06556dcba7a73ab8f8ca2c288904c276904ec04c
[mesa.git] / src / gallium / drivers / llvmpipe / lp_bld_depth.c
1 /**************************************************************************
2 *
3 * Copyright 2009-2010 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /**
29 * @file
30 * Depth/stencil testing to LLVM IR translation.
31 *
32 * To be done accurately/efficiently the depth/stencil test must be done with
33 * the same type/format of the depth/stencil buffer, which implies massaging
34 * the incoming depths to fit into place. Using a more straightforward
35 * type/format for depth/stencil values internally and only convert when
36 * flushing would avoid this, but it would most likely result in depth fighting
37 * artifacts.
38 *
39 * Since we're using linear layout for everything, but we need to deal with
40 * 2x2 quads, we need to load/store multiple values and swizzle them into
41 * place (we could avoid this by doing depth/stencil testing in linear format,
42 * which would be easy for late depth/stencil test as we could do that after
43 * the fragment shader loop just as we do for color buffers, but more tricky
44 * for early depth test as we'd need both masks and interpolated depth in
45 * linear format).
46 *
47 *
48 * @author Jose Fonseca <jfonseca@vmware.com>
49 * @author Brian Paul <jfonseca@vmware.com>
50 */
51
52 #include "pipe/p_state.h"
53 #include "util/u_format.h"
54 #include "util/u_cpu_detect.h"
55
56 #include "gallivm/lp_bld_type.h"
57 #include "gallivm/lp_bld_arit.h"
58 #include "gallivm/lp_bld_bitarit.h"
59 #include "gallivm/lp_bld_const.h"
60 #include "gallivm/lp_bld_conv.h"
61 #include "gallivm/lp_bld_logic.h"
62 #include "gallivm/lp_bld_flow.h"
63 #include "gallivm/lp_bld_intr.h"
64 #include "gallivm/lp_bld_debug.h"
65 #include "gallivm/lp_bld_swizzle.h"
66 #include "gallivm/lp_bld_pack.h"
67
68 #include "lp_bld_depth.h"
69
70
71 /** Used to select fields from pipe_stencil_state */
72 enum stencil_op {
73 S_FAIL_OP,
74 Z_FAIL_OP,
75 Z_PASS_OP
76 };
77
78
79
80 /**
81 * Do the stencil test comparison (compare FB stencil values against ref value).
82 * This will be used twice when generating two-sided stencil code.
83 * \param stencil the front/back stencil state
84 * \param stencilRef the stencil reference value, replicated as a vector
85 * \param stencilVals vector of stencil values from framebuffer
86 * \return vector mask of pass/fail values (~0 or 0)
87 */
88 static LLVMValueRef
89 lp_build_stencil_test_single(struct lp_build_context *bld,
90 const struct pipe_stencil_state *stencil,
91 LLVMValueRef stencilRef,
92 LLVMValueRef stencilVals)
93 {
94 LLVMBuilderRef builder = bld->gallivm->builder;
95 const unsigned stencilMax = 255; /* XXX fix */
96 struct lp_type type = bld->type;
97 LLVMValueRef res;
98
99 /*
100 * SSE2 has intrinsics for signed comparisons, but not unsigned ones. Values
101 * are between 0..255 so ensure we generate the fastest comparisons for
102 * wider elements.
103 */
104 if (type.width <= 8) {
105 assert(!type.sign);
106 } else {
107 assert(type.sign);
108 }
109
110 assert(stencil->enabled);
111
112 if (stencil->valuemask != stencilMax) {
113 /* compute stencilRef = stencilRef & valuemask */
114 LLVMValueRef valuemask = lp_build_const_int_vec(bld->gallivm, type, stencil->valuemask);
115 stencilRef = LLVMBuildAnd(builder, stencilRef, valuemask, "");
116 /* compute stencilVals = stencilVals & valuemask */
117 stencilVals = LLVMBuildAnd(builder, stencilVals, valuemask, "");
118 }
119
120 res = lp_build_cmp(bld, stencil->func, stencilRef, stencilVals);
121
122 return res;
123 }
124
125
126 /**
127 * Do the one or two-sided stencil test comparison.
128 * \sa lp_build_stencil_test_single
129 * \param front_facing an integer vector mask, indicating front (~0) or back
130 * (0) facing polygon. If NULL, assume front-facing.
131 */
132 static LLVMValueRef
133 lp_build_stencil_test(struct lp_build_context *bld,
134 const struct pipe_stencil_state stencil[2],
135 LLVMValueRef stencilRefs[2],
136 LLVMValueRef stencilVals,
137 LLVMValueRef front_facing)
138 {
139 LLVMValueRef res;
140
141 assert(stencil[0].enabled);
142
143 /* do front face test */
144 res = lp_build_stencil_test_single(bld, &stencil[0],
145 stencilRefs[0], stencilVals);
146
147 if (stencil[1].enabled && front_facing != NULL) {
148 /* do back face test */
149 LLVMValueRef back_res;
150
151 back_res = lp_build_stencil_test_single(bld, &stencil[1],
152 stencilRefs[1], stencilVals);
153
154 res = lp_build_select(bld, front_facing, res, back_res);
155 }
156
157 return res;
158 }
159
160
161 /**
162 * Apply the stencil operator (add/sub/keep/etc) to the given vector
163 * of stencil values.
164 * \return new stencil values vector
165 */
166 static LLVMValueRef
167 lp_build_stencil_op_single(struct lp_build_context *bld,
168 const struct pipe_stencil_state *stencil,
169 enum stencil_op op,
170 LLVMValueRef stencilRef,
171 LLVMValueRef stencilVals)
172
173 {
174 LLVMBuilderRef builder = bld->gallivm->builder;
175 struct lp_type type = bld->type;
176 LLVMValueRef res;
177 LLVMValueRef max = lp_build_const_int_vec(bld->gallivm, type, 0xff);
178 unsigned stencil_op;
179
180 assert(type.sign);
181
182 switch (op) {
183 case S_FAIL_OP:
184 stencil_op = stencil->fail_op;
185 break;
186 case Z_FAIL_OP:
187 stencil_op = stencil->zfail_op;
188 break;
189 case Z_PASS_OP:
190 stencil_op = stencil->zpass_op;
191 break;
192 default:
193 assert(0 && "Invalid stencil_op mode");
194 stencil_op = PIPE_STENCIL_OP_KEEP;
195 }
196
197 switch (stencil_op) {
198 case PIPE_STENCIL_OP_KEEP:
199 res = stencilVals;
200 /* we can return early for this case */
201 return res;
202 case PIPE_STENCIL_OP_ZERO:
203 res = bld->zero;
204 break;
205 case PIPE_STENCIL_OP_REPLACE:
206 res = stencilRef;
207 break;
208 case PIPE_STENCIL_OP_INCR:
209 res = lp_build_add(bld, stencilVals, bld->one);
210 res = lp_build_min(bld, res, max);
211 break;
212 case PIPE_STENCIL_OP_DECR:
213 res = lp_build_sub(bld, stencilVals, bld->one);
214 res = lp_build_max(bld, res, bld->zero);
215 break;
216 case PIPE_STENCIL_OP_INCR_WRAP:
217 res = lp_build_add(bld, stencilVals, bld->one);
218 res = LLVMBuildAnd(builder, res, max, "");
219 break;
220 case PIPE_STENCIL_OP_DECR_WRAP:
221 res = lp_build_sub(bld, stencilVals, bld->one);
222 res = LLVMBuildAnd(builder, res, max, "");
223 break;
224 case PIPE_STENCIL_OP_INVERT:
225 res = LLVMBuildNot(builder, stencilVals, "");
226 res = LLVMBuildAnd(builder, res, max, "");
227 break;
228 default:
229 assert(0 && "bad stencil op mode");
230 res = bld->undef;
231 }
232
233 return res;
234 }
235
236
237 /**
238 * Do the one or two-sided stencil test op/update.
239 */
240 static LLVMValueRef
241 lp_build_stencil_op(struct lp_build_context *bld,
242 const struct pipe_stencil_state stencil[2],
243 enum stencil_op op,
244 LLVMValueRef stencilRefs[2],
245 LLVMValueRef stencilVals,
246 LLVMValueRef mask,
247 LLVMValueRef front_facing)
248
249 {
250 LLVMBuilderRef builder = bld->gallivm->builder;
251 LLVMValueRef res;
252
253 assert(stencil[0].enabled);
254
255 /* do front face op */
256 res = lp_build_stencil_op_single(bld, &stencil[0], op,
257 stencilRefs[0], stencilVals);
258
259 if (stencil[1].enabled && front_facing != NULL) {
260 /* do back face op */
261 LLVMValueRef back_res;
262
263 back_res = lp_build_stencil_op_single(bld, &stencil[1], op,
264 stencilRefs[1], stencilVals);
265
266 res = lp_build_select(bld, front_facing, res, back_res);
267 }
268
269 if (stencil[0].writemask != 0xff ||
270 (stencil[1].enabled && front_facing != NULL && stencil[1].writemask != 0xff)) {
271 /* mask &= stencil[0].writemask */
272 LLVMValueRef writemask = lp_build_const_int_vec(bld->gallivm, bld->type,
273 stencil[0].writemask);
274 if (stencil[1].enabled && stencil[1].writemask != stencil[0].writemask && front_facing != NULL) {
275 LLVMValueRef back_writemask = lp_build_const_int_vec(bld->gallivm, bld->type,
276 stencil[1].writemask);
277 writemask = lp_build_select(bld, front_facing, writemask, back_writemask);
278 }
279
280 mask = LLVMBuildAnd(builder, mask, writemask, "");
281 /* res = (res & mask) | (stencilVals & ~mask) */
282 res = lp_build_select_bitwise(bld, mask, res, stencilVals);
283 }
284 else {
285 /* res = mask ? res : stencilVals */
286 res = lp_build_select(bld, mask, res, stencilVals);
287 }
288
289 return res;
290 }
291
292
293
294 /**
295 * Return a type that matches the depth/stencil format.
296 */
297 struct lp_type
298 lp_depth_type(const struct util_format_description *format_desc,
299 unsigned length)
300 {
301 struct lp_type type;
302 unsigned z_swizzle;
303
304 assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_ZS);
305 assert(format_desc->block.width == 1);
306 assert(format_desc->block.height == 1);
307
308 memset(&type, 0, sizeof type);
309 type.width = format_desc->block.bits;
310
311 z_swizzle = format_desc->swizzle[0];
312 if (z_swizzle < 4) {
313 if (format_desc->channel[z_swizzle].type == UTIL_FORMAT_TYPE_FLOAT) {
314 type.floating = TRUE;
315 assert(z_swizzle == 0);
316 assert(format_desc->channel[z_swizzle].size == 32);
317 }
318 else if(format_desc->channel[z_swizzle].type == UTIL_FORMAT_TYPE_UNSIGNED) {
319 assert(format_desc->block.bits <= 32);
320 assert(format_desc->channel[z_swizzle].normalized);
321 if (format_desc->channel[z_swizzle].size < format_desc->block.bits) {
322 /* Prefer signed integers when possible, as SSE has less support
323 * for unsigned comparison;
324 */
325 type.sign = TRUE;
326 }
327 }
328 else
329 assert(0);
330 }
331
332 type.length = length;
333
334 return type;
335 }
336
337
338 /**
339 * Compute bitmask and bit shift to apply to the incoming fragment Z values
340 * and the Z buffer values needed before doing the Z comparison.
341 *
342 * Note that we leave the Z bits in the position that we find them
343 * in the Z buffer (typically 0xffffff00 or 0x00ffffff). That lets us
344 * get by with fewer bit twiddling steps.
345 */
346 static boolean
347 get_z_shift_and_mask(const struct util_format_description *format_desc,
348 unsigned *shift, unsigned *width, unsigned *mask)
349 {
350 unsigned total_bits;
351 unsigned z_swizzle;
352
353 assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_ZS);
354 assert(format_desc->block.width == 1);
355 assert(format_desc->block.height == 1);
356
357 /* 64bit d/s format is special already extracted 32 bits */
358 total_bits = format_desc->block.bits > 32 ? 32 : format_desc->block.bits;
359
360 z_swizzle = format_desc->swizzle[0];
361
362 if (z_swizzle == UTIL_FORMAT_SWIZZLE_NONE)
363 return FALSE;
364
365 *width = format_desc->channel[z_swizzle].size;
366 *shift = format_desc->channel[z_swizzle].shift;
367
368 if (*width == total_bits) {
369 *mask = 0xffffffff;
370 } else {
371 *mask = ((1 << *width) - 1) << *shift;
372 }
373
374 return TRUE;
375 }
376
377
378 /**
379 * Compute bitmask and bit shift to apply to the framebuffer pixel values
380 * to put the stencil bits in the least significant position.
381 * (i.e. 0x000000ff)
382 */
383 static boolean
384 get_s_shift_and_mask(const struct util_format_description *format_desc,
385 unsigned *shift, unsigned *mask)
386 {
387 unsigned s_swizzle;
388 unsigned sz;
389
390 s_swizzle = format_desc->swizzle[1];
391
392 if (s_swizzle == UTIL_FORMAT_SWIZZLE_NONE)
393 return FALSE;
394
395 /* just special case 64bit d/s format */
396 if (format_desc->block.bits > 32) {
397 /* XXX big-endian? */
398 assert(format_desc->format == PIPE_FORMAT_Z32_FLOAT_S8X24_UINT);
399 *shift = 0;
400 *mask = 0xff;
401 return TRUE;
402 }
403
404 *shift = format_desc->channel[s_swizzle].shift;
405 sz = format_desc->channel[s_swizzle].size;
406 *mask = (1U << sz) - 1U;
407
408 return TRUE;
409 }
410
411
412 /**
413 * Perform the occlusion test and increase the counter.
414 * Test the depth mask. Add the number of channel which has none zero mask
415 * into the occlusion counter. e.g. maskvalue is {-1, -1, -1, -1}.
416 * The counter will add 4.
417 * TODO: could get that out of the fs loop.
418 *
419 * \param type holds element type of the mask vector.
420 * \param maskvalue is the depth test mask.
421 * \param counter is a pointer of the uint32 counter.
422 */
423 void
424 lp_build_occlusion_count(struct gallivm_state *gallivm,
425 struct lp_type type,
426 LLVMValueRef maskvalue,
427 LLVMValueRef counter)
428 {
429 LLVMBuilderRef builder = gallivm->builder;
430 LLVMContextRef context = gallivm->context;
431 LLVMValueRef countmask = lp_build_const_int_vec(gallivm, type, 1);
432 LLVMValueRef count, newcount;
433
434 assert(type.length <= 16);
435 assert(type.floating);
436
437 if(util_cpu_caps.has_sse && type.length == 4) {
438 const char *movmskintr = "llvm.x86.sse.movmsk.ps";
439 const char *popcntintr = "llvm.ctpop.i32";
440 LLVMValueRef bits = LLVMBuildBitCast(builder, maskvalue,
441 lp_build_vec_type(gallivm, type), "");
442 bits = lp_build_intrinsic_unary(builder, movmskintr,
443 LLVMInt32TypeInContext(context), bits);
444 count = lp_build_intrinsic_unary(builder, popcntintr,
445 LLVMInt32TypeInContext(context), bits);
446 count = LLVMBuildZExt(builder, count, LLVMIntTypeInContext(context, 64), "");
447 }
448 else if(util_cpu_caps.has_avx && type.length == 8) {
449 const char *movmskintr = "llvm.x86.avx.movmsk.ps.256";
450 const char *popcntintr = "llvm.ctpop.i32";
451 LLVMValueRef bits = LLVMBuildBitCast(builder, maskvalue,
452 lp_build_vec_type(gallivm, type), "");
453 bits = lp_build_intrinsic_unary(builder, movmskintr,
454 LLVMInt32TypeInContext(context), bits);
455 count = lp_build_intrinsic_unary(builder, popcntintr,
456 LLVMInt32TypeInContext(context), bits);
457 count = LLVMBuildZExt(builder, count, LLVMIntTypeInContext(context, 64), "");
458 }
459 else {
460 unsigned i;
461 LLVMValueRef countv = LLVMBuildAnd(builder, maskvalue, countmask, "countv");
462 LLVMTypeRef counttype = LLVMIntTypeInContext(context, type.length * 8);
463 LLVMTypeRef i8vntype = LLVMVectorType(LLVMInt8TypeInContext(context), type.length * 4);
464 LLVMValueRef shufflev, countd;
465 LLVMValueRef shuffles[16];
466 const char *popcntintr = NULL;
467
468 countv = LLVMBuildBitCast(builder, countv, i8vntype, "");
469
470 for (i = 0; i < type.length; i++) {
471 shuffles[i] = lp_build_const_int32(gallivm, 4*i);
472 }
473
474 shufflev = LLVMConstVector(shuffles, type.length);
475 countd = LLVMBuildShuffleVector(builder, countv, LLVMGetUndef(i8vntype), shufflev, "");
476 countd = LLVMBuildBitCast(builder, countd, counttype, "countd");
477
478 /*
479 * XXX FIXME
480 * this is bad on cpus without popcount (on x86 supported by intel
481 * nehalem, amd barcelona, and up - not tied to sse42).
482 * Would be much faster to just sum the 4 elements of the vector with
483 * some horizontal add (shuffle/add/shuffle/add after the initial and).
484 */
485 switch (type.length) {
486 case 4:
487 popcntintr = "llvm.ctpop.i32";
488 break;
489 case 8:
490 popcntintr = "llvm.ctpop.i64";
491 break;
492 case 16:
493 popcntintr = "llvm.ctpop.i128";
494 break;
495 default:
496 assert(0);
497 }
498 count = lp_build_intrinsic_unary(builder, popcntintr, counttype, countd);
499
500 if (type.length > 8) {
501 count = LLVMBuildTrunc(builder, count, LLVMIntTypeInContext(context, 64), "");
502 }
503 else if (type.length < 8) {
504 count = LLVMBuildZExt(builder, count, LLVMIntTypeInContext(context, 64), "");
505 }
506 }
507 newcount = LLVMBuildLoad(builder, counter, "origcount");
508 newcount = LLVMBuildAdd(builder, newcount, count, "newcount");
509 LLVMBuildStore(builder, newcount, counter);
510 }
511
512
513 /**
514 * Load depth/stencil values.
515 * The stored values are linear, swizzle them.
516 *
517 * \param type the data type of the fragment depth/stencil values
518 * \param format_desc description of the depth/stencil surface
519 * \param is_1d whether this resource has only one dimension
520 * \param loop_counter the current loop iteration
521 * \param depth_ptr pointer to the depth/stencil values of this 4x4 block
522 * \param depth_stride stride of the depth/stencil buffer
523 * \param z_fb contains z values loaded from fb (may include padding)
524 * \param s_fb contains s values loaded from fb (may include padding)
525 */
526 void
527 lp_build_depth_stencil_load_swizzled(struct gallivm_state *gallivm,
528 struct lp_type z_src_type,
529 const struct util_format_description *format_desc,
530 boolean is_1d,
531 LLVMValueRef depth_ptr,
532 LLVMValueRef depth_stride,
533 LLVMValueRef *z_fb,
534 LLVMValueRef *s_fb,
535 LLVMValueRef loop_counter)
536 {
537 LLVMBuilderRef builder = gallivm->builder;
538 LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH / 4];
539 LLVMValueRef zs_dst1, zs_dst2;
540 LLVMValueRef zs_dst_ptr;
541 LLVMValueRef depth_offset1, depth_offset2;
542 LLVMTypeRef load_ptr_type;
543 unsigned depth_bytes = format_desc->block.bits / 8;
544 struct lp_type zs_type = lp_depth_type(format_desc, z_src_type.length);
545 struct lp_type zs_load_type = zs_type;
546
547 zs_load_type.length = zs_load_type.length / 2;
548 load_ptr_type = LLVMPointerType(lp_build_vec_type(gallivm, zs_load_type), 0);
549
550 if (z_src_type.length == 4) {
551 unsigned i;
552 LLVMValueRef looplsb = LLVMBuildAnd(builder, loop_counter,
553 lp_build_const_int32(gallivm, 1), "");
554 LLVMValueRef loopmsb = LLVMBuildAnd(builder, loop_counter,
555 lp_build_const_int32(gallivm, 2), "");
556 LLVMValueRef offset2 = LLVMBuildMul(builder, loopmsb,
557 depth_stride, "");
558 depth_offset1 = LLVMBuildMul(builder, looplsb,
559 lp_build_const_int32(gallivm, depth_bytes * 2), "");
560 depth_offset1 = LLVMBuildAdd(builder, depth_offset1, offset2, "");
561
562 /* just concatenate the loaded 2x2 values into 4-wide vector */
563 for (i = 0; i < 4; i++) {
564 shuffles[i] = lp_build_const_int32(gallivm, i);
565 }
566 }
567 else {
568 unsigned i;
569 LLVMValueRef loopx2 = LLVMBuildShl(builder, loop_counter,
570 lp_build_const_int32(gallivm, 1), "");
571 assert(z_src_type.length == 8);
572 depth_offset1 = LLVMBuildMul(builder, loopx2, depth_stride, "");
573 /*
574 * We load 2x4 values, and need to swizzle them (order
575 * 0,1,4,5,2,3,6,7) - not so hot with avx unfortunately.
576 */
577 for (i = 0; i < 8; i++) {
578 shuffles[i] = lp_build_const_int32(gallivm, (i&1) + (i&2) * 2 + (i&4) / 2);
579 }
580 }
581
582 depth_offset2 = LLVMBuildAdd(builder, depth_offset1, depth_stride, "");
583
584 /* Load current z/stencil values from z/stencil buffer */
585 zs_dst_ptr = LLVMBuildGEP(builder, depth_ptr, &depth_offset1, 1, "");
586 zs_dst_ptr = LLVMBuildBitCast(builder, zs_dst_ptr, load_ptr_type, "");
587 zs_dst1 = LLVMBuildLoad(builder, zs_dst_ptr, "");
588 if (is_1d) {
589 zs_dst2 = lp_build_undef(gallivm, zs_load_type);
590 }
591 else {
592 zs_dst_ptr = LLVMBuildGEP(builder, depth_ptr, &depth_offset2, 1, "");
593 zs_dst_ptr = LLVMBuildBitCast(builder, zs_dst_ptr, load_ptr_type, "");
594 zs_dst2 = LLVMBuildLoad(builder, zs_dst_ptr, "");
595 }
596
597 *z_fb = LLVMBuildShuffleVector(builder, zs_dst1, zs_dst2,
598 LLVMConstVector(shuffles, zs_type.length), "");
599 *s_fb = *z_fb;
600
601 if (format_desc->block.bits < z_src_type.width) {
602 /* Extend destination ZS values (e.g., when reading from Z16_UNORM) */
603 *z_fb = LLVMBuildZExt(builder, *z_fb,
604 lp_build_int_vec_type(gallivm, z_src_type), "");
605 }
606
607 else if (format_desc->block.bits > 32) {
608 /* rely on llvm to handle too wide vector we have here nicely */
609 unsigned i;
610 struct lp_type typex2 = zs_type;
611 struct lp_type s_type = zs_type;
612 LLVMValueRef shuffles1[LP_MAX_VECTOR_LENGTH / 4];
613 LLVMValueRef shuffles2[LP_MAX_VECTOR_LENGTH / 4];
614 LLVMValueRef tmp;
615
616 typex2.width = typex2.width / 2;
617 typex2.length = typex2.length * 2;
618 s_type.width = s_type.width / 2;
619 s_type.floating = 0;
620
621 tmp = LLVMBuildBitCast(builder, *z_fb,
622 lp_build_vec_type(gallivm, typex2), "");
623
624 for (i = 0; i < zs_type.length; i++) {
625 shuffles1[i] = lp_build_const_int32(gallivm, i * 2);
626 shuffles2[i] = lp_build_const_int32(gallivm, i * 2 + 1);
627 }
628 *z_fb = LLVMBuildShuffleVector(builder, tmp, tmp,
629 LLVMConstVector(shuffles1, zs_type.length), "");
630 *s_fb = LLVMBuildShuffleVector(builder, tmp, tmp,
631 LLVMConstVector(shuffles2, zs_type.length), "");
632 *s_fb = LLVMBuildBitCast(builder, *s_fb,
633 lp_build_vec_type(gallivm, s_type), "");
634 lp_build_name(*s_fb, "s_dst");
635 }
636
637 lp_build_name(*z_fb, "z_dst");
638 lp_build_name(*s_fb, "s_dst");
639 lp_build_name(*z_fb, "z_dst");
640 }
641
642 /**
643 * Store depth/stencil values.
644 * Incoming values are swizzled (typically n 2x2 quads), stored linear.
645 * If there's a mask it will do select/store otherwise just store.
646 *
647 * \param type the data type of the fragment depth/stencil values
648 * \param format_desc description of the depth/stencil surface
649 * \param is_1d whether this resource has only one dimension
650 * \param mask the alive/dead pixel mask for the quad (vector)
651 * \param z_fb z values read from fb (with padding)
652 * \param s_fb s values read from fb (with padding)
653 * \param loop_counter the current loop iteration
654 * \param depth_ptr pointer to the depth/stencil values of this 4x4 block
655 * \param depth_stride stride of the depth/stencil buffer
656 * \param z_value the depth values to store (with padding)
657 * \param s_value the stencil values to store (with padding)
658 */
659 void
660 lp_build_depth_stencil_write_swizzled(struct gallivm_state *gallivm,
661 struct lp_type z_src_type,
662 const struct util_format_description *format_desc,
663 boolean is_1d,
664 struct lp_build_mask_context *mask,
665 LLVMValueRef z_fb,
666 LLVMValueRef s_fb,
667 LLVMValueRef loop_counter,
668 LLVMValueRef depth_ptr,
669 LLVMValueRef depth_stride,
670 LLVMValueRef z_value,
671 LLVMValueRef s_value)
672 {
673 struct lp_build_context z_bld;
674 LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH / 4];
675 LLVMBuilderRef builder = gallivm->builder;
676 LLVMValueRef mask_value = NULL;
677 LLVMValueRef zs_dst1, zs_dst2;
678 LLVMValueRef zs_dst_ptr1, zs_dst_ptr2;
679 LLVMValueRef depth_offset1, depth_offset2;
680 LLVMTypeRef load_ptr_type;
681 unsigned depth_bytes = format_desc->block.bits / 8;
682 struct lp_type zs_type = lp_depth_type(format_desc, z_src_type.length);
683 struct lp_type z_type = zs_type;
684 struct lp_type zs_load_type = zs_type;
685
686 zs_load_type.length = zs_load_type.length / 2;
687 load_ptr_type = LLVMPointerType(lp_build_vec_type(gallivm, zs_load_type), 0);
688
689 z_type.width = z_src_type.width;
690
691 lp_build_context_init(&z_bld, gallivm, z_type);
692
693 /*
694 * This is far from ideal, at least for late depth write we should do this
695 * outside the fs loop to avoid all the swizzle stuff.
696 */
697 if (z_src_type.length == 4) {
698 LLVMValueRef looplsb = LLVMBuildAnd(builder, loop_counter,
699 lp_build_const_int32(gallivm, 1), "");
700 LLVMValueRef loopmsb = LLVMBuildAnd(builder, loop_counter,
701 lp_build_const_int32(gallivm, 2), "");
702 LLVMValueRef offset2 = LLVMBuildMul(builder, loopmsb,
703 depth_stride, "");
704 depth_offset1 = LLVMBuildMul(builder, looplsb,
705 lp_build_const_int32(gallivm, depth_bytes * 2), "");
706 depth_offset1 = LLVMBuildAdd(builder, depth_offset1, offset2, "");
707 }
708 else {
709 unsigned i;
710 LLVMValueRef loopx2 = LLVMBuildShl(builder, loop_counter,
711 lp_build_const_int32(gallivm, 1), "");
712 assert(z_src_type.length == 8);
713 depth_offset1 = LLVMBuildMul(builder, loopx2, depth_stride, "");
714 /*
715 * We load 2x4 values, and need to swizzle them (order
716 * 0,1,4,5,2,3,6,7) - not so hot with avx unfortunately.
717 */
718 for (i = 0; i < 8; i++) {
719 shuffles[i] = lp_build_const_int32(gallivm, (i&1) + (i&2) * 2 + (i&4) / 2);
720 }
721 }
722
723 depth_offset2 = LLVMBuildAdd(builder, depth_offset1, depth_stride, "");
724
725 zs_dst_ptr1 = LLVMBuildGEP(builder, depth_ptr, &depth_offset1, 1, "");
726 zs_dst_ptr1 = LLVMBuildBitCast(builder, zs_dst_ptr1, load_ptr_type, "");
727 zs_dst_ptr2 = LLVMBuildGEP(builder, depth_ptr, &depth_offset2, 1, "");
728 zs_dst_ptr2 = LLVMBuildBitCast(builder, zs_dst_ptr2, load_ptr_type, "");
729
730 if (format_desc->block.bits > 32) {
731 s_value = LLVMBuildBitCast(builder, s_value, z_bld.vec_type, "");
732 }
733
734 if (mask) {
735 mask_value = lp_build_mask_value(mask);
736 z_value = lp_build_select(&z_bld, mask_value, z_value, z_fb);
737 if (format_desc->block.bits > 32) {
738 s_fb = LLVMBuildBitCast(builder, s_fb, z_bld.vec_type, "");
739 s_value = lp_build_select(&z_bld, mask_value, s_value, s_fb);
740 }
741 }
742
743 if (zs_type.width < z_src_type.width) {
744 /* Truncate ZS values (e.g., when writing to Z16_UNORM) */
745 z_value = LLVMBuildTrunc(builder, z_value,
746 lp_build_int_vec_type(gallivm, zs_type), "");
747 }
748
749 if (format_desc->block.bits <= 32) {
750 if (z_src_type.length == 4) {
751 zs_dst1 = lp_build_extract_range(gallivm, z_value, 0, 2);
752 zs_dst2 = lp_build_extract_range(gallivm, z_value, 2, 2);
753 }
754 else {
755 assert(z_src_type.length == 8);
756 zs_dst1 = LLVMBuildShuffleVector(builder, z_value, z_value,
757 LLVMConstVector(&shuffles[0],
758 zs_load_type.length), "");
759 zs_dst2 = LLVMBuildShuffleVector(builder, z_value, z_value,
760 LLVMConstVector(&shuffles[4],
761 zs_load_type.length), "");
762 }
763 }
764 else {
765 if (z_src_type.length == 4) {
766 zs_dst1 = lp_build_interleave2(gallivm, z_type,
767 z_value, s_value, 0);
768 zs_dst2 = lp_build_interleave2(gallivm, z_type,
769 z_value, s_value, 1);
770 }
771 else {
772 unsigned i;
773 LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH / 2];
774 assert(z_src_type.length == 8);
775 for (i = 0; i < 8; i++) {
776 shuffles[i*2] = lp_build_const_int32(gallivm, (i&1) + (i&2) * 2 + (i&4) / 2);
777 shuffles[i*2+1] = lp_build_const_int32(gallivm, (i&1) + (i&2) * 2 + (i&4) / 2 +
778 z_src_type.length);
779 }
780 zs_dst1 = LLVMBuildShuffleVector(builder, z_value, s_value,
781 LLVMConstVector(&shuffles[0],
782 z_src_type.length), "");
783 zs_dst2 = LLVMBuildShuffleVector(builder, z_value, s_value,
784 LLVMConstVector(&shuffles[8],
785 z_src_type.length), "");
786 }
787 zs_dst1 = LLVMBuildBitCast(builder, zs_dst1,
788 lp_build_vec_type(gallivm, zs_load_type), "");
789 zs_dst2 = LLVMBuildBitCast(builder, zs_dst2,
790 lp_build_vec_type(gallivm, zs_load_type), "");
791 }
792
793 LLVMBuildStore(builder, zs_dst1, zs_dst_ptr1);
794 if (!is_1d) {
795 LLVMBuildStore(builder, zs_dst2, zs_dst_ptr2);
796 }
797 }
798
799 /**
800 * Generate code for performing depth and/or stencil tests.
801 * We operate on a vector of values (typically n 2x2 quads).
802 *
803 * \param depth the depth test state
804 * \param stencil the front/back stencil state
805 * \param type the data type of the fragment depth/stencil values
806 * \param format_desc description of the depth/stencil surface
807 * \param mask the alive/dead pixel mask for the quad (vector)
808 * \param stencil_refs the front/back stencil ref values (scalar)
809 * \param z_src the incoming depth/stencil values (n 2x2 quad values, float32)
810 * \param zs_dst the depth/stencil values in framebuffer
811 * \param face contains boolean value indicating front/back facing polygon
812 */
813 void
814 lp_build_depth_stencil_test(struct gallivm_state *gallivm,
815 const struct pipe_depth_state *depth,
816 const struct pipe_stencil_state stencil[2],
817 struct lp_type z_src_type,
818 const struct util_format_description *format_desc,
819 struct lp_build_mask_context *mask,
820 LLVMValueRef stencil_refs[2],
821 LLVMValueRef z_src,
822 LLVMValueRef z_fb,
823 LLVMValueRef s_fb,
824 LLVMValueRef face,
825 LLVMValueRef *z_value,
826 LLVMValueRef *s_value,
827 boolean do_branch)
828 {
829 LLVMBuilderRef builder = gallivm->builder;
830 struct lp_type z_type;
831 struct lp_build_context z_bld;
832 struct lp_build_context s_bld;
833 struct lp_type s_type;
834 unsigned z_shift = 0, z_width = 0, z_mask = 0;
835 LLVMValueRef z_dst = NULL;
836 LLVMValueRef stencil_vals = NULL;
837 LLVMValueRef z_bitmask = NULL, stencil_shift = NULL;
838 LLVMValueRef z_pass = NULL, s_pass_mask = NULL;
839 LLVMValueRef orig_mask = lp_build_mask_value(mask);
840 LLVMValueRef front_facing = NULL;
841 boolean have_z, have_s;
842
843 /*
844 * Depths are expected to be between 0 and 1, even if they are stored in
845 * floats. Setting these bits here will ensure that the lp_build_conv() call
846 * below won't try to unnecessarily clamp the incoming values.
847 */
848 if(z_src_type.floating) {
849 z_src_type.sign = FALSE;
850 z_src_type.norm = TRUE;
851 }
852 else {
853 assert(!z_src_type.sign);
854 assert(z_src_type.norm);
855 }
856
857 /* Pick the type matching the depth-stencil format. */
858 z_type = lp_depth_type(format_desc, z_src_type.length);
859
860 /* Pick the intermediate type for depth operations. */
861 z_type.width = z_src_type.width;
862 assert(z_type.length == z_src_type.length);
863
864 /* FIXME: for non-float depth/stencil might generate better code
865 * if we'd always split it up to use 128bit operations.
866 * For stencil we'd almost certainly want to pack to 8xi16 values,
867 * for z just run twice.
868 */
869
870 /* Sanity checking */
871 {
872 const unsigned z_swizzle = format_desc->swizzle[0];
873 const unsigned s_swizzle = format_desc->swizzle[1];
874
875 assert(z_swizzle != UTIL_FORMAT_SWIZZLE_NONE ||
876 s_swizzle != UTIL_FORMAT_SWIZZLE_NONE);
877
878 assert(depth->enabled || stencil[0].enabled);
879
880 assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_ZS);
881 assert(format_desc->block.width == 1);
882 assert(format_desc->block.height == 1);
883
884 if (stencil[0].enabled) {
885 assert(s_swizzle < 4);
886 assert(format_desc->channel[s_swizzle].type == UTIL_FORMAT_TYPE_UNSIGNED);
887 assert(format_desc->channel[s_swizzle].pure_integer);
888 assert(!format_desc->channel[s_swizzle].normalized);
889 assert(format_desc->channel[s_swizzle].size == 8);
890 }
891
892 if (depth->enabled) {
893 assert(z_swizzle < 4);
894 if (z_type.floating) {
895 assert(z_swizzle == 0);
896 assert(format_desc->channel[z_swizzle].type ==
897 UTIL_FORMAT_TYPE_FLOAT);
898 assert(format_desc->channel[z_swizzle].size == 32);
899 }
900 else {
901 assert(format_desc->channel[z_swizzle].type ==
902 UTIL_FORMAT_TYPE_UNSIGNED);
903 assert(format_desc->channel[z_swizzle].normalized);
904 assert(!z_type.fixed);
905 }
906 }
907 }
908
909
910 /* Setup build context for Z vals */
911 lp_build_context_init(&z_bld, gallivm, z_type);
912
913 /* Setup build context for stencil vals */
914 s_type = lp_int_type(z_type);
915 lp_build_context_init(&s_bld, gallivm, s_type);
916
917 /* Compute and apply the Z/stencil bitmasks and shifts.
918 */
919 {
920 unsigned s_shift, s_mask;
921
922 z_dst = z_fb;
923 stencil_vals = s_fb;
924
925 have_z = get_z_shift_and_mask(format_desc, &z_shift, &z_width, &z_mask);
926 have_s = get_s_shift_and_mask(format_desc, &s_shift, &s_mask);
927
928 if (have_z) {
929 if (z_mask != 0xffffffff) {
930 z_bitmask = lp_build_const_int_vec(gallivm, z_type, z_mask);
931 }
932
933 /*
934 * Align the framebuffer Z 's LSB to the right.
935 */
936 if (z_shift) {
937 LLVMValueRef shift = lp_build_const_int_vec(gallivm, z_type, z_shift);
938 z_dst = LLVMBuildLShr(builder, z_dst, shift, "z_dst");
939 } else if (z_bitmask) {
940 z_dst = LLVMBuildAnd(builder, z_dst, z_bitmask, "z_dst");
941 } else {
942 lp_build_name(z_dst, "z_dst");
943 }
944 }
945
946 if (have_s) {
947 if (s_shift) {
948 LLVMValueRef shift = lp_build_const_int_vec(gallivm, s_type, s_shift);
949 stencil_vals = LLVMBuildLShr(builder, stencil_vals, shift, "");
950 stencil_shift = shift; /* used below */
951 }
952
953 if (s_mask != 0xffffffff) {
954 LLVMValueRef mask = lp_build_const_int_vec(gallivm, s_type, s_mask);
955 stencil_vals = LLVMBuildAnd(builder, stencil_vals, mask, "");
956 }
957
958 lp_build_name(stencil_vals, "s_dst");
959 }
960 }
961
962 if (stencil[0].enabled) {
963
964 if (face) {
965 LLVMValueRef zero = lp_build_const_int32(gallivm, 0);
966
967 /* front_facing = face != 0 ? ~0 : 0 */
968 front_facing = LLVMBuildICmp(builder, LLVMIntNE, face, zero, "");
969 front_facing = LLVMBuildSExt(builder, front_facing,
970 LLVMIntTypeInContext(gallivm->context,
971 s_bld.type.length*s_bld.type.width),
972 "");
973 front_facing = LLVMBuildBitCast(builder, front_facing,
974 s_bld.int_vec_type, "");
975 }
976
977 /* convert scalar stencil refs into vectors */
978 stencil_refs[0] = lp_build_broadcast_scalar(&s_bld, stencil_refs[0]);
979 stencil_refs[1] = lp_build_broadcast_scalar(&s_bld, stencil_refs[1]);
980
981 s_pass_mask = lp_build_stencil_test(&s_bld, stencil,
982 stencil_refs, stencil_vals,
983 front_facing);
984
985 /* apply stencil-fail operator */
986 {
987 LLVMValueRef s_fail_mask = lp_build_andnot(&s_bld, orig_mask, s_pass_mask);
988 stencil_vals = lp_build_stencil_op(&s_bld, stencil, S_FAIL_OP,
989 stencil_refs, stencil_vals,
990 s_fail_mask, front_facing);
991 }
992 }
993
994 if (depth->enabled) {
995 /*
996 * Convert fragment Z to the desired type, aligning the LSB to the right.
997 */
998
999 assert(z_type.width == z_src_type.width);
1000 assert(z_type.length == z_src_type.length);
1001 assert(lp_check_value(z_src_type, z_src));
1002 if (z_src_type.floating) {
1003 /*
1004 * Convert from floating point values
1005 */
1006
1007 if (!z_type.floating) {
1008 z_src = lp_build_clamped_float_to_unsigned_norm(gallivm,
1009 z_src_type,
1010 z_width,
1011 z_src);
1012 }
1013 } else {
1014 /*
1015 * Convert from unsigned normalized values.
1016 */
1017
1018 assert(!z_src_type.sign);
1019 assert(!z_src_type.fixed);
1020 assert(z_src_type.norm);
1021 assert(!z_type.floating);
1022 if (z_src_type.width > z_width) {
1023 LLVMValueRef shift = lp_build_const_int_vec(gallivm, z_src_type,
1024 z_src_type.width - z_width);
1025 z_src = LLVMBuildLShr(builder, z_src, shift, "");
1026 }
1027 }
1028 assert(lp_check_value(z_type, z_src));
1029
1030 lp_build_name(z_src, "z_src");
1031
1032 /* compare src Z to dst Z, returning 'pass' mask */
1033 z_pass = lp_build_cmp(&z_bld, depth->func, z_src, z_dst);
1034
1035 if (!stencil[0].enabled) {
1036 /* We can potentially skip all remaining operations here, but only
1037 * if stencil is disabled because we still need to update the stencil
1038 * buffer values. Don't need to update Z buffer values.
1039 */
1040 lp_build_mask_update(mask, z_pass);
1041
1042 if (do_branch) {
1043 lp_build_mask_check(mask);
1044 do_branch = FALSE;
1045 }
1046 }
1047
1048 if (depth->writemask) {
1049 LLVMValueRef zselectmask;
1050
1051 /* mask off bits that failed Z test */
1052 zselectmask = LLVMBuildAnd(builder, orig_mask, z_pass, "");
1053
1054 /* mask off bits that failed stencil test */
1055 if (s_pass_mask) {
1056 zselectmask = LLVMBuildAnd(builder, zselectmask, s_pass_mask, "");
1057 }
1058
1059 /* Mix the old and new Z buffer values.
1060 * z_dst[i] = zselectmask[i] ? z_src[i] : z_dst[i]
1061 */
1062 z_dst = lp_build_select(&z_bld, zselectmask, z_src, z_dst);
1063 }
1064
1065 if (stencil[0].enabled) {
1066 /* update stencil buffer values according to z pass/fail result */
1067 LLVMValueRef z_fail_mask, z_pass_mask;
1068
1069 /* apply Z-fail operator */
1070 z_fail_mask = lp_build_andnot(&s_bld, orig_mask, z_pass);
1071 stencil_vals = lp_build_stencil_op(&s_bld, stencil, Z_FAIL_OP,
1072 stencil_refs, stencil_vals,
1073 z_fail_mask, front_facing);
1074
1075 /* apply Z-pass operator */
1076 z_pass_mask = LLVMBuildAnd(builder, orig_mask, z_pass, "");
1077 stencil_vals = lp_build_stencil_op(&s_bld, stencil, Z_PASS_OP,
1078 stencil_refs, stencil_vals,
1079 z_pass_mask, front_facing);
1080 }
1081 }
1082 else {
1083 /* No depth test: apply Z-pass operator to stencil buffer values which
1084 * passed the stencil test.
1085 */
1086 s_pass_mask = LLVMBuildAnd(builder, orig_mask, s_pass_mask, "");
1087 stencil_vals = lp_build_stencil_op(&s_bld, stencil, Z_PASS_OP,
1088 stencil_refs, stencil_vals,
1089 s_pass_mask, front_facing);
1090 }
1091
1092 /* Put Z and stencil bits in the right place */
1093 if (have_z && z_shift) {
1094 LLVMValueRef shift = lp_build_const_int_vec(gallivm, z_type, z_shift);
1095 z_dst = LLVMBuildShl(builder, z_dst, shift, "");
1096 }
1097 if (stencil_vals && stencil_shift)
1098 stencil_vals = LLVMBuildShl(builder, stencil_vals,
1099 stencil_shift, "");
1100
1101 /* Finally, merge the z/stencil values */
1102 if (format_desc->block.bits <= 32) {
1103 if (have_z && have_s)
1104 *z_value = LLVMBuildOr(builder, z_dst, stencil_vals, "");
1105 else if (have_z)
1106 *z_value = z_dst;
1107 else
1108 *z_value = stencil_vals;
1109 *s_value = *z_value;
1110 }
1111 else {
1112 *z_value = z_dst;
1113 *s_value = stencil_vals;
1114 }
1115
1116 if (s_pass_mask)
1117 lp_build_mask_update(mask, s_pass_mask);
1118
1119 if (depth->enabled && stencil[0].enabled)
1120 lp_build_mask_update(mask, z_pass);
1121 }
1122