iris: setup EdgeFlag Vertex Element when needed.
[mesa.git] / src / gallium / drivers / iris / iris_state.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included
12 * in all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
21 */
22
23 /**
24 * @file iris_state.c
25 *
26 * ============================= GENXML CODE =============================
27 * [This file is compiled once per generation.]
28 * =======================================================================
29 *
30 * This is the main state upload code.
31 *
32 * Gallium uses Constant State Objects, or CSOs, for most state. Large,
33 * complex, or highly reusable state can be created once, and bound and
34 * rebound multiple times. This is modeled with the pipe->create_*_state()
35 * and pipe->bind_*_state() hooks. Highly dynamic or inexpensive state is
36 * streamed out on the fly, via pipe->set_*_state() hooks.
37 *
38 * OpenGL involves frequently mutating context state, which is mirrored in
39 * core Mesa by highly mutable data structures. However, most applications
40 * typically draw the same things over and over - from frame to frame, most
41 * of the same objects are still visible and need to be redrawn. So, rather
42 * than inventing new state all the time, applications usually mutate to swap
43 * between known states that we've seen before.
44 *
45 * Gallium isolates us from this mutation by tracking API state, and
46 * distilling it into a set of Constant State Objects, or CSOs. Large,
47 * complex, or typically reusable state can be created once, then reused
48 * multiple times. Drivers can create and store their own associated data.
49 * This create/bind model corresponds to the pipe->create_*_state() and
50 * pipe->bind_*_state() driver hooks.
51 *
52 * Some state is cheap to create, or expected to be highly dynamic. Rather
53 * than creating and caching piles of CSOs for these, Gallium simply streams
54 * them out, via the pipe->set_*_state() driver hooks.
55 *
56 * To reduce draw time overhead, we try to compute as much state at create
57 * time as possible. Wherever possible, we translate the Gallium pipe state
58 * to 3DSTATE commands, and store those commands in the CSO. At draw time,
59 * we can simply memcpy them into a batch buffer.
60 *
61 * No hardware matches the abstraction perfectly, so some commands require
62 * information from multiple CSOs. In this case, we can store two copies
63 * of the packet (one in each CSO), and simply | together their DWords at
64 * draw time. Sometimes the second set is trivial (one or two fields), so
65 * we simply pack it at draw time.
66 *
67 * There are two main components in the file below. First, the CSO hooks
68 * create/bind/track state. The second are the draw-time upload functions,
69 * iris_upload_render_state() and iris_upload_compute_state(), which read
70 * the context state and emit the commands into the actual batch.
71 */
72
73 #include <stdio.h>
74 #include <errno.h>
75
76 #if HAVE_VALGRIND
77 #include <valgrind.h>
78 #include <memcheck.h>
79 #define VG(x) x
80 #ifndef NDEBUG
81 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
82 #endif
83 #else
84 #define VG(x)
85 #endif
86
87 #include "pipe/p_defines.h"
88 #include "pipe/p_state.h"
89 #include "pipe/p_context.h"
90 #include "pipe/p_screen.h"
91 #include "util/u_inlines.h"
92 #include "util/u_format.h"
93 #include "util/u_framebuffer.h"
94 #include "util/u_transfer.h"
95 #include "util/u_upload_mgr.h"
96 #include "util/u_viewport.h"
97 #include "drm-uapi/i915_drm.h"
98 #include "nir.h"
99 #include "intel/compiler/brw_compiler.h"
100 #include "intel/common/gen_l3_config.h"
101 #include "intel/common/gen_sample_positions.h"
102 #include "iris_batch.h"
103 #include "iris_context.h"
104 #include "iris_defines.h"
105 #include "iris_pipe.h"
106 #include "iris_resource.h"
107
108 #define __gen_address_type struct iris_address
109 #define __gen_user_data struct iris_batch
110
111 #define ARRAY_BYTES(x) (sizeof(uint32_t) * ARRAY_SIZE(x))
112
113 static uint64_t
114 __gen_combine_address(struct iris_batch *batch, void *location,
115 struct iris_address addr, uint32_t delta)
116 {
117 uint64_t result = addr.offset + delta;
118
119 if (addr.bo) {
120 iris_use_pinned_bo(batch, addr.bo, addr.write);
121 /* Assume this is a general address, not relative to a base. */
122 result += addr.bo->gtt_offset;
123 }
124
125 return result;
126 }
127
128 #define __genxml_cmd_length(cmd) cmd ## _length
129 #define __genxml_cmd_length_bias(cmd) cmd ## _length_bias
130 #define __genxml_cmd_header(cmd) cmd ## _header
131 #define __genxml_cmd_pack(cmd) cmd ## _pack
132
133 #define _iris_pack_command(batch, cmd, dst, name) \
134 for (struct cmd name = { __genxml_cmd_header(cmd) }, \
135 *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
136 ({ __genxml_cmd_pack(cmd)(batch, (void *)_dst, &name); \
137 _dst = NULL; \
138 }))
139
140 #define iris_pack_command(cmd, dst, name) \
141 _iris_pack_command(NULL, cmd, dst, name)
142
143 #define iris_pack_state(cmd, dst, name) \
144 for (struct cmd name = {}, \
145 *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
146 __genxml_cmd_pack(cmd)(NULL, (void *)_dst, &name), \
147 _dst = NULL)
148
149 #define iris_emit_cmd(batch, cmd, name) \
150 _iris_pack_command(batch, cmd, iris_get_command_space(batch, 4 * __genxml_cmd_length(cmd)), name)
151
152 #define iris_emit_merge(batch, dwords0, dwords1, num_dwords) \
153 do { \
154 uint32_t *dw = iris_get_command_space(batch, 4 * num_dwords); \
155 for (uint32_t i = 0; i < num_dwords; i++) \
156 dw[i] = (dwords0)[i] | (dwords1)[i]; \
157 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, num_dwords)); \
158 } while (0)
159
160 #include "genxml/genX_pack.h"
161 #include "genxml/gen_macros.h"
162 #include "genxml/genX_bits.h"
163
164 #if GEN_GEN == 8
165 #define MOCS_PTE 0x18
166 #define MOCS_WB 0x78
167 #else
168 #define MOCS_PTE (1 << 1)
169 #define MOCS_WB (2 << 1)
170 #endif
171
172 static uint32_t
173 mocs(struct iris_bo *bo)
174 {
175 return bo && bo->external ? MOCS_PTE : MOCS_WB;
176 }
177
178 /**
179 * Statically assert that PIPE_* enums match the hardware packets.
180 * (As long as they match, we don't need to translate them.)
181 */
182 UNUSED static void pipe_asserts()
183 {
184 #define PIPE_ASSERT(x) STATIC_ASSERT((int)x)
185
186 /* pipe_logicop happens to match the hardware. */
187 PIPE_ASSERT(PIPE_LOGICOP_CLEAR == LOGICOP_CLEAR);
188 PIPE_ASSERT(PIPE_LOGICOP_NOR == LOGICOP_NOR);
189 PIPE_ASSERT(PIPE_LOGICOP_AND_INVERTED == LOGICOP_AND_INVERTED);
190 PIPE_ASSERT(PIPE_LOGICOP_COPY_INVERTED == LOGICOP_COPY_INVERTED);
191 PIPE_ASSERT(PIPE_LOGICOP_AND_REVERSE == LOGICOP_AND_REVERSE);
192 PIPE_ASSERT(PIPE_LOGICOP_INVERT == LOGICOP_INVERT);
193 PIPE_ASSERT(PIPE_LOGICOP_XOR == LOGICOP_XOR);
194 PIPE_ASSERT(PIPE_LOGICOP_NAND == LOGICOP_NAND);
195 PIPE_ASSERT(PIPE_LOGICOP_AND == LOGICOP_AND);
196 PIPE_ASSERT(PIPE_LOGICOP_EQUIV == LOGICOP_EQUIV);
197 PIPE_ASSERT(PIPE_LOGICOP_NOOP == LOGICOP_NOOP);
198 PIPE_ASSERT(PIPE_LOGICOP_OR_INVERTED == LOGICOP_OR_INVERTED);
199 PIPE_ASSERT(PIPE_LOGICOP_COPY == LOGICOP_COPY);
200 PIPE_ASSERT(PIPE_LOGICOP_OR_REVERSE == LOGICOP_OR_REVERSE);
201 PIPE_ASSERT(PIPE_LOGICOP_OR == LOGICOP_OR);
202 PIPE_ASSERT(PIPE_LOGICOP_SET == LOGICOP_SET);
203
204 /* pipe_blend_func happens to match the hardware. */
205 PIPE_ASSERT(PIPE_BLENDFACTOR_ONE == BLENDFACTOR_ONE);
206 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_COLOR == BLENDFACTOR_SRC_COLOR);
207 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA == BLENDFACTOR_SRC_ALPHA);
208 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_ALPHA == BLENDFACTOR_DST_ALPHA);
209 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_COLOR == BLENDFACTOR_DST_COLOR);
210 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE == BLENDFACTOR_SRC_ALPHA_SATURATE);
211 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_COLOR == BLENDFACTOR_CONST_COLOR);
212 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_ALPHA == BLENDFACTOR_CONST_ALPHA);
213 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_COLOR == BLENDFACTOR_SRC1_COLOR);
214 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_ALPHA == BLENDFACTOR_SRC1_ALPHA);
215 PIPE_ASSERT(PIPE_BLENDFACTOR_ZERO == BLENDFACTOR_ZERO);
216 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_COLOR == BLENDFACTOR_INV_SRC_COLOR);
217 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_ALPHA == BLENDFACTOR_INV_SRC_ALPHA);
218 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_ALPHA == BLENDFACTOR_INV_DST_ALPHA);
219 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_COLOR == BLENDFACTOR_INV_DST_COLOR);
220 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_COLOR == BLENDFACTOR_INV_CONST_COLOR);
221 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_ALPHA == BLENDFACTOR_INV_CONST_ALPHA);
222 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_COLOR == BLENDFACTOR_INV_SRC1_COLOR);
223 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_ALPHA == BLENDFACTOR_INV_SRC1_ALPHA);
224
225 /* pipe_blend_func happens to match the hardware. */
226 PIPE_ASSERT(PIPE_BLEND_ADD == BLENDFUNCTION_ADD);
227 PIPE_ASSERT(PIPE_BLEND_SUBTRACT == BLENDFUNCTION_SUBTRACT);
228 PIPE_ASSERT(PIPE_BLEND_REVERSE_SUBTRACT == BLENDFUNCTION_REVERSE_SUBTRACT);
229 PIPE_ASSERT(PIPE_BLEND_MIN == BLENDFUNCTION_MIN);
230 PIPE_ASSERT(PIPE_BLEND_MAX == BLENDFUNCTION_MAX);
231
232 /* pipe_stencil_op happens to match the hardware. */
233 PIPE_ASSERT(PIPE_STENCIL_OP_KEEP == STENCILOP_KEEP);
234 PIPE_ASSERT(PIPE_STENCIL_OP_ZERO == STENCILOP_ZERO);
235 PIPE_ASSERT(PIPE_STENCIL_OP_REPLACE == STENCILOP_REPLACE);
236 PIPE_ASSERT(PIPE_STENCIL_OP_INCR == STENCILOP_INCRSAT);
237 PIPE_ASSERT(PIPE_STENCIL_OP_DECR == STENCILOP_DECRSAT);
238 PIPE_ASSERT(PIPE_STENCIL_OP_INCR_WRAP == STENCILOP_INCR);
239 PIPE_ASSERT(PIPE_STENCIL_OP_DECR_WRAP == STENCILOP_DECR);
240 PIPE_ASSERT(PIPE_STENCIL_OP_INVERT == STENCILOP_INVERT);
241
242 /* pipe_sprite_coord_mode happens to match 3DSTATE_SBE */
243 PIPE_ASSERT(PIPE_SPRITE_COORD_UPPER_LEFT == UPPERLEFT);
244 PIPE_ASSERT(PIPE_SPRITE_COORD_LOWER_LEFT == LOWERLEFT);
245 #undef PIPE_ASSERT
246 }
247
248 static unsigned
249 translate_prim_type(enum pipe_prim_type prim, uint8_t verts_per_patch)
250 {
251 static const unsigned map[] = {
252 [PIPE_PRIM_POINTS] = _3DPRIM_POINTLIST,
253 [PIPE_PRIM_LINES] = _3DPRIM_LINELIST,
254 [PIPE_PRIM_LINE_LOOP] = _3DPRIM_LINELOOP,
255 [PIPE_PRIM_LINE_STRIP] = _3DPRIM_LINESTRIP,
256 [PIPE_PRIM_TRIANGLES] = _3DPRIM_TRILIST,
257 [PIPE_PRIM_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
258 [PIPE_PRIM_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
259 [PIPE_PRIM_QUADS] = _3DPRIM_QUADLIST,
260 [PIPE_PRIM_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
261 [PIPE_PRIM_POLYGON] = _3DPRIM_POLYGON,
262 [PIPE_PRIM_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
263 [PIPE_PRIM_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
264 [PIPE_PRIM_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
265 [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
266 [PIPE_PRIM_PATCHES] = _3DPRIM_PATCHLIST_1 - 1,
267 };
268
269 return map[prim] + (prim == PIPE_PRIM_PATCHES ? verts_per_patch : 0);
270 }
271
272 static unsigned
273 translate_compare_func(enum pipe_compare_func pipe_func)
274 {
275 static const unsigned map[] = {
276 [PIPE_FUNC_NEVER] = COMPAREFUNCTION_NEVER,
277 [PIPE_FUNC_LESS] = COMPAREFUNCTION_LESS,
278 [PIPE_FUNC_EQUAL] = COMPAREFUNCTION_EQUAL,
279 [PIPE_FUNC_LEQUAL] = COMPAREFUNCTION_LEQUAL,
280 [PIPE_FUNC_GREATER] = COMPAREFUNCTION_GREATER,
281 [PIPE_FUNC_NOTEQUAL] = COMPAREFUNCTION_NOTEQUAL,
282 [PIPE_FUNC_GEQUAL] = COMPAREFUNCTION_GEQUAL,
283 [PIPE_FUNC_ALWAYS] = COMPAREFUNCTION_ALWAYS,
284 };
285 return map[pipe_func];
286 }
287
288 static unsigned
289 translate_shadow_func(enum pipe_compare_func pipe_func)
290 {
291 /* Gallium specifies the result of shadow comparisons as:
292 *
293 * 1 if ref <op> texel,
294 * 0 otherwise.
295 *
296 * The hardware does:
297 *
298 * 0 if texel <op> ref,
299 * 1 otherwise.
300 *
301 * So we need to flip the operator and also negate.
302 */
303 static const unsigned map[] = {
304 [PIPE_FUNC_NEVER] = PREFILTEROPALWAYS,
305 [PIPE_FUNC_LESS] = PREFILTEROPLEQUAL,
306 [PIPE_FUNC_EQUAL] = PREFILTEROPNOTEQUAL,
307 [PIPE_FUNC_LEQUAL] = PREFILTEROPLESS,
308 [PIPE_FUNC_GREATER] = PREFILTEROPGEQUAL,
309 [PIPE_FUNC_NOTEQUAL] = PREFILTEROPEQUAL,
310 [PIPE_FUNC_GEQUAL] = PREFILTEROPGREATER,
311 [PIPE_FUNC_ALWAYS] = PREFILTEROPNEVER,
312 };
313 return map[pipe_func];
314 }
315
316 static unsigned
317 translate_cull_mode(unsigned pipe_face)
318 {
319 static const unsigned map[4] = {
320 [PIPE_FACE_NONE] = CULLMODE_NONE,
321 [PIPE_FACE_FRONT] = CULLMODE_FRONT,
322 [PIPE_FACE_BACK] = CULLMODE_BACK,
323 [PIPE_FACE_FRONT_AND_BACK] = CULLMODE_BOTH,
324 };
325 return map[pipe_face];
326 }
327
328 static unsigned
329 translate_fill_mode(unsigned pipe_polymode)
330 {
331 static const unsigned map[4] = {
332 [PIPE_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
333 [PIPE_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
334 [PIPE_POLYGON_MODE_POINT] = FILL_MODE_POINT,
335 [PIPE_POLYGON_MODE_FILL_RECTANGLE] = FILL_MODE_SOLID,
336 };
337 return map[pipe_polymode];
338 }
339
340 static unsigned
341 translate_mip_filter(enum pipe_tex_mipfilter pipe_mip)
342 {
343 static const unsigned map[] = {
344 [PIPE_TEX_MIPFILTER_NEAREST] = MIPFILTER_NEAREST,
345 [PIPE_TEX_MIPFILTER_LINEAR] = MIPFILTER_LINEAR,
346 [PIPE_TEX_MIPFILTER_NONE] = MIPFILTER_NONE,
347 };
348 return map[pipe_mip];
349 }
350
351 static uint32_t
352 translate_wrap(unsigned pipe_wrap)
353 {
354 static const unsigned map[] = {
355 [PIPE_TEX_WRAP_REPEAT] = TCM_WRAP,
356 [PIPE_TEX_WRAP_CLAMP] = TCM_HALF_BORDER,
357 [PIPE_TEX_WRAP_CLAMP_TO_EDGE] = TCM_CLAMP,
358 [PIPE_TEX_WRAP_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER,
359 [PIPE_TEX_WRAP_MIRROR_REPEAT] = TCM_MIRROR,
360 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE,
361
362 /* These are unsupported. */
363 [PIPE_TEX_WRAP_MIRROR_CLAMP] = -1,
364 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER] = -1,
365 };
366 return map[pipe_wrap];
367 }
368
369 static struct iris_address
370 ro_bo(struct iris_bo *bo, uint64_t offset)
371 {
372 /* CSOs must pass NULL for bo! Otherwise it will add the BO to the
373 * validation list at CSO creation time, instead of draw time.
374 */
375 return (struct iris_address) { .bo = bo, .offset = offset };
376 }
377
378 static struct iris_address
379 rw_bo(struct iris_bo *bo, uint64_t offset)
380 {
381 /* CSOs must pass NULL for bo! Otherwise it will add the BO to the
382 * validation list at CSO creation time, instead of draw time.
383 */
384 return (struct iris_address) { .bo = bo, .offset = offset, .write = true };
385 }
386
387 /**
388 * Allocate space for some indirect state.
389 *
390 * Return a pointer to the map (to fill it out) and a state ref (for
391 * referring to the state in GPU commands).
392 */
393 static void *
394 upload_state(struct u_upload_mgr *uploader,
395 struct iris_state_ref *ref,
396 unsigned size,
397 unsigned alignment)
398 {
399 void *p = NULL;
400 u_upload_alloc(uploader, 0, size, alignment, &ref->offset, &ref->res, &p);
401 return p;
402 }
403
404 /**
405 * Stream out temporary/short-lived state.
406 *
407 * This allocates space, pins the BO, and includes the BO address in the
408 * returned offset (which works because all state lives in 32-bit memory
409 * zones).
410 */
411 static uint32_t *
412 stream_state(struct iris_batch *batch,
413 struct u_upload_mgr *uploader,
414 struct pipe_resource **out_res,
415 unsigned size,
416 unsigned alignment,
417 uint32_t *out_offset)
418 {
419 void *ptr = NULL;
420
421 u_upload_alloc(uploader, 0, size, alignment, out_offset, out_res, &ptr);
422
423 struct iris_bo *bo = iris_resource_bo(*out_res);
424 iris_use_pinned_bo(batch, bo, false);
425
426 *out_offset += iris_bo_offset_from_base_address(bo);
427
428 return ptr;
429 }
430
431 /**
432 * stream_state() + memcpy.
433 */
434 static uint32_t
435 emit_state(struct iris_batch *batch,
436 struct u_upload_mgr *uploader,
437 struct pipe_resource **out_res,
438 const void *data,
439 unsigned size,
440 unsigned alignment)
441 {
442 unsigned offset = 0;
443 uint32_t *map =
444 stream_state(batch, uploader, out_res, size, alignment, &offset);
445
446 if (map)
447 memcpy(map, data, size);
448
449 return offset;
450 }
451
452 /**
453 * Did field 'x' change between 'old_cso' and 'new_cso'?
454 *
455 * (If so, we may want to set some dirty flags.)
456 */
457 #define cso_changed(x) (!old_cso || (old_cso->x != new_cso->x))
458 #define cso_changed_memcmp(x) \
459 (!old_cso || memcmp(old_cso->x, new_cso->x, sizeof(old_cso->x)) != 0)
460
461 static void
462 flush_for_state_base_change(struct iris_batch *batch)
463 {
464 /* Flush before emitting STATE_BASE_ADDRESS.
465 *
466 * This isn't documented anywhere in the PRM. However, it seems to be
467 * necessary prior to changing the surface state base adress. We've
468 * seen issues in Vulkan where we get GPU hangs when using multi-level
469 * command buffers which clear depth, reset state base address, and then
470 * go render stuff.
471 *
472 * Normally, in GL, we would trust the kernel to do sufficient stalls
473 * and flushes prior to executing our batch. However, it doesn't seem
474 * as if the kernel's flushing is always sufficient and we don't want to
475 * rely on it.
476 *
477 * We make this an end-of-pipe sync instead of a normal flush because we
478 * do not know the current status of the GPU. On Haswell at least,
479 * having a fast-clear operation in flight at the same time as a normal
480 * rendering operation can cause hangs. Since the kernel's flushing is
481 * insufficient, we need to ensure that any rendering operations from
482 * other processes are definitely complete before we try to do our own
483 * rendering. It's a bit of a big hammer but it appears to work.
484 */
485 iris_emit_end_of_pipe_sync(batch,
486 PIPE_CONTROL_RENDER_TARGET_FLUSH |
487 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
488 PIPE_CONTROL_DATA_CACHE_FLUSH);
489 }
490
491 static void
492 _iris_emit_lri(struct iris_batch *batch, uint32_t reg, uint32_t val)
493 {
494 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
495 lri.RegisterOffset = reg;
496 lri.DataDWord = val;
497 }
498 }
499 #define iris_emit_lri(b, r, v) _iris_emit_lri(b, GENX(r##_num), v)
500
501 static void
502 _iris_emit_lrr(struct iris_batch *batch, uint32_t dst, uint32_t src)
503 {
504 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
505 lrr.SourceRegisterAddress = src;
506 lrr.DestinationRegisterAddress = dst;
507 }
508 }
509
510 static void
511 emit_pipeline_select(struct iris_batch *batch, uint32_t pipeline)
512 {
513 #if GEN_GEN >= 8 && GEN_GEN < 10
514 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
515 *
516 * Software must clear the COLOR_CALC_STATE Valid field in
517 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
518 * with Pipeline Select set to GPGPU.
519 *
520 * The internal hardware docs recommend the same workaround for Gen9
521 * hardware too.
522 */
523 if (pipeline == GPGPU)
524 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
525 #endif
526
527
528 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
529 * PIPELINE_SELECT [DevBWR+]":
530 *
531 * "Project: DEVSNB+
532 *
533 * Software must ensure all the write caches are flushed through a
534 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
535 * command to invalidate read only caches prior to programming
536 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode."
537 */
538 iris_emit_pipe_control_flush(batch,
539 PIPE_CONTROL_RENDER_TARGET_FLUSH |
540 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
541 PIPE_CONTROL_DATA_CACHE_FLUSH |
542 PIPE_CONTROL_CS_STALL);
543
544 iris_emit_pipe_control_flush(batch,
545 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
546 PIPE_CONTROL_CONST_CACHE_INVALIDATE |
547 PIPE_CONTROL_STATE_CACHE_INVALIDATE |
548 PIPE_CONTROL_INSTRUCTION_INVALIDATE);
549
550 iris_emit_cmd(batch, GENX(PIPELINE_SELECT), sel) {
551 #if GEN_GEN >= 9
552 sel.MaskBits = 3;
553 #endif
554 sel.PipelineSelection = pipeline;
555 }
556 }
557
558 UNUSED static void
559 init_glk_barrier_mode(struct iris_batch *batch, uint32_t value)
560 {
561 #if GEN_GEN == 9
562 /* Project: DevGLK
563 *
564 * "This chicken bit works around a hardware issue with barrier
565 * logic encountered when switching between GPGPU and 3D pipelines.
566 * To workaround the issue, this mode bit should be set after a
567 * pipeline is selected."
568 */
569 uint32_t reg_val;
570 iris_pack_state(GENX(SLICE_COMMON_ECO_CHICKEN1), &reg_val, reg) {
571 reg.GLKBarrierMode = value;
572 reg.GLKBarrierModeMask = 1;
573 }
574 iris_emit_lri(batch, SLICE_COMMON_ECO_CHICKEN1, reg_val);
575 #endif
576 }
577
578 static void
579 init_state_base_address(struct iris_batch *batch)
580 {
581 flush_for_state_base_change(batch);
582
583 /* We program most base addresses once at context initialization time.
584 * Each base address points at a 4GB memory zone, and never needs to
585 * change. See iris_bufmgr.h for a description of the memory zones.
586 *
587 * The one exception is Surface State Base Address, which needs to be
588 * updated occasionally. See iris_binder.c for the details there.
589 */
590 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
591 sba.GeneralStateMOCS = MOCS_WB;
592 sba.StatelessDataPortAccessMOCS = MOCS_WB;
593 sba.DynamicStateMOCS = MOCS_WB;
594 sba.IndirectObjectMOCS = MOCS_WB;
595 sba.InstructionMOCS = MOCS_WB;
596
597 sba.GeneralStateBaseAddressModifyEnable = true;
598 sba.DynamicStateBaseAddressModifyEnable = true;
599 sba.IndirectObjectBaseAddressModifyEnable = true;
600 sba.InstructionBaseAddressModifyEnable = true;
601 sba.GeneralStateBufferSizeModifyEnable = true;
602 sba.DynamicStateBufferSizeModifyEnable = true;
603 #if (GEN_GEN >= 9)
604 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
605 sba.BindlessSurfaceStateMOCS = MOCS_WB;
606 #endif
607 sba.IndirectObjectBufferSizeModifyEnable = true;
608 sba.InstructionBuffersizeModifyEnable = true;
609
610 sba.InstructionBaseAddress = ro_bo(NULL, IRIS_MEMZONE_SHADER_START);
611 sba.DynamicStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_DYNAMIC_START);
612
613 sba.GeneralStateBufferSize = 0xfffff;
614 sba.IndirectObjectBufferSize = 0xfffff;
615 sba.InstructionBufferSize = 0xfffff;
616 sba.DynamicStateBufferSize = 0xfffff;
617 }
618 }
619
620 static void
621 iris_emit_l3_config(struct iris_batch *batch, const struct gen_l3_config *cfg,
622 bool has_slm, bool wants_dc_cache)
623 {
624 uint32_t reg_val;
625 iris_pack_state(GENX(L3CNTLREG), &reg_val, reg) {
626 reg.SLMEnable = has_slm;
627 #if GEN_GEN == 11
628 /* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set
629 * in L3CNTLREG register. The default setting of the bit is not the
630 * desirable behavior.
631 */
632 reg.ErrorDetectionBehaviorControl = true;
633 #endif
634 reg.URBAllocation = cfg->n[GEN_L3P_URB];
635 reg.ROAllocation = cfg->n[GEN_L3P_RO];
636 reg.DCAllocation = cfg->n[GEN_L3P_DC];
637 reg.AllAllocation = cfg->n[GEN_L3P_ALL];
638 }
639 iris_emit_lri(batch, L3CNTLREG, reg_val);
640 }
641
642 static void
643 iris_emit_default_l3_config(struct iris_batch *batch,
644 const struct gen_device_info *devinfo,
645 bool compute)
646 {
647 bool wants_dc_cache = true;
648 bool has_slm = compute;
649 const struct gen_l3_weights w =
650 gen_get_default_l3_weights(devinfo, wants_dc_cache, has_slm);
651 const struct gen_l3_config *cfg = gen_get_l3_config(devinfo, w);
652 iris_emit_l3_config(batch, cfg, has_slm, wants_dc_cache);
653 }
654
655 /**
656 * Upload the initial GPU state for a render context.
657 *
658 * This sets some invariant state that needs to be programmed a particular
659 * way, but we never actually change.
660 */
661 static void
662 iris_init_render_context(struct iris_screen *screen,
663 struct iris_batch *batch,
664 struct iris_vtable *vtbl,
665 struct pipe_debug_callback *dbg)
666 {
667 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
668 uint32_t reg_val;
669
670 emit_pipeline_select(batch, _3D);
671
672 iris_emit_default_l3_config(batch, devinfo, false);
673
674 init_state_base_address(batch);
675
676 #if GEN_GEN >= 9
677 iris_pack_state(GENX(CS_DEBUG_MODE2), &reg_val, reg) {
678 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
679 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
680 }
681 iris_emit_lri(batch, CS_DEBUG_MODE2, reg_val);
682 #else
683 iris_pack_state(GENX(INSTPM), &reg_val, reg) {
684 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
685 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
686 }
687 iris_emit_lri(batch, INSTPM, reg_val);
688 #endif
689
690 #if GEN_GEN == 9
691 iris_pack_state(GENX(CACHE_MODE_1), &reg_val, reg) {
692 reg.FloatBlendOptimizationEnable = true;
693 reg.FloatBlendOptimizationEnableMask = true;
694 reg.PartialResolveDisableInVC = true;
695 reg.PartialResolveDisableInVCMask = true;
696 }
697 iris_emit_lri(batch, CACHE_MODE_1, reg_val);
698
699 if (devinfo->is_geminilake)
700 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_3D_HULL);
701 #endif
702
703 #if GEN_GEN == 11
704 iris_pack_state(GENX(SAMPLER_MODE), &reg_val, reg) {
705 reg.HeaderlessMessageforPreemptableContexts = 1;
706 reg.HeaderlessMessageforPreemptableContextsMask = 1;
707 }
708 iris_emit_lri(batch, SAMPLER_MODE, reg_val);
709
710 // XXX: 3D_MODE?
711 #endif
712
713 /* 3DSTATE_DRAWING_RECTANGLE is non-pipelined, so we want to avoid
714 * changing it dynamically. We set it to the maximum size here, and
715 * instead include the render target dimensions in the viewport, so
716 * viewport extents clipping takes care of pruning stray geometry.
717 */
718 iris_emit_cmd(batch, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
719 rect.ClippedDrawingRectangleXMax = UINT16_MAX;
720 rect.ClippedDrawingRectangleYMax = UINT16_MAX;
721 }
722
723 /* Set the initial MSAA sample positions. */
724 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_PATTERN), pat) {
725 GEN_SAMPLE_POS_1X(pat._1xSample);
726 GEN_SAMPLE_POS_2X(pat._2xSample);
727 GEN_SAMPLE_POS_4X(pat._4xSample);
728 GEN_SAMPLE_POS_8X(pat._8xSample);
729 #if GEN_GEN >= 9
730 GEN_SAMPLE_POS_16X(pat._16xSample);
731 #endif
732 }
733
734 /* Use the legacy AA line coverage computation. */
735 iris_emit_cmd(batch, GENX(3DSTATE_AA_LINE_PARAMETERS), foo);
736
737 /* Disable chromakeying (it's for media) */
738 iris_emit_cmd(batch, GENX(3DSTATE_WM_CHROMAKEY), foo);
739
740 /* We want regular rendering, not special HiZ operations. */
741 iris_emit_cmd(batch, GENX(3DSTATE_WM_HZ_OP), foo);
742
743 /* No polygon stippling offsets are necessary. */
744 /* TODO: may need to set an offset for origin-UL framebuffers */
745 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_OFFSET), foo);
746
747 /* Set a static partitioning of the push constant area. */
748 /* TODO: this may be a bad idea...could starve the push ringbuffers... */
749 for (int i = 0; i <= MESA_SHADER_FRAGMENT; i++) {
750 iris_emit_cmd(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
751 alloc._3DCommandSubOpcode = 18 + i;
752 alloc.ConstantBufferOffset = 6 * i;
753 alloc.ConstantBufferSize = i == MESA_SHADER_FRAGMENT ? 8 : 6;
754 }
755 }
756 }
757
758 static void
759 iris_init_compute_context(struct iris_screen *screen,
760 struct iris_batch *batch,
761 struct iris_vtable *vtbl,
762 struct pipe_debug_callback *dbg)
763 {
764 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
765
766 emit_pipeline_select(batch, GPGPU);
767
768 iris_emit_default_l3_config(batch, devinfo, true);
769
770 init_state_base_address(batch);
771
772 #if GEN_GEN == 9
773 if (devinfo->is_geminilake)
774 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_GPGPU);
775 #endif
776 }
777
778 struct iris_vertex_buffer_state {
779 /** The VERTEX_BUFFER_STATE hardware structure. */
780 uint32_t state[GENX(VERTEX_BUFFER_STATE_length)];
781
782 /** The resource to source vertex data from. */
783 struct pipe_resource *resource;
784 };
785
786 struct iris_depth_buffer_state {
787 /* Depth/HiZ/Stencil related hardware packets. */
788 uint32_t packets[GENX(3DSTATE_DEPTH_BUFFER_length) +
789 GENX(3DSTATE_STENCIL_BUFFER_length) +
790 GENX(3DSTATE_HIER_DEPTH_BUFFER_length) +
791 GENX(3DSTATE_CLEAR_PARAMS_length)];
792 };
793
794 /**
795 * Generation-specific context state (ice->state.genx->...).
796 *
797 * Most state can go in iris_context directly, but these encode hardware
798 * packets which vary by generation.
799 */
800 struct iris_genx_state {
801 struct iris_vertex_buffer_state vertex_buffers[33];
802
803 struct iris_depth_buffer_state depth_buffer;
804
805 uint32_t so_buffers[4 * GENX(3DSTATE_SO_BUFFER_length)];
806 };
807
808 /**
809 * The pipe->set_blend_color() driver hook.
810 *
811 * This corresponds to our COLOR_CALC_STATE.
812 */
813 static void
814 iris_set_blend_color(struct pipe_context *ctx,
815 const struct pipe_blend_color *state)
816 {
817 struct iris_context *ice = (struct iris_context *) ctx;
818
819 /* Our COLOR_CALC_STATE is exactly pipe_blend_color, so just memcpy */
820 memcpy(&ice->state.blend_color, state, sizeof(struct pipe_blend_color));
821 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
822 }
823
824 /**
825 * Gallium CSO for blend state (see pipe_blend_state).
826 */
827 struct iris_blend_state {
828 /** Partial 3DSTATE_PS_BLEND */
829 uint32_t ps_blend[GENX(3DSTATE_PS_BLEND_length)];
830
831 /** Partial BLEND_STATE */
832 uint32_t blend_state[GENX(BLEND_STATE_length) +
833 BRW_MAX_DRAW_BUFFERS * GENX(BLEND_STATE_ENTRY_length)];
834
835 bool alpha_to_coverage; /* for shader key */
836
837 /** Bitfield of whether blending is enabled for RT[i] - for aux resolves */
838 uint8_t blend_enables;
839
840 /** Bitfield of whether color writes are enabled for RT[i] */
841 uint8_t color_write_enables;
842 };
843
844 static enum pipe_blendfactor
845 fix_blendfactor(enum pipe_blendfactor f, bool alpha_to_one)
846 {
847 if (alpha_to_one) {
848 if (f == PIPE_BLENDFACTOR_SRC1_ALPHA)
849 return PIPE_BLENDFACTOR_ONE;
850
851 if (f == PIPE_BLENDFACTOR_INV_SRC1_ALPHA)
852 return PIPE_BLENDFACTOR_ZERO;
853 }
854
855 return f;
856 }
857
858 /**
859 * The pipe->create_blend_state() driver hook.
860 *
861 * Translates a pipe_blend_state into iris_blend_state.
862 */
863 static void *
864 iris_create_blend_state(struct pipe_context *ctx,
865 const struct pipe_blend_state *state)
866 {
867 struct iris_blend_state *cso = malloc(sizeof(struct iris_blend_state));
868 uint32_t *blend_entry = cso->blend_state + GENX(BLEND_STATE_length);
869
870 cso->blend_enables = 0;
871 cso->color_write_enables = 0;
872 STATIC_ASSERT(BRW_MAX_DRAW_BUFFERS <= 8);
873
874 cso->alpha_to_coverage = state->alpha_to_coverage;
875
876 bool indep_alpha_blend = false;
877
878 for (int i = 0; i < BRW_MAX_DRAW_BUFFERS; i++) {
879 const struct pipe_rt_blend_state *rt =
880 &state->rt[state->independent_blend_enable ? i : 0];
881
882 enum pipe_blendfactor src_rgb =
883 fix_blendfactor(rt->rgb_src_factor, state->alpha_to_one);
884 enum pipe_blendfactor src_alpha =
885 fix_blendfactor(rt->alpha_src_factor, state->alpha_to_one);
886 enum pipe_blendfactor dst_rgb =
887 fix_blendfactor(rt->rgb_dst_factor, state->alpha_to_one);
888 enum pipe_blendfactor dst_alpha =
889 fix_blendfactor(rt->alpha_dst_factor, state->alpha_to_one);
890
891 if (rt->rgb_func != rt->alpha_func ||
892 src_rgb != src_alpha || dst_rgb != dst_alpha)
893 indep_alpha_blend = true;
894
895 if (rt->blend_enable)
896 cso->blend_enables |= 1u << i;
897
898 if (rt->colormask)
899 cso->color_write_enables |= 1u << i;
900
901 iris_pack_state(GENX(BLEND_STATE_ENTRY), blend_entry, be) {
902 be.LogicOpEnable = state->logicop_enable;
903 be.LogicOpFunction = state->logicop_func;
904
905 be.PreBlendSourceOnlyClampEnable = false;
906 be.ColorClampRange = COLORCLAMP_RTFORMAT;
907 be.PreBlendColorClampEnable = true;
908 be.PostBlendColorClampEnable = true;
909
910 be.ColorBufferBlendEnable = rt->blend_enable;
911
912 be.ColorBlendFunction = rt->rgb_func;
913 be.AlphaBlendFunction = rt->alpha_func;
914 be.SourceBlendFactor = src_rgb;
915 be.SourceAlphaBlendFactor = src_alpha;
916 be.DestinationBlendFactor = dst_rgb;
917 be.DestinationAlphaBlendFactor = dst_alpha;
918
919 be.WriteDisableRed = !(rt->colormask & PIPE_MASK_R);
920 be.WriteDisableGreen = !(rt->colormask & PIPE_MASK_G);
921 be.WriteDisableBlue = !(rt->colormask & PIPE_MASK_B);
922 be.WriteDisableAlpha = !(rt->colormask & PIPE_MASK_A);
923 }
924 blend_entry += GENX(BLEND_STATE_ENTRY_length);
925 }
926
927 iris_pack_command(GENX(3DSTATE_PS_BLEND), cso->ps_blend, pb) {
928 /* pb.HasWriteableRT is filled in at draw time. */
929 /* pb.AlphaTestEnable is filled in at draw time. */
930 pb.AlphaToCoverageEnable = state->alpha_to_coverage;
931 pb.IndependentAlphaBlendEnable = indep_alpha_blend;
932
933 pb.ColorBufferBlendEnable = state->rt[0].blend_enable;
934
935 pb.SourceBlendFactor =
936 fix_blendfactor(state->rt[0].rgb_src_factor, state->alpha_to_one);
937 pb.SourceAlphaBlendFactor =
938 fix_blendfactor(state->rt[0].alpha_src_factor, state->alpha_to_one);
939 pb.DestinationBlendFactor =
940 fix_blendfactor(state->rt[0].rgb_dst_factor, state->alpha_to_one);
941 pb.DestinationAlphaBlendFactor =
942 fix_blendfactor(state->rt[0].alpha_dst_factor, state->alpha_to_one);
943 }
944
945 iris_pack_state(GENX(BLEND_STATE), cso->blend_state, bs) {
946 bs.AlphaToCoverageEnable = state->alpha_to_coverage;
947 bs.IndependentAlphaBlendEnable = indep_alpha_blend;
948 bs.AlphaToOneEnable = state->alpha_to_one;
949 bs.AlphaToCoverageDitherEnable = state->alpha_to_coverage;
950 bs.ColorDitherEnable = state->dither;
951 /* bl.AlphaTestEnable and bs.AlphaTestFunction are filled in later. */
952 }
953
954
955 return cso;
956 }
957
958 /**
959 * The pipe->bind_blend_state() driver hook.
960 *
961 * Bind a blending CSO and flag related dirty bits.
962 */
963 static void
964 iris_bind_blend_state(struct pipe_context *ctx, void *state)
965 {
966 struct iris_context *ice = (struct iris_context *) ctx;
967 struct iris_blend_state *cso = state;
968
969 ice->state.cso_blend = cso;
970 ice->state.blend_enables = cso ? cso->blend_enables : 0;
971
972 ice->state.dirty |= IRIS_DIRTY_PS_BLEND;
973 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
974 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_BLEND];
975 }
976
977 /**
978 * Return true if the FS writes to any color outputs which are not disabled
979 * via color masking.
980 */
981 static bool
982 has_writeable_rt(const struct iris_blend_state *cso_blend,
983 const struct shader_info *fs_info)
984 {
985 if (!fs_info)
986 return false;
987
988 unsigned rt_outputs = fs_info->outputs_written >> FRAG_RESULT_DATA0;
989
990 if (fs_info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_COLOR))
991 rt_outputs = (1 << BRW_MAX_DRAW_BUFFERS) - 1;
992
993 return cso_blend->color_write_enables & rt_outputs;
994 }
995
996 /**
997 * Gallium CSO for depth, stencil, and alpha testing state.
998 */
999 struct iris_depth_stencil_alpha_state {
1000 /** Partial 3DSTATE_WM_DEPTH_STENCIL. */
1001 uint32_t wmds[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
1002
1003 /** Outbound to BLEND_STATE, 3DSTATE_PS_BLEND, COLOR_CALC_STATE. */
1004 struct pipe_alpha_state alpha;
1005
1006 /** Outbound to resolve and cache set tracking. */
1007 bool depth_writes_enabled;
1008 bool stencil_writes_enabled;
1009 };
1010
1011 /**
1012 * The pipe->create_depth_stencil_alpha_state() driver hook.
1013 *
1014 * We encode most of 3DSTATE_WM_DEPTH_STENCIL, and just save off the alpha
1015 * testing state since we need pieces of it in a variety of places.
1016 */
1017 static void *
1018 iris_create_zsa_state(struct pipe_context *ctx,
1019 const struct pipe_depth_stencil_alpha_state *state)
1020 {
1021 struct iris_depth_stencil_alpha_state *cso =
1022 malloc(sizeof(struct iris_depth_stencil_alpha_state));
1023
1024 bool two_sided_stencil = state->stencil[1].enabled;
1025
1026 cso->alpha = state->alpha;
1027 cso->depth_writes_enabled = state->depth.writemask;
1028 cso->stencil_writes_enabled =
1029 state->stencil[0].writemask != 0 ||
1030 (two_sided_stencil && state->stencil[1].writemask != 1);
1031
1032 /* The state tracker needs to optimize away EQUAL writes for us. */
1033 assert(!(state->depth.func == PIPE_FUNC_EQUAL && state->depth.writemask));
1034
1035 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), cso->wmds, wmds) {
1036 wmds.StencilFailOp = state->stencil[0].fail_op;
1037 wmds.StencilPassDepthFailOp = state->stencil[0].zfail_op;
1038 wmds.StencilPassDepthPassOp = state->stencil[0].zpass_op;
1039 wmds.StencilTestFunction =
1040 translate_compare_func(state->stencil[0].func);
1041 wmds.BackfaceStencilFailOp = state->stencil[1].fail_op;
1042 wmds.BackfaceStencilPassDepthFailOp = state->stencil[1].zfail_op;
1043 wmds.BackfaceStencilPassDepthPassOp = state->stencil[1].zpass_op;
1044 wmds.BackfaceStencilTestFunction =
1045 translate_compare_func(state->stencil[1].func);
1046 wmds.DepthTestFunction = translate_compare_func(state->depth.func);
1047 wmds.DoubleSidedStencilEnable = two_sided_stencil;
1048 wmds.StencilTestEnable = state->stencil[0].enabled;
1049 wmds.StencilBufferWriteEnable =
1050 state->stencil[0].writemask != 0 ||
1051 (two_sided_stencil && state->stencil[1].writemask != 0);
1052 wmds.DepthTestEnable = state->depth.enabled;
1053 wmds.DepthBufferWriteEnable = state->depth.writemask;
1054 wmds.StencilTestMask = state->stencil[0].valuemask;
1055 wmds.StencilWriteMask = state->stencil[0].writemask;
1056 wmds.BackfaceStencilTestMask = state->stencil[1].valuemask;
1057 wmds.BackfaceStencilWriteMask = state->stencil[1].writemask;
1058 /* wmds.[Backface]StencilReferenceValue are merged later */
1059 }
1060
1061 return cso;
1062 }
1063
1064 /**
1065 * The pipe->bind_depth_stencil_alpha_state() driver hook.
1066 *
1067 * Bind a depth/stencil/alpha CSO and flag related dirty bits.
1068 */
1069 static void
1070 iris_bind_zsa_state(struct pipe_context *ctx, void *state)
1071 {
1072 struct iris_context *ice = (struct iris_context *) ctx;
1073 struct iris_depth_stencil_alpha_state *old_cso = ice->state.cso_zsa;
1074 struct iris_depth_stencil_alpha_state *new_cso = state;
1075
1076 if (new_cso) {
1077 if (cso_changed(alpha.ref_value))
1078 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
1079
1080 if (cso_changed(alpha.enabled))
1081 ice->state.dirty |= IRIS_DIRTY_PS_BLEND | IRIS_DIRTY_BLEND_STATE;
1082
1083 if (cso_changed(alpha.func))
1084 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1085
1086 ice->state.depth_writes_enabled = new_cso->depth_writes_enabled;
1087 ice->state.stencil_writes_enabled = new_cso->stencil_writes_enabled;
1088 }
1089
1090 ice->state.cso_zsa = new_cso;
1091 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1092 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
1093 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_DEPTH_STENCIL_ALPHA];
1094 }
1095
1096 /**
1097 * Gallium CSO for rasterizer state.
1098 */
1099 struct iris_rasterizer_state {
1100 uint32_t sf[GENX(3DSTATE_SF_length)];
1101 uint32_t clip[GENX(3DSTATE_CLIP_length)];
1102 uint32_t raster[GENX(3DSTATE_RASTER_length)];
1103 uint32_t wm[GENX(3DSTATE_WM_length)];
1104 uint32_t line_stipple[GENX(3DSTATE_LINE_STIPPLE_length)];
1105
1106 uint8_t num_clip_plane_consts;
1107 bool clip_halfz; /* for CC_VIEWPORT */
1108 bool depth_clip_near; /* for CC_VIEWPORT */
1109 bool depth_clip_far; /* for CC_VIEWPORT */
1110 bool flatshade; /* for shader state */
1111 bool flatshade_first; /* for stream output */
1112 bool clamp_fragment_color; /* for shader state */
1113 bool light_twoside; /* for shader state */
1114 bool rasterizer_discard; /* for 3DSTATE_STREAMOUT and 3DSTATE_CLIP */
1115 bool half_pixel_center; /* for 3DSTATE_MULTISAMPLE */
1116 bool line_stipple_enable;
1117 bool poly_stipple_enable;
1118 bool multisample;
1119 bool force_persample_interp;
1120 enum pipe_sprite_coord_mode sprite_coord_mode; /* PIPE_SPRITE_* */
1121 uint16_t sprite_coord_enable;
1122 };
1123
1124 static float
1125 get_line_width(const struct pipe_rasterizer_state *state)
1126 {
1127 float line_width = state->line_width;
1128
1129 /* From the OpenGL 4.4 spec:
1130 *
1131 * "The actual width of non-antialiased lines is determined by rounding
1132 * the supplied width to the nearest integer, then clamping it to the
1133 * implementation-dependent maximum non-antialiased line width."
1134 */
1135 if (!state->multisample && !state->line_smooth)
1136 line_width = roundf(state->line_width);
1137
1138 if (!state->multisample && state->line_smooth && line_width < 1.5f) {
1139 /* For 1 pixel line thickness or less, the general anti-aliasing
1140 * algorithm gives up, and a garbage line is generated. Setting a
1141 * Line Width of 0.0 specifies the rasterization of the "thinnest"
1142 * (one-pixel-wide), non-antialiased lines.
1143 *
1144 * Lines rendered with zero Line Width are rasterized using the
1145 * "Grid Intersection Quantization" rules as specified by the
1146 * "Zero-Width (Cosmetic) Line Rasterization" section of the docs.
1147 */
1148 line_width = 0.0f;
1149 }
1150
1151 return line_width;
1152 }
1153
1154 /**
1155 * The pipe->create_rasterizer_state() driver hook.
1156 */
1157 static void *
1158 iris_create_rasterizer_state(struct pipe_context *ctx,
1159 const struct pipe_rasterizer_state *state)
1160 {
1161 struct iris_rasterizer_state *cso =
1162 malloc(sizeof(struct iris_rasterizer_state));
1163
1164 cso->multisample = state->multisample;
1165 cso->force_persample_interp = state->force_persample_interp;
1166 cso->clip_halfz = state->clip_halfz;
1167 cso->depth_clip_near = state->depth_clip_near;
1168 cso->depth_clip_far = state->depth_clip_far;
1169 cso->flatshade = state->flatshade;
1170 cso->flatshade_first = state->flatshade_first;
1171 cso->clamp_fragment_color = state->clamp_fragment_color;
1172 cso->light_twoside = state->light_twoside;
1173 cso->rasterizer_discard = state->rasterizer_discard;
1174 cso->half_pixel_center = state->half_pixel_center;
1175 cso->sprite_coord_mode = state->sprite_coord_mode;
1176 cso->sprite_coord_enable = state->sprite_coord_enable;
1177 cso->line_stipple_enable = state->line_stipple_enable;
1178 cso->poly_stipple_enable = state->poly_stipple_enable;
1179
1180 if (state->clip_plane_enable != 0)
1181 cso->num_clip_plane_consts = util_logbase2(state->clip_plane_enable) + 1;
1182 else
1183 cso->num_clip_plane_consts = 0;
1184
1185 float line_width = get_line_width(state);
1186
1187 iris_pack_command(GENX(3DSTATE_SF), cso->sf, sf) {
1188 sf.StatisticsEnable = true;
1189 sf.ViewportTransformEnable = true;
1190 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
1191 sf.LineEndCapAntialiasingRegionWidth =
1192 state->line_smooth ? _10pixels : _05pixels;
1193 sf.LastPixelEnable = state->line_last_pixel;
1194 sf.LineWidth = line_width;
1195 sf.SmoothPointEnable = (state->point_smooth || state->multisample) &&
1196 !state->point_quad_rasterization;
1197 sf.PointWidthSource = state->point_size_per_vertex ? Vertex : State;
1198 sf.PointWidth = state->point_size;
1199
1200 if (state->flatshade_first) {
1201 sf.TriangleFanProvokingVertexSelect = 1;
1202 } else {
1203 sf.TriangleStripListProvokingVertexSelect = 2;
1204 sf.TriangleFanProvokingVertexSelect = 2;
1205 sf.LineStripListProvokingVertexSelect = 1;
1206 }
1207 }
1208
1209 iris_pack_command(GENX(3DSTATE_RASTER), cso->raster, rr) {
1210 rr.FrontWinding = state->front_ccw ? CounterClockwise : Clockwise;
1211 rr.CullMode = translate_cull_mode(state->cull_face);
1212 rr.FrontFaceFillMode = translate_fill_mode(state->fill_front);
1213 rr.BackFaceFillMode = translate_fill_mode(state->fill_back);
1214 rr.DXMultisampleRasterizationEnable = state->multisample;
1215 rr.GlobalDepthOffsetEnableSolid = state->offset_tri;
1216 rr.GlobalDepthOffsetEnableWireframe = state->offset_line;
1217 rr.GlobalDepthOffsetEnablePoint = state->offset_point;
1218 rr.GlobalDepthOffsetConstant = state->offset_units * 2;
1219 rr.GlobalDepthOffsetScale = state->offset_scale;
1220 rr.GlobalDepthOffsetClamp = state->offset_clamp;
1221 rr.SmoothPointEnable = state->point_smooth;
1222 rr.AntialiasingEnable = state->line_smooth;
1223 rr.ScissorRectangleEnable = state->scissor;
1224 #if GEN_GEN >= 9
1225 rr.ViewportZNearClipTestEnable = state->depth_clip_near;
1226 rr.ViewportZFarClipTestEnable = state->depth_clip_far;
1227 #else
1228 rr.ViewportZClipTestEnable = (state->depth_clip_near || state->depth_clip_far);
1229 #endif
1230 /* TODO: ConservativeRasterizationEnable */
1231 }
1232
1233 iris_pack_command(GENX(3DSTATE_CLIP), cso->clip, cl) {
1234 /* cl.NonPerspectiveBarycentricEnable is filled in at draw time from
1235 * the FS program; cl.ForceZeroRTAIndexEnable is filled in from the FB.
1236 */
1237 cl.EarlyCullEnable = true;
1238 cl.UserClipDistanceClipTestEnableBitmask = state->clip_plane_enable;
1239 cl.ForceUserClipDistanceClipTestEnableBitmask = true;
1240 cl.APIMode = state->clip_halfz ? APIMODE_D3D : APIMODE_OGL;
1241 cl.GuardbandClipTestEnable = true;
1242 cl.ClipEnable = true;
1243 cl.ViewportXYClipTestEnable = state->point_tri_clip;
1244 cl.MinimumPointWidth = 0.125;
1245 cl.MaximumPointWidth = 255.875;
1246
1247 if (state->flatshade_first) {
1248 cl.TriangleFanProvokingVertexSelect = 1;
1249 } else {
1250 cl.TriangleStripListProvokingVertexSelect = 2;
1251 cl.TriangleFanProvokingVertexSelect = 2;
1252 cl.LineStripListProvokingVertexSelect = 1;
1253 }
1254 }
1255
1256 iris_pack_command(GENX(3DSTATE_WM), cso->wm, wm) {
1257 /* wm.BarycentricInterpolationMode and wm.EarlyDepthStencilControl are
1258 * filled in at draw time from the FS program.
1259 */
1260 wm.LineAntialiasingRegionWidth = _10pixels;
1261 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1262 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1263 wm.LineStippleEnable = state->line_stipple_enable;
1264 wm.PolygonStippleEnable = state->poly_stipple_enable;
1265 }
1266
1267 /* Remap from 0..255 back to 1..256 */
1268 const unsigned line_stipple_factor = state->line_stipple_factor + 1;
1269
1270 iris_pack_command(GENX(3DSTATE_LINE_STIPPLE), cso->line_stipple, line) {
1271 line.LineStipplePattern = state->line_stipple_pattern;
1272 line.LineStippleInverseRepeatCount = 1.0f / line_stipple_factor;
1273 line.LineStippleRepeatCount = line_stipple_factor;
1274 }
1275
1276 return cso;
1277 }
1278
1279 /**
1280 * The pipe->bind_rasterizer_state() driver hook.
1281 *
1282 * Bind a rasterizer CSO and flag related dirty bits.
1283 */
1284 static void
1285 iris_bind_rasterizer_state(struct pipe_context *ctx, void *state)
1286 {
1287 struct iris_context *ice = (struct iris_context *) ctx;
1288 struct iris_rasterizer_state *old_cso = ice->state.cso_rast;
1289 struct iris_rasterizer_state *new_cso = state;
1290
1291 if (new_cso) {
1292 /* Try to avoid re-emitting 3DSTATE_LINE_STIPPLE, it's non-pipelined */
1293 if (cso_changed_memcmp(line_stipple))
1294 ice->state.dirty |= IRIS_DIRTY_LINE_STIPPLE;
1295
1296 if (cso_changed(half_pixel_center))
1297 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
1298
1299 if (cso_changed(line_stipple_enable) || cso_changed(poly_stipple_enable))
1300 ice->state.dirty |= IRIS_DIRTY_WM;
1301
1302 if (cso_changed(rasterizer_discard))
1303 ice->state.dirty |= IRIS_DIRTY_STREAMOUT | IRIS_DIRTY_CLIP;
1304
1305 if (cso_changed(flatshade_first))
1306 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
1307
1308 if (cso_changed(depth_clip_near) || cso_changed(depth_clip_far) ||
1309 cso_changed(clip_halfz))
1310 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1311
1312 if (cso_changed(sprite_coord_enable) ||
1313 cso_changed(sprite_coord_mode) ||
1314 cso_changed(light_twoside))
1315 ice->state.dirty |= IRIS_DIRTY_SBE;
1316 }
1317
1318 ice->state.cso_rast = new_cso;
1319 ice->state.dirty |= IRIS_DIRTY_RASTER;
1320 ice->state.dirty |= IRIS_DIRTY_CLIP;
1321 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_RASTERIZER];
1322 }
1323
1324 /**
1325 * Return true if the given wrap mode requires the border color to exist.
1326 *
1327 * (We can skip uploading it if the sampler isn't going to use it.)
1328 */
1329 static bool
1330 wrap_mode_needs_border_color(unsigned wrap_mode)
1331 {
1332 return wrap_mode == TCM_CLAMP_BORDER || wrap_mode == TCM_HALF_BORDER;
1333 }
1334
1335 /**
1336 * Gallium CSO for sampler state.
1337 */
1338 struct iris_sampler_state {
1339 union pipe_color_union border_color;
1340 bool needs_border_color;
1341
1342 uint32_t sampler_state[GENX(SAMPLER_STATE_length)];
1343 };
1344
1345 /**
1346 * The pipe->create_sampler_state() driver hook.
1347 *
1348 * We fill out SAMPLER_STATE (except for the border color pointer), and
1349 * store that on the CPU. It doesn't make sense to upload it to a GPU
1350 * buffer object yet, because 3DSTATE_SAMPLER_STATE_POINTERS requires
1351 * all bound sampler states to be in contiguous memor.
1352 */
1353 static void *
1354 iris_create_sampler_state(struct pipe_context *ctx,
1355 const struct pipe_sampler_state *state)
1356 {
1357 struct iris_sampler_state *cso = CALLOC_STRUCT(iris_sampler_state);
1358
1359 if (!cso)
1360 return NULL;
1361
1362 STATIC_ASSERT(PIPE_TEX_FILTER_NEAREST == MAPFILTER_NEAREST);
1363 STATIC_ASSERT(PIPE_TEX_FILTER_LINEAR == MAPFILTER_LINEAR);
1364
1365 unsigned wrap_s = translate_wrap(state->wrap_s);
1366 unsigned wrap_t = translate_wrap(state->wrap_t);
1367 unsigned wrap_r = translate_wrap(state->wrap_r);
1368
1369 memcpy(&cso->border_color, &state->border_color, sizeof(cso->border_color));
1370
1371 cso->needs_border_color = wrap_mode_needs_border_color(wrap_s) ||
1372 wrap_mode_needs_border_color(wrap_t) ||
1373 wrap_mode_needs_border_color(wrap_r);
1374
1375 float min_lod = state->min_lod;
1376 unsigned mag_img_filter = state->mag_img_filter;
1377
1378 // XXX: explain this code ported from ilo...I don't get it at all...
1379 if (state->min_mip_filter == PIPE_TEX_MIPFILTER_NONE &&
1380 state->min_lod > 0.0f) {
1381 min_lod = 0.0f;
1382 mag_img_filter = state->min_img_filter;
1383 }
1384
1385 iris_pack_state(GENX(SAMPLER_STATE), cso->sampler_state, samp) {
1386 samp.TCXAddressControlMode = wrap_s;
1387 samp.TCYAddressControlMode = wrap_t;
1388 samp.TCZAddressControlMode = wrap_r;
1389 samp.CubeSurfaceControlMode = state->seamless_cube_map;
1390 samp.NonnormalizedCoordinateEnable = !state->normalized_coords;
1391 samp.MinModeFilter = state->min_img_filter;
1392 samp.MagModeFilter = mag_img_filter;
1393 samp.MipModeFilter = translate_mip_filter(state->min_mip_filter);
1394 samp.MaximumAnisotropy = RATIO21;
1395
1396 if (state->max_anisotropy >= 2) {
1397 if (state->min_img_filter == PIPE_TEX_FILTER_LINEAR) {
1398 samp.MinModeFilter = MAPFILTER_ANISOTROPIC;
1399 samp.AnisotropicAlgorithm = EWAApproximation;
1400 }
1401
1402 if (state->mag_img_filter == PIPE_TEX_FILTER_LINEAR)
1403 samp.MagModeFilter = MAPFILTER_ANISOTROPIC;
1404
1405 samp.MaximumAnisotropy =
1406 MIN2((state->max_anisotropy - 2) / 2, RATIO161);
1407 }
1408
1409 /* Set address rounding bits if not using nearest filtering. */
1410 if (state->min_img_filter != PIPE_TEX_FILTER_NEAREST) {
1411 samp.UAddressMinFilterRoundingEnable = true;
1412 samp.VAddressMinFilterRoundingEnable = true;
1413 samp.RAddressMinFilterRoundingEnable = true;
1414 }
1415
1416 if (state->mag_img_filter != PIPE_TEX_FILTER_NEAREST) {
1417 samp.UAddressMagFilterRoundingEnable = true;
1418 samp.VAddressMagFilterRoundingEnable = true;
1419 samp.RAddressMagFilterRoundingEnable = true;
1420 }
1421
1422 if (state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE)
1423 samp.ShadowFunction = translate_shadow_func(state->compare_func);
1424
1425 const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
1426
1427 samp.LODPreClampMode = CLAMP_MODE_OGL;
1428 samp.MinLOD = CLAMP(min_lod, 0, hw_max_lod);
1429 samp.MaxLOD = CLAMP(state->max_lod, 0, hw_max_lod);
1430 samp.TextureLODBias = CLAMP(state->lod_bias, -16, 15);
1431
1432 /* .BorderColorPointer is filled in by iris_bind_sampler_states. */
1433 }
1434
1435 return cso;
1436 }
1437
1438 /**
1439 * The pipe->bind_sampler_states() driver hook.
1440 *
1441 * Now that we know all the sampler states, we upload them all into a
1442 * contiguous area of GPU memory, for 3DSTATE_SAMPLER_STATE_POINTERS_*.
1443 * We also fill out the border color state pointers at this point.
1444 *
1445 * We could defer this work to draw time, but we assume that binding
1446 * will be less frequent than drawing.
1447 */
1448 // XXX: this may be a bad idea, need to make sure that st/mesa calls us
1449 // XXX: with the complete set of shaders. If it makes multiple calls to
1450 // XXX: things one at a time, we could waste a lot of time assembling things.
1451 // XXX: it doesn't even BUY us anything to do it here, because we only flag
1452 // XXX: IRIS_DIRTY_SAMPLER_STATE when this is called...
1453 static void
1454 iris_bind_sampler_states(struct pipe_context *ctx,
1455 enum pipe_shader_type p_stage,
1456 unsigned start, unsigned count,
1457 void **states)
1458 {
1459 struct iris_context *ice = (struct iris_context *) ctx;
1460 gl_shader_stage stage = stage_from_pipe(p_stage);
1461 struct iris_shader_state *shs = &ice->state.shaders[stage];
1462
1463 assert(start + count <= IRIS_MAX_TEXTURE_SAMPLERS);
1464
1465 for (int i = 0; i < count; i++) {
1466 shs->samplers[start + i] = states[i];
1467 }
1468
1469 /* Assemble the SAMPLER_STATEs into a contiguous table that lives
1470 * in the dynamic state memory zone, so we can point to it via the
1471 * 3DSTATE_SAMPLER_STATE_POINTERS_* commands.
1472 */
1473 uint32_t *map =
1474 upload_state(ice->state.dynamic_uploader, &shs->sampler_table,
1475 count * 4 * GENX(SAMPLER_STATE_length), 32);
1476 if (unlikely(!map))
1477 return;
1478
1479 struct pipe_resource *res = shs->sampler_table.res;
1480 shs->sampler_table.offset +=
1481 iris_bo_offset_from_base_address(iris_resource_bo(res));
1482
1483 /* Make sure all land in the same BO */
1484 iris_border_color_pool_reserve(ice, IRIS_MAX_TEXTURE_SAMPLERS);
1485
1486 for (int i = 0; i < count; i++) {
1487 struct iris_sampler_state *state = shs->samplers[i];
1488
1489 if (!state) {
1490 memset(map, 0, 4 * GENX(SAMPLER_STATE_length));
1491 } else if (!state->needs_border_color) {
1492 memcpy(map, state->sampler_state, 4 * GENX(SAMPLER_STATE_length));
1493 } else {
1494 ice->state.need_border_colors = true;
1495
1496 /* Stream out the border color and merge the pointer. */
1497 uint32_t offset =
1498 iris_upload_border_color(ice, &state->border_color);
1499
1500 uint32_t dynamic[GENX(SAMPLER_STATE_length)];
1501 iris_pack_state(GENX(SAMPLER_STATE), dynamic, dyns) {
1502 dyns.BorderColorPointer = offset;
1503 }
1504
1505 for (uint32_t j = 0; j < GENX(SAMPLER_STATE_length); j++)
1506 map[j] = state->sampler_state[j] | dynamic[j];
1507 }
1508
1509 map += GENX(SAMPLER_STATE_length);
1510 }
1511
1512 ice->state.dirty |= IRIS_DIRTY_SAMPLER_STATES_VS << stage;
1513 }
1514
1515 static enum isl_channel_select
1516 fmt_swizzle(const struct iris_format_info *fmt, enum pipe_swizzle swz)
1517 {
1518 switch (swz) {
1519 case PIPE_SWIZZLE_X: return fmt->swizzle.r;
1520 case PIPE_SWIZZLE_Y: return fmt->swizzle.g;
1521 case PIPE_SWIZZLE_Z: return fmt->swizzle.b;
1522 case PIPE_SWIZZLE_W: return fmt->swizzle.a;
1523 case PIPE_SWIZZLE_1: return SCS_ONE;
1524 case PIPE_SWIZZLE_0: return SCS_ZERO;
1525 default: unreachable("invalid swizzle");
1526 }
1527 }
1528
1529 static void
1530 fill_buffer_surface_state(struct isl_device *isl_dev,
1531 struct iris_bo *bo,
1532 void *map,
1533 enum isl_format format,
1534 unsigned offset,
1535 unsigned size)
1536 {
1537 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
1538 const unsigned cpp = format == ISL_FORMAT_RAW ? 1 : fmtl->bpb / 8;
1539
1540 /* The ARB_texture_buffer_specification says:
1541 *
1542 * "The number of texels in the buffer texture's texel array is given by
1543 *
1544 * floor(<buffer_size> / (<components> * sizeof(<base_type>)),
1545 *
1546 * where <buffer_size> is the size of the buffer object, in basic
1547 * machine units and <components> and <base_type> are the element count
1548 * and base data type for elements, as specified in Table X.1. The
1549 * number of texels in the texel array is then clamped to the
1550 * implementation-dependent limit MAX_TEXTURE_BUFFER_SIZE_ARB."
1551 *
1552 * We need to clamp the size in bytes to MAX_TEXTURE_BUFFER_SIZE * stride,
1553 * so that when ISL divides by stride to obtain the number of texels, that
1554 * texel count is clamped to MAX_TEXTURE_BUFFER_SIZE.
1555 */
1556 unsigned final_size =
1557 MIN3(size, bo->size - offset, IRIS_MAX_TEXTURE_BUFFER_SIZE * cpp);
1558
1559 isl_buffer_fill_state(isl_dev, map,
1560 .address = bo->gtt_offset + offset,
1561 .size_B = final_size,
1562 .format = format,
1563 .stride_B = cpp,
1564 .mocs = mocs(bo));
1565 }
1566
1567 #define SURFACE_STATE_ALIGNMENT 64
1568
1569 /**
1570 * Allocate several contiguous SURFACE_STATE structures, one for each
1571 * supported auxiliary surface mode.
1572 */
1573 static void *
1574 alloc_surface_states(struct u_upload_mgr *mgr,
1575 struct iris_state_ref *ref,
1576 unsigned aux_usages)
1577 {
1578 const unsigned surf_size = 4 * GENX(RENDER_SURFACE_STATE_length);
1579
1580 /* If this changes, update this to explicitly align pointers */
1581 STATIC_ASSERT(surf_size == SURFACE_STATE_ALIGNMENT);
1582
1583 assert(aux_usages != 0);
1584
1585 void *map =
1586 upload_state(mgr, ref, util_bitcount(aux_usages) * surf_size,
1587 SURFACE_STATE_ALIGNMENT);
1588
1589 ref->offset += iris_bo_offset_from_base_address(iris_resource_bo(ref->res));
1590
1591 return map;
1592 }
1593
1594 static void
1595 fill_surface_state(struct isl_device *isl_dev,
1596 void *map,
1597 struct iris_resource *res,
1598 struct isl_view *view,
1599 unsigned aux_usage)
1600 {
1601 struct isl_surf_fill_state_info f = {
1602 .surf = &res->surf,
1603 .view = view,
1604 .mocs = mocs(res->bo),
1605 .address = res->bo->gtt_offset,
1606 };
1607
1608 if (aux_usage != ISL_AUX_USAGE_NONE) {
1609 f.aux_surf = &res->aux.surf;
1610 f.aux_usage = aux_usage;
1611 f.aux_address = res->aux.bo->gtt_offset + res->aux.offset;
1612 // XXX: clear color
1613 }
1614
1615 isl_surf_fill_state_s(isl_dev, map, &f);
1616 }
1617
1618 /**
1619 * The pipe->create_sampler_view() driver hook.
1620 */
1621 static struct pipe_sampler_view *
1622 iris_create_sampler_view(struct pipe_context *ctx,
1623 struct pipe_resource *tex,
1624 const struct pipe_sampler_view *tmpl)
1625 {
1626 struct iris_context *ice = (struct iris_context *) ctx;
1627 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1628 const struct gen_device_info *devinfo = &screen->devinfo;
1629 struct iris_sampler_view *isv = calloc(1, sizeof(struct iris_sampler_view));
1630
1631 if (!isv)
1632 return NULL;
1633
1634 /* initialize base object */
1635 isv->base = *tmpl;
1636 isv->base.context = ctx;
1637 isv->base.texture = NULL;
1638 pipe_reference_init(&isv->base.reference, 1);
1639 pipe_resource_reference(&isv->base.texture, tex);
1640
1641 if (util_format_is_depth_or_stencil(tmpl->format)) {
1642 struct iris_resource *zres, *sres;
1643 const struct util_format_description *desc =
1644 util_format_description(tmpl->format);
1645
1646 iris_get_depth_stencil_resources(tex, &zres, &sres);
1647
1648 tex = util_format_has_depth(desc) ? &zres->base : &sres->base;
1649 }
1650
1651 isv->res = (struct iris_resource *) tex;
1652
1653 void *map = alloc_surface_states(ice->state.surface_uploader,
1654 &isv->surface_state,
1655 isv->res->aux.possible_usages);
1656 if (!unlikely(map))
1657 return NULL;
1658
1659 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_TEXTURE_BIT;
1660
1661 if (isv->base.target == PIPE_TEXTURE_CUBE ||
1662 isv->base.target == PIPE_TEXTURE_CUBE_ARRAY)
1663 usage |= ISL_SURF_USAGE_CUBE_BIT;
1664
1665 const struct iris_format_info fmt =
1666 iris_format_for_usage(devinfo, tmpl->format, usage);
1667
1668 isv->view = (struct isl_view) {
1669 .format = fmt.fmt,
1670 .swizzle = (struct isl_swizzle) {
1671 .r = fmt_swizzle(&fmt, tmpl->swizzle_r),
1672 .g = fmt_swizzle(&fmt, tmpl->swizzle_g),
1673 .b = fmt_swizzle(&fmt, tmpl->swizzle_b),
1674 .a = fmt_swizzle(&fmt, tmpl->swizzle_a),
1675 },
1676 .usage = usage,
1677 };
1678
1679 /* Fill out SURFACE_STATE for this view. */
1680 if (tmpl->target != PIPE_BUFFER) {
1681 isv->view.base_level = tmpl->u.tex.first_level;
1682 isv->view.levels = tmpl->u.tex.last_level - tmpl->u.tex.first_level + 1;
1683 // XXX: do I need to port f9fd0cf4790cb2a530e75d1a2206dbb9d8af7cb2?
1684 isv->view.base_array_layer = tmpl->u.tex.first_layer;
1685 isv->view.array_len =
1686 tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
1687
1688 unsigned aux_modes = isv->res->aux.possible_usages;
1689 while (aux_modes) {
1690 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
1691
1692 fill_surface_state(&screen->isl_dev, map, isv->res, &isv->view,
1693 aux_usage);
1694
1695 map += SURFACE_STATE_ALIGNMENT;
1696 }
1697 } else {
1698 fill_buffer_surface_state(&screen->isl_dev, isv->res->bo, map,
1699 isv->view.format, tmpl->u.buf.offset,
1700 tmpl->u.buf.size);
1701 }
1702
1703 return &isv->base;
1704 }
1705
1706 static void
1707 iris_sampler_view_destroy(struct pipe_context *ctx,
1708 struct pipe_sampler_view *state)
1709 {
1710 struct iris_sampler_view *isv = (void *) state;
1711 pipe_resource_reference(&state->texture, NULL);
1712 pipe_resource_reference(&isv->surface_state.res, NULL);
1713 free(isv);
1714 }
1715
1716 /**
1717 * The pipe->create_surface() driver hook.
1718 *
1719 * In Gallium nomenclature, "surfaces" are a view of a resource that
1720 * can be bound as a render target or depth/stencil buffer.
1721 */
1722 static struct pipe_surface *
1723 iris_create_surface(struct pipe_context *ctx,
1724 struct pipe_resource *tex,
1725 const struct pipe_surface *tmpl)
1726 {
1727 struct iris_context *ice = (struct iris_context *) ctx;
1728 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1729 const struct gen_device_info *devinfo = &screen->devinfo;
1730 struct iris_surface *surf = calloc(1, sizeof(struct iris_surface));
1731 struct pipe_surface *psurf = &surf->base;
1732 struct iris_resource *res = (struct iris_resource *) tex;
1733
1734 if (!surf)
1735 return NULL;
1736
1737 pipe_reference_init(&psurf->reference, 1);
1738 pipe_resource_reference(&psurf->texture, tex);
1739 psurf->context = ctx;
1740 psurf->format = tmpl->format;
1741 psurf->width = tex->width0;
1742 psurf->height = tex->height0;
1743 psurf->texture = tex;
1744 psurf->u.tex.first_layer = tmpl->u.tex.first_layer;
1745 psurf->u.tex.last_layer = tmpl->u.tex.last_layer;
1746 psurf->u.tex.level = tmpl->u.tex.level;
1747
1748 isl_surf_usage_flags_t usage = 0;
1749 if (tmpl->writable)
1750 usage = ISL_SURF_USAGE_STORAGE_BIT;
1751 else if (util_format_is_depth_or_stencil(tmpl->format))
1752 usage = ISL_SURF_USAGE_DEPTH_BIT;
1753 else
1754 usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
1755
1756 const struct iris_format_info fmt =
1757 iris_format_for_usage(devinfo, psurf->format, usage);
1758
1759 if ((usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) &&
1760 !isl_format_supports_rendering(devinfo, fmt.fmt)) {
1761 /* Framebuffer validation will reject this invalid case, but it
1762 * hasn't had the opportunity yet. In the meantime, we need to
1763 * avoid hitting ISL asserts about unsupported formats below.
1764 */
1765 free(surf);
1766 return NULL;
1767 }
1768
1769 surf->view = (struct isl_view) {
1770 .format = fmt.fmt,
1771 .base_level = tmpl->u.tex.level,
1772 .levels = 1,
1773 .base_array_layer = tmpl->u.tex.first_layer,
1774 .array_len = tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1,
1775 .swizzle = ISL_SWIZZLE_IDENTITY,
1776 .usage = usage,
1777 };
1778
1779 /* Bail early for depth/stencil - we don't want SURFACE_STATE for them. */
1780 if (res->surf.usage & (ISL_SURF_USAGE_DEPTH_BIT |
1781 ISL_SURF_USAGE_STENCIL_BIT))
1782 return psurf;
1783
1784
1785 void *map = alloc_surface_states(ice->state.surface_uploader,
1786 &surf->surface_state,
1787 res->aux.possible_usages);
1788 if (!unlikely(map))
1789 return NULL;
1790
1791 unsigned aux_modes = res->aux.possible_usages;
1792 while (aux_modes) {
1793 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
1794
1795 fill_surface_state(&screen->isl_dev, map, res, &surf->view, aux_usage);
1796
1797 map += SURFACE_STATE_ALIGNMENT;
1798 }
1799
1800 return psurf;
1801 }
1802
1803 #if GEN_GEN < 9
1804 static void
1805 fill_default_image_param(struct brw_image_param *param)
1806 {
1807 memset(param, 0, sizeof(*param));
1808 /* Set the swizzling shifts to all-ones to effectively disable swizzling --
1809 * See emit_address_calculation() in brw_fs_surface_builder.cpp for a more
1810 * detailed explanation of these parameters.
1811 */
1812 param->swizzling[0] = 0xff;
1813 param->swizzling[1] = 0xff;
1814 }
1815
1816 static void
1817 fill_buffer_image_param(struct brw_image_param *param,
1818 enum pipe_format pfmt,
1819 unsigned size)
1820 {
1821 const unsigned cpp = util_format_get_blocksize(pfmt);
1822
1823 fill_default_image_param(param);
1824 param->size[0] = size / cpp;
1825 param->stride[0] = cpp;
1826 }
1827 #else
1828 #define isl_surf_fill_image_param(x, ...)
1829 #define fill_default_image_param(x, ...)
1830 #define fill_buffer_image_param(x, ...)
1831 #endif
1832
1833 /**
1834 * The pipe->set_shader_images() driver hook.
1835 */
1836 static void
1837 iris_set_shader_images(struct pipe_context *ctx,
1838 enum pipe_shader_type p_stage,
1839 unsigned start_slot, unsigned count,
1840 const struct pipe_image_view *p_images)
1841 {
1842 struct iris_context *ice = (struct iris_context *) ctx;
1843 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1844 const struct gen_device_info *devinfo = &screen->devinfo;
1845 gl_shader_stage stage = stage_from_pipe(p_stage);
1846 struct iris_shader_state *shs = &ice->state.shaders[stage];
1847
1848 shs->bound_image_views &= ~u_bit_consecutive(start_slot, count);
1849
1850 for (unsigned i = 0; i < count; i++) {
1851 if (p_images && p_images[i].resource) {
1852 const struct pipe_image_view *img = &p_images[i];
1853 struct iris_resource *res = (void *) img->resource;
1854 pipe_resource_reference(&shs->image[start_slot + i].res, &res->base);
1855
1856 shs->bound_image_views |= 1 << (start_slot + i);
1857
1858 res->bind_history |= PIPE_BIND_SHADER_IMAGE;
1859
1860 // XXX: these are not retained forever, use a separate uploader?
1861 void *map =
1862 alloc_surface_states(ice->state.surface_uploader,
1863 &shs->image[start_slot + i].surface_state,
1864 1 << ISL_AUX_USAGE_NONE);
1865 if (!unlikely(map)) {
1866 pipe_resource_reference(&shs->image[start_slot + i].res, NULL);
1867 return;
1868 }
1869
1870 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_STORAGE_BIT;
1871 enum isl_format isl_fmt =
1872 iris_format_for_usage(devinfo, img->format, usage).fmt;
1873
1874 bool untyped_fallback = false;
1875
1876 if (img->shader_access & PIPE_IMAGE_ACCESS_READ) {
1877 /* On Gen8, try to use typed surfaces reads (which support a
1878 * limited number of formats), and if not possible, fall back
1879 * to untyped reads.
1880 */
1881 untyped_fallback = GEN_GEN == 8 &&
1882 !isl_has_matching_typed_storage_image_format(devinfo, isl_fmt);
1883
1884 if (untyped_fallback)
1885 isl_fmt = ISL_FORMAT_RAW;
1886 else
1887 isl_fmt = isl_lower_storage_image_format(devinfo, isl_fmt);
1888 }
1889
1890 shs->image[start_slot + i].access = img->shader_access;
1891
1892 if (res->base.target != PIPE_BUFFER) {
1893 struct isl_view view = {
1894 .format = isl_fmt,
1895 .base_level = img->u.tex.level,
1896 .levels = 1,
1897 .base_array_layer = img->u.tex.first_layer,
1898 .array_len = img->u.tex.last_layer - img->u.tex.first_layer + 1,
1899 .swizzle = ISL_SWIZZLE_IDENTITY,
1900 .usage = usage,
1901 };
1902
1903 if (untyped_fallback) {
1904 fill_buffer_surface_state(&screen->isl_dev, res->bo, map,
1905 isl_fmt, 0, res->bo->size);
1906 } else {
1907 /* Images don't support compression */
1908 unsigned aux_modes = 1 << ISL_AUX_USAGE_NONE;
1909 while (aux_modes) {
1910 enum isl_aux_usage usage = u_bit_scan(&aux_modes);
1911
1912 fill_surface_state(&screen->isl_dev, map, res, &view, usage);
1913
1914 map += SURFACE_STATE_ALIGNMENT;
1915 }
1916 }
1917
1918 isl_surf_fill_image_param(&screen->isl_dev,
1919 &shs->image[start_slot + i].param,
1920 &res->surf, &view);
1921 } else {
1922 fill_buffer_surface_state(&screen->isl_dev, res->bo, map,
1923 isl_fmt, img->u.buf.offset,
1924 img->u.buf.size);
1925 fill_buffer_image_param(&shs->image[start_slot + i].param,
1926 img->format, img->u.buf.size);
1927 }
1928 } else {
1929 pipe_resource_reference(&shs->image[start_slot + i].res, NULL);
1930 pipe_resource_reference(&shs->image[start_slot + i].surface_state.res,
1931 NULL);
1932 fill_default_image_param(&shs->image[start_slot + i].param);
1933 }
1934 }
1935
1936 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
1937
1938 /* Broadwell also needs brw_image_params re-uploaded */
1939 if (GEN_GEN < 9) {
1940 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
1941 shs->cbuf0_needs_upload = true;
1942 }
1943 }
1944
1945
1946 /**
1947 * The pipe->set_sampler_views() driver hook.
1948 */
1949 static void
1950 iris_set_sampler_views(struct pipe_context *ctx,
1951 enum pipe_shader_type p_stage,
1952 unsigned start, unsigned count,
1953 struct pipe_sampler_view **views)
1954 {
1955 struct iris_context *ice = (struct iris_context *) ctx;
1956 gl_shader_stage stage = stage_from_pipe(p_stage);
1957 struct iris_shader_state *shs = &ice->state.shaders[stage];
1958
1959 shs->bound_sampler_views &= ~u_bit_consecutive(start, count);
1960
1961 for (unsigned i = 0; i < count; i++) {
1962 pipe_sampler_view_reference((struct pipe_sampler_view **)
1963 &shs->textures[start + i], views[i]);
1964 struct iris_sampler_view *view = (void *) views[i];
1965 if (view) {
1966 view->res->bind_history |= PIPE_BIND_SAMPLER_VIEW;
1967 shs->bound_sampler_views |= 1 << (start + i);
1968 }
1969 }
1970
1971 ice->state.dirty |= (IRIS_DIRTY_BINDINGS_VS << stage);
1972 }
1973
1974 /**
1975 * The pipe->set_tess_state() driver hook.
1976 */
1977 static void
1978 iris_set_tess_state(struct pipe_context *ctx,
1979 const float default_outer_level[4],
1980 const float default_inner_level[2])
1981 {
1982 struct iris_context *ice = (struct iris_context *) ctx;
1983
1984 memcpy(&ice->state.default_outer_level[0], &default_outer_level[0], 4 * sizeof(float));
1985 memcpy(&ice->state.default_inner_level[0], &default_inner_level[0], 2 * sizeof(float));
1986
1987 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_TCS;
1988 }
1989
1990 static void
1991 iris_surface_destroy(struct pipe_context *ctx, struct pipe_surface *p_surf)
1992 {
1993 struct iris_surface *surf = (void *) p_surf;
1994 pipe_resource_reference(&p_surf->texture, NULL);
1995 pipe_resource_reference(&surf->surface_state.res, NULL);
1996 free(surf);
1997 }
1998
1999 static void
2000 iris_set_clip_state(struct pipe_context *ctx,
2001 const struct pipe_clip_state *state)
2002 {
2003 struct iris_context *ice = (struct iris_context *) ctx;
2004 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_VERTEX];
2005
2006 memcpy(&ice->state.clip_planes, state, sizeof(*state));
2007
2008 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS;
2009 shs->cbuf0_needs_upload = true;
2010 }
2011
2012 /**
2013 * The pipe->set_polygon_stipple() driver hook.
2014 */
2015 static void
2016 iris_set_polygon_stipple(struct pipe_context *ctx,
2017 const struct pipe_poly_stipple *state)
2018 {
2019 struct iris_context *ice = (struct iris_context *) ctx;
2020 memcpy(&ice->state.poly_stipple, state, sizeof(*state));
2021 ice->state.dirty |= IRIS_DIRTY_POLYGON_STIPPLE;
2022 }
2023
2024 /**
2025 * The pipe->set_sample_mask() driver hook.
2026 */
2027 static void
2028 iris_set_sample_mask(struct pipe_context *ctx, unsigned sample_mask)
2029 {
2030 struct iris_context *ice = (struct iris_context *) ctx;
2031
2032 /* We only support 16x MSAA, so we have 16 bits of sample maks.
2033 * st/mesa may pass us 0xffffffff though, meaning "enable all samples".
2034 */
2035 ice->state.sample_mask = sample_mask & 0xffff;
2036 ice->state.dirty |= IRIS_DIRTY_SAMPLE_MASK;
2037 }
2038
2039 /**
2040 * The pipe->set_scissor_states() driver hook.
2041 *
2042 * This corresponds to our SCISSOR_RECT state structures. It's an
2043 * exact match, so we just store them, and memcpy them out later.
2044 */
2045 static void
2046 iris_set_scissor_states(struct pipe_context *ctx,
2047 unsigned start_slot,
2048 unsigned num_scissors,
2049 const struct pipe_scissor_state *rects)
2050 {
2051 struct iris_context *ice = (struct iris_context *) ctx;
2052
2053 for (unsigned i = 0; i < num_scissors; i++) {
2054 if (rects[i].minx == rects[i].maxx || rects[i].miny == rects[i].maxy) {
2055 /* If the scissor was out of bounds and got clamped to 0 width/height
2056 * at the bounds, the subtraction of 1 from maximums could produce a
2057 * negative number and thus not clip anything. Instead, just provide
2058 * a min > max scissor inside the bounds, which produces the expected
2059 * no rendering.
2060 */
2061 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
2062 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
2063 };
2064 } else {
2065 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
2066 .minx = rects[i].minx, .miny = rects[i].miny,
2067 .maxx = rects[i].maxx - 1, .maxy = rects[i].maxy - 1,
2068 };
2069 }
2070 }
2071
2072 ice->state.dirty |= IRIS_DIRTY_SCISSOR_RECT;
2073 }
2074
2075 /**
2076 * The pipe->set_stencil_ref() driver hook.
2077 *
2078 * This is added to 3DSTATE_WM_DEPTH_STENCIL dynamically at draw time.
2079 */
2080 static void
2081 iris_set_stencil_ref(struct pipe_context *ctx,
2082 const struct pipe_stencil_ref *state)
2083 {
2084 struct iris_context *ice = (struct iris_context *) ctx;
2085 memcpy(&ice->state.stencil_ref, state, sizeof(*state));
2086 if (GEN_GEN == 8)
2087 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
2088 else
2089 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
2090 }
2091
2092 static float
2093 viewport_extent(const struct pipe_viewport_state *state, int axis, float sign)
2094 {
2095 return copysignf(state->scale[axis], sign) + state->translate[axis];
2096 }
2097
2098 static void
2099 calculate_guardband_size(uint32_t fb_width, uint32_t fb_height,
2100 float m00, float m11, float m30, float m31,
2101 float *xmin, float *xmax,
2102 float *ymin, float *ymax)
2103 {
2104 /* According to the "Vertex X,Y Clamping and Quantization" section of the
2105 * Strips and Fans documentation:
2106 *
2107 * "The vertex X and Y screen-space coordinates are also /clamped/ to the
2108 * fixed-point "guardband" range supported by the rasterization hardware"
2109 *
2110 * and
2111 *
2112 * "In almost all circumstances, if an object’s vertices are actually
2113 * modified by this clamping (i.e., had X or Y coordinates outside of
2114 * the guardband extent the rendered object will not match the intended
2115 * result. Therefore software should take steps to ensure that this does
2116 * not happen - e.g., by clipping objects such that they do not exceed
2117 * these limits after the Drawing Rectangle is applied."
2118 *
2119 * I believe the fundamental restriction is that the rasterizer (in
2120 * the SF/WM stages) have a limit on the number of pixels that can be
2121 * rasterized. We need to ensure any coordinates beyond the rasterizer
2122 * limit are handled by the clipper. So effectively that limit becomes
2123 * the clipper's guardband size.
2124 *
2125 * It goes on to say:
2126 *
2127 * "In addition, in order to be correctly rendered, objects must have a
2128 * screenspace bounding box not exceeding 8K in the X or Y direction.
2129 * This additional restriction must also be comprehended by software,
2130 * i.e., enforced by use of clipping."
2131 *
2132 * This makes no sense. Gen7+ hardware supports 16K render targets,
2133 * and you definitely need to be able to draw polygons that fill the
2134 * surface. Our assumption is that the rasterizer was limited to 8K
2135 * on Sandybridge, which only supports 8K surfaces, and it was actually
2136 * increased to 16K on Ivybridge and later.
2137 *
2138 * So, limit the guardband to 16K on Gen7+ and 8K on Sandybridge.
2139 */
2140 const float gb_size = GEN_GEN >= 7 ? 16384.0f : 8192.0f;
2141
2142 if (m00 != 0 && m11 != 0) {
2143 /* First, we compute the screen-space render area */
2144 const float ss_ra_xmin = MIN3( 0, m30 + m00, m30 - m00);
2145 const float ss_ra_xmax = MAX3( fb_width, m30 + m00, m30 - m00);
2146 const float ss_ra_ymin = MIN3( 0, m31 + m11, m31 - m11);
2147 const float ss_ra_ymax = MAX3(fb_height, m31 + m11, m31 - m11);
2148
2149 /* We want the guardband to be centered on that */
2150 const float ss_gb_xmin = (ss_ra_xmin + ss_ra_xmax) / 2 - gb_size;
2151 const float ss_gb_xmax = (ss_ra_xmin + ss_ra_xmax) / 2 + gb_size;
2152 const float ss_gb_ymin = (ss_ra_ymin + ss_ra_ymax) / 2 - gb_size;
2153 const float ss_gb_ymax = (ss_ra_ymin + ss_ra_ymax) / 2 + gb_size;
2154
2155 /* Now we need it in native device coordinates */
2156 const float ndc_gb_xmin = (ss_gb_xmin - m30) / m00;
2157 const float ndc_gb_xmax = (ss_gb_xmax - m30) / m00;
2158 const float ndc_gb_ymin = (ss_gb_ymin - m31) / m11;
2159 const float ndc_gb_ymax = (ss_gb_ymax - m31) / m11;
2160
2161 /* Thanks to Y-flipping and ORIGIN_UPPER_LEFT, the Y coordinates may be
2162 * flipped upside-down. X should be fine though.
2163 */
2164 assert(ndc_gb_xmin <= ndc_gb_xmax);
2165 *xmin = ndc_gb_xmin;
2166 *xmax = ndc_gb_xmax;
2167 *ymin = MIN2(ndc_gb_ymin, ndc_gb_ymax);
2168 *ymax = MAX2(ndc_gb_ymin, ndc_gb_ymax);
2169 } else {
2170 /* The viewport scales to 0, so nothing will be rendered. */
2171 *xmin = 0.0f;
2172 *xmax = 0.0f;
2173 *ymin = 0.0f;
2174 *ymax = 0.0f;
2175 }
2176 }
2177
2178 /**
2179 * The pipe->set_viewport_states() driver hook.
2180 *
2181 * This corresponds to our SF_CLIP_VIEWPORT states. We can't calculate
2182 * the guardband yet, as we need the framebuffer dimensions, but we can
2183 * at least fill out the rest.
2184 */
2185 static void
2186 iris_set_viewport_states(struct pipe_context *ctx,
2187 unsigned start_slot,
2188 unsigned count,
2189 const struct pipe_viewport_state *states)
2190 {
2191 struct iris_context *ice = (struct iris_context *) ctx;
2192
2193 memcpy(&ice->state.viewports[start_slot], states, sizeof(*states) * count);
2194
2195 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2196
2197 if (ice->state.cso_rast && (!ice->state.cso_rast->depth_clip_near ||
2198 !ice->state.cso_rast->depth_clip_far))
2199 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
2200 }
2201
2202 /**
2203 * The pipe->set_framebuffer_state() driver hook.
2204 *
2205 * Sets the current draw FBO, including color render targets, depth,
2206 * and stencil buffers.
2207 */
2208 static void
2209 iris_set_framebuffer_state(struct pipe_context *ctx,
2210 const struct pipe_framebuffer_state *state)
2211 {
2212 struct iris_context *ice = (struct iris_context *) ctx;
2213 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2214 struct isl_device *isl_dev = &screen->isl_dev;
2215 struct pipe_framebuffer_state *cso = &ice->state.framebuffer;
2216 struct iris_resource *zres;
2217 struct iris_resource *stencil_res;
2218
2219 unsigned samples = util_framebuffer_get_num_samples(state);
2220 unsigned layers = util_framebuffer_get_num_layers(state);
2221
2222 if (cso->samples != samples) {
2223 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
2224 }
2225
2226 if (cso->nr_cbufs != state->nr_cbufs) {
2227 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
2228 }
2229
2230 if ((cso->layers == 0) != (layers == 0)) {
2231 ice->state.dirty |= IRIS_DIRTY_CLIP;
2232 }
2233
2234 if (cso->width != state->width || cso->height != state->height) {
2235 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2236 }
2237
2238 util_copy_framebuffer_state(cso, state);
2239 cso->samples = samples;
2240 cso->layers = layers;
2241
2242 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
2243
2244 struct isl_view view = {
2245 .base_level = 0,
2246 .levels = 1,
2247 .base_array_layer = 0,
2248 .array_len = 1,
2249 .swizzle = ISL_SWIZZLE_IDENTITY,
2250 };
2251
2252 struct isl_depth_stencil_hiz_emit_info info = { .view = &view };
2253
2254 if (cso->zsbuf) {
2255 iris_get_depth_stencil_resources(cso->zsbuf->texture, &zres,
2256 &stencil_res);
2257
2258 view.base_level = cso->zsbuf->u.tex.level;
2259 view.base_array_layer = cso->zsbuf->u.tex.first_layer;
2260 view.array_len =
2261 cso->zsbuf->u.tex.last_layer - cso->zsbuf->u.tex.first_layer + 1;
2262
2263 if (zres) {
2264 view.usage |= ISL_SURF_USAGE_DEPTH_BIT;
2265
2266 info.depth_surf = &zres->surf;
2267 info.depth_address = zres->bo->gtt_offset;
2268 info.mocs = mocs(zres->bo);
2269
2270 view.format = zres->surf.format;
2271
2272 if (iris_resource_level_has_hiz(zres, view.base_level)) {
2273 info.hiz_usage = ISL_AUX_USAGE_HIZ;
2274 info.hiz_surf = &zres->aux.surf;
2275 info.hiz_address = zres->aux.bo->gtt_offset;
2276 }
2277 }
2278
2279 if (stencil_res) {
2280 view.usage |= ISL_SURF_USAGE_STENCIL_BIT;
2281 info.stencil_surf = &stencil_res->surf;
2282 info.stencil_address = stencil_res->bo->gtt_offset;
2283 if (!zres) {
2284 view.format = stencil_res->surf.format;
2285 info.mocs = mocs(stencil_res->bo);
2286 }
2287 }
2288 }
2289
2290 isl_emit_depth_stencil_hiz_s(isl_dev, cso_z->packets, &info);
2291
2292 /* Make a null surface for unbound buffers */
2293 void *null_surf_map =
2294 upload_state(ice->state.surface_uploader, &ice->state.null_fb,
2295 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2296 isl_null_fill_state(&screen->isl_dev, null_surf_map,
2297 isl_extent3d(MAX2(cso->width, 1),
2298 MAX2(cso->height, 1),
2299 cso->layers ? cso->layers : 1));
2300 ice->state.null_fb.offset +=
2301 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.null_fb.res));
2302
2303 ice->state.dirty |= IRIS_DIRTY_DEPTH_BUFFER;
2304
2305 /* Render target change */
2306 ice->state.dirty |= IRIS_DIRTY_BINDINGS_FS;
2307
2308 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_FRAMEBUFFER];
2309
2310 #if GEN_GEN == 11
2311 // XXX: we may want to flag IRIS_DIRTY_MULTISAMPLE (or SAMPLE_MASK?)
2312 // XXX: see commit 979fc1bc9bcc64027ff2cfafd285676f31b930a6
2313
2314 /* The PIPE_CONTROL command description says:
2315 *
2316 * "Whenever a Binding Table Index (BTI) used by a Render Target Message
2317 * points to a different RENDER_SURFACE_STATE, SW must issue a Render
2318 * Target Cache Flush by enabling this bit. When render target flush
2319 * is set due to new association of BTI, PS Scoreboard Stall bit must
2320 * be set in this packet."
2321 */
2322 // XXX: does this need to happen at 3DSTATE_BTP_PS time?
2323 iris_emit_pipe_control_flush(&ice->batches[IRIS_BATCH_RENDER],
2324 PIPE_CONTROL_RENDER_TARGET_FLUSH |
2325 PIPE_CONTROL_STALL_AT_SCOREBOARD);
2326 #endif
2327 }
2328
2329 static void
2330 upload_ubo_surf_state(struct iris_context *ice,
2331 struct iris_const_buffer *cbuf,
2332 unsigned buffer_size)
2333 {
2334 struct pipe_context *ctx = &ice->ctx;
2335 struct iris_screen *screen = (struct iris_screen *) ctx->screen;
2336
2337 // XXX: these are not retained forever, use a separate uploader?
2338 void *map =
2339 upload_state(ice->state.surface_uploader, &cbuf->surface_state,
2340 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2341 if (!unlikely(map)) {
2342 pipe_resource_reference(&cbuf->data.res, NULL);
2343 return;
2344 }
2345
2346 struct iris_resource *res = (void *) cbuf->data.res;
2347 struct iris_bo *surf_bo = iris_resource_bo(cbuf->surface_state.res);
2348 cbuf->surface_state.offset += iris_bo_offset_from_base_address(surf_bo);
2349
2350 isl_buffer_fill_state(&screen->isl_dev, map,
2351 .address = res->bo->gtt_offset + cbuf->data.offset,
2352 .size_B = MIN2(buffer_size,
2353 res->bo->size - cbuf->data.offset),
2354 .format = ISL_FORMAT_R32G32B32A32_FLOAT,
2355 .stride_B = 1,
2356 .mocs = mocs(res->bo))
2357 }
2358
2359 /**
2360 * The pipe->set_constant_buffer() driver hook.
2361 *
2362 * This uploads any constant data in user buffers, and references
2363 * any UBO resources containing constant data.
2364 */
2365 static void
2366 iris_set_constant_buffer(struct pipe_context *ctx,
2367 enum pipe_shader_type p_stage, unsigned index,
2368 const struct pipe_constant_buffer *input)
2369 {
2370 struct iris_context *ice = (struct iris_context *) ctx;
2371 gl_shader_stage stage = stage_from_pipe(p_stage);
2372 struct iris_shader_state *shs = &ice->state.shaders[stage];
2373 struct iris_const_buffer *cbuf = &shs->constbuf[index];
2374
2375 if (input && input->buffer) {
2376 assert(index > 0);
2377
2378 pipe_resource_reference(&cbuf->data.res, input->buffer);
2379 cbuf->data.offset = input->buffer_offset;
2380
2381 struct iris_resource *res = (void *) cbuf->data.res;
2382 res->bind_history |= PIPE_BIND_CONSTANT_BUFFER;
2383
2384 upload_ubo_surf_state(ice, cbuf, input->buffer_size);
2385 } else {
2386 pipe_resource_reference(&cbuf->data.res, NULL);
2387 pipe_resource_reference(&cbuf->surface_state.res, NULL);
2388 }
2389
2390 if (index == 0) {
2391 if (input)
2392 memcpy(&shs->cbuf0, input, sizeof(shs->cbuf0));
2393 else
2394 memset(&shs->cbuf0, 0, sizeof(shs->cbuf0));
2395
2396 shs->cbuf0_needs_upload = true;
2397 }
2398
2399 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
2400 // XXX: maybe not necessary all the time...?
2401 // XXX: we need 3DS_BTP to commit these changes, and if we fell back to
2402 // XXX: pull model we may need actual new bindings...
2403 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2404 }
2405
2406 static void
2407 upload_uniforms(struct iris_context *ice,
2408 gl_shader_stage stage)
2409 {
2410 struct iris_shader_state *shs = &ice->state.shaders[stage];
2411 struct iris_const_buffer *cbuf = &shs->constbuf[0];
2412 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
2413
2414 unsigned upload_size = shader->num_system_values * sizeof(uint32_t) +
2415 shs->cbuf0.buffer_size;
2416
2417 if (upload_size == 0)
2418 return;
2419
2420 uint32_t *map =
2421 upload_state(ice->ctx.const_uploader, &cbuf->data, upload_size, 64);
2422
2423 for (int i = 0; i < shader->num_system_values; i++) {
2424 uint32_t sysval = shader->system_values[i];
2425 uint32_t value = 0;
2426
2427 if (BRW_PARAM_DOMAIN(sysval) == BRW_PARAM_DOMAIN_IMAGE) {
2428 unsigned img = BRW_PARAM_IMAGE_IDX(sysval);
2429 unsigned offset = BRW_PARAM_IMAGE_OFFSET(sysval);
2430 struct brw_image_param *param = &shs->image[img].param;
2431
2432 assert(offset < sizeof(struct brw_image_param));
2433 value = ((uint32_t *) param)[offset];
2434 } else if (sysval == BRW_PARAM_BUILTIN_ZERO) {
2435 value = 0;
2436 } else if (BRW_PARAM_BUILTIN_IS_CLIP_PLANE(sysval)) {
2437 int plane = BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(sysval);
2438 int comp = BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(sysval);
2439 value = fui(ice->state.clip_planes.ucp[plane][comp]);
2440 } else if (sysval == BRW_PARAM_BUILTIN_PATCH_VERTICES_IN) {
2441 if (stage == MESA_SHADER_TESS_CTRL) {
2442 value = ice->state.vertices_per_patch;
2443 } else {
2444 assert(stage == MESA_SHADER_TESS_EVAL);
2445 const struct shader_info *tcs_info =
2446 iris_get_shader_info(ice, MESA_SHADER_TESS_CTRL);
2447 assert(tcs_info);
2448
2449 value = tcs_info->tess.tcs_vertices_out;
2450 }
2451 } else {
2452 assert(!"unhandled system value");
2453 }
2454
2455 *map++ = value;
2456 }
2457
2458 if (shs->cbuf0.user_buffer) {
2459 memcpy(map, shs->cbuf0.user_buffer, shs->cbuf0.buffer_size);
2460 }
2461
2462 upload_ubo_surf_state(ice, cbuf, upload_size);
2463 }
2464
2465 /**
2466 * The pipe->set_shader_buffers() driver hook.
2467 *
2468 * This binds SSBOs and ABOs. Unfortunately, we need to stream out
2469 * SURFACE_STATE here, as the buffer offset may change each time.
2470 */
2471 static void
2472 iris_set_shader_buffers(struct pipe_context *ctx,
2473 enum pipe_shader_type p_stage,
2474 unsigned start_slot, unsigned count,
2475 const struct pipe_shader_buffer *buffers)
2476 {
2477 struct iris_context *ice = (struct iris_context *) ctx;
2478 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2479 gl_shader_stage stage = stage_from_pipe(p_stage);
2480 struct iris_shader_state *shs = &ice->state.shaders[stage];
2481
2482 for (unsigned i = 0; i < count; i++) {
2483 if (buffers && buffers[i].buffer) {
2484 const struct pipe_shader_buffer *buffer = &buffers[i];
2485 struct iris_resource *res = (void *) buffer->buffer;
2486 pipe_resource_reference(&shs->ssbo[start_slot + i], &res->base);
2487
2488 res->bind_history |= PIPE_BIND_SHADER_BUFFER;
2489
2490 // XXX: these are not retained forever, use a separate uploader?
2491 void *map =
2492 upload_state(ice->state.surface_uploader,
2493 &shs->ssbo_surface_state[start_slot + i],
2494 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2495 if (!unlikely(map)) {
2496 pipe_resource_reference(&shs->ssbo[start_slot + i], NULL);
2497 return;
2498 }
2499
2500 struct iris_bo *surf_state_bo =
2501 iris_resource_bo(shs->ssbo_surface_state[start_slot + i].res);
2502 shs->ssbo_surface_state[start_slot + i].offset +=
2503 iris_bo_offset_from_base_address(surf_state_bo);
2504
2505 isl_buffer_fill_state(&screen->isl_dev, map,
2506 .address =
2507 res->bo->gtt_offset + buffer->buffer_offset,
2508 .size_B =
2509 MIN2(buffer->buffer_size,
2510 res->bo->size - buffer->buffer_offset),
2511 .format = ISL_FORMAT_RAW,
2512 .stride_B = 1,
2513 .mocs = mocs(res->bo));
2514 } else {
2515 pipe_resource_reference(&shs->ssbo[start_slot + i], NULL);
2516 pipe_resource_reference(&shs->ssbo_surface_state[start_slot + i].res,
2517 NULL);
2518 }
2519 }
2520
2521 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2522 }
2523
2524 static void
2525 iris_delete_state(struct pipe_context *ctx, void *state)
2526 {
2527 free(state);
2528 }
2529
2530 /**
2531 * The pipe->set_vertex_buffers() driver hook.
2532 *
2533 * This translates pipe_vertex_buffer to our 3DSTATE_VERTEX_BUFFERS packet.
2534 */
2535 static void
2536 iris_set_vertex_buffers(struct pipe_context *ctx,
2537 unsigned start_slot, unsigned count,
2538 const struct pipe_vertex_buffer *buffers)
2539 {
2540 struct iris_context *ice = (struct iris_context *) ctx;
2541 struct iris_genx_state *genx = ice->state.genx;
2542
2543 ice->state.bound_vertex_buffers &= ~u_bit_consecutive64(start_slot, count);
2544
2545 for (unsigned i = 0; i < count; i++) {
2546 const struct pipe_vertex_buffer *buffer = buffers ? &buffers[i] : NULL;
2547 struct iris_vertex_buffer_state *state =
2548 &genx->vertex_buffers[start_slot + i];
2549
2550 if (!buffer) {
2551 pipe_resource_reference(&state->resource, NULL);
2552 continue;
2553 }
2554
2555 assert(!buffer->is_user_buffer);
2556
2557 pipe_resource_reference(&state->resource, buffer->buffer.resource);
2558 struct iris_resource *res = (void *) state->resource;
2559
2560 if (res) {
2561 ice->state.bound_vertex_buffers |= 1ull << (start_slot + i);
2562 res->bind_history |= PIPE_BIND_VERTEX_BUFFER;
2563 }
2564
2565 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
2566 vb.VertexBufferIndex = start_slot + i;
2567 vb.AddressModifyEnable = true;
2568 vb.BufferPitch = buffer->stride;
2569 if (res) {
2570 vb.BufferSize = res->bo->size;
2571 vb.BufferStartingAddress =
2572 ro_bo(NULL, res->bo->gtt_offset + (int) buffer->buffer_offset);
2573 vb.MOCS = mocs(res->bo);
2574 } else {
2575 vb.NullVertexBuffer = true;
2576 }
2577 }
2578 }
2579
2580 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
2581 }
2582
2583 /**
2584 * Gallium CSO for vertex elements.
2585 */
2586 struct iris_vertex_element_state {
2587 uint32_t vertex_elements[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
2588 uint32_t vf_instancing[33 * GENX(3DSTATE_VF_INSTANCING_length)];
2589 uint32_t edgeflag_ve[GENX(VERTEX_ELEMENT_STATE_length)];
2590 uint32_t edgeflag_vfi[GENX(3DSTATE_VF_INSTANCING_length)];
2591 unsigned count;
2592 };
2593
2594 /**
2595 * The pipe->create_vertex_elements() driver hook.
2596 *
2597 * This translates pipe_vertex_element to our 3DSTATE_VERTEX_ELEMENTS
2598 * and 3DSTATE_VF_INSTANCING commands. The vertex_elements and vf_instancing
2599 * arrays are ready to be emitted at draw time if no EdgeFlag or SGVs are
2600 * needed. In these cases we will need information available at draw time.
2601 * We setup edgeflag_ve and edgeflag_vfi as alternatives last
2602 * 3DSTATE_VERTEX_ELEMENT and 3DSTATE_VF_INSTANCING that can be used at
2603 * draw time if we detect that EdgeFlag is needed by the Vertex Shader.
2604 */
2605 static void *
2606 iris_create_vertex_elements(struct pipe_context *ctx,
2607 unsigned count,
2608 const struct pipe_vertex_element *state)
2609 {
2610 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2611 const struct gen_device_info *devinfo = &screen->devinfo;
2612 struct iris_vertex_element_state *cso =
2613 malloc(sizeof(struct iris_vertex_element_state));
2614
2615 cso->count = count;
2616
2617 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS), cso->vertex_elements, ve) {
2618 ve.DWordLength =
2619 1 + GENX(VERTEX_ELEMENT_STATE_length) * MAX2(count, 1) - 2;
2620 }
2621
2622 uint32_t *ve_pack_dest = &cso->vertex_elements[1];
2623 uint32_t *vfi_pack_dest = cso->vf_instancing;
2624
2625 if (count == 0) {
2626 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
2627 ve.Valid = true;
2628 ve.SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT;
2629 ve.Component0Control = VFCOMP_STORE_0;
2630 ve.Component1Control = VFCOMP_STORE_0;
2631 ve.Component2Control = VFCOMP_STORE_0;
2632 ve.Component3Control = VFCOMP_STORE_1_FP;
2633 }
2634
2635 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
2636 }
2637 }
2638
2639 for (int i = 0; i < count; i++) {
2640 const struct iris_format_info fmt =
2641 iris_format_for_usage(devinfo, state[i].src_format, 0);
2642 unsigned comp[4] = { VFCOMP_STORE_SRC, VFCOMP_STORE_SRC,
2643 VFCOMP_STORE_SRC, VFCOMP_STORE_SRC };
2644
2645 switch (isl_format_get_num_channels(fmt.fmt)) {
2646 case 0: comp[0] = VFCOMP_STORE_0;
2647 case 1: comp[1] = VFCOMP_STORE_0;
2648 case 2: comp[2] = VFCOMP_STORE_0;
2649 case 3:
2650 comp[3] = isl_format_has_int_channel(fmt.fmt) ? VFCOMP_STORE_1_INT
2651 : VFCOMP_STORE_1_FP;
2652 break;
2653 }
2654 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
2655 ve.EdgeFlagEnable = false;
2656 ve.VertexBufferIndex = state[i].vertex_buffer_index;
2657 ve.Valid = true;
2658 ve.SourceElementOffset = state[i].src_offset;
2659 ve.SourceElementFormat = fmt.fmt;
2660 ve.Component0Control = comp[0];
2661 ve.Component1Control = comp[1];
2662 ve.Component2Control = comp[2];
2663 ve.Component3Control = comp[3];
2664 }
2665
2666 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
2667 vi.VertexElementIndex = i;
2668 vi.InstancingEnable = state[i].instance_divisor > 0;
2669 vi.InstanceDataStepRate = state[i].instance_divisor;
2670 }
2671
2672 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
2673 vfi_pack_dest += GENX(3DSTATE_VF_INSTANCING_length);
2674 }
2675
2676 /* An alternative version of the last VE and VFI is stored so it
2677 * can be used at draw time in case Vertex Shader uses EdgeFlag
2678 */
2679 if (count) {
2680 const unsigned edgeflag_index = count - 1;
2681 const struct iris_format_info fmt =
2682 iris_format_for_usage(devinfo, state[edgeflag_index].src_format, 0);
2683 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), cso->edgeflag_ve, ve) {
2684 ve.EdgeFlagEnable = true ;
2685 ve.VertexBufferIndex = state[edgeflag_index].vertex_buffer_index;
2686 ve.Valid = true;
2687 ve.SourceElementOffset = state[edgeflag_index].src_offset;
2688 ve.SourceElementFormat = fmt.fmt;
2689 ve.Component0Control = VFCOMP_STORE_SRC;
2690 ve.Component1Control = VFCOMP_STORE_0;
2691 ve.Component2Control = VFCOMP_STORE_0;
2692 ve.Component3Control = VFCOMP_STORE_0;
2693 }
2694 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), cso->edgeflag_vfi, vi) {
2695 /* The vi.VertexElementIndex of the EdgeFlag Vertex Element is filled
2696 * at draw time, as it should change if SGVs are emitted.
2697 */
2698 vi.InstancingEnable = state[edgeflag_index].instance_divisor > 0;
2699 vi.InstanceDataStepRate = state[edgeflag_index].instance_divisor;
2700 }
2701 }
2702
2703 return cso;
2704 }
2705
2706 /**
2707 * The pipe->bind_vertex_elements_state() driver hook.
2708 */
2709 static void
2710 iris_bind_vertex_elements_state(struct pipe_context *ctx, void *state)
2711 {
2712 struct iris_context *ice = (struct iris_context *) ctx;
2713 struct iris_vertex_element_state *old_cso = ice->state.cso_vertex_elements;
2714 struct iris_vertex_element_state *new_cso = state;
2715
2716 /* 3DSTATE_VF_SGVs overrides the last VE, so if the count is changing,
2717 * we need to re-emit it to ensure we're overriding the right one.
2718 */
2719 if (new_cso && cso_changed(count))
2720 ice->state.dirty |= IRIS_DIRTY_VF_SGVS;
2721
2722 ice->state.cso_vertex_elements = state;
2723 ice->state.dirty |= IRIS_DIRTY_VERTEX_ELEMENTS;
2724 }
2725
2726 /**
2727 * The pipe->create_stream_output_target() driver hook.
2728 *
2729 * "Target" here refers to a destination buffer. We translate this into
2730 * a 3DSTATE_SO_BUFFER packet. We can handle most fields, but don't yet
2731 * know which buffer this represents, or whether we ought to zero the
2732 * write-offsets, or append. Those are handled in the set() hook.
2733 */
2734 static struct pipe_stream_output_target *
2735 iris_create_stream_output_target(struct pipe_context *ctx,
2736 struct pipe_resource *p_res,
2737 unsigned buffer_offset,
2738 unsigned buffer_size)
2739 {
2740 struct iris_resource *res = (void *) p_res;
2741 struct iris_stream_output_target *cso = calloc(1, sizeof(*cso));
2742 if (!cso)
2743 return NULL;
2744
2745 res->bind_history |= PIPE_BIND_STREAM_OUTPUT;
2746
2747 pipe_reference_init(&cso->base.reference, 1);
2748 pipe_resource_reference(&cso->base.buffer, p_res);
2749 cso->base.buffer_offset = buffer_offset;
2750 cso->base.buffer_size = buffer_size;
2751 cso->base.context = ctx;
2752
2753 upload_state(ctx->stream_uploader, &cso->offset, sizeof(uint32_t), 4);
2754
2755 return &cso->base;
2756 }
2757
2758 static void
2759 iris_stream_output_target_destroy(struct pipe_context *ctx,
2760 struct pipe_stream_output_target *state)
2761 {
2762 struct iris_stream_output_target *cso = (void *) state;
2763
2764 pipe_resource_reference(&cso->base.buffer, NULL);
2765 pipe_resource_reference(&cso->offset.res, NULL);
2766
2767 free(cso);
2768 }
2769
2770 /**
2771 * The pipe->set_stream_output_targets() driver hook.
2772 *
2773 * At this point, we know which targets are bound to a particular index,
2774 * and also whether we want to append or start over. We can finish the
2775 * 3DSTATE_SO_BUFFER packets we started earlier.
2776 */
2777 static void
2778 iris_set_stream_output_targets(struct pipe_context *ctx,
2779 unsigned num_targets,
2780 struct pipe_stream_output_target **targets,
2781 const unsigned *offsets)
2782 {
2783 struct iris_context *ice = (struct iris_context *) ctx;
2784 struct iris_genx_state *genx = ice->state.genx;
2785 uint32_t *so_buffers = genx->so_buffers;
2786
2787 const bool active = num_targets > 0;
2788 if (ice->state.streamout_active != active) {
2789 ice->state.streamout_active = active;
2790 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
2791
2792 /* We only emit 3DSTATE_SO_DECL_LIST when streamout is active, because
2793 * it's a non-pipelined command. If we're switching streamout on, we
2794 * may have missed emitting it earlier, so do so now. (We're already
2795 * taking a stall to update 3DSTATE_SO_BUFFERS anyway...)
2796 */
2797 if (active)
2798 ice->state.dirty |= IRIS_DIRTY_SO_DECL_LIST;
2799 }
2800
2801 for (int i = 0; i < 4; i++) {
2802 pipe_so_target_reference(&ice->state.so_target[i],
2803 i < num_targets ? targets[i] : NULL);
2804 }
2805
2806 /* No need to update 3DSTATE_SO_BUFFER unless SOL is active. */
2807 if (!active)
2808 return;
2809
2810 for (unsigned i = 0; i < 4; i++,
2811 so_buffers += GENX(3DSTATE_SO_BUFFER_length)) {
2812
2813 if (i >= num_targets || !targets[i]) {
2814 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob)
2815 sob.SOBufferIndex = i;
2816 continue;
2817 }
2818
2819 struct iris_stream_output_target *tgt = (void *) targets[i];
2820 struct iris_resource *res = (void *) tgt->base.buffer;
2821
2822 /* Note that offsets[i] will either be 0, causing us to zero
2823 * the value in the buffer, or 0xFFFFFFFF, which happens to mean
2824 * "continue appending at the existing offset."
2825 */
2826 assert(offsets[i] == 0 || offsets[i] == 0xFFFFFFFF);
2827
2828 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob) {
2829 sob.SurfaceBaseAddress =
2830 rw_bo(NULL, res->bo->gtt_offset + tgt->base.buffer_offset);
2831 sob.SOBufferEnable = true;
2832 sob.StreamOffsetWriteEnable = true;
2833 sob.StreamOutputBufferOffsetAddressEnable = true;
2834 sob.MOCS = mocs(res->bo);
2835
2836 sob.SurfaceSize = MAX2(tgt->base.buffer_size / 4, 1) - 1;
2837
2838 sob.SOBufferIndex = i;
2839 sob.StreamOffset = offsets[i];
2840 sob.StreamOutputBufferOffsetAddress =
2841 rw_bo(NULL, iris_resource_bo(tgt->offset.res)->gtt_offset +
2842 tgt->offset.offset);
2843 }
2844 }
2845
2846 ice->state.dirty |= IRIS_DIRTY_SO_BUFFERS;
2847 }
2848
2849 /**
2850 * An iris-vtable helper for encoding the 3DSTATE_SO_DECL_LIST and
2851 * 3DSTATE_STREAMOUT packets.
2852 *
2853 * 3DSTATE_SO_DECL_LIST is a list of shader outputs we want the streamout
2854 * hardware to record. We can create it entirely based on the shader, with
2855 * no dynamic state dependencies.
2856 *
2857 * 3DSTATE_STREAMOUT is an annoying mix of shader-based information and
2858 * state-based settings. We capture the shader-related ones here, and merge
2859 * the rest in at draw time.
2860 */
2861 static uint32_t *
2862 iris_create_so_decl_list(const struct pipe_stream_output_info *info,
2863 const struct brw_vue_map *vue_map)
2864 {
2865 struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
2866 int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2867 int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2868 int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2869 int max_decls = 0;
2870 STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
2871
2872 memset(so_decl, 0, sizeof(so_decl));
2873
2874 /* Construct the list of SO_DECLs to be emitted. The formatting of the
2875 * command feels strange -- each dword pair contains a SO_DECL per stream.
2876 */
2877 for (unsigned i = 0; i < info->num_outputs; i++) {
2878 const struct pipe_stream_output *output = &info->output[i];
2879 const int buffer = output->output_buffer;
2880 const int varying = output->register_index;
2881 const unsigned stream_id = output->stream;
2882 assert(stream_id < MAX_VERTEX_STREAMS);
2883
2884 buffer_mask[stream_id] |= 1 << buffer;
2885
2886 assert(vue_map->varying_to_slot[varying] >= 0);
2887
2888 /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
2889 * array. Instead, it simply increments DstOffset for the following
2890 * input by the number of components that should be skipped.
2891 *
2892 * Our hardware is unusual in that it requires us to program SO_DECLs
2893 * for fake "hole" components, rather than simply taking the offset
2894 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
2895 * program as many size = 4 holes as we can, then a final hole to
2896 * accommodate the final 1, 2, or 3 remaining.
2897 */
2898 int skip_components = output->dst_offset - next_offset[buffer];
2899
2900 while (skip_components > 0) {
2901 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
2902 .HoleFlag = 1,
2903 .OutputBufferSlot = output->output_buffer,
2904 .ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
2905 };
2906 skip_components -= 4;
2907 }
2908
2909 next_offset[buffer] = output->dst_offset + output->num_components;
2910
2911 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
2912 .OutputBufferSlot = output->output_buffer,
2913 .RegisterIndex = vue_map->varying_to_slot[varying],
2914 .ComponentMask =
2915 ((1 << output->num_components) - 1) << output->start_component,
2916 };
2917
2918 if (decls[stream_id] > max_decls)
2919 max_decls = decls[stream_id];
2920 }
2921
2922 unsigned dwords = GENX(3DSTATE_STREAMOUT_length) + (3 + 2 * max_decls);
2923 uint32_t *map = ralloc_size(NULL, sizeof(uint32_t) * dwords);
2924 uint32_t *so_decl_map = map + GENX(3DSTATE_STREAMOUT_length);
2925
2926 iris_pack_command(GENX(3DSTATE_STREAMOUT), map, sol) {
2927 int urb_entry_read_offset = 0;
2928 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
2929 urb_entry_read_offset;
2930
2931 /* We always read the whole vertex. This could be reduced at some
2932 * point by reading less and offsetting the register index in the
2933 * SO_DECLs.
2934 */
2935 sol.Stream0VertexReadOffset = urb_entry_read_offset;
2936 sol.Stream0VertexReadLength = urb_entry_read_length - 1;
2937 sol.Stream1VertexReadOffset = urb_entry_read_offset;
2938 sol.Stream1VertexReadLength = urb_entry_read_length - 1;
2939 sol.Stream2VertexReadOffset = urb_entry_read_offset;
2940 sol.Stream2VertexReadLength = urb_entry_read_length - 1;
2941 sol.Stream3VertexReadOffset = urb_entry_read_offset;
2942 sol.Stream3VertexReadLength = urb_entry_read_length - 1;
2943
2944 /* Set buffer pitches; 0 means unbound. */
2945 sol.Buffer0SurfacePitch = 4 * info->stride[0];
2946 sol.Buffer1SurfacePitch = 4 * info->stride[1];
2947 sol.Buffer2SurfacePitch = 4 * info->stride[2];
2948 sol.Buffer3SurfacePitch = 4 * info->stride[3];
2949 }
2950
2951 iris_pack_command(GENX(3DSTATE_SO_DECL_LIST), so_decl_map, list) {
2952 list.DWordLength = 3 + 2 * max_decls - 2;
2953 list.StreamtoBufferSelects0 = buffer_mask[0];
2954 list.StreamtoBufferSelects1 = buffer_mask[1];
2955 list.StreamtoBufferSelects2 = buffer_mask[2];
2956 list.StreamtoBufferSelects3 = buffer_mask[3];
2957 list.NumEntries0 = decls[0];
2958 list.NumEntries1 = decls[1];
2959 list.NumEntries2 = decls[2];
2960 list.NumEntries3 = decls[3];
2961 }
2962
2963 for (int i = 0; i < max_decls; i++) {
2964 iris_pack_state(GENX(SO_DECL_ENTRY), so_decl_map + 3 + i * 2, entry) {
2965 entry.Stream0Decl = so_decl[0][i];
2966 entry.Stream1Decl = so_decl[1][i];
2967 entry.Stream2Decl = so_decl[2][i];
2968 entry.Stream3Decl = so_decl[3][i];
2969 }
2970 }
2971
2972 return map;
2973 }
2974
2975 static void
2976 iris_compute_sbe_urb_read_interval(uint64_t fs_input_slots,
2977 const struct brw_vue_map *last_vue_map,
2978 bool two_sided_color,
2979 unsigned *out_offset,
2980 unsigned *out_length)
2981 {
2982 /* The compiler computes the first URB slot without considering COL/BFC
2983 * swizzling (because it doesn't know whether it's enabled), so we need
2984 * to do that here too. This may result in a smaller offset, which
2985 * should be safe.
2986 */
2987 const unsigned first_slot =
2988 brw_compute_first_urb_slot_required(fs_input_slots, last_vue_map);
2989
2990 /* This becomes the URB read offset (counted in pairs of slots). */
2991 assert(first_slot % 2 == 0);
2992 *out_offset = first_slot / 2;
2993
2994 /* We need to adjust the inputs read to account for front/back color
2995 * swizzling, as it can make the URB length longer.
2996 */
2997 for (int c = 0; c <= 1; c++) {
2998 if (fs_input_slots & (VARYING_BIT_COL0 << c)) {
2999 /* If two sided color is enabled, the fragment shader's gl_Color
3000 * (COL0) input comes from either the gl_FrontColor (COL0) or
3001 * gl_BackColor (BFC0) input varyings. Mark BFC as used, too.
3002 */
3003 if (two_sided_color)
3004 fs_input_slots |= (VARYING_BIT_BFC0 << c);
3005
3006 /* If front color isn't written, we opt to give them back color
3007 * instead of an undefined value. Switch from COL to BFC.
3008 */
3009 if (last_vue_map->varying_to_slot[VARYING_SLOT_COL0 + c] == -1) {
3010 fs_input_slots &= ~(VARYING_BIT_COL0 << c);
3011 fs_input_slots |= (VARYING_BIT_BFC0 << c);
3012 }
3013 }
3014 }
3015
3016 /* Compute the minimum URB Read Length necessary for the FS inputs.
3017 *
3018 * From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
3019 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
3020 *
3021 * "This field should be set to the minimum length required to read the
3022 * maximum source attribute. The maximum source attribute is indicated
3023 * by the maximum value of the enabled Attribute # Source Attribute if
3024 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
3025 * enable is not set.
3026 * read_length = ceiling((max_source_attr + 1) / 2)
3027 *
3028 * [errata] Corruption/Hang possible if length programmed larger than
3029 * recommended"
3030 *
3031 * Similar text exists for Ivy Bridge.
3032 *
3033 * We find the last URB slot that's actually read by the FS.
3034 */
3035 unsigned last_read_slot = last_vue_map->num_slots - 1;
3036 while (last_read_slot > first_slot && !(fs_input_slots &
3037 (1ull << last_vue_map->slot_to_varying[last_read_slot])))
3038 --last_read_slot;
3039
3040 /* The URB read length is the difference of the two, counted in pairs. */
3041 *out_length = DIV_ROUND_UP(last_read_slot - first_slot + 1, 2);
3042 }
3043
3044 static void
3045 iris_emit_sbe_swiz(struct iris_batch *batch,
3046 const struct iris_context *ice,
3047 unsigned urb_read_offset,
3048 unsigned sprite_coord_enables)
3049 {
3050 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = {};
3051 const struct brw_wm_prog_data *wm_prog_data = (void *)
3052 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3053 const struct brw_vue_map *vue_map = ice->shaders.last_vue_map;
3054 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3055
3056 /* XXX: this should be generated when putting programs in place */
3057
3058 for (int fs_attr = 0; fs_attr < VARYING_SLOT_MAX; fs_attr++) {
3059 const int input_index = wm_prog_data->urb_setup[fs_attr];
3060 if (input_index < 0 || input_index >= 16)
3061 continue;
3062
3063 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr =
3064 &attr_overrides[input_index];
3065 int slot = vue_map->varying_to_slot[fs_attr];
3066
3067 /* Viewport and Layer are stored in the VUE header. We need to override
3068 * them to zero if earlier stages didn't write them, as GL requires that
3069 * they read back as zero when not explicitly set.
3070 */
3071 switch (fs_attr) {
3072 case VARYING_SLOT_VIEWPORT:
3073 case VARYING_SLOT_LAYER:
3074 attr->ComponentOverrideX = true;
3075 attr->ComponentOverrideW = true;
3076 attr->ConstantSource = CONST_0000;
3077
3078 if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
3079 attr->ComponentOverrideY = true;
3080 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
3081 attr->ComponentOverrideZ = true;
3082 continue;
3083
3084 case VARYING_SLOT_PRIMITIVE_ID:
3085 /* Override if the previous shader stage didn't write gl_PrimitiveID. */
3086 if (slot == -1) {
3087 attr->ComponentOverrideX = true;
3088 attr->ComponentOverrideY = true;
3089 attr->ComponentOverrideZ = true;
3090 attr->ComponentOverrideW = true;
3091 attr->ConstantSource = PRIM_ID;
3092 continue;
3093 }
3094
3095 default:
3096 break;
3097 }
3098
3099 if (sprite_coord_enables & (1 << input_index))
3100 continue;
3101
3102 /* If there was only a back color written but not front, use back
3103 * as the color instead of undefined.
3104 */
3105 if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
3106 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
3107 if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
3108 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
3109
3110 /* Not written by the previous stage - undefined. */
3111 if (slot == -1) {
3112 attr->ComponentOverrideX = true;
3113 attr->ComponentOverrideY = true;
3114 attr->ComponentOverrideZ = true;
3115 attr->ComponentOverrideW = true;
3116 attr->ConstantSource = CONST_0001_FLOAT;
3117 continue;
3118 }
3119
3120 /* Compute the location of the attribute relative to the read offset,
3121 * which is counted in 256-bit increments (two 128-bit VUE slots).
3122 */
3123 const int source_attr = slot - 2 * urb_read_offset;
3124 assert(source_attr >= 0 && source_attr <= 32);
3125 attr->SourceAttribute = source_attr;
3126
3127 /* If we are doing two-sided color, and the VUE slot following this one
3128 * represents a back-facing color, then we need to instruct the SF unit
3129 * to do back-facing swizzling.
3130 */
3131 if (cso_rast->light_twoside &&
3132 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
3133 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
3134 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
3135 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1)))
3136 attr->SwizzleSelect = INPUTATTR_FACING;
3137 }
3138
3139 iris_emit_cmd(batch, GENX(3DSTATE_SBE_SWIZ), sbes) {
3140 for (int i = 0; i < 16; i++)
3141 sbes.Attribute[i] = attr_overrides[i];
3142 }
3143 }
3144
3145 static unsigned
3146 iris_calculate_point_sprite_overrides(const struct brw_wm_prog_data *prog_data,
3147 const struct iris_rasterizer_state *cso)
3148 {
3149 unsigned overrides = 0;
3150
3151 if (prog_data->urb_setup[VARYING_SLOT_PNTC] != -1)
3152 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_PNTC];
3153
3154 for (int i = 0; i < 8; i++) {
3155 if ((cso->sprite_coord_enable & (1 << i)) &&
3156 prog_data->urb_setup[VARYING_SLOT_TEX0 + i] != -1)
3157 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_TEX0 + i];
3158 }
3159
3160 return overrides;
3161 }
3162
3163 static void
3164 iris_emit_sbe(struct iris_batch *batch, const struct iris_context *ice)
3165 {
3166 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3167 const struct brw_wm_prog_data *wm_prog_data = (void *)
3168 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3169 const struct shader_info *fs_info =
3170 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
3171
3172 unsigned urb_read_offset, urb_read_length;
3173 iris_compute_sbe_urb_read_interval(fs_info->inputs_read,
3174 ice->shaders.last_vue_map,
3175 cso_rast->light_twoside,
3176 &urb_read_offset, &urb_read_length);
3177
3178 unsigned sprite_coord_overrides =
3179 iris_calculate_point_sprite_overrides(wm_prog_data, cso_rast);
3180
3181 iris_emit_cmd(batch, GENX(3DSTATE_SBE), sbe) {
3182 sbe.AttributeSwizzleEnable = true;
3183 sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
3184 sbe.PointSpriteTextureCoordinateOrigin = cso_rast->sprite_coord_mode;
3185 sbe.VertexURBEntryReadOffset = urb_read_offset;
3186 sbe.VertexURBEntryReadLength = urb_read_length;
3187 sbe.ForceVertexURBEntryReadOffset = true;
3188 sbe.ForceVertexURBEntryReadLength = true;
3189 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
3190 sbe.PointSpriteTextureCoordinateEnable = sprite_coord_overrides;
3191 #if GEN_GEN >= 9
3192 for (int i = 0; i < 32; i++) {
3193 sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW;
3194 }
3195 #endif
3196 }
3197
3198 iris_emit_sbe_swiz(batch, ice, urb_read_offset, sprite_coord_overrides);
3199 }
3200
3201 /* ------------------------------------------------------------------- */
3202
3203 /**
3204 * Populate VS program key fields based on the current state.
3205 */
3206 static void
3207 iris_populate_vs_key(const struct iris_context *ice,
3208 const struct shader_info *info,
3209 struct brw_vs_prog_key *key)
3210 {
3211 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3212
3213 if (info->clip_distance_array_size == 0 &&
3214 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)))
3215 key->nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
3216 }
3217
3218 /**
3219 * Populate TCS program key fields based on the current state.
3220 */
3221 static void
3222 iris_populate_tcs_key(const struct iris_context *ice,
3223 struct brw_tcs_prog_key *key)
3224 {
3225 }
3226
3227 /**
3228 * Populate TES program key fields based on the current state.
3229 */
3230 static void
3231 iris_populate_tes_key(const struct iris_context *ice,
3232 struct brw_tes_prog_key *key)
3233 {
3234 }
3235
3236 /**
3237 * Populate GS program key fields based on the current state.
3238 */
3239 static void
3240 iris_populate_gs_key(const struct iris_context *ice,
3241 struct brw_gs_prog_key *key)
3242 {
3243 }
3244
3245 /**
3246 * Populate FS program key fields based on the current state.
3247 */
3248 static void
3249 iris_populate_fs_key(const struct iris_context *ice,
3250 struct brw_wm_prog_key *key)
3251 {
3252 const struct pipe_framebuffer_state *fb = &ice->state.framebuffer;
3253 const struct iris_depth_stencil_alpha_state *zsa = ice->state.cso_zsa;
3254 const struct iris_rasterizer_state *rast = ice->state.cso_rast;
3255 const struct iris_blend_state *blend = ice->state.cso_blend;
3256
3257 key->nr_color_regions = fb->nr_cbufs;
3258
3259 key->clamp_fragment_color = rast->clamp_fragment_color;
3260
3261 key->replicate_alpha = fb->nr_cbufs > 1 &&
3262 (zsa->alpha.enabled || blend->alpha_to_coverage);
3263
3264 /* XXX: only bother if COL0/1 are read */
3265 key->flat_shade = rast->flatshade;
3266
3267 key->persample_interp = rast->force_persample_interp;
3268 key->multisample_fbo = rast->multisample && fb->samples > 1;
3269
3270 key->coherent_fb_fetch = true;
3271
3272 /* TODO: support key->force_dual_color_blend for Unigine */
3273 /* TODO: Respect glHint for key->high_quality_derivatives */
3274 }
3275
3276 static void
3277 iris_populate_cs_key(const struct iris_context *ice,
3278 struct brw_cs_prog_key *key)
3279 {
3280 }
3281
3282 static uint64_t
3283 KSP(const struct iris_compiled_shader *shader)
3284 {
3285 struct iris_resource *res = (void *) shader->assembly.res;
3286 return iris_bo_offset_from_base_address(res->bo) + shader->assembly.offset;
3287 }
3288
3289 /* Gen11 workaround table #2056 WABTPPrefetchDisable suggests to disable
3290 * prefetching of binding tables in A0 and B0 steppings. XXX: Revisit
3291 * this WA on C0 stepping.
3292 *
3293 * TODO: Fill out SamplerCount for prefetching?
3294 */
3295
3296 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix, stage) \
3297 pkt.KernelStartPointer = KSP(shader); \
3298 pkt.BindingTableEntryCount = GEN_GEN == 11 ? 0 : \
3299 prog_data->binding_table.size_bytes / 4; \
3300 pkt.FloatingPointMode = prog_data->use_alt_mode; \
3301 \
3302 pkt.DispatchGRFStartRegisterForURBData = \
3303 prog_data->dispatch_grf_start_reg; \
3304 pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
3305 pkt.prefix##URBEntryReadOffset = 0; \
3306 \
3307 pkt.StatisticsEnable = true; \
3308 pkt.Enable = true; \
3309 \
3310 if (prog_data->total_scratch) { \
3311 struct iris_bo *bo = \
3312 iris_get_scratch_space(ice, prog_data->total_scratch, stage); \
3313 uint32_t scratch_addr = bo->gtt_offset; \
3314 pkt.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11; \
3315 pkt.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr); \
3316 }
3317
3318 /**
3319 * Encode most of 3DSTATE_VS based on the compiled shader.
3320 */
3321 static void
3322 iris_store_vs_state(struct iris_context *ice,
3323 const struct gen_device_info *devinfo,
3324 struct iris_compiled_shader *shader)
3325 {
3326 struct brw_stage_prog_data *prog_data = shader->prog_data;
3327 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3328
3329 iris_pack_command(GENX(3DSTATE_VS), shader->derived_data, vs) {
3330 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex, MESA_SHADER_VERTEX);
3331 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
3332 vs.SIMD8DispatchEnable = true;
3333 vs.UserClipDistanceCullTestEnableBitmask =
3334 vue_prog_data->cull_distance_mask;
3335 }
3336 }
3337
3338 /**
3339 * Encode most of 3DSTATE_HS based on the compiled shader.
3340 */
3341 static void
3342 iris_store_tcs_state(struct iris_context *ice,
3343 const struct gen_device_info *devinfo,
3344 struct iris_compiled_shader *shader)
3345 {
3346 struct brw_stage_prog_data *prog_data = shader->prog_data;
3347 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3348 struct brw_tcs_prog_data *tcs_prog_data = (void *) prog_data;
3349
3350 iris_pack_command(GENX(3DSTATE_HS), shader->derived_data, hs) {
3351 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex, MESA_SHADER_TESS_CTRL);
3352
3353 hs.InstanceCount = tcs_prog_data->instances - 1;
3354 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
3355 hs.IncludeVertexHandles = true;
3356 }
3357 }
3358
3359 /**
3360 * Encode 3DSTATE_TE and most of 3DSTATE_DS based on the compiled shader.
3361 */
3362 static void
3363 iris_store_tes_state(struct iris_context *ice,
3364 const struct gen_device_info *devinfo,
3365 struct iris_compiled_shader *shader)
3366 {
3367 struct brw_stage_prog_data *prog_data = shader->prog_data;
3368 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3369 struct brw_tes_prog_data *tes_prog_data = (void *) prog_data;
3370
3371 uint32_t *te_state = (void *) shader->derived_data;
3372 uint32_t *ds_state = te_state + GENX(3DSTATE_TE_length);
3373
3374 iris_pack_command(GENX(3DSTATE_TE), te_state, te) {
3375 te.Partitioning = tes_prog_data->partitioning;
3376 te.OutputTopology = tes_prog_data->output_topology;
3377 te.TEDomain = tes_prog_data->domain;
3378 te.TEEnable = true;
3379 te.MaximumTessellationFactorOdd = 63.0;
3380 te.MaximumTessellationFactorNotOdd = 64.0;
3381 }
3382
3383 iris_pack_command(GENX(3DSTATE_DS), ds_state, ds) {
3384 INIT_THREAD_DISPATCH_FIELDS(ds, Patch, MESA_SHADER_TESS_EVAL);
3385
3386 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
3387 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
3388 ds.ComputeWCoordinateEnable =
3389 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
3390
3391 ds.UserClipDistanceCullTestEnableBitmask =
3392 vue_prog_data->cull_distance_mask;
3393 }
3394
3395 }
3396
3397 /**
3398 * Encode most of 3DSTATE_GS based on the compiled shader.
3399 */
3400 static void
3401 iris_store_gs_state(struct iris_context *ice,
3402 const struct gen_device_info *devinfo,
3403 struct iris_compiled_shader *shader)
3404 {
3405 struct brw_stage_prog_data *prog_data = shader->prog_data;
3406 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3407 struct brw_gs_prog_data *gs_prog_data = (void *) prog_data;
3408
3409 iris_pack_command(GENX(3DSTATE_GS), shader->derived_data, gs) {
3410 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex, MESA_SHADER_GEOMETRY);
3411
3412 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
3413 gs.OutputTopology = gs_prog_data->output_topology;
3414 gs.ControlDataHeaderSize =
3415 gs_prog_data->control_data_header_size_hwords;
3416 gs.InstanceControl = gs_prog_data->invocations - 1;
3417 gs.DispatchMode = DISPATCH_MODE_SIMD8;
3418 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
3419 gs.ControlDataFormat = gs_prog_data->control_data_format;
3420 gs.ReorderMode = TRAILING;
3421 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
3422 gs.MaximumNumberofThreads =
3423 GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
3424 : (devinfo->max_gs_threads - 1);
3425
3426 if (gs_prog_data->static_vertex_count != -1) {
3427 gs.StaticOutput = true;
3428 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
3429 }
3430 gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
3431
3432 gs.UserClipDistanceCullTestEnableBitmask =
3433 vue_prog_data->cull_distance_mask;
3434
3435 const int urb_entry_write_offset = 1;
3436 const uint32_t urb_entry_output_length =
3437 DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
3438 urb_entry_write_offset;
3439
3440 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
3441 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
3442 }
3443 }
3444
3445 /**
3446 * Encode most of 3DSTATE_PS and 3DSTATE_PS_EXTRA based on the shader.
3447 */
3448 static void
3449 iris_store_fs_state(struct iris_context *ice,
3450 const struct gen_device_info *devinfo,
3451 struct iris_compiled_shader *shader)
3452 {
3453 struct brw_stage_prog_data *prog_data = shader->prog_data;
3454 struct brw_wm_prog_data *wm_prog_data = (void *) shader->prog_data;
3455
3456 uint32_t *ps_state = (void *) shader->derived_data;
3457 uint32_t *psx_state = ps_state + GENX(3DSTATE_PS_length);
3458
3459 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
3460 ps.VectorMaskEnable = true;
3461 // XXX: WABTPPrefetchDisable, see above, drop at C0
3462 ps.BindingTableEntryCount = GEN_GEN == 11 ? 0 :
3463 prog_data->binding_table.size_bytes / 4;
3464 ps.FloatingPointMode = prog_data->use_alt_mode;
3465 ps.MaximumNumberofThreadsPerPSD = 64 - (GEN_GEN == 8 ? 2 : 1);
3466
3467 ps.PushConstantEnable = prog_data->ubo_ranges[0].length > 0;
3468
3469 /* From the documentation for this packet:
3470 * "If the PS kernel does not need the Position XY Offsets to
3471 * compute a Position Value, then this field should be programmed
3472 * to POSOFFSET_NONE."
3473 *
3474 * "SW Recommendation: If the PS kernel needs the Position Offsets
3475 * to compute a Position XY value, this field should match Position
3476 * ZW Interpolation Mode to ensure a consistent position.xyzw
3477 * computation."
3478 *
3479 * We only require XY sample offsets. So, this recommendation doesn't
3480 * look useful at the moment. We might need this in future.
3481 */
3482 ps.PositionXYOffsetSelect =
3483 wm_prog_data->uses_pos_offset ? POSOFFSET_SAMPLE : POSOFFSET_NONE;
3484 ps._8PixelDispatchEnable = wm_prog_data->dispatch_8;
3485 ps._16PixelDispatchEnable = wm_prog_data->dispatch_16;
3486 ps._32PixelDispatchEnable = wm_prog_data->dispatch_32;
3487
3488 // XXX: Disable SIMD32 with 16x MSAA
3489
3490 ps.DispatchGRFStartRegisterForConstantSetupData0 =
3491 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
3492 ps.DispatchGRFStartRegisterForConstantSetupData1 =
3493 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
3494 ps.DispatchGRFStartRegisterForConstantSetupData2 =
3495 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
3496
3497 ps.KernelStartPointer0 =
3498 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
3499 ps.KernelStartPointer1 =
3500 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
3501 ps.KernelStartPointer2 =
3502 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
3503
3504 if (prog_data->total_scratch) {
3505 struct iris_bo *bo =
3506 iris_get_scratch_space(ice, prog_data->total_scratch,
3507 MESA_SHADER_FRAGMENT);
3508 uint32_t scratch_addr = bo->gtt_offset;
3509 ps.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
3510 ps.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr);
3511 }
3512 }
3513
3514 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
3515 psx.PixelShaderValid = true;
3516 psx.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
3517 psx.PixelShaderKillsPixel = wm_prog_data->uses_kill;
3518 psx.AttributeEnable = wm_prog_data->num_varying_inputs != 0;
3519 psx.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
3520 psx.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
3521 psx.PixelShaderIsPerSample = wm_prog_data->persample_dispatch;
3522 psx.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
3523
3524 #if GEN_GEN >= 9
3525 if (wm_prog_data->uses_sample_mask) {
3526 /* TODO: conservative rasterization */
3527 if (wm_prog_data->post_depth_coverage)
3528 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
3529 else
3530 psx.InputCoverageMaskState = ICMS_NORMAL;
3531 }
3532
3533 psx.PixelShaderPullsBary = wm_prog_data->pulls_bary;
3534 psx.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
3535 #else
3536 psx.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
3537 #endif
3538 // XXX: UAV bit
3539 }
3540 }
3541
3542 /**
3543 * Compute the size of the derived data (shader command packets).
3544 *
3545 * This must match the data written by the iris_store_xs_state() functions.
3546 */
3547 static void
3548 iris_store_cs_state(struct iris_context *ice,
3549 const struct gen_device_info *devinfo,
3550 struct iris_compiled_shader *shader)
3551 {
3552 struct brw_stage_prog_data *prog_data = shader->prog_data;
3553 struct brw_cs_prog_data *cs_prog_data = (void *) shader->prog_data;
3554 void *map = shader->derived_data;
3555
3556 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), map, desc) {
3557 desc.KernelStartPointer = KSP(shader);
3558 desc.ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs;
3559 desc.NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads;
3560 desc.SharedLocalMemorySize =
3561 encode_slm_size(GEN_GEN, prog_data->total_shared);
3562 desc.BarrierEnable = cs_prog_data->uses_barrier;
3563 desc.CrossThreadConstantDataReadLength =
3564 cs_prog_data->push.cross_thread.regs;
3565 }
3566 }
3567
3568 static unsigned
3569 iris_derived_program_state_size(enum iris_program_cache_id cache_id)
3570 {
3571 assert(cache_id <= IRIS_CACHE_BLORP);
3572
3573 static const unsigned dwords[] = {
3574 [IRIS_CACHE_VS] = GENX(3DSTATE_VS_length),
3575 [IRIS_CACHE_TCS] = GENX(3DSTATE_HS_length),
3576 [IRIS_CACHE_TES] = GENX(3DSTATE_TE_length) + GENX(3DSTATE_DS_length),
3577 [IRIS_CACHE_GS] = GENX(3DSTATE_GS_length),
3578 [IRIS_CACHE_FS] =
3579 GENX(3DSTATE_PS_length) + GENX(3DSTATE_PS_EXTRA_length),
3580 [IRIS_CACHE_CS] = GENX(INTERFACE_DESCRIPTOR_DATA_length),
3581 [IRIS_CACHE_BLORP] = 0,
3582 };
3583
3584 return sizeof(uint32_t) * dwords[cache_id];
3585 }
3586
3587 /**
3588 * Create any state packets corresponding to the given shader stage
3589 * (i.e. 3DSTATE_VS) and save them as "derived data" in the shader variant.
3590 * This means that we can look up a program in the in-memory cache and
3591 * get most of the state packet without having to reconstruct it.
3592 */
3593 static void
3594 iris_store_derived_program_state(struct iris_context *ice,
3595 enum iris_program_cache_id cache_id,
3596 struct iris_compiled_shader *shader)
3597 {
3598 struct iris_screen *screen = (void *) ice->ctx.screen;
3599 const struct gen_device_info *devinfo = &screen->devinfo;
3600
3601 switch (cache_id) {
3602 case IRIS_CACHE_VS:
3603 iris_store_vs_state(ice, devinfo, shader);
3604 break;
3605 case IRIS_CACHE_TCS:
3606 iris_store_tcs_state(ice, devinfo, shader);
3607 break;
3608 case IRIS_CACHE_TES:
3609 iris_store_tes_state(ice, devinfo, shader);
3610 break;
3611 case IRIS_CACHE_GS:
3612 iris_store_gs_state(ice, devinfo, shader);
3613 break;
3614 case IRIS_CACHE_FS:
3615 iris_store_fs_state(ice, devinfo, shader);
3616 break;
3617 case IRIS_CACHE_CS:
3618 iris_store_cs_state(ice, devinfo, shader);
3619 case IRIS_CACHE_BLORP:
3620 break;
3621 default:
3622 break;
3623 }
3624 }
3625
3626 /* ------------------------------------------------------------------- */
3627
3628 /**
3629 * Configure the URB.
3630 *
3631 * XXX: write a real comment.
3632 */
3633 static void
3634 iris_upload_urb_config(struct iris_context *ice, struct iris_batch *batch)
3635 {
3636 const struct gen_device_info *devinfo = &batch->screen->devinfo;
3637 const unsigned push_size_kB = 32;
3638 unsigned entries[4];
3639 unsigned start[4];
3640 unsigned size[4];
3641
3642 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
3643 if (!ice->shaders.prog[i]) {
3644 size[i] = 1;
3645 } else {
3646 struct brw_vue_prog_data *vue_prog_data =
3647 (void *) ice->shaders.prog[i]->prog_data;
3648 size[i] = vue_prog_data->urb_entry_size;
3649 }
3650 assert(size[i] != 0);
3651 }
3652
3653 gen_get_urb_config(devinfo, 1024 * push_size_kB,
3654 1024 * ice->shaders.urb_size,
3655 ice->shaders.prog[MESA_SHADER_TESS_EVAL] != NULL,
3656 ice->shaders.prog[MESA_SHADER_GEOMETRY] != NULL,
3657 size, entries, start);
3658
3659 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
3660 iris_emit_cmd(batch, GENX(3DSTATE_URB_VS), urb) {
3661 urb._3DCommandSubOpcode += i;
3662 urb.VSURBStartingAddress = start[i];
3663 urb.VSURBEntryAllocationSize = size[i] - 1;
3664 urb.VSNumberofURBEntries = entries[i];
3665 }
3666 }
3667 }
3668
3669 static const uint32_t push_constant_opcodes[] = {
3670 [MESA_SHADER_VERTEX] = 21,
3671 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
3672 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
3673 [MESA_SHADER_GEOMETRY] = 22,
3674 [MESA_SHADER_FRAGMENT] = 23,
3675 [MESA_SHADER_COMPUTE] = 0,
3676 };
3677
3678 static uint32_t
3679 use_null_surface(struct iris_batch *batch, struct iris_context *ice)
3680 {
3681 struct iris_bo *state_bo = iris_resource_bo(ice->state.unbound_tex.res);
3682
3683 iris_use_pinned_bo(batch, state_bo, false);
3684
3685 return ice->state.unbound_tex.offset;
3686 }
3687
3688 static uint32_t
3689 use_null_fb_surface(struct iris_batch *batch, struct iris_context *ice)
3690 {
3691 /* If set_framebuffer_state() was never called, fall back to 1x1x1 */
3692 if (!ice->state.null_fb.res)
3693 return use_null_surface(batch, ice);
3694
3695 struct iris_bo *state_bo = iris_resource_bo(ice->state.null_fb.res);
3696
3697 iris_use_pinned_bo(batch, state_bo, false);
3698
3699 return ice->state.null_fb.offset;
3700 }
3701
3702 static uint32_t
3703 surf_state_offset_for_aux(struct iris_resource *res,
3704 enum isl_aux_usage aux_usage)
3705 {
3706 return SURFACE_STATE_ALIGNMENT *
3707 util_bitcount(res->aux.possible_usages & ((1 << aux_usage) - 1));
3708 }
3709
3710 /**
3711 * Add a surface to the validation list, as well as the buffer containing
3712 * the corresponding SURFACE_STATE.
3713 *
3714 * Returns the binding table entry (offset to SURFACE_STATE).
3715 */
3716 static uint32_t
3717 use_surface(struct iris_batch *batch,
3718 struct pipe_surface *p_surf,
3719 bool writeable,
3720 enum isl_aux_usage aux_usage)
3721 {
3722 struct iris_surface *surf = (void *) p_surf;
3723 struct iris_resource *res = (void *) p_surf->texture;
3724
3725 iris_use_pinned_bo(batch, iris_resource_bo(p_surf->texture), writeable);
3726 iris_use_pinned_bo(batch, iris_resource_bo(surf->surface_state.res), false);
3727
3728 if (res->aux.bo)
3729 iris_use_pinned_bo(batch, res->aux.bo, writeable);
3730
3731 return surf->surface_state.offset +
3732 surf_state_offset_for_aux(res, aux_usage);
3733 }
3734
3735 static uint32_t
3736 use_sampler_view(struct iris_context *ice,
3737 struct iris_batch *batch,
3738 struct iris_sampler_view *isv)
3739 {
3740 // XXX: ASTC hacks
3741 enum isl_aux_usage aux_usage =
3742 iris_resource_texture_aux_usage(ice, isv->res, isv->view.format, 0);
3743
3744 iris_use_pinned_bo(batch, isv->res->bo, false);
3745 iris_use_pinned_bo(batch, iris_resource_bo(isv->surface_state.res), false);
3746
3747 if (isv->res->aux.bo)
3748 iris_use_pinned_bo(batch, isv->res->aux.bo, false);
3749
3750 return isv->surface_state.offset +
3751 surf_state_offset_for_aux(isv->res, aux_usage);
3752 }
3753
3754 static uint32_t
3755 use_const_buffer(struct iris_batch *batch,
3756 struct iris_context *ice,
3757 struct iris_const_buffer *cbuf)
3758 {
3759 if (!cbuf->surface_state.res)
3760 return use_null_surface(batch, ice);
3761
3762 iris_use_pinned_bo(batch, iris_resource_bo(cbuf->data.res), false);
3763 iris_use_pinned_bo(batch, iris_resource_bo(cbuf->surface_state.res), false);
3764
3765 return cbuf->surface_state.offset;
3766 }
3767
3768 static uint32_t
3769 use_ssbo(struct iris_batch *batch, struct iris_context *ice,
3770 struct iris_shader_state *shs, int i)
3771 {
3772 if (!shs->ssbo[i])
3773 return use_null_surface(batch, ice);
3774
3775 struct iris_state_ref *surf_state = &shs->ssbo_surface_state[i];
3776
3777 iris_use_pinned_bo(batch, iris_resource_bo(shs->ssbo[i]), true);
3778 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false);
3779
3780 return surf_state->offset;
3781 }
3782
3783 static uint32_t
3784 use_image(struct iris_batch *batch, struct iris_context *ice,
3785 struct iris_shader_state *shs, int i)
3786 {
3787 if (!shs->image[i].res)
3788 return use_null_surface(batch, ice);
3789
3790 struct iris_resource *res = (void *) shs->image[i].res;
3791 struct iris_state_ref *surf_state = &shs->image[i].surface_state;
3792 bool write = shs->image[i].access & PIPE_IMAGE_ACCESS_WRITE;
3793
3794 iris_use_pinned_bo(batch, res->bo, write);
3795 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false);
3796
3797 if (res->aux.bo)
3798 iris_use_pinned_bo(batch, res->aux.bo, write);
3799
3800 return surf_state->offset;
3801 }
3802
3803 #define push_bt_entry(addr) \
3804 assert(addr >= binder_addr); \
3805 assert(s < prog_data->binding_table.size_bytes / sizeof(uint32_t)); \
3806 if (!pin_only) bt_map[s++] = (addr) - binder_addr;
3807
3808 #define bt_assert(section, exists) \
3809 if (!pin_only) assert(prog_data->binding_table.section == \
3810 (exists) ? s : 0xd0d0d0d0)
3811
3812 /**
3813 * Populate the binding table for a given shader stage.
3814 *
3815 * This fills out the table of pointers to surfaces required by the shader,
3816 * and also adds those buffers to the validation list so the kernel can make
3817 * resident before running our batch.
3818 */
3819 static void
3820 iris_populate_binding_table(struct iris_context *ice,
3821 struct iris_batch *batch,
3822 gl_shader_stage stage,
3823 bool pin_only)
3824 {
3825 const struct iris_binder *binder = &ice->state.binder;
3826 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3827 if (!shader)
3828 return;
3829
3830 UNUSED struct brw_stage_prog_data *prog_data = shader->prog_data;
3831 struct iris_shader_state *shs = &ice->state.shaders[stage];
3832 uint32_t binder_addr = binder->bo->gtt_offset;
3833
3834 //struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
3835 uint32_t *bt_map = binder->map + binder->bt_offset[stage];
3836 int s = 0;
3837
3838 const struct shader_info *info = iris_get_shader_info(ice, stage);
3839 if (!info) {
3840 /* TCS passthrough doesn't need a binding table. */
3841 assert(stage == MESA_SHADER_TESS_CTRL);
3842 return;
3843 }
3844
3845 if (stage == MESA_SHADER_COMPUTE) {
3846 /* surface for gl_NumWorkGroups */
3847 struct iris_state_ref *grid_data = &ice->state.grid_size;
3848 struct iris_state_ref *grid_state = &ice->state.grid_surf_state;
3849 iris_use_pinned_bo(batch, iris_resource_bo(grid_data->res), false);
3850 iris_use_pinned_bo(batch, iris_resource_bo(grid_state->res), false);
3851 push_bt_entry(grid_state->offset);
3852 }
3853
3854 if (stage == MESA_SHADER_FRAGMENT) {
3855 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
3856 /* Note that cso_fb->nr_cbufs == fs_key->nr_color_regions. */
3857 if (cso_fb->nr_cbufs) {
3858 for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
3859 uint32_t addr;
3860 if (cso_fb->cbufs[i]) {
3861 addr = use_surface(batch, cso_fb->cbufs[i], true,
3862 ice->state.draw_aux_usage[i]);
3863 } else {
3864 addr = use_null_fb_surface(batch, ice);
3865 }
3866 push_bt_entry(addr);
3867 }
3868 } else {
3869 uint32_t addr = use_null_fb_surface(batch, ice);
3870 push_bt_entry(addr);
3871 }
3872 }
3873
3874 unsigned num_textures = util_last_bit(info->textures_used);
3875
3876 bt_assert(texture_start, num_textures > 0);
3877
3878 for (int i = 0; i < num_textures; i++) {
3879 struct iris_sampler_view *view = shs->textures[i];
3880 uint32_t addr = view ? use_sampler_view(ice, batch, view)
3881 : use_null_surface(batch, ice);
3882 push_bt_entry(addr);
3883 }
3884
3885 bt_assert(image_start, info->num_images > 0);
3886
3887 for (int i = 0; i < info->num_images; i++) {
3888 uint32_t addr = use_image(batch, ice, shs, i);
3889 push_bt_entry(addr);
3890 }
3891
3892 bt_assert(ubo_start, shader->num_cbufs > 0);
3893
3894 for (int i = 0; i < shader->num_cbufs; i++) {
3895 uint32_t addr = use_const_buffer(batch, ice, &shs->constbuf[i]);
3896 push_bt_entry(addr);
3897 }
3898
3899 bt_assert(ssbo_start, info->num_abos + info->num_ssbos > 0);
3900
3901 /* XXX: st is wasting 16 binding table slots for ABOs. Should add a cap
3902 * for changing nir_lower_atomics_to_ssbos setting and buffer_base offset
3903 * in st_atom_storagebuf.c so it'll compact them into one range, with
3904 * SSBOs starting at info->num_abos. Ideally it'd reset num_abos to 0 too
3905 */
3906 if (info->num_abos + info->num_ssbos > 0) {
3907 for (int i = 0; i < IRIS_MAX_ABOS + info->num_ssbos; i++) {
3908 uint32_t addr = use_ssbo(batch, ice, shs, i);
3909 push_bt_entry(addr);
3910 }
3911 }
3912
3913 #if 0
3914 /* XXX: YUV surfaces not implemented yet */
3915 bt_assert(plane_start[1], ...);
3916 bt_assert(plane_start[2], ...);
3917 #endif
3918 }
3919
3920 static void
3921 iris_use_optional_res(struct iris_batch *batch,
3922 struct pipe_resource *res,
3923 bool writeable)
3924 {
3925 if (res) {
3926 struct iris_bo *bo = iris_resource_bo(res);
3927 iris_use_pinned_bo(batch, bo, writeable);
3928 }
3929 }
3930
3931 /* ------------------------------------------------------------------- */
3932
3933 /**
3934 * Pin any BOs which were installed by a previous batch, and restored
3935 * via the hardware logical context mechanism.
3936 *
3937 * We don't need to re-emit all state every batch - the hardware context
3938 * mechanism will save and restore it for us. This includes pointers to
3939 * various BOs...which won't exist unless we ask the kernel to pin them
3940 * by adding them to the validation list.
3941 *
3942 * We can skip buffers if we've re-emitted those packets, as we're
3943 * overwriting those stale pointers with new ones, and don't actually
3944 * refer to the old BOs.
3945 */
3946 static void
3947 iris_restore_render_saved_bos(struct iris_context *ice,
3948 struct iris_batch *batch,
3949 const struct pipe_draw_info *draw)
3950 {
3951 struct iris_genx_state *genx = ice->state.genx;
3952
3953 const uint64_t clean = ~ice->state.dirty;
3954
3955 if (clean & IRIS_DIRTY_CC_VIEWPORT) {
3956 iris_use_optional_res(batch, ice->state.last_res.cc_vp, false);
3957 }
3958
3959 if (clean & IRIS_DIRTY_SF_CL_VIEWPORT) {
3960 iris_use_optional_res(batch, ice->state.last_res.sf_cl_vp, false);
3961 }
3962
3963 if (clean & IRIS_DIRTY_BLEND_STATE) {
3964 iris_use_optional_res(batch, ice->state.last_res.blend, false);
3965 }
3966
3967 if (clean & IRIS_DIRTY_COLOR_CALC_STATE) {
3968 iris_use_optional_res(batch, ice->state.last_res.color_calc, false);
3969 }
3970
3971 if (clean & IRIS_DIRTY_SCISSOR_RECT) {
3972 iris_use_optional_res(batch, ice->state.last_res.scissor, false);
3973 }
3974
3975 if (ice->state.streamout_active && (clean & IRIS_DIRTY_SO_BUFFERS)) {
3976 for (int i = 0; i < 4; i++) {
3977 struct iris_stream_output_target *tgt =
3978 (void *) ice->state.so_target[i];
3979 if (tgt) {
3980 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
3981 true);
3982 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
3983 true);
3984 }
3985 }
3986 }
3987
3988 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3989 if (!(clean & (IRIS_DIRTY_CONSTANTS_VS << stage)))
3990 continue;
3991
3992 struct iris_shader_state *shs = &ice->state.shaders[stage];
3993 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3994
3995 if (!shader)
3996 continue;
3997
3998 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
3999
4000 for (int i = 0; i < 4; i++) {
4001 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4002
4003 if (range->length == 0)
4004 continue;
4005
4006 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
4007 struct iris_resource *res = (void *) cbuf->data.res;
4008
4009 if (res)
4010 iris_use_pinned_bo(batch, res->bo, false);
4011 else
4012 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
4013 }
4014 }
4015
4016 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4017 if (clean & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4018 /* Re-pin any buffers referred to by the binding table. */
4019 iris_populate_binding_table(ice, batch, stage, true);
4020 }
4021 }
4022
4023 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4024 struct iris_shader_state *shs = &ice->state.shaders[stage];
4025 struct pipe_resource *res = shs->sampler_table.res;
4026 if (res)
4027 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4028 }
4029
4030 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4031 if (clean & (IRIS_DIRTY_VS << stage)) {
4032 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4033
4034 if (shader) {
4035 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
4036 iris_use_pinned_bo(batch, bo, false);
4037
4038 struct brw_stage_prog_data *prog_data = shader->prog_data;
4039
4040 if (prog_data->total_scratch > 0) {
4041 struct iris_bo *bo =
4042 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4043 iris_use_pinned_bo(batch, bo, true);
4044 }
4045 }
4046 }
4047 }
4048
4049 if (clean & IRIS_DIRTY_DEPTH_BUFFER) {
4050 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4051
4052 if (cso_fb->zsbuf) {
4053 struct iris_resource *zres, *sres;
4054 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
4055 &zres, &sres);
4056 if (zres) {
4057 iris_cache_flush_for_depth(batch, zres->bo);
4058
4059 iris_use_pinned_bo(batch, zres->bo,
4060 ice->state.depth_writes_enabled);
4061 if (zres->aux.bo) {
4062 iris_use_pinned_bo(batch, zres->aux.bo,
4063 ice->state.depth_writes_enabled);
4064 }
4065 }
4066
4067 if (sres) {
4068 iris_cache_flush_for_depth(batch, sres->bo);
4069
4070 iris_use_pinned_bo(batch, sres->bo,
4071 ice->state.stencil_writes_enabled);
4072 }
4073 }
4074 }
4075
4076 if (draw->index_size == 0 && ice->state.last_res.index_buffer) {
4077 /* This draw didn't emit a new index buffer, so we are inheriting the
4078 * older index buffer. This draw didn't need it, but future ones may.
4079 */
4080 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
4081 iris_use_pinned_bo(batch, bo, false);
4082 }
4083
4084 if (clean & IRIS_DIRTY_VERTEX_BUFFERS) {
4085 uint64_t bound = ice->state.bound_vertex_buffers;
4086 while (bound) {
4087 const int i = u_bit_scan64(&bound);
4088 struct pipe_resource *res = genx->vertex_buffers[i].resource;
4089 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4090 }
4091 }
4092 }
4093
4094 static void
4095 iris_restore_compute_saved_bos(struct iris_context *ice,
4096 struct iris_batch *batch,
4097 const struct pipe_grid_info *grid)
4098 {
4099 const uint64_t clean = ~ice->state.dirty;
4100
4101 const int stage = MESA_SHADER_COMPUTE;
4102 struct iris_shader_state *shs = &ice->state.shaders[stage];
4103
4104 if (clean & IRIS_DIRTY_CONSTANTS_CS) {
4105 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4106
4107 if (shader) {
4108 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4109 const struct brw_ubo_range *range = &prog_data->ubo_ranges[0];
4110
4111 if (range->length > 0) {
4112 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
4113 struct iris_resource *res = (void *) cbuf->data.res;
4114
4115 if (res)
4116 iris_use_pinned_bo(batch, res->bo, false);
4117 else
4118 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
4119 }
4120 }
4121 }
4122
4123 if (clean & IRIS_DIRTY_BINDINGS_CS) {
4124 /* Re-pin any buffers referred to by the binding table. */
4125 iris_populate_binding_table(ice, batch, stage, true);
4126 }
4127
4128 struct pipe_resource *sampler_res = shs->sampler_table.res;
4129 if (sampler_res)
4130 iris_use_pinned_bo(batch, iris_resource_bo(sampler_res), false);
4131
4132 if (clean & IRIS_DIRTY_CS) {
4133 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4134
4135 if (shader) {
4136 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
4137 iris_use_pinned_bo(batch, bo, false);
4138
4139 struct brw_stage_prog_data *prog_data = shader->prog_data;
4140
4141 if (prog_data->total_scratch > 0) {
4142 struct iris_bo *bo =
4143 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4144 iris_use_pinned_bo(batch, bo, true);
4145 }
4146 }
4147 }
4148 }
4149
4150 /**
4151 * Possibly emit STATE_BASE_ADDRESS to update Surface State Base Address.
4152 */
4153 static void
4154 iris_update_surface_base_address(struct iris_batch *batch,
4155 struct iris_binder *binder)
4156 {
4157 if (batch->last_surface_base_address == binder->bo->gtt_offset)
4158 return;
4159
4160 flush_for_state_base_change(batch);
4161
4162 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
4163 sba.SurfaceStateMOCS = MOCS_WB;
4164 sba.SurfaceStateBaseAddressModifyEnable = true;
4165 sba.SurfaceStateBaseAddress = ro_bo(binder->bo, 0);
4166 }
4167
4168 batch->last_surface_base_address = binder->bo->gtt_offset;
4169 }
4170
4171 static void
4172 iris_upload_dirty_render_state(struct iris_context *ice,
4173 struct iris_batch *batch,
4174 const struct pipe_draw_info *draw)
4175 {
4176 const uint64_t dirty = ice->state.dirty;
4177
4178 if (!(dirty & IRIS_ALL_DIRTY_FOR_RENDER))
4179 return;
4180
4181 struct iris_genx_state *genx = ice->state.genx;
4182 struct iris_binder *binder = &ice->state.binder;
4183 struct brw_wm_prog_data *wm_prog_data = (void *)
4184 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
4185
4186 if (dirty & IRIS_DIRTY_CC_VIEWPORT) {
4187 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4188 uint32_t cc_vp_address;
4189
4190 /* XXX: could avoid streaming for depth_clip [0,1] case. */
4191 uint32_t *cc_vp_map =
4192 stream_state(batch, ice->state.dynamic_uploader,
4193 &ice->state.last_res.cc_vp,
4194 4 * ice->state.num_viewports *
4195 GENX(CC_VIEWPORT_length), 32, &cc_vp_address);
4196 for (int i = 0; i < ice->state.num_viewports; i++) {
4197 float zmin, zmax;
4198 util_viewport_zmin_zmax(&ice->state.viewports[i],
4199 cso_rast->clip_halfz, &zmin, &zmax);
4200 if (cso_rast->depth_clip_near)
4201 zmin = 0.0;
4202 if (cso_rast->depth_clip_far)
4203 zmax = 1.0;
4204
4205 iris_pack_state(GENX(CC_VIEWPORT), cc_vp_map, ccv) {
4206 ccv.MinimumDepth = zmin;
4207 ccv.MaximumDepth = zmax;
4208 }
4209
4210 cc_vp_map += GENX(CC_VIEWPORT_length);
4211 }
4212
4213 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
4214 ptr.CCViewportPointer = cc_vp_address;
4215 }
4216 }
4217
4218 if (dirty & IRIS_DIRTY_SF_CL_VIEWPORT) {
4219 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4220 uint32_t sf_cl_vp_address;
4221 uint32_t *vp_map =
4222 stream_state(batch, ice->state.dynamic_uploader,
4223 &ice->state.last_res.sf_cl_vp,
4224 4 * ice->state.num_viewports *
4225 GENX(SF_CLIP_VIEWPORT_length), 64, &sf_cl_vp_address);
4226
4227 for (unsigned i = 0; i < ice->state.num_viewports; i++) {
4228 const struct pipe_viewport_state *state = &ice->state.viewports[i];
4229 float gb_xmin, gb_xmax, gb_ymin, gb_ymax;
4230
4231 float vp_xmin = viewport_extent(state, 0, -1.0f);
4232 float vp_xmax = viewport_extent(state, 0, 1.0f);
4233 float vp_ymin = viewport_extent(state, 1, -1.0f);
4234 float vp_ymax = viewport_extent(state, 1, 1.0f);
4235
4236 calculate_guardband_size(cso_fb->width, cso_fb->height,
4237 state->scale[0], state->scale[1],
4238 state->translate[0], state->translate[1],
4239 &gb_xmin, &gb_xmax, &gb_ymin, &gb_ymax);
4240
4241 iris_pack_state(GENX(SF_CLIP_VIEWPORT), vp_map, vp) {
4242 vp.ViewportMatrixElementm00 = state->scale[0];
4243 vp.ViewportMatrixElementm11 = state->scale[1];
4244 vp.ViewportMatrixElementm22 = state->scale[2];
4245 vp.ViewportMatrixElementm30 = state->translate[0];
4246 vp.ViewportMatrixElementm31 = state->translate[1];
4247 vp.ViewportMatrixElementm32 = state->translate[2];
4248 vp.XMinClipGuardband = gb_xmin;
4249 vp.XMaxClipGuardband = gb_xmax;
4250 vp.YMinClipGuardband = gb_ymin;
4251 vp.YMaxClipGuardband = gb_ymax;
4252 vp.XMinViewPort = MAX2(vp_xmin, 0);
4253 vp.XMaxViewPort = MIN2(vp_xmax, cso_fb->width) - 1;
4254 vp.YMinViewPort = MAX2(vp_ymin, 0);
4255 vp.YMaxViewPort = MIN2(vp_ymax, cso_fb->height) - 1;
4256 }
4257
4258 vp_map += GENX(SF_CLIP_VIEWPORT_length);
4259 }
4260
4261 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
4262 ptr.SFClipViewportPointer = sf_cl_vp_address;
4263 }
4264 }
4265
4266 if (dirty & IRIS_DIRTY_URB) {
4267 iris_upload_urb_config(ice, batch);
4268 }
4269
4270 if (dirty & IRIS_DIRTY_BLEND_STATE) {
4271 struct iris_blend_state *cso_blend = ice->state.cso_blend;
4272 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4273 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
4274 const int header_dwords = GENX(BLEND_STATE_length);
4275
4276 /* Always write at least one BLEND_STATE - the final RT message will
4277 * reference BLEND_STATE[0] even if there aren't color writes. There
4278 * may still be alpha testing, computed depth, and so on.
4279 */
4280 const int rt_dwords =
4281 MAX2(cso_fb->nr_cbufs, 1) * GENX(BLEND_STATE_ENTRY_length);
4282
4283 uint32_t blend_offset;
4284 uint32_t *blend_map =
4285 stream_state(batch, ice->state.dynamic_uploader,
4286 &ice->state.last_res.blend,
4287 4 * (header_dwords + rt_dwords), 64, &blend_offset);
4288
4289 uint32_t blend_state_header;
4290 iris_pack_state(GENX(BLEND_STATE), &blend_state_header, bs) {
4291 bs.AlphaTestEnable = cso_zsa->alpha.enabled;
4292 bs.AlphaTestFunction = translate_compare_func(cso_zsa->alpha.func);
4293 }
4294
4295 blend_map[0] = blend_state_header | cso_blend->blend_state[0];
4296 memcpy(&blend_map[1], &cso_blend->blend_state[1], 4 * rt_dwords);
4297
4298 iris_emit_cmd(batch, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
4299 ptr.BlendStatePointer = blend_offset;
4300 ptr.BlendStatePointerValid = true;
4301 }
4302 }
4303
4304 if (dirty & IRIS_DIRTY_COLOR_CALC_STATE) {
4305 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
4306 #if GEN_GEN == 8
4307 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
4308 #endif
4309 uint32_t cc_offset;
4310 void *cc_map =
4311 stream_state(batch, ice->state.dynamic_uploader,
4312 &ice->state.last_res.color_calc,
4313 sizeof(uint32_t) * GENX(COLOR_CALC_STATE_length),
4314 64, &cc_offset);
4315 iris_pack_state(GENX(COLOR_CALC_STATE), cc_map, cc) {
4316 cc.AlphaTestFormat = ALPHATEST_FLOAT32;
4317 cc.AlphaReferenceValueAsFLOAT32 = cso->alpha.ref_value;
4318 cc.BlendConstantColorRed = ice->state.blend_color.color[0];
4319 cc.BlendConstantColorGreen = ice->state.blend_color.color[1];
4320 cc.BlendConstantColorBlue = ice->state.blend_color.color[2];
4321 cc.BlendConstantColorAlpha = ice->state.blend_color.color[3];
4322 #if GEN_GEN == 8
4323 cc.StencilReferenceValue = p_stencil_refs->ref_value[0];
4324 cc.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
4325 #endif
4326 }
4327 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
4328 ptr.ColorCalcStatePointer = cc_offset;
4329 ptr.ColorCalcStatePointerValid = true;
4330 }
4331 }
4332
4333 /* Upload constants for TCS passthrough. */
4334 if ((dirty & IRIS_DIRTY_CONSTANTS_TCS) &&
4335 ice->shaders.prog[MESA_SHADER_TESS_CTRL] &&
4336 !ice->shaders.uncompiled[MESA_SHADER_TESS_CTRL]) {
4337 struct iris_compiled_shader *tes_shader = ice->shaders.prog[MESA_SHADER_TESS_EVAL];
4338 assert(tes_shader);
4339
4340 /* Passthrough always copies 2 vec4s, so when uploading data we ensure
4341 * it is in the right layout for TES.
4342 */
4343 float hdr[8] = {};
4344 struct brw_tes_prog_data *tes_prog_data = (void *) tes_shader->prog_data;
4345 switch (tes_prog_data->domain) {
4346 case BRW_TESS_DOMAIN_QUAD:
4347 for (int i = 0; i < 4; i++)
4348 hdr[7 - i] = ice->state.default_outer_level[i];
4349 hdr[3] = ice->state.default_inner_level[0];
4350 hdr[2] = ice->state.default_inner_level[1];
4351 break;
4352 case BRW_TESS_DOMAIN_TRI:
4353 for (int i = 0; i < 3; i++)
4354 hdr[7 - i] = ice->state.default_outer_level[i];
4355 hdr[4] = ice->state.default_inner_level[0];
4356 break;
4357 case BRW_TESS_DOMAIN_ISOLINE:
4358 hdr[7] = ice->state.default_outer_level[1];
4359 hdr[6] = ice->state.default_outer_level[0];
4360 break;
4361 }
4362
4363 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_TESS_CTRL];
4364 struct iris_const_buffer *cbuf = &shs->constbuf[0];
4365 u_upload_data(ice->ctx.const_uploader, 0, sizeof(hdr), 32,
4366 &hdr[0], &cbuf->data.offset,
4367 &cbuf->data.res);
4368 }
4369
4370 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4371 if (!(dirty & (IRIS_DIRTY_CONSTANTS_VS << stage)))
4372 continue;
4373
4374 struct iris_shader_state *shs = &ice->state.shaders[stage];
4375 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4376
4377 if (!shader)
4378 continue;
4379
4380 if (shs->cbuf0_needs_upload)
4381 upload_uniforms(ice, stage);
4382
4383 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4384
4385 iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_VS), pkt) {
4386 pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
4387 if (prog_data) {
4388 /* The Skylake PRM contains the following restriction:
4389 *
4390 * "The driver must ensure The following case does not occur
4391 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
4392 * buffer 3 read length equal to zero committed followed by a
4393 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
4394 * zero committed."
4395 *
4396 * To avoid this, we program the buffers in the highest slots.
4397 * This way, slot 0 is only used if slot 3 is also used.
4398 */
4399 int n = 3;
4400
4401 for (int i = 3; i >= 0; i--) {
4402 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4403
4404 if (range->length == 0)
4405 continue;
4406
4407 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
4408 struct iris_resource *res = (void *) cbuf->data.res;
4409
4410 assert(cbuf->data.offset % 32 == 0);
4411
4412 pkt.ConstantBody.ReadLength[n] = range->length;
4413 pkt.ConstantBody.Buffer[n] =
4414 res ? ro_bo(res->bo, range->start * 32 + cbuf->data.offset)
4415 : ro_bo(batch->screen->workaround_bo, 0);
4416 n--;
4417 }
4418 }
4419 }
4420 }
4421
4422 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4423 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4424 iris_emit_cmd(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), ptr) {
4425 ptr._3DCommandSubOpcode = 38 + stage;
4426 ptr.PointertoVSBindingTable = binder->bt_offset[stage];
4427 }
4428 }
4429 }
4430
4431 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4432 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4433 iris_populate_binding_table(ice, batch, stage, false);
4434 }
4435 }
4436
4437 if (ice->state.need_border_colors)
4438 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
4439
4440 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4441 if (!(dirty & (IRIS_DIRTY_SAMPLER_STATES_VS << stage)) ||
4442 !ice->shaders.prog[stage])
4443 continue;
4444
4445 struct iris_shader_state *shs = &ice->state.shaders[stage];
4446 struct pipe_resource *res = shs->sampler_table.res;
4447 if (res)
4448 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4449
4450 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
4451 ptr._3DCommandSubOpcode = 43 + stage;
4452 ptr.PointertoVSSamplerState = shs->sampler_table.offset;
4453 }
4454 }
4455
4456 if (dirty & IRIS_DIRTY_MULTISAMPLE) {
4457 iris_emit_cmd(batch, GENX(3DSTATE_MULTISAMPLE), ms) {
4458 ms.PixelLocation =
4459 ice->state.cso_rast->half_pixel_center ? CENTER : UL_CORNER;
4460 if (ice->state.framebuffer.samples > 0)
4461 ms.NumberofMultisamples = ffs(ice->state.framebuffer.samples) - 1;
4462 }
4463 }
4464
4465 if (dirty & IRIS_DIRTY_SAMPLE_MASK) {
4466 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_MASK), ms) {
4467 ms.SampleMask = ice->state.sample_mask;
4468 }
4469 }
4470
4471 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4472 if (!(dirty & (IRIS_DIRTY_VS << stage)))
4473 continue;
4474
4475 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4476
4477 if (shader) {
4478 struct iris_resource *cache = (void *) shader->assembly.res;
4479 iris_use_pinned_bo(batch, cache->bo, false);
4480 iris_batch_emit(batch, shader->derived_data,
4481 iris_derived_program_state_size(stage));
4482 } else {
4483 if (stage == MESA_SHADER_TESS_EVAL) {
4484 iris_emit_cmd(batch, GENX(3DSTATE_HS), hs);
4485 iris_emit_cmd(batch, GENX(3DSTATE_TE), te);
4486 iris_emit_cmd(batch, GENX(3DSTATE_DS), ds);
4487 } else if (stage == MESA_SHADER_GEOMETRY) {
4488 iris_emit_cmd(batch, GENX(3DSTATE_GS), gs);
4489 }
4490 }
4491 }
4492
4493 if (ice->state.streamout_active) {
4494 if (dirty & IRIS_DIRTY_SO_BUFFERS) {
4495 iris_batch_emit(batch, genx->so_buffers,
4496 4 * 4 * GENX(3DSTATE_SO_BUFFER_length));
4497 for (int i = 0; i < 4; i++) {
4498 struct iris_stream_output_target *tgt =
4499 (void *) ice->state.so_target[i];
4500 if (tgt) {
4501 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
4502 true);
4503 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
4504 true);
4505 }
4506 }
4507 }
4508
4509 if ((dirty & IRIS_DIRTY_SO_DECL_LIST) && ice->state.streamout) {
4510 uint32_t *decl_list =
4511 ice->state.streamout + GENX(3DSTATE_STREAMOUT_length);
4512 iris_batch_emit(batch, decl_list, 4 * ((decl_list[0] & 0xff) + 2));
4513 }
4514
4515 if (dirty & IRIS_DIRTY_STREAMOUT) {
4516 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4517
4518 uint32_t dynamic_sol[GENX(3DSTATE_STREAMOUT_length)];
4519 iris_pack_command(GENX(3DSTATE_STREAMOUT), dynamic_sol, sol) {
4520 sol.SOFunctionEnable = true;
4521 sol.SOStatisticsEnable = true;
4522
4523 sol.RenderingDisable = cso_rast->rasterizer_discard &&
4524 !ice->state.prims_generated_query_active;
4525 sol.ReorderMode = cso_rast->flatshade_first ? LEADING : TRAILING;
4526 }
4527
4528 assert(ice->state.streamout);
4529
4530 iris_emit_merge(batch, ice->state.streamout, dynamic_sol,
4531 GENX(3DSTATE_STREAMOUT_length));
4532 }
4533 } else {
4534 if (dirty & IRIS_DIRTY_STREAMOUT) {
4535 iris_emit_cmd(batch, GENX(3DSTATE_STREAMOUT), sol);
4536 }
4537 }
4538
4539 if (dirty & IRIS_DIRTY_CLIP) {
4540 struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4541 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4542
4543 uint32_t dynamic_clip[GENX(3DSTATE_CLIP_length)];
4544 iris_pack_command(GENX(3DSTATE_CLIP), &dynamic_clip, cl) {
4545 cl.StatisticsEnable = ice->state.statistics_counters_enabled;
4546 cl.ClipMode = cso_rast->rasterizer_discard ? CLIPMODE_REJECT_ALL
4547 : CLIPMODE_NORMAL;
4548 if (wm_prog_data->barycentric_interp_modes &
4549 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
4550 cl.NonPerspectiveBarycentricEnable = true;
4551
4552 cl.ForceZeroRTAIndexEnable = cso_fb->layers == 0;
4553 cl.MaximumVPIndex = ice->state.num_viewports - 1;
4554 }
4555 iris_emit_merge(batch, cso_rast->clip, dynamic_clip,
4556 ARRAY_SIZE(cso_rast->clip));
4557 }
4558
4559 if (dirty & IRIS_DIRTY_RASTER) {
4560 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4561 iris_batch_emit(batch, cso->raster, sizeof(cso->raster));
4562 iris_batch_emit(batch, cso->sf, sizeof(cso->sf));
4563
4564 }
4565
4566 if (dirty & IRIS_DIRTY_WM) {
4567 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4568 uint32_t dynamic_wm[GENX(3DSTATE_WM_length)];
4569
4570 iris_pack_command(GENX(3DSTATE_WM), &dynamic_wm, wm) {
4571 wm.StatisticsEnable = ice->state.statistics_counters_enabled;
4572
4573 wm.BarycentricInterpolationMode =
4574 wm_prog_data->barycentric_interp_modes;
4575
4576 if (wm_prog_data->early_fragment_tests)
4577 wm.EarlyDepthStencilControl = EDSC_PREPS;
4578 else if (wm_prog_data->has_side_effects)
4579 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
4580
4581 /* We could skip this bit if color writes are enabled. */
4582 if (wm_prog_data->has_side_effects || wm_prog_data->uses_kill)
4583 wm.ForceThreadDispatchEnable = ForceON;
4584 }
4585 iris_emit_merge(batch, cso->wm, dynamic_wm, ARRAY_SIZE(cso->wm));
4586 }
4587
4588 if (dirty & IRIS_DIRTY_SBE) {
4589 iris_emit_sbe(batch, ice);
4590 }
4591
4592 if (dirty & IRIS_DIRTY_PS_BLEND) {
4593 struct iris_blend_state *cso_blend = ice->state.cso_blend;
4594 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
4595 const struct shader_info *fs_info =
4596 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
4597
4598 uint32_t dynamic_pb[GENX(3DSTATE_PS_BLEND_length)];
4599 iris_pack_command(GENX(3DSTATE_PS_BLEND), &dynamic_pb, pb) {
4600 pb.HasWriteableRT = has_writeable_rt(cso_blend, fs_info);
4601 pb.AlphaTestEnable = cso_zsa->alpha.enabled;
4602 }
4603
4604 iris_emit_merge(batch, cso_blend->ps_blend, dynamic_pb,
4605 ARRAY_SIZE(cso_blend->ps_blend));
4606 }
4607
4608 if (dirty & IRIS_DIRTY_WM_DEPTH_STENCIL) {
4609 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
4610 #if GEN_GEN >= 9
4611 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
4612 uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
4613 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
4614 wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
4615 wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
4616 }
4617 iris_emit_merge(batch, cso->wmds, stencil_refs, ARRAY_SIZE(cso->wmds));
4618 #else
4619 iris_batch_emit(batch, cso->wmds, sizeof(cso->wmds));
4620 #endif
4621 }
4622
4623 if (dirty & IRIS_DIRTY_SCISSOR_RECT) {
4624 uint32_t scissor_offset =
4625 emit_state(batch, ice->state.dynamic_uploader,
4626 &ice->state.last_res.scissor,
4627 ice->state.scissors,
4628 sizeof(struct pipe_scissor_state) *
4629 ice->state.num_viewports, 32);
4630
4631 iris_emit_cmd(batch, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
4632 ptr.ScissorRectPointer = scissor_offset;
4633 }
4634 }
4635
4636 if (dirty & IRIS_DIRTY_DEPTH_BUFFER) {
4637 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4638 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
4639
4640 iris_batch_emit(batch, cso_z->packets, sizeof(cso_z->packets));
4641
4642 if (cso_fb->zsbuf) {
4643 struct iris_resource *zres, *sres;
4644 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
4645 &zres, &sres);
4646 if (zres) {
4647 iris_use_pinned_bo(batch, zres->bo,
4648 ice->state.depth_writes_enabled);
4649 if (zres->aux.bo) {
4650 iris_use_pinned_bo(batch, zres->aux.bo,
4651 ice->state.depth_writes_enabled);
4652 }
4653 }
4654
4655 if (sres) {
4656 iris_use_pinned_bo(batch, sres->bo,
4657 ice->state.stencil_writes_enabled);
4658 }
4659 }
4660 }
4661
4662 if (dirty & IRIS_DIRTY_POLYGON_STIPPLE) {
4663 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
4664 for (int i = 0; i < 32; i++) {
4665 poly.PatternRow[i] = ice->state.poly_stipple.stipple[i];
4666 }
4667 }
4668 }
4669
4670 if (dirty & IRIS_DIRTY_LINE_STIPPLE) {
4671 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4672 iris_batch_emit(batch, cso->line_stipple, sizeof(cso->line_stipple));
4673 }
4674
4675 if (dirty & IRIS_DIRTY_VF_TOPOLOGY) {
4676 iris_emit_cmd(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
4677 topo.PrimitiveTopologyType =
4678 translate_prim_type(draw->mode, draw->vertices_per_patch);
4679 }
4680 }
4681
4682 if (dirty & IRIS_DIRTY_VERTEX_BUFFERS) {
4683 int count = util_bitcount64(ice->state.bound_vertex_buffers);
4684 int dynamic_bound = ice->state.bound_vertex_buffers;
4685
4686 if (ice->state.vs_uses_draw_params) {
4687 if (ice->draw.draw_params_offset == 0) {
4688 u_upload_data(ice->state.dynamic_uploader, 0, sizeof(ice->draw.params),
4689 4, &ice->draw.params, &ice->draw.draw_params_offset,
4690 &ice->draw.draw_params_res);
4691 }
4692 assert(ice->draw.draw_params_res);
4693
4694 struct iris_vertex_buffer_state *state =
4695 &(ice->state.genx->vertex_buffers[count]);
4696 pipe_resource_reference(&state->resource, ice->draw.draw_params_res);
4697 struct iris_resource *res = (void *) state->resource;
4698
4699 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
4700 vb.VertexBufferIndex = count;
4701 vb.AddressModifyEnable = true;
4702 vb.BufferPitch = 0;
4703 vb.BufferSize = res->bo->size - ice->draw.draw_params_offset;
4704 vb.BufferStartingAddress =
4705 ro_bo(NULL, res->bo->gtt_offset +
4706 (int) ice->draw.draw_params_offset);
4707 vb.MOCS = mocs(res->bo);
4708 }
4709 dynamic_bound |= 1ull << count;
4710 count++;
4711 }
4712
4713 if (ice->state.vs_uses_derived_draw_params) {
4714 u_upload_data(ice->state.dynamic_uploader, 0,
4715 sizeof(ice->draw.derived_params), 4,
4716 &ice->draw.derived_params,
4717 &ice->draw.derived_draw_params_offset,
4718 &ice->draw.derived_draw_params_res);
4719
4720 struct iris_vertex_buffer_state *state =
4721 &(ice->state.genx->vertex_buffers[count]);
4722 pipe_resource_reference(&state->resource,
4723 ice->draw.derived_draw_params_res);
4724 struct iris_resource *res = (void *) ice->draw.derived_draw_params_res;
4725
4726 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
4727 vb.VertexBufferIndex = count;
4728 vb.AddressModifyEnable = true;
4729 vb.BufferPitch = 0;
4730 vb.BufferSize =
4731 res->bo->size - ice->draw.derived_draw_params_offset;
4732 vb.BufferStartingAddress =
4733 ro_bo(NULL, res->bo->gtt_offset +
4734 (int) ice->draw.derived_draw_params_offset);
4735 vb.MOCS = mocs(res->bo);
4736 }
4737 dynamic_bound |= 1ull << count;
4738 count++;
4739 }
4740
4741 if (count) {
4742 /* The VF cache designers cut corners, and made the cache key's
4743 * <VertexBufferIndex, Memory Address> tuple only consider the bottom
4744 * 32 bits of the address. If you have two vertex buffers which get
4745 * placed exactly 4 GiB apart and use them in back-to-back draw calls,
4746 * you can get collisions (even within a single batch).
4747 *
4748 * So, we need to do a VF cache invalidate if the buffer for a VB
4749 * slot slot changes [48:32] address bits from the previous time.
4750 */
4751 unsigned flush_flags = 0;
4752
4753 uint64_t bound = dynamic_bound;
4754 while (bound) {
4755 const int i = u_bit_scan64(&bound);
4756 uint16_t high_bits = 0;
4757
4758 struct iris_resource *res =
4759 (void *) genx->vertex_buffers[i].resource;
4760 if (res) {
4761 iris_use_pinned_bo(batch, res->bo, false);
4762
4763 high_bits = res->bo->gtt_offset >> 32ull;
4764 if (high_bits != ice->state.last_vbo_high_bits[i]) {
4765 flush_flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE |
4766 PIPE_CONTROL_CS_STALL;
4767 ice->state.last_vbo_high_bits[i] = high_bits;
4768 }
4769
4770 /* If the buffer was written to by streamout, we may need
4771 * to stall so those writes land and become visible to the
4772 * vertex fetcher.
4773 *
4774 * TODO: This may stall more than necessary.
4775 */
4776 if (res->bind_history & PIPE_BIND_STREAM_OUTPUT)
4777 flush_flags |= PIPE_CONTROL_CS_STALL;
4778 }
4779 }
4780
4781 if (flush_flags)
4782 iris_emit_pipe_control_flush(batch, flush_flags);
4783
4784 const unsigned vb_dwords = GENX(VERTEX_BUFFER_STATE_length);
4785
4786 uint32_t *map =
4787 iris_get_command_space(batch, 4 * (1 + vb_dwords * count));
4788 _iris_pack_command(batch, GENX(3DSTATE_VERTEX_BUFFERS), map, vb) {
4789 vb.DWordLength = (vb_dwords * count + 1) - 2;
4790 }
4791 map += 1;
4792
4793 bound = dynamic_bound;
4794 while (bound) {
4795 const int i = u_bit_scan64(&bound);
4796 memcpy(map, genx->vertex_buffers[i].state,
4797 sizeof(uint32_t) * vb_dwords);
4798 map += vb_dwords;
4799 }
4800 }
4801 }
4802
4803 if (dirty & IRIS_DIRTY_VERTEX_ELEMENTS) {
4804 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
4805 const unsigned entries = MAX2(cso->count, 1);
4806 if (!(ice->state.vs_needs_sgvs_element ||
4807 ice->state.vs_uses_derived_draw_params ||
4808 ice->state.vs_needs_edge_flag)) {
4809 iris_batch_emit(batch, cso->vertex_elements, sizeof(uint32_t) *
4810 (1 + entries * GENX(VERTEX_ELEMENT_STATE_length)));
4811 } else {
4812 uint32_t dynamic_ves[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
4813 const unsigned dyn_count = cso->count +
4814 ice->state.vs_needs_sgvs_element +
4815 ice->state.vs_uses_derived_draw_params;
4816
4817 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS),
4818 &dynamic_ves, ve) {
4819 ve.DWordLength =
4820 1 + GENX(VERTEX_ELEMENT_STATE_length) * dyn_count - 2;
4821 }
4822 memcpy(&dynamic_ves[1], &cso->vertex_elements[1],
4823 (cso->count - ice->state.vs_needs_edge_flag) *
4824 GENX(VERTEX_ELEMENT_STATE_length) * sizeof(uint32_t));
4825 uint32_t *ve_pack_dest =
4826 &dynamic_ves[1 + (cso->count - ice->state.vs_needs_edge_flag) *
4827 GENX(VERTEX_ELEMENT_STATE_length)];
4828
4829 if (ice->state.vs_needs_sgvs_element) {
4830 uint32_t base_ctrl = ice->state.vs_uses_draw_params ?
4831 VFCOMP_STORE_SRC : VFCOMP_STORE_0;
4832 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
4833 ve.Valid = true;
4834 ve.VertexBufferIndex =
4835 util_bitcount64(ice->state.bound_vertex_buffers);
4836 ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
4837 ve.Component0Control = base_ctrl;
4838 ve.Component1Control = base_ctrl;
4839 ve.Component2Control = VFCOMP_STORE_0;
4840 ve.Component3Control = VFCOMP_STORE_0;
4841 }
4842 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
4843 }
4844 if (ice->state.vs_uses_derived_draw_params) {
4845 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
4846 ve.Valid = true;
4847 ve.VertexBufferIndex =
4848 util_bitcount64(ice->state.bound_vertex_buffers) +
4849 ice->state.vs_uses_draw_params;
4850 ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
4851 ve.Component0Control = VFCOMP_STORE_SRC;
4852 ve.Component1Control = VFCOMP_STORE_SRC;
4853 ve.Component2Control = VFCOMP_STORE_0;
4854 ve.Component3Control = VFCOMP_STORE_0;
4855 }
4856 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
4857 }
4858 if (ice->state.vs_needs_edge_flag) {
4859 for (int i = 0; i < GENX(VERTEX_ELEMENT_STATE_length); i++)
4860 ve_pack_dest[i] = cso->edgeflag_ve[i];
4861 }
4862
4863 iris_batch_emit(batch, &dynamic_ves, sizeof(uint32_t) *
4864 (1 + dyn_count * GENX(VERTEX_ELEMENT_STATE_length)));
4865 }
4866
4867 if (!ice->state.vs_needs_edge_flag) {
4868 iris_batch_emit(batch, cso->vf_instancing, sizeof(uint32_t) *
4869 entries * GENX(3DSTATE_VF_INSTANCING_length));
4870 } else {
4871 assert(cso->count > 0);
4872 const unsigned edgeflag_index = cso->count - 1;
4873 uint32_t dynamic_vfi[33 * GENX(3DSTATE_VF_INSTANCING_length)];
4874 memcpy(&dynamic_vfi[0], cso->vf_instancing, edgeflag_index *
4875 GENX(3DSTATE_VF_INSTANCING_length) * sizeof(uint32_t));
4876
4877 uint32_t *vfi_pack_dest = &dynamic_vfi[0] +
4878 edgeflag_index * GENX(3DSTATE_VF_INSTANCING_length);
4879 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
4880 vi.VertexElementIndex = edgeflag_index +
4881 ice->state.vs_needs_sgvs_element +
4882 ice->state.vs_uses_derived_draw_params;
4883 }
4884 for (int i = 0; i < GENX(3DSTATE_VF_INSTANCING_length); i++)
4885 vfi_pack_dest[i] |= cso->edgeflag_vfi[i];
4886
4887 iris_batch_emit(batch, &dynamic_vfi[0], sizeof(uint32_t) *
4888 entries * GENX(3DSTATE_VF_INSTANCING_length));
4889 }
4890 }
4891
4892 if (dirty & IRIS_DIRTY_VF_SGVS) {
4893 const struct brw_vs_prog_data *vs_prog_data = (void *)
4894 ice->shaders.prog[MESA_SHADER_VERTEX]->prog_data;
4895 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
4896
4897 iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS), sgv) {
4898 if (vs_prog_data->uses_vertexid) {
4899 sgv.VertexIDEnable = true;
4900 sgv.VertexIDComponentNumber = 2;
4901 sgv.VertexIDElementOffset =
4902 cso->count - ice->state.vs_needs_edge_flag;
4903 }
4904
4905 if (vs_prog_data->uses_instanceid) {
4906 sgv.InstanceIDEnable = true;
4907 sgv.InstanceIDComponentNumber = 3;
4908 sgv.InstanceIDElementOffset =
4909 cso->count - ice->state.vs_needs_edge_flag;
4910 }
4911 }
4912 }
4913
4914 if (dirty & IRIS_DIRTY_VF) {
4915 iris_emit_cmd(batch, GENX(3DSTATE_VF), vf) {
4916 if (draw->primitive_restart) {
4917 vf.IndexedDrawCutIndexEnable = true;
4918 vf.CutIndex = draw->restart_index;
4919 }
4920 }
4921 }
4922
4923 /* TODO: Gen8 PMA fix */
4924 }
4925
4926 static void
4927 iris_upload_render_state(struct iris_context *ice,
4928 struct iris_batch *batch,
4929 const struct pipe_draw_info *draw)
4930 {
4931 /* Always pin the binder. If we're emitting new binding table pointers,
4932 * we need it. If not, we're probably inheriting old tables via the
4933 * context, and need it anyway. Since true zero-bindings cases are
4934 * practically non-existent, just pin it and avoid last_res tracking.
4935 */
4936 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
4937
4938 if (!batch->contains_draw) {
4939 iris_restore_render_saved_bos(ice, batch, draw);
4940 batch->contains_draw = true;
4941 }
4942
4943 iris_upload_dirty_render_state(ice, batch, draw);
4944
4945 if (draw->index_size > 0) {
4946 unsigned offset;
4947
4948 if (draw->has_user_indices) {
4949 u_upload_data(ice->ctx.stream_uploader, 0,
4950 draw->count * draw->index_size, 4, draw->index.user,
4951 &offset, &ice->state.last_res.index_buffer);
4952 } else {
4953 struct iris_resource *res = (void *) draw->index.resource;
4954 res->bind_history |= PIPE_BIND_INDEX_BUFFER;
4955
4956 pipe_resource_reference(&ice->state.last_res.index_buffer,
4957 draw->index.resource);
4958 offset = 0;
4959 }
4960
4961 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
4962
4963 iris_emit_cmd(batch, GENX(3DSTATE_INDEX_BUFFER), ib) {
4964 ib.IndexFormat = draw->index_size >> 1;
4965 ib.MOCS = mocs(bo);
4966 ib.BufferSize = bo->size;
4967 ib.BufferStartingAddress = ro_bo(bo, offset);
4968 }
4969
4970 /* The VF cache key only uses 32-bits, see vertex buffer comment above */
4971 uint16_t high_bits = bo->gtt_offset >> 32ull;
4972 if (high_bits != ice->state.last_index_bo_high_bits) {
4973 iris_emit_pipe_control_flush(batch, PIPE_CONTROL_VF_CACHE_INVALIDATE |
4974 PIPE_CONTROL_CS_STALL);
4975 ice->state.last_index_bo_high_bits = high_bits;
4976 }
4977 }
4978
4979 #define _3DPRIM_END_OFFSET 0x2420
4980 #define _3DPRIM_START_VERTEX 0x2430
4981 #define _3DPRIM_VERTEX_COUNT 0x2434
4982 #define _3DPRIM_INSTANCE_COUNT 0x2438
4983 #define _3DPRIM_START_INSTANCE 0x243C
4984 #define _3DPRIM_BASE_VERTEX 0x2440
4985
4986 if (draw->indirect) {
4987 /* We don't support this MultidrawIndirect. */
4988 assert(!draw->indirect->indirect_draw_count);
4989
4990 struct iris_bo *bo = iris_resource_bo(draw->indirect->buffer);
4991 assert(bo);
4992
4993 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4994 lrm.RegisterAddress = _3DPRIM_VERTEX_COUNT;
4995 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 0);
4996 }
4997 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4998 lrm.RegisterAddress = _3DPRIM_INSTANCE_COUNT;
4999 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 4);
5000 }
5001 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5002 lrm.RegisterAddress = _3DPRIM_START_VERTEX;
5003 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 8);
5004 }
5005 if (draw->index_size) {
5006 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5007 lrm.RegisterAddress = _3DPRIM_BASE_VERTEX;
5008 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
5009 }
5010 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5011 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
5012 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 16);
5013 }
5014 } else {
5015 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5016 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
5017 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
5018 }
5019 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
5020 lri.RegisterOffset = _3DPRIM_BASE_VERTEX;
5021 lri.DataDWord = 0;
5022 }
5023 }
5024 } else if (draw->count_from_stream_output) {
5025 struct iris_stream_output_target *so =
5026 (void *) draw->count_from_stream_output;
5027
5028 /* XXX: Replace with actual cache tracking */
5029 iris_emit_pipe_control_flush(batch, PIPE_CONTROL_CS_STALL);
5030
5031 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5032 lrm.RegisterAddress = CS_GPR(0);
5033 lrm.MemoryAddress =
5034 ro_bo(iris_resource_bo(so->offset.res), so->offset.offset);
5035 }
5036 iris_math_div32_gpr0(ice, batch, so->stride);
5037 _iris_emit_lrr(batch, _3DPRIM_VERTEX_COUNT, CS_GPR(0));
5038
5039 _iris_emit_lri(batch, _3DPRIM_START_VERTEX, 0);
5040 _iris_emit_lri(batch, _3DPRIM_BASE_VERTEX, 0);
5041 _iris_emit_lri(batch, _3DPRIM_START_INSTANCE, 0);
5042 _iris_emit_lri(batch, _3DPRIM_INSTANCE_COUNT, draw->instance_count);
5043 }
5044
5045 iris_emit_cmd(batch, GENX(3DPRIMITIVE), prim) {
5046 prim.VertexAccessType = draw->index_size > 0 ? RANDOM : SEQUENTIAL;
5047 prim.PredicateEnable =
5048 ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT;
5049
5050 if (draw->indirect || draw->count_from_stream_output) {
5051 prim.IndirectParameterEnable = true;
5052 } else {
5053 prim.StartInstanceLocation = draw->start_instance;
5054 prim.InstanceCount = draw->instance_count;
5055 prim.VertexCountPerInstance = draw->count;
5056
5057 // XXX: this is probably bonkers.
5058 prim.StartVertexLocation = draw->start;
5059
5060 if (draw->index_size) {
5061 prim.BaseVertexLocation += draw->index_bias;
5062 } else {
5063 prim.StartVertexLocation += draw->index_bias;
5064 }
5065
5066 //prim.BaseVertexLocation = ...;
5067 }
5068 }
5069 }
5070
5071 static void
5072 iris_upload_compute_state(struct iris_context *ice,
5073 struct iris_batch *batch,
5074 const struct pipe_grid_info *grid)
5075 {
5076 const uint64_t dirty = ice->state.dirty;
5077 struct iris_screen *screen = batch->screen;
5078 const struct gen_device_info *devinfo = &screen->devinfo;
5079 struct iris_binder *binder = &ice->state.binder;
5080 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
5081 struct iris_compiled_shader *shader =
5082 ice->shaders.prog[MESA_SHADER_COMPUTE];
5083 struct brw_stage_prog_data *prog_data = shader->prog_data;
5084 struct brw_cs_prog_data *cs_prog_data = (void *) prog_data;
5085
5086 /* Always pin the binder. If we're emitting new binding table pointers,
5087 * we need it. If not, we're probably inheriting old tables via the
5088 * context, and need it anyway. Since true zero-bindings cases are
5089 * practically non-existent, just pin it and avoid last_res tracking.
5090 */
5091 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
5092
5093 if ((dirty & IRIS_DIRTY_CONSTANTS_CS) && shs->cbuf0_needs_upload)
5094 upload_uniforms(ice, MESA_SHADER_COMPUTE);
5095
5096 if (dirty & IRIS_DIRTY_BINDINGS_CS)
5097 iris_populate_binding_table(ice, batch, MESA_SHADER_COMPUTE, false);
5098
5099 iris_use_optional_res(batch, shs->sampler_table.res, false);
5100 iris_use_pinned_bo(batch, iris_resource_bo(shader->assembly.res), false);
5101
5102 if (ice->state.need_border_colors)
5103 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
5104
5105 if (dirty & IRIS_DIRTY_CS) {
5106 /* The MEDIA_VFE_STATE documentation for Gen8+ says:
5107 *
5108 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
5109 * the only bits that are changed are scoreboard related: Scoreboard
5110 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard Delta. For
5111 * these scoreboard related states, a MEDIA_STATE_FLUSH is
5112 * sufficient."
5113 */
5114 iris_emit_pipe_control_flush(batch, PIPE_CONTROL_CS_STALL);
5115
5116 iris_emit_cmd(batch, GENX(MEDIA_VFE_STATE), vfe) {
5117 if (prog_data->total_scratch) {
5118 struct iris_bo *bo =
5119 iris_get_scratch_space(ice, prog_data->total_scratch,
5120 MESA_SHADER_COMPUTE);
5121 vfe.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
5122 vfe.ScratchSpaceBasePointer = rw_bo(bo, 0);
5123 }
5124
5125 vfe.MaximumNumberofThreads =
5126 devinfo->max_cs_threads * screen->subslice_total - 1;
5127 #if GEN_GEN < 11
5128 vfe.ResetGatewayTimer =
5129 Resettingrelativetimerandlatchingtheglobaltimestamp;
5130 #endif
5131 #if GEN_GEN == 8
5132 vfe.BypassGatewayControl = true;
5133 #endif
5134 vfe.NumberofURBEntries = 2;
5135 vfe.URBEntryAllocationSize = 2;
5136
5137 vfe.CURBEAllocationSize =
5138 ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
5139 cs_prog_data->push.cross_thread.regs, 2);
5140 }
5141 }
5142
5143 /* TODO: Combine subgroup-id with cbuf0 so we can push regular uniforms */
5144 uint32_t curbe_data_offset = 0;
5145 assert(cs_prog_data->push.cross_thread.dwords == 0 &&
5146 cs_prog_data->push.per_thread.dwords == 1 &&
5147 cs_prog_data->base.param[0] == BRW_PARAM_BUILTIN_SUBGROUP_ID);
5148 struct pipe_resource *curbe_data_res = NULL;
5149 uint32_t *curbe_data_map =
5150 stream_state(batch, ice->state.dynamic_uploader, &curbe_data_res,
5151 ALIGN(cs_prog_data->push.total.size, 64), 64,
5152 &curbe_data_offset);
5153 assert(curbe_data_map);
5154 memset(curbe_data_map, 0x5a, ALIGN(cs_prog_data->push.total.size, 64));
5155 iris_fill_cs_push_const_buffer(cs_prog_data, curbe_data_map);
5156
5157 if (dirty & IRIS_DIRTY_CONSTANTS_CS) {
5158 iris_emit_cmd(batch, GENX(MEDIA_CURBE_LOAD), curbe) {
5159 curbe.CURBETotalDataLength =
5160 ALIGN(cs_prog_data->push.total.size, 64);
5161 curbe.CURBEDataStartAddress = curbe_data_offset;
5162 }
5163 }
5164
5165 if (dirty & (IRIS_DIRTY_SAMPLER_STATES_CS |
5166 IRIS_DIRTY_BINDINGS_CS |
5167 IRIS_DIRTY_CONSTANTS_CS |
5168 IRIS_DIRTY_CS)) {
5169 struct pipe_resource *desc_res = NULL;
5170 uint32_t desc[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
5171
5172 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), desc, idd) {
5173 idd.SamplerStatePointer = shs->sampler_table.offset;
5174 idd.BindingTablePointer = binder->bt_offset[MESA_SHADER_COMPUTE];
5175 }
5176
5177 for (int i = 0; i < GENX(INTERFACE_DESCRIPTOR_DATA_length); i++)
5178 desc[i] |= ((uint32_t *) shader->derived_data)[i];
5179
5180 iris_emit_cmd(batch, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
5181 load.InterfaceDescriptorTotalLength =
5182 GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
5183 load.InterfaceDescriptorDataStartAddress =
5184 emit_state(batch, ice->state.dynamic_uploader,
5185 &desc_res, desc, sizeof(desc), 32);
5186 }
5187
5188 pipe_resource_reference(&desc_res, NULL);
5189 }
5190
5191 uint32_t group_size = grid->block[0] * grid->block[1] * grid->block[2];
5192 uint32_t remainder = group_size & (cs_prog_data->simd_size - 1);
5193 uint32_t right_mask;
5194
5195 if (remainder > 0)
5196 right_mask = ~0u >> (32 - remainder);
5197 else
5198 right_mask = ~0u >> (32 - cs_prog_data->simd_size);
5199
5200 #define GPGPU_DISPATCHDIMX 0x2500
5201 #define GPGPU_DISPATCHDIMY 0x2504
5202 #define GPGPU_DISPATCHDIMZ 0x2508
5203
5204 if (grid->indirect) {
5205 struct iris_state_ref *grid_size = &ice->state.grid_size;
5206 struct iris_bo *bo = iris_resource_bo(grid_size->res);
5207 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5208 lrm.RegisterAddress = GPGPU_DISPATCHDIMX;
5209 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 0);
5210 }
5211 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5212 lrm.RegisterAddress = GPGPU_DISPATCHDIMY;
5213 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 4);
5214 }
5215 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5216 lrm.RegisterAddress = GPGPU_DISPATCHDIMZ;
5217 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 8);
5218 }
5219 }
5220
5221 iris_emit_cmd(batch, GENX(GPGPU_WALKER), ggw) {
5222 ggw.IndirectParameterEnable = grid->indirect != NULL;
5223 ggw.SIMDSize = cs_prog_data->simd_size / 16;
5224 ggw.ThreadDepthCounterMaximum = 0;
5225 ggw.ThreadHeightCounterMaximum = 0;
5226 ggw.ThreadWidthCounterMaximum = cs_prog_data->threads - 1;
5227 ggw.ThreadGroupIDXDimension = grid->grid[0];
5228 ggw.ThreadGroupIDYDimension = grid->grid[1];
5229 ggw.ThreadGroupIDZDimension = grid->grid[2];
5230 ggw.RightExecutionMask = right_mask;
5231 ggw.BottomExecutionMask = 0xffffffff;
5232 }
5233
5234 iris_emit_cmd(batch, GENX(MEDIA_STATE_FLUSH), msf);
5235
5236 if (!batch->contains_draw) {
5237 iris_restore_compute_saved_bos(ice, batch, grid);
5238 batch->contains_draw = true;
5239 }
5240 }
5241
5242 /**
5243 * State module teardown.
5244 */
5245 static void
5246 iris_destroy_state(struct iris_context *ice)
5247 {
5248 struct iris_genx_state *genx = ice->state.genx;
5249
5250 uint64_t bound_vbs = ice->state.bound_vertex_buffers;
5251 while (bound_vbs) {
5252 const int i = u_bit_scan64(&bound_vbs);
5253 pipe_resource_reference(&genx->vertex_buffers[i].resource, NULL);
5254 }
5255 free(ice->state.genx);
5256
5257 for (unsigned i = 0; i < ice->state.framebuffer.nr_cbufs; i++) {
5258 pipe_surface_reference(&ice->state.framebuffer.cbufs[i], NULL);
5259 }
5260 pipe_surface_reference(&ice->state.framebuffer.zsbuf, NULL);
5261
5262 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
5263 struct iris_shader_state *shs = &ice->state.shaders[stage];
5264 pipe_resource_reference(&shs->sampler_table.res, NULL);
5265 for (int i = 0; i < PIPE_MAX_CONSTANT_BUFFERS; i++) {
5266 pipe_resource_reference(&shs->constbuf[i].data.res, NULL);
5267 pipe_resource_reference(&shs->constbuf[i].surface_state.res, NULL);
5268 }
5269 for (int i = 0; i < PIPE_MAX_SHADER_IMAGES; i++) {
5270 pipe_resource_reference(&shs->image[i].res, NULL);
5271 pipe_resource_reference(&shs->image[i].surface_state.res, NULL);
5272 }
5273 for (int i = 0; i < PIPE_MAX_SHADER_BUFFERS; i++) {
5274 pipe_resource_reference(&shs->ssbo[i], NULL);
5275 pipe_resource_reference(&shs->ssbo_surface_state[i].res, NULL);
5276 }
5277 for (int i = 0; i < IRIS_MAX_TEXTURE_SAMPLERS; i++) {
5278 pipe_sampler_view_reference((struct pipe_sampler_view **)
5279 &shs->textures[i], NULL);
5280 }
5281 }
5282
5283 pipe_resource_reference(&ice->state.grid_size.res, NULL);
5284 pipe_resource_reference(&ice->state.grid_surf_state.res, NULL);
5285
5286 pipe_resource_reference(&ice->state.null_fb.res, NULL);
5287 pipe_resource_reference(&ice->state.unbound_tex.res, NULL);
5288
5289 pipe_resource_reference(&ice->state.last_res.cc_vp, NULL);
5290 pipe_resource_reference(&ice->state.last_res.sf_cl_vp, NULL);
5291 pipe_resource_reference(&ice->state.last_res.color_calc, NULL);
5292 pipe_resource_reference(&ice->state.last_res.scissor, NULL);
5293 pipe_resource_reference(&ice->state.last_res.blend, NULL);
5294 pipe_resource_reference(&ice->state.last_res.index_buffer, NULL);
5295 }
5296
5297 /* ------------------------------------------------------------------- */
5298
5299 static void
5300 iris_load_register_reg32(struct iris_batch *batch, uint32_t dst,
5301 uint32_t src)
5302 {
5303 _iris_emit_lrr(batch, dst, src);
5304 }
5305
5306 static void
5307 iris_load_register_reg64(struct iris_batch *batch, uint32_t dst,
5308 uint32_t src)
5309 {
5310 _iris_emit_lrr(batch, dst, src);
5311 _iris_emit_lrr(batch, dst + 4, src + 4);
5312 }
5313
5314 static void
5315 iris_load_register_imm32(struct iris_batch *batch, uint32_t reg,
5316 uint32_t val)
5317 {
5318 _iris_emit_lri(batch, reg, val);
5319 }
5320
5321 static void
5322 iris_load_register_imm64(struct iris_batch *batch, uint32_t reg,
5323 uint64_t val)
5324 {
5325 _iris_emit_lri(batch, reg + 0, val & 0xffffffff);
5326 _iris_emit_lri(batch, reg + 4, val >> 32);
5327 }
5328
5329 /**
5330 * Emit MI_LOAD_REGISTER_MEM to load a 32-bit MMIO register from a buffer.
5331 */
5332 static void
5333 iris_load_register_mem32(struct iris_batch *batch, uint32_t reg,
5334 struct iris_bo *bo, uint32_t offset)
5335 {
5336 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5337 lrm.RegisterAddress = reg;
5338 lrm.MemoryAddress = ro_bo(bo, offset);
5339 }
5340 }
5341
5342 /**
5343 * Load a 64-bit value from a buffer into a MMIO register via
5344 * two MI_LOAD_REGISTER_MEM commands.
5345 */
5346 static void
5347 iris_load_register_mem64(struct iris_batch *batch, uint32_t reg,
5348 struct iris_bo *bo, uint32_t offset)
5349 {
5350 iris_load_register_mem32(batch, reg + 0, bo, offset + 0);
5351 iris_load_register_mem32(batch, reg + 4, bo, offset + 4);
5352 }
5353
5354 static void
5355 iris_store_register_mem32(struct iris_batch *batch, uint32_t reg,
5356 struct iris_bo *bo, uint32_t offset,
5357 bool predicated)
5358 {
5359 iris_emit_cmd(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
5360 srm.RegisterAddress = reg;
5361 srm.MemoryAddress = rw_bo(bo, offset);
5362 srm.PredicateEnable = predicated;
5363 }
5364 }
5365
5366 static void
5367 iris_store_register_mem64(struct iris_batch *batch, uint32_t reg,
5368 struct iris_bo *bo, uint32_t offset,
5369 bool predicated)
5370 {
5371 iris_store_register_mem32(batch, reg + 0, bo, offset + 0, predicated);
5372 iris_store_register_mem32(batch, reg + 4, bo, offset + 4, predicated);
5373 }
5374
5375 static void
5376 iris_store_data_imm32(struct iris_batch *batch,
5377 struct iris_bo *bo, uint32_t offset,
5378 uint32_t imm)
5379 {
5380 iris_emit_cmd(batch, GENX(MI_STORE_DATA_IMM), sdi) {
5381 sdi.Address = rw_bo(bo, offset);
5382 sdi.ImmediateData = imm;
5383 }
5384 }
5385
5386 static void
5387 iris_store_data_imm64(struct iris_batch *batch,
5388 struct iris_bo *bo, uint32_t offset,
5389 uint64_t imm)
5390 {
5391 /* Can't use iris_emit_cmd because MI_STORE_DATA_IMM has a length of
5392 * 2 in genxml but it's actually variable length and we need 5 DWords.
5393 */
5394 void *map = iris_get_command_space(batch, 4 * 5);
5395 _iris_pack_command(batch, GENX(MI_STORE_DATA_IMM), map, sdi) {
5396 sdi.DWordLength = 5 - 2;
5397 sdi.Address = rw_bo(bo, offset);
5398 sdi.ImmediateData = imm;
5399 }
5400 }
5401
5402 static void
5403 iris_copy_mem_mem(struct iris_batch *batch,
5404 struct iris_bo *dst_bo, uint32_t dst_offset,
5405 struct iris_bo *src_bo, uint32_t src_offset,
5406 unsigned bytes)
5407 {
5408 /* MI_COPY_MEM_MEM operates on DWords. */
5409 assert(bytes % 4 == 0);
5410 assert(dst_offset % 4 == 0);
5411 assert(src_offset % 4 == 0);
5412
5413 for (unsigned i = 0; i < bytes; i += 4) {
5414 iris_emit_cmd(batch, GENX(MI_COPY_MEM_MEM), cp) {
5415 cp.DestinationMemoryAddress = rw_bo(dst_bo, dst_offset + i);
5416 cp.SourceMemoryAddress = ro_bo(src_bo, src_offset + i);
5417 }
5418 }
5419 }
5420
5421 /* ------------------------------------------------------------------- */
5422
5423 static unsigned
5424 flags_to_post_sync_op(uint32_t flags)
5425 {
5426 if (flags & PIPE_CONTROL_WRITE_IMMEDIATE)
5427 return WriteImmediateData;
5428
5429 if (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT)
5430 return WritePSDepthCount;
5431
5432 if (flags & PIPE_CONTROL_WRITE_TIMESTAMP)
5433 return WriteTimestamp;
5434
5435 return 0;
5436 }
5437
5438 /**
5439 * Do the given flags have a Post Sync or LRI Post Sync operation?
5440 */
5441 static enum pipe_control_flags
5442 get_post_sync_flags(enum pipe_control_flags flags)
5443 {
5444 flags &= PIPE_CONTROL_WRITE_IMMEDIATE |
5445 PIPE_CONTROL_WRITE_DEPTH_COUNT |
5446 PIPE_CONTROL_WRITE_TIMESTAMP |
5447 PIPE_CONTROL_LRI_POST_SYNC_OP;
5448
5449 /* Only one "Post Sync Op" is allowed, and it's mutually exclusive with
5450 * "LRI Post Sync Operation". So more than one bit set would be illegal.
5451 */
5452 assert(util_bitcount(flags) <= 1);
5453
5454 return flags;
5455 }
5456
5457 #define IS_COMPUTE_PIPELINE(batch) (batch->name == IRIS_BATCH_COMPUTE)
5458
5459 /**
5460 * Emit a series of PIPE_CONTROL commands, taking into account any
5461 * workarounds necessary to actually accomplish the caller's request.
5462 *
5463 * Unless otherwise noted, spec quotations in this function come from:
5464 *
5465 * Synchronization of the 3D Pipeline > PIPE_CONTROL Command > Programming
5466 * Restrictions for PIPE_CONTROL.
5467 *
5468 * You should not use this function directly. Use the helpers in
5469 * iris_pipe_control.c instead, which may split the pipe control further.
5470 */
5471 static void
5472 iris_emit_raw_pipe_control(struct iris_batch *batch, uint32_t flags,
5473 struct iris_bo *bo, uint32_t offset, uint64_t imm)
5474 {
5475 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
5476 enum pipe_control_flags post_sync_flags = get_post_sync_flags(flags);
5477 enum pipe_control_flags non_lri_post_sync_flags =
5478 post_sync_flags & ~PIPE_CONTROL_LRI_POST_SYNC_OP;
5479
5480 /* Recursive PIPE_CONTROL workarounds --------------------------------
5481 * (http://knowyourmeme.com/memes/xzibit-yo-dawg)
5482 *
5483 * We do these first because we want to look at the original operation,
5484 * rather than any workarounds we set.
5485 */
5486 if (GEN_GEN == 9 && (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE)) {
5487 /* The PIPE_CONTROL "VF Cache Invalidation Enable" bit description
5488 * lists several workarounds:
5489 *
5490 * "Project: SKL, KBL, BXT
5491 *
5492 * If the VF Cache Invalidation Enable is set to a 1 in a
5493 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields
5494 * sets to 0, with the VF Cache Invalidation Enable set to 0
5495 * needs to be sent prior to the PIPE_CONTROL with VF Cache
5496 * Invalidation Enable set to a 1."
5497 */
5498 iris_emit_raw_pipe_control(batch, 0, NULL, 0, 0);
5499 }
5500
5501 if (GEN_GEN == 9 && IS_COMPUTE_PIPELINE(batch) && post_sync_flags) {
5502 /* Project: SKL / Argument: LRI Post Sync Operation [23]
5503 *
5504 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
5505 * programmed prior to programming a PIPECONTROL command with "LRI
5506 * Post Sync Operation" in GPGPU mode of operation (i.e when
5507 * PIPELINE_SELECT command is set to GPGPU mode of operation)."
5508 *
5509 * The same text exists a few rows below for Post Sync Op.
5510 */
5511 iris_emit_raw_pipe_control(batch, PIPE_CONTROL_CS_STALL, bo, offset, imm);
5512 }
5513
5514 if (GEN_GEN == 10 && (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH)) {
5515 /* Cannonlake:
5516 * "Before sending a PIPE_CONTROL command with bit 12 set, SW must issue
5517 * another PIPE_CONTROL with Render Target Cache Flush Enable (bit 12)
5518 * = 0 and Pipe Control Flush Enable (bit 7) = 1"
5519 */
5520 iris_emit_raw_pipe_control(batch, PIPE_CONTROL_FLUSH_ENABLE, bo,
5521 offset, imm);
5522 }
5523
5524 /* "Flush Types" workarounds ---------------------------------------------
5525 * We do these now because they may add post-sync operations or CS stalls.
5526 */
5527
5528 if (GEN_GEN < 11 && flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) {
5529 /* Project: BDW, SKL+ (stopping at CNL) / Argument: VF Invalidate
5530 *
5531 * "'Post Sync Operation' must be enabled to 'Write Immediate Data' or
5532 * 'Write PS Depth Count' or 'Write Timestamp'."
5533 */
5534 if (!bo) {
5535 flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
5536 post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
5537 non_lri_post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
5538 bo = batch->screen->workaround_bo;
5539 }
5540 }
5541
5542 /* #1130 from Gen10 workarounds page:
5543 *
5544 * "Enable Depth Stall on every Post Sync Op if Render target Cache
5545 * Flush is not enabled in same PIPE CONTROL and Enable Pixel score
5546 * board stall if Render target cache flush is enabled."
5547 *
5548 * Applicable to CNL B0 and C0 steppings only.
5549 *
5550 * The wording here is unclear, and this workaround doesn't look anything
5551 * like the internal bug report recommendations, but leave it be for now...
5552 */
5553 if (GEN_GEN == 10) {
5554 if (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) {
5555 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
5556 } else if (flags & non_lri_post_sync_flags) {
5557 flags |= PIPE_CONTROL_DEPTH_STALL;
5558 }
5559 }
5560
5561 if (flags & PIPE_CONTROL_DEPTH_STALL) {
5562 /* From the PIPE_CONTROL instruction table, bit 13 (Depth Stall Enable):
5563 *
5564 * "This bit must be DISABLED for operations other than writing
5565 * PS_DEPTH_COUNT."
5566 *
5567 * This seems like nonsense. An Ivybridge workaround requires us to
5568 * emit a PIPE_CONTROL with a depth stall and write immediate post-sync
5569 * operation. Gen8+ requires us to emit depth stalls and depth cache
5570 * flushes together. So, it's hard to imagine this means anything other
5571 * than "we originally intended this to be used for PS_DEPTH_COUNT".
5572 *
5573 * We ignore the supposed restriction and do nothing.
5574 */
5575 }
5576
5577 if (flags & (PIPE_CONTROL_RENDER_TARGET_FLUSH |
5578 PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
5579 /* From the PIPE_CONTROL instruction table, bit 12 and bit 1:
5580 *
5581 * "This bit must be DISABLED for End-of-pipe (Read) fences,
5582 * PS_DEPTH_COUNT or TIMESTAMP queries."
5583 *
5584 * TODO: Implement end-of-pipe checking.
5585 */
5586 assert(!(post_sync_flags & (PIPE_CONTROL_WRITE_DEPTH_COUNT |
5587 PIPE_CONTROL_WRITE_TIMESTAMP)));
5588 }
5589
5590 if (GEN_GEN < 11 && (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
5591 /* From the PIPE_CONTROL instruction table, bit 1:
5592 *
5593 * "This bit is ignored if Depth Stall Enable is set.
5594 * Further, the render cache is not flushed even if Write Cache
5595 * Flush Enable bit is set."
5596 *
5597 * We assert that the caller doesn't do this combination, to try and
5598 * prevent mistakes. It shouldn't hurt the GPU, though.
5599 *
5600 * We skip this check on Gen11+ as the "Stall at Pixel Scoreboard"
5601 * and "Render Target Flush" combo is explicitly required for BTI
5602 * update workarounds.
5603 */
5604 assert(!(flags & (PIPE_CONTROL_DEPTH_STALL |
5605 PIPE_CONTROL_RENDER_TARGET_FLUSH)));
5606 }
5607
5608 /* PIPE_CONTROL page workarounds ------------------------------------- */
5609
5610 if (GEN_GEN <= 8 && (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE)) {
5611 /* From the PIPE_CONTROL page itself:
5612 *
5613 * "IVB, HSW, BDW
5614 * Restriction: Pipe_control with CS-stall bit set must be issued
5615 * before a pipe-control command that has the State Cache
5616 * Invalidate bit set."
5617 */
5618 flags |= PIPE_CONTROL_CS_STALL;
5619 }
5620
5621 if (flags & PIPE_CONTROL_FLUSH_LLC) {
5622 /* From the PIPE_CONTROL instruction table, bit 26 (Flush LLC):
5623 *
5624 * "Project: ALL
5625 * SW must always program Post-Sync Operation to "Write Immediate
5626 * Data" when Flush LLC is set."
5627 *
5628 * For now, we just require the caller to do it.
5629 */
5630 assert(flags & PIPE_CONTROL_WRITE_IMMEDIATE);
5631 }
5632
5633 /* "Post-Sync Operation" workarounds -------------------------------- */
5634
5635 /* Project: All / Argument: Global Snapshot Count Reset [19]
5636 *
5637 * "This bit must not be exercised on any product.
5638 * Requires stall bit ([20] of DW1) set."
5639 *
5640 * We don't use this, so we just assert that it isn't used. The
5641 * PIPE_CONTROL instruction page indicates that they intended this
5642 * as a debug feature and don't think it is useful in production,
5643 * but it may actually be usable, should we ever want to.
5644 */
5645 assert((flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) == 0);
5646
5647 if (flags & (PIPE_CONTROL_MEDIA_STATE_CLEAR |
5648 PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE)) {
5649 /* Project: All / Arguments:
5650 *
5651 * - Generic Media State Clear [16]
5652 * - Indirect State Pointers Disable [16]
5653 *
5654 * "Requires stall bit ([20] of DW1) set."
5655 *
5656 * Also, the PIPE_CONTROL instruction table, bit 16 (Generic Media
5657 * State Clear) says:
5658 *
5659 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
5660 * programmed prior to programming a PIPECONTROL command with "Media
5661 * State Clear" set in GPGPU mode of operation"
5662 *
5663 * This is a subset of the earlier rule, so there's nothing to do.
5664 */
5665 flags |= PIPE_CONTROL_CS_STALL;
5666 }
5667
5668 if (flags & PIPE_CONTROL_STORE_DATA_INDEX) {
5669 /* Project: All / Argument: Store Data Index
5670 *
5671 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
5672 * than '0'."
5673 *
5674 * For now, we just assert that the caller does this. We might want to
5675 * automatically add a write to the workaround BO...
5676 */
5677 assert(non_lri_post_sync_flags != 0);
5678 }
5679
5680 if (flags & PIPE_CONTROL_SYNC_GFDT) {
5681 /* Project: All / Argument: Sync GFDT
5682 *
5683 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
5684 * than '0' or 0x2520[13] must be set."
5685 *
5686 * For now, we just assert that the caller does this.
5687 */
5688 assert(non_lri_post_sync_flags != 0);
5689 }
5690
5691 if (flags & PIPE_CONTROL_TLB_INVALIDATE) {
5692 /* Project: IVB+ / Argument: TLB inv
5693 *
5694 * "Requires stall bit ([20] of DW1) set."
5695 *
5696 * Also, from the PIPE_CONTROL instruction table:
5697 *
5698 * "Project: SKL+
5699 * Post Sync Operation or CS stall must be set to ensure a TLB
5700 * invalidation occurs. Otherwise no cycle will occur to the TLB
5701 * cache to invalidate."
5702 *
5703 * This is not a subset of the earlier rule, so there's nothing to do.
5704 */
5705 flags |= PIPE_CONTROL_CS_STALL;
5706 }
5707
5708 if (GEN_GEN == 9 && devinfo->gt == 4) {
5709 /* TODO: The big Skylake GT4 post sync op workaround */
5710 }
5711
5712 /* "GPGPU specific workarounds" (both post-sync and flush) ------------ */
5713
5714 if (IS_COMPUTE_PIPELINE(batch)) {
5715 if (GEN_GEN >= 9 && (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE)) {
5716 /* Project: SKL+ / Argument: Tex Invalidate
5717 * "Requires stall bit ([20] of DW) set for all GPGPU Workloads."
5718 */
5719 flags |= PIPE_CONTROL_CS_STALL;
5720 }
5721
5722 if (GEN_GEN == 8 && (post_sync_flags ||
5723 (flags & (PIPE_CONTROL_NOTIFY_ENABLE |
5724 PIPE_CONTROL_DEPTH_STALL |
5725 PIPE_CONTROL_RENDER_TARGET_FLUSH |
5726 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
5727 PIPE_CONTROL_DATA_CACHE_FLUSH)))) {
5728 /* Project: BDW / Arguments:
5729 *
5730 * - LRI Post Sync Operation [23]
5731 * - Post Sync Op [15:14]
5732 * - Notify En [8]
5733 * - Depth Stall [13]
5734 * - Render Target Cache Flush [12]
5735 * - Depth Cache Flush [0]
5736 * - DC Flush Enable [5]
5737 *
5738 * "Requires stall bit ([20] of DW) set for all GPGPU and Media
5739 * Workloads."
5740 */
5741 flags |= PIPE_CONTROL_CS_STALL;
5742
5743 /* Also, from the PIPE_CONTROL instruction table, bit 20:
5744 *
5745 * "Project: BDW
5746 * This bit must be always set when PIPE_CONTROL command is
5747 * programmed by GPGPU and MEDIA workloads, except for the cases
5748 * when only Read Only Cache Invalidation bits are set (State
5749 * Cache Invalidation Enable, Instruction cache Invalidation
5750 * Enable, Texture Cache Invalidation Enable, Constant Cache
5751 * Invalidation Enable). This is to WA FFDOP CG issue, this WA
5752 * need not implemented when FF_DOP_CG is disable via "Fixed
5753 * Function DOP Clock Gate Disable" bit in RC_PSMI_CTRL register."
5754 *
5755 * It sounds like we could avoid CS stalls in some cases, but we
5756 * don't currently bother. This list isn't exactly the list above,
5757 * either...
5758 */
5759 }
5760 }
5761
5762 /* "Stall" workarounds ----------------------------------------------
5763 * These have to come after the earlier ones because we may have added
5764 * some additional CS stalls above.
5765 */
5766
5767 if (GEN_GEN < 9 && (flags & PIPE_CONTROL_CS_STALL)) {
5768 /* Project: PRE-SKL, VLV, CHV
5769 *
5770 * "[All Stepping][All SKUs]:
5771 *
5772 * One of the following must also be set:
5773 *
5774 * - Render Target Cache Flush Enable ([12] of DW1)
5775 * - Depth Cache Flush Enable ([0] of DW1)
5776 * - Stall at Pixel Scoreboard ([1] of DW1)
5777 * - Depth Stall ([13] of DW1)
5778 * - Post-Sync Operation ([13] of DW1)
5779 * - DC Flush Enable ([5] of DW1)"
5780 *
5781 * If we don't already have one of those bits set, we choose to add
5782 * "Stall at Pixel Scoreboard". Some of the other bits require a
5783 * CS stall as a workaround (see above), which would send us into
5784 * an infinite recursion of PIPE_CONTROLs. "Stall at Pixel Scoreboard"
5785 * appears to be safe, so we choose that.
5786 */
5787 const uint32_t wa_bits = PIPE_CONTROL_RENDER_TARGET_FLUSH |
5788 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
5789 PIPE_CONTROL_WRITE_IMMEDIATE |
5790 PIPE_CONTROL_WRITE_DEPTH_COUNT |
5791 PIPE_CONTROL_WRITE_TIMESTAMP |
5792 PIPE_CONTROL_STALL_AT_SCOREBOARD |
5793 PIPE_CONTROL_DEPTH_STALL |
5794 PIPE_CONTROL_DATA_CACHE_FLUSH;
5795 if (!(flags & wa_bits))
5796 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
5797 }
5798
5799 /* Emit --------------------------------------------------------------- */
5800
5801 iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
5802 pc.LRIPostSyncOperation = NoLRIOperation;
5803 pc.PipeControlFlushEnable = flags & PIPE_CONTROL_FLUSH_ENABLE;
5804 pc.DCFlushEnable = flags & PIPE_CONTROL_DATA_CACHE_FLUSH;
5805 pc.StoreDataIndex = 0;
5806 pc.CommandStreamerStallEnable = flags & PIPE_CONTROL_CS_STALL;
5807 pc.GlobalSnapshotCountReset =
5808 flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET;
5809 pc.TLBInvalidate = flags & PIPE_CONTROL_TLB_INVALIDATE;
5810 pc.GenericMediaStateClear = flags & PIPE_CONTROL_MEDIA_STATE_CLEAR;
5811 pc.StallAtPixelScoreboard = flags & PIPE_CONTROL_STALL_AT_SCOREBOARD;
5812 pc.RenderTargetCacheFlushEnable =
5813 flags & PIPE_CONTROL_RENDER_TARGET_FLUSH;
5814 pc.DepthCacheFlushEnable = flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH;
5815 pc.StateCacheInvalidationEnable =
5816 flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE;
5817 pc.VFCacheInvalidationEnable = flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
5818 pc.ConstantCacheInvalidationEnable =
5819 flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE;
5820 pc.PostSyncOperation = flags_to_post_sync_op(flags);
5821 pc.DepthStallEnable = flags & PIPE_CONTROL_DEPTH_STALL;
5822 pc.InstructionCacheInvalidateEnable =
5823 flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE;
5824 pc.NotifyEnable = flags & PIPE_CONTROL_NOTIFY_ENABLE;
5825 pc.IndirectStatePointersDisable =
5826 flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE;
5827 pc.TextureCacheInvalidationEnable =
5828 flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
5829 pc.Address = rw_bo(bo, offset);
5830 pc.ImmediateData = imm;
5831 }
5832 }
5833
5834 void
5835 genX(init_state)(struct iris_context *ice)
5836 {
5837 struct pipe_context *ctx = &ice->ctx;
5838 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
5839
5840 ctx->create_blend_state = iris_create_blend_state;
5841 ctx->create_depth_stencil_alpha_state = iris_create_zsa_state;
5842 ctx->create_rasterizer_state = iris_create_rasterizer_state;
5843 ctx->create_sampler_state = iris_create_sampler_state;
5844 ctx->create_sampler_view = iris_create_sampler_view;
5845 ctx->create_surface = iris_create_surface;
5846 ctx->create_vertex_elements_state = iris_create_vertex_elements;
5847 ctx->bind_blend_state = iris_bind_blend_state;
5848 ctx->bind_depth_stencil_alpha_state = iris_bind_zsa_state;
5849 ctx->bind_sampler_states = iris_bind_sampler_states;
5850 ctx->bind_rasterizer_state = iris_bind_rasterizer_state;
5851 ctx->bind_vertex_elements_state = iris_bind_vertex_elements_state;
5852 ctx->delete_blend_state = iris_delete_state;
5853 ctx->delete_depth_stencil_alpha_state = iris_delete_state;
5854 ctx->delete_rasterizer_state = iris_delete_state;
5855 ctx->delete_sampler_state = iris_delete_state;
5856 ctx->delete_vertex_elements_state = iris_delete_state;
5857 ctx->set_blend_color = iris_set_blend_color;
5858 ctx->set_clip_state = iris_set_clip_state;
5859 ctx->set_constant_buffer = iris_set_constant_buffer;
5860 ctx->set_shader_buffers = iris_set_shader_buffers;
5861 ctx->set_shader_images = iris_set_shader_images;
5862 ctx->set_sampler_views = iris_set_sampler_views;
5863 ctx->set_tess_state = iris_set_tess_state;
5864 ctx->set_framebuffer_state = iris_set_framebuffer_state;
5865 ctx->set_polygon_stipple = iris_set_polygon_stipple;
5866 ctx->set_sample_mask = iris_set_sample_mask;
5867 ctx->set_scissor_states = iris_set_scissor_states;
5868 ctx->set_stencil_ref = iris_set_stencil_ref;
5869 ctx->set_vertex_buffers = iris_set_vertex_buffers;
5870 ctx->set_viewport_states = iris_set_viewport_states;
5871 ctx->sampler_view_destroy = iris_sampler_view_destroy;
5872 ctx->surface_destroy = iris_surface_destroy;
5873 ctx->draw_vbo = iris_draw_vbo;
5874 ctx->launch_grid = iris_launch_grid;
5875 ctx->create_stream_output_target = iris_create_stream_output_target;
5876 ctx->stream_output_target_destroy = iris_stream_output_target_destroy;
5877 ctx->set_stream_output_targets = iris_set_stream_output_targets;
5878
5879 ice->vtbl.destroy_state = iris_destroy_state;
5880 ice->vtbl.init_render_context = iris_init_render_context;
5881 ice->vtbl.init_compute_context = iris_init_compute_context;
5882 ice->vtbl.upload_render_state = iris_upload_render_state;
5883 ice->vtbl.update_surface_base_address = iris_update_surface_base_address;
5884 ice->vtbl.upload_compute_state = iris_upload_compute_state;
5885 ice->vtbl.emit_raw_pipe_control = iris_emit_raw_pipe_control;
5886 ice->vtbl.load_register_reg32 = iris_load_register_reg32;
5887 ice->vtbl.load_register_reg64 = iris_load_register_reg64;
5888 ice->vtbl.load_register_imm32 = iris_load_register_imm32;
5889 ice->vtbl.load_register_imm64 = iris_load_register_imm64;
5890 ice->vtbl.load_register_mem32 = iris_load_register_mem32;
5891 ice->vtbl.load_register_mem64 = iris_load_register_mem64;
5892 ice->vtbl.store_register_mem32 = iris_store_register_mem32;
5893 ice->vtbl.store_register_mem64 = iris_store_register_mem64;
5894 ice->vtbl.store_data_imm32 = iris_store_data_imm32;
5895 ice->vtbl.store_data_imm64 = iris_store_data_imm64;
5896 ice->vtbl.copy_mem_mem = iris_copy_mem_mem;
5897 ice->vtbl.derived_program_state_size = iris_derived_program_state_size;
5898 ice->vtbl.store_derived_program_state = iris_store_derived_program_state;
5899 ice->vtbl.create_so_decl_list = iris_create_so_decl_list;
5900 ice->vtbl.populate_vs_key = iris_populate_vs_key;
5901 ice->vtbl.populate_tcs_key = iris_populate_tcs_key;
5902 ice->vtbl.populate_tes_key = iris_populate_tes_key;
5903 ice->vtbl.populate_gs_key = iris_populate_gs_key;
5904 ice->vtbl.populate_fs_key = iris_populate_fs_key;
5905 ice->vtbl.populate_cs_key = iris_populate_cs_key;
5906
5907 ice->state.dirty = ~0ull;
5908
5909 ice->state.statistics_counters_enabled = true;
5910
5911 ice->state.sample_mask = 0xffff;
5912 ice->state.num_viewports = 1;
5913 ice->state.genx = calloc(1, sizeof(struct iris_genx_state));
5914
5915 /* Make a 1x1x1 null surface for unbound textures */
5916 void *null_surf_map =
5917 upload_state(ice->state.surface_uploader, &ice->state.unbound_tex,
5918 4 * GENX(RENDER_SURFACE_STATE_length), 64);
5919 isl_null_fill_state(&screen->isl_dev, null_surf_map, isl_extent3d(1, 1, 1));
5920 ice->state.unbound_tex.offset +=
5921 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.unbound_tex.res));
5922
5923 /* Default all scissor rectangles to be empty regions. */
5924 for (int i = 0; i < IRIS_MAX_VIEWPORTS; i++) {
5925 ice->state.scissors[i] = (struct pipe_scissor_state) {
5926 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
5927 };
5928 }
5929 }