llvmpipe: Emit SSE intrinsics based on runtime cpu capability check.
[mesa.git] / src / gallium / drivers / llvmpipe / lp_bld_arit.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28
29 /**
30 * @file
31 * Helper
32 *
33 * LLVM IR doesn't support all basic arithmetic operations we care about (most
34 * notably min/max and saturated operations), and it is often necessary to
35 * resort machine-specific intrinsics directly. The functions here hide all
36 * these implementation details from the other modules.
37 *
38 * We also do simple expressions simplification here. Reasons are:
39 * - it is very easy given we have all necessary information readily available
40 * - LLVM optimization passes fail to simplify several vector expressions
41 * - We often know value constraints which the optimization passes have no way
42 * of knowing, such as when source arguments are known to be in [0, 1] range.
43 *
44 * @author Jose Fonseca <jfonseca@vmware.com>
45 */
46
47
48 #include "util/u_memory.h"
49 #include "util/u_debug.h"
50 #include "util/u_string.h"
51 #include "util/u_cpu_detect.h"
52
53 #include "lp_bld_type.h"
54 #include "lp_bld_const.h"
55 #include "lp_bld_intr.h"
56 #include "lp_bld_logic.h"
57 #include "lp_bld_arit.h"
58
59
60 /**
61 * Generate min(a, b)
62 * No checks for special case values of a or b = 1 or 0 are done.
63 */
64 static LLVMValueRef
65 lp_build_min_simple(struct lp_build_context *bld,
66 LLVMValueRef a,
67 LLVMValueRef b)
68 {
69 const struct lp_type type = bld->type;
70 const char *intrinsic = NULL;
71 LLVMValueRef cond;
72
73 /* TODO: optimize the constant case */
74
75 #if defined(PIPE_ARCH_X86) || defined(PIPE_ARCH_X86_64)
76 if(type.width * type.length == 128) {
77 if(type.floating) {
78 if(type.width == 32)
79 intrinsic = "llvm.x86.sse.min.ps";
80 if(type.width == 64)
81 intrinsic = "llvm.x86.sse2.min.pd";
82 }
83 else {
84 if(type.width == 8 && !type.sign)
85 intrinsic = "llvm.x86.sse2.pminu.b";
86 if(type.width == 8 && type.sign)
87 intrinsic = "llvm.x86.sse41.pminsb";
88 if(type.width == 16 && !type.sign)
89 intrinsic = "llvm.x86.sse41.pminuw";
90 if(type.width == 16 && type.sign)
91 intrinsic = "llvm.x86.sse2.pmins.w";
92 if(type.width == 32 && !type.sign)
93 intrinsic = "llvm.x86.sse41.pminud";
94 if(type.width == 32 && type.sign)
95 intrinsic = "llvm.x86.sse41.pminsd";
96 }
97 }
98 #endif
99
100 if(intrinsic)
101 return lp_build_intrinsic_binary(bld->builder, intrinsic, lp_build_vec_type(bld->type), a, b);
102
103 cond = lp_build_cmp(bld, PIPE_FUNC_LESS, a, b);
104 return lp_build_select(bld, cond, a, b);
105 }
106
107
108 /**
109 * Generate max(a, b)
110 * No checks for special case values of a or b = 1 or 0 are done.
111 */
112 static LLVMValueRef
113 lp_build_max_simple(struct lp_build_context *bld,
114 LLVMValueRef a,
115 LLVMValueRef b)
116 {
117 const struct lp_type type = bld->type;
118 const char *intrinsic = NULL;
119 LLVMValueRef cond;
120
121 /* TODO: optimize the constant case */
122
123 if(type.width * type.length == 128) {
124 if(type.floating) {
125 if(type.width == 32 && util_cpu_caps.has_sse)
126 intrinsic = "llvm.x86.sse.max.ps";
127 if(type.width == 64 && util_cpu_caps.has_sse2)
128 intrinsic = "llvm.x86.sse2.max.pd";
129 }
130 else {
131 if(type.width == 8 && !type.sign && util_cpu_caps.has_sse2)
132 intrinsic = "llvm.x86.sse2.pmaxu.b";
133 if(type.width == 8 && type.sign && util_cpu_caps.has_sse4_1)
134 intrinsic = "llvm.x86.sse41.pmaxsb";
135 if(type.width == 16 && !type.sign && util_cpu_caps.has_sse4_1)
136 intrinsic = "llvm.x86.sse41.pmaxuw";
137 if(type.width == 16 && type.sign && util_cpu_caps.has_sse2)
138 intrinsic = "llvm.x86.sse2.pmaxs.w";
139 if(type.width == 32 && !type.sign && util_cpu_caps.has_sse4_1)
140 intrinsic = "llvm.x86.sse41.pmaxud";
141 if(type.width == 32 && type.sign && util_cpu_caps.has_sse4_1)
142 intrinsic = "llvm.x86.sse41.pmaxsd";
143 }
144 }
145
146 if(intrinsic)
147 return lp_build_intrinsic_binary(bld->builder, intrinsic, lp_build_vec_type(bld->type), a, b);
148
149 cond = lp_build_cmp(bld, PIPE_FUNC_GREATER, a, b);
150 return lp_build_select(bld, cond, a, b);
151 }
152
153
154 /**
155 * Generate 1 - a, or ~a depending on bld->type.
156 */
157 LLVMValueRef
158 lp_build_comp(struct lp_build_context *bld,
159 LLVMValueRef a)
160 {
161 const struct lp_type type = bld->type;
162
163 if(a == bld->one)
164 return bld->zero;
165 if(a == bld->zero)
166 return bld->one;
167
168 if(type.norm && !type.floating && !type.fixed && !type.sign) {
169 if(LLVMIsConstant(a))
170 return LLVMConstNot(a);
171 else
172 return LLVMBuildNot(bld->builder, a, "");
173 }
174
175 if(LLVMIsConstant(a))
176 return LLVMConstSub(bld->one, a);
177 else
178 return LLVMBuildSub(bld->builder, bld->one, a, "");
179 }
180
181
182 /**
183 * Generate a + b
184 */
185 LLVMValueRef
186 lp_build_add(struct lp_build_context *bld,
187 LLVMValueRef a,
188 LLVMValueRef b)
189 {
190 const struct lp_type type = bld->type;
191 LLVMValueRef res;
192
193 if(a == bld->zero)
194 return b;
195 if(b == bld->zero)
196 return a;
197 if(a == bld->undef || b == bld->undef)
198 return bld->undef;
199
200 if(bld->type.norm) {
201 const char *intrinsic = NULL;
202
203 if(a == bld->one || b == bld->one)
204 return bld->one;
205
206 if(util_cpu_caps.has_sse2 &&
207 type.width * type.length == 128 &&
208 !type.floating && !type.fixed) {
209 if(type.width == 8)
210 intrinsic = type.sign ? "llvm.x86.sse2.padds.b" : "llvm.x86.sse2.paddus.b";
211 if(type.width == 16)
212 intrinsic = type.sign ? "llvm.x86.sse2.padds.w" : "llvm.x86.sse2.paddus.w";
213 }
214
215 if(intrinsic)
216 return lp_build_intrinsic_binary(bld->builder, intrinsic, lp_build_vec_type(bld->type), a, b);
217 }
218
219 if(LLVMIsConstant(a) && LLVMIsConstant(b))
220 res = LLVMConstAdd(a, b);
221 else
222 res = LLVMBuildAdd(bld->builder, a, b, "");
223
224 /* clamp to ceiling of 1.0 */
225 if(bld->type.norm && (bld->type.floating || bld->type.fixed))
226 res = lp_build_min_simple(bld, res, bld->one);
227
228 /* XXX clamp to floor of -1 or 0??? */
229
230 return res;
231 }
232
233
234 /**
235 * Generate a - b
236 */
237 LLVMValueRef
238 lp_build_sub(struct lp_build_context *bld,
239 LLVMValueRef a,
240 LLVMValueRef b)
241 {
242 const struct lp_type type = bld->type;
243 LLVMValueRef res;
244
245 if(b == bld->zero)
246 return a;
247 if(a == bld->undef || b == bld->undef)
248 return bld->undef;
249 if(a == b)
250 return bld->zero;
251
252 if(bld->type.norm) {
253 const char *intrinsic = NULL;
254
255 if(b == bld->one)
256 return bld->zero;
257
258 if(util_cpu_caps.has_sse2 &&
259 type.width * type.length == 128 &&
260 !type.floating && !type.fixed) {
261 if(type.width == 8)
262 intrinsic = type.sign ? "llvm.x86.sse2.psubs.b" : "llvm.x86.sse2.psubus.b";
263 if(type.width == 16)
264 intrinsic = type.sign ? "llvm.x86.sse2.psubs.w" : "llvm.x86.sse2.psubus.w";
265 }
266
267 if(intrinsic)
268 return lp_build_intrinsic_binary(bld->builder, intrinsic, lp_build_vec_type(bld->type), a, b);
269 }
270
271 if(LLVMIsConstant(a) && LLVMIsConstant(b))
272 res = LLVMConstSub(a, b);
273 else
274 res = LLVMBuildSub(bld->builder, a, b, "");
275
276 if(bld->type.norm && (bld->type.floating || bld->type.fixed))
277 res = lp_build_max_simple(bld, res, bld->zero);
278
279 return res;
280 }
281
282
283 /**
284 * Build shuffle vectors that match PUNPCKLxx and PUNPCKHxx instructions.
285 */
286 static LLVMValueRef
287 lp_build_unpack_shuffle(unsigned n, unsigned lo_hi)
288 {
289 LLVMValueRef elems[LP_MAX_VECTOR_LENGTH];
290 unsigned i, j;
291
292 assert(n <= LP_MAX_VECTOR_LENGTH);
293 assert(lo_hi < 2);
294
295 for(i = 0, j = lo_hi*n/2; i < n; i += 2, ++j) {
296 elems[i + 0] = LLVMConstInt(LLVMInt32Type(), 0 + j, 0);
297 elems[i + 1] = LLVMConstInt(LLVMInt32Type(), n + j, 0);
298 }
299
300 return LLVMConstVector(elems, n);
301 }
302
303
304 /**
305 * Build constant int vector of width 'n' and value 'c'.
306 */
307 static LLVMValueRef
308 lp_build_const_vec(LLVMTypeRef type, unsigned n, long long c)
309 {
310 LLVMValueRef elems[LP_MAX_VECTOR_LENGTH];
311 unsigned i;
312
313 assert(n <= LP_MAX_VECTOR_LENGTH);
314
315 for(i = 0; i < n; ++i)
316 elems[i] = LLVMConstInt(type, c, 0);
317
318 return LLVMConstVector(elems, n);
319 }
320
321
322 /**
323 * Normalized 8bit multiplication.
324 *
325 * - alpha plus one
326 *
327 * makes the following approximation to the division (Sree)
328 *
329 * a*b/255 ~= (a*(b + 1)) >> 256
330 *
331 * which is the fastest method that satisfies the following OpenGL criteria
332 *
333 * 0*0 = 0 and 255*255 = 255
334 *
335 * - geometric series
336 *
337 * takes the geometric series approximation to the division
338 *
339 * t/255 = (t >> 8) + (t >> 16) + (t >> 24) ..
340 *
341 * in this case just the first two terms to fit in 16bit arithmetic
342 *
343 * t/255 ~= (t + (t >> 8)) >> 8
344 *
345 * note that just by itself it doesn't satisfies the OpenGL criteria, as
346 * 255*255 = 254, so the special case b = 255 must be accounted or roundoff
347 * must be used
348 *
349 * - geometric series plus rounding
350 *
351 * when using a geometric series division instead of truncating the result
352 * use roundoff in the approximation (Jim Blinn)
353 *
354 * t/255 ~= (t + (t >> 8) + 0x80) >> 8
355 *
356 * achieving the exact results
357 *
358 * @sa Alvy Ray Smith, Image Compositing Fundamentals, Tech Memo 4, Aug 15, 1995,
359 * ftp://ftp.alvyray.com/Acrobat/4_Comp.pdf
360 * @sa Michael Herf, The "double blend trick", May 2000,
361 * http://www.stereopsis.com/doubleblend.html
362 */
363 static LLVMValueRef
364 lp_build_mul_u8n(LLVMBuilderRef builder,
365 LLVMValueRef a, LLVMValueRef b)
366 {
367 static LLVMValueRef c01 = NULL;
368 static LLVMValueRef c08 = NULL;
369 static LLVMValueRef c80 = NULL;
370 LLVMValueRef ab;
371
372 if(!c01) c01 = lp_build_const_vec(LLVMInt16Type(), 8, 0x01);
373 if(!c08) c08 = lp_build_const_vec(LLVMInt16Type(), 8, 0x08);
374 if(!c80) c80 = lp_build_const_vec(LLVMInt16Type(), 8, 0x80);
375
376 #if 0
377
378 /* a*b/255 ~= (a*(b + 1)) >> 256 */
379 b = LLVMBuildAdd(builder, b, c01, "");
380 ab = LLVMBuildMul(builder, a, b, "");
381
382 #else
383
384 /* t/255 ~= (t + (t >> 8) + 0x80) >> 8 */
385 ab = LLVMBuildMul(builder, a, b, "");
386 ab = LLVMBuildAdd(builder, ab, LLVMBuildLShr(builder, ab, c08, ""), "");
387 ab = LLVMBuildAdd(builder, ab, c80, "");
388
389 #endif
390
391 ab = LLVMBuildLShr(builder, ab, c08, "");
392
393 return ab;
394 }
395
396
397 /**
398 * Generate a * b
399 */
400 LLVMValueRef
401 lp_build_mul(struct lp_build_context *bld,
402 LLVMValueRef a,
403 LLVMValueRef b)
404 {
405 const struct lp_type type = bld->type;
406
407 if(a == bld->zero)
408 return bld->zero;
409 if(a == bld->one)
410 return b;
411 if(b == bld->zero)
412 return bld->zero;
413 if(b == bld->one)
414 return a;
415 if(a == bld->undef || b == bld->undef)
416 return bld->undef;
417
418 if(!type.floating && !type.fixed && type.norm) {
419 if(util_cpu_caps.has_sse2 && type.width == 8 && type.length == 16) {
420 LLVMTypeRef i16x8 = LLVMVectorType(LLVMInt16Type(), 8);
421 LLVMTypeRef i8x16 = LLVMVectorType(LLVMInt8Type(), 16);
422 static LLVMValueRef ml = NULL;
423 static LLVMValueRef mh = NULL;
424 LLVMValueRef al, ah, bl, bh;
425 LLVMValueRef abl, abh;
426 LLVMValueRef ab;
427
428 if(!ml) ml = lp_build_unpack_shuffle(16, 0);
429 if(!mh) mh = lp_build_unpack_shuffle(16, 1);
430
431 /* PUNPCKLBW, PUNPCKHBW */
432 al = LLVMBuildShuffleVector(bld->builder, a, bld->zero, ml, "");
433 bl = LLVMBuildShuffleVector(bld->builder, b, bld->zero, ml, "");
434 ah = LLVMBuildShuffleVector(bld->builder, a, bld->zero, mh, "");
435 bh = LLVMBuildShuffleVector(bld->builder, b, bld->zero, mh, "");
436
437 /* NOP */
438 al = LLVMBuildBitCast(bld->builder, al, i16x8, "");
439 bl = LLVMBuildBitCast(bld->builder, bl, i16x8, "");
440 ah = LLVMBuildBitCast(bld->builder, ah, i16x8, "");
441 bh = LLVMBuildBitCast(bld->builder, bh, i16x8, "");
442
443 /* PMULLW, PSRLW, PADDW */
444 abl = lp_build_mul_u8n(bld->builder, al, bl);
445 abh = lp_build_mul_u8n(bld->builder, ah, bh);
446
447 /* PACKUSWB */
448 ab = lp_build_intrinsic_binary(bld->builder, "llvm.x86.sse2.packuswb.128" , i16x8, abl, abh);
449
450 /* NOP */
451 ab = LLVMBuildBitCast(bld->builder, ab, i8x16, "");
452
453 return ab;
454 }
455
456 /* FIXME */
457 assert(0);
458 }
459
460 if(LLVMIsConstant(a) && LLVMIsConstant(b))
461 return LLVMConstMul(a, b);
462
463 return LLVMBuildMul(bld->builder, a, b, "");
464 }
465
466
467 /**
468 * Generate a / b
469 */
470 LLVMValueRef
471 lp_build_div(struct lp_build_context *bld,
472 LLVMValueRef a,
473 LLVMValueRef b)
474 {
475 const struct lp_type type = bld->type;
476
477 if(a == bld->zero)
478 return bld->zero;
479 if(a == bld->one)
480 return lp_build_rcp(bld, b);
481 if(b == bld->zero)
482 return bld->undef;
483 if(b == bld->one)
484 return a;
485 if(a == bld->undef || b == bld->undef)
486 return bld->undef;
487
488 if(LLVMIsConstant(a) && LLVMIsConstant(b))
489 return LLVMConstFDiv(a, b);
490
491 if(util_cpu_caps.has_sse && type.width == 32 && type.length == 4)
492 return lp_build_mul(bld, a, lp_build_rcp(bld, b));
493
494 return LLVMBuildFDiv(bld->builder, a, b, "");
495 }
496
497
498 LLVMValueRef
499 lp_build_lerp(struct lp_build_context *bld,
500 LLVMValueRef x,
501 LLVMValueRef v0,
502 LLVMValueRef v1)
503 {
504 return lp_build_add(bld, v0, lp_build_mul(bld, x, lp_build_sub(bld, v1, v0)));
505 }
506
507
508 LLVMValueRef
509 lp_build_lerp_2d(struct lp_build_context *bld,
510 LLVMValueRef x,
511 LLVMValueRef y,
512 LLVMValueRef v00,
513 LLVMValueRef v01,
514 LLVMValueRef v10,
515 LLVMValueRef v11)
516 {
517 LLVMValueRef v0 = lp_build_lerp(bld, x, v00, v01);
518 LLVMValueRef v1 = lp_build_lerp(bld, x, v10, v11);
519 return lp_build_lerp(bld, y, v0, v1);
520 }
521
522
523 /**
524 * Generate min(a, b)
525 * Do checks for special cases.
526 */
527 LLVMValueRef
528 lp_build_min(struct lp_build_context *bld,
529 LLVMValueRef a,
530 LLVMValueRef b)
531 {
532 if(a == bld->undef || b == bld->undef)
533 return bld->undef;
534
535 if(a == b)
536 return a;
537
538 if(bld->type.norm) {
539 if(a == bld->zero || b == bld->zero)
540 return bld->zero;
541 if(a == bld->one)
542 return b;
543 if(b == bld->one)
544 return a;
545 }
546
547 return lp_build_min_simple(bld, a, b);
548 }
549
550
551 /**
552 * Generate max(a, b)
553 * Do checks for special cases.
554 */
555 LLVMValueRef
556 lp_build_max(struct lp_build_context *bld,
557 LLVMValueRef a,
558 LLVMValueRef b)
559 {
560 if(a == bld->undef || b == bld->undef)
561 return bld->undef;
562
563 if(a == b)
564 return a;
565
566 if(bld->type.norm) {
567 if(a == bld->one || b == bld->one)
568 return bld->one;
569 if(a == bld->zero)
570 return b;
571 if(b == bld->zero)
572 return a;
573 }
574
575 return lp_build_max_simple(bld, a, b);
576 }
577
578
579 /**
580 * Generate abs(a)
581 */
582 LLVMValueRef
583 lp_build_abs(struct lp_build_context *bld,
584 LLVMValueRef a)
585 {
586 const struct lp_type type = bld->type;
587 LLVMTypeRef vec_type = lp_build_vec_type(type);
588
589 if(!type.sign)
590 return a;
591
592 if(type.floating) {
593 /* Mask out the sign bit */
594 LLVMTypeRef int_vec_type = lp_build_int_vec_type(type);
595 LLVMValueRef mask = lp_build_int_const_scalar(type, ((unsigned long long)1 << type.width) - 1);
596 a = LLVMBuildBitCast(bld->builder, a, int_vec_type, "");
597 a = LLVMBuildAnd(bld->builder, a, mask, "");
598 a = LLVMBuildBitCast(bld->builder, a, vec_type, "");
599 return a;
600 }
601
602 if(type.width*type.length == 128 && util_cpu_caps.has_ssse3) {
603 switch(type.width) {
604 case 8:
605 return lp_build_intrinsic_unary(bld->builder, "llvm.x86.ssse3.pabs.b.128", vec_type, a);
606 case 16:
607 return lp_build_intrinsic_unary(bld->builder, "llvm.x86.ssse3.pabs.w.128", vec_type, a);
608 case 32:
609 return lp_build_intrinsic_unary(bld->builder, "llvm.x86.ssse3.pabs.d.128", vec_type, a);
610 }
611 }
612
613 return lp_build_max(bld, a, LLVMBuildNeg(bld->builder, a, ""));
614 }
615
616
617 LLVMValueRef
618 lp_build_sgn(struct lp_build_context *bld,
619 LLVMValueRef a)
620 {
621 const struct lp_type type = bld->type;
622 LLVMTypeRef vec_type = lp_build_vec_type(type);
623 LLVMValueRef cond;
624 LLVMValueRef res;
625
626 /* Handle non-zero case */
627 if(!type.sign) {
628 /* if not zero then sign must be positive */
629 res = bld->one;
630 }
631 else if(type.floating) {
632 /* Take the sign bit and add it to 1 constant */
633 LLVMTypeRef int_vec_type = lp_build_int_vec_type(type);
634 LLVMValueRef mask = lp_build_int_const_scalar(type, (unsigned long long)1 << (type.width - 1));
635 LLVMValueRef sign;
636 LLVMValueRef one;
637 sign = LLVMBuildBitCast(bld->builder, a, int_vec_type, "");
638 sign = LLVMBuildAnd(bld->builder, sign, mask, "");
639 one = LLVMConstBitCast(bld->one, int_vec_type);
640 res = LLVMBuildOr(bld->builder, sign, one, "");
641 res = LLVMBuildBitCast(bld->builder, res, vec_type, "");
642 }
643 else
644 {
645 LLVMValueRef minus_one = lp_build_const_scalar(type, -1.0);
646 cond = lp_build_cmp(bld, PIPE_FUNC_GREATER, a, bld->zero);
647 res = lp_build_select(bld, cond, bld->one, minus_one);
648 }
649
650 /* Handle zero */
651 cond = lp_build_cmp(bld, PIPE_FUNC_EQUAL, a, bld->zero);
652 res = lp_build_select(bld, cond, bld->zero, bld->one);
653
654 return res;
655 }
656
657
658 enum lp_build_round_sse41_mode
659 {
660 LP_BUILD_ROUND_SSE41_NEAREST = 0,
661 LP_BUILD_ROUND_SSE41_FLOOR = 1,
662 LP_BUILD_ROUND_SSE41_CEIL = 2,
663 LP_BUILD_ROUND_SSE41_TRUNCATE = 3
664 };
665
666
667 static INLINE LLVMValueRef
668 lp_build_round_sse41(struct lp_build_context *bld,
669 LLVMValueRef a,
670 enum lp_build_round_sse41_mode mode)
671 {
672 const struct lp_type type = bld->type;
673 LLVMTypeRef vec_type = lp_build_vec_type(type);
674 const char *intrinsic;
675
676 assert(type.floating);
677 assert(type.width*type.length == 128);
678
679 switch(type.width) {
680 case 32:
681 intrinsic = "llvm.x86.sse41.round.ps";
682 break;
683 case 64:
684 intrinsic = "llvm.x86.sse41.round.pd";
685 break;
686 default:
687 assert(0);
688 return bld->undef;
689 }
690
691 return lp_build_intrinsic_binary(bld->builder, intrinsic, vec_type, a,
692 LLVMConstInt(LLVMInt32Type(), mode, 0));
693 }
694
695
696 LLVMValueRef
697 lp_build_round(struct lp_build_context *bld,
698 LLVMValueRef a)
699 {
700 const struct lp_type type = bld->type;
701
702 assert(type.floating);
703
704 if(util_cpu_caps.has_sse4_1)
705 return lp_build_round_sse41(bld, a, LP_BUILD_ROUND_SSE41_NEAREST);
706
707 /* FIXME */
708 assert(0);
709 return bld->undef;
710 }
711
712
713 LLVMValueRef
714 lp_build_floor(struct lp_build_context *bld,
715 LLVMValueRef a)
716 {
717 const struct lp_type type = bld->type;
718
719 assert(type.floating);
720
721 if(util_cpu_caps.has_sse4_1)
722 return lp_build_round_sse41(bld, a, LP_BUILD_ROUND_SSE41_FLOOR);
723
724 /* FIXME */
725 assert(0);
726 return bld->undef;
727 }
728
729
730 LLVMValueRef
731 lp_build_ceil(struct lp_build_context *bld,
732 LLVMValueRef a)
733 {
734 const struct lp_type type = bld->type;
735
736 assert(type.floating);
737
738 if(util_cpu_caps.has_sse4_1)
739 return lp_build_round_sse41(bld, a, LP_BUILD_ROUND_SSE41_CEIL);
740
741 /* FIXME */
742 assert(0);
743 return bld->undef;
744 }
745
746
747 LLVMValueRef
748 lp_build_trunc(struct lp_build_context *bld,
749 LLVMValueRef a)
750 {
751 const struct lp_type type = bld->type;
752
753 assert(type.floating);
754
755 if(util_cpu_caps.has_sse4_1)
756 return lp_build_round_sse41(bld, a, LP_BUILD_ROUND_SSE41_TRUNCATE);
757
758 /* FIXME */
759 assert(0);
760 return bld->undef;
761 }
762
763
764 /**
765 * Convert to integer, through whichever rounding method that's fastest,
766 * typically truncating to zero.
767 */
768 LLVMValueRef
769 lp_build_int(struct lp_build_context *bld,
770 LLVMValueRef a)
771 {
772 const struct lp_type type = bld->type;
773 LLVMTypeRef int_vec_type = lp_build_int_vec_type(type);
774
775 assert(type.floating);
776
777 return LLVMBuildFPToSI(bld->builder, a, int_vec_type, "");
778 }
779
780
781 LLVMValueRef
782 lp_build_ifloor(struct lp_build_context *bld,
783 LLVMValueRef a)
784 {
785 a = lp_build_floor(bld, a);
786 a = lp_build_int(bld, a);
787 return a;
788 }
789
790
791 LLVMValueRef
792 lp_build_sqrt(struct lp_build_context *bld,
793 LLVMValueRef a)
794 {
795 const struct lp_type type = bld->type;
796 LLVMTypeRef vec_type = lp_build_vec_type(type);
797 char intrinsic[32];
798
799 /* TODO: optimize the constant case */
800 /* TODO: optimize the constant case */
801
802 assert(type.floating);
803 util_snprintf(intrinsic, sizeof intrinsic, "llvm.sqrt.v%uf%u", type.length, type.width);
804
805 return lp_build_intrinsic_unary(bld->builder, intrinsic, vec_type, a);
806 }
807
808
809 LLVMValueRef
810 lp_build_rcp(struct lp_build_context *bld,
811 LLVMValueRef a)
812 {
813 const struct lp_type type = bld->type;
814
815 if(a == bld->zero)
816 return bld->undef;
817 if(a == bld->one)
818 return bld->one;
819 if(a == bld->undef)
820 return bld->undef;
821
822 assert(type.floating);
823
824 if(LLVMIsConstant(a))
825 return LLVMConstFDiv(bld->one, a);
826
827 if(util_cpu_caps.has_sse && type.width == 32 && type.length == 4)
828 /* FIXME: improve precision */
829 return lp_build_intrinsic_unary(bld->builder, "llvm.x86.sse.rcp.ps", lp_build_vec_type(type), a);
830
831 return LLVMBuildFDiv(bld->builder, bld->one, a, "");
832 }
833
834
835 /**
836 * Generate 1/sqrt(a)
837 */
838 LLVMValueRef
839 lp_build_rsqrt(struct lp_build_context *bld,
840 LLVMValueRef a)
841 {
842 const struct lp_type type = bld->type;
843
844 assert(type.floating);
845
846 if(util_cpu_caps.has_sse && type.width == 32 && type.length == 4)
847 return lp_build_intrinsic_unary(bld->builder, "llvm.x86.sse.rsqrt.ps", lp_build_vec_type(type), a);
848
849 return lp_build_rcp(bld, lp_build_sqrt(bld, a));
850 }
851
852
853 /**
854 * Generate cos(a)
855 */
856 LLVMValueRef
857 lp_build_cos(struct lp_build_context *bld,
858 LLVMValueRef a)
859 {
860 const struct lp_type type = bld->type;
861 LLVMTypeRef vec_type = lp_build_vec_type(type);
862 char intrinsic[32];
863
864 /* TODO: optimize the constant case */
865
866 assert(type.floating);
867 util_snprintf(intrinsic, sizeof intrinsic, "llvm.cos.v%uf%u", type.length, type.width);
868
869 return lp_build_intrinsic_unary(bld->builder, intrinsic, vec_type, a);
870 }
871
872
873 /**
874 * Generate sin(a)
875 */
876 LLVMValueRef
877 lp_build_sin(struct lp_build_context *bld,
878 LLVMValueRef a)
879 {
880 const struct lp_type type = bld->type;
881 LLVMTypeRef vec_type = lp_build_vec_type(type);
882 char intrinsic[32];
883
884 /* TODO: optimize the constant case */
885
886 assert(type.floating);
887 util_snprintf(intrinsic, sizeof intrinsic, "llvm.sin.v%uf%u", type.length, type.width);
888
889 return lp_build_intrinsic_unary(bld->builder, intrinsic, vec_type, a);
890 }
891
892
893 /**
894 * Generate pow(x, y)
895 */
896 LLVMValueRef
897 lp_build_pow(struct lp_build_context *bld,
898 LLVMValueRef x,
899 LLVMValueRef y)
900 {
901 /* TODO: optimize the constant case */
902 if(LLVMIsConstant(x) && LLVMIsConstant(y))
903 debug_printf("%s: inefficient/imprecise constant arithmetic\n",
904 __FUNCTION__);
905
906 return lp_build_exp2(bld, lp_build_mul(bld, lp_build_log2(bld, x), y));
907 }
908
909
910 /**
911 * Generate exp(x)
912 */
913 LLVMValueRef
914 lp_build_exp(struct lp_build_context *bld,
915 LLVMValueRef x)
916 {
917 /* log2(e) = 1/log(2) */
918 LLVMValueRef log2e = lp_build_const_scalar(bld->type, 1.4426950408889634);
919
920 return lp_build_mul(bld, log2e, lp_build_exp2(bld, x));
921 }
922
923
924 /**
925 * Generate log(x)
926 */
927 LLVMValueRef
928 lp_build_log(struct lp_build_context *bld,
929 LLVMValueRef x)
930 {
931 /* log(2) */
932 LLVMValueRef log2 = lp_build_const_scalar(bld->type, 1.4426950408889634);
933
934 return lp_build_mul(bld, log2, lp_build_exp2(bld, x));
935 }
936
937
938 #define EXP_POLY_DEGREE 3
939 #define LOG_POLY_DEGREE 5
940
941
942 /**
943 * Generate polynomial.
944 * Ex: x^2 * coeffs[0] + x * coeffs[1] + coeffs[2].
945 */
946 static LLVMValueRef
947 lp_build_polynomial(struct lp_build_context *bld,
948 LLVMValueRef x,
949 const double *coeffs,
950 unsigned num_coeffs)
951 {
952 const struct lp_type type = bld->type;
953 LLVMValueRef res = NULL;
954 unsigned i;
955
956 /* TODO: optimize the constant case */
957 if(LLVMIsConstant(x))
958 debug_printf("%s: inefficient/imprecise constant arithmetic\n",
959 __FUNCTION__);
960
961 for (i = num_coeffs; i--; ) {
962 LLVMValueRef coeff = lp_build_const_scalar(type, coeffs[i]);
963 if(res)
964 res = lp_build_add(bld, coeff, lp_build_mul(bld, x, res));
965 else
966 res = coeff;
967 }
968
969 if(res)
970 return res;
971 else
972 return bld->undef;
973 }
974
975
976 /**
977 * Minimax polynomial fit of 2**x, in range [-0.5, 0.5[
978 */
979 const double lp_build_exp2_polynomial[] = {
980 #if EXP_POLY_DEGREE == 5
981 9.9999994e-1, 6.9315308e-1, 2.4015361e-1, 5.5826318e-2, 8.9893397e-3, 1.8775767e-3
982 #elif EXP_POLY_DEGREE == 4
983 1.0000026, 6.9300383e-1, 2.4144275e-1, 5.2011464e-2, 1.3534167e-2
984 #elif EXP_POLY_DEGREE == 3
985 9.9992520e-1, 6.9583356e-1, 2.2606716e-1, 7.8024521e-2
986 #elif EXP_POLY_DEGREE == 2
987 1.0017247, 6.5763628e-1, 3.3718944e-1
988 #else
989 #error
990 #endif
991 };
992
993
994 void
995 lp_build_exp2_approx(struct lp_build_context *bld,
996 LLVMValueRef x,
997 LLVMValueRef *p_exp2_int_part,
998 LLVMValueRef *p_frac_part,
999 LLVMValueRef *p_exp2)
1000 {
1001 const struct lp_type type = bld->type;
1002 LLVMTypeRef vec_type = lp_build_vec_type(type);
1003 LLVMTypeRef int_vec_type = lp_build_int_vec_type(type);
1004 LLVMValueRef ipart = NULL;
1005 LLVMValueRef fpart = NULL;
1006 LLVMValueRef expipart = NULL;
1007 LLVMValueRef expfpart = NULL;
1008 LLVMValueRef res = NULL;
1009
1010 if(p_exp2_int_part || p_frac_part || p_exp2) {
1011 /* TODO: optimize the constant case */
1012 if(LLVMIsConstant(x))
1013 debug_printf("%s: inefficient/imprecise constant arithmetic\n",
1014 __FUNCTION__);
1015
1016 assert(type.floating && type.width == 32);
1017
1018 x = lp_build_min(bld, x, lp_build_const_scalar(type, 129.0));
1019 x = lp_build_max(bld, x, lp_build_const_scalar(type, -126.99999));
1020
1021 /* ipart = int(x - 0.5) */
1022 ipart = LLVMBuildSub(bld->builder, x, lp_build_const_scalar(type, 0.5f), "");
1023 ipart = LLVMBuildFPToSI(bld->builder, ipart, int_vec_type, "");
1024
1025 /* fpart = x - ipart */
1026 fpart = LLVMBuildSIToFP(bld->builder, ipart, vec_type, "");
1027 fpart = LLVMBuildSub(bld->builder, x, fpart, "");
1028 }
1029
1030 if(p_exp2_int_part || p_exp2) {
1031 /* expipart = (float) (1 << ipart) */
1032 expipart = LLVMBuildAdd(bld->builder, ipart, lp_build_int_const_scalar(type, 127), "");
1033 expipart = LLVMBuildShl(bld->builder, expipart, lp_build_int_const_scalar(type, 23), "");
1034 expipart = LLVMBuildBitCast(bld->builder, expipart, vec_type, "");
1035 }
1036
1037 if(p_exp2) {
1038 expfpart = lp_build_polynomial(bld, fpart, lp_build_exp2_polynomial,
1039 Elements(lp_build_exp2_polynomial));
1040
1041 res = LLVMBuildMul(bld->builder, expipart, expfpart, "");
1042 }
1043
1044 if(p_exp2_int_part)
1045 *p_exp2_int_part = expipart;
1046
1047 if(p_frac_part)
1048 *p_frac_part = fpart;
1049
1050 if(p_exp2)
1051 *p_exp2 = res;
1052 }
1053
1054
1055 LLVMValueRef
1056 lp_build_exp2(struct lp_build_context *bld,
1057 LLVMValueRef x)
1058 {
1059 LLVMValueRef res;
1060 lp_build_exp2_approx(bld, x, NULL, NULL, &res);
1061 return res;
1062 }
1063
1064
1065 /**
1066 * Minimax polynomial fit of log2(x)/(x - 1), for x in range [1, 2[
1067 * These coefficients can be generate with
1068 * http://www.boost.org/doc/libs/1_36_0/libs/math/doc/sf_and_dist/html/math_toolkit/toolkit/internals2/minimax.html
1069 */
1070 const double lp_build_log2_polynomial[] = {
1071 #if LOG_POLY_DEGREE == 6
1072 3.11578814719469302614, -3.32419399085241980044, 2.59883907202499966007, -1.23152682416275988241, 0.318212422185251071475, -0.0344359067839062357313
1073 #elif LOG_POLY_DEGREE == 5
1074 2.8882704548164776201, -2.52074962577807006663, 1.48116647521213171641, -0.465725644288844778798, 0.0596515482674574969533
1075 #elif LOG_POLY_DEGREE == 4
1076 2.61761038894603480148, -1.75647175389045657003, 0.688243882994381274313, -0.107254423828329604454
1077 #elif LOG_POLY_DEGREE == 3
1078 2.28330284476918490682, -1.04913055217340124191, 0.204446009836232697516
1079 #else
1080 #error
1081 #endif
1082 };
1083
1084
1085 /**
1086 * See http://www.devmaster.net/forums/showthread.php?p=43580
1087 */
1088 void
1089 lp_build_log2_approx(struct lp_build_context *bld,
1090 LLVMValueRef x,
1091 LLVMValueRef *p_exp,
1092 LLVMValueRef *p_floor_log2,
1093 LLVMValueRef *p_log2)
1094 {
1095 const struct lp_type type = bld->type;
1096 LLVMTypeRef vec_type = lp_build_vec_type(type);
1097 LLVMTypeRef int_vec_type = lp_build_int_vec_type(type);
1098
1099 LLVMValueRef expmask = lp_build_int_const_scalar(type, 0x7f800000);
1100 LLVMValueRef mantmask = lp_build_int_const_scalar(type, 0x007fffff);
1101 LLVMValueRef one = LLVMConstBitCast(bld->one, int_vec_type);
1102
1103 LLVMValueRef i = NULL;
1104 LLVMValueRef exp = NULL;
1105 LLVMValueRef mant = NULL;
1106 LLVMValueRef logexp = NULL;
1107 LLVMValueRef logmant = NULL;
1108 LLVMValueRef res = NULL;
1109
1110 if(p_exp || p_floor_log2 || p_log2) {
1111 /* TODO: optimize the constant case */
1112 if(LLVMIsConstant(x))
1113 debug_printf("%s: inefficient/imprecise constant arithmetic\n",
1114 __FUNCTION__);
1115
1116 assert(type.floating && type.width == 32);
1117
1118 i = LLVMBuildBitCast(bld->builder, x, int_vec_type, "");
1119
1120 /* exp = (float) exponent(x) */
1121 exp = LLVMBuildAnd(bld->builder, i, expmask, "");
1122 }
1123
1124 if(p_floor_log2 || p_log2) {
1125 logexp = LLVMBuildLShr(bld->builder, exp, lp_build_int_const_scalar(type, 23), "");
1126 logexp = LLVMBuildSub(bld->builder, logexp, lp_build_int_const_scalar(type, 127), "");
1127 logexp = LLVMBuildSIToFP(bld->builder, logexp, vec_type, "");
1128 }
1129
1130 if(p_log2) {
1131 /* mant = (float) mantissa(x) */
1132 mant = LLVMBuildAnd(bld->builder, i, mantmask, "");
1133 mant = LLVMBuildOr(bld->builder, mant, one, "");
1134 mant = LLVMBuildSIToFP(bld->builder, mant, vec_type, "");
1135
1136 logmant = lp_build_polynomial(bld, mant, lp_build_log2_polynomial,
1137 Elements(lp_build_log2_polynomial));
1138
1139 /* This effectively increases the polynomial degree by one, but ensures that log2(1) == 0*/
1140 logmant = LLVMBuildMul(bld->builder, logmant, LLVMBuildMul(bld->builder, mant, bld->one, ""), "");
1141
1142 res = LLVMBuildAdd(bld->builder, logmant, logexp, "");
1143 }
1144
1145 if(p_exp)
1146 *p_exp = exp;
1147
1148 if(p_floor_log2)
1149 *p_floor_log2 = logexp;
1150
1151 if(p_log2)
1152 *p_log2 = res;
1153 }
1154
1155
1156 LLVMValueRef
1157 lp_build_log2(struct lp_build_context *bld,
1158 LLVMValueRef x)
1159 {
1160 LLVMValueRef res;
1161 lp_build_log2_approx(bld, x, NULL, NULL, &res);
1162 return res;
1163 }