radeonsi: lower IO intrinsics - complete rewrite of input/output scanning
[mesa.git] / src / gallium / drivers / llvmpipe / lp_bld_depth.c
1 /**************************************************************************
2 *
3 * Copyright 2009-2010 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /**
29 * @file
30 * Depth/stencil testing to LLVM IR translation.
31 *
32 * To be done accurately/efficiently the depth/stencil test must be done with
33 * the same type/format of the depth/stencil buffer, which implies massaging
34 * the incoming depths to fit into place. Using a more straightforward
35 * type/format for depth/stencil values internally and only convert when
36 * flushing would avoid this, but it would most likely result in depth fighting
37 * artifacts.
38 *
39 * Since we're using linear layout for everything, but we need to deal with
40 * 2x2 quads, we need to load/store multiple values and swizzle them into
41 * place (we could avoid this by doing depth/stencil testing in linear format,
42 * which would be easy for late depth/stencil test as we could do that after
43 * the fragment shader loop just as we do for color buffers, but more tricky
44 * for early depth test as we'd need both masks and interpolated depth in
45 * linear format).
46 *
47 *
48 * @author Jose Fonseca <jfonseca@vmware.com>
49 * @author Brian Paul <jfonseca@vmware.com>
50 */
51
52 #include "pipe/p_state.h"
53 #include "util/format/u_format.h"
54 #include "util/u_cpu_detect.h"
55
56 #include "gallivm/lp_bld_type.h"
57 #include "gallivm/lp_bld_arit.h"
58 #include "gallivm/lp_bld_bitarit.h"
59 #include "gallivm/lp_bld_const.h"
60 #include "gallivm/lp_bld_conv.h"
61 #include "gallivm/lp_bld_logic.h"
62 #include "gallivm/lp_bld_flow.h"
63 #include "gallivm/lp_bld_intr.h"
64 #include "gallivm/lp_bld_debug.h"
65 #include "gallivm/lp_bld_swizzle.h"
66 #include "gallivm/lp_bld_pack.h"
67
68 #include "lp_bld_depth.h"
69
70
71 /** Used to select fields from pipe_stencil_state */
72 enum stencil_op {
73 S_FAIL_OP,
74 Z_FAIL_OP,
75 Z_PASS_OP
76 };
77
78
79
80 /**
81 * Do the stencil test comparison (compare FB stencil values against ref value).
82 * This will be used twice when generating two-sided stencil code.
83 * \param stencil the front/back stencil state
84 * \param stencilRef the stencil reference value, replicated as a vector
85 * \param stencilVals vector of stencil values from framebuffer
86 * \return vector mask of pass/fail values (~0 or 0)
87 */
88 static LLVMValueRef
89 lp_build_stencil_test_single(struct lp_build_context *bld,
90 const struct pipe_stencil_state *stencil,
91 LLVMValueRef stencilRef,
92 LLVMValueRef stencilVals)
93 {
94 LLVMBuilderRef builder = bld->gallivm->builder;
95 const unsigned stencilMax = 255; /* XXX fix */
96 struct lp_type type = bld->type;
97 LLVMValueRef res;
98
99 /*
100 * SSE2 has intrinsics for signed comparisons, but not unsigned ones. Values
101 * are between 0..255 so ensure we generate the fastest comparisons for
102 * wider elements.
103 */
104 if (type.width <= 8) {
105 assert(!type.sign);
106 } else {
107 assert(type.sign);
108 }
109
110 assert(stencil->enabled);
111
112 if (stencil->valuemask != stencilMax) {
113 /* compute stencilRef = stencilRef & valuemask */
114 LLVMValueRef valuemask = lp_build_const_int_vec(bld->gallivm, type, stencil->valuemask);
115 stencilRef = LLVMBuildAnd(builder, stencilRef, valuemask, "");
116 /* compute stencilVals = stencilVals & valuemask */
117 stencilVals = LLVMBuildAnd(builder, stencilVals, valuemask, "");
118 }
119
120 res = lp_build_cmp(bld, stencil->func, stencilRef, stencilVals);
121
122 return res;
123 }
124
125
126 /**
127 * Do the one or two-sided stencil test comparison.
128 * \sa lp_build_stencil_test_single
129 * \param front_facing an integer vector mask, indicating front (~0) or back
130 * (0) facing polygon. If NULL, assume front-facing.
131 */
132 static LLVMValueRef
133 lp_build_stencil_test(struct lp_build_context *bld,
134 const struct pipe_stencil_state stencil[2],
135 LLVMValueRef stencilRefs[2],
136 LLVMValueRef stencilVals,
137 LLVMValueRef front_facing)
138 {
139 LLVMValueRef res;
140
141 assert(stencil[0].enabled);
142
143 /* do front face test */
144 res = lp_build_stencil_test_single(bld, &stencil[0],
145 stencilRefs[0], stencilVals);
146
147 if (stencil[1].enabled && front_facing != NULL) {
148 /* do back face test */
149 LLVMValueRef back_res;
150
151 back_res = lp_build_stencil_test_single(bld, &stencil[1],
152 stencilRefs[1], stencilVals);
153
154 res = lp_build_select(bld, front_facing, res, back_res);
155 }
156
157 return res;
158 }
159
160
161 /**
162 * Apply the stencil operator (add/sub/keep/etc) to the given vector
163 * of stencil values.
164 * \return new stencil values vector
165 */
166 static LLVMValueRef
167 lp_build_stencil_op_single(struct lp_build_context *bld,
168 const struct pipe_stencil_state *stencil,
169 enum stencil_op op,
170 LLVMValueRef stencilRef,
171 LLVMValueRef stencilVals)
172
173 {
174 LLVMBuilderRef builder = bld->gallivm->builder;
175 struct lp_type type = bld->type;
176 LLVMValueRef res;
177 LLVMValueRef max = lp_build_const_int_vec(bld->gallivm, type, 0xff);
178 unsigned stencil_op;
179
180 assert(type.sign);
181
182 switch (op) {
183 case S_FAIL_OP:
184 stencil_op = stencil->fail_op;
185 break;
186 case Z_FAIL_OP:
187 stencil_op = stencil->zfail_op;
188 break;
189 case Z_PASS_OP:
190 stencil_op = stencil->zpass_op;
191 break;
192 default:
193 assert(0 && "Invalid stencil_op mode");
194 stencil_op = PIPE_STENCIL_OP_KEEP;
195 }
196
197 switch (stencil_op) {
198 case PIPE_STENCIL_OP_KEEP:
199 res = stencilVals;
200 /* we can return early for this case */
201 return res;
202 case PIPE_STENCIL_OP_ZERO:
203 res = bld->zero;
204 break;
205 case PIPE_STENCIL_OP_REPLACE:
206 res = stencilRef;
207 break;
208 case PIPE_STENCIL_OP_INCR:
209 res = lp_build_add(bld, stencilVals, bld->one);
210 res = lp_build_min(bld, res, max);
211 break;
212 case PIPE_STENCIL_OP_DECR:
213 res = lp_build_sub(bld, stencilVals, bld->one);
214 res = lp_build_max(bld, res, bld->zero);
215 break;
216 case PIPE_STENCIL_OP_INCR_WRAP:
217 res = lp_build_add(bld, stencilVals, bld->one);
218 res = LLVMBuildAnd(builder, res, max, "");
219 break;
220 case PIPE_STENCIL_OP_DECR_WRAP:
221 res = lp_build_sub(bld, stencilVals, bld->one);
222 res = LLVMBuildAnd(builder, res, max, "");
223 break;
224 case PIPE_STENCIL_OP_INVERT:
225 res = LLVMBuildNot(builder, stencilVals, "");
226 res = LLVMBuildAnd(builder, res, max, "");
227 break;
228 default:
229 assert(0 && "bad stencil op mode");
230 res = bld->undef;
231 }
232
233 return res;
234 }
235
236
237 /**
238 * Do the one or two-sided stencil test op/update.
239 */
240 static LLVMValueRef
241 lp_build_stencil_op(struct lp_build_context *bld,
242 const struct pipe_stencil_state stencil[2],
243 enum stencil_op op,
244 LLVMValueRef stencilRefs[2],
245 LLVMValueRef stencilVals,
246 LLVMValueRef mask,
247 LLVMValueRef front_facing)
248
249 {
250 LLVMBuilderRef builder = bld->gallivm->builder;
251 LLVMValueRef res;
252
253 assert(stencil[0].enabled);
254
255 /* do front face op */
256 res = lp_build_stencil_op_single(bld, &stencil[0], op,
257 stencilRefs[0], stencilVals);
258
259 if (stencil[1].enabled && front_facing != NULL) {
260 /* do back face op */
261 LLVMValueRef back_res;
262
263 back_res = lp_build_stencil_op_single(bld, &stencil[1], op,
264 stencilRefs[1], stencilVals);
265
266 res = lp_build_select(bld, front_facing, res, back_res);
267 }
268
269 if (stencil[0].writemask != 0xff ||
270 (stencil[1].enabled && front_facing != NULL && stencil[1].writemask != 0xff)) {
271 /* mask &= stencil[0].writemask */
272 LLVMValueRef writemask = lp_build_const_int_vec(bld->gallivm, bld->type,
273 stencil[0].writemask);
274 if (stencil[1].enabled && stencil[1].writemask != stencil[0].writemask && front_facing != NULL) {
275 LLVMValueRef back_writemask = lp_build_const_int_vec(bld->gallivm, bld->type,
276 stencil[1].writemask);
277 writemask = lp_build_select(bld, front_facing, writemask, back_writemask);
278 }
279
280 mask = LLVMBuildAnd(builder, mask, writemask, "");
281 /* res = (res & mask) | (stencilVals & ~mask) */
282 res = lp_build_select_bitwise(bld, mask, res, stencilVals);
283 }
284 else {
285 /* res = mask ? res : stencilVals */
286 res = lp_build_select(bld, mask, res, stencilVals);
287 }
288
289 return res;
290 }
291
292
293
294 /**
295 * Return a type that matches the depth/stencil format.
296 */
297 struct lp_type
298 lp_depth_type(const struct util_format_description *format_desc,
299 unsigned length)
300 {
301 struct lp_type type;
302 unsigned z_swizzle;
303
304 assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_ZS);
305 assert(format_desc->block.width == 1);
306 assert(format_desc->block.height == 1);
307
308 memset(&type, 0, sizeof type);
309 type.width = format_desc->block.bits;
310
311 z_swizzle = format_desc->swizzle[0];
312 if (z_swizzle < 4) {
313 if (format_desc->channel[z_swizzle].type == UTIL_FORMAT_TYPE_FLOAT) {
314 type.floating = TRUE;
315 assert(z_swizzle == 0);
316 assert(format_desc->channel[z_swizzle].size == 32);
317 }
318 else if(format_desc->channel[z_swizzle].type == UTIL_FORMAT_TYPE_UNSIGNED) {
319 assert(format_desc->block.bits <= 32);
320 assert(format_desc->channel[z_swizzle].normalized);
321 if (format_desc->channel[z_swizzle].size < format_desc->block.bits) {
322 /* Prefer signed integers when possible, as SSE has less support
323 * for unsigned comparison;
324 */
325 type.sign = TRUE;
326 }
327 }
328 else
329 assert(0);
330 }
331
332 type.length = length;
333
334 return type;
335 }
336
337
338 /**
339 * Compute bitmask and bit shift to apply to the incoming fragment Z values
340 * and the Z buffer values needed before doing the Z comparison.
341 *
342 * Note that we leave the Z bits in the position that we find them
343 * in the Z buffer (typically 0xffffff00 or 0x00ffffff). That lets us
344 * get by with fewer bit twiddling steps.
345 */
346 static boolean
347 get_z_shift_and_mask(const struct util_format_description *format_desc,
348 unsigned *shift, unsigned *width, unsigned *mask)
349 {
350 unsigned total_bits;
351 unsigned z_swizzle;
352
353 assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_ZS);
354 assert(format_desc->block.width == 1);
355 assert(format_desc->block.height == 1);
356
357 /* 64bit d/s format is special already extracted 32 bits */
358 total_bits = format_desc->block.bits > 32 ? 32 : format_desc->block.bits;
359
360 z_swizzle = format_desc->swizzle[0];
361
362 if (z_swizzle == PIPE_SWIZZLE_NONE)
363 return FALSE;
364
365 *width = format_desc->channel[z_swizzle].size;
366 /* & 31 is for the same reason as the 32-bit limit above */
367 *shift = format_desc->channel[z_swizzle].shift & 31;
368
369 if (*width == total_bits) {
370 *mask = 0xffffffff;
371 } else {
372 *mask = ((1 << *width) - 1) << *shift;
373 }
374
375 return TRUE;
376 }
377
378
379 /**
380 * Compute bitmask and bit shift to apply to the framebuffer pixel values
381 * to put the stencil bits in the least significant position.
382 * (i.e. 0x000000ff)
383 */
384 static boolean
385 get_s_shift_and_mask(const struct util_format_description *format_desc,
386 unsigned *shift, unsigned *mask)
387 {
388 unsigned s_swizzle;
389 unsigned sz;
390
391 s_swizzle = format_desc->swizzle[1];
392
393 if (s_swizzle == PIPE_SWIZZLE_NONE)
394 return FALSE;
395
396 /* just special case 64bit d/s format */
397 if (format_desc->block.bits > 32) {
398 /* XXX big-endian? */
399 assert(format_desc->format == PIPE_FORMAT_Z32_FLOAT_S8X24_UINT);
400 *shift = 0;
401 *mask = 0xff;
402 return TRUE;
403 }
404
405 *shift = format_desc->channel[s_swizzle].shift;
406 sz = format_desc->channel[s_swizzle].size;
407 *mask = (1U << sz) - 1U;
408
409 return TRUE;
410 }
411
412
413 /**
414 * Perform the occlusion test and increase the counter.
415 * Test the depth mask. Add the number of channel which has none zero mask
416 * into the occlusion counter. e.g. maskvalue is {-1, -1, -1, -1}.
417 * The counter will add 4.
418 * TODO: could get that out of the fs loop.
419 *
420 * \param type holds element type of the mask vector.
421 * \param maskvalue is the depth test mask.
422 * \param counter is a pointer of the uint32 counter.
423 */
424 void
425 lp_build_occlusion_count(struct gallivm_state *gallivm,
426 struct lp_type type,
427 LLVMValueRef maskvalue,
428 LLVMValueRef counter)
429 {
430 LLVMBuilderRef builder = gallivm->builder;
431 LLVMContextRef context = gallivm->context;
432 LLVMValueRef countmask = lp_build_const_int_vec(gallivm, type, 1);
433 LLVMValueRef count, newcount;
434
435 assert(type.length <= 16);
436 assert(type.floating);
437
438 if(util_cpu_caps.has_sse && type.length == 4) {
439 const char *movmskintr = "llvm.x86.sse.movmsk.ps";
440 const char *popcntintr = "llvm.ctpop.i32";
441 LLVMValueRef bits = LLVMBuildBitCast(builder, maskvalue,
442 lp_build_vec_type(gallivm, type), "");
443 bits = lp_build_intrinsic_unary(builder, movmskintr,
444 LLVMInt32TypeInContext(context), bits);
445 count = lp_build_intrinsic_unary(builder, popcntintr,
446 LLVMInt32TypeInContext(context), bits);
447 count = LLVMBuildZExt(builder, count, LLVMIntTypeInContext(context, 64), "");
448 }
449 else if(util_cpu_caps.has_avx && type.length == 8) {
450 const char *movmskintr = "llvm.x86.avx.movmsk.ps.256";
451 const char *popcntintr = "llvm.ctpop.i32";
452 LLVMValueRef bits = LLVMBuildBitCast(builder, maskvalue,
453 lp_build_vec_type(gallivm, type), "");
454 bits = lp_build_intrinsic_unary(builder, movmskintr,
455 LLVMInt32TypeInContext(context), bits);
456 count = lp_build_intrinsic_unary(builder, popcntintr,
457 LLVMInt32TypeInContext(context), bits);
458 count = LLVMBuildZExt(builder, count, LLVMIntTypeInContext(context, 64), "");
459 }
460 else {
461 unsigned i;
462 LLVMValueRef countv = LLVMBuildAnd(builder, maskvalue, countmask, "countv");
463 LLVMTypeRef counttype = LLVMIntTypeInContext(context, type.length * 8);
464 LLVMTypeRef i8vntype = LLVMVectorType(LLVMInt8TypeInContext(context), type.length * 4);
465 LLVMValueRef shufflev, countd;
466 LLVMValueRef shuffles[16];
467 const char *popcntintr = NULL;
468
469 countv = LLVMBuildBitCast(builder, countv, i8vntype, "");
470
471 for (i = 0; i < type.length; i++) {
472 #if UTIL_ARCH_LITTLE_ENDIAN
473 shuffles[i] = lp_build_const_int32(gallivm, 4*i);
474 #else
475 shuffles[i] = lp_build_const_int32(gallivm, (4*i) + 3);
476 #endif
477 }
478
479 shufflev = LLVMConstVector(shuffles, type.length);
480 countd = LLVMBuildShuffleVector(builder, countv, LLVMGetUndef(i8vntype), shufflev, "");
481 countd = LLVMBuildBitCast(builder, countd, counttype, "countd");
482
483 /*
484 * XXX FIXME
485 * this is bad on cpus without popcount (on x86 supported by intel
486 * nehalem, amd barcelona, and up - not tied to sse42).
487 * Would be much faster to just sum the 4 elements of the vector with
488 * some horizontal add (shuffle/add/shuffle/add after the initial and).
489 */
490 switch (type.length) {
491 case 4:
492 popcntintr = "llvm.ctpop.i32";
493 break;
494 case 8:
495 popcntintr = "llvm.ctpop.i64";
496 break;
497 case 16:
498 popcntintr = "llvm.ctpop.i128";
499 break;
500 default:
501 assert(0);
502 }
503 count = lp_build_intrinsic_unary(builder, popcntintr, counttype, countd);
504
505 if (type.length > 8) {
506 count = LLVMBuildTrunc(builder, count, LLVMIntTypeInContext(context, 64), "");
507 }
508 else if (type.length < 8) {
509 count = LLVMBuildZExt(builder, count, LLVMIntTypeInContext(context, 64), "");
510 }
511 }
512 newcount = LLVMBuildLoad(builder, counter, "origcount");
513 newcount = LLVMBuildAdd(builder, newcount, count, "newcount");
514 LLVMBuildStore(builder, newcount, counter);
515 }
516
517
518 /**
519 * Load depth/stencil values.
520 * The stored values are linear, swizzle them.
521 *
522 * \param type the data type of the fragment depth/stencil values
523 * \param format_desc description of the depth/stencil surface
524 * \param is_1d whether this resource has only one dimension
525 * \param loop_counter the current loop iteration
526 * \param depth_ptr pointer to the depth/stencil values of this 4x4 block
527 * \param depth_stride stride of the depth/stencil buffer
528 * \param z_fb contains z values loaded from fb (may include padding)
529 * \param s_fb contains s values loaded from fb (may include padding)
530 */
531 void
532 lp_build_depth_stencil_load_swizzled(struct gallivm_state *gallivm,
533 struct lp_type z_src_type,
534 const struct util_format_description *format_desc,
535 boolean is_1d,
536 LLVMValueRef depth_ptr,
537 LLVMValueRef depth_stride,
538 LLVMValueRef *z_fb,
539 LLVMValueRef *s_fb,
540 LLVMValueRef loop_counter)
541 {
542 LLVMBuilderRef builder = gallivm->builder;
543 LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH / 4];
544 LLVMValueRef zs_dst1, zs_dst2;
545 LLVMValueRef zs_dst_ptr;
546 LLVMValueRef depth_offset1, depth_offset2;
547 LLVMTypeRef load_ptr_type;
548 unsigned depth_bytes = format_desc->block.bits / 8;
549 struct lp_type zs_type = lp_depth_type(format_desc, z_src_type.length);
550 struct lp_type zs_load_type = zs_type;
551
552 zs_load_type.length = zs_load_type.length / 2;
553 load_ptr_type = LLVMPointerType(lp_build_vec_type(gallivm, zs_load_type), 0);
554
555 if (z_src_type.length == 4) {
556 unsigned i;
557 LLVMValueRef looplsb = LLVMBuildAnd(builder, loop_counter,
558 lp_build_const_int32(gallivm, 1), "");
559 LLVMValueRef loopmsb = LLVMBuildAnd(builder, loop_counter,
560 lp_build_const_int32(gallivm, 2), "");
561 LLVMValueRef offset2 = LLVMBuildMul(builder, loopmsb,
562 depth_stride, "");
563 depth_offset1 = LLVMBuildMul(builder, looplsb,
564 lp_build_const_int32(gallivm, depth_bytes * 2), "");
565 depth_offset1 = LLVMBuildAdd(builder, depth_offset1, offset2, "");
566
567 /* just concatenate the loaded 2x2 values into 4-wide vector */
568 for (i = 0; i < 4; i++) {
569 shuffles[i] = lp_build_const_int32(gallivm, i);
570 }
571 }
572 else {
573 unsigned i;
574 LLVMValueRef loopx2 = LLVMBuildShl(builder, loop_counter,
575 lp_build_const_int32(gallivm, 1), "");
576 assert(z_src_type.length == 8);
577 depth_offset1 = LLVMBuildMul(builder, loopx2, depth_stride, "");
578 /*
579 * We load 2x4 values, and need to swizzle them (order
580 * 0,1,4,5,2,3,6,7) - not so hot with avx unfortunately.
581 */
582 for (i = 0; i < 8; i++) {
583 shuffles[i] = lp_build_const_int32(gallivm, (i&1) + (i&2) * 2 + (i&4) / 2);
584 }
585 }
586
587 depth_offset2 = LLVMBuildAdd(builder, depth_offset1, depth_stride, "");
588
589 /* Load current z/stencil values from z/stencil buffer */
590 zs_dst_ptr = LLVMBuildGEP(builder, depth_ptr, &depth_offset1, 1, "");
591 zs_dst_ptr = LLVMBuildBitCast(builder, zs_dst_ptr, load_ptr_type, "");
592 zs_dst1 = LLVMBuildLoad(builder, zs_dst_ptr, "");
593 if (is_1d) {
594 zs_dst2 = lp_build_undef(gallivm, zs_load_type);
595 }
596 else {
597 zs_dst_ptr = LLVMBuildGEP(builder, depth_ptr, &depth_offset2, 1, "");
598 zs_dst_ptr = LLVMBuildBitCast(builder, zs_dst_ptr, load_ptr_type, "");
599 zs_dst2 = LLVMBuildLoad(builder, zs_dst_ptr, "");
600 }
601
602 *z_fb = LLVMBuildShuffleVector(builder, zs_dst1, zs_dst2,
603 LLVMConstVector(shuffles, zs_type.length), "");
604 *s_fb = *z_fb;
605
606 if (format_desc->block.bits == 8) {
607 /* Extend stencil-only 8 bit values (S8_UINT) */
608 *s_fb = LLVMBuildZExt(builder, *s_fb,
609 lp_build_int_vec_type(gallivm, z_src_type), "");
610 }
611
612 if (format_desc->block.bits < z_src_type.width) {
613 /* Extend destination ZS values (e.g., when reading from Z16_UNORM) */
614 *z_fb = LLVMBuildZExt(builder, *z_fb,
615 lp_build_int_vec_type(gallivm, z_src_type), "");
616 }
617
618 else if (format_desc->block.bits > 32) {
619 /* rely on llvm to handle too wide vector we have here nicely */
620 unsigned i;
621 struct lp_type typex2 = zs_type;
622 struct lp_type s_type = zs_type;
623 LLVMValueRef shuffles1[LP_MAX_VECTOR_LENGTH / 4];
624 LLVMValueRef shuffles2[LP_MAX_VECTOR_LENGTH / 4];
625 LLVMValueRef tmp;
626
627 typex2.width = typex2.width / 2;
628 typex2.length = typex2.length * 2;
629 s_type.width = s_type.width / 2;
630 s_type.floating = 0;
631
632 tmp = LLVMBuildBitCast(builder, *z_fb,
633 lp_build_vec_type(gallivm, typex2), "");
634
635 for (i = 0; i < zs_type.length; i++) {
636 shuffles1[i] = lp_build_const_int32(gallivm, i * 2);
637 shuffles2[i] = lp_build_const_int32(gallivm, i * 2 + 1);
638 }
639 *z_fb = LLVMBuildShuffleVector(builder, tmp, tmp,
640 LLVMConstVector(shuffles1, zs_type.length), "");
641 *s_fb = LLVMBuildShuffleVector(builder, tmp, tmp,
642 LLVMConstVector(shuffles2, zs_type.length), "");
643 *s_fb = LLVMBuildBitCast(builder, *s_fb,
644 lp_build_vec_type(gallivm, s_type), "");
645 lp_build_name(*s_fb, "s_dst");
646 }
647
648 lp_build_name(*z_fb, "z_dst");
649 lp_build_name(*s_fb, "s_dst");
650 lp_build_name(*z_fb, "z_dst");
651 }
652
653 /**
654 * Store depth/stencil values.
655 * Incoming values are swizzled (typically n 2x2 quads), stored linear.
656 * If there's a mask it will do select/store otherwise just store.
657 *
658 * \param type the data type of the fragment depth/stencil values
659 * \param format_desc description of the depth/stencil surface
660 * \param is_1d whether this resource has only one dimension
661 * \param mask_value the alive/dead pixel mask for the quad (vector)
662 * \param z_fb z values read from fb (with padding)
663 * \param s_fb s values read from fb (with padding)
664 * \param loop_counter the current loop iteration
665 * \param depth_ptr pointer to the depth/stencil values of this 4x4 block
666 * \param depth_stride stride of the depth/stencil buffer
667 * \param z_value the depth values to store (with padding)
668 * \param s_value the stencil values to store (with padding)
669 */
670 void
671 lp_build_depth_stencil_write_swizzled(struct gallivm_state *gallivm,
672 struct lp_type z_src_type,
673 const struct util_format_description *format_desc,
674 boolean is_1d,
675 LLVMValueRef mask_value,
676 LLVMValueRef z_fb,
677 LLVMValueRef s_fb,
678 LLVMValueRef loop_counter,
679 LLVMValueRef depth_ptr,
680 LLVMValueRef depth_stride,
681 LLVMValueRef z_value,
682 LLVMValueRef s_value)
683 {
684 struct lp_build_context z_bld;
685 LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH / 4];
686 LLVMBuilderRef builder = gallivm->builder;
687 LLVMValueRef zs_dst1, zs_dst2;
688 LLVMValueRef zs_dst_ptr1, zs_dst_ptr2;
689 LLVMValueRef depth_offset1, depth_offset2;
690 LLVMTypeRef load_ptr_type;
691 unsigned depth_bytes = format_desc->block.bits / 8;
692 struct lp_type zs_type = lp_depth_type(format_desc, z_src_type.length);
693 struct lp_type z_type = zs_type;
694 struct lp_type zs_load_type = zs_type;
695
696 zs_load_type.length = zs_load_type.length / 2;
697 load_ptr_type = LLVMPointerType(lp_build_vec_type(gallivm, zs_load_type), 0);
698
699 z_type.width = z_src_type.width;
700
701 lp_build_context_init(&z_bld, gallivm, z_type);
702
703 /*
704 * This is far from ideal, at least for late depth write we should do this
705 * outside the fs loop to avoid all the swizzle stuff.
706 */
707 if (z_src_type.length == 4) {
708 LLVMValueRef looplsb = LLVMBuildAnd(builder, loop_counter,
709 lp_build_const_int32(gallivm, 1), "");
710 LLVMValueRef loopmsb = LLVMBuildAnd(builder, loop_counter,
711 lp_build_const_int32(gallivm, 2), "");
712 LLVMValueRef offset2 = LLVMBuildMul(builder, loopmsb,
713 depth_stride, "");
714 depth_offset1 = LLVMBuildMul(builder, looplsb,
715 lp_build_const_int32(gallivm, depth_bytes * 2), "");
716 depth_offset1 = LLVMBuildAdd(builder, depth_offset1, offset2, "");
717 }
718 else {
719 unsigned i;
720 LLVMValueRef loopx2 = LLVMBuildShl(builder, loop_counter,
721 lp_build_const_int32(gallivm, 1), "");
722 assert(z_src_type.length == 8);
723 depth_offset1 = LLVMBuildMul(builder, loopx2, depth_stride, "");
724 /*
725 * We load 2x4 values, and need to swizzle them (order
726 * 0,1,4,5,2,3,6,7) - not so hot with avx unfortunately.
727 */
728 for (i = 0; i < 8; i++) {
729 shuffles[i] = lp_build_const_int32(gallivm, (i&1) + (i&2) * 2 + (i&4) / 2);
730 }
731 }
732
733 depth_offset2 = LLVMBuildAdd(builder, depth_offset1, depth_stride, "");
734
735 zs_dst_ptr1 = LLVMBuildGEP(builder, depth_ptr, &depth_offset1, 1, "");
736 zs_dst_ptr1 = LLVMBuildBitCast(builder, zs_dst_ptr1, load_ptr_type, "");
737 zs_dst_ptr2 = LLVMBuildGEP(builder, depth_ptr, &depth_offset2, 1, "");
738 zs_dst_ptr2 = LLVMBuildBitCast(builder, zs_dst_ptr2, load_ptr_type, "");
739
740 if (format_desc->block.bits > 32) {
741 s_value = LLVMBuildBitCast(builder, s_value, z_bld.vec_type, "");
742 }
743
744 if (mask_value) {
745 z_value = lp_build_select(&z_bld, mask_value, z_value, z_fb);
746 if (format_desc->block.bits > 32) {
747 s_fb = LLVMBuildBitCast(builder, s_fb, z_bld.vec_type, "");
748 s_value = lp_build_select(&z_bld, mask_value, s_value, s_fb);
749 }
750 }
751
752 if (zs_type.width < z_src_type.width) {
753 /* Truncate ZS values (e.g., when writing to Z16_UNORM) */
754 z_value = LLVMBuildTrunc(builder, z_value,
755 lp_build_int_vec_type(gallivm, zs_type), "");
756 }
757
758 if (format_desc->block.bits <= 32) {
759 if (z_src_type.length == 4) {
760 zs_dst1 = lp_build_extract_range(gallivm, z_value, 0, 2);
761 zs_dst2 = lp_build_extract_range(gallivm, z_value, 2, 2);
762 }
763 else {
764 assert(z_src_type.length == 8);
765 zs_dst1 = LLVMBuildShuffleVector(builder, z_value, z_value,
766 LLVMConstVector(&shuffles[0],
767 zs_load_type.length), "");
768 zs_dst2 = LLVMBuildShuffleVector(builder, z_value, z_value,
769 LLVMConstVector(&shuffles[4],
770 zs_load_type.length), "");
771 }
772 }
773 else {
774 if (z_src_type.length == 4) {
775 zs_dst1 = lp_build_interleave2(gallivm, z_type,
776 z_value, s_value, 0);
777 zs_dst2 = lp_build_interleave2(gallivm, z_type,
778 z_value, s_value, 1);
779 }
780 else {
781 unsigned i;
782 LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH / 2];
783 assert(z_src_type.length == 8);
784 for (i = 0; i < 8; i++) {
785 shuffles[i*2] = lp_build_const_int32(gallivm, (i&1) + (i&2) * 2 + (i&4) / 2);
786 shuffles[i*2+1] = lp_build_const_int32(gallivm, (i&1) + (i&2) * 2 + (i&4) / 2 +
787 z_src_type.length);
788 }
789 zs_dst1 = LLVMBuildShuffleVector(builder, z_value, s_value,
790 LLVMConstVector(&shuffles[0],
791 z_src_type.length), "");
792 zs_dst2 = LLVMBuildShuffleVector(builder, z_value, s_value,
793 LLVMConstVector(&shuffles[8],
794 z_src_type.length), "");
795 }
796 zs_dst1 = LLVMBuildBitCast(builder, zs_dst1,
797 lp_build_vec_type(gallivm, zs_load_type), "");
798 zs_dst2 = LLVMBuildBitCast(builder, zs_dst2,
799 lp_build_vec_type(gallivm, zs_load_type), "");
800 }
801
802 LLVMBuildStore(builder, zs_dst1, zs_dst_ptr1);
803 if (!is_1d) {
804 LLVMBuildStore(builder, zs_dst2, zs_dst_ptr2);
805 }
806 }
807
808 /**
809 * Generate code for performing depth and/or stencil tests.
810 * We operate on a vector of values (typically n 2x2 quads).
811 *
812 * \param depth the depth test state
813 * \param stencil the front/back stencil state
814 * \param type the data type of the fragment depth/stencil values
815 * \param format_desc description of the depth/stencil surface
816 * \param mask the alive/dead pixel mask for the quad (vector)
817 * \param cov_mask coverage mask
818 * \param stencil_refs the front/back stencil ref values (scalar)
819 * \param z_src the incoming depth/stencil values (n 2x2 quad values, float32)
820 * \param zs_dst the depth/stencil values in framebuffer
821 * \param face contains boolean value indicating front/back facing polygon
822 */
823 void
824 lp_build_depth_stencil_test(struct gallivm_state *gallivm,
825 const struct pipe_depth_state *depth,
826 const struct pipe_stencil_state stencil[2],
827 struct lp_type z_src_type,
828 const struct util_format_description *format_desc,
829 struct lp_build_mask_context *mask,
830 LLVMValueRef *cov_mask,
831 LLVMValueRef stencil_refs[2],
832 LLVMValueRef z_src,
833 LLVMValueRef z_fb,
834 LLVMValueRef s_fb,
835 LLVMValueRef face,
836 LLVMValueRef *z_value,
837 LLVMValueRef *s_value,
838 boolean do_branch)
839 {
840 LLVMBuilderRef builder = gallivm->builder;
841 struct lp_type z_type;
842 struct lp_build_context z_bld;
843 struct lp_build_context s_bld;
844 struct lp_type s_type;
845 unsigned z_shift = 0, z_width = 0, z_mask = 0;
846 LLVMValueRef z_dst = NULL;
847 LLVMValueRef stencil_vals = NULL;
848 LLVMValueRef z_bitmask = NULL, stencil_shift = NULL;
849 LLVMValueRef z_pass = NULL, s_pass_mask = NULL;
850 LLVMValueRef current_mask = mask ? lp_build_mask_value(mask) : *cov_mask;
851 LLVMValueRef front_facing = NULL;
852 boolean have_z, have_s;
853
854 /*
855 * Depths are expected to be between 0 and 1, even if they are stored in
856 * floats. Setting these bits here will ensure that the lp_build_conv() call
857 * below won't try to unnecessarily clamp the incoming values.
858 */
859 if(z_src_type.floating) {
860 z_src_type.sign = FALSE;
861 z_src_type.norm = TRUE;
862 }
863 else {
864 assert(!z_src_type.sign);
865 assert(z_src_type.norm);
866 }
867
868 /* Pick the type matching the depth-stencil format. */
869 z_type = lp_depth_type(format_desc, z_src_type.length);
870
871 /* Pick the intermediate type for depth operations. */
872 z_type.width = z_src_type.width;
873 assert(z_type.length == z_src_type.length);
874
875 /* FIXME: for non-float depth/stencil might generate better code
876 * if we'd always split it up to use 128bit operations.
877 * For stencil we'd almost certainly want to pack to 8xi16 values,
878 * for z just run twice.
879 */
880
881 /* Sanity checking */
882 {
883 const unsigned z_swizzle = format_desc->swizzle[0];
884 const unsigned s_swizzle = format_desc->swizzle[1];
885
886 assert(z_swizzle != PIPE_SWIZZLE_NONE ||
887 s_swizzle != PIPE_SWIZZLE_NONE);
888
889 assert(depth->enabled || stencil[0].enabled);
890
891 assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_ZS);
892 assert(format_desc->block.width == 1);
893 assert(format_desc->block.height == 1);
894
895 if (stencil[0].enabled) {
896 assert(s_swizzle < 4);
897 assert(format_desc->channel[s_swizzle].type == UTIL_FORMAT_TYPE_UNSIGNED);
898 assert(format_desc->channel[s_swizzle].pure_integer);
899 assert(!format_desc->channel[s_swizzle].normalized);
900 assert(format_desc->channel[s_swizzle].size == 8);
901 }
902
903 if (depth->enabled) {
904 assert(z_swizzle < 4);
905 if (z_type.floating) {
906 assert(z_swizzle == 0);
907 assert(format_desc->channel[z_swizzle].type ==
908 UTIL_FORMAT_TYPE_FLOAT);
909 assert(format_desc->channel[z_swizzle].size == 32);
910 }
911 else {
912 assert(format_desc->channel[z_swizzle].type ==
913 UTIL_FORMAT_TYPE_UNSIGNED);
914 assert(format_desc->channel[z_swizzle].normalized);
915 assert(!z_type.fixed);
916 }
917 }
918 }
919
920
921 /* Setup build context for Z vals */
922 lp_build_context_init(&z_bld, gallivm, z_type);
923
924 /* Setup build context for stencil vals */
925 s_type = lp_int_type(z_type);
926 lp_build_context_init(&s_bld, gallivm, s_type);
927
928 /* Compute and apply the Z/stencil bitmasks and shifts.
929 */
930 {
931 unsigned s_shift, s_mask;
932
933 z_dst = z_fb;
934 stencil_vals = s_fb;
935
936 have_z = get_z_shift_and_mask(format_desc, &z_shift, &z_width, &z_mask);
937 have_s = get_s_shift_and_mask(format_desc, &s_shift, &s_mask);
938
939 if (have_z) {
940 if (z_mask != 0xffffffff) {
941 z_bitmask = lp_build_const_int_vec(gallivm, z_type, z_mask);
942 }
943
944 /*
945 * Align the framebuffer Z 's LSB to the right.
946 */
947 if (z_shift) {
948 LLVMValueRef shift = lp_build_const_int_vec(gallivm, z_type, z_shift);
949 z_dst = LLVMBuildLShr(builder, z_dst, shift, "z_dst");
950 } else if (z_bitmask) {
951 z_dst = LLVMBuildAnd(builder, z_dst, z_bitmask, "z_dst");
952 } else {
953 lp_build_name(z_dst, "z_dst");
954 }
955 }
956
957 if (have_s) {
958 if (s_shift) {
959 LLVMValueRef shift = lp_build_const_int_vec(gallivm, s_type, s_shift);
960 stencil_vals = LLVMBuildLShr(builder, stencil_vals, shift, "");
961 stencil_shift = shift; /* used below */
962 }
963
964 if (s_mask != 0xffffffff) {
965 LLVMValueRef mask = lp_build_const_int_vec(gallivm, s_type, s_mask);
966 stencil_vals = LLVMBuildAnd(builder, stencil_vals, mask, "");
967 }
968
969 lp_build_name(stencil_vals, "s_dst");
970 }
971 }
972
973 if (stencil[0].enabled) {
974
975 if (face) {
976 if (0) {
977 /*
978 * XXX: the scalar expansion below produces atrocious code
979 * (basically producing a 64bit scalar value, then moving the 2
980 * 32bit pieces separately to simd, plus 4 shuffles, which is
981 * seriously lame). But the scalar-simd transitions are always
982 * tricky, so no big surprise there.
983 * This here would be way better, however llvm has some serious
984 * trouble later using it in the select, probably because it will
985 * recognize the expression as constant and move the simd value
986 * away (out of the loop) - and then it will suddenly try
987 * constructing i1 high-bit masks out of it later...
988 * (Try piglit stencil-twoside.)
989 * Note this is NOT due to using SExt/Trunc, it fails exactly the
990 * same even when using native compare/select.
991 * I cannot reproduce this problem when using stand-alone compiler
992 * though, suggesting some problem with optimization passes...
993 * (With stand-alone compilation, the construction of this mask
994 * value, no matter if the easy 3 instruction here or the complex
995 * 16+ one below, never gets separated from where it's used.)
996 * The scalar code still has the same problem, but the generated
997 * code looks a bit better at least for some reason, even if
998 * mostly by luck (the fundamental issue clearly is the same).
999 */
1000 front_facing = lp_build_broadcast(gallivm, s_bld.vec_type, face);
1001 /* front_facing = face != 0 ? ~0 : 0 */
1002 front_facing = lp_build_compare(gallivm, s_bld.type,
1003 PIPE_FUNC_NOTEQUAL,
1004 front_facing, s_bld.zero);
1005 } else {
1006 LLVMValueRef zero = lp_build_const_int32(gallivm, 0);
1007
1008 /* front_facing = face != 0 ? ~0 : 0 */
1009 front_facing = LLVMBuildICmp(builder, LLVMIntNE, face, zero, "");
1010 front_facing = LLVMBuildSExt(builder, front_facing,
1011 LLVMIntTypeInContext(gallivm->context,
1012 s_bld.type.length*s_bld.type.width),
1013 "");
1014 front_facing = LLVMBuildBitCast(builder, front_facing,
1015 s_bld.int_vec_type, "");
1016
1017 }
1018 }
1019
1020 s_pass_mask = lp_build_stencil_test(&s_bld, stencil,
1021 stencil_refs, stencil_vals,
1022 front_facing);
1023
1024 /* apply stencil-fail operator */
1025 {
1026 LLVMValueRef s_fail_mask = lp_build_andnot(&s_bld, current_mask, s_pass_mask);
1027 stencil_vals = lp_build_stencil_op(&s_bld, stencil, S_FAIL_OP,
1028 stencil_refs, stencil_vals,
1029 s_fail_mask, front_facing);
1030 }
1031 }
1032
1033 if (depth->enabled) {
1034 /*
1035 * Convert fragment Z to the desired type, aligning the LSB to the right.
1036 */
1037
1038 assert(z_type.width == z_src_type.width);
1039 assert(z_type.length == z_src_type.length);
1040 assert(lp_check_value(z_src_type, z_src));
1041 if (z_src_type.floating) {
1042 /*
1043 * Convert from floating point values
1044 */
1045
1046 if (!z_type.floating) {
1047 z_src = lp_build_clamped_float_to_unsigned_norm(gallivm,
1048 z_src_type,
1049 z_width,
1050 z_src);
1051 }
1052 } else {
1053 /*
1054 * Convert from unsigned normalized values.
1055 */
1056
1057 assert(!z_src_type.sign);
1058 assert(!z_src_type.fixed);
1059 assert(z_src_type.norm);
1060 assert(!z_type.floating);
1061 if (z_src_type.width > z_width) {
1062 LLVMValueRef shift = lp_build_const_int_vec(gallivm, z_src_type,
1063 z_src_type.width - z_width);
1064 z_src = LLVMBuildLShr(builder, z_src, shift, "");
1065 }
1066 }
1067 assert(lp_check_value(z_type, z_src));
1068
1069 lp_build_name(z_src, "z_src");
1070
1071 /* compare src Z to dst Z, returning 'pass' mask */
1072 z_pass = lp_build_cmp(&z_bld, depth->func, z_src, z_dst);
1073
1074 /* mask off bits that failed stencil test */
1075 if (s_pass_mask) {
1076 current_mask = LLVMBuildAnd(builder, current_mask, s_pass_mask, "");
1077 }
1078
1079 if (!stencil[0].enabled && mask) {
1080 /* We can potentially skip all remaining operations here, but only
1081 * if stencil is disabled because we still need to update the stencil
1082 * buffer values. Don't need to update Z buffer values.
1083 */
1084 lp_build_mask_update(mask, z_pass);
1085
1086 if (do_branch) {
1087 lp_build_mask_check(mask);
1088 }
1089 }
1090
1091 if (depth->writemask) {
1092 LLVMValueRef z_pass_mask;
1093
1094 /* mask off bits that failed Z test */
1095 z_pass_mask = LLVMBuildAnd(builder, current_mask, z_pass, "");
1096
1097 /* Mix the old and new Z buffer values.
1098 * z_dst[i] = zselectmask[i] ? z_src[i] : z_dst[i]
1099 */
1100 z_dst = lp_build_select(&z_bld, z_pass_mask, z_src, z_dst);
1101 }
1102
1103 if (stencil[0].enabled) {
1104 /* update stencil buffer values according to z pass/fail result */
1105 LLVMValueRef z_fail_mask, z_pass_mask;
1106
1107 /* apply Z-fail operator */
1108 z_fail_mask = lp_build_andnot(&s_bld, current_mask, z_pass);
1109 stencil_vals = lp_build_stencil_op(&s_bld, stencil, Z_FAIL_OP,
1110 stencil_refs, stencil_vals,
1111 z_fail_mask, front_facing);
1112
1113 /* apply Z-pass operator */
1114 z_pass_mask = LLVMBuildAnd(builder, current_mask, z_pass, "");
1115 stencil_vals = lp_build_stencil_op(&s_bld, stencil, Z_PASS_OP,
1116 stencil_refs, stencil_vals,
1117 z_pass_mask, front_facing);
1118 }
1119 }
1120 else {
1121 /* No depth test: apply Z-pass operator to stencil buffer values which
1122 * passed the stencil test.
1123 */
1124 s_pass_mask = LLVMBuildAnd(builder, current_mask, s_pass_mask, "");
1125 stencil_vals = lp_build_stencil_op(&s_bld, stencil, Z_PASS_OP,
1126 stencil_refs, stencil_vals,
1127 s_pass_mask, front_facing);
1128 }
1129
1130 /* Put Z and stencil bits in the right place */
1131 if (have_z && z_shift) {
1132 LLVMValueRef shift = lp_build_const_int_vec(gallivm, z_type, z_shift);
1133 z_dst = LLVMBuildShl(builder, z_dst, shift, "");
1134 }
1135 if (stencil_vals && stencil_shift)
1136 stencil_vals = LLVMBuildShl(builder, stencil_vals,
1137 stencil_shift, "");
1138
1139 /* Finally, merge the z/stencil values */
1140 if (format_desc->block.bits <= 32) {
1141 if (have_z && have_s)
1142 *z_value = LLVMBuildOr(builder, z_dst, stencil_vals, "");
1143 else if (have_z)
1144 *z_value = z_dst;
1145 else
1146 *z_value = stencil_vals;
1147 *s_value = *z_value;
1148 }
1149 else {
1150 *z_value = z_dst;
1151 *s_value = stencil_vals;
1152 }
1153
1154 if (mask) {
1155 if (s_pass_mask)
1156 lp_build_mask_update(mask, s_pass_mask);
1157
1158 if (depth->enabled && stencil[0].enabled)
1159 lp_build_mask_update(mask, z_pass);
1160 } else {
1161 LLVMValueRef tmp_mask = *cov_mask;
1162 if (s_pass_mask)
1163 tmp_mask = LLVMBuildAnd(builder, tmp_mask, s_pass_mask, "");
1164
1165 /* for multisample we don't do the stencil optimisation so update always */
1166 if (depth->enabled)
1167 tmp_mask = LLVMBuildAnd(builder, tmp_mask, z_pass, "");
1168 *cov_mask = tmp_mask;
1169 }
1170 }
1171