2779 const unsigned edgeflag_index = count - 1;
2780 const struct iris_format_info fmt =
2781 iris_format_for_usage(devinfo, state[edgeflag_index].src_format, 0);
2782 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), cso->edgeflag_ve, ve) {
2783 ve.EdgeFlagEnable = true ;
2784 ve.VertexBufferIndex = state[edgeflag_index].vertex_buffer_index;
2785 ve.Valid = true;
2786 ve.SourceElementOffset = state[edgeflag_index].src_offset;
2787 ve.SourceElementFormat = fmt.fmt;
2788 ve.Component0Control = VFCOMP_STORE_SRC;
2789 ve.Component1Control = VFCOMP_STORE_0;
2790 ve.Component2Control = VFCOMP_STORE_0;
2791 ve.Component3Control = VFCOMP_STORE_0;
2792 }
2793 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), cso->edgeflag_vfi, vi) {
2794 /* The vi.VertexElementIndex of the EdgeFlag Vertex Element is filled
2795 * at draw time, as it should change if SGVs are emitted.
2796 */
2797 vi.InstancingEnable = state[edgeflag_index].instance_divisor > 0;
2798 vi.InstanceDataStepRate = state[edgeflag_index].instance_divisor;
2799 }
2800 }
2801
2802 return cso;
2803 }
2804
2805 /**
2806 * The pipe->bind_vertex_elements_state() driver hook.
2807 */
2808 static void
2809 iris_bind_vertex_elements_state(struct pipe_context *ctx, void *state)
2810 {
2811 struct iris_context *ice = (struct iris_context *) ctx;
2812 struct iris_vertex_element_state *old_cso = ice->state.cso_vertex_elements;
2813 struct iris_vertex_element_state *new_cso = state;
2814
2815 /* 3DSTATE_VF_SGVs overrides the last VE, so if the count is changing,
2816 * we need to re-emit it to ensure we're overriding the right one.
2817 */
2818 if (new_cso && cso_changed(count))
2819 ice->state.dirty |= IRIS_DIRTY_VF_SGVS;
2820
2821 ice->state.cso_vertex_elements = state;
2822 ice->state.dirty |= IRIS_DIRTY_VERTEX_ELEMENTS;
2823 }
2824
2825 /**
2826 * The pipe->create_stream_output_target() driver hook.
2827 *
2828 * "Target" here refers to a destination buffer. We translate this into
2829 * a 3DSTATE_SO_BUFFER packet. We can handle most fields, but don't yet
2830 * know which buffer this represents, or whether we ought to zero the
2831 * write-offsets, or append. Those are handled in the set() hook.
2832 */
2833 static struct pipe_stream_output_target *
2834 iris_create_stream_output_target(struct pipe_context *ctx,
2835 struct pipe_resource *p_res,
2836 unsigned buffer_offset,
2837 unsigned buffer_size)
2838 {
2839 struct iris_resource *res = (void *) p_res;
2840 struct iris_stream_output_target *cso = calloc(1, sizeof(*cso));
2841 if (!cso)
2842 return NULL;
2843
2844 res->bind_history |= PIPE_BIND_STREAM_OUTPUT;
2845
2846 pipe_reference_init(&cso->base.reference, 1);
2847 pipe_resource_reference(&cso->base.buffer, p_res);
2848 cso->base.buffer_offset = buffer_offset;
2849 cso->base.buffer_size = buffer_size;
2850 cso->base.context = ctx;
2851
2852 util_range_add(&res->valid_buffer_range, buffer_offset,
2853 buffer_offset + buffer_size);
2854
2855 upload_state(ctx->stream_uploader, &cso->offset, sizeof(uint32_t), 4);
2856
2857 return &cso->base;
2858 }
2859
2860 static void
2861 iris_stream_output_target_destroy(struct pipe_context *ctx,
2862 struct pipe_stream_output_target *state)
2863 {
2864 struct iris_stream_output_target *cso = (void *) state;
2865
2866 pipe_resource_reference(&cso->base.buffer, NULL);
2867 pipe_resource_reference(&cso->offset.res, NULL);
2868
2869 free(cso);
2870 }
2871
2872 /**
2873 * The pipe->set_stream_output_targets() driver hook.
2874 *
2875 * At this point, we know which targets are bound to a particular index,
2876 * and also whether we want to append or start over. We can finish the
2877 * 3DSTATE_SO_BUFFER packets we started earlier.
2878 */
2879 static void
2880 iris_set_stream_output_targets(struct pipe_context *ctx,
2881 unsigned num_targets,
2882 struct pipe_stream_output_target **targets,
2883 const unsigned *offsets)
2884 {
2885 struct iris_context *ice = (struct iris_context *) ctx;
2886 struct iris_genx_state *genx = ice->state.genx;
2887 uint32_t *so_buffers = genx->so_buffers;
2888
2889 const bool active = num_targets > 0;
2890 if (ice->state.streamout_active != active) {
2891 ice->state.streamout_active = active;
2892 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
2893
2894 /* We only emit 3DSTATE_SO_DECL_LIST when streamout is active, because
2895 * it's a non-pipelined command. If we're switching streamout on, we
2896 * may have missed emitting it earlier, so do so now. (We're already
2897 * taking a stall to update 3DSTATE_SO_BUFFERS anyway...)
2898 */
2899 if (active) {
2900 ice->state.dirty |= IRIS_DIRTY_SO_DECL_LIST;
2901 } else {
2902 uint32_t flush = 0;
2903 for (int i = 0; i < PIPE_MAX_SO_BUFFERS; i++) {
2904 struct iris_stream_output_target *tgt =
2905 (void *) ice->state.so_target[i];
2906 if (tgt) {
2907 struct iris_resource *res = (void *) tgt->base.buffer;
2908
2909 flush |= iris_flush_bits_for_history(res);
2910 iris_dirty_for_history(ice, res);
2911 }
2912 }
2913 iris_emit_pipe_control_flush(&ice->batches[IRIS_BATCH_RENDER],
2914 "make streamout results visible", flush);
2915 }
2916 }
2917
2918 for (int i = 0; i < 4; i++) {
2919 pipe_so_target_reference(&ice->state.so_target[i],
2920 i < num_targets ? targets[i] : NULL);
2921 }
2922
2923 /* No need to update 3DSTATE_SO_BUFFER unless SOL is active. */
2924 if (!active)
2925 return;
2926
2927 for (unsigned i = 0; i < 4; i++,
2928 so_buffers += GENX(3DSTATE_SO_BUFFER_length)) {
2929
2930 struct iris_stream_output_target *tgt = (void *) ice->state.so_target[i];
2931 unsigned offset = offsets[i];
2932
2933 if (!tgt) {
2934 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob)
2935 sob.SOBufferIndex = i;
2936 continue;
2937 }
2938
2939 struct iris_resource *res = (void *) tgt->base.buffer;
2940
2941 /* Note that offsets[i] will either be 0, causing us to zero
2942 * the value in the buffer, or 0xFFFFFFFF, which happens to mean
2943 * "continue appending at the existing offset."
2944 */
2945 assert(offset == 0 || offset == 0xFFFFFFFF);
2946
2947 /* We might be called by Begin (offset = 0), Pause, then Resume
2948 * (offset = 0xFFFFFFFF) before ever drawing (where these commands
2949 * will actually be sent to the GPU). In this case, we don't want
2950 * to append - we still want to do our initial zeroing.
2951 */
2952 if (!tgt->zeroed)
2953 offset = 0;
2954
2955 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob) {
2956 sob.SurfaceBaseAddress =
2957 rw_bo(NULL, res->bo->gtt_offset + tgt->base.buffer_offset);
2958 sob.SOBufferEnable = true;
2959 sob.StreamOffsetWriteEnable = true;
2960 sob.StreamOutputBufferOffsetAddressEnable = true;
2961 sob.MOCS = mocs(res->bo);
2962
2963 sob.SurfaceSize = MAX2(tgt->base.buffer_size / 4, 1) - 1;
2964
2965 sob.SOBufferIndex = i;
2966 sob.StreamOffset = offset;
2967 sob.StreamOutputBufferOffsetAddress =
2968 rw_bo(NULL, iris_resource_bo(tgt->offset.res)->gtt_offset +
2969 tgt->offset.offset);
2970 }
2971 }
2972
2973 ice->state.dirty |= IRIS_DIRTY_SO_BUFFERS;
2974 }
2975
2976 /**
2977 * An iris-vtable helper for encoding the 3DSTATE_SO_DECL_LIST and
2978 * 3DSTATE_STREAMOUT packets.
2979 *
2980 * 3DSTATE_SO_DECL_LIST is a list of shader outputs we want the streamout
2981 * hardware to record. We can create it entirely based on the shader, with
2982 * no dynamic state dependencies.
2983 *
2984 * 3DSTATE_STREAMOUT is an annoying mix of shader-based information and
2985 * state-based settings. We capture the shader-related ones here, and merge
2986 * the rest in at draw time.
2987 */
2988 static uint32_t *
2989 iris_create_so_decl_list(const struct pipe_stream_output_info *info,
2990 const struct brw_vue_map *vue_map)
2991 {
2992 struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
2993 int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2994 int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2995 int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2996 int max_decls = 0;
2997 STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
2998
2999 memset(so_decl, 0, sizeof(so_decl));
3000
3001 /* Construct the list of SO_DECLs to be emitted. The formatting of the
3002 * command feels strange -- each dword pair contains a SO_DECL per stream.
3003 */
3004 for (unsigned i = 0; i < info->num_outputs; i++) {
3005 const struct pipe_stream_output *output = &info->output[i];
3006 const int buffer = output->output_buffer;
3007 const int varying = output->register_index;
3008 const unsigned stream_id = output->stream;
3009 assert(stream_id < MAX_VERTEX_STREAMS);
3010
3011 buffer_mask[stream_id] |= 1 << buffer;
3012
3013 assert(vue_map->varying_to_slot[varying] >= 0);
3014
3015 /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
3016 * array. Instead, it simply increments DstOffset for the following
3017 * input by the number of components that should be skipped.
3018 *
3019 * Our hardware is unusual in that it requires us to program SO_DECLs
3020 * for fake "hole" components, rather than simply taking the offset
3021 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
3022 * program as many size = 4 holes as we can, then a final hole to
3023 * accommodate the final 1, 2, or 3 remaining.
3024 */
3025 int skip_components = output->dst_offset - next_offset[buffer];
3026
3027 while (skip_components > 0) {
3028 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3029 .HoleFlag = 1,
3030 .OutputBufferSlot = output->output_buffer,
3031 .ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
3032 };
3033 skip_components -= 4;
3034 }
3035
3036 next_offset[buffer] = output->dst_offset + output->num_components;
3037
3038 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3039 .OutputBufferSlot = output->output_buffer,
3040 .RegisterIndex = vue_map->varying_to_slot[varying],
3041 .ComponentMask =
3042 ((1 << output->num_components) - 1) << output->start_component,
3043 };
3044
3045 if (decls[stream_id] > max_decls)
3046 max_decls = decls[stream_id];
3047 }
3048
3049 unsigned dwords = GENX(3DSTATE_STREAMOUT_length) + (3 + 2 * max_decls);
3050 uint32_t *map = ralloc_size(NULL, sizeof(uint32_t) * dwords);
3051 uint32_t *so_decl_map = map + GENX(3DSTATE_STREAMOUT_length);
3052
3053 iris_pack_command(GENX(3DSTATE_STREAMOUT), map, sol) {
3054 int urb_entry_read_offset = 0;
3055 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
3056 urb_entry_read_offset;
3057
3058 /* We always read the whole vertex. This could be reduced at some
3059 * point by reading less and offsetting the register index in the
3060 * SO_DECLs.
3061 */
3062 sol.Stream0VertexReadOffset = urb_entry_read_offset;
3063 sol.Stream0VertexReadLength = urb_entry_read_length - 1;
3064 sol.Stream1VertexReadOffset = urb_entry_read_offset;
3065 sol.Stream1VertexReadLength = urb_entry_read_length - 1;
3066 sol.Stream2VertexReadOffset = urb_entry_read_offset;
3067 sol.Stream2VertexReadLength = urb_entry_read_length - 1;
3068 sol.Stream3VertexReadOffset = urb_entry_read_offset;
3069 sol.Stream3VertexReadLength = urb_entry_read_length - 1;
3070
3071 /* Set buffer pitches; 0 means unbound. */
3072 sol.Buffer0SurfacePitch = 4 * info->stride[0];
3073 sol.Buffer1SurfacePitch = 4 * info->stride[1];
3074 sol.Buffer2SurfacePitch = 4 * info->stride[2];
3075 sol.Buffer3SurfacePitch = 4 * info->stride[3];
3076 }
3077
3078 iris_pack_command(GENX(3DSTATE_SO_DECL_LIST), so_decl_map, list) {
3079 list.DWordLength = 3 + 2 * max_decls - 2;
3080 list.StreamtoBufferSelects0 = buffer_mask[0];
3081 list.StreamtoBufferSelects1 = buffer_mask[1];
3082 list.StreamtoBufferSelects2 = buffer_mask[2];
3083 list.StreamtoBufferSelects3 = buffer_mask[3];
3084 list.NumEntries0 = decls[0];
3085 list.NumEntries1 = decls[1];
3086 list.NumEntries2 = decls[2];
3087 list.NumEntries3 = decls[3];
3088 }
3089
3090 for (int i = 0; i < max_decls; i++) {
3091 iris_pack_state(GENX(SO_DECL_ENTRY), so_decl_map + 3 + i * 2, entry) {
3092 entry.Stream0Decl = so_decl[0][i];
3093 entry.Stream1Decl = so_decl[1][i];
3094 entry.Stream2Decl = so_decl[2][i];
3095 entry.Stream3Decl = so_decl[3][i];
3096 }
3097 }
3098
3099 return map;
3100 }
3101
3102 static void
3103 iris_compute_sbe_urb_read_interval(uint64_t fs_input_slots,
3104 const struct brw_vue_map *last_vue_map,
3105 bool two_sided_color,
3106 unsigned *out_offset,
3107 unsigned *out_length)
3108 {
3109 /* The compiler computes the first URB slot without considering COL/BFC
3110 * swizzling (because it doesn't know whether it's enabled), so we need
3111 * to do that here too. This may result in a smaller offset, which
3112 * should be safe.
3113 */
3114 const unsigned first_slot =
3115 brw_compute_first_urb_slot_required(fs_input_slots, last_vue_map);
3116
3117 /* This becomes the URB read offset (counted in pairs of slots). */
3118 assert(first_slot % 2 == 0);
3119 *out_offset = first_slot / 2;
3120
3121 /* We need to adjust the inputs read to account for front/back color
3122 * swizzling, as it can make the URB length longer.
3123 */
3124 for (int c = 0; c <= 1; c++) {
3125 if (fs_input_slots & (VARYING_BIT_COL0 << c)) {
3126 /* If two sided color is enabled, the fragment shader's gl_Color
3127 * (COL0) input comes from either the gl_FrontColor (COL0) or
3128 * gl_BackColor (BFC0) input varyings. Mark BFC as used, too.
3129 */
3130 if (two_sided_color)
3131 fs_input_slots |= (VARYING_BIT_BFC0 << c);
3132
3133 /* If front color isn't written, we opt to give them back color
3134 * instead of an undefined value. Switch from COL to BFC.
3135 */
3136 if (last_vue_map->varying_to_slot[VARYING_SLOT_COL0 + c] == -1) {
3137 fs_input_slots &= ~(VARYING_BIT_COL0 << c);
3138 fs_input_slots |= (VARYING_BIT_BFC0 << c);
3139 }
3140 }
3141 }
3142
3143 /* Compute the minimum URB Read Length necessary for the FS inputs.
3144 *
3145 * From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
3146 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
3147 *
3148 * "This field should be set to the minimum length required to read the
3149 * maximum source attribute. The maximum source attribute is indicated
3150 * by the maximum value of the enabled Attribute # Source Attribute if
3151 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
3152 * enable is not set.
3153 * read_length = ceiling((max_source_attr + 1) / 2)
3154 *
3155 * [errata] Corruption/Hang possible if length programmed larger than
3156 * recommended"
3157 *
3158 * Similar text exists for Ivy Bridge.
3159 *
3160 * We find the last URB slot that's actually read by the FS.
3161 */
3162 unsigned last_read_slot = last_vue_map->num_slots - 1;
3163 while (last_read_slot > first_slot && !(fs_input_slots &
3164 (1ull << last_vue_map->slot_to_varying[last_read_slot])))
3165 --last_read_slot;
3166
3167 /* The URB read length is the difference of the two, counted in pairs. */
3168 *out_length = DIV_ROUND_UP(last_read_slot - first_slot + 1, 2);
3169 }
3170
3171 static void
3172 iris_emit_sbe_swiz(struct iris_batch *batch,
3173 const struct iris_context *ice,
3174 unsigned urb_read_offset,
3175 unsigned sprite_coord_enables)
3176 {
3177 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = {};
3178 const struct brw_wm_prog_data *wm_prog_data = (void *)
3179 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3180 const struct brw_vue_map *vue_map = ice->shaders.last_vue_map;
3181 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3182
3183 /* XXX: this should be generated when putting programs in place */
3184
3185 for (int fs_attr = 0; fs_attr < VARYING_SLOT_MAX; fs_attr++) {
3186 const int input_index = wm_prog_data->urb_setup[fs_attr];
3187 if (input_index < 0 || input_index >= 16)
3188 continue;
3189
3190 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr =
3191 &attr_overrides[input_index];
3192 int slot = vue_map->varying_to_slot[fs_attr];
3193
3194 /* Viewport and Layer are stored in the VUE header. We need to override
3195 * them to zero if earlier stages didn't write them, as GL requires that
3196 * they read back as zero when not explicitly set.
3197 */
3198 switch (fs_attr) {
3199 case VARYING_SLOT_VIEWPORT:
3200 case VARYING_SLOT_LAYER:
3201 attr->ComponentOverrideX = true;
3202 attr->ComponentOverrideW = true;
3203 attr->ConstantSource = CONST_0000;
3204
3205 if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
3206 attr->ComponentOverrideY = true;
3207 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
3208 attr->ComponentOverrideZ = true;
3209 continue;
3210
3211 case VARYING_SLOT_PRIMITIVE_ID:
3212 /* Override if the previous shader stage didn't write gl_PrimitiveID. */
3213 if (slot == -1) {
3214 attr->ComponentOverrideX = true;
3215 attr->ComponentOverrideY = true;
3216 attr->ComponentOverrideZ = true;
3217 attr->ComponentOverrideW = true;
3218 attr->ConstantSource = PRIM_ID;
3219 continue;
3220 }
3221
3222 default:
3223 break;
3224 }
3225
3226 if (sprite_coord_enables & (1 << input_index))
3227 continue;
3228
3229 /* If there was only a back color written but not front, use back
3230 * as the color instead of undefined.
3231 */
3232 if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
3233 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
3234 if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
3235 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
3236
3237 /* Not written by the previous stage - undefined. */
3238 if (slot == -1) {
3239 attr->ComponentOverrideX = true;
3240 attr->ComponentOverrideY = true;
3241 attr->ComponentOverrideZ = true;
3242 attr->ComponentOverrideW = true;
3243 attr->ConstantSource = CONST_0001_FLOAT;
3244 continue;
3245 }
3246
3247 /* Compute the location of the attribute relative to the read offset,
3248 * which is counted in 256-bit increments (two 128-bit VUE slots).
3249 */
3250 const int source_attr = slot - 2 * urb_read_offset;
3251 assert(source_attr >= 0 && source_attr <= 32);
3252 attr->SourceAttribute = source_attr;
3253
3254 /* If we are doing two-sided color, and the VUE slot following this one
3255 * represents a back-facing color, then we need to instruct the SF unit
3256 * to do back-facing swizzling.
3257 */
3258 if (cso_rast->light_twoside &&
3259 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
3260 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
3261 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
3262 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1)))
3263 attr->SwizzleSelect = INPUTATTR_FACING;
3264 }
3265
3266 iris_emit_cmd(batch, GENX(3DSTATE_SBE_SWIZ), sbes) {
3267 for (int i = 0; i < 16; i++)
3268 sbes.Attribute[i] = attr_overrides[i];
3269 }
3270 }
3271
3272 static unsigned
3273 iris_calculate_point_sprite_overrides(const struct brw_wm_prog_data *prog_data,
3274 const struct iris_rasterizer_state *cso)
3275 {
3276 unsigned overrides = 0;
3277
3278 if (prog_data->urb_setup[VARYING_SLOT_PNTC] != -1)
3279 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_PNTC];
3280
3281 for (int i = 0; i < 8; i++) {
3282 if ((cso->sprite_coord_enable & (1 << i)) &&
3283 prog_data->urb_setup[VARYING_SLOT_TEX0 + i] != -1)
3284 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_TEX0 + i];
3285 }
3286
3287 return overrides;
3288 }
3289
3290 static void
3291 iris_emit_sbe(struct iris_batch *batch, const struct iris_context *ice)
3292 {
3293 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3294 const struct brw_wm_prog_data *wm_prog_data = (void *)
3295 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3296 const struct shader_info *fs_info =
3297 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
3298
3299 unsigned urb_read_offset, urb_read_length;
3300 iris_compute_sbe_urb_read_interval(fs_info->inputs_read,
3301 ice->shaders.last_vue_map,
3302 cso_rast->light_twoside,
3303 &urb_read_offset, &urb_read_length);
3304
3305 unsigned sprite_coord_overrides =
3306 iris_calculate_point_sprite_overrides(wm_prog_data, cso_rast);
3307
3308 iris_emit_cmd(batch, GENX(3DSTATE_SBE), sbe) {
3309 sbe.AttributeSwizzleEnable = true;
3310 sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
3311 sbe.PointSpriteTextureCoordinateOrigin = cso_rast->sprite_coord_mode;
3312 sbe.VertexURBEntryReadOffset = urb_read_offset;
3313 sbe.VertexURBEntryReadLength = urb_read_length;
3314 sbe.ForceVertexURBEntryReadOffset = true;
3315 sbe.ForceVertexURBEntryReadLength = true;
3316 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
3317 sbe.PointSpriteTextureCoordinateEnable = sprite_coord_overrides;
3318 #if GEN_GEN >= 9
3319 for (int i = 0; i < 32; i++) {
3320 sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW;
3321 }
3322 #endif
3323 }
3324
3325 iris_emit_sbe_swiz(batch, ice, urb_read_offset, sprite_coord_overrides);
3326 }
3327
3328 /* ------------------------------------------------------------------- */
3329
3330 /**
3331 * Populate VS program key fields based on the current state.
3332 */
3333 static void
3334 iris_populate_vs_key(const struct iris_context *ice,
3335 const struct shader_info *info,
3336 struct brw_vs_prog_key *key)
3337 {
3338 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3339
3340 if (info->clip_distance_array_size == 0 &&
3341 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)))
3342 key->nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
3343 }
3344
3345 /**
3346 * Populate TCS program key fields based on the current state.
3347 */
3348 static void
3349 iris_populate_tcs_key(const struct iris_context *ice,
3350 struct brw_tcs_prog_key *key)
3351 {
3352 }
3353
3354 /**
3355 * Populate TES program key fields based on the current state.
3356 */
3357 static void
3358 iris_populate_tes_key(const struct iris_context *ice,
3359 struct brw_tes_prog_key *key)
3360 {
3361 }
3362
3363 /**
3364 * Populate GS program key fields based on the current state.
3365 */
3366 static void
3367 iris_populate_gs_key(const struct iris_context *ice,
3368 struct brw_gs_prog_key *key)
3369 {
3370 }
3371
3372 /**
3373 * Populate FS program key fields based on the current state.
3374 */
3375 static void
3376 iris_populate_fs_key(const struct iris_context *ice,
3377 const struct shader_info *info,
3378 struct brw_wm_prog_key *key)
3379 {
3380 struct iris_screen *screen = (void *) ice->ctx.screen;
3381 const struct pipe_framebuffer_state *fb = &ice->state.framebuffer;
3382 const struct iris_depth_stencil_alpha_state *zsa = ice->state.cso_zsa;
3383 const struct iris_rasterizer_state *rast = ice->state.cso_rast;
3384 const struct iris_blend_state *blend = ice->state.cso_blend;
3385
3386 key->nr_color_regions = fb->nr_cbufs;
3387
3388 key->clamp_fragment_color = rast->clamp_fragment_color;
3389
3390 key->alpha_to_coverage = blend->alpha_to_coverage;
3391
3392 key->alpha_test_replicate_alpha = fb->nr_cbufs > 1 && zsa->alpha.enabled;
3393
3394 key->flat_shade = rast->flatshade &&
3395 (info->inputs_read & (VARYING_BIT_COL0 | VARYING_BIT_COL1));
3396
3397 key->persample_interp = rast->force_persample_interp;
3398 key->multisample_fbo = rast->multisample && fb->samples > 1;
3399
3400 key->coherent_fb_fetch = true;
3401
3402 key->force_dual_color_blend =
3403 screen->driconf.dual_color_blend_by_location &&
3404 (blend->blend_enables & 1) && blend->dual_color_blending;
3405
3406 /* TODO: Respect glHint for key->high_quality_derivatives */
3407 }
3408
3409 static void
3410 iris_populate_cs_key(const struct iris_context *ice,
3411 struct brw_cs_prog_key *key)
3412 {
3413 }
3414
3415 static uint64_t
3416 KSP(const struct iris_compiled_shader *shader)
3417 {
3418 struct iris_resource *res = (void *) shader->assembly.res;
3419 return iris_bo_offset_from_base_address(res->bo) + shader->assembly.offset;
3420 }
3421
3422 /* Gen11 workaround table #2056 WABTPPrefetchDisable suggests to disable
3423 * prefetching of binding tables in A0 and B0 steppings. XXX: Revisit
3424 * this WA on C0 stepping.
3425 *
3426 * TODO: Fill out SamplerCount for prefetching?
3427 */
3428
3429 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix, stage) \
3430 pkt.KernelStartPointer = KSP(shader); \
3431 pkt.BindingTableEntryCount = GEN_GEN == 11 ? 0 : \
3432 shader->bt.size_bytes / 4; \
3433 pkt.FloatingPointMode = prog_data->use_alt_mode; \
3434 \
3435 pkt.DispatchGRFStartRegisterForURBData = \
3436 prog_data->dispatch_grf_start_reg; \
3437 pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
3438 pkt.prefix##URBEntryReadOffset = 0; \
3439 \
3440 pkt.StatisticsEnable = true; \
3441 pkt.Enable = true; \
3442 \
3443 if (prog_data->total_scratch) { \
3444 struct iris_bo *bo = \
3445 iris_get_scratch_space(ice, prog_data->total_scratch, stage); \
3446 uint32_t scratch_addr = bo->gtt_offset; \
3447 pkt.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11; \
3448 pkt.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr); \
3449 }
3450
3451 /**
3452 * Encode most of 3DSTATE_VS based on the compiled shader.
3453 */
3454 static void
3455 iris_store_vs_state(struct iris_context *ice,
3456 const struct gen_device_info *devinfo,
3457 struct iris_compiled_shader *shader)
3458 {
3459 struct brw_stage_prog_data *prog_data = shader->prog_data;
3460 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3461
3462 iris_pack_command(GENX(3DSTATE_VS), shader->derived_data, vs) {
3463 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex, MESA_SHADER_VERTEX);
3464 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
3465 vs.SIMD8DispatchEnable = true;
3466 vs.UserClipDistanceCullTestEnableBitmask =
3467 vue_prog_data->cull_distance_mask;
3468 }
3469 }
3470
3471 /**
3472 * Encode most of 3DSTATE_HS based on the compiled shader.
3473 */
3474 static void
3475 iris_store_tcs_state(struct iris_context *ice,
3476 const struct gen_device_info *devinfo,
3477 struct iris_compiled_shader *shader)
3478 {
3479 struct brw_stage_prog_data *prog_data = shader->prog_data;
3480 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3481 struct brw_tcs_prog_data *tcs_prog_data = (void *) prog_data;
3482
3483 iris_pack_command(GENX(3DSTATE_HS), shader->derived_data, hs) {
3484 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex, MESA_SHADER_TESS_CTRL);
3485
3486 hs.InstanceCount = tcs_prog_data->instances - 1;
3487 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
3488 hs.IncludeVertexHandles = true;
3489
3490 #if GEN_GEN >= 9
3491 hs.DispatchMode = vue_prog_data->dispatch_mode;
3492 hs.IncludePrimitiveID = tcs_prog_data->include_primitive_id;
3493 #endif
3494 }
3495 }
3496
3497 /**
3498 * Encode 3DSTATE_TE and most of 3DSTATE_DS based on the compiled shader.
3499 */
3500 static void
3501 iris_store_tes_state(struct iris_context *ice,
3502 const struct gen_device_info *devinfo,
3503 struct iris_compiled_shader *shader)
3504 {
3505 struct brw_stage_prog_data *prog_data = shader->prog_data;
3506 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3507 struct brw_tes_prog_data *tes_prog_data = (void *) prog_data;
3508
3509 uint32_t *te_state = (void *) shader->derived_data;
3510 uint32_t *ds_state = te_state + GENX(3DSTATE_TE_length);
3511
3512 iris_pack_command(GENX(3DSTATE_TE), te_state, te) {
3513 te.Partitioning = tes_prog_data->partitioning;
3514 te.OutputTopology = tes_prog_data->output_topology;
3515 te.TEDomain = tes_prog_data->domain;
3516 te.TEEnable = true;
3517 te.MaximumTessellationFactorOdd = 63.0;
3518 te.MaximumTessellationFactorNotOdd = 64.0;
3519 }
3520
3521 iris_pack_command(GENX(3DSTATE_DS), ds_state, ds) {
3522 INIT_THREAD_DISPATCH_FIELDS(ds, Patch, MESA_SHADER_TESS_EVAL);
3523
3524 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
3525 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
3526 ds.ComputeWCoordinateEnable =
3527 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
3528
3529 ds.UserClipDistanceCullTestEnableBitmask =
3530 vue_prog_data->cull_distance_mask;
3531 }
3532
3533 }
3534
3535 /**
3536 * Encode most of 3DSTATE_GS based on the compiled shader.
3537 */
3538 static void
3539 iris_store_gs_state(struct iris_context *ice,
3540 const struct gen_device_info *devinfo,
3541 struct iris_compiled_shader *shader)
3542 {
3543 struct brw_stage_prog_data *prog_data = shader->prog_data;
3544 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3545 struct brw_gs_prog_data *gs_prog_data = (void *) prog_data;
3546
3547 iris_pack_command(GENX(3DSTATE_GS), shader->derived_data, gs) {
3548 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex, MESA_SHADER_GEOMETRY);
3549
3550 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
3551 gs.OutputTopology = gs_prog_data->output_topology;
3552 gs.ControlDataHeaderSize =
3553 gs_prog_data->control_data_header_size_hwords;
3554 gs.InstanceControl = gs_prog_data->invocations - 1;
3555 gs.DispatchMode = DISPATCH_MODE_SIMD8;
3556 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
3557 gs.ControlDataFormat = gs_prog_data->control_data_format;
3558 gs.ReorderMode = TRAILING;
3559 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
3560 gs.MaximumNumberofThreads =
3561 GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
3562 : (devinfo->max_gs_threads - 1);
3563
3564 if (gs_prog_data->static_vertex_count != -1) {
3565 gs.StaticOutput = true;
3566 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
3567 }
3568 gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
3569
3570 gs.UserClipDistanceCullTestEnableBitmask =
3571 vue_prog_data->cull_distance_mask;
3572
3573 const int urb_entry_write_offset = 1;
3574 const uint32_t urb_entry_output_length =
3575 DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
3576 urb_entry_write_offset;
3577
3578 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
3579 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
3580 }
3581 }
3582
3583 /**
3584 * Encode most of 3DSTATE_PS and 3DSTATE_PS_EXTRA based on the shader.
3585 */
3586 static void
3587 iris_store_fs_state(struct iris_context *ice,
3588 const struct gen_device_info *devinfo,
3589 struct iris_compiled_shader *shader)
3590 {
3591 struct brw_stage_prog_data *prog_data = shader->prog_data;
3592 struct brw_wm_prog_data *wm_prog_data = (void *) shader->prog_data;
3593
3594 uint32_t *ps_state = (void *) shader->derived_data;
3595 uint32_t *psx_state = ps_state + GENX(3DSTATE_PS_length);
3596
3597 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
3598 ps.VectorMaskEnable = true;
3599 // XXX: WABTPPrefetchDisable, see above, drop at C0
3600 ps.BindingTableEntryCount = GEN_GEN == 11 ? 0 :
3601 shader->bt.size_bytes / 4;
3602 ps.FloatingPointMode = prog_data->use_alt_mode;
3603 ps.MaximumNumberofThreadsPerPSD = 64 - (GEN_GEN == 8 ? 2 : 1);
3604
3605 ps.PushConstantEnable = prog_data->ubo_ranges[0].length > 0;
3606
3607 /* From the documentation for this packet:
3608 * "If the PS kernel does not need the Position XY Offsets to
3609 * compute a Position Value, then this field should be programmed
3610 * to POSOFFSET_NONE."
3611 *
3612 * "SW Recommendation: If the PS kernel needs the Position Offsets
3613 * to compute a Position XY value, this field should match Position
3614 * ZW Interpolation Mode to ensure a consistent position.xyzw
3615 * computation."
3616 *
3617 * We only require XY sample offsets. So, this recommendation doesn't
3618 * look useful at the moment. We might need this in future.
3619 */
3620 ps.PositionXYOffsetSelect =
3621 wm_prog_data->uses_pos_offset ? POSOFFSET_SAMPLE : POSOFFSET_NONE;
3622 ps._8PixelDispatchEnable = wm_prog_data->dispatch_8;
3623 ps._16PixelDispatchEnable = wm_prog_data->dispatch_16;
3624 /* ps._32PixelDispatchEnable is filled in at draw time. */
3625
3626 ps.DispatchGRFStartRegisterForConstantSetupData0 =
3627 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
3628 ps.DispatchGRFStartRegisterForConstantSetupData1 =
3629 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
3630 ps.DispatchGRFStartRegisterForConstantSetupData2 =
3631 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
3632
3633 ps.KernelStartPointer0 =
3634 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
3635 ps.KernelStartPointer1 =
3636 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
3637 ps.KernelStartPointer2 =
3638 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
3639
3640 if (prog_data->total_scratch) {
3641 struct iris_bo *bo =
3642 iris_get_scratch_space(ice, prog_data->total_scratch,
3643 MESA_SHADER_FRAGMENT);
3644 uint32_t scratch_addr = bo->gtt_offset;
3645 ps.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
3646 ps.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr);
3647 }
3648 }
3649
3650 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
3651 psx.PixelShaderValid = true;
3652 psx.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
3653 psx.PixelShaderKillsPixel = wm_prog_data->uses_kill;
3654 psx.AttributeEnable = wm_prog_data->num_varying_inputs != 0;
3655 psx.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
3656 psx.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
3657 psx.PixelShaderIsPerSample = wm_prog_data->persample_dispatch;
3658 psx.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
3659
3660 #if GEN_GEN >= 9
3661 psx.PixelShaderPullsBary = wm_prog_data->pulls_bary;
3662 psx.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
3663 #else
3664 psx.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
3665 #endif
3666 }
3667 }
3668
3669 /**
3670 * Compute the size of the derived data (shader command packets).
3671 *
3672 * This must match the data written by the iris_store_xs_state() functions.
3673 */
3674 static void
3675 iris_store_cs_state(struct iris_context *ice,
3676 const struct gen_device_info *devinfo,
3677 struct iris_compiled_shader *shader)
3678 {
3679 struct brw_stage_prog_data *prog_data = shader->prog_data;
3680 struct brw_cs_prog_data *cs_prog_data = (void *) shader->prog_data;
3681 void *map = shader->derived_data;
3682
3683 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), map, desc) {
3684 desc.KernelStartPointer = KSP(shader);
3685 desc.ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs;
3686 desc.NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads;
3687 desc.SharedLocalMemorySize =
3688 encode_slm_size(GEN_GEN, prog_data->total_shared);
3689 desc.BarrierEnable = cs_prog_data->uses_barrier;
3690 desc.CrossThreadConstantDataReadLength =
3691 cs_prog_data->push.cross_thread.regs;
3692 }
3693 }
3694
3695 static unsigned
3696 iris_derived_program_state_size(enum iris_program_cache_id cache_id)
3697 {
3698 assert(cache_id <= IRIS_CACHE_BLORP);
3699
3700 static const unsigned dwords[] = {
3701 [IRIS_CACHE_VS] = GENX(3DSTATE_VS_length),
3702 [IRIS_CACHE_TCS] = GENX(3DSTATE_HS_length),
3703 [IRIS_CACHE_TES] = GENX(3DSTATE_TE_length) + GENX(3DSTATE_DS_length),
3704 [IRIS_CACHE_GS] = GENX(3DSTATE_GS_length),
3705 [IRIS_CACHE_FS] =
3706 GENX(3DSTATE_PS_length) + GENX(3DSTATE_PS_EXTRA_length),
3707 [IRIS_CACHE_CS] = GENX(INTERFACE_DESCRIPTOR_DATA_length),
3708 [IRIS_CACHE_BLORP] = 0,
3709 };
3710
3711 return sizeof(uint32_t) * dwords[cache_id];
3712 }
3713
3714 /**
3715 * Create any state packets corresponding to the given shader stage
3716 * (i.e. 3DSTATE_VS) and save them as "derived data" in the shader variant.
3717 * This means that we can look up a program in the in-memory cache and
3718 * get most of the state packet without having to reconstruct it.
3719 */
3720 static void
3721 iris_store_derived_program_state(struct iris_context *ice,
3722 enum iris_program_cache_id cache_id,
3723 struct iris_compiled_shader *shader)
3724 {
3725 struct iris_screen *screen = (void *) ice->ctx.screen;
3726 const struct gen_device_info *devinfo = &screen->devinfo;
3727
3728 switch (cache_id) {
3729 case IRIS_CACHE_VS:
3730 iris_store_vs_state(ice, devinfo, shader);
3731 break;
3732 case IRIS_CACHE_TCS:
3733 iris_store_tcs_state(ice, devinfo, shader);
3734 break;
3735 case IRIS_CACHE_TES:
3736 iris_store_tes_state(ice, devinfo, shader);
3737 break;
3738 case IRIS_CACHE_GS:
3739 iris_store_gs_state(ice, devinfo, shader);
3740 break;
3741 case IRIS_CACHE_FS:
3742 iris_store_fs_state(ice, devinfo, shader);
3743 break;
3744 case IRIS_CACHE_CS:
3745 iris_store_cs_state(ice, devinfo, shader);
3746 case IRIS_CACHE_BLORP:
3747 break;
3748 default:
3749 break;
3750 }
3751 }
3752
3753 /* ------------------------------------------------------------------- */
3754
3755 static const uint32_t push_constant_opcodes[] = {
3756 [MESA_SHADER_VERTEX] = 21,
3757 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
3758 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
3759 [MESA_SHADER_GEOMETRY] = 22,
3760 [MESA_SHADER_FRAGMENT] = 23,
3761 [MESA_SHADER_COMPUTE] = 0,
3762 };
3763
3764 static uint32_t
3765 use_null_surface(struct iris_batch *batch, struct iris_context *ice)
3766 {
3767 struct iris_bo *state_bo = iris_resource_bo(ice->state.unbound_tex.res);
3768
3769 iris_use_pinned_bo(batch, state_bo, false);
3770
3771 return ice->state.unbound_tex.offset;
3772 }
3773
3774 static uint32_t
3775 use_null_fb_surface(struct iris_batch *batch, struct iris_context *ice)
3776 {
3777 /* If set_framebuffer_state() was never called, fall back to 1x1x1 */
3778 if (!ice->state.null_fb.res)
3779 return use_null_surface(batch, ice);
3780
3781 struct iris_bo *state_bo = iris_resource_bo(ice->state.null_fb.res);
3782
3783 iris_use_pinned_bo(batch, state_bo, false);
3784
3785 return ice->state.null_fb.offset;
3786 }
3787
3788 static uint32_t
3789 surf_state_offset_for_aux(struct iris_resource *res,
3790 unsigned aux_modes,
3791 enum isl_aux_usage aux_usage)
3792 {
3793 return SURFACE_STATE_ALIGNMENT *
3794 util_bitcount(res->aux.possible_usages & ((1 << aux_usage) - 1));
3795 }
3796
3797 static void
3798 surf_state_update_clear_value(struct iris_batch *batch,
3799 struct iris_resource *res,
3800 struct iris_state_ref *state,
3801 unsigned aux_modes,
3802 enum isl_aux_usage aux_usage)
3803 {
3804 struct isl_device *isl_dev = &batch->screen->isl_dev;
3805 struct iris_bo *state_bo = iris_resource_bo(state->res);
3806 uint64_t real_offset = state->offset +
3807 IRIS_MEMZONE_BINDER_START;
3808 uint32_t offset_into_bo = real_offset - state_bo->gtt_offset;
3809 uint32_t clear_offset = offset_into_bo +
3810 isl_dev->ss.clear_value_offset +
3811 surf_state_offset_for_aux(res, aux_modes, aux_usage);
3812
3813 batch->vtbl->copy_mem_mem(batch, state_bo, clear_offset,
3814 res->aux.clear_color_bo,
3815 res->aux.clear_color_offset,
3816 isl_dev->ss.clear_value_size);
3817 }
3818
3819 static void
3820 update_clear_value(struct iris_context *ice,
3821 struct iris_batch *batch,
3822 struct iris_resource *res,
3823 struct iris_state_ref *state,
3824 unsigned aux_modes,
3825 struct isl_view *view)
3826 {
3827 struct iris_screen *screen = batch->screen;
3828 const struct gen_device_info *devinfo = &screen->devinfo;
3829
3830 /* We only need to update the clear color in the surface state for gen8 and
3831 * gen9. Newer gens can read it directly from the clear color state buffer.
3832 */
3833 if (devinfo->gen > 9)
3834 return;
3835
3836 if (devinfo->gen == 9) {
3837 /* Skip updating the ISL_AUX_USAGE_NONE surface state */
3838 aux_modes &= ~(1 << ISL_AUX_USAGE_NONE);
3839
3840 while (aux_modes) {
3841 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
3842
3843 surf_state_update_clear_value(batch, res, state, aux_modes,
3844 aux_usage);
3845 }
3846 } else if (devinfo->gen == 8) {
3847 pipe_resource_reference(&state->res, NULL);
3848 void *map = alloc_surface_states(ice->state.surface_uploader,
3849 state, res->aux.possible_usages);
3850 while (aux_modes) {
3851 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
3852 fill_surface_state(&screen->isl_dev, map, res, view, aux_usage);
3853 map += SURFACE_STATE_ALIGNMENT;
3854 }
3855 }
3856 }
3857
3858 /**
3859 * Add a surface to the validation list, as well as the buffer containing
3860 * the corresponding SURFACE_STATE.
3861 *
3862 * Returns the binding table entry (offset to SURFACE_STATE).
3863 */
3864 static uint32_t
3865 use_surface(struct iris_context *ice,
3866 struct iris_batch *batch,
3867 struct pipe_surface *p_surf,
3868 bool writeable,
3869 enum isl_aux_usage aux_usage)
3870 {
3871 struct iris_surface *surf = (void *) p_surf;
3872 struct iris_resource *res = (void *) p_surf->texture;
3873
3874 iris_use_pinned_bo(batch, iris_resource_bo(p_surf->texture), writeable);
3875 iris_use_pinned_bo(batch, iris_resource_bo(surf->surface_state.res), false);
3876
3877 if (res->aux.bo) {
3878 iris_use_pinned_bo(batch, res->aux.bo, writeable);
3879 if (res->aux.clear_color_bo)
3880 iris_use_pinned_bo(batch, res->aux.clear_color_bo, false);
3881
3882 if (memcmp(&res->aux.clear_color, &surf->clear_color,
3883 sizeof(surf->clear_color)) != 0) {
3884 update_clear_value(ice, batch, res, &surf->surface_state,
3885 res->aux.possible_usages, &surf->view);
3886 surf->clear_color = res->aux.clear_color;
3887 }
3888 }
3889
3890 return surf->surface_state.offset +
3891 surf_state_offset_for_aux(res, res->aux.possible_usages, aux_usage);
3892 }
3893
3894 static uint32_t
3895 use_sampler_view(struct iris_context *ice,
3896 struct iris_batch *batch,
3897 struct iris_sampler_view *isv)
3898 {
3899 // XXX: ASTC hacks
3900 enum isl_aux_usage aux_usage =
3901 iris_resource_texture_aux_usage(ice, isv->res, isv->view.format, 0);
3902
3903 iris_use_pinned_bo(batch, isv->res->bo, false);
3904 iris_use_pinned_bo(batch, iris_resource_bo(isv->surface_state.res), false);
3905
3906 if (isv->res->aux.bo) {
3907 iris_use_pinned_bo(batch, isv->res->aux.bo, false);
3908 if (isv->res->aux.clear_color_bo)
3909 iris_use_pinned_bo(batch, isv->res->aux.clear_color_bo, false);
3910 if (memcmp(&isv->res->aux.clear_color, &isv->clear_color,
3911 sizeof(isv->clear_color)) != 0) {
3912 update_clear_value(ice, batch, isv->res, &isv->surface_state,
3913 isv->res->aux.sampler_usages, &isv->view);
3914 isv->clear_color = isv->res->aux.clear_color;
3915 }
3916 }
3917
3918 return isv->surface_state.offset +
3919 surf_state_offset_for_aux(isv->res, isv->res->aux.sampler_usages,
3920 aux_usage);
3921 }
3922
3923 static uint32_t
3924 use_ubo_ssbo(struct iris_batch *batch,
3925 struct iris_context *ice,
3926 struct pipe_shader_buffer *buf,
3927 struct iris_state_ref *surf_state,
3928 bool writable)
3929 {
3930 if (!buf->buffer)
3931 return use_null_surface(batch, ice);
3932
3933 iris_use_pinned_bo(batch, iris_resource_bo(buf->buffer), writable);
3934 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false);
3935
3936 return surf_state->offset;
3937 }
3938
3939 static uint32_t
3940 use_image(struct iris_batch *batch, struct iris_context *ice,
3941 struct iris_shader_state *shs, int i)
3942 {
3943 struct iris_image_view *iv = &shs->image[i];
3944 struct iris_resource *res = (void *) iv->base.resource;
3945
3946 if (!res)
3947 return use_null_surface(batch, ice);
3948
3949 bool write = iv->base.shader_access & PIPE_IMAGE_ACCESS_WRITE;
3950
3951 iris_use_pinned_bo(batch, res->bo, write);
3952 iris_use_pinned_bo(batch, iris_resource_bo(iv->surface_state.res), false);
3953
3954 if (res->aux.bo)
3955 iris_use_pinned_bo(batch, res->aux.bo, write);
3956
3957 return iv->surface_state.offset;
3958 }
3959
3960 #define push_bt_entry(addr) \
3961 assert(addr >= binder_addr); \
3962 assert(s < shader->bt.size_bytes / sizeof(uint32_t)); \
3963 if (!pin_only) bt_map[s++] = (addr) - binder_addr;
3964
3965 #define bt_assert(section) \
3966 if (!pin_only && shader->bt.used_mask[section] != 0) \
3967 assert(shader->bt.offsets[section] == s);
3968
3969 /**
3970 * Populate the binding table for a given shader stage.
3971 *
3972 * This fills out the table of pointers to surfaces required by the shader,
3973 * and also adds those buffers to the validation list so the kernel can make
3974 * resident before running our batch.
3975 */
3976 static void
3977 iris_populate_binding_table(struct iris_context *ice,
3978 struct iris_batch *batch,
3979 gl_shader_stage stage,
3980 bool pin_only)
3981 {
3982 const struct iris_binder *binder = &ice->state.binder;
3983 struct iris_uncompiled_shader *ish = ice->shaders.uncompiled[stage];
3984 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3985 if (!shader)
3986 return;
3987
3988 struct iris_binding_table *bt = &shader->bt;
3989 UNUSED struct brw_stage_prog_data *prog_data = shader->prog_data;
3990 struct iris_shader_state *shs = &ice->state.shaders[stage];
3991 uint32_t binder_addr = binder->bo->gtt_offset;
3992
3993 uint32_t *bt_map = binder->map + binder->bt_offset[stage];
3994 int s = 0;
3995
3996 const struct shader_info *info = iris_get_shader_info(ice, stage);
3997 if (!info) {
3998 /* TCS passthrough doesn't need a binding table. */
3999 assert(stage == MESA_SHADER_TESS_CTRL);
4000 return;
4001 }
4002
4003 if (stage == MESA_SHADER_COMPUTE &&
4004 shader->bt.used_mask[IRIS_SURFACE_GROUP_CS_WORK_GROUPS]) {
4005 /* surface for gl_NumWorkGroups */
4006 struct iris_state_ref *grid_data = &ice->state.grid_size;
4007 struct iris_state_ref *grid_state = &ice->state.grid_surf_state;
4008 iris_use_pinned_bo(batch, iris_resource_bo(grid_data->res), false);
4009 iris_use_pinned_bo(batch, iris_resource_bo(grid_state->res), false);
4010 push_bt_entry(grid_state->offset);
4011 }
4012
4013 if (stage == MESA_SHADER_FRAGMENT) {
4014 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4015 /* Note that cso_fb->nr_cbufs == fs_key->nr_color_regions. */
4016 if (cso_fb->nr_cbufs) {
4017 for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
4018 uint32_t addr;
4019 if (cso_fb->cbufs[i]) {
4020 addr = use_surface(ice, batch, cso_fb->cbufs[i], true,
4021 ice->state.draw_aux_usage[i]);
4022 } else {
4023 addr = use_null_fb_surface(batch, ice);
4024 }
4025 push_bt_entry(addr);
4026 }
4027 } else {
4028 uint32_t addr = use_null_fb_surface(batch, ice);
4029 push_bt_entry(addr);
4030 }
4031 }
4032
4033 #define foreach_surface_used(index, group) \
4034 bt_assert(group); \
4035 for (int index = 0; index < bt->sizes[group]; index++) \
4036 if (iris_group_index_to_bti(bt, group, index) != \
4037 IRIS_SURFACE_NOT_USED)
4038
4039 foreach_surface_used(i, IRIS_SURFACE_GROUP_TEXTURE) {
4040 struct iris_sampler_view *view = shs->textures[i];
4041 uint32_t addr = view ? use_sampler_view(ice, batch, view)
4042 : use_null_surface(batch, ice);
4043 push_bt_entry(addr);
4044 }
4045
4046 foreach_surface_used(i, IRIS_SURFACE_GROUP_IMAGE) {
4047 uint32_t addr = use_image(batch, ice, shs, i);
4048 push_bt_entry(addr);
4049 }
4050
4051 foreach_surface_used(i, IRIS_SURFACE_GROUP_UBO) {
4052 uint32_t addr;
4053
4054 if (i == bt->sizes[IRIS_SURFACE_GROUP_UBO] - 1) {
4055 if (ish->const_data) {
4056 iris_use_pinned_bo(batch, iris_resource_bo(ish->const_data), false);
4057 iris_use_pinned_bo(batch, iris_resource_bo(ish->const_data_state.res),
4058 false);
4059 addr = ish->const_data_state.offset;
4060 } else {
4061 /* This can only happen with INTEL_DISABLE_COMPACT_BINDING_TABLE=1. */
4062 addr = use_null_surface(batch, ice);
4063 }
4064 } else {
4065 addr = use_ubo_ssbo(batch, ice, &shs->constbuf[i],
4066 &shs->constbuf_surf_state[i], false);
4067 }
4068
4069 push_bt_entry(addr);
4070 }
4071
4072 foreach_surface_used(i, IRIS_SURFACE_GROUP_SSBO) {
4073 uint32_t addr =
4074 use_ubo_ssbo(batch, ice, &shs->ssbo[i], &shs->ssbo_surf_state[i],
4075 shs->writable_ssbos & (1u << i));
4076 push_bt_entry(addr);
4077 }
4078
4079 #if 0
4080 /* XXX: YUV surfaces not implemented yet */
4081 bt_assert(plane_start[1], ...);
4082 bt_assert(plane_start[2], ...);
4083 #endif
4084 }
4085
4086 static void
4087 iris_use_optional_res(struct iris_batch *batch,
4088 struct pipe_resource *res,
4089 bool writeable)
4090 {
4091 if (res) {
4092 struct iris_bo *bo = iris_resource_bo(res);
4093 iris_use_pinned_bo(batch, bo, writeable);
4094 }
4095 }
4096
4097 static void
4098 pin_depth_and_stencil_buffers(struct iris_batch *batch,
4099 struct pipe_surface *zsbuf,
4100 struct iris_depth_stencil_alpha_state *cso_zsa)
4101 {
4102 if (!zsbuf)
4103 return;
4104
4105 struct iris_resource *zres, *sres;
4106 iris_get_depth_stencil_resources(zsbuf->texture, &zres, &sres);
4107
4108 if (zres) {
4109 iris_use_pinned_bo(batch, zres->bo, cso_zsa->depth_writes_enabled);
4110 if (zres->aux.bo) {
4111 iris_use_pinned_bo(batch, zres->aux.bo,
4112 cso_zsa->depth_writes_enabled);
4113 }
4114 }
4115
4116 if (sres) {
4117 iris_use_pinned_bo(batch, sres->bo, cso_zsa->stencil_writes_enabled);
4118 }
4119 }
4120
4121 /* ------------------------------------------------------------------- */
4122
4123 /**
4124 * Pin any BOs which were installed by a previous batch, and restored
4125 * via the hardware logical context mechanism.
4126 *
4127 * We don't need to re-emit all state every batch - the hardware context
4128 * mechanism will save and restore it for us. This includes pointers to
4129 * various BOs...which won't exist unless we ask the kernel to pin them
4130 * by adding them to the validation list.
4131 *
4132 * We can skip buffers if we've re-emitted those packets, as we're
4133 * overwriting those stale pointers with new ones, and don't actually
4134 * refer to the old BOs.
4135 */
4136 static void
4137 iris_restore_render_saved_bos(struct iris_context *ice,
4138 struct iris_batch *batch,
4139 const struct pipe_draw_info *draw)
4140 {
4141 struct iris_genx_state *genx = ice->state.genx;
4142
4143 const uint64_t clean = ~ice->state.dirty;
4144
4145 if (clean & IRIS_DIRTY_CC_VIEWPORT) {
4146 iris_use_optional_res(batch, ice->state.last_res.cc_vp, false);
4147 }
4148
4149 if (clean & IRIS_DIRTY_SF_CL_VIEWPORT) {
4150 iris_use_optional_res(batch, ice->state.last_res.sf_cl_vp, false);
4151 }
4152
4153 if (clean & IRIS_DIRTY_BLEND_STATE) {
4154 iris_use_optional_res(batch, ice->state.last_res.blend, false);
4155 }
4156
4157 if (clean & IRIS_DIRTY_COLOR_CALC_STATE) {
4158 iris_use_optional_res(batch, ice->state.last_res.color_calc, false);
4159 }
4160
4161 if (clean & IRIS_DIRTY_SCISSOR_RECT) {
4162 iris_use_optional_res(batch, ice->state.last_res.scissor, false);
4163 }
4164
4165 if (ice->state.streamout_active && (clean & IRIS_DIRTY_SO_BUFFERS)) {
4166 for (int i = 0; i < 4; i++) {
4167 struct iris_stream_output_target *tgt =
4168 (void *) ice->state.so_target[i];
4169 if (tgt) {
4170 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
4171 true);
4172 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
4173 true);
4174 }
4175 }
4176 }
4177
4178 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4179 if (!(clean & (IRIS_DIRTY_CONSTANTS_VS << stage)))
4180 continue;
4181
4182 struct iris_shader_state *shs = &ice->state.shaders[stage];
4183 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4184
4185 if (!shader)
4186 continue;
4187
4188 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4189
4190 for (int i = 0; i < 4; i++) {
4191 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4192
4193 if (range->length == 0)
4194 continue;
4195
4196 /* Range block is a binding table index, map back to UBO index. */
4197 unsigned block_index = iris_bti_to_group_index(
4198 &shader->bt, IRIS_SURFACE_GROUP_UBO, range->block);
4199 assert(block_index != IRIS_SURFACE_NOT_USED);
4200
4201 struct pipe_shader_buffer *cbuf = &shs->constbuf[block_index];
4202 struct iris_resource *res = (void *) cbuf->buffer;
4203
4204 if (res)
4205 iris_use_pinned_bo(batch, res->bo, false);
4206 else
4207 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
4208 }
4209 }
4210
4211 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4212 if (clean & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4213 /* Re-pin any buffers referred to by the binding table. */
4214 iris_populate_binding_table(ice, batch, stage, true);
4215 }
4216 }
4217
4218 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4219 struct iris_shader_state *shs = &ice->state.shaders[stage];
4220 struct pipe_resource *res = shs->sampler_table.res;
4221 if (res)
4222 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4223 }
4224
4225 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4226 if (clean & (IRIS_DIRTY_VS << stage)) {
4227 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4228
4229 if (shader) {
4230 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
4231 iris_use_pinned_bo(batch, bo, false);
4232
4233 struct brw_stage_prog_data *prog_data = shader->prog_data;
4234
4235 if (prog_data->total_scratch > 0) {
4236 struct iris_bo *bo =
4237 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4238 iris_use_pinned_bo(batch, bo, true);
4239 }
4240 }
4241 }
4242 }
4243
4244 if ((clean & IRIS_DIRTY_DEPTH_BUFFER) &&
4245 (clean & IRIS_DIRTY_WM_DEPTH_STENCIL)) {
4246 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4247 pin_depth_and_stencil_buffers(batch, cso_fb->zsbuf, ice->state.cso_zsa);
4248 }
4249
4250 if (draw->index_size == 0 && ice->state.last_res.index_buffer) {
4251 /* This draw didn't emit a new index buffer, so we are inheriting the
4252 * older index buffer. This draw didn't need it, but future ones may.
4253 */
4254 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
4255 iris_use_pinned_bo(batch, bo, false);
4256 }
4257
4258 if (clean & IRIS_DIRTY_VERTEX_BUFFERS) {
4259 uint64_t bound = ice->state.bound_vertex_buffers;
4260 while (bound) {
4261 const int i = u_bit_scan64(&bound);
4262 struct pipe_resource *res = genx->vertex_buffers[i].resource;
4263 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4264 }
4265 }
4266 }
4267
4268 static void
4269 iris_restore_compute_saved_bos(struct iris_context *ice,
4270 struct iris_batch *batch,
4271 const struct pipe_grid_info *grid)
4272 {
4273 const uint64_t clean = ~ice->state.dirty;
4274
4275 const int stage = MESA_SHADER_COMPUTE;
4276 struct iris_shader_state *shs = &ice->state.shaders[stage];
4277
4278 if (clean & IRIS_DIRTY_BINDINGS_CS) {
4279 /* Re-pin any buffers referred to by the binding table. */
4280 iris_populate_binding_table(ice, batch, stage, true);
4281 }
4282
4283 struct pipe_resource *sampler_res = shs->sampler_table.res;
4284 if (sampler_res)
4285 iris_use_pinned_bo(batch, iris_resource_bo(sampler_res), false);
4286
4287 if ((clean & IRIS_DIRTY_SAMPLER_STATES_CS) &&
4288 (clean & IRIS_DIRTY_BINDINGS_CS) &&
4289 (clean & IRIS_DIRTY_CONSTANTS_CS) &&
4290 (clean & IRIS_DIRTY_CS)) {
4291 iris_use_optional_res(batch, ice->state.last_res.cs_desc, false);
4292 }
4293
4294 if (clean & IRIS_DIRTY_CS) {
4295 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4296
4297 if (shader) {
4298 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
4299 iris_use_pinned_bo(batch, bo, false);
4300
4301 struct iris_bo *curbe_bo =
4302 iris_resource_bo(ice->state.last_res.cs_thread_ids);
4303 iris_use_pinned_bo(batch, curbe_bo, false);
4304
4305 struct brw_stage_prog_data *prog_data = shader->prog_data;
4306
4307 if (prog_data->total_scratch > 0) {
4308 struct iris_bo *bo =
4309 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4310 iris_use_pinned_bo(batch, bo, true);
4311 }
4312 }
4313 }
4314 }
4315
4316 /**
4317 * Possibly emit STATE_BASE_ADDRESS to update Surface State Base Address.
4318 */
4319 static void
4320 iris_update_surface_base_address(struct iris_batch *batch,
4321 struct iris_binder *binder)
4322 {
4323 if (batch->last_surface_base_address == binder->bo->gtt_offset)
4324 return;
4325
4326 flush_for_state_base_change(batch);
4327
4328 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
4329 sba.SurfaceStateMOCS = MOCS_WB;
4330 sba.SurfaceStateBaseAddressModifyEnable = true;
4331 sba.SurfaceStateBaseAddress = ro_bo(binder->bo, 0);
4332 }
4333
4334 batch->last_surface_base_address = binder->bo->gtt_offset;
4335 }
4336
4337 static void
4338 iris_upload_dirty_render_state(struct iris_context *ice,
4339 struct iris_batch *batch,
4340 const struct pipe_draw_info *draw)
4341 {
4342 const uint64_t dirty = ice->state.dirty;
4343
4344 if (!(dirty & IRIS_ALL_DIRTY_FOR_RENDER))
4345 return;
4346
4347 struct iris_genx_state *genx = ice->state.genx;
4348 struct iris_binder *binder = &ice->state.binder;
4349 struct brw_wm_prog_data *wm_prog_data = (void *)
4350 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
4351
4352 if (dirty & IRIS_DIRTY_CC_VIEWPORT) {
4353 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4354 uint32_t cc_vp_address;
4355
4356 /* XXX: could avoid streaming for depth_clip [0,1] case. */
4357 uint32_t *cc_vp_map =
4358 stream_state(batch, ice->state.dynamic_uploader,
4359 &ice->state.last_res.cc_vp,
4360 4 * ice->state.num_viewports *
4361 GENX(CC_VIEWPORT_length), 32, &cc_vp_address);
4362 for (int i = 0; i < ice->state.num_viewports; i++) {
4363 float zmin, zmax;
4364 util_viewport_zmin_zmax(&ice->state.viewports[i],
4365 cso_rast->clip_halfz, &zmin, &zmax);
4366 if (cso_rast->depth_clip_near)
4367 zmin = 0.0;
4368 if (cso_rast->depth_clip_far)
4369 zmax = 1.0;
4370
4371 iris_pack_state(GENX(CC_VIEWPORT), cc_vp_map, ccv) {
4372 ccv.MinimumDepth = zmin;
4373 ccv.MaximumDepth = zmax;
4374 }
4375
4376 cc_vp_map += GENX(CC_VIEWPORT_length);
4377 }
4378
4379 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
4380 ptr.CCViewportPointer = cc_vp_address;
4381 }
4382 }
4383
4384 if (dirty & IRIS_DIRTY_SF_CL_VIEWPORT) {
4385 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4386 uint32_t sf_cl_vp_address;
4387 uint32_t *vp_map =
4388 stream_state(batch, ice->state.dynamic_uploader,
4389 &ice->state.last_res.sf_cl_vp,
4390 4 * ice->state.num_viewports *
4391 GENX(SF_CLIP_VIEWPORT_length), 64, &sf_cl_vp_address);
4392
4393 for (unsigned i = 0; i < ice->state.num_viewports; i++) {
4394 const struct pipe_viewport_state *state = &ice->state.viewports[i];
4395 float gb_xmin, gb_xmax, gb_ymin, gb_ymax;
4396
4397 float vp_xmin = viewport_extent(state, 0, -1.0f);
4398 float vp_xmax = viewport_extent(state, 0, 1.0f);
4399 float vp_ymin = viewport_extent(state, 1, -1.0f);
4400 float vp_ymax = viewport_extent(state, 1, 1.0f);
4401
4402 gen_calculate_guardband_size(cso_fb->width, cso_fb->height,
4403 state->scale[0], state->scale[1],
4404 state->translate[0], state->translate[1],
4405 &gb_xmin, &gb_xmax, &gb_ymin, &gb_ymax);
4406
4407 iris_pack_state(GENX(SF_CLIP_VIEWPORT), vp_map, vp) {
4408 vp.ViewportMatrixElementm00 = state->scale[0];
4409 vp.ViewportMatrixElementm11 = state->scale[1];
4410 vp.ViewportMatrixElementm22 = state->scale[2];
4411 vp.ViewportMatrixElementm30 = state->translate[0];
4412 vp.ViewportMatrixElementm31 = state->translate[1];
4413 vp.ViewportMatrixElementm32 = state->translate[2];
4414 vp.XMinClipGuardband = gb_xmin;
4415 vp.XMaxClipGuardband = gb_xmax;
4416 vp.YMinClipGuardband = gb_ymin;
4417 vp.YMaxClipGuardband = gb_ymax;
4418 vp.XMinViewPort = MAX2(vp_xmin, 0);
4419 vp.XMaxViewPort = MIN2(vp_xmax, cso_fb->width) - 1;
4420 vp.YMinViewPort = MAX2(vp_ymin, 0);
4421 vp.YMaxViewPort = MIN2(vp_ymax, cso_fb->height) - 1;
4422 }
4423
4424 vp_map += GENX(SF_CLIP_VIEWPORT_length);
4425 }
4426
4427 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
4428 ptr.SFClipViewportPointer = sf_cl_vp_address;
4429 }
4430 }
4431
4432 if (dirty & IRIS_DIRTY_URB) {
4433 unsigned size[4];
4434
4435 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
4436 if (!ice->shaders.prog[i]) {
4437 size[i] = 1;
4438 } else {
4439 struct brw_vue_prog_data *vue_prog_data =
4440 (void *) ice->shaders.prog[i]->prog_data;
4441 size[i] = vue_prog_data->urb_entry_size;
4442 }
4443 assert(size[i] != 0);
4444 }
4445
4446 genX(emit_urb_setup)(ice, batch, size,
4447 ice->shaders.prog[MESA_SHADER_TESS_EVAL] != NULL,
4448 ice->shaders.prog[MESA_SHADER_GEOMETRY] != NULL);
4449 }
4450
4451 if (dirty & IRIS_DIRTY_BLEND_STATE) {
4452 struct iris_blend_state *cso_blend = ice->state.cso_blend;
4453 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4454 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
4455 const int header_dwords = GENX(BLEND_STATE_length);
4456
4457 /* Always write at least one BLEND_STATE - the final RT message will
4458 * reference BLEND_STATE[0] even if there aren't color writes. There
4459 * may still be alpha testing, computed depth, and so on.
4460 */
4461 const int rt_dwords =
4462 MAX2(cso_fb->nr_cbufs, 1) * GENX(BLEND_STATE_ENTRY_length);
4463
4464 uint32_t blend_offset;
4465 uint32_t *blend_map =
4466 stream_state(batch, ice->state.dynamic_uploader,
4467 &ice->state.last_res.blend,
4468 4 * (header_dwords + rt_dwords), 64, &blend_offset);
4469
4470 uint32_t blend_state_header;
4471 iris_pack_state(GENX(BLEND_STATE), &blend_state_header, bs) {
4472 bs.AlphaTestEnable = cso_zsa->alpha.enabled;
4473 bs.AlphaTestFunction = translate_compare_func(cso_zsa->alpha.func);
4474 }
4475
4476 blend_map[0] = blend_state_header | cso_blend->blend_state[0];
4477 memcpy(&blend_map[1], &cso_blend->blend_state[1], 4 * rt_dwords);
4478
4479 iris_emit_cmd(batch, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
4480 ptr.BlendStatePointer = blend_offset;
4481 ptr.BlendStatePointerValid = true;
4482 }
4483 }
4484
4485 if (dirty & IRIS_DIRTY_COLOR_CALC_STATE) {
4486 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
4487 #if GEN_GEN == 8
4488 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
4489 #endif
4490 uint32_t cc_offset;
4491 void *cc_map =
4492 stream_state(batch, ice->state.dynamic_uploader,
4493 &ice->state.last_res.color_calc,
4494 sizeof(uint32_t) * GENX(COLOR_CALC_STATE_length),
4495 64, &cc_offset);
4496 iris_pack_state(GENX(COLOR_CALC_STATE), cc_map, cc) {
4497 cc.AlphaTestFormat = ALPHATEST_FLOAT32;
4498 cc.AlphaReferenceValueAsFLOAT32 = cso->alpha.ref_value;
4499 cc.BlendConstantColorRed = ice->state.blend_color.color[0];
4500 cc.BlendConstantColorGreen = ice->state.blend_color.color[1];
4501 cc.BlendConstantColorBlue = ice->state.blend_color.color[2];
4502 cc.BlendConstantColorAlpha = ice->state.blend_color.color[3];
4503 #if GEN_GEN == 8
4504 cc.StencilReferenceValue = p_stencil_refs->ref_value[0];
4505 cc.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
4506 #endif
4507 }
4508 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
4509 ptr.ColorCalcStatePointer = cc_offset;
4510 ptr.ColorCalcStatePointerValid = true;
4511 }
4512 }
4513
4514 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4515 if (!(dirty & (IRIS_DIRTY_CONSTANTS_VS << stage)))
4516 continue;
4517
4518 struct iris_shader_state *shs = &ice->state.shaders[stage];
4519 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4520
4521 if (!shader)
4522 continue;
4523
4524 if (shs->sysvals_need_upload)
4525 upload_sysvals(ice, stage);
4526
4527 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4528
4529 iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_VS), pkt) {
4530 pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
4531 if (prog_data) {
4532 /* The Skylake PRM contains the following restriction:
4533 *
4534 * "The driver must ensure The following case does not occur
4535 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
4536 * buffer 3 read length equal to zero committed followed by a
4537 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
4538 * zero committed."
4539 *
4540 * To avoid this, we program the buffers in the highest slots.
4541 * This way, slot 0 is only used if slot 3 is also used.
4542 */
4543 int n = 3;
4544
4545 for (int i = 3; i >= 0; i--) {
4546 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4547
4548 if (range->length == 0)
4549 continue;
4550
4551 /* Range block is a binding table index, map back to UBO index. */
4552 unsigned block_index = iris_bti_to_group_index(
4553 &shader->bt, IRIS_SURFACE_GROUP_UBO, range->block);
4554 assert(block_index != IRIS_SURFACE_NOT_USED);
4555
4556 struct pipe_shader_buffer *cbuf = &shs->constbuf[block_index];
4557 struct iris_resource *res = (void *) cbuf->buffer;
4558
4559 assert(cbuf->buffer_offset % 32 == 0);
4560
4561 pkt.ConstantBody.ReadLength[n] = range->length;
4562 pkt.ConstantBody.Buffer[n] =
4563 res ? ro_bo(res->bo, range->start * 32 + cbuf->buffer_offset)
4564 : ro_bo(batch->screen->workaround_bo, 0);
4565 n--;
4566 }
4567 }
4568 }
4569 }
4570
4571 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4572 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4573 iris_emit_cmd(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), ptr) {
4574 ptr._3DCommandSubOpcode = 38 + stage;
4575 ptr.PointertoVSBindingTable = binder->bt_offset[stage];
4576 }
4577 }
4578 }
4579
4580 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4581 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4582 iris_populate_binding_table(ice, batch, stage, false);
4583 }
4584 }
4585
4586 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4587 if (!(dirty & (IRIS_DIRTY_SAMPLER_STATES_VS << stage)) ||
4588 !ice->shaders.prog[stage])
4589 continue;
4590
4591 iris_upload_sampler_states(ice, stage);
4592
4593 struct iris_shader_state *shs = &ice->state.shaders[stage];
4594 struct pipe_resource *res = shs->sampler_table.res;
4595 if (res)
4596 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4597
4598 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
4599 ptr._3DCommandSubOpcode = 43 + stage;
4600 ptr.PointertoVSSamplerState = shs->sampler_table.offset;
4601 }
4602 }
4603
4604 if (ice->state.need_border_colors)
4605 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
4606
4607 if (dirty & IRIS_DIRTY_MULTISAMPLE) {
4608 iris_emit_cmd(batch, GENX(3DSTATE_MULTISAMPLE), ms) {
4609 ms.PixelLocation =
4610 ice->state.cso_rast->half_pixel_center ? CENTER : UL_CORNER;
4611 if (ice->state.framebuffer.samples > 0)
4612 ms.NumberofMultisamples = ffs(ice->state.framebuffer.samples) - 1;
4613 }
4614 }
4615
4616 if (dirty & IRIS_DIRTY_SAMPLE_MASK) {
4617 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_MASK), ms) {
4618 ms.SampleMask = ice->state.sample_mask;
4619 }
4620 }
4621
4622 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4623 if (!(dirty & (IRIS_DIRTY_VS << stage)))
4624 continue;
4625
4626 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4627
4628 if (shader) {
4629 struct brw_stage_prog_data *prog_data = shader->prog_data;
4630 struct iris_resource *cache = (void *) shader->assembly.res;
4631 iris_use_pinned_bo(batch, cache->bo, false);
4632
4633 if (prog_data->total_scratch > 0) {
4634 struct iris_bo *bo =
4635 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4636 iris_use_pinned_bo(batch, bo, true);
4637 }
4638 #if GEN_GEN >= 9
4639 if (stage == MESA_SHADER_FRAGMENT && wm_prog_data->uses_sample_mask) {
4640 uint32_t *shader_ps = (uint32_t *) shader->derived_data;
4641 uint32_t *shader_psx = shader_ps + GENX(3DSTATE_PS_length);
4642 uint32_t ps_state[GENX(3DSTATE_PS_length)] = {0};
4643 uint32_t psx_state[GENX(3DSTATE_PS_EXTRA_length)] = {0};
4644 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4645 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4646
4647 /* The docs for 3DSTATE_PS::32 Pixel Dispatch Enable say:
4648 *
4649 * "When NUM_MULTISAMPLES = 16 or FORCE_SAMPLE_COUNT = 16,
4650 * SIMD32 Dispatch must not be enabled for PER_PIXEL dispatch
4651 * mode."
4652 *
4653 * 16x MSAA only exists on Gen9+, so we can skip this on Gen8.
4654 */
4655 iris_pack_command(GENX(3DSTATE_PS), &ps_state, ps) {
4656 ps._32PixelDispatchEnable = wm_prog_data->dispatch_32 &&
4657 (cso_fb->samples != 16 || wm_prog_data->persample_dispatch);
4658 }
4659
4660 iris_pack_command(GENX(3DSTATE_PS_EXTRA), &psx_state, psx) {
4661 if (wm_prog_data->post_depth_coverage)
4662 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
4663 else if (wm_prog_data->inner_coverage && cso->conservative_rasterization)
4664 psx.InputCoverageMaskState = ICMS_INNER_CONSERVATIVE;
4665 else
4666 psx.InputCoverageMaskState = ICMS_NORMAL;
4667 }
4668
4669 iris_emit_merge(batch, shader_ps, ps_state,
4670 GENX(3DSTATE_PS_length));
4671 iris_emit_merge(batch,
4672 shader_psx,
4673 psx_state,
4674 GENX(3DSTATE_PS_EXTRA_length));
4675 } else
4676 #endif
4677 iris_batch_emit(batch, shader->derived_data,
4678 iris_derived_program_state_size(stage));
4679 } else {
4680 if (stage == MESA_SHADER_TESS_EVAL) {
4681 iris_emit_cmd(batch, GENX(3DSTATE_HS), hs);
4682 iris_emit_cmd(batch, GENX(3DSTATE_TE), te);
4683 iris_emit_cmd(batch, GENX(3DSTATE_DS), ds);
4684 } else if (stage == MESA_SHADER_GEOMETRY) {
4685 iris_emit_cmd(batch, GENX(3DSTATE_GS), gs);
4686 }
4687 }
4688 }
4689
4690 if (ice->state.streamout_active) {
4691 if (dirty & IRIS_DIRTY_SO_BUFFERS) {
4692 iris_batch_emit(batch, genx->so_buffers,
4693 4 * 4 * GENX(3DSTATE_SO_BUFFER_length));
4694 for (int i = 0; i < 4; i++) {
4695 struct iris_stream_output_target *tgt =
4696 (void *) ice->state.so_target[i];
4697 if (tgt) {
4698 tgt->zeroed = true;
4699 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
4700 true);
4701 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
4702 true);
4703 }
4704 }
4705 }
4706
4707 if ((dirty & IRIS_DIRTY_SO_DECL_LIST) && ice->state.streamout) {
4708 uint32_t *decl_list =
4709 ice->state.streamout + GENX(3DSTATE_STREAMOUT_length);
4710 iris_batch_emit(batch, decl_list, 4 * ((decl_list[0] & 0xff) + 2));
4711 }
4712
4713 if (dirty & IRIS_DIRTY_STREAMOUT) {
4714 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4715
4716 uint32_t dynamic_sol[GENX(3DSTATE_STREAMOUT_length)];
4717 iris_pack_command(GENX(3DSTATE_STREAMOUT), dynamic_sol, sol) {
4718 sol.SOFunctionEnable = true;
4719 sol.SOStatisticsEnable = true;
4720
4721 sol.RenderingDisable = cso_rast->rasterizer_discard &&
4722 !ice->state.prims_generated_query_active;
4723 sol.ReorderMode = cso_rast->flatshade_first ? LEADING : TRAILING;
4724 }
4725
4726 assert(ice->state.streamout);
4727
4728 iris_emit_merge(batch, ice->state.streamout, dynamic_sol,
4729 GENX(3DSTATE_STREAMOUT_length));
4730 }
4731 } else {
4732 if (dirty & IRIS_DIRTY_STREAMOUT) {
4733 iris_emit_cmd(batch, GENX(3DSTATE_STREAMOUT), sol);
4734 }
4735 }
4736
4737 if (dirty & IRIS_DIRTY_CLIP) {
4738 struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4739 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4740
4741 bool gs_or_tes = ice->shaders.prog[MESA_SHADER_GEOMETRY] ||
4742 ice->shaders.prog[MESA_SHADER_TESS_EVAL];
4743 bool points_or_lines = cso_rast->fill_mode_point_or_line ||
4744 (gs_or_tes ? ice->shaders.output_topology_is_points_or_lines
4745 : ice->state.prim_is_points_or_lines);
4746
4747 uint32_t dynamic_clip[GENX(3DSTATE_CLIP_length)];
4748 iris_pack_command(GENX(3DSTATE_CLIP), &dynamic_clip, cl) {
4749 cl.StatisticsEnable = ice->state.statistics_counters_enabled;
4750 cl.ClipMode = cso_rast->rasterizer_discard ? CLIPMODE_REJECT_ALL
4751 : CLIPMODE_NORMAL;
4752 cl.ViewportXYClipTestEnable = !points_or_lines;
4753
4754 if (wm_prog_data->barycentric_interp_modes &
4755 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
4756 cl.NonPerspectiveBarycentricEnable = true;
4757
4758 cl.ForceZeroRTAIndexEnable = cso_fb->layers == 0;
4759 cl.MaximumVPIndex = ice->state.num_viewports - 1;
4760 }
4761 iris_emit_merge(batch, cso_rast->clip, dynamic_clip,
4762 ARRAY_SIZE(cso_rast->clip));
4763 }
4764
4765 if (dirty & IRIS_DIRTY_RASTER) {
4766 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4767 iris_batch_emit(batch, cso->raster, sizeof(cso->raster));
4768 iris_batch_emit(batch, cso->sf, sizeof(cso->sf));
4769
4770 }
4771
4772 if (dirty & IRIS_DIRTY_WM) {
4773 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4774 uint32_t dynamic_wm[GENX(3DSTATE_WM_length)];
4775
4776 iris_pack_command(GENX(3DSTATE_WM), &dynamic_wm, wm) {
4777 wm.StatisticsEnable = ice->state.statistics_counters_enabled;
4778
4779 wm.BarycentricInterpolationMode =
4780 wm_prog_data->barycentric_interp_modes;
4781
4782 if (wm_prog_data->early_fragment_tests)
4783 wm.EarlyDepthStencilControl = EDSC_PREPS;
4784 else if (wm_prog_data->has_side_effects)
4785 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
4786
4787 /* We could skip this bit if color writes are enabled. */
4788 if (wm_prog_data->has_side_effects || wm_prog_data->uses_kill)
4789 wm.ForceThreadDispatchEnable = ForceON;
4790 }
4791 iris_emit_merge(batch, cso->wm, dynamic_wm, ARRAY_SIZE(cso->wm));
4792 }
4793
4794 if (dirty & IRIS_DIRTY_SBE) {
4795 iris_emit_sbe(batch, ice);
4796 }
4797
4798 if (dirty & IRIS_DIRTY_PS_BLEND) {
4799 struct iris_blend_state *cso_blend = ice->state.cso_blend;
4800 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
4801 const struct shader_info *fs_info =
4802 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
4803
4804 uint32_t dynamic_pb[GENX(3DSTATE_PS_BLEND_length)];
4805 iris_pack_command(GENX(3DSTATE_PS_BLEND), &dynamic_pb, pb) {
4806 pb.HasWriteableRT = has_writeable_rt(cso_blend, fs_info);
4807 pb.AlphaTestEnable = cso_zsa->alpha.enabled;
4808
4809 /* The dual source blending docs caution against using SRC1 factors
4810 * when the shader doesn't use a dual source render target write.
4811 * Empirically, this can lead to GPU hangs, and the results are
4812 * undefined anyway, so simply disable blending to avoid the hang.
4813 */
4814 pb.ColorBufferBlendEnable = (cso_blend->blend_enables & 1) &&
4815 (!cso_blend->dual_color_blending || wm_prog_data->dual_src_blend);
4816 }
4817
4818 iris_emit_merge(batch, cso_blend->ps_blend, dynamic_pb,
4819 ARRAY_SIZE(cso_blend->ps_blend));
4820 }
4821
4822 if (dirty & IRIS_DIRTY_WM_DEPTH_STENCIL) {
4823 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
4824 #if GEN_GEN >= 9
4825 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
4826 uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
4827 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
4828 wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
4829 wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
4830 }
4831 iris_emit_merge(batch, cso->wmds, stencil_refs, ARRAY_SIZE(cso->wmds));
4832 #else
4833 iris_batch_emit(batch, cso->wmds, sizeof(cso->wmds));
4834 #endif
4835 }
4836
4837 if (dirty & IRIS_DIRTY_SCISSOR_RECT) {
4838 uint32_t scissor_offset =
4839 emit_state(batch, ice->state.dynamic_uploader,
4840 &ice->state.last_res.scissor,
4841 ice->state.scissors,
4842 sizeof(struct pipe_scissor_state) *
4843 ice->state.num_viewports, 32);
4844
4845 iris_emit_cmd(batch, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
4846 ptr.ScissorRectPointer = scissor_offset;
4847 }
4848 }
4849
4850 if (dirty & IRIS_DIRTY_DEPTH_BUFFER) {
4851 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
4852
4853 /* Do not emit the clear params yets. We need to update the clear value
4854 * first.
4855 */
4856 uint32_t clear_length = GENX(3DSTATE_CLEAR_PARAMS_length) * 4;
4857 uint32_t cso_z_size = sizeof(cso_z->packets) - clear_length;
4858 iris_batch_emit(batch, cso_z->packets, cso_z_size);
4859
4860 union isl_color_value clear_value = { .f32 = { 0, } };
4861
4862 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4863 if (cso_fb->zsbuf) {
4864 struct iris_resource *zres, *sres;
4865 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
4866 &zres, &sres);
4867 if (zres && zres->aux.bo)
4868 clear_value = iris_resource_get_clear_color(zres, NULL, NULL);
4869 }
4870
4871 uint32_t clear_params[GENX(3DSTATE_CLEAR_PARAMS_length)];
4872 iris_pack_command(GENX(3DSTATE_CLEAR_PARAMS), clear_params, clear) {
4873 clear.DepthClearValueValid = true;
4874 clear.DepthClearValue = clear_value.f32[0];
4875 }
4876 iris_batch_emit(batch, clear_params, clear_length);
4877 }
4878
4879 if (dirty & (IRIS_DIRTY_DEPTH_BUFFER | IRIS_DIRTY_WM_DEPTH_STENCIL)) {
4880 /* Listen for buffer changes, and also write enable changes. */
4881 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4882 pin_depth_and_stencil_buffers(batch, cso_fb->zsbuf, ice->state.cso_zsa);
4883 }
4884
4885 if (dirty & IRIS_DIRTY_POLYGON_STIPPLE) {
4886 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
4887 for (int i = 0; i < 32; i++) {
4888 poly.PatternRow[i] = ice->state.poly_stipple.stipple[i];
4889 }
4890 }
4891 }
4892
4893 if (dirty & IRIS_DIRTY_LINE_STIPPLE) {
4894 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4895 iris_batch_emit(batch, cso->line_stipple, sizeof(cso->line_stipple));
4896 }
4897
4898 if (dirty & IRIS_DIRTY_VF_TOPOLOGY) {
4899 iris_emit_cmd(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
4900 topo.PrimitiveTopologyType =
4901 translate_prim_type(draw->mode, draw->vertices_per_patch);
4902 }
4903 }
4904
4905 if (dirty & IRIS_DIRTY_VERTEX_BUFFERS) {
4906 int count = util_bitcount64(ice->state.bound_vertex_buffers);
4907 int dynamic_bound = ice->state.bound_vertex_buffers;
4908
4909 if (ice->state.vs_uses_draw_params) {
4910 if (ice->draw.draw_params_offset == 0) {
4911 u_upload_data(ice->ctx.stream_uploader, 0, sizeof(ice->draw.params),
4912 4, &ice->draw.params, &ice->draw.draw_params_offset,
4913 &ice->draw.draw_params_res);
4914 }
4915 assert(ice->draw.draw_params_res);
4916
4917 struct iris_vertex_buffer_state *state =
4918 &(ice->state.genx->vertex_buffers[count]);
4919 pipe_resource_reference(&state->resource, ice->draw.draw_params_res);
4920 struct iris_resource *res = (void *) state->resource;
4921
4922 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
4923 vb.VertexBufferIndex = count;
4924 vb.AddressModifyEnable = true;
4925 vb.BufferPitch = 0;
4926 vb.BufferSize = res->bo->size - ice->draw.draw_params_offset;
4927 vb.BufferStartingAddress =
4928 ro_bo(NULL, res->bo->gtt_offset +
4929 (int) ice->draw.draw_params_offset);
4930 vb.MOCS = mocs(res->bo);
4931 }
4932 dynamic_bound |= 1ull << count;
4933 count++;
4934 }
4935
4936 if (ice->state.vs_uses_derived_draw_params) {
4937 u_upload_data(ice->ctx.stream_uploader, 0,
4938 sizeof(ice->draw.derived_params), 4,
4939 &ice->draw.derived_params,
4940 &ice->draw.derived_draw_params_offset,
4941 &ice->draw.derived_draw_params_res);
4942
4943 struct iris_vertex_buffer_state *state =
4944 &(ice->state.genx->vertex_buffers[count]);
4945 pipe_resource_reference(&state->resource,
4946 ice->draw.derived_draw_params_res);
4947 struct iris_resource *res = (void *) ice->draw.derived_draw_params_res;
4948
4949 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
4950 vb.VertexBufferIndex = count;
4951 vb.AddressModifyEnable = true;
4952 vb.BufferPitch = 0;
4953 vb.BufferSize =
4954 res->bo->size - ice->draw.derived_draw_params_offset;
4955 vb.BufferStartingAddress =
4956 ro_bo(NULL, res->bo->gtt_offset +
4957 (int) ice->draw.derived_draw_params_offset);
4958 vb.MOCS = mocs(res->bo);
4959 }
4960 dynamic_bound |= 1ull << count;
4961 count++;
4962 }
4963
4964 if (count) {
4965 /* The VF cache designers cut corners, and made the cache key's
4966 * <VertexBufferIndex, Memory Address> tuple only consider the bottom
4967 * 32 bits of the address. If you have two vertex buffers which get
4968 * placed exactly 4 GiB apart and use them in back-to-back draw calls,
4969 * you can get collisions (even within a single batch).
4970 *
4971 * So, we need to do a VF cache invalidate if the buffer for a VB
4972 * slot slot changes [48:32] address bits from the previous time.
4973 */
4974 unsigned flush_flags = 0;
4975
4976 uint64_t bound = dynamic_bound;
4977 while (bound) {
4978 const int i = u_bit_scan64(&bound);
4979 uint16_t high_bits = 0;
4980
4981 struct iris_resource *res =
4982 (void *) genx->vertex_buffers[i].resource;
4983 if (res) {
4984 iris_use_pinned_bo(batch, res->bo, false);
4985
4986 high_bits = res->bo->gtt_offset >> 32ull;
4987 if (high_bits != ice->state.last_vbo_high_bits[i]) {
4988 flush_flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE |
4989 PIPE_CONTROL_CS_STALL;
4990 ice->state.last_vbo_high_bits[i] = high_bits;
4991 }
4992 }
4993 }
4994
4995 if (flush_flags) {
4996 iris_emit_pipe_control_flush(batch,
4997 "workaround: VF cache 32-bit key [VB]",
4998 flush_flags);
4999 }
5000
5001 const unsigned vb_dwords = GENX(VERTEX_BUFFER_STATE_length);
5002
5003 uint32_t *map =
5004 iris_get_command_space(batch, 4 * (1 + vb_dwords * count));
5005 _iris_pack_command(batch, GENX(3DSTATE_VERTEX_BUFFERS), map, vb) {
5006 vb.DWordLength = (vb_dwords * count + 1) - 2;
5007 }
5008 map += 1;
5009
5010 bound = dynamic_bound;
5011 while (bound) {
5012 const int i = u_bit_scan64(&bound);
5013 memcpy(map, genx->vertex_buffers[i].state,
5014 sizeof(uint32_t) * vb_dwords);
5015 map += vb_dwords;
5016 }
5017 }
5018 }
5019
5020 if (dirty & IRIS_DIRTY_VERTEX_ELEMENTS) {
5021 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
5022 const unsigned entries = MAX2(cso->count, 1);
5023 if (!(ice->state.vs_needs_sgvs_element ||
5024 ice->state.vs_uses_derived_draw_params ||
5025 ice->state.vs_needs_edge_flag)) {
5026 iris_batch_emit(batch, cso->vertex_elements, sizeof(uint32_t) *
5027 (1 + entries * GENX(VERTEX_ELEMENT_STATE_length)));
5028 } else {
5029 uint32_t dynamic_ves[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
5030 const unsigned dyn_count = cso->count +
5031 ice->state.vs_needs_sgvs_element +
5032 ice->state.vs_uses_derived_draw_params;
5033
5034 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS),
5035 &dynamic_ves, ve) {
5036 ve.DWordLength =
5037 1 + GENX(VERTEX_ELEMENT_STATE_length) * dyn_count - 2;
5038 }
5039 memcpy(&dynamic_ves[1], &cso->vertex_elements[1],
5040 (cso->count - ice->state.vs_needs_edge_flag) *
5041 GENX(VERTEX_ELEMENT_STATE_length) * sizeof(uint32_t));
5042 uint32_t *ve_pack_dest =
5043 &dynamic_ves[1 + (cso->count - ice->state.vs_needs_edge_flag) *
5044 GENX(VERTEX_ELEMENT_STATE_length)];
5045
5046 if (ice->state.vs_needs_sgvs_element) {
5047 uint32_t base_ctrl = ice->state.vs_uses_draw_params ?
5048 VFCOMP_STORE_SRC : VFCOMP_STORE_0;
5049 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
5050 ve.Valid = true;
5051 ve.VertexBufferIndex =
5052 util_bitcount64(ice->state.bound_vertex_buffers);
5053 ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
5054 ve.Component0Control = base_ctrl;
5055 ve.Component1Control = base_ctrl;
5056 ve.Component2Control = VFCOMP_STORE_0;
5057 ve.Component3Control = VFCOMP_STORE_0;
5058 }
5059 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
5060 }
5061 if (ice->state.vs_uses_derived_draw_params) {
5062 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
5063 ve.Valid = true;
5064 ve.VertexBufferIndex =
5065 util_bitcount64(ice->state.bound_vertex_buffers) +
5066 ice->state.vs_uses_draw_params;
5067 ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
5068 ve.Component0Control = VFCOMP_STORE_SRC;
5069 ve.Component1Control = VFCOMP_STORE_SRC;
5070 ve.Component2Control = VFCOMP_STORE_0;
5071 ve.Component3Control = VFCOMP_STORE_0;
5072 }
5073 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
5074 }
5075 if (ice->state.vs_needs_edge_flag) {
5076 for (int i = 0; i < GENX(VERTEX_ELEMENT_STATE_length); i++)
5077 ve_pack_dest[i] = cso->edgeflag_ve[i];
5078 }
5079
5080 iris_batch_emit(batch, &dynamic_ves, sizeof(uint32_t) *
5081 (1 + dyn_count * GENX(VERTEX_ELEMENT_STATE_length)));
5082 }
5083
5084 if (!ice->state.vs_needs_edge_flag) {
5085 iris_batch_emit(batch, cso->vf_instancing, sizeof(uint32_t) *
5086 entries * GENX(3DSTATE_VF_INSTANCING_length));
5087 } else {
5088 assert(cso->count > 0);
5089 const unsigned edgeflag_index = cso->count - 1;
5090 uint32_t dynamic_vfi[33 * GENX(3DSTATE_VF_INSTANCING_length)];
5091 memcpy(&dynamic_vfi[0], cso->vf_instancing, edgeflag_index *
5092 GENX(3DSTATE_VF_INSTANCING_length) * sizeof(uint32_t));
5093
5094 uint32_t *vfi_pack_dest = &dynamic_vfi[0] +
5095 edgeflag_index * GENX(3DSTATE_VF_INSTANCING_length);
5096 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
5097 vi.VertexElementIndex = edgeflag_index +
5098 ice->state.vs_needs_sgvs_element +
5099 ice->state.vs_uses_derived_draw_params;
5100 }
5101 for (int i = 0; i < GENX(3DSTATE_VF_INSTANCING_length); i++)
5102 vfi_pack_dest[i] |= cso->edgeflag_vfi[i];
5103
5104 iris_batch_emit(batch, &dynamic_vfi[0], sizeof(uint32_t) *
5105 entries * GENX(3DSTATE_VF_INSTANCING_length));
5106 }
5107 }
5108
5109 if (dirty & IRIS_DIRTY_VF_SGVS) {
5110 const struct brw_vs_prog_data *vs_prog_data = (void *)
5111 ice->shaders.prog[MESA_SHADER_VERTEX]->prog_data;
5112 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
5113
5114 iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS), sgv) {
5115 if (vs_prog_data->uses_vertexid) {
5116 sgv.VertexIDEnable = true;
5117 sgv.VertexIDComponentNumber = 2;
5118 sgv.VertexIDElementOffset =
5119 cso->count - ice->state.vs_needs_edge_flag;
5120 }
5121
5122 if (vs_prog_data->uses_instanceid) {
5123 sgv.InstanceIDEnable = true;
5124 sgv.InstanceIDComponentNumber = 3;
5125 sgv.InstanceIDElementOffset =
5126 cso->count - ice->state.vs_needs_edge_flag;
5127 }
5128 }
5129 }
5130
5131 if (dirty & IRIS_DIRTY_VF) {
5132 iris_emit_cmd(batch, GENX(3DSTATE_VF), vf) {
5133 if (draw->primitive_restart) {
5134 vf.IndexedDrawCutIndexEnable = true;
5135 vf.CutIndex = draw->restart_index;
5136 }
5137 }
5138 }
5139
5140 if (dirty & IRIS_DIRTY_VF_STATISTICS) {
5141 iris_emit_cmd(batch, GENX(3DSTATE_VF_STATISTICS), vf) {
5142 vf.StatisticsEnable = true;
5143 }
5144 }
5145
5146 /* TODO: Gen8 PMA fix */
5147 }
5148
5149 static void
5150 iris_upload_render_state(struct iris_context *ice,
5151 struct iris_batch *batch,
5152 const struct pipe_draw_info *draw)
5153 {
5154 bool use_predicate = ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT;
5155
5156 /* Always pin the binder. If we're emitting new binding table pointers,
5157 * we need it. If not, we're probably inheriting old tables via the
5158 * context, and need it anyway. Since true zero-bindings cases are
5159 * practically non-existent, just pin it and avoid last_res tracking.
5160 */
5161 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
5162
5163 if (!batch->contains_draw) {
5164 iris_restore_render_saved_bos(ice, batch, draw);
5165 batch->contains_draw = true;
5166 }
5167
5168 iris_upload_dirty_render_state(ice, batch, draw);
5169
5170 if (draw->index_size > 0) {
5171 unsigned offset;
5172
5173 if (draw->has_user_indices) {
5174 u_upload_data(ice->ctx.stream_uploader, 0,
5175 draw->count * draw->index_size, 4, draw->index.user,
5176 &offset, &ice->state.last_res.index_buffer);
5177 } else {
5178 struct iris_resource *res = (void *) draw->index.resource;
5179 res->bind_history |= PIPE_BIND_INDEX_BUFFER;
5180
5181 pipe_resource_reference(&ice->state.last_res.index_buffer,
5182 draw->index.resource);
5183 offset = 0;
5184 }
5185
5186 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
5187
5188 iris_emit_cmd(batch, GENX(3DSTATE_INDEX_BUFFER), ib) {
5189 ib.IndexFormat = draw->index_size >> 1;
5190 ib.MOCS = mocs(bo);
5191 ib.BufferSize = bo->size - offset;
5192 ib.BufferStartingAddress = ro_bo(bo, offset);
5193 }
5194
5195 /* The VF cache key only uses 32-bits, see vertex buffer comment above */
5196 uint16_t high_bits = bo->gtt_offset >> 32ull;
5197 if (high_bits != ice->state.last_index_bo_high_bits) {
5198 iris_emit_pipe_control_flush(batch,
5199 "workaround: VF cache 32-bit key [IB]",
5200 PIPE_CONTROL_VF_CACHE_INVALIDATE |
5201 PIPE_CONTROL_CS_STALL);
5202 ice->state.last_index_bo_high_bits = high_bits;
5203 }
5204 }
5205
5206 #define _3DPRIM_END_OFFSET 0x2420
5207 #define _3DPRIM_START_VERTEX 0x2430
5208 #define _3DPRIM_VERTEX_COUNT 0x2434
5209 #define _3DPRIM_INSTANCE_COUNT 0x2438
5210 #define _3DPRIM_START_INSTANCE 0x243C
5211 #define _3DPRIM_BASE_VERTEX 0x2440
5212
5213 if (draw->indirect) {
5214 if (draw->indirect->indirect_draw_count) {
5215 use_predicate = true;
5216
5217 struct iris_bo *draw_count_bo =
5218 iris_resource_bo(draw->indirect->indirect_draw_count);
5219 unsigned draw_count_offset =
5220 draw->indirect->indirect_draw_count_offset;
5221
5222 iris_emit_pipe_control_flush(batch,
5223 "ensure indirect draw buffer is flushed",
5224 PIPE_CONTROL_FLUSH_ENABLE);
5225
5226 if (ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT) {
5227 static const uint32_t math[] = {
5228 MI_MATH | (9 - 2),
5229 /* Compute (draw index < draw count).
5230 * We do this by subtracting and storing the carry bit.
5231 */
5232 MI_ALU2(LOAD, SRCA, R0),
5233 MI_ALU2(LOAD, SRCB, R1),
5234 MI_ALU0(SUB),
5235 MI_ALU2(STORE, R3, CF),
5236 /* Compute (subtracting result & MI_PREDICATE). */
5237 MI_ALU2(LOAD, SRCA, R3),
5238 MI_ALU2(LOAD, SRCB, R2),
5239 MI_ALU0(AND),
5240 MI_ALU2(STORE, R3, ACCU),
5241 };
5242
5243 /* Upload the current draw count from the draw parameters
5244 * buffer to GPR1.
5245 */
5246 ice->vtbl.load_register_mem32(batch, CS_GPR(1), draw_count_bo,
5247 draw_count_offset);
5248 /* Zero the top 32-bits of GPR1. */
5249 ice->vtbl.load_register_imm32(batch, CS_GPR(1) + 4, 0);
5250 /* Upload the id of the current primitive to GPR0. */
5251 ice->vtbl.load_register_imm64(batch, CS_GPR(0), draw->drawid);
5252
5253 iris_batch_emit(batch, math, sizeof(math));
5254
5255 /* Store result of MI_MATH computations to MI_PREDICATE_RESULT. */
5256 ice->vtbl.load_register_reg64(batch,
5257 MI_PREDICATE_RESULT, CS_GPR(3));
5258 } else {
5259 uint32_t mi_predicate;
5260
5261 /* Upload the id of the current primitive to MI_PREDICATE_SRC1. */
5262 ice->vtbl.load_register_imm64(batch, MI_PREDICATE_SRC1,
5263 draw->drawid);
5264 /* Upload the current draw count from the draw parameters buffer
5265 * to MI_PREDICATE_SRC0.
5266 */
5267 ice->vtbl.load_register_mem32(batch, MI_PREDICATE_SRC0,
5268 draw_count_bo, draw_count_offset);
5269 /* Zero the top 32-bits of MI_PREDICATE_SRC0 */
5270 ice->vtbl.load_register_imm32(batch, MI_PREDICATE_SRC0 + 4, 0);
5271
5272 if (draw->drawid == 0) {
5273 mi_predicate = MI_PREDICATE | MI_PREDICATE_LOADOP_LOADINV |
5274 MI_PREDICATE_COMBINEOP_SET |
5275 MI_PREDICATE_COMPAREOP_SRCS_EQUAL;
5276 } else {
5277 /* While draw_index < draw_count the predicate's result will be
5278 * (draw_index == draw_count) ^ TRUE = TRUE
5279 * When draw_index == draw_count the result is
5280 * (TRUE) ^ TRUE = FALSE
5281 * After this all results will be:
5282 * (FALSE) ^ FALSE = FALSE
5283 */
5284 mi_predicate = MI_PREDICATE | MI_PREDICATE_LOADOP_LOAD |
5285 MI_PREDICATE_COMBINEOP_XOR |
5286 MI_PREDICATE_COMPAREOP_SRCS_EQUAL;
5287 }
5288 iris_batch_emit(batch, &mi_predicate, sizeof(uint32_t));
5289 }
5290 }
5291 struct iris_bo *bo = iris_resource_bo(draw->indirect->buffer);
5292 assert(bo);
5293
5294 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5295 lrm.RegisterAddress = _3DPRIM_VERTEX_COUNT;
5296 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 0);
5297 }
5298 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5299 lrm.RegisterAddress = _3DPRIM_INSTANCE_COUNT;
5300 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 4);
5301 }
5302 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5303 lrm.RegisterAddress = _3DPRIM_START_VERTEX;
5304 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 8);
5305 }
5306 if (draw->index_size) {
5307 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5308 lrm.RegisterAddress = _3DPRIM_BASE_VERTEX;
5309 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
5310 }
5311 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5312 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
5313 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 16);
5314 }
5315 } else {
5316 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5317 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
5318 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
5319 }
5320 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
5321 lri.RegisterOffset = _3DPRIM_BASE_VERTEX;
5322 lri.DataDWord = 0;
5323 }
5324 }
5325 } else if (draw->count_from_stream_output) {
5326 struct iris_stream_output_target *so =
5327 (void *) draw->count_from_stream_output;
5328
5329 /* XXX: Replace with actual cache tracking */
5330 iris_emit_pipe_control_flush(batch,
5331 "draw count from stream output stall",
5332 PIPE_CONTROL_CS_STALL);
5333
5334 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5335 lrm.RegisterAddress = CS_GPR(0);
5336 lrm.MemoryAddress =
5337 ro_bo(iris_resource_bo(so->offset.res), so->offset.offset);
5338 }
5339
5340 if (so->base.buffer_offset)
5341 genX(math_add32_gpr0)(ice, batch, -so->base.buffer_offset);
5342 genX(math_div32_gpr0)(ice, batch, so->stride);
5343
5344 _iris_emit_lrr(batch, _3DPRIM_VERTEX_COUNT, CS_GPR(0));
5345
5346 _iris_emit_lri(batch, _3DPRIM_START_VERTEX, 0);
5347 _iris_emit_lri(batch, _3DPRIM_BASE_VERTEX, 0);
5348 _iris_emit_lri(batch, _3DPRIM_START_INSTANCE, 0);
5349 _iris_emit_lri(batch, _3DPRIM_INSTANCE_COUNT, draw->instance_count);
5350 }
5351
5352 iris_emit_cmd(batch, GENX(3DPRIMITIVE), prim) {
5353 prim.VertexAccessType = draw->index_size > 0 ? RANDOM : SEQUENTIAL;
5354 prim.PredicateEnable = use_predicate;
5355
5356 if (draw->indirect || draw->count_from_stream_output) {
5357 prim.IndirectParameterEnable = true;
5358 } else {
5359 prim.StartInstanceLocation = draw->start_instance;
5360 prim.InstanceCount = draw->instance_count;
5361 prim.VertexCountPerInstance = draw->count;
5362
5363 prim.StartVertexLocation = draw->start;
5364
5365 if (draw->index_size) {
5366 prim.BaseVertexLocation += draw->index_bias;
5367 } else {
5368 prim.StartVertexLocation += draw->index_bias;
5369 }
5370 }
5371 }
5372 }
5373
5374 static void
5375 iris_upload_compute_state(struct iris_context *ice,
5376 struct iris_batch *batch,
5377 const struct pipe_grid_info *grid)
5378 {
5379 const uint64_t dirty = ice->state.dirty;
5380 struct iris_screen *screen = batch->screen;
5381 const struct gen_device_info *devinfo = &screen->devinfo;
5382 struct iris_binder *binder = &ice->state.binder;
5383 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
5384 struct iris_compiled_shader *shader =
5385 ice->shaders.prog[MESA_SHADER_COMPUTE];
5386 struct brw_stage_prog_data *prog_data = shader->prog_data;
5387 struct brw_cs_prog_data *cs_prog_data = (void *) prog_data;
5388
5389 /* Always pin the binder. If we're emitting new binding table pointers,
5390 * we need it. If not, we're probably inheriting old tables via the
5391 * context, and need it anyway. Since true zero-bindings cases are
5392 * practically non-existent, just pin it and avoid last_res tracking.
5393 */
5394 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
5395
5396 if ((dirty & IRIS_DIRTY_CONSTANTS_CS) && shs->sysvals_need_upload)
5397 upload_sysvals(ice, MESA_SHADER_COMPUTE);
5398
5399 if (dirty & IRIS_DIRTY_BINDINGS_CS)
5400 iris_populate_binding_table(ice, batch, MESA_SHADER_COMPUTE, false);
5401
5402 if (dirty & IRIS_DIRTY_SAMPLER_STATES_CS)
5403 iris_upload_sampler_states(ice, MESA_SHADER_COMPUTE);
5404
5405 iris_use_optional_res(batch, shs->sampler_table.res, false);
5406 iris_use_pinned_bo(batch, iris_resource_bo(shader->assembly.res), false);
5407
5408 if (ice->state.need_border_colors)
5409 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
5410
5411 if (dirty & IRIS_DIRTY_CS) {
5412 /* The MEDIA_VFE_STATE documentation for Gen8+ says:
5413 *
5414 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
5415 * the only bits that are changed are scoreboard related: Scoreboard
5416 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard Delta. For
5417 * these scoreboard related states, a MEDIA_STATE_FLUSH is
5418 * sufficient."
5419 */
5420 iris_emit_pipe_control_flush(batch,
5421 "workaround: stall before MEDIA_VFE_STATE",
5422 PIPE_CONTROL_CS_STALL);
5423
5424 iris_emit_cmd(batch, GENX(MEDIA_VFE_STATE), vfe) {
5425 if (prog_data->total_scratch) {
5426 struct iris_bo *bo =
5427 iris_get_scratch_space(ice, prog_data->total_scratch,
5428 MESA_SHADER_COMPUTE);
5429 vfe.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
5430 vfe.ScratchSpaceBasePointer = rw_bo(bo, 0);
5431 }
5432
5433 vfe.MaximumNumberofThreads =
5434 devinfo->max_cs_threads * screen->subslice_total - 1;
5435 #if GEN_GEN < 11
5436 vfe.ResetGatewayTimer =
5437 Resettingrelativetimerandlatchingtheglobaltimestamp;
5438 #endif
5439 #if GEN_GEN == 8
5440 vfe.BypassGatewayControl = true;
5441 #endif
5442 vfe.NumberofURBEntries = 2;
5443 vfe.URBEntryAllocationSize = 2;
5444
5445 vfe.CURBEAllocationSize =
5446 ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
5447 cs_prog_data->push.cross_thread.regs, 2);
5448 }
5449 }
5450
5451 /* TODO: Combine subgroup-id with cbuf0 so we can push regular uniforms */
5452 if (dirty & IRIS_DIRTY_CS) {
5453 uint32_t curbe_data_offset = 0;
5454 assert(cs_prog_data->push.cross_thread.dwords == 0 &&
5455 cs_prog_data->push.per_thread.dwords == 1 &&
5456 cs_prog_data->base.param[0] == BRW_PARAM_BUILTIN_SUBGROUP_ID);
5457 uint32_t *curbe_data_map =
5458 stream_state(batch, ice->state.dynamic_uploader,
5459 &ice->state.last_res.cs_thread_ids,
5460 ALIGN(cs_prog_data->push.total.size, 64), 64,
5461 &curbe_data_offset);
5462 assert(curbe_data_map);
5463 memset(curbe_data_map, 0x5a, ALIGN(cs_prog_data->push.total.size, 64));
5464 iris_fill_cs_push_const_buffer(cs_prog_data, curbe_data_map);
5465
5466 iris_emit_cmd(batch, GENX(MEDIA_CURBE_LOAD), curbe) {
5467 curbe.CURBETotalDataLength =
5468 ALIGN(cs_prog_data->push.total.size, 64);
5469 curbe.CURBEDataStartAddress = curbe_data_offset;
5470 }
5471 }
5472
5473 if (dirty & (IRIS_DIRTY_SAMPLER_STATES_CS |
5474 IRIS_DIRTY_BINDINGS_CS |
5475 IRIS_DIRTY_CONSTANTS_CS |
5476 IRIS_DIRTY_CS)) {
5477 uint32_t desc[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
5478
5479 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), desc, idd) {
5480 idd.SamplerStatePointer = shs->sampler_table.offset;
5481 idd.BindingTablePointer = binder->bt_offset[MESA_SHADER_COMPUTE];
5482 }
5483
5484 for (int i = 0; i < GENX(INTERFACE_DESCRIPTOR_DATA_length); i++)
5485 desc[i] |= ((uint32_t *) shader->derived_data)[i];
5486
5487 iris_emit_cmd(batch, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
5488 load.InterfaceDescriptorTotalLength =
5489 GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
5490 load.InterfaceDescriptorDataStartAddress =
5491 emit_state(batch, ice->state.dynamic_uploader,
5492 &ice->state.last_res.cs_desc, desc, sizeof(desc), 64);
5493 }
5494 }
5495
5496 uint32_t group_size = grid->block[0] * grid->block[1] * grid->block[2];
5497 uint32_t remainder = group_size & (cs_prog_data->simd_size - 1);
5498 uint32_t right_mask;
5499
5500 if (remainder > 0)
5501 right_mask = ~0u >> (32 - remainder);
5502 else
5503 right_mask = ~0u >> (32 - cs_prog_data->simd_size);
5504
5505 #define GPGPU_DISPATCHDIMX 0x2500
5506 #define GPGPU_DISPATCHDIMY 0x2504
5507 #define GPGPU_DISPATCHDIMZ 0x2508
5508
5509 if (grid->indirect) {
5510 struct iris_state_ref *grid_size = &ice->state.grid_size;
5511 struct iris_bo *bo = iris_resource_bo(grid_size->res);
5512 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5513 lrm.RegisterAddress = GPGPU_DISPATCHDIMX;
5514 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 0);
5515 }
5516 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5517 lrm.RegisterAddress = GPGPU_DISPATCHDIMY;
5518 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 4);
5519 }
5520 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5521 lrm.RegisterAddress = GPGPU_DISPATCHDIMZ;
5522 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 8);
5523 }
5524 }
5525
5526 iris_emit_cmd(batch, GENX(GPGPU_WALKER), ggw) {
5527 ggw.IndirectParameterEnable = grid->indirect != NULL;
5528 ggw.SIMDSize = cs_prog_data->simd_size / 16;
5529 ggw.ThreadDepthCounterMaximum = 0;
5530 ggw.ThreadHeightCounterMaximum = 0;
5531 ggw.ThreadWidthCounterMaximum = cs_prog_data->threads - 1;
5532 ggw.ThreadGroupIDXDimension = grid->grid[0];
5533 ggw.ThreadGroupIDYDimension = grid->grid[1];
5534 ggw.ThreadGroupIDZDimension = grid->grid[2];
5535 ggw.RightExecutionMask = right_mask;
5536 ggw.BottomExecutionMask = 0xffffffff;
5537 }
5538
5539 iris_emit_cmd(batch, GENX(MEDIA_STATE_FLUSH), msf);
5540
5541 if (!batch->contains_draw) {
5542 iris_restore_compute_saved_bos(ice, batch, grid);
5543 batch->contains_draw = true;
5544 }
5545 }
5546
5547 /**
5548 * State module teardown.
5549 */
5550 static void
5551 iris_destroy_state(struct iris_context *ice)
5552 {
5553 struct iris_genx_state *genx = ice->state.genx;
5554
5555 pipe_resource_reference(&ice->draw.draw_params_res, NULL);
5556 pipe_resource_reference(&ice->draw.derived_draw_params_res, NULL);
5557
5558 uint64_t bound_vbs = ice->state.bound_vertex_buffers;
5559 while (bound_vbs) {
5560 const int i = u_bit_scan64(&bound_vbs);
5561 pipe_resource_reference(&genx->vertex_buffers[i].resource, NULL);
5562 }
5563 free(ice->state.genx);
5564
5565 for (int i = 0; i < 4; i++) {
5566 pipe_so_target_reference(&ice->state.so_target[i], NULL);
5567 }
5568
5569 for (unsigned i = 0; i < ice->state.framebuffer.nr_cbufs; i++) {
5570 pipe_surface_reference(&ice->state.framebuffer.cbufs[i], NULL);
5571 }
5572 pipe_surface_reference(&ice->state.framebuffer.zsbuf, NULL);
5573
5574 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
5575 struct iris_shader_state *shs = &ice->state.shaders[stage];
5576 pipe_resource_reference(&shs->sampler_table.res, NULL);
5577 for (int i = 0; i < PIPE_MAX_CONSTANT_BUFFERS; i++) {
5578 pipe_resource_reference(&shs->constbuf[i].buffer, NULL);
5579 pipe_resource_reference(&shs->constbuf_surf_state[i].res, NULL);
5580 }
5581 for (int i = 0; i < PIPE_MAX_SHADER_IMAGES; i++) {
5582 pipe_resource_reference(&shs->image[i].base.resource, NULL);
5583 pipe_resource_reference(&shs->image[i].surface_state.res, NULL);
5584 }
5585 for (int i = 0; i < PIPE_MAX_SHADER_BUFFERS; i++) {
5586 pipe_resource_reference(&shs->ssbo[i].buffer, NULL);
5587 pipe_resource_reference(&shs->ssbo_surf_state[i].res, NULL);
5588 }
5589 for (int i = 0; i < IRIS_MAX_TEXTURE_SAMPLERS; i++) {
5590 pipe_sampler_view_reference((struct pipe_sampler_view **)
5591 &shs->textures[i], NULL);
5592 }
5593 }
5594
5595 pipe_resource_reference(&ice->state.grid_size.res, NULL);
5596 pipe_resource_reference(&ice->state.grid_surf_state.res, NULL);
5597
5598 pipe_resource_reference(&ice->state.null_fb.res, NULL);
5599 pipe_resource_reference(&ice->state.unbound_tex.res, NULL);
5600
5601 pipe_resource_reference(&ice->state.last_res.cc_vp, NULL);
5602 pipe_resource_reference(&ice->state.last_res.sf_cl_vp, NULL);
5603 pipe_resource_reference(&ice->state.last_res.color_calc, NULL);
5604 pipe_resource_reference(&ice->state.last_res.scissor, NULL);
5605 pipe_resource_reference(&ice->state.last_res.blend, NULL);
5606 pipe_resource_reference(&ice->state.last_res.index_buffer, NULL);
5607 pipe_resource_reference(&ice->state.last_res.cs_thread_ids, NULL);
5608 pipe_resource_reference(&ice->state.last_res.cs_desc, NULL);
5609 }
5610
5611 /* ------------------------------------------------------------------- */
5612
5613 static void
5614 iris_rebind_buffer(struct iris_context *ice,
5615 struct iris_resource *res,
5616 uint64_t old_address)
5617 {
5618 struct pipe_context *ctx = &ice->ctx;
5619 struct iris_screen *screen = (void *) ctx->screen;
5620 struct iris_genx_state *genx = ice->state.genx;
5621
5622 assert(res->base.target == PIPE_BUFFER);
5623
5624 /* Buffers can't be framebuffer attachments, nor display related,
5625 * and we don't have upstream Clover support.
5626 */
5627 assert(!(res->bind_history & (PIPE_BIND_DEPTH_STENCIL |
5628 PIPE_BIND_RENDER_TARGET |
5629 PIPE_BIND_BLENDABLE |
5630 PIPE_BIND_DISPLAY_TARGET |
5631 PIPE_BIND_CURSOR |
5632 PIPE_BIND_COMPUTE_RESOURCE |
5633 PIPE_BIND_GLOBAL)));
5634
5635 if (res->bind_history & PIPE_BIND_VERTEX_BUFFER) {
5636 uint64_t bound_vbs = ice->state.bound_vertex_buffers;
5637 while (bound_vbs) {
5638 const int i = u_bit_scan64(&bound_vbs);
5639 struct iris_vertex_buffer_state *state = &genx->vertex_buffers[i];
5640
5641 /* Update the CPU struct */
5642 STATIC_ASSERT(GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_start) == 32);
5643 STATIC_ASSERT(GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_bits) == 64);
5644 uint64_t *addr = (uint64_t *) &state->state[1];
5645
5646 if (*addr == old_address) {
5647 *addr = res->bo->gtt_offset;
5648 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
5649 }
5650 }
5651 }
5652
5653 /* No need to handle these:
5654 * - PIPE_BIND_INDEX_BUFFER (emitted for every indexed draw)
5655 * - PIPE_BIND_COMMAND_ARGS_BUFFER (emitted for every indirect draw)
5656 * - PIPE_BIND_QUERY_BUFFER (no persistent state references)
5657 */
5658
5659 if (res->bind_history & PIPE_BIND_STREAM_OUTPUT) {
5660 /* XXX: be careful about resetting vs appending... */
5661 assert(false);
5662 }
5663
5664 for (int s = MESA_SHADER_VERTEX; s < MESA_SHADER_STAGES; s++) {
5665 struct iris_shader_state *shs = &ice->state.shaders[s];
5666 enum pipe_shader_type p_stage = stage_to_pipe(s);
5667
5668 if (res->bind_history & PIPE_BIND_CONSTANT_BUFFER) {
5669 /* Skip constant buffer 0, it's for regular uniforms, not UBOs */
5670 uint32_t bound_cbufs = shs->bound_cbufs & ~1u;
5671 while (bound_cbufs) {
5672 const int i = u_bit_scan(&bound_cbufs);
5673 struct pipe_shader_buffer *cbuf = &shs->constbuf[i];
5674 struct iris_state_ref *surf_state = &shs->constbuf_surf_state[i];
5675
5676 if (res->bo == iris_resource_bo(cbuf->buffer)) {
5677 iris_upload_ubo_ssbo_surf_state(ice, cbuf, surf_state, false);
5678 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << s;
5679 }
5680 }
5681 }
5682
5683 if (res->bind_history & PIPE_BIND_SHADER_BUFFER) {
5684 uint32_t bound_ssbos = shs->bound_ssbos;
5685 while (bound_ssbos) {
5686 const int i = u_bit_scan(&bound_ssbos);
5687 struct pipe_shader_buffer *ssbo = &shs->ssbo[i];
5688
5689 if (res->bo == iris_resource_bo(ssbo->buffer)) {
5690 struct pipe_shader_buffer buf = {
5691 .buffer = &res->base,
5692 .buffer_offset = ssbo->buffer_offset,
5693 .buffer_size = ssbo->buffer_size,
5694 };
5695 iris_set_shader_buffers(ctx, p_stage, i, 1, &buf,
5696 (shs->writable_ssbos >> i) & 1);
5697 }
5698 }
5699 }
5700
5701 if (res->bind_history & PIPE_BIND_SAMPLER_VIEW) {
5702 uint32_t bound_sampler_views = shs->bound_sampler_views;
5703 while (bound_sampler_views) {
5704 const int i = u_bit_scan(&bound_sampler_views);
5705 struct iris_sampler_view *isv = shs->textures[i];
5706
5707 if (res->bo == iris_resource_bo(isv->base.texture)) {
5708 void *map = alloc_surface_states(ice->state.surface_uploader,
5709 &isv->surface_state,
5710 isv->res->aux.sampler_usages);
5711 assert(map);
5712 fill_buffer_surface_state(&screen->isl_dev, isv->res, map,
5713 isv->view.format, isv->view.swizzle,
5714 isv->base.u.buf.offset,
5715 isv->base.u.buf.size);
5716 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << s;
5717 }
5718 }
5719 }
5720
5721 if (res->bind_history & PIPE_BIND_SHADER_IMAGE) {
5722 uint32_t bound_image_views = shs->bound_image_views;
5723 while (bound_image_views) {
5724 const int i = u_bit_scan(&bound_image_views);
5725 struct iris_image_view *iv = &shs->image[i];
5726
5727 if (res->bo == iris_resource_bo(iv->base.resource)) {
5728 iris_set_shader_images(ctx, p_stage, i, 1, &iv->base);
5729 }
5730 }
5731 }
5732 }
5733 }
5734
5735 /* ------------------------------------------------------------------- */
5736
5737 static void
5738 iris_load_register_reg32(struct iris_batch *batch, uint32_t dst,
5739 uint32_t src)
5740 {
5741 _iris_emit_lrr(batch, dst, src);
5742 }
5743
5744 static void
5745 iris_load_register_reg64(struct iris_batch *batch, uint32_t dst,
5746 uint32_t src)
5747 {
5748 _iris_emit_lrr(batch, dst, src);
5749 _iris_emit_lrr(batch, dst + 4, src + 4);
5750 }
5751
5752 static void
5753 iris_load_register_imm32(struct iris_batch *batch, uint32_t reg,
5754 uint32_t val)
5755 {
5756 _iris_emit_lri(batch, reg, val);
5757 }
5758
5759 static void
5760 iris_load_register_imm64(struct iris_batch *batch, uint32_t reg,
5761 uint64_t val)
5762 {
5763 _iris_emit_lri(batch, reg + 0, val & 0xffffffff);
5764 _iris_emit_lri(batch, reg + 4, val >> 32);
5765 }
5766
5767 /**
5768 * Emit MI_LOAD_REGISTER_MEM to load a 32-bit MMIO register from a buffer.
5769 */
5770 static void
5771 iris_load_register_mem32(struct iris_batch *batch, uint32_t reg,
5772 struct iris_bo *bo, uint32_t offset)
5773 {
5774 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5775 lrm.RegisterAddress = reg;
5776 lrm.MemoryAddress = ro_bo(bo, offset);
5777 }
5778 }
5779
5780 /**
5781 * Load a 64-bit value from a buffer into a MMIO register via
5782 * two MI_LOAD_REGISTER_MEM commands.
5783 */
5784 static void
5785 iris_load_register_mem64(struct iris_batch *batch, uint32_t reg,
5786 struct iris_bo *bo, uint32_t offset)
5787 {
5788 iris_load_register_mem32(batch, reg + 0, bo, offset + 0);
5789 iris_load_register_mem32(batch, reg + 4, bo, offset + 4);
5790 }
5791
5792 static void
5793 iris_store_register_mem32(struct iris_batch *batch, uint32_t reg,
5794 struct iris_bo *bo, uint32_t offset,
5795 bool predicated)
5796 {
5797 iris_emit_cmd(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
5798 srm.RegisterAddress = reg;
5799 srm.MemoryAddress = rw_bo(bo, offset);
5800 srm.PredicateEnable = predicated;
5801 }
5802 }
5803
5804 static void
5805 iris_store_register_mem64(struct iris_batch *batch, uint32_t reg,
5806 struct iris_bo *bo, uint32_t offset,
5807 bool predicated)
5808 {
5809 iris_store_register_mem32(batch, reg + 0, bo, offset + 0, predicated);
5810 iris_store_register_mem32(batch, reg + 4, bo, offset + 4, predicated);
5811 }
5812
5813 static void
5814 iris_store_data_imm32(struct iris_batch *batch,
5815 struct iris_bo *bo, uint32_t offset,
5816 uint32_t imm)
5817 {
5818 iris_emit_cmd(batch, GENX(MI_STORE_DATA_IMM), sdi) {
5819 sdi.Address = rw_bo(bo, offset);
5820 sdi.ImmediateData = imm;
5821 }
5822 }
5823
5824 static void
5825 iris_store_data_imm64(struct iris_batch *batch,
5826 struct iris_bo *bo, uint32_t offset,
5827 uint64_t imm)
5828 {
5829 /* Can't use iris_emit_cmd because MI_STORE_DATA_IMM has a length of
5830 * 2 in genxml but it's actually variable length and we need 5 DWords.
5831 */
5832 void *map = iris_get_command_space(batch, 4 * 5);
5833 _iris_pack_command(batch, GENX(MI_STORE_DATA_IMM), map, sdi) {
5834 sdi.DWordLength = 5 - 2;
5835 sdi.Address = rw_bo(bo, offset);
5836 sdi.ImmediateData = imm;
5837 }
5838 }
5839
5840 static void
5841 iris_copy_mem_mem(struct iris_batch *batch,
5842 struct iris_bo *dst_bo, uint32_t dst_offset,
5843 struct iris_bo *src_bo, uint32_t src_offset,
5844 unsigned bytes)
5845 {
5846 /* MI_COPY_MEM_MEM operates on DWords. */
5847 assert(bytes % 4 == 0);
5848 assert(dst_offset % 4 == 0);
5849 assert(src_offset % 4 == 0);
5850
5851 for (unsigned i = 0; i < bytes; i += 4) {
5852 iris_emit_cmd(batch, GENX(MI_COPY_MEM_MEM), cp) {
5853 cp.DestinationMemoryAddress = rw_bo(dst_bo, dst_offset + i);
5854 cp.SourceMemoryAddress = ro_bo(src_bo, src_offset + i);
5855 }
5856 }
5857 }
5858
5859 /* ------------------------------------------------------------------- */
5860
5861 static unsigned
5862 flags_to_post_sync_op(uint32_t flags)
5863 {
5864 if (flags & PIPE_CONTROL_WRITE_IMMEDIATE)
5865 return WriteImmediateData;
5866
5867 if (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT)
5868 return WritePSDepthCount;
5869
5870 if (flags & PIPE_CONTROL_WRITE_TIMESTAMP)
5871 return WriteTimestamp;
5872
5873 return 0;
5874 }
5875
5876 /**
5877 * Do the given flags have a Post Sync or LRI Post Sync operation?
5878 */
5879 static enum pipe_control_flags
5880 get_post_sync_flags(enum pipe_control_flags flags)
5881 {
5882 flags &= PIPE_CONTROL_WRITE_IMMEDIATE |
5883 PIPE_CONTROL_WRITE_DEPTH_COUNT |
5884 PIPE_CONTROL_WRITE_TIMESTAMP |
5885 PIPE_CONTROL_LRI_POST_SYNC_OP;
5886
5887 /* Only one "Post Sync Op" is allowed, and it's mutually exclusive with
5888 * "LRI Post Sync Operation". So more than one bit set would be illegal.
5889 */
5890 assert(util_bitcount(flags) <= 1);
5891
5892 return flags;
5893 }
5894
5895 #define IS_COMPUTE_PIPELINE(batch) (batch->name == IRIS_BATCH_COMPUTE)
5896
5897 /**
5898 * Emit a series of PIPE_CONTROL commands, taking into account any
5899 * workarounds necessary to actually accomplish the caller's request.
5900 *
5901 * Unless otherwise noted, spec quotations in this function come from:
5902 *
5903 * Synchronization of the 3D Pipeline > PIPE_CONTROL Command > Programming
5904 * Restrictions for PIPE_CONTROL.
5905 *
5906 * You should not use this function directly. Use the helpers in
5907 * iris_pipe_control.c instead, which may split the pipe control further.
5908 */
5909 static void
5910 iris_emit_raw_pipe_control(struct iris_batch *batch,
5911 const char *reason,
5912 uint32_t flags,
5913 struct iris_bo *bo,
5914 uint32_t offset,
5915 uint64_t imm)
5916 {
5917 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
5918 enum pipe_control_flags post_sync_flags = get_post_sync_flags(flags);
5919 enum pipe_control_flags non_lri_post_sync_flags =
5920 post_sync_flags & ~PIPE_CONTROL_LRI_POST_SYNC_OP;
5921
5922 /* Recursive PIPE_CONTROL workarounds --------------------------------
5923 * (http://knowyourmeme.com/memes/xzibit-yo-dawg)
5924 *
5925 * We do these first because we want to look at the original operation,
5926 * rather than any workarounds we set.
5927 */
5928 if (GEN_GEN == 9 && (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE)) {
5929 /* The PIPE_CONTROL "VF Cache Invalidation Enable" bit description
5930 * lists several workarounds:
5931 *
5932 * "Project: SKL, KBL, BXT
5933 *
5934 * If the VF Cache Invalidation Enable is set to a 1 in a
5935 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields
5936 * sets to 0, with the VF Cache Invalidation Enable set to 0
5937 * needs to be sent prior to the PIPE_CONTROL with VF Cache
5938 * Invalidation Enable set to a 1."
5939 */
5940 iris_emit_raw_pipe_control(batch,
5941 "workaround: recursive VF cache invalidate",
5942 0, NULL, 0, 0);
5943 }
5944
5945 if (GEN_GEN == 9 && IS_COMPUTE_PIPELINE(batch) && post_sync_flags) {
5946 /* Project: SKL / Argument: LRI Post Sync Operation [23]
5947 *
5948 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
5949 * programmed prior to programming a PIPECONTROL command with "LRI
5950 * Post Sync Operation" in GPGPU mode of operation (i.e when
5951 * PIPELINE_SELECT command is set to GPGPU mode of operation)."
5952 *
5953 * The same text exists a few rows below for Post Sync Op.
5954 */
5955 iris_emit_raw_pipe_control(batch,
5956 "workaround: CS stall before gpgpu post-sync",
5957 PIPE_CONTROL_CS_STALL, bo, offset, imm);
5958 }
5959
5960 if (GEN_GEN == 10 && (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH)) {
5961 /* Cannonlake:
5962 * "Before sending a PIPE_CONTROL command with bit 12 set, SW must issue
5963 * another PIPE_CONTROL with Render Target Cache Flush Enable (bit 12)
5964 * = 0 and Pipe Control Flush Enable (bit 7) = 1"
5965 */
5966 iris_emit_raw_pipe_control(batch,
5967 "workaround: PC flush before RT flush",
5968 PIPE_CONTROL_FLUSH_ENABLE, bo, offset, imm);
5969 }
5970
5971 /* "Flush Types" workarounds ---------------------------------------------
5972 * We do these now because they may add post-sync operations or CS stalls.
5973 */
5974
5975 if (GEN_GEN < 11 && flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) {
5976 /* Project: BDW, SKL+ (stopping at CNL) / Argument: VF Invalidate
5977 *
5978 * "'Post Sync Operation' must be enabled to 'Write Immediate Data' or
5979 * 'Write PS Depth Count' or 'Write Timestamp'."
5980 */
5981 if (!bo) {
5982 flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
5983 post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
5984 non_lri_post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
5985 bo = batch->screen->workaround_bo;
5986 }
5987 }
5988
5989 /* #1130 from Gen10 workarounds page:
5990 *
5991 * "Enable Depth Stall on every Post Sync Op if Render target Cache
5992 * Flush is not enabled in same PIPE CONTROL and Enable Pixel score
5993 * board stall if Render target cache flush is enabled."
5994 *
5995 * Applicable to CNL B0 and C0 steppings only.
5996 *
5997 * The wording here is unclear, and this workaround doesn't look anything
5998 * like the internal bug report recommendations, but leave it be for now...
5999 */
6000 if (GEN_GEN == 10) {
6001 if (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) {
6002 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
6003 } else if (flags & non_lri_post_sync_flags) {
6004 flags |= PIPE_CONTROL_DEPTH_STALL;
6005 }
6006 }
6007
6008 if (flags & PIPE_CONTROL_DEPTH_STALL) {
6009 /* From the PIPE_CONTROL instruction table, bit 13 (Depth Stall Enable):
6010 *
6011 * "This bit must be DISABLED for operations other than writing
6012 * PS_DEPTH_COUNT."
6013 *
6014 * This seems like nonsense. An Ivybridge workaround requires us to
6015 * emit a PIPE_CONTROL with a depth stall and write immediate post-sync
6016 * operation. Gen8+ requires us to emit depth stalls and depth cache
6017 * flushes together. So, it's hard to imagine this means anything other
6018 * than "we originally intended this to be used for PS_DEPTH_COUNT".
6019 *
6020 * We ignore the supposed restriction and do nothing.
6021 */
6022 }
6023
6024 if (flags & (PIPE_CONTROL_RENDER_TARGET_FLUSH |
6025 PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
6026 /* From the PIPE_CONTROL instruction table, bit 12 and bit 1:
6027 *
6028 * "This bit must be DISABLED for End-of-pipe (Read) fences,
6029 * PS_DEPTH_COUNT or TIMESTAMP queries."
6030 *
6031 * TODO: Implement end-of-pipe checking.
6032 */
6033 assert(!(post_sync_flags & (PIPE_CONTROL_WRITE_DEPTH_COUNT |
6034 PIPE_CONTROL_WRITE_TIMESTAMP)));
6035 }
6036
6037 if (GEN_GEN < 11 && (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
6038 /* From the PIPE_CONTROL instruction table, bit 1:
6039 *
6040 * "This bit is ignored if Depth Stall Enable is set.
6041 * Further, the render cache is not flushed even if Write Cache
6042 * Flush Enable bit is set."
6043 *
6044 * We assert that the caller doesn't do this combination, to try and
6045 * prevent mistakes. It shouldn't hurt the GPU, though.
6046 *
6047 * We skip this check on Gen11+ as the "Stall at Pixel Scoreboard"
6048 * and "Render Target Flush" combo is explicitly required for BTI
6049 * update workarounds.
6050 */
6051 assert(!(flags & (PIPE_CONTROL_DEPTH_STALL |
6052 PIPE_CONTROL_RENDER_TARGET_FLUSH)));
6053 }
6054
6055 /* PIPE_CONTROL page workarounds ------------------------------------- */
6056
6057 if (GEN_GEN <= 8 && (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE)) {
6058 /* From the PIPE_CONTROL page itself:
6059 *
6060 * "IVB, HSW, BDW
6061 * Restriction: Pipe_control with CS-stall bit set must be issued
6062 * before a pipe-control command that has the State Cache
6063 * Invalidate bit set."
6064 */
6065 flags |= PIPE_CONTROL_CS_STALL;
6066 }
6067
6068 if (flags & PIPE_CONTROL_FLUSH_LLC) {
6069 /* From the PIPE_CONTROL instruction table, bit 26 (Flush LLC):
6070 *
6071 * "Project: ALL
6072 * SW must always program Post-Sync Operation to "Write Immediate
6073 * Data" when Flush LLC is set."
6074 *
6075 * For now, we just require the caller to do it.
6076 */
6077 assert(flags & PIPE_CONTROL_WRITE_IMMEDIATE);
6078 }
6079
6080 /* "Post-Sync Operation" workarounds -------------------------------- */
6081
6082 /* Project: All / Argument: Global Snapshot Count Reset [19]
6083 *
6084 * "This bit must not be exercised on any product.
6085 * Requires stall bit ([20] of DW1) set."
6086 *
6087 * We don't use this, so we just assert that it isn't used. The
6088 * PIPE_CONTROL instruction page indicates that they intended this
6089 * as a debug feature and don't think it is useful in production,
6090 * but it may actually be usable, should we ever want to.
6091 */
6092 assert((flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) == 0);
6093
6094 if (flags & (PIPE_CONTROL_MEDIA_STATE_CLEAR |
6095 PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE)) {
6096 /* Project: All / Arguments:
6097 *
6098 * - Generic Media State Clear [16]
6099 * - Indirect State Pointers Disable [16]
6100 *
6101 * "Requires stall bit ([20] of DW1) set."
6102 *
6103 * Also, the PIPE_CONTROL instruction table, bit 16 (Generic Media
6104 * State Clear) says:
6105 *
6106 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
6107 * programmed prior to programming a PIPECONTROL command with "Media
6108 * State Clear" set in GPGPU mode of operation"
6109 *
6110 * This is a subset of the earlier rule, so there's nothing to do.
6111 */
6112 flags |= PIPE_CONTROL_CS_STALL;
6113 }
6114
6115 if (flags & PIPE_CONTROL_STORE_DATA_INDEX) {
6116 /* Project: All / Argument: Store Data Index
6117 *
6118 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
6119 * than '0'."
6120 *
6121 * For now, we just assert that the caller does this. We might want to
6122 * automatically add a write to the workaround BO...
6123 */
6124 assert(non_lri_post_sync_flags != 0);
6125 }
6126
6127 if (flags & PIPE_CONTROL_SYNC_GFDT) {
6128 /* Project: All / Argument: Sync GFDT
6129 *
6130 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
6131 * than '0' or 0x2520[13] must be set."
6132 *
6133 * For now, we just assert that the caller does this.
6134 */
6135 assert(non_lri_post_sync_flags != 0);
6136 }
6137
6138 if (flags & PIPE_CONTROL_TLB_INVALIDATE) {
6139 /* Project: IVB+ / Argument: TLB inv
6140 *
6141 * "Requires stall bit ([20] of DW1) set."
6142 *
6143 * Also, from the PIPE_CONTROL instruction table:
6144 *
6145 * "Project: SKL+
6146 * Post Sync Operation or CS stall must be set to ensure a TLB
6147 * invalidation occurs. Otherwise no cycle will occur to the TLB
6148 * cache to invalidate."
6149 *
6150 * This is not a subset of the earlier rule, so there's nothing to do.
6151 */
6152 flags |= PIPE_CONTROL_CS_STALL;
6153 }
6154
6155 if (GEN_GEN == 9 && devinfo->gt == 4) {
6156 /* TODO: The big Skylake GT4 post sync op workaround */
6157 }
6158
6159 /* "GPGPU specific workarounds" (both post-sync and flush) ------------ */
6160
6161 if (IS_COMPUTE_PIPELINE(batch)) {
6162 if (GEN_GEN >= 9 && (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE)) {
6163 /* Project: SKL+ / Argument: Tex Invalidate
6164 * "Requires stall bit ([20] of DW) set for all GPGPU Workloads."
6165 */
6166 flags |= PIPE_CONTROL_CS_STALL;
6167 }
6168
6169 if (GEN_GEN == 8 && (post_sync_flags ||
6170 (flags & (PIPE_CONTROL_NOTIFY_ENABLE |
6171 PIPE_CONTROL_DEPTH_STALL |
6172 PIPE_CONTROL_RENDER_TARGET_FLUSH |
6173 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
6174 PIPE_CONTROL_DATA_CACHE_FLUSH)))) {
6175 /* Project: BDW / Arguments:
6176 *
6177 * - LRI Post Sync Operation [23]
6178 * - Post Sync Op [15:14]
6179 * - Notify En [8]
6180 * - Depth Stall [13]
6181 * - Render Target Cache Flush [12]
6182 * - Depth Cache Flush [0]
6183 * - DC Flush Enable [5]
6184 *
6185 * "Requires stall bit ([20] of DW) set for all GPGPU and Media
6186 * Workloads."
6187 */
6188 flags |= PIPE_CONTROL_CS_STALL;
6189
6190 /* Also, from the PIPE_CONTROL instruction table, bit 20:
6191 *
6192 * "Project: BDW
6193 * This bit must be always set when PIPE_CONTROL command is
6194 * programmed by GPGPU and MEDIA workloads, except for the cases
6195 * when only Read Only Cache Invalidation bits are set (State
6196 * Cache Invalidation Enable, Instruction cache Invalidation
6197 * Enable, Texture Cache Invalidation Enable, Constant Cache
6198 * Invalidation Enable). This is to WA FFDOP CG issue, this WA
6199 * need not implemented when FF_DOP_CG is disable via "Fixed
6200 * Function DOP Clock Gate Disable" bit in RC_PSMI_CTRL register."
6201 *
6202 * It sounds like we could avoid CS stalls in some cases, but we
6203 * don't currently bother. This list isn't exactly the list above,
6204 * either...
6205 */
6206 }
6207 }
6208
6209 /* "Stall" workarounds ----------------------------------------------
6210 * These have to come after the earlier ones because we may have added
6211 * some additional CS stalls above.
6212 */
6213
6214 if (GEN_GEN < 9 && (flags & PIPE_CONTROL_CS_STALL)) {
6215 /* Project: PRE-SKL, VLV, CHV
6216 *
6217 * "[All Stepping][All SKUs]:
6218 *
6219 * One of the following must also be set:
6220 *
6221 * - Render Target Cache Flush Enable ([12] of DW1)
6222 * - Depth Cache Flush Enable ([0] of DW1)
6223 * - Stall at Pixel Scoreboard ([1] of DW1)
6224 * - Depth Stall ([13] of DW1)
6225 * - Post-Sync Operation ([13] of DW1)
6226 * - DC Flush Enable ([5] of DW1)"
6227 *
6228 * If we don't already have one of those bits set, we choose to add
6229 * "Stall at Pixel Scoreboard". Some of the other bits require a
6230 * CS stall as a workaround (see above), which would send us into
6231 * an infinite recursion of PIPE_CONTROLs. "Stall at Pixel Scoreboard"
6232 * appears to be safe, so we choose that.
6233 */
6234 const uint32_t wa_bits = PIPE_CONTROL_RENDER_TARGET_FLUSH |
6235 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
6236 PIPE_CONTROL_WRITE_IMMEDIATE |
6237 PIPE_CONTROL_WRITE_DEPTH_COUNT |
6238 PIPE_CONTROL_WRITE_TIMESTAMP |
6239 PIPE_CONTROL_STALL_AT_SCOREBOARD |
6240 PIPE_CONTROL_DEPTH_STALL |
6241 PIPE_CONTROL_DATA_CACHE_FLUSH;
6242 if (!(flags & wa_bits))
6243 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
6244 }
6245
6246 /* Emit --------------------------------------------------------------- */
6247
6248 if (INTEL_DEBUG & DEBUG_PIPE_CONTROL) {
6249 fprintf(stderr,
6250 " PC [%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%"PRIx64"]: %s\n",
6251 (flags & PIPE_CONTROL_FLUSH_ENABLE) ? "PipeCon " : "",
6252 (flags & PIPE_CONTROL_CS_STALL) ? "CS " : "",
6253 (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD) ? "Scoreboard " : "",
6254 (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) ? "VF " : "",
6255 (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) ? "RT " : "",
6256 (flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE) ? "Const " : "",
6257 (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE) ? "TC " : "",
6258 (flags & PIPE_CONTROL_DATA_CACHE_FLUSH) ? "DC " : "",
6259 (flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH) ? "ZFlush " : "",
6260 (flags & PIPE_CONTROL_DEPTH_STALL) ? "ZStall " : "",
6261 (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE) ? "State " : "",
6262 (flags & PIPE_CONTROL_TLB_INVALIDATE) ? "TLB " : "",
6263 (flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE) ? "Inst " : "",
6264 (flags & PIPE_CONTROL_MEDIA_STATE_CLEAR) ? "MediaClear " : "",
6265 (flags & PIPE_CONTROL_NOTIFY_ENABLE) ? "Notify " : "",
6266 (flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) ?
6267 "SnapRes" : "",
6268 (flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE) ?
6269 "ISPDis" : "",
6270 (flags & PIPE_CONTROL_WRITE_IMMEDIATE) ? "WriteImm " : "",
6271 (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT) ? "WriteZCount " : "",
6272 (flags & PIPE_CONTROL_WRITE_TIMESTAMP) ? "WriteTimestamp " : "",
6273 imm, reason);
6274 }
6275
6276 iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
6277 pc.LRIPostSyncOperation = NoLRIOperation;
6278 pc.PipeControlFlushEnable = flags & PIPE_CONTROL_FLUSH_ENABLE;
6279 pc.DCFlushEnable = flags & PIPE_CONTROL_DATA_CACHE_FLUSH;
6280 pc.StoreDataIndex = 0;
6281 pc.CommandStreamerStallEnable = flags & PIPE_CONTROL_CS_STALL;
6282 pc.GlobalSnapshotCountReset =
6283 flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET;
6284 pc.TLBInvalidate = flags & PIPE_CONTROL_TLB_INVALIDATE;
6285 pc.GenericMediaStateClear = flags & PIPE_CONTROL_MEDIA_STATE_CLEAR;
6286 pc.StallAtPixelScoreboard = flags & PIPE_CONTROL_STALL_AT_SCOREBOARD;
6287 pc.RenderTargetCacheFlushEnable =
6288 flags & PIPE_CONTROL_RENDER_TARGET_FLUSH;
6289 pc.DepthCacheFlushEnable = flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH;
6290 pc.StateCacheInvalidationEnable =
6291 flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE;
6292 pc.VFCacheInvalidationEnable = flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
6293 pc.ConstantCacheInvalidationEnable =
6294 flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE;
6295 pc.PostSyncOperation = flags_to_post_sync_op(flags);
6296 pc.DepthStallEnable = flags & PIPE_CONTROL_DEPTH_STALL;
6297 pc.InstructionCacheInvalidateEnable =
6298 flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE;
6299 pc.NotifyEnable = flags & PIPE_CONTROL_NOTIFY_ENABLE;
6300 pc.IndirectStatePointersDisable =
6301 flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE;
6302 pc.TextureCacheInvalidationEnable =
6303 flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
6304 pc.Address = rw_bo(bo, offset);
6305 pc.ImmediateData = imm;
6306 }
6307 }
6308
6309 void
6310 genX(emit_urb_setup)(struct iris_context *ice,
6311 struct iris_batch *batch,
6312 const unsigned size[4],
6313 bool tess_present, bool gs_present)
6314 {
6315 const struct gen_device_info *devinfo = &batch->screen->devinfo;
6316 const unsigned push_size_kB = 32;
6317 unsigned entries[4];
6318 unsigned start[4];
6319
6320 ice->shaders.last_vs_entry_size = size[MESA_SHADER_VERTEX];
6321
6322 gen_get_urb_config(devinfo, 1024 * push_size_kB,
6323 1024 * ice->shaders.urb_size,
6324 tess_present, gs_present,
6325 size, entries, start);
6326
6327 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
6328 iris_emit_cmd(batch, GENX(3DSTATE_URB_VS), urb) {
6329 urb._3DCommandSubOpcode += i;
6330 urb.VSURBStartingAddress = start[i];
6331 urb.VSURBEntryAllocationSize = size[i] - 1;
6332 urb.VSNumberofURBEntries = entries[i];
6333 }
6334 }
6335 }
6336
6337 #if GEN_GEN == 9
6338 /**
6339 * Preemption on Gen9 has to be enabled or disabled in various cases.
6340 *
6341 * See these workarounds for preemption:
6342 * - WaDisableMidObjectPreemptionForGSLineStripAdj
6343 * - WaDisableMidObjectPreemptionForTrifanOrPolygon
6344 * - WaDisableMidObjectPreemptionForLineLoop
6345 * - WA#0798
6346 *
6347 * We don't put this in the vtable because it's only used on Gen9.
6348 */
6349 void
6350 gen9_toggle_preemption(struct iris_context *ice,
6351 struct iris_batch *batch,
6352 const struct pipe_draw_info *draw)
6353 {
6354 struct iris_genx_state *genx = ice->state.genx;
6355 bool object_preemption = true;
6356
6357 /* WaDisableMidObjectPreemptionForGSLineStripAdj
6358 *
6359 * "WA: Disable mid-draw preemption when draw-call is a linestrip_adj
6360 * and GS is enabled."
6361 */
6362 if (draw->mode == PIPE_PRIM_LINE_STRIP_ADJACENCY &&
6363 ice->shaders.prog[MESA_SHADER_GEOMETRY])
6364 object_preemption = false;
6365
6366 /* WaDisableMidObjectPreemptionForTrifanOrPolygon
6367 *
6368 * "TriFan miscompare in Execlist Preemption test. Cut index that is
6369 * on a previous context. End the previous, the resume another context
6370 * with a tri-fan or polygon, and the vertex count is corrupted. If we
6371 * prempt again we will cause corruption.
6372 *
6373 * WA: Disable mid-draw preemption when draw-call has a tri-fan."
6374 */
6375 if (draw->mode == PIPE_PRIM_TRIANGLE_FAN)
6376 object_preemption = false;
6377
6378 /* WaDisableMidObjectPreemptionForLineLoop
6379 *
6380 * "VF Stats Counters Missing a vertex when preemption enabled.
6381 *
6382 * WA: Disable mid-draw preemption when the draw uses a lineloop
6383 * topology."
6384 */
6385 if (draw->mode == PIPE_PRIM_LINE_LOOP)
6386 object_preemption = false;
6387
6388 /* WA#0798
6389 *
6390 * "VF is corrupting GAFS data when preempted on an instance boundary
6391 * and replayed with instancing enabled.
6392 *
6393 * WA: Disable preemption when using instanceing."
6394 */
6395 if (draw->instance_count > 1)
6396 object_preemption = false;
6397
6398 if (genx->object_preemption != object_preemption) {
6399 iris_enable_obj_preemption(batch, object_preemption);
6400 genx->object_preemption = object_preemption;
6401 }
6402 }
6403 #endif
6404
6405 void
6406 genX(init_state)(struct iris_context *ice)
6407 {
6408 struct pipe_context *ctx = &ice->ctx;
6409 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
6410
6411 ctx->create_blend_state = iris_create_blend_state;
6412 ctx->create_depth_stencil_alpha_state = iris_create_zsa_state;
6413 ctx->create_rasterizer_state = iris_create_rasterizer_state;
6414 ctx->create_sampler_state = iris_create_sampler_state;
6415 ctx->create_sampler_view = iris_create_sampler_view;
6416 ctx->create_surface = iris_create_surface;
6417 ctx->create_vertex_elements_state = iris_create_vertex_elements;
6418 ctx->bind_blend_state = iris_bind_blend_state;
6419 ctx->bind_depth_stencil_alpha_state = iris_bind_zsa_state;
6420 ctx->bind_sampler_states = iris_bind_sampler_states;
6421 ctx->bind_rasterizer_state = iris_bind_rasterizer_state;
6422 ctx->bind_vertex_elements_state = iris_bind_vertex_elements_state;
6423 ctx->delete_blend_state = iris_delete_state;
6424 ctx->delete_depth_stencil_alpha_state = iris_delete_state;
6425 ctx->delete_rasterizer_state = iris_delete_state;
6426 ctx->delete_sampler_state = iris_delete_state;
6427 ctx->delete_vertex_elements_state = iris_delete_state;
6428 ctx->set_blend_color = iris_set_blend_color;
6429 ctx->set_clip_state = iris_set_clip_state;
6430 ctx->set_constant_buffer = iris_set_constant_buffer;
6431 ctx->set_shader_buffers = iris_set_shader_buffers;
6432 ctx->set_shader_images = iris_set_shader_images;
6433 ctx->set_sampler_views = iris_set_sampler_views;
6434 ctx->set_tess_state = iris_set_tess_state;
6435 ctx->set_framebuffer_state = iris_set_framebuffer_state;
6436 ctx->set_polygon_stipple = iris_set_polygon_stipple;
6437 ctx->set_sample_mask = iris_set_sample_mask;
6438 ctx->set_scissor_states = iris_set_scissor_states;
6439 ctx->set_stencil_ref = iris_set_stencil_ref;
6440 ctx->set_vertex_buffers = iris_set_vertex_buffers;
6441 ctx->set_viewport_states = iris_set_viewport_states;
6442 ctx->sampler_view_destroy = iris_sampler_view_destroy;
6443 ctx->surface_destroy = iris_surface_destroy;
6444 ctx->draw_vbo = iris_draw_vbo;
6445 ctx->launch_grid = iris_launch_grid;
6446 ctx->create_stream_output_target = iris_create_stream_output_target;
6447 ctx->stream_output_target_destroy = iris_stream_output_target_destroy;
6448 ctx->set_stream_output_targets = iris_set_stream_output_targets;
6449
6450 ice->vtbl.destroy_state = iris_destroy_state;
6451 ice->vtbl.init_render_context = iris_init_render_context;
6452 ice->vtbl.init_compute_context = iris_init_compute_context;
6453 ice->vtbl.upload_render_state = iris_upload_render_state;
6454 ice->vtbl.update_surface_base_address = iris_update_surface_base_address;
6455 ice->vtbl.upload_compute_state = iris_upload_compute_state;
6456 ice->vtbl.emit_raw_pipe_control = iris_emit_raw_pipe_control;
6457 ice->vtbl.rebind_buffer = iris_rebind_buffer;
6458 ice->vtbl.load_register_reg32 = iris_load_register_reg32;
6459 ice->vtbl.load_register_reg64 = iris_load_register_reg64;
6460 ice->vtbl.load_register_imm32 = iris_load_register_imm32;
6461 ice->vtbl.load_register_imm64 = iris_load_register_imm64;
6462 ice->vtbl.load_register_mem32 = iris_load_register_mem32;
6463 ice->vtbl.load_register_mem64 = iris_load_register_mem64;
6464 ice->vtbl.store_register_mem32 = iris_store_register_mem32;
6465 ice->vtbl.store_register_mem64 = iris_store_register_mem64;
6466 ice->vtbl.store_data_imm32 = iris_store_data_imm32;
6467 ice->vtbl.store_data_imm64 = iris_store_data_imm64;
6468 ice->vtbl.copy_mem_mem = iris_copy_mem_mem;
6469 ice->vtbl.derived_program_state_size = iris_derived_program_state_size;
6470 ice->vtbl.store_derived_program_state = iris_store_derived_program_state;
6471 ice->vtbl.create_so_decl_list = iris_create_so_decl_list;
6472 ice->vtbl.populate_vs_key = iris_populate_vs_key;
6473 ice->vtbl.populate_tcs_key = iris_populate_tcs_key;
6474 ice->vtbl.populate_tes_key = iris_populate_tes_key;
6475 ice->vtbl.populate_gs_key = iris_populate_gs_key;
6476 ice->vtbl.populate_fs_key = iris_populate_fs_key;
6477 ice->vtbl.populate_cs_key = iris_populate_cs_key;
6478 ice->vtbl.mocs = mocs;
6479
6480 ice->state.dirty = ~0ull;
6481
6482 ice->state.statistics_counters_enabled = true;
6483
6484 ice->state.sample_mask = 0xffff;
6485 ice->state.num_viewports = 1;
6486 ice->state.genx = calloc(1, sizeof(struct iris_genx_state));
6487
6488 /* Make a 1x1x1 null surface for unbound textures */
6489 void *null_surf_map =
6490 upload_state(ice->state.surface_uploader, &ice->state.unbound_tex,
6491 4 * GENX(RENDER_SURFACE_STATE_length), 64);
6492 isl_null_fill_state(&screen->isl_dev, null_surf_map, isl_extent3d(1, 1, 1));
6493 ice->state.unbound_tex.offset +=
6494 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.unbound_tex.res));
6495
6496 /* Default all scissor rectangles to be empty regions. */
6497 for (int i = 0; i < IRIS_MAX_VIEWPORTS; i++) {
6498 ice->state.scissors[i] = (struct pipe_scissor_state) {
6499 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
6500 };
6501 }
6502 }