9b3321e3ec1a68a97c8cc9b2493b3465cfcefca4
[mesa.git] / src / gallium / drivers / llvmpipe / lp_setup_line.c
1 /**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /*
29 * Binning code for lines
30 */
31
32 #include "util/u_math.h"
33 #include "util/u_memory.h"
34 #include "lp_perf.h"
35 #include "lp_setup_context.h"
36 #include "lp_rast.h"
37 #include "lp_state_fs.h"
38 #include "lp_state_setup.h"
39 #include "lp_context.h"
40 #include "draw/draw_context.h"
41
42 #define NUM_CHANNELS 4
43
44 struct lp_line_info {
45
46 float dx;
47 float dy;
48 float oneoverarea;
49 boolean frontfacing;
50
51 const float (*v1)[4];
52 const float (*v2)[4];
53
54 float (*a0)[4];
55 float (*dadx)[4];
56 float (*dady)[4];
57 };
58
59
60 /**
61 * Compute a0 for a constant-valued coefficient (GL_FLAT shading).
62 */
63 static void constant_coef( struct lp_setup_context *setup,
64 struct lp_line_info *info,
65 unsigned slot,
66 const float value,
67 unsigned i )
68 {
69 info->a0[slot][i] = value;
70 info->dadx[slot][i] = 0.0f;
71 info->dady[slot][i] = 0.0f;
72 }
73
74
75 /**
76 * Compute a0, dadx and dady for a linearly interpolated coefficient,
77 * for a triangle.
78 */
79 static void linear_coef( struct lp_setup_context *setup,
80 struct lp_line_info *info,
81 unsigned slot,
82 unsigned vert_attr,
83 unsigned i)
84 {
85 float a1 = info->v1[vert_attr][i];
86 float a2 = info->v2[vert_attr][i];
87
88 float da21 = a1 - a2;
89 float dadx = da21 * info->dx * info->oneoverarea;
90 float dady = da21 * info->dy * info->oneoverarea;
91
92 info->dadx[slot][i] = dadx;
93 info->dady[slot][i] = dady;
94
95 info->a0[slot][i] = (a1 -
96 (dadx * (info->v1[0][0] - setup->pixel_offset) +
97 dady * (info->v1[0][1] - setup->pixel_offset)));
98 }
99
100
101 /**
102 * Compute a0, dadx and dady for a perspective-corrected interpolant,
103 * for a triangle.
104 * We basically multiply the vertex value by 1/w before computing
105 * the plane coefficients (a0, dadx, dady).
106 * Later, when we compute the value at a particular fragment position we'll
107 * divide the interpolated value by the interpolated W at that fragment.
108 */
109 static void perspective_coef( struct lp_setup_context *setup,
110 struct lp_line_info *info,
111 unsigned slot,
112 unsigned vert_attr,
113 unsigned i)
114 {
115 /* premultiply by 1/w (v[0][3] is always 1/w):
116 */
117 float a1 = info->v1[vert_attr][i] * info->v1[0][3];
118 float a2 = info->v2[vert_attr][i] * info->v2[0][3];
119
120 float da21 = a1 - a2;
121 float dadx = da21 * info->dx * info->oneoverarea;
122 float dady = da21 * info->dy * info->oneoverarea;
123
124 info->dadx[slot][i] = dadx;
125 info->dady[slot][i] = dady;
126
127 info->a0[slot][i] = (a1 -
128 (dadx * (info->v1[0][0] - setup->pixel_offset) +
129 dady * (info->v1[0][1] - setup->pixel_offset)));
130 }
131
132 static void
133 setup_fragcoord_coef( struct lp_setup_context *setup,
134 struct lp_line_info *info,
135 unsigned slot,
136 unsigned usage_mask)
137 {
138 /*X*/
139 if (usage_mask & TGSI_WRITEMASK_X) {
140 info->a0[slot][0] = 0.0;
141 info->dadx[slot][0] = 1.0;
142 info->dady[slot][0] = 0.0;
143 }
144
145 /*Y*/
146 if (usage_mask & TGSI_WRITEMASK_Y) {
147 info->a0[slot][1] = 0.0;
148 info->dadx[slot][1] = 0.0;
149 info->dady[slot][1] = 1.0;
150 }
151
152 /*Z*/
153 if (usage_mask & TGSI_WRITEMASK_Z) {
154 linear_coef(setup, info, slot, 0, 2);
155 }
156
157 /*W*/
158 if (usage_mask & TGSI_WRITEMASK_W) {
159 linear_coef(setup, info, slot, 0, 3);
160 }
161 }
162
163 /**
164 * Compute the tri->coef[] array dadx, dady, a0 values.
165 */
166 static void setup_line_coefficients( struct lp_setup_context *setup,
167 struct lp_line_info *info)
168 {
169 const struct lp_setup_variant_key *key = &setup->setup.variant->key;
170 unsigned fragcoord_usage_mask = TGSI_WRITEMASK_XYZ;
171 unsigned slot;
172
173 /* setup interpolation for all the remaining attributes:
174 */
175 for (slot = 0; slot < key->num_inputs; slot++) {
176 unsigned vert_attr = key->inputs[slot].src_index;
177 unsigned usage_mask = key->inputs[slot].usage_mask;
178 unsigned i;
179
180 switch (key->inputs[slot].interp) {
181 case LP_INTERP_CONSTANT:
182 if (key->flatshade_first) {
183 for (i = 0; i < NUM_CHANNELS; i++)
184 if (usage_mask & (1 << i))
185 constant_coef(setup, info, slot+1, info->v1[vert_attr][i], i);
186 }
187 else {
188 for (i = 0; i < NUM_CHANNELS; i++)
189 if (usage_mask & (1 << i))
190 constant_coef(setup, info, slot+1, info->v2[vert_attr][i], i);
191 }
192 break;
193
194 case LP_INTERP_LINEAR:
195 for (i = 0; i < NUM_CHANNELS; i++)
196 if (usage_mask & (1 << i))
197 linear_coef(setup, info, slot+1, vert_attr, i);
198 break;
199
200 case LP_INTERP_PERSPECTIVE:
201 for (i = 0; i < NUM_CHANNELS; i++)
202 if (usage_mask & (1 << i))
203 perspective_coef(setup, info, slot+1, vert_attr, i);
204 fragcoord_usage_mask |= TGSI_WRITEMASK_W;
205 break;
206
207 case LP_INTERP_POSITION:
208 /*
209 * The generated pixel interpolators will pick up the coeffs from
210 * slot 0, so all need to ensure that the usage mask is covers all
211 * usages.
212 */
213 fragcoord_usage_mask |= usage_mask;
214 break;
215
216 case LP_INTERP_FACING:
217 for (i = 0; i < NUM_CHANNELS; i++)
218 if (usage_mask & (1 << i))
219 constant_coef(setup, info, slot+1,
220 info->frontfacing ? 1.0f : -1.0f, i);
221 break;
222
223 default:
224 assert(0);
225 }
226 }
227
228 /* The internal position input is in slot zero:
229 */
230 setup_fragcoord_coef(setup, info, 0,
231 fragcoord_usage_mask);
232 }
233
234
235
236 static INLINE int subpixel_snap( float a )
237 {
238 return util_iround(FIXED_ONE * a);
239 }
240
241
242 /**
243 * Print line vertex attribs (for debug).
244 */
245 static void
246 print_line(struct lp_setup_context *setup,
247 const float (*v1)[4],
248 const float (*v2)[4])
249 {
250 const struct lp_setup_variant_key *key = &setup->setup.variant->key;
251 uint i;
252
253 debug_printf("llvmpipe line\n");
254 for (i = 0; i < 1 + key->num_inputs; i++) {
255 debug_printf(" v1[%d]: %f %f %f %f\n", i,
256 v1[i][0], v1[i][1], v1[i][2], v1[i][3]);
257 }
258 for (i = 0; i < 1 + key->num_inputs; i++) {
259 debug_printf(" v2[%d]: %f %f %f %f\n", i,
260 v2[i][0], v2[i][1], v2[i][2], v2[i][3]);
261 }
262 }
263
264
265 static INLINE boolean sign(float x){
266 return x >= 0;
267 }
268
269
270 /* Used on positive floats only:
271 */
272 static INLINE float fracf(float f)
273 {
274 return f - floorf(f);
275 }
276
277
278
279 static boolean
280 try_setup_line( struct lp_setup_context *setup,
281 const float (*v1)[4],
282 const float (*v2)[4])
283 {
284 struct llvmpipe_context *lp_context = (struct llvmpipe_context *)setup->pipe;
285 struct lp_scene *scene = setup->scene;
286 const struct lp_setup_variant_key *key = &setup->setup.variant->key;
287 struct lp_rast_triangle *line;
288 struct lp_rast_plane *plane;
289 struct lp_line_info info;
290 float width = MAX2(1.0, setup->line_width);
291 struct u_rect bbox;
292 unsigned tri_bytes;
293 int x[4];
294 int y[4];
295 int i;
296 int nr_planes = 4;
297 unsigned scissor_index = 0;
298 unsigned layer = 0;
299
300 /* linewidth should be interpreted as integer */
301 int fixed_width = util_iround(width) * FIXED_ONE;
302
303 float x_offset=0;
304 float y_offset=0;
305 float x_offset_end=0;
306 float y_offset_end=0;
307
308 float x1diff;
309 float y1diff;
310 float x2diff;
311 float y2diff;
312 float dx, dy;
313 float area;
314
315 boolean draw_start;
316 boolean draw_end;
317 boolean will_draw_start;
318 boolean will_draw_end;
319
320 if (0)
321 print_line(setup, v1, v2);
322
323 if (setup->scissor_test) {
324 nr_planes = 8;
325 if (setup->viewport_index_slot > 0) {
326 unsigned *udata = (unsigned*)v1[setup->viewport_index_slot];
327 scissor_index = lp_clamp_scissor_idx(*udata);
328 }
329 }
330 else {
331 nr_planes = 4;
332 }
333
334 if (setup->layer_slot > 0) {
335 layer = *(unsigned*)v1[setup->layer_slot];
336 layer = MIN2(layer, scene->fb_max_layer);
337 }
338
339 dx = v1[0][0] - v2[0][0];
340 dy = v1[0][1] - v2[0][1];
341 area = (dx * dx + dy * dy);
342 if (area == 0) {
343 LP_COUNT(nr_culled_tris);
344 return TRUE;
345 }
346
347 info.oneoverarea = 1.0f / area;
348 info.dx = dx;
349 info.dy = dy;
350 info.v1 = v1;
351 info.v2 = v2;
352
353
354 /* X-MAJOR LINE */
355 if (fabsf(dx) >= fabsf(dy)) {
356 float dydx = dy / dx;
357
358 x1diff = v1[0][0] - (float) floor(v1[0][0]) - 0.5;
359 y1diff = v1[0][1] - (float) floor(v1[0][1]) - 0.5;
360 x2diff = v2[0][0] - (float) floor(v2[0][0]) - 0.5;
361 y2diff = v2[0][1] - (float) floor(v2[0][1]) - 0.5;
362
363 if (y2diff==-0.5 && dy<0){
364 y2diff = 0.5;
365 }
366
367 /*
368 * Diamond exit rule test for starting point
369 */
370 if (fabsf(x1diff) + fabsf(y1diff) < 0.5) {
371 draw_start = TRUE;
372 }
373 else if (sign(x1diff) == sign(-dx)) {
374 draw_start = FALSE;
375 }
376 else if (sign(-y1diff) != sign(dy)) {
377 draw_start = TRUE;
378 }
379 else {
380 /* do intersection test */
381 float yintersect = fracf(v1[0][1]) + x1diff * dydx;
382 draw_start = (yintersect < 1.0 && yintersect > 0.0);
383 }
384
385
386 /*
387 * Diamond exit rule test for ending point
388 */
389 if (fabsf(x2diff) + fabsf(y2diff) < 0.5) {
390 draw_end = FALSE;
391 }
392 else if (sign(x2diff) != sign(-dx)) {
393 draw_end = FALSE;
394 }
395 else if (sign(-y2diff) == sign(dy)) {
396 draw_end = TRUE;
397 }
398 else {
399 /* do intersection test */
400 float yintersect = fracf(v2[0][1]) + x2diff * dydx;
401 draw_end = (yintersect < 1.0 && yintersect > 0.0);
402 }
403
404 /* Are we already drawing start/end?
405 */
406 will_draw_start = sign(-x1diff) != sign(dx);
407 will_draw_end = (sign(x2diff) == sign(-dx)) || x2diff==0;
408
409 if (dx < 0) {
410 /* if v2 is to the right of v1, swap pointers */
411 const float (*temp)[4] = v1;
412 v1 = v2;
413 v2 = temp;
414 dx = -dx;
415 dy = -dy;
416 /* Otherwise shift planes appropriately */
417 if (will_draw_start != draw_start) {
418 x_offset_end = - x1diff - 0.5;
419 y_offset_end = x_offset_end * dydx;
420
421 }
422 if (will_draw_end != draw_end) {
423 x_offset = - x2diff - 0.5;
424 y_offset = x_offset * dydx;
425 }
426
427 }
428 else{
429 /* Otherwise shift planes appropriately */
430 if (will_draw_start != draw_start) {
431 x_offset = - x1diff + 0.5;
432 y_offset = x_offset * dydx;
433 }
434 if (will_draw_end != draw_end) {
435 x_offset_end = - x2diff + 0.5;
436 y_offset_end = x_offset_end * dydx;
437 }
438 }
439
440 /* x/y positions in fixed point */
441 x[0] = subpixel_snap(v1[0][0] + x_offset - setup->pixel_offset);
442 x[1] = subpixel_snap(v2[0][0] + x_offset_end - setup->pixel_offset);
443 x[2] = subpixel_snap(v2[0][0] + x_offset_end - setup->pixel_offset);
444 x[3] = subpixel_snap(v1[0][0] + x_offset - setup->pixel_offset);
445
446 y[0] = subpixel_snap(v1[0][1] + y_offset - setup->pixel_offset) - fixed_width/2;
447 y[1] = subpixel_snap(v2[0][1] + y_offset_end - setup->pixel_offset) - fixed_width/2;
448 y[2] = subpixel_snap(v2[0][1] + y_offset_end - setup->pixel_offset) + fixed_width/2;
449 y[3] = subpixel_snap(v1[0][1] + y_offset - setup->pixel_offset) + fixed_width/2;
450
451 }
452 else {
453 const float dxdy = dx / dy;
454
455 /* Y-MAJOR LINE */
456 x1diff = v1[0][0] - (float) floor(v1[0][0]) - 0.5;
457 y1diff = v1[0][1] - (float) floor(v1[0][1]) - 0.5;
458 x2diff = v2[0][0] - (float) floor(v2[0][0]) - 0.5;
459 y2diff = v2[0][1] - (float) floor(v2[0][1]) - 0.5;
460
461 if (x2diff==-0.5 && dx<0) {
462 x2diff = 0.5;
463 }
464
465 /*
466 * Diamond exit rule test for starting point
467 */
468 if (fabsf(x1diff) + fabsf(y1diff) < 0.5) {
469 draw_start = TRUE;
470 }
471 else if (sign(-y1diff) == sign(dy)) {
472 draw_start = FALSE;
473 }
474 else if (sign(x1diff) != sign(-dx)) {
475 draw_start = TRUE;
476 }
477 else {
478 /* do intersection test */
479 float xintersect = fracf(v1[0][0]) + y1diff * dxdy;
480 draw_start = (xintersect < 1.0 && xintersect > 0.0);
481 }
482
483 /*
484 * Diamond exit rule test for ending point
485 */
486 if (fabsf(x2diff) + fabsf(y2diff) < 0.5) {
487 draw_end = FALSE;
488 }
489 else if (sign(-y2diff) != sign(dy) ) {
490 draw_end = FALSE;
491 }
492 else if (sign(x2diff) == sign(-dx) ) {
493 draw_end = TRUE;
494 }
495 else {
496 /* do intersection test */
497 float xintersect = fracf(v2[0][0]) + y2diff * dxdy;
498 draw_end = (xintersect < 1.0 && xintersect >= 0.0);
499 }
500
501 /* Are we already drawing start/end?
502 */
503 will_draw_start = sign(y1diff) == sign(dy);
504 will_draw_end = (sign(-y2diff) == sign(dy)) || y2diff==0;
505
506 if (dy > 0) {
507 /* if v2 is on top of v1, swap pointers */
508 const float (*temp)[4] = v1;
509 v1 = v2;
510 v2 = temp;
511 dx = -dx;
512 dy = -dy;
513
514 /* Otherwise shift planes appropriately */
515 if (will_draw_start != draw_start) {
516 y_offset_end = - y1diff + 0.5;
517 x_offset_end = y_offset_end * dxdy;
518 }
519 if (will_draw_end != draw_end) {
520 y_offset = - y2diff + 0.5;
521 x_offset = y_offset * dxdy;
522 }
523 }
524 else {
525 /* Otherwise shift planes appropriately */
526 if (will_draw_start != draw_start) {
527 y_offset = - y1diff - 0.5;
528 x_offset = y_offset * dxdy;
529
530 }
531 if (will_draw_end != draw_end) {
532 y_offset_end = - y2diff - 0.5;
533 x_offset_end = y_offset_end * dxdy;
534 }
535 }
536
537 /* x/y positions in fixed point */
538 x[0] = subpixel_snap(v1[0][0] + x_offset - setup->pixel_offset) - fixed_width/2;
539 x[1] = subpixel_snap(v2[0][0] + x_offset_end - setup->pixel_offset) - fixed_width/2;
540 x[2] = subpixel_snap(v2[0][0] + x_offset_end - setup->pixel_offset) + fixed_width/2;
541 x[3] = subpixel_snap(v1[0][0] + x_offset - setup->pixel_offset) + fixed_width/2;
542
543 y[0] = subpixel_snap(v1[0][1] + y_offset - setup->pixel_offset);
544 y[1] = subpixel_snap(v2[0][1] + y_offset_end - setup->pixel_offset);
545 y[2] = subpixel_snap(v2[0][1] + y_offset_end - setup->pixel_offset);
546 y[3] = subpixel_snap(v1[0][1] + y_offset - setup->pixel_offset);
547 }
548
549 /* Bounding rectangle (in pixels) */
550 {
551 /* Yes this is necessary to accurately calculate bounding boxes
552 * with the two fill-conventions we support. GL (normally) ends
553 * up needing a bottom-left fill convention, which requires
554 * slightly different rounding.
555 */
556 int adj = (setup->pixel_offset != 0) ? 1 : 0;
557
558 bbox.x0 = (MIN4(x[0], x[1], x[2], x[3]) + (FIXED_ONE-1)) >> FIXED_ORDER;
559 bbox.x1 = (MAX4(x[0], x[1], x[2], x[3]) + (FIXED_ONE-1)) >> FIXED_ORDER;
560 bbox.y0 = (MIN4(y[0], y[1], y[2], y[3]) + (FIXED_ONE-1) + adj) >> FIXED_ORDER;
561 bbox.y1 = (MAX4(y[0], y[1], y[2], y[3]) + (FIXED_ONE-1) + adj) >> FIXED_ORDER;
562
563 /* Inclusive coordinates:
564 */
565 bbox.x1--;
566 bbox.y1--;
567 }
568
569 if (bbox.x1 < bbox.x0 ||
570 bbox.y1 < bbox.y0) {
571 if (0) debug_printf("empty bounding box\n");
572 LP_COUNT(nr_culled_tris);
573 return TRUE;
574 }
575
576 if (!u_rect_test_intersection(&setup->draw_regions[scissor_index], &bbox)) {
577 if (0) debug_printf("offscreen\n");
578 LP_COUNT(nr_culled_tris);
579 return TRUE;
580 }
581
582 /* Can safely discard negative regions:
583 */
584 bbox.x0 = MAX2(bbox.x0, 0);
585 bbox.y0 = MAX2(bbox.y0, 0);
586
587 line = lp_setup_alloc_triangle(scene,
588 key->num_inputs,
589 nr_planes,
590 &tri_bytes);
591 if (!line)
592 return FALSE;
593
594 #ifdef DEBUG
595 line->v[0][0] = v1[0][0];
596 line->v[1][0] = v2[0][0];
597 line->v[0][1] = v1[0][1];
598 line->v[1][1] = v2[0][1];
599 #endif
600
601 LP_COUNT(nr_tris);
602
603 if (lp_context->active_statistics_queries &&
604 !llvmpipe_rasterization_disabled(lp_context)) {
605 lp_context->pipeline_statistics.c_primitives++;
606 }
607
608 /* calculate the deltas */
609 plane = GET_PLANES(line);
610 plane[0].dcdy = x[0] - x[1];
611 plane[1].dcdy = x[1] - x[2];
612 plane[2].dcdy = x[2] - x[3];
613 plane[3].dcdy = x[3] - x[0];
614
615 plane[0].dcdx = y[0] - y[1];
616 plane[1].dcdx = y[1] - y[2];
617 plane[2].dcdx = y[2] - y[3];
618 plane[3].dcdx = y[3] - y[0];
619
620 if (draw_will_inject_frontface(lp_context->draw) &&
621 setup->face_slot > 0) {
622 line->inputs.frontfacing = v1[setup->face_slot][0];
623 } else {
624 line->inputs.frontfacing = TRUE;
625 }
626
627 /* Setup parameter interpolants:
628 */
629 info.a0 = GET_A0(&line->inputs);
630 info.dadx = GET_DADX(&line->inputs);
631 info.dady = GET_DADY(&line->inputs);
632 info.frontfacing = line->inputs.frontfacing;
633 setup_line_coefficients(setup, &info);
634
635 line->inputs.disable = FALSE;
636 line->inputs.opaque = FALSE;
637 line->inputs.layer = layer;
638
639 for (i = 0; i < 4; i++) {
640
641 /* half-edge constants, will be interated over the whole render
642 * target.
643 */
644 plane[i].c = IMUL64(plane[i].dcdx, x[i]) - IMUL64(plane[i].dcdy, y[i]);
645
646
647 /* correct for top-left vs. bottom-left fill convention.
648 */
649 if (plane[i].dcdx < 0) {
650 /* both fill conventions want this - adjust for left edges */
651 plane[i].c++;
652 }
653 else if (plane[i].dcdx == 0) {
654 if (setup->pixel_offset == 0) {
655 /* correct for top-left fill convention:
656 */
657 if (plane[i].dcdy > 0) plane[i].c++;
658 }
659 else {
660 /* correct for bottom-left fill convention:
661 */
662 if (plane[i].dcdy < 0) plane[i].c++;
663 }
664 }
665
666 plane[i].dcdx *= FIXED_ONE;
667 plane[i].dcdy *= FIXED_ONE;
668
669 /* find trivial reject offsets for each edge for a single-pixel
670 * sized block. These will be scaled up at each recursive level to
671 * match the active blocksize. Scaling in this way works best if
672 * the blocks are square.
673 */
674 plane[i].eo = 0;
675 if (plane[i].dcdx < 0) plane[i].eo -= plane[i].dcdx;
676 if (plane[i].dcdy > 0) plane[i].eo += plane[i].dcdy;
677 }
678
679
680 /*
681 * When rasterizing scissored tris, use the intersection of the
682 * triangle bounding box and the scissor rect to generate the
683 * scissor planes.
684 *
685 * This permits us to cut off the triangle "tails" that are present
686 * in the intermediate recursive levels caused when two of the
687 * triangles edges don't diverge quickly enough to trivially reject
688 * exterior blocks from the triangle.
689 *
690 * It's not really clear if it's worth worrying about these tails,
691 * but since we generate the planes for each scissored tri, it's
692 * free to trim them in this case.
693 *
694 * Note that otherwise, the scissor planes only vary in 'C' value,
695 * and even then only on state-changes. Could alternatively store
696 * these planes elsewhere.
697 */
698 if (nr_planes == 8) {
699 const struct u_rect *scissor =
700 &setup->scissors[scissor_index];
701
702 plane[4].dcdx = -1;
703 plane[4].dcdy = 0;
704 plane[4].c = 1-scissor->x0;
705 plane[4].eo = 1;
706
707 plane[5].dcdx = 1;
708 plane[5].dcdy = 0;
709 plane[5].c = scissor->x1+1;
710 plane[5].eo = 0;
711
712 plane[6].dcdx = 0;
713 plane[6].dcdy = 1;
714 plane[6].c = 1-scissor->y0;
715 plane[6].eo = 1;
716
717 plane[7].dcdx = 0;
718 plane[7].dcdy = -1;
719 plane[7].c = scissor->y1+1;
720 plane[7].eo = 0;
721 }
722
723 return lp_setup_bin_triangle(setup, line, &bbox, nr_planes, scissor_index);
724 }
725
726
727 static void lp_setup_line( struct lp_setup_context *setup,
728 const float (*v0)[4],
729 const float (*v1)[4] )
730 {
731 if (!try_setup_line( setup, v0, v1 ))
732 {
733 if (!lp_setup_flush_and_restart(setup))
734 return;
735
736 if (!try_setup_line( setup, v0, v1 ))
737 return;
738 }
739 }
740
741
742 void lp_setup_choose_line( struct lp_setup_context *setup )
743 {
744 setup->line = lp_setup_line;
745 }
746
747