radeonsi: Fix sampler views for depth textures.
[mesa.git] / src / gallium / drivers / llvmpipe / lp_bld_depth.c
1 /**************************************************************************
2 *
3 * Copyright 2009-2010 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /**
29 * @file
30 * Depth/stencil testing to LLVM IR translation.
31 *
32 * To be done accurately/efficiently the depth/stencil test must be done with
33 * the same type/format of the depth/stencil buffer, which implies massaging
34 * the incoming depths to fit into place. Using a more straightforward
35 * type/format for depth/stencil values internally and only convert when
36 * flushing would avoid this, but it would most likely result in depth fighting
37 * artifacts.
38 *
39 * We are free to use a different pixel layout though. Since our basic
40 * processing unit is a quad (2x2 pixel block) we store the depth/stencil
41 * values tiled, a quad at time. That is, a depth buffer containing
42 *
43 * Z11 Z12 Z13 Z14 ...
44 * Z21 Z22 Z23 Z24 ...
45 * Z31 Z32 Z33 Z34 ...
46 * Z41 Z42 Z43 Z44 ...
47 * ... ... ... ... ...
48 *
49 * will actually be stored in memory as
50 *
51 * Z11 Z12 Z21 Z22 Z13 Z14 Z23 Z24 ...
52 * Z31 Z32 Z41 Z42 Z33 Z34 Z43 Z44 ...
53 * ... ... ... ... ... ... ... ... ...
54 *
55 *
56 * @author Jose Fonseca <jfonseca@vmware.com>
57 * @author Brian Paul <jfonseca@vmware.com>
58 */
59
60 #include "pipe/p_state.h"
61 #include "util/u_format.h"
62 #include "util/u_cpu_detect.h"
63
64 #include "gallivm/lp_bld_type.h"
65 #include "gallivm/lp_bld_arit.h"
66 #include "gallivm/lp_bld_bitarit.h"
67 #include "gallivm/lp_bld_const.h"
68 #include "gallivm/lp_bld_conv.h"
69 #include "gallivm/lp_bld_logic.h"
70 #include "gallivm/lp_bld_flow.h"
71 #include "gallivm/lp_bld_intr.h"
72 #include "gallivm/lp_bld_debug.h"
73 #include "gallivm/lp_bld_swizzle.h"
74
75 #include "lp_bld_depth.h"
76
77
78 /** Used to select fields from pipe_stencil_state */
79 enum stencil_op {
80 S_FAIL_OP,
81 Z_FAIL_OP,
82 Z_PASS_OP
83 };
84
85
86
87 /**
88 * Do the stencil test comparison (compare FB stencil values against ref value).
89 * This will be used twice when generating two-sided stencil code.
90 * \param stencil the front/back stencil state
91 * \param stencilRef the stencil reference value, replicated as a vector
92 * \param stencilVals vector of stencil values from framebuffer
93 * \return vector mask of pass/fail values (~0 or 0)
94 */
95 static LLVMValueRef
96 lp_build_stencil_test_single(struct lp_build_context *bld,
97 const struct pipe_stencil_state *stencil,
98 LLVMValueRef stencilRef,
99 LLVMValueRef stencilVals)
100 {
101 LLVMBuilderRef builder = bld->gallivm->builder;
102 const unsigned stencilMax = 255; /* XXX fix */
103 struct lp_type type = bld->type;
104 LLVMValueRef res;
105
106 /*
107 * SSE2 has intrinsics for signed comparisons, but not unsigned ones. Values
108 * are between 0..255 so ensure we generate the fastest comparisons for
109 * wider elements.
110 */
111 if (type.width <= 8) {
112 assert(!type.sign);
113 } else {
114 assert(type.sign);
115 }
116
117 assert(stencil->enabled);
118
119 if (stencil->valuemask != stencilMax) {
120 /* compute stencilRef = stencilRef & valuemask */
121 LLVMValueRef valuemask = lp_build_const_int_vec(bld->gallivm, type, stencil->valuemask);
122 stencilRef = LLVMBuildAnd(builder, stencilRef, valuemask, "");
123 /* compute stencilVals = stencilVals & valuemask */
124 stencilVals = LLVMBuildAnd(builder, stencilVals, valuemask, "");
125 }
126
127 res = lp_build_cmp(bld, stencil->func, stencilRef, stencilVals);
128
129 return res;
130 }
131
132
133 /**
134 * Do the one or two-sided stencil test comparison.
135 * \sa lp_build_stencil_test_single
136 * \param front_facing an integer vector mask, indicating front (~0) or back
137 * (0) facing polygon. If NULL, assume front-facing.
138 */
139 static LLVMValueRef
140 lp_build_stencil_test(struct lp_build_context *bld,
141 const struct pipe_stencil_state stencil[2],
142 LLVMValueRef stencilRefs[2],
143 LLVMValueRef stencilVals,
144 LLVMValueRef front_facing)
145 {
146 LLVMValueRef res;
147
148 assert(stencil[0].enabled);
149
150 /* do front face test */
151 res = lp_build_stencil_test_single(bld, &stencil[0],
152 stencilRefs[0], stencilVals);
153
154 if (stencil[1].enabled && front_facing != NULL) {
155 /* do back face test */
156 LLVMValueRef back_res;
157
158 back_res = lp_build_stencil_test_single(bld, &stencil[1],
159 stencilRefs[1], stencilVals);
160
161 res = lp_build_select(bld, front_facing, res, back_res);
162 }
163
164 return res;
165 }
166
167
168 /**
169 * Apply the stencil operator (add/sub/keep/etc) to the given vector
170 * of stencil values.
171 * \return new stencil values vector
172 */
173 static LLVMValueRef
174 lp_build_stencil_op_single(struct lp_build_context *bld,
175 const struct pipe_stencil_state *stencil,
176 enum stencil_op op,
177 LLVMValueRef stencilRef,
178 LLVMValueRef stencilVals)
179
180 {
181 LLVMBuilderRef builder = bld->gallivm->builder;
182 struct lp_type type = bld->type;
183 LLVMValueRef res;
184 LLVMValueRef max = lp_build_const_int_vec(bld->gallivm, type, 0xff);
185 unsigned stencil_op;
186
187 assert(type.sign);
188
189 switch (op) {
190 case S_FAIL_OP:
191 stencil_op = stencil->fail_op;
192 break;
193 case Z_FAIL_OP:
194 stencil_op = stencil->zfail_op;
195 break;
196 case Z_PASS_OP:
197 stencil_op = stencil->zpass_op;
198 break;
199 default:
200 assert(0 && "Invalid stencil_op mode");
201 stencil_op = PIPE_STENCIL_OP_KEEP;
202 }
203
204 switch (stencil_op) {
205 case PIPE_STENCIL_OP_KEEP:
206 res = stencilVals;
207 /* we can return early for this case */
208 return res;
209 case PIPE_STENCIL_OP_ZERO:
210 res = bld->zero;
211 break;
212 case PIPE_STENCIL_OP_REPLACE:
213 res = stencilRef;
214 break;
215 case PIPE_STENCIL_OP_INCR:
216 res = lp_build_add(bld, stencilVals, bld->one);
217 res = lp_build_min(bld, res, max);
218 break;
219 case PIPE_STENCIL_OP_DECR:
220 res = lp_build_sub(bld, stencilVals, bld->one);
221 res = lp_build_max(bld, res, bld->zero);
222 break;
223 case PIPE_STENCIL_OP_INCR_WRAP:
224 res = lp_build_add(bld, stencilVals, bld->one);
225 res = LLVMBuildAnd(builder, res, max, "");
226 break;
227 case PIPE_STENCIL_OP_DECR_WRAP:
228 res = lp_build_sub(bld, stencilVals, bld->one);
229 res = LLVMBuildAnd(builder, res, max, "");
230 break;
231 case PIPE_STENCIL_OP_INVERT:
232 res = LLVMBuildNot(builder, stencilVals, "");
233 res = LLVMBuildAnd(builder, res, max, "");
234 break;
235 default:
236 assert(0 && "bad stencil op mode");
237 res = bld->undef;
238 }
239
240 return res;
241 }
242
243
244 /**
245 * Do the one or two-sided stencil test op/update.
246 */
247 static LLVMValueRef
248 lp_build_stencil_op(struct lp_build_context *bld,
249 const struct pipe_stencil_state stencil[2],
250 enum stencil_op op,
251 LLVMValueRef stencilRefs[2],
252 LLVMValueRef stencilVals,
253 LLVMValueRef mask,
254 LLVMValueRef front_facing)
255
256 {
257 LLVMBuilderRef builder = bld->gallivm->builder;
258 LLVMValueRef res;
259
260 assert(stencil[0].enabled);
261
262 /* do front face op */
263 res = lp_build_stencil_op_single(bld, &stencil[0], op,
264 stencilRefs[0], stencilVals);
265
266 if (stencil[1].enabled && front_facing != NULL) {
267 /* do back face op */
268 LLVMValueRef back_res;
269
270 back_res = lp_build_stencil_op_single(bld, &stencil[1], op,
271 stencilRefs[1], stencilVals);
272
273 res = lp_build_select(bld, front_facing, res, back_res);
274 }
275
276 if (stencil[0].writemask != 0xff ||
277 (stencil[1].enabled && front_facing != NULL && stencil[1].writemask != 0xff)) {
278 /* mask &= stencil[0].writemask */
279 LLVMValueRef writemask = lp_build_const_int_vec(bld->gallivm, bld->type,
280 stencil[0].writemask);
281 if (stencil[1].enabled && stencil[1].writemask != stencil[0].writemask && front_facing != NULL) {
282 LLVMValueRef back_writemask = lp_build_const_int_vec(bld->gallivm, bld->type,
283 stencil[1].writemask);
284 writemask = lp_build_select(bld, front_facing, writemask, back_writemask);
285 }
286
287 mask = LLVMBuildAnd(builder, mask, writemask, "");
288 /* res = (res & mask) | (stencilVals & ~mask) */
289 res = lp_build_select_bitwise(bld, mask, res, stencilVals);
290 }
291 else {
292 /* res = mask ? res : stencilVals */
293 res = lp_build_select(bld, mask, res, stencilVals);
294 }
295
296 return res;
297 }
298
299
300
301 /**
302 * Return a type appropriate for depth/stencil testing.
303 */
304 struct lp_type
305 lp_depth_type(const struct util_format_description *format_desc,
306 unsigned length)
307 {
308 struct lp_type type;
309 unsigned swizzle;
310
311 assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_ZS);
312 assert(format_desc->block.width == 1);
313 assert(format_desc->block.height == 1);
314
315 swizzle = format_desc->swizzle[0];
316 assert(swizzle < 4);
317
318 memset(&type, 0, sizeof type);
319 type.width = format_desc->block.bits;
320
321 if(format_desc->channel[swizzle].type == UTIL_FORMAT_TYPE_FLOAT) {
322 type.floating = TRUE;
323 assert(swizzle == 0);
324 assert(format_desc->channel[swizzle].size == format_desc->block.bits);
325 }
326 else if(format_desc->channel[swizzle].type == UTIL_FORMAT_TYPE_UNSIGNED) {
327 assert(format_desc->block.bits <= 32);
328 assert(format_desc->channel[swizzle].normalized);
329 if (format_desc->channel[swizzle].size < format_desc->block.bits) {
330 /* Prefer signed integers when possible, as SSE has less support
331 * for unsigned comparison;
332 */
333 type.sign = TRUE;
334 }
335 }
336 else
337 assert(0);
338
339 assert(type.width <= length);
340 type.length = length / type.width;
341
342 return type;
343 }
344
345
346 /**
347 * Compute bitmask and bit shift to apply to the incoming fragment Z values
348 * and the Z buffer values needed before doing the Z comparison.
349 *
350 * Note that we leave the Z bits in the position that we find them
351 * in the Z buffer (typically 0xffffff00 or 0x00ffffff). That lets us
352 * get by with fewer bit twiddling steps.
353 */
354 static boolean
355 get_z_shift_and_mask(const struct util_format_description *format_desc,
356 unsigned *shift, unsigned *width, unsigned *mask)
357 {
358 const unsigned total_bits = format_desc->block.bits;
359 unsigned z_swizzle;
360 unsigned chan;
361 unsigned padding_left, padding_right;
362
363 assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_ZS);
364 assert(format_desc->block.width == 1);
365 assert(format_desc->block.height == 1);
366
367 z_swizzle = format_desc->swizzle[0];
368
369 if (z_swizzle == UTIL_FORMAT_SWIZZLE_NONE)
370 return FALSE;
371
372 *width = format_desc->channel[z_swizzle].size;
373
374 padding_right = 0;
375 for (chan = 0; chan < z_swizzle; ++chan)
376 padding_right += format_desc->channel[chan].size;
377
378 padding_left =
379 total_bits - (padding_right + *width);
380
381 if (padding_left || padding_right) {
382 unsigned long long mask_left = (1ULL << (total_bits - padding_left)) - 1;
383 unsigned long long mask_right = (1ULL << (padding_right)) - 1;
384 *mask = mask_left ^ mask_right;
385 }
386 else {
387 *mask = 0xffffffff;
388 }
389
390 *shift = padding_right;
391
392 return TRUE;
393 }
394
395
396 /**
397 * Compute bitmask and bit shift to apply to the framebuffer pixel values
398 * to put the stencil bits in the least significant position.
399 * (i.e. 0x000000ff)
400 */
401 static boolean
402 get_s_shift_and_mask(const struct util_format_description *format_desc,
403 unsigned *shift, unsigned *mask)
404 {
405 unsigned s_swizzle;
406 unsigned chan, sz;
407
408 s_swizzle = format_desc->swizzle[1];
409
410 if (s_swizzle == UTIL_FORMAT_SWIZZLE_NONE)
411 return FALSE;
412
413 *shift = 0;
414 for (chan = 0; chan < s_swizzle; chan++)
415 *shift += format_desc->channel[chan].size;
416
417 sz = format_desc->channel[s_swizzle].size;
418 *mask = (1U << sz) - 1U;
419
420 return TRUE;
421 }
422
423
424 /**
425 * Perform the occlusion test and increase the counter.
426 * Test the depth mask. Add the number of channel which has none zero mask
427 * into the occlusion counter. e.g. maskvalue is {-1, -1, -1, -1}.
428 * The counter will add 4.
429 *
430 * \param type holds element type of the mask vector.
431 * \param maskvalue is the depth test mask.
432 * \param counter is a pointer of the uint32 counter.
433 */
434 void
435 lp_build_occlusion_count(struct gallivm_state *gallivm,
436 struct lp_type type,
437 LLVMValueRef maskvalue,
438 LLVMValueRef counter)
439 {
440 LLVMBuilderRef builder = gallivm->builder;
441 LLVMContextRef context = gallivm->context;
442 LLVMValueRef countmask = lp_build_const_int_vec(gallivm, type, 1);
443 LLVMValueRef count, newcount;
444
445 assert(type.length <= 16);
446 assert(type.floating);
447
448 if(util_cpu_caps.has_sse && type.length == 4) {
449 const char *movmskintr = "llvm.x86.sse.movmsk.ps";
450 const char *popcntintr = "llvm.ctpop.i32";
451 LLVMValueRef bits = LLVMBuildBitCast(builder, maskvalue,
452 lp_build_vec_type(gallivm, type), "");
453 bits = lp_build_intrinsic_unary(builder, movmskintr,
454 LLVMInt32TypeInContext(context), bits);
455 count = lp_build_intrinsic_unary(builder, popcntintr,
456 LLVMInt32TypeInContext(context), bits);
457 }
458 else if(util_cpu_caps.has_avx && type.length == 8) {
459 const char *movmskintr = "llvm.x86.avx.movmsk.ps.256";
460 const char *popcntintr = "llvm.ctpop.i32";
461 LLVMValueRef bits = LLVMBuildBitCast(builder, maskvalue,
462 lp_build_vec_type(gallivm, type), "");
463 bits = lp_build_intrinsic_unary(builder, movmskintr,
464 LLVMInt32TypeInContext(context), bits);
465 count = lp_build_intrinsic_unary(builder, popcntintr,
466 LLVMInt32TypeInContext(context), bits);
467 }
468 else {
469 unsigned i;
470 LLVMValueRef countv = LLVMBuildAnd(builder, maskvalue, countmask, "countv");
471 LLVMTypeRef counttype = LLVMIntTypeInContext(context, type.length * 8);
472 LLVMTypeRef i8vntype = LLVMVectorType(LLVMInt8TypeInContext(context), type.length * 4);
473 LLVMValueRef shufflev, countd;
474 LLVMValueRef shuffles[16];
475 const char *popcntintr = NULL;
476
477 countv = LLVMBuildBitCast(builder, countv, i8vntype, "");
478
479 for (i = 0; i < type.length; i++) {
480 shuffles[i] = lp_build_const_int32(gallivm, 4*i);
481 }
482
483 shufflev = LLVMConstVector(shuffles, type.length);
484 countd = LLVMBuildShuffleVector(builder, countv, LLVMGetUndef(i8vntype), shufflev, "");
485 countd = LLVMBuildBitCast(builder, countd, counttype, "countd");
486
487 /*
488 * XXX FIXME
489 * this is bad on cpus without popcount (on x86 supported by intel
490 * nehalem, amd barcelona, and up - not tied to sse42).
491 * Would be much faster to just sum the 4 elements of the vector with
492 * some horizontal add (shuffle/add/shuffle/add after the initial and).
493 */
494 switch (type.length) {
495 case 4:
496 popcntintr = "llvm.ctpop.i32";
497 break;
498 case 8:
499 popcntintr = "llvm.ctpop.i64";
500 break;
501 case 16:
502 popcntintr = "llvm.ctpop.i128";
503 break;
504 default:
505 assert(0);
506 }
507 count = lp_build_intrinsic_unary(builder, popcntintr, counttype, countd);
508
509 if (type.length > 4) {
510 count = LLVMBuildTrunc(builder, count, LLVMIntTypeInContext(context, 32), "");
511 }
512 }
513 newcount = LLVMBuildLoad(builder, counter, "origcount");
514 newcount = LLVMBuildAdd(builder, newcount, count, "newcount");
515 LLVMBuildStore(builder, newcount, counter);
516 }
517
518
519
520 /**
521 * Generate code for performing depth and/or stencil tests.
522 * We operate on a vector of values (typically n 2x2 quads).
523 *
524 * \param depth the depth test state
525 * \param stencil the front/back stencil state
526 * \param type the data type of the fragment depth/stencil values
527 * \param format_desc description of the depth/stencil surface
528 * \param mask the alive/dead pixel mask for the quad (vector)
529 * \param stencil_refs the front/back stencil ref values (scalar)
530 * \param z_src the incoming depth/stencil values (n 2x2 quad values, float32)
531 * \param zs_dst_ptr pointer to depth/stencil values in framebuffer
532 * \param face contains boolean value indicating front/back facing polygon
533 */
534 void
535 lp_build_depth_stencil_test(struct gallivm_state *gallivm,
536 const struct pipe_depth_state *depth,
537 const struct pipe_stencil_state stencil[2],
538 struct lp_type z_src_type,
539 const struct util_format_description *format_desc,
540 struct lp_build_mask_context *mask,
541 LLVMValueRef stencil_refs[2],
542 LLVMValueRef z_src,
543 LLVMValueRef zs_dst_ptr,
544 LLVMValueRef face,
545 LLVMValueRef *zs_value,
546 boolean do_branch)
547 {
548 LLVMBuilderRef builder = gallivm->builder;
549 struct lp_type z_type;
550 struct lp_build_context z_bld;
551 struct lp_build_context s_bld;
552 struct lp_type s_type;
553 unsigned z_shift = 0, z_width = 0, z_mask = 0;
554 LLVMValueRef zs_dst, z_dst = NULL;
555 LLVMValueRef stencil_vals = NULL;
556 LLVMValueRef z_bitmask = NULL, stencil_shift = NULL;
557 LLVMValueRef z_pass = NULL, s_pass_mask = NULL;
558 LLVMValueRef orig_mask = lp_build_mask_value(mask);
559 LLVMValueRef front_facing = NULL;
560
561
562 /*
563 * Depths are expected to be between 0 and 1, even if they are stored in
564 * floats. Setting these bits here will ensure that the lp_build_conv() call
565 * below won't try to unnecessarily clamp the incoming values.
566 */
567 if(z_src_type.floating) {
568 z_src_type.sign = FALSE;
569 z_src_type.norm = TRUE;
570 }
571 else {
572 assert(!z_src_type.sign);
573 assert(z_src_type.norm);
574 }
575
576 /* Pick the depth type. */
577 z_type = lp_depth_type(format_desc, z_src_type.width*z_src_type.length);
578
579 /* FIXME: Cope with a depth test type with a different bit width. */
580 assert(z_type.width == z_src_type.width);
581 assert(z_type.length == z_src_type.length);
582
583 /* FIXME: for non-float depth/stencil might generate better code
584 * if we'd always split it up to use 128bit operations.
585 * For stencil we'd almost certainly want to pack to 8xi16 values,
586 * for z just run twice.
587 */
588
589 /* Sanity checking */
590 {
591 const unsigned z_swizzle = format_desc->swizzle[0];
592 const unsigned s_swizzle = format_desc->swizzle[1];
593
594 assert(z_swizzle != UTIL_FORMAT_SWIZZLE_NONE ||
595 s_swizzle != UTIL_FORMAT_SWIZZLE_NONE);
596
597 assert(depth->enabled || stencil[0].enabled);
598
599 assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_ZS);
600 assert(format_desc->block.width == 1);
601 assert(format_desc->block.height == 1);
602
603 if (stencil[0].enabled) {
604 assert(format_desc->format == PIPE_FORMAT_Z24_UNORM_S8_UINT ||
605 format_desc->format == PIPE_FORMAT_S8_UINT_Z24_UNORM);
606 }
607
608 assert(z_swizzle < 4);
609 assert(format_desc->block.bits == z_type.width);
610 if (z_type.floating) {
611 assert(z_swizzle == 0);
612 assert(format_desc->channel[z_swizzle].type ==
613 UTIL_FORMAT_TYPE_FLOAT);
614 assert(format_desc->channel[z_swizzle].size ==
615 format_desc->block.bits);
616 }
617 else {
618 assert(format_desc->channel[z_swizzle].type ==
619 UTIL_FORMAT_TYPE_UNSIGNED);
620 assert(format_desc->channel[z_swizzle].normalized);
621 assert(!z_type.fixed);
622 }
623 }
624
625
626 /* Setup build context for Z vals */
627 lp_build_context_init(&z_bld, gallivm, z_type);
628
629 /* Setup build context for stencil vals */
630 s_type = lp_int_type(z_type);
631 lp_build_context_init(&s_bld, gallivm, s_type);
632
633 /* Load current z/stencil value from z/stencil buffer */
634 zs_dst_ptr = LLVMBuildBitCast(builder,
635 zs_dst_ptr,
636 LLVMPointerType(z_bld.vec_type, 0), "");
637 zs_dst = LLVMBuildLoad(builder, zs_dst_ptr, "");
638
639 lp_build_name(zs_dst, "zs_dst");
640
641
642 /* Compute and apply the Z/stencil bitmasks and shifts.
643 */
644 {
645 unsigned s_shift, s_mask;
646
647 if (get_z_shift_and_mask(format_desc, &z_shift, &z_width, &z_mask)) {
648 if (z_mask != 0xffffffff) {
649 z_bitmask = lp_build_const_int_vec(gallivm, z_type, z_mask);
650 }
651
652 /*
653 * Align the framebuffer Z 's LSB to the right.
654 */
655 if (z_shift) {
656 LLVMValueRef shift = lp_build_const_int_vec(gallivm, z_type, z_shift);
657 z_dst = LLVMBuildLShr(builder, zs_dst, shift, "z_dst");
658 } else if (z_bitmask) {
659 /* TODO: Instead of loading a mask from memory and ANDing, it's
660 * probably faster to just shake the bits with two shifts. */
661 z_dst = LLVMBuildAnd(builder, zs_dst, z_bitmask, "z_dst");
662 } else {
663 z_dst = zs_dst;
664 lp_build_name(z_dst, "z_dst");
665 }
666 }
667
668 if (get_s_shift_and_mask(format_desc, &s_shift, &s_mask)) {
669 if (s_shift) {
670 LLVMValueRef shift = lp_build_const_int_vec(gallivm, s_type, s_shift);
671 stencil_vals = LLVMBuildLShr(builder, zs_dst, shift, "");
672 stencil_shift = shift; /* used below */
673 }
674 else {
675 stencil_vals = zs_dst;
676 }
677
678 if (s_mask != 0xffffffff) {
679 LLVMValueRef mask = lp_build_const_int_vec(gallivm, s_type, s_mask);
680 stencil_vals = LLVMBuildAnd(builder, stencil_vals, mask, "");
681 }
682
683 lp_build_name(stencil_vals, "s_dst");
684 }
685 }
686
687 if (stencil[0].enabled) {
688
689 if (face) {
690 LLVMValueRef zero = lp_build_const_int32(gallivm, 0);
691
692 /* front_facing = face != 0 ? ~0 : 0 */
693 front_facing = LLVMBuildICmp(builder, LLVMIntNE, face, zero, "");
694 front_facing = LLVMBuildSExt(builder, front_facing,
695 LLVMIntTypeInContext(gallivm->context,
696 s_bld.type.length*s_bld.type.width),
697 "");
698 front_facing = LLVMBuildBitCast(builder, front_facing,
699 s_bld.int_vec_type, "");
700 }
701
702 /* convert scalar stencil refs into vectors */
703 stencil_refs[0] = lp_build_broadcast_scalar(&s_bld, stencil_refs[0]);
704 stencil_refs[1] = lp_build_broadcast_scalar(&s_bld, stencil_refs[1]);
705
706 s_pass_mask = lp_build_stencil_test(&s_bld, stencil,
707 stencil_refs, stencil_vals,
708 front_facing);
709
710 /* apply stencil-fail operator */
711 {
712 LLVMValueRef s_fail_mask = lp_build_andnot(&s_bld, orig_mask, s_pass_mask);
713 stencil_vals = lp_build_stencil_op(&s_bld, stencil, S_FAIL_OP,
714 stencil_refs, stencil_vals,
715 s_fail_mask, front_facing);
716 }
717 }
718
719 if (depth->enabled) {
720 /*
721 * Convert fragment Z to the desired type, aligning the LSB to the right.
722 */
723
724 assert(z_type.width == z_src_type.width);
725 assert(z_type.length == z_src_type.length);
726 assert(lp_check_value(z_src_type, z_src));
727 if (z_src_type.floating) {
728 /*
729 * Convert from floating point values
730 */
731
732 if (!z_type.floating) {
733 z_src = lp_build_clamped_float_to_unsigned_norm(gallivm,
734 z_src_type,
735 z_width,
736 z_src);
737 }
738 } else {
739 /*
740 * Convert from unsigned normalized values.
741 */
742
743 assert(!z_src_type.sign);
744 assert(!z_src_type.fixed);
745 assert(z_src_type.norm);
746 assert(!z_type.floating);
747 if (z_src_type.width > z_width) {
748 LLVMValueRef shift = lp_build_const_int_vec(gallivm, z_src_type,
749 z_src_type.width - z_width);
750 z_src = LLVMBuildLShr(builder, z_src, shift, "");
751 }
752 }
753 assert(lp_check_value(z_type, z_src));
754
755 lp_build_name(z_src, "z_src");
756
757 /* compare src Z to dst Z, returning 'pass' mask */
758 z_pass = lp_build_cmp(&z_bld, depth->func, z_src, z_dst);
759
760 if (!stencil[0].enabled) {
761 /* We can potentially skip all remaining operations here, but only
762 * if stencil is disabled because we still need to update the stencil
763 * buffer values. Don't need to update Z buffer values.
764 */
765 lp_build_mask_update(mask, z_pass);
766
767 if (do_branch) {
768 lp_build_mask_check(mask);
769 do_branch = FALSE;
770 }
771 }
772
773 if (depth->writemask) {
774 LLVMValueRef zselectmask;
775
776 /* mask off bits that failed Z test */
777 zselectmask = LLVMBuildAnd(builder, orig_mask, z_pass, "");
778
779 /* mask off bits that failed stencil test */
780 if (s_pass_mask) {
781 zselectmask = LLVMBuildAnd(builder, zselectmask, s_pass_mask, "");
782 }
783
784 /* Mix the old and new Z buffer values.
785 * z_dst[i] = zselectmask[i] ? z_src[i] : z_dst[i]
786 */
787 z_dst = lp_build_select(&z_bld, zselectmask, z_src, z_dst);
788 }
789
790 if (stencil[0].enabled) {
791 /* update stencil buffer values according to z pass/fail result */
792 LLVMValueRef z_fail_mask, z_pass_mask;
793
794 /* apply Z-fail operator */
795 z_fail_mask = lp_build_andnot(&z_bld, orig_mask, z_pass);
796 stencil_vals = lp_build_stencil_op(&s_bld, stencil, Z_FAIL_OP,
797 stencil_refs, stencil_vals,
798 z_fail_mask, front_facing);
799
800 /* apply Z-pass operator */
801 z_pass_mask = LLVMBuildAnd(builder, orig_mask, z_pass, "");
802 stencil_vals = lp_build_stencil_op(&s_bld, stencil, Z_PASS_OP,
803 stencil_refs, stencil_vals,
804 z_pass_mask, front_facing);
805 }
806 }
807 else {
808 /* No depth test: apply Z-pass operator to stencil buffer values which
809 * passed the stencil test.
810 */
811 s_pass_mask = LLVMBuildAnd(builder, orig_mask, s_pass_mask, "");
812 stencil_vals = lp_build_stencil_op(&s_bld, stencil, Z_PASS_OP,
813 stencil_refs, stencil_vals,
814 s_pass_mask, front_facing);
815 }
816
817 /* Put Z and ztencil bits in the right place */
818 if (z_dst && z_shift) {
819 LLVMValueRef shift = lp_build_const_int_vec(gallivm, z_type, z_shift);
820 z_dst = LLVMBuildShl(builder, z_dst, shift, "");
821 }
822 if (stencil_vals && stencil_shift)
823 stencil_vals = LLVMBuildShl(builder, stencil_vals,
824 stencil_shift, "");
825
826 /* Finally, merge/store the z/stencil values */
827 if ((depth->enabled && depth->writemask) ||
828 (stencil[0].enabled && stencil[0].writemask)) {
829
830 if (z_dst && stencil_vals)
831 zs_dst = LLVMBuildOr(builder, z_dst, stencil_vals, "");
832 else if (z_dst)
833 zs_dst = z_dst;
834 else
835 zs_dst = stencil_vals;
836
837 *zs_value = zs_dst;
838 }
839
840 if (s_pass_mask)
841 lp_build_mask_update(mask, s_pass_mask);
842
843 if (depth->enabled && stencil[0].enabled)
844 lp_build_mask_update(mask, z_pass);
845
846 if (do_branch)
847 lp_build_mask_check(mask);
848
849 }
850
851
852 void
853 lp_build_depth_write(LLVMBuilderRef builder,
854 const struct util_format_description *format_desc,
855 LLVMValueRef zs_dst_ptr,
856 LLVMValueRef zs_value)
857 {
858 zs_dst_ptr = LLVMBuildBitCast(builder, zs_dst_ptr,
859 LLVMPointerType(LLVMTypeOf(zs_value), 0), "");
860
861 LLVMBuildStore(builder, zs_value, zs_dst_ptr);
862 }
863
864
865 void
866 lp_build_deferred_depth_write(struct gallivm_state *gallivm,
867 struct lp_type z_src_type,
868 const struct util_format_description *format_desc,
869 struct lp_build_mask_context *mask,
870 LLVMValueRef zs_dst_ptr,
871 LLVMValueRef zs_value)
872 {
873 struct lp_type z_type;
874 struct lp_build_context z_bld;
875 LLVMValueRef z_dst;
876 LLVMBuilderRef builder = gallivm->builder;
877
878 /* XXX: pointlessly redo type logic:
879 */
880 z_type = lp_depth_type(format_desc, z_src_type.width*z_src_type.length);
881 lp_build_context_init(&z_bld, gallivm, z_type);
882
883 zs_dst_ptr = LLVMBuildBitCast(builder, zs_dst_ptr,
884 LLVMPointerType(z_bld.vec_type, 0), "");
885
886 z_dst = LLVMBuildLoad(builder, zs_dst_ptr, "zsbufval");
887 z_dst = lp_build_select(&z_bld, lp_build_mask_value(mask), zs_value, z_dst);
888
889 LLVMBuildStore(builder, z_dst, zs_dst_ptr);
890 }