3162f3e1c2e72e3db403c20801f15fcbd5eb58a0
[mesa.git] / src / gallium / drivers / llvmpipe / lp_bld_depth.c
1 /**************************************************************************
2 *
3 * Copyright 2009-2010 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /**
29 * @file
30 * Depth/stencil testing to LLVM IR translation.
31 *
32 * To be done accurately/efficiently the depth/stencil test must be done with
33 * the same type/format of the depth/stencil buffer, which implies massaging
34 * the incoming depths to fit into place. Using a more straightforward
35 * type/format for depth/stencil values internally and only convert when
36 * flushing would avoid this, but it would most likely result in depth fighting
37 * artifacts.
38 *
39 * We are free to use a different pixel layout though. Since our basic
40 * processing unit is a quad (2x2 pixel block) we store the depth/stencil
41 * values tiled, a quad at time. That is, a depth buffer containing
42 *
43 * Z11 Z12 Z13 Z14 ...
44 * Z21 Z22 Z23 Z24 ...
45 * Z31 Z32 Z33 Z34 ...
46 * Z41 Z42 Z43 Z44 ...
47 * ... ... ... ... ...
48 *
49 * will actually be stored in memory as
50 *
51 * Z11 Z12 Z21 Z22 Z13 Z14 Z23 Z24 ...
52 * Z31 Z32 Z41 Z42 Z33 Z34 Z43 Z44 ...
53 * ... ... ... ... ... ... ... ... ...
54 *
55 *
56 * @author Jose Fonseca <jfonseca@vmware.com>
57 * @author Brian Paul <jfonseca@vmware.com>
58 */
59
60 #include "pipe/p_state.h"
61 #include "util/u_format.h"
62
63 #include "gallivm/lp_bld_type.h"
64 #include "gallivm/lp_bld_arit.h"
65 #include "gallivm/lp_bld_bitarit.h"
66 #include "gallivm/lp_bld_const.h"
67 #include "gallivm/lp_bld_conv.h"
68 #include "gallivm/lp_bld_logic.h"
69 #include "gallivm/lp_bld_flow.h"
70 #include "gallivm/lp_bld_intr.h"
71 #include "gallivm/lp_bld_debug.h"
72 #include "gallivm/lp_bld_swizzle.h"
73
74 #include "lp_bld_depth.h"
75
76
77 /** Used to select fields from pipe_stencil_state */
78 enum stencil_op {
79 S_FAIL_OP,
80 Z_FAIL_OP,
81 Z_PASS_OP
82 };
83
84
85
86 /**
87 * Do the stencil test comparison (compare FB stencil values against ref value).
88 * This will be used twice when generating two-sided stencil code.
89 * \param stencil the front/back stencil state
90 * \param stencilRef the stencil reference value, replicated as a vector
91 * \param stencilVals vector of stencil values from framebuffer
92 * \return vector mask of pass/fail values (~0 or 0)
93 */
94 static LLVMValueRef
95 lp_build_stencil_test_single(struct lp_build_context *bld,
96 const struct pipe_stencil_state *stencil,
97 LLVMValueRef stencilRef,
98 LLVMValueRef stencilVals)
99 {
100 const unsigned stencilMax = 255; /* XXX fix */
101 struct lp_type type = bld->type;
102 LLVMValueRef res;
103
104 assert(type.sign);
105
106 assert(stencil->enabled);
107
108 if (stencil->valuemask != stencilMax) {
109 /* compute stencilRef = stencilRef & valuemask */
110 LLVMValueRef valuemask = lp_build_const_int_vec(type, stencil->valuemask);
111 stencilRef = LLVMBuildAnd(bld->builder, stencilRef, valuemask, "");
112 /* compute stencilVals = stencilVals & valuemask */
113 stencilVals = LLVMBuildAnd(bld->builder, stencilVals, valuemask, "");
114 }
115
116 res = lp_build_cmp(bld, stencil->func, stencilRef, stencilVals);
117
118 return res;
119 }
120
121
122 /**
123 * Do the one or two-sided stencil test comparison.
124 * \sa lp_build_stencil_test_single
125 * \param front_facing an integer vector mask, indicating front (~0) or back
126 * (0) facing polygon. If NULL, assume front-facing.
127 */
128 static LLVMValueRef
129 lp_build_stencil_test(struct lp_build_context *bld,
130 const struct pipe_stencil_state stencil[2],
131 LLVMValueRef stencilRefs[2],
132 LLVMValueRef stencilVals,
133 LLVMValueRef front_facing)
134 {
135 LLVMValueRef res;
136
137 assert(stencil[0].enabled);
138
139 /* do front face test */
140 res = lp_build_stencil_test_single(bld, &stencil[0],
141 stencilRefs[0], stencilVals);
142
143 if (stencil[1].enabled && front_facing) {
144 /* do back face test */
145 LLVMValueRef back_res;
146
147 back_res = lp_build_stencil_test_single(bld, &stencil[1],
148 stencilRefs[1], stencilVals);
149
150 res = lp_build_select(bld, front_facing, res, back_res);
151 }
152
153 return res;
154 }
155
156
157 /**
158 * Apply the stencil operator (add/sub/keep/etc) to the given vector
159 * of stencil values.
160 * \return new stencil values vector
161 */
162 static LLVMValueRef
163 lp_build_stencil_op_single(struct lp_build_context *bld,
164 const struct pipe_stencil_state *stencil,
165 enum stencil_op op,
166 LLVMValueRef stencilRef,
167 LLVMValueRef stencilVals)
168
169 {
170 struct lp_type type = bld->type;
171 LLVMValueRef res;
172 LLVMValueRef max = lp_build_const_int_vec(type, 0xff);
173 unsigned stencil_op;
174
175 assert(type.sign);
176
177 switch (op) {
178 case S_FAIL_OP:
179 stencil_op = stencil->fail_op;
180 break;
181 case Z_FAIL_OP:
182 stencil_op = stencil->zfail_op;
183 break;
184 case Z_PASS_OP:
185 stencil_op = stencil->zpass_op;
186 break;
187 default:
188 assert(0 && "Invalid stencil_op mode");
189 stencil_op = PIPE_STENCIL_OP_KEEP;
190 }
191
192 switch (stencil_op) {
193 case PIPE_STENCIL_OP_KEEP:
194 res = stencilVals;
195 /* we can return early for this case */
196 return res;
197 case PIPE_STENCIL_OP_ZERO:
198 res = bld->zero;
199 break;
200 case PIPE_STENCIL_OP_REPLACE:
201 res = stencilRef;
202 break;
203 case PIPE_STENCIL_OP_INCR:
204 res = lp_build_add(bld, stencilVals, bld->one);
205 res = lp_build_min(bld, res, max);
206 break;
207 case PIPE_STENCIL_OP_DECR:
208 res = lp_build_sub(bld, stencilVals, bld->one);
209 res = lp_build_max(bld, res, bld->zero);
210 break;
211 case PIPE_STENCIL_OP_INCR_WRAP:
212 res = lp_build_add(bld, stencilVals, bld->one);
213 res = LLVMBuildAnd(bld->builder, res, max, "");
214 break;
215 case PIPE_STENCIL_OP_DECR_WRAP:
216 res = lp_build_sub(bld, stencilVals, bld->one);
217 res = LLVMBuildAnd(bld->builder, res, max, "");
218 break;
219 case PIPE_STENCIL_OP_INVERT:
220 res = LLVMBuildNot(bld->builder, stencilVals, "");
221 res = LLVMBuildAnd(bld->builder, res, max, "");
222 break;
223 default:
224 assert(0 && "bad stencil op mode");
225 res = bld->undef;
226 }
227
228 return res;
229 }
230
231
232 /**
233 * Do the one or two-sided stencil test op/update.
234 */
235 static LLVMValueRef
236 lp_build_stencil_op(struct lp_build_context *bld,
237 const struct pipe_stencil_state stencil[2],
238 enum stencil_op op,
239 LLVMValueRef stencilRefs[2],
240 LLVMValueRef stencilVals,
241 LLVMValueRef mask,
242 LLVMValueRef front_facing)
243
244 {
245 LLVMValueRef res;
246
247 assert(stencil[0].enabled);
248
249 /* do front face op */
250 res = lp_build_stencil_op_single(bld, &stencil[0], op,
251 stencilRefs[0], stencilVals);
252
253 if (stencil[1].enabled && front_facing) {
254 /* do back face op */
255 LLVMValueRef back_res;
256
257 back_res = lp_build_stencil_op_single(bld, &stencil[1], op,
258 stencilRefs[1], stencilVals);
259
260 res = lp_build_select(bld, front_facing, res, back_res);
261 }
262
263 if (stencil->writemask != 0xff) {
264 /* mask &= stencil->writemask */
265 LLVMValueRef writemask = lp_build_const_int_vec(bld->type, stencil->writemask);
266 mask = LLVMBuildAnd(bld->builder, mask, writemask, "");
267 /* res = (res & mask) | (stencilVals & ~mask) */
268 res = lp_build_select_bitwise(bld, writemask, res, stencilVals);
269 }
270 else {
271 /* res = mask ? res : stencilVals */
272 res = lp_build_select(bld, mask, res, stencilVals);
273 }
274
275 return res;
276 }
277
278
279
280 /**
281 * Return a type appropriate for depth/stencil testing.
282 */
283 struct lp_type
284 lp_depth_type(const struct util_format_description *format_desc,
285 unsigned length)
286 {
287 struct lp_type type;
288 unsigned swizzle;
289
290 assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_ZS);
291 assert(format_desc->block.width == 1);
292 assert(format_desc->block.height == 1);
293
294 swizzle = format_desc->swizzle[0];
295 assert(swizzle < 4);
296
297 memset(&type, 0, sizeof type);
298 type.width = format_desc->block.bits;
299
300 if(format_desc->channel[swizzle].type == UTIL_FORMAT_TYPE_FLOAT) {
301 type.floating = TRUE;
302 assert(swizzle == 0);
303 assert(format_desc->channel[swizzle].size == format_desc->block.bits);
304 }
305 else if(format_desc->channel[swizzle].type == UTIL_FORMAT_TYPE_UNSIGNED) {
306 assert(format_desc->block.bits <= 32);
307 if(format_desc->channel[swizzle].normalized)
308 type.norm = TRUE;
309 }
310 else
311 assert(0);
312
313 assert(type.width <= length);
314 type.length = length / type.width;
315
316 return type;
317 }
318
319
320 /**
321 * Compute bitmask and bit shift to apply to the incoming fragment Z values
322 * and the Z buffer values needed before doing the Z comparison.
323 *
324 * Note that we leave the Z bits in the position that we find them
325 * in the Z buffer (typically 0xffffff00 or 0x00ffffff). That lets us
326 * get by with fewer bit twiddling steps.
327 */
328 static boolean
329 get_z_shift_and_mask(const struct util_format_description *format_desc,
330 unsigned *shift, unsigned *mask)
331 {
332 const unsigned total_bits = format_desc->block.bits;
333 unsigned z_swizzle;
334 unsigned chan;
335 unsigned padding_left, padding_right;
336
337 assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_ZS);
338 assert(format_desc->block.width == 1);
339 assert(format_desc->block.height == 1);
340
341 z_swizzle = format_desc->swizzle[0];
342
343 if (z_swizzle == UTIL_FORMAT_SWIZZLE_NONE)
344 return FALSE;
345
346 padding_right = 0;
347 for (chan = 0; chan < z_swizzle; ++chan)
348 padding_right += format_desc->channel[chan].size;
349
350 padding_left =
351 total_bits - (padding_right + format_desc->channel[z_swizzle].size);
352
353 if (padding_left || padding_right) {
354 unsigned long long mask_left = (1ULL << (total_bits - padding_left)) - 1;
355 unsigned long long mask_right = (1ULL << (padding_right)) - 1;
356 *mask = mask_left ^ mask_right;
357 }
358 else {
359 *mask = 0xffffffff;
360 }
361
362 *shift = padding_left;
363
364 return TRUE;
365 }
366
367
368 /**
369 * Compute bitmask and bit shift to apply to the framebuffer pixel values
370 * to put the stencil bits in the least significant position.
371 * (i.e. 0x000000ff)
372 */
373 static boolean
374 get_s_shift_and_mask(const struct util_format_description *format_desc,
375 unsigned *shift, unsigned *mask)
376 {
377 unsigned s_swizzle;
378 unsigned chan, sz;
379
380 s_swizzle = format_desc->swizzle[1];
381
382 if (s_swizzle == UTIL_FORMAT_SWIZZLE_NONE)
383 return FALSE;
384
385 *shift = 0;
386 for (chan = 0; chan < s_swizzle; chan++)
387 *shift += format_desc->channel[chan].size;
388
389 sz = format_desc->channel[s_swizzle].size;
390 *mask = (1U << sz) - 1U;
391
392 return TRUE;
393 }
394
395
396 /**
397 * Perform the occlusion test and increase the counter.
398 * Test the depth mask. Add the number of channel which has none zero mask
399 * into the occlusion counter. e.g. maskvalue is {-1, -1, -1, -1}.
400 * The counter will add 4.
401 *
402 * \param type holds element type of the mask vector.
403 * \param maskvalue is the depth test mask.
404 * \param counter is a pointer of the uint32 counter.
405 */
406 void
407 lp_build_occlusion_count(LLVMBuilderRef builder,
408 struct lp_type type,
409 LLVMValueRef maskvalue,
410 LLVMValueRef counter)
411 {
412 LLVMValueRef countmask = lp_build_const_int_vec(type, 1);
413 LLVMValueRef countv = LLVMBuildAnd(builder, maskvalue, countmask, "countv");
414 LLVMTypeRef i8v16 = LLVMVectorType(LLVMInt8Type(), 16);
415 LLVMValueRef counti = LLVMBuildBitCast(builder, countv, i8v16, "counti");
416 LLVMValueRef maskarray[4] = {
417 LLVMConstInt(LLVMInt32Type(), 0, 0),
418 LLVMConstInt(LLVMInt32Type(), 4, 0),
419 LLVMConstInt(LLVMInt32Type(), 8, 0),
420 LLVMConstInt(LLVMInt32Type(), 12, 0),
421 };
422 LLVMValueRef shufflemask = LLVMConstVector(maskarray, 4);
423 LLVMValueRef shufflev = LLVMBuildShuffleVector(builder, counti, LLVMGetUndef(i8v16), shufflemask, "shufflev");
424 LLVMValueRef shuffle = LLVMBuildBitCast(builder, shufflev, LLVMInt32Type(), "shuffle");
425 LLVMValueRef count = lp_build_intrinsic_unary(builder, "llvm.ctpop.i32", LLVMInt32Type(), shuffle);
426 LLVMValueRef orig = LLVMBuildLoad(builder, counter, "orig");
427 LLVMValueRef incr = LLVMBuildAdd(builder, orig, count, "incr");
428 LLVMBuildStore(builder, incr, counter);
429 }
430
431
432
433 /**
434 * Generate code for performing depth and/or stencil tests.
435 * We operate on a vector of values (typically a 2x2 quad).
436 *
437 * \param depth the depth test state
438 * \param stencil the front/back stencil state
439 * \param type the data type of the fragment depth/stencil values
440 * \param format_desc description of the depth/stencil surface
441 * \param mask the alive/dead pixel mask for the quad (vector)
442 * \param stencil_refs the front/back stencil ref values (scalar)
443 * \param z_src the incoming depth/stencil values (a 2x2 quad, float32)
444 * \param zs_dst_ptr pointer to depth/stencil values in framebuffer
445 * \param facing contains float value indicating front/back facing polygon
446 */
447 void
448 lp_build_depth_stencil_test(LLVMBuilderRef builder,
449 const struct pipe_depth_state *depth,
450 const struct pipe_stencil_state stencil[2],
451 struct lp_type z_src_type,
452 const struct util_format_description *format_desc,
453 struct lp_build_mask_context *mask,
454 LLVMValueRef stencil_refs[2],
455 LLVMValueRef z_src,
456 LLVMValueRef zs_dst_ptr,
457 LLVMValueRef face,
458 LLVMValueRef *zs_value,
459 boolean do_branch)
460 {
461 struct lp_type z_type;
462 struct lp_build_context z_bld;
463 struct lp_build_context s_bld;
464 struct lp_type s_type;
465 LLVMValueRef zs_dst, z_dst = NULL;
466 LLVMValueRef stencil_vals = NULL;
467 LLVMValueRef z_bitmask = NULL, stencil_shift = NULL;
468 LLVMValueRef z_pass = NULL, s_pass_mask = NULL;
469 LLVMValueRef orig_mask = lp_build_mask_value(mask);
470 LLVMValueRef front_facing = NULL;
471
472 /* Prototype a simpler path:
473 */
474 if (z_src_type.floating &&
475 format_desc->format == PIPE_FORMAT_X8Z24_UNORM &&
476 depth->enabled)
477 {
478 LLVMValueRef zscaled;
479 LLVMValueRef const_ffffff_float;
480 LLVMValueRef const_8_int;
481 LLVMTypeRef int32_vec_type;
482
483 /* We know the values in z_dst are all >= 0, so allow
484 * lp_build_compare to use signed compare intrinsics:
485 */
486 z_type.floating = 0;
487 z_type.fixed = 0;
488 z_type.sign = 1;
489 z_type.norm = 1;
490 z_type.width = 32;
491 z_type.length = z_src_type.length;
492
493 int32_vec_type = LLVMVectorType(LLVMInt32Type(), z_src_type.length);
494
495 const_8_int = lp_build_const_int_vec(z_type, 8);
496 const_ffffff_float = lp_build_const_vec(z_src_type, (float)0xffffff);
497
498 zscaled = LLVMBuildFMul(builder, z_src, const_ffffff_float, "zscaled");
499 z_src = LLVMBuildFPToSI(builder, zscaled, int32_vec_type, "z_src");
500
501 /* Load current z/stencil value from z/stencil buffer */
502 zs_dst_ptr = LLVMBuildBitCast(builder,
503 zs_dst_ptr,
504 LLVMPointerType(int32_vec_type, 0), "");
505 z_dst = LLVMBuildLoad(builder, zs_dst_ptr, "zsbufval");
506 z_dst = LLVMBuildLShr(builder, z_dst, const_8_int, "z_dst");
507
508 /* compare src Z to dst Z, returning 'pass' mask */
509 z_pass = lp_build_compare(builder,
510 z_type,
511 depth->func, z_src, z_dst);
512
513 lp_build_mask_update(mask, z_pass);
514
515 if (do_branch)
516 lp_build_mask_check(mask);
517
518 /* No need to worry about old stencil contents, just blend the
519 * old and new values and shift into the correct position for
520 * storage.
521 */
522 if (depth->writemask) {
523 z_type.sign = 1;
524 lp_build_context_init(&z_bld, builder, z_type);
525
526 z_dst = lp_build_select(&z_bld, lp_build_mask_value(mask), z_src, z_dst);
527 z_dst = LLVMBuildShl(builder, z_dst, const_8_int, "z_dst");
528 *zs_value = z_dst;
529 }
530
531 return;
532 }
533
534 /*
535 * Depths are expected to be between 0 and 1, even if they are stored in
536 * floats. Setting these bits here will ensure that the lp_build_conv() call
537 * below won't try to unnecessarily clamp the incoming values.
538 */
539 if(z_src_type.floating) {
540 z_src_type.sign = FALSE;
541 z_src_type.norm = TRUE;
542 }
543 else {
544 assert(!z_src_type.sign);
545 assert(z_src_type.norm);
546 }
547
548 /* Pick the depth type. */
549 z_type = lp_depth_type(format_desc, z_src_type.width*z_src_type.length);
550
551 /* FIXME: Cope with a depth test type with a different bit width. */
552 assert(z_type.width == z_src_type.width);
553 assert(z_type.length == z_src_type.length);
554
555 /* Convert fragment Z from float to integer */
556 lp_build_conv(builder, z_src_type, z_type, &z_src, 1, &z_src, 1);
557
558
559 /* Sanity checking */
560 {
561 const unsigned z_swizzle = format_desc->swizzle[0];
562 const unsigned s_swizzle = format_desc->swizzle[1];
563
564 assert(z_swizzle != UTIL_FORMAT_SWIZZLE_NONE ||
565 s_swizzle != UTIL_FORMAT_SWIZZLE_NONE);
566
567 assert(depth->enabled || stencil[0].enabled);
568
569 assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_ZS);
570 assert(format_desc->block.width == 1);
571 assert(format_desc->block.height == 1);
572
573 if (stencil[0].enabled) {
574 assert(format_desc->format == PIPE_FORMAT_Z24_UNORM_S8_USCALED ||
575 format_desc->format == PIPE_FORMAT_S8_USCALED_Z24_UNORM);
576 }
577
578 assert(z_swizzle < 4);
579 assert(format_desc->block.bits == z_type.width);
580 if (z_type.floating) {
581 assert(z_swizzle == 0);
582 assert(format_desc->channel[z_swizzle].type ==
583 UTIL_FORMAT_TYPE_FLOAT);
584 assert(format_desc->channel[z_swizzle].size ==
585 format_desc->block.bits);
586 }
587 else {
588 assert(format_desc->channel[z_swizzle].type ==
589 UTIL_FORMAT_TYPE_UNSIGNED);
590 assert(format_desc->channel[z_swizzle].normalized);
591 assert(!z_type.fixed);
592 assert(!z_type.sign);
593 assert(z_type.norm);
594 }
595 }
596
597
598 /* Setup build context for Z vals */
599 lp_build_context_init(&z_bld, builder, z_type);
600
601 /* Setup build context for stencil vals */
602 s_type = lp_type_int_vec(z_type.width);
603 lp_build_context_init(&s_bld, builder, s_type);
604
605 /* Load current z/stencil value from z/stencil buffer */
606 zs_dst_ptr = LLVMBuildBitCast(builder,
607 zs_dst_ptr,
608 LLVMPointerType(z_bld.vec_type, 0), "");
609 zs_dst = LLVMBuildLoad(builder, zs_dst_ptr, "");
610
611 lp_build_name(zs_dst, "zsbufval");
612
613
614 /* Compute and apply the Z/stencil bitmasks and shifts.
615 */
616 {
617 unsigned z_shift, z_mask;
618 unsigned s_shift, s_mask;
619
620 if (get_z_shift_and_mask(format_desc, &z_shift, &z_mask)) {
621 if (z_shift) {
622 LLVMValueRef shift = lp_build_const_int_vec(z_type, z_shift);
623 z_src = LLVMBuildLShr(builder, z_src, shift, "");
624 }
625
626 if (z_mask != 0xffffffff) {
627 LLVMValueRef mask = lp_build_const_int_vec(z_type, z_mask);
628 z_src = LLVMBuildAnd(builder, z_src, mask, "");
629 z_dst = LLVMBuildAnd(builder, zs_dst, mask, "");
630 z_bitmask = mask; /* used below */
631 }
632 else {
633 z_dst = zs_dst;
634 }
635
636 lp_build_name(z_dst, "zsbuf.z");
637 }
638
639 if (get_s_shift_and_mask(format_desc, &s_shift, &s_mask)) {
640 if (s_shift) {
641 LLVMValueRef shift = lp_build_const_int_vec(s_type, s_shift);
642 stencil_vals = LLVMBuildLShr(builder, zs_dst, shift, "");
643 stencil_shift = shift; /* used below */
644 }
645 else {
646 stencil_vals = zs_dst;
647 }
648
649 if (s_mask != 0xffffffff) {
650 LLVMValueRef mask = lp_build_const_int_vec(s_type, s_mask);
651 stencil_vals = LLVMBuildAnd(builder, stencil_vals, mask, "");
652 }
653
654 lp_build_name(stencil_vals, "stencil");
655 }
656 }
657
658 if (stencil[0].enabled) {
659
660 if (face) {
661 LLVMValueRef zero = LLVMConstReal(LLVMFloatType(), 0.0);
662
663 /* front_facing = face > 0.0 ? ~0 : 0 */
664 front_facing = LLVMBuildFCmp(builder, LLVMRealUGT, face, zero, "");
665 front_facing = LLVMBuildSExt(builder, front_facing,
666 LLVMIntType(s_bld.type.length*s_bld.type.width),
667 "");
668 front_facing = LLVMBuildBitCast(builder, front_facing,
669 s_bld.int_vec_type, "");
670 }
671
672 /* convert scalar stencil refs into vectors */
673 stencil_refs[0] = lp_build_broadcast_scalar(&s_bld, stencil_refs[0]);
674 stencil_refs[1] = lp_build_broadcast_scalar(&s_bld, stencil_refs[1]);
675
676 s_pass_mask = lp_build_stencil_test(&s_bld, stencil,
677 stencil_refs, stencil_vals,
678 front_facing);
679
680 /* apply stencil-fail operator */
681 {
682 LLVMValueRef s_fail_mask = lp_build_andnot(&s_bld, orig_mask, s_pass_mask);
683 stencil_vals = lp_build_stencil_op(&s_bld, stencil, S_FAIL_OP,
684 stencil_refs, stencil_vals,
685 s_fail_mask, front_facing);
686 }
687 }
688
689 if (depth->enabled) {
690 /* compare src Z to dst Z, returning 'pass' mask */
691 z_pass = lp_build_cmp(&z_bld, depth->func, z_src, z_dst);
692
693 if (!stencil[0].enabled) {
694 /* We can potentially skip all remaining operations here, but only
695 * if stencil is disabled because we still need to update the stencil
696 * buffer values. Don't need to update Z buffer values.
697 */
698 lp_build_mask_update(mask, z_pass);
699
700 if (do_branch) {
701 lp_build_mask_check(mask);
702 do_branch = FALSE;
703 }
704 }
705
706 if (depth->writemask) {
707 LLVMValueRef zselectmask = lp_build_mask_value(mask);
708
709 /* mask off bits that failed Z test */
710 zselectmask = LLVMBuildAnd(builder, zselectmask, z_pass, "");
711
712 /* mask off bits that failed stencil test */
713 if (s_pass_mask) {
714 zselectmask = LLVMBuildAnd(builder, zselectmask, s_pass_mask, "");
715 }
716
717 /* if combined Z/stencil format, mask off the stencil bits */
718 if (z_bitmask) {
719 zselectmask = LLVMBuildAnd(builder, zselectmask, z_bitmask, "");
720 }
721
722 /* Mix the old and new Z buffer values.
723 * z_dst[i] = (zselectmask[i] & z_src[i]) | (~zselectmask[i] & z_dst[i])
724 */
725 z_dst = lp_build_select_bitwise(&z_bld, zselectmask, z_src, z_dst);
726 }
727
728 if (stencil[0].enabled) {
729 /* update stencil buffer values according to z pass/fail result */
730 LLVMValueRef z_fail_mask, z_pass_mask;
731
732 /* apply Z-fail operator */
733 z_fail_mask = lp_build_andnot(&z_bld, orig_mask, z_pass);
734 stencil_vals = lp_build_stencil_op(&s_bld, stencil, Z_FAIL_OP,
735 stencil_refs, stencil_vals,
736 z_fail_mask, front_facing);
737
738 /* apply Z-pass operator */
739 z_pass_mask = LLVMBuildAnd(z_bld.builder, orig_mask, z_pass, "");
740 stencil_vals = lp_build_stencil_op(&s_bld, stencil, Z_PASS_OP,
741 stencil_refs, stencil_vals,
742 z_pass_mask, front_facing);
743 }
744 }
745 else {
746 /* No depth test: apply Z-pass operator to stencil buffer values which
747 * passed the stencil test.
748 */
749 s_pass_mask = LLVMBuildAnd(s_bld.builder, orig_mask, s_pass_mask, "");
750 stencil_vals = lp_build_stencil_op(&s_bld, stencil, Z_PASS_OP,
751 stencil_refs, stencil_vals,
752 s_pass_mask, front_facing);
753 }
754
755 /* The Z bits are already in the right place but we may need to shift the
756 * stencil bits before ORing Z with Stencil to make the final pixel value.
757 */
758 if (stencil_vals && stencil_shift)
759 stencil_vals = LLVMBuildShl(s_bld.builder, stencil_vals,
760 stencil_shift, "");
761
762 /* Finally, merge/store the z/stencil values */
763 if ((depth->enabled && depth->writemask) ||
764 (stencil[0].enabled && stencil[0].writemask)) {
765
766 if (z_dst && stencil_vals)
767 zs_dst = LLVMBuildOr(z_bld.builder, z_dst, stencil_vals, "");
768 else if (z_dst)
769 zs_dst = z_dst;
770 else
771 zs_dst = stencil_vals;
772
773 *zs_value = zs_dst;
774 }
775
776 if (s_pass_mask)
777 lp_build_mask_update(mask, s_pass_mask);
778
779 if (depth->enabled && stencil[0].enabled)
780 lp_build_mask_update(mask, z_pass);
781
782 if (do_branch)
783 lp_build_mask_check(mask);
784
785 }
786
787
788 void
789 lp_build_depth_write(LLVMBuilderRef builder,
790 const struct util_format_description *format_desc,
791 LLVMValueRef zs_dst_ptr,
792 LLVMValueRef zs_value)
793 {
794 zs_dst_ptr = LLVMBuildBitCast(builder, zs_dst_ptr,
795 LLVMPointerType(LLVMTypeOf(zs_value), 0), "");
796
797 LLVMBuildStore(builder, zs_value, zs_dst_ptr);
798 }
799
800
801 void
802 lp_build_deferred_depth_write(LLVMBuilderRef builder,
803 struct lp_type z_src_type,
804 const struct util_format_description *format_desc,
805 struct lp_build_mask_context *mask,
806 LLVMValueRef zs_dst_ptr,
807 LLVMValueRef zs_value)
808 {
809 struct lp_type z_type;
810 struct lp_build_context z_bld;
811 LLVMValueRef z_dst;
812
813 /* XXX: pointlessly redo type logic:
814 */
815 z_type = lp_depth_type(format_desc, z_src_type.width*z_src_type.length);
816 lp_build_context_init(&z_bld, builder, z_type);
817
818 zs_dst_ptr = LLVMBuildBitCast(builder, zs_dst_ptr,
819 LLVMPointerType(z_bld.vec_type, 0), "");
820
821 z_dst = LLVMBuildLoad(builder, zs_dst_ptr, "zsbufval");
822 z_dst = lp_build_select(&z_bld, lp_build_mask_value(mask), zs_value, z_dst);
823
824 LLVMBuildStore(builder, z_dst, zs_dst_ptr);
825 }