0d89bef606d40b3217beb33c3728a2df5e9e2eec
[mesa.git] / src / gallium / drivers / llvmpipe / lp_setup_tri.c
1 /**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /*
29 * Binning code for triangles
30 */
31
32 #include "lp_setup_context.h"
33 #include "lp_rast.h"
34 #include "util/u_math.h"
35 #include "util/u_memory.h"
36
37 #define NUM_CHANNELS 4
38
39
40 /**
41 * Compute a0 for a constant-valued coefficient (GL_FLAT shading).
42 */
43 static void constant_coef( struct lp_rast_triangle *tri,
44 unsigned slot,
45 const float value,
46 unsigned i )
47 {
48 tri->inputs.a0[slot][i] = value;
49 tri->inputs.dadx[slot][i] = 0.0f;
50 tri->inputs.dady[slot][i] = 0.0f;
51 }
52
53
54 /**
55 * Compute a0, dadx and dady for a linearly interpolated coefficient,
56 * for a triangle.
57 */
58 static void linear_coef( struct lp_rast_triangle *tri,
59 float oneoverarea,
60 unsigned slot,
61 const float (*v1)[4],
62 const float (*v2)[4],
63 const float (*v3)[4],
64 unsigned vert_attr,
65 unsigned i)
66 {
67 float a1 = v1[vert_attr][i];
68 float a2 = v2[vert_attr][i];
69 float a3 = v3[vert_attr][i];
70
71 float da12 = a1 - a2;
72 float da31 = a3 - a1;
73 float dadx = (da12 * tri->dy31 - tri->dy12 * da31) * oneoverarea;
74 float dady = (da31 * tri->dx12 - tri->dx31 * da12) * oneoverarea;
75
76 tri->inputs.dadx[slot][i] = dadx;
77 tri->inputs.dady[slot][i] = dady;
78
79 /* calculate a0 as the value which would be sampled for the
80 * fragment at (0,0), taking into account that we want to sample at
81 * pixel centers, in other words (0.5, 0.5).
82 *
83 * this is neat but unfortunately not a good way to do things for
84 * triangles with very large values of dadx or dady as it will
85 * result in the subtraction and re-addition from a0 of a very
86 * large number, which means we'll end up loosing a lot of the
87 * fractional bits and precision from a0. the way to fix this is
88 * to define a0 as the sample at a pixel center somewhere near vmin
89 * instead - i'll switch to this later.
90 */
91 tri->inputs.a0[slot][i] = (v1[vert_attr][i] -
92 (dadx * (v1[0][0] - 0.5f) +
93 dady * (v1[0][1] - 0.5f)));
94 }
95
96
97 /**
98 * Compute a0, dadx and dady for a perspective-corrected interpolant,
99 * for a triangle.
100 * We basically multiply the vertex value by 1/w before computing
101 * the plane coefficients (a0, dadx, dady).
102 * Later, when we compute the value at a particular fragment position we'll
103 * divide the interpolated value by the interpolated W at that fragment.
104 */
105 static void perspective_coef( struct lp_rast_triangle *tri,
106 float oneoverarea,
107 unsigned slot,
108 const float (*v1)[4],
109 const float (*v2)[4],
110 const float (*v3)[4],
111 unsigned vert_attr,
112 unsigned i)
113 {
114 /* premultiply by 1/w (v[0][3] is always 1/w):
115 */
116 float a1 = v1[vert_attr][i] * v1[0][3];
117 float a2 = v2[vert_attr][i] * v2[0][3];
118 float a3 = v3[vert_attr][i] * v3[0][3];
119 float da12 = a1 - a2;
120 float da31 = a3 - a1;
121 float dadx = (da12 * tri->dy31 - tri->dy12 * da31) * oneoverarea;
122 float dady = (da31 * tri->dx12 - tri->dx31 * da12) * oneoverarea;
123
124 tri->inputs.dadx[slot][i] = dadx;
125 tri->inputs.dady[slot][i] = dady;
126 tri->inputs.a0[slot][i] = (a1 -
127 (dadx * (v1[0][0] - 0.5f) +
128 dady * (v1[0][1] - 0.5f)));
129 }
130
131
132 /**
133 * Special coefficient setup for gl_FragCoord.
134 * X and Y are trivial
135 * Z and W are copied from position_coef which should have already been computed.
136 * We could do a bit less work if we'd examine gl_FragCoord's swizzle mask.
137 */
138 static void
139 setup_fragcoord_coef(struct lp_rast_triangle *tri,
140 float oneoverarea,
141 unsigned slot,
142 const float (*v1)[4],
143 const float (*v2)[4],
144 const float (*v3)[4])
145 {
146 /*X*/
147 tri->inputs.a0[slot][0] = 0.0;
148 tri->inputs.dadx[slot][0] = 1.0;
149 tri->inputs.dady[slot][0] = 0.0;
150 /*Y*/
151 tri->inputs.a0[slot][1] = 0.0;
152 tri->inputs.dadx[slot][1] = 0.0;
153 tri->inputs.dady[slot][1] = 1.0;
154 /*Z*/
155 linear_coef(tri, oneoverarea, slot, v1, v2, v3, 0, 2);
156 /*W*/
157 linear_coef(tri, oneoverarea, slot, v1, v2, v3, 0, 3);
158 }
159
160
161 static void setup_facing_coef( struct lp_rast_triangle *tri,
162 unsigned slot,
163 boolean frontface )
164 {
165 constant_coef( tri, slot, 1.0f - frontface, 0 );
166 constant_coef( tri, slot, 0.0f, 1 ); /* wasted */
167 constant_coef( tri, slot, 0.0f, 2 ); /* wasted */
168 constant_coef( tri, slot, 0.0f, 3 ); /* wasted */
169 }
170
171
172 /**
173 * Compute the tri->coef[] array dadx, dady, a0 values.
174 */
175 static void setup_tri_coefficients( struct setup_context *setup,
176 struct lp_rast_triangle *tri,
177 float oneoverarea,
178 const float (*v1)[4],
179 const float (*v2)[4],
180 const float (*v3)[4],
181 boolean frontface)
182 {
183 struct lp_scene *scene = lp_setup_get_current_scene(setup);
184 unsigned slot;
185
186 /* Allocate space for the a0, dadx and dady arrays
187 */
188 {
189 unsigned bytes = (setup->fs.nr_inputs + 1) * 4 * sizeof(float);
190 tri->inputs.a0 = lp_scene_alloc_aligned( scene, bytes, 16 );
191 tri->inputs.dadx = lp_scene_alloc_aligned( scene, bytes, 16 );
192 tri->inputs.dady = lp_scene_alloc_aligned( scene, bytes, 16 );
193 }
194
195 /* The internal position input is in slot zero:
196 */
197 setup_fragcoord_coef(tri, oneoverarea, 0, v1, v2, v3);
198
199 /* setup interpolation for all the remaining attributes:
200 */
201 for (slot = 0; slot < setup->fs.nr_inputs; slot++) {
202 unsigned vert_attr = setup->fs.input[slot].src_index;
203 unsigned i;
204
205 switch (setup->fs.input[slot].interp) {
206 case LP_INTERP_CONSTANT:
207 for (i = 0; i < NUM_CHANNELS; i++)
208 constant_coef(tri, slot+1, v3[vert_attr][i], i);
209 break;
210
211 case LP_INTERP_LINEAR:
212 for (i = 0; i < NUM_CHANNELS; i++)
213 linear_coef(tri, oneoverarea, slot+1, v1, v2, v3, vert_attr, i);
214 break;
215
216 case LP_INTERP_PERSPECTIVE:
217 for (i = 0; i < NUM_CHANNELS; i++)
218 perspective_coef(tri, oneoverarea, slot+1, v1, v2, v3, vert_attr, i);
219 break;
220
221 case LP_INTERP_POSITION:
222 /* XXX: fix me - duplicates the values in slot zero.
223 */
224 setup_fragcoord_coef(tri, oneoverarea, slot+1, v1, v2, v3);
225 break;
226
227 case LP_INTERP_FACING:
228 setup_facing_coef(tri, slot+1, frontface);
229 break;
230
231 default:
232 assert(0);
233 }
234 }
235 }
236
237
238
239 static inline int subpixel_snap( float a )
240 {
241 return util_iround(FIXED_ONE * a - (FIXED_ONE / 2));
242 }
243
244
245 /**
246 * Do basic setup for triangle rasterization and determine which
247 * framebuffer tiles are touched. Put the triangle in the scene's
248 * bins for the tiles which we overlap.
249 */
250 static void
251 do_triangle_ccw(struct setup_context *setup,
252 const float (*v1)[4],
253 const float (*v2)[4],
254 const float (*v3)[4],
255 boolean frontfacing )
256 {
257 /* x/y positions in fixed point */
258 const int x1 = subpixel_snap(v1[0][0]);
259 const int x2 = subpixel_snap(v2[0][0]);
260 const int x3 = subpixel_snap(v3[0][0]);
261 const int y1 = subpixel_snap(v1[0][1]);
262 const int y2 = subpixel_snap(v2[0][1]);
263 const int y3 = subpixel_snap(v3[0][1]);
264
265 struct lp_scene *scene = lp_setup_get_current_scene(setup);
266 struct lp_rast_triangle *tri = lp_scene_alloc_aligned( scene, sizeof *tri, 16 );
267 float area, oneoverarea;
268 int minx, maxx, miny, maxy;
269
270 tri->dx12 = x1 - x2;
271 tri->dx23 = x2 - x3;
272 tri->dx31 = x3 - x1;
273
274 tri->dy12 = y1 - y2;
275 tri->dy23 = y2 - y3;
276 tri->dy31 = y3 - y1;
277
278 area = (tri->dx12 * tri->dy31 -
279 tri->dx31 * tri->dy12);
280
281 /* Cull non-ccw and zero-sized triangles.
282 *
283 * XXX: subject to overflow??
284 */
285 if (area <= 0.0f) {
286 lp_scene_putback_data( scene, sizeof *tri );
287 return;
288 }
289
290 /* Bounding rectangle (in pixels) */
291 minx = (MIN3(x1, x2, x3) + (FIXED_ONE-1)) >> FIXED_ORDER;
292 maxx = (MAX3(x1, x2, x3) + (FIXED_ONE-1)) >> FIXED_ORDER;
293 miny = (MIN3(y1, y2, y3) + (FIXED_ONE-1)) >> FIXED_ORDER;
294 maxy = (MAX3(y1, y2, y3) + (FIXED_ONE-1)) >> FIXED_ORDER;
295
296 if (setup->scissor_test) {
297 minx = MAX2(minx, setup->scissor.current.minx);
298 maxx = MIN2(maxx, setup->scissor.current.maxx);
299 miny = MAX2(miny, setup->scissor.current.miny);
300 maxy = MIN2(maxy, setup->scissor.current.maxy);
301 }
302
303 if (miny == maxy ||
304 minx == maxx) {
305 lp_scene_putback_data( scene, sizeof *tri );
306 return;
307 }
308
309 /*
310 */
311 oneoverarea = ((float)FIXED_ONE) / (float)area;
312
313 /* Setup parameter interpolants:
314 */
315 setup_tri_coefficients( setup, tri, oneoverarea, v1, v2, v3, frontfacing );
316
317 /* half-edge constants, will be interated over the whole render target.
318 */
319 tri->c1 = tri->dy12 * x1 - tri->dx12 * y1;
320 tri->c2 = tri->dy23 * x2 - tri->dx23 * y2;
321 tri->c3 = tri->dy31 * x3 - tri->dx31 * y3;
322
323 /* correct for top-left fill convention:
324 */
325 if (tri->dy12 < 0 || (tri->dy12 == 0 && tri->dx12 > 0)) tri->c1++;
326 if (tri->dy23 < 0 || (tri->dy23 == 0 && tri->dx23 > 0)) tri->c2++;
327 if (tri->dy31 < 0 || (tri->dy31 == 0 && tri->dx31 > 0)) tri->c3++;
328
329 tri->dy12 *= FIXED_ONE;
330 tri->dy23 *= FIXED_ONE;
331 tri->dy31 *= FIXED_ONE;
332
333 tri->dx12 *= FIXED_ONE;
334 tri->dx23 *= FIXED_ONE;
335 tri->dx31 *= FIXED_ONE;
336
337 /* find trivial reject offsets for each edge for a single-pixel
338 * sized block. These will be scaled up at each recursive level to
339 * match the active blocksize. Scaling in this way works best if
340 * the blocks are square.
341 */
342 tri->eo1 = 0;
343 if (tri->dy12 < 0) tri->eo1 -= tri->dy12;
344 if (tri->dx12 > 0) tri->eo1 += tri->dx12;
345
346 tri->eo2 = 0;
347 if (tri->dy23 < 0) tri->eo2 -= tri->dy23;
348 if (tri->dx23 > 0) tri->eo2 += tri->dx23;
349
350 tri->eo3 = 0;
351 if (tri->dy31 < 0) tri->eo3 -= tri->dy31;
352 if (tri->dx31 > 0) tri->eo3 += tri->dx31;
353
354 /* Calculate trivial accept offsets from the above.
355 */
356 tri->ei1 = tri->dx12 - tri->dy12 - tri->eo1;
357 tri->ei2 = tri->dx23 - tri->dy23 - tri->eo2;
358 tri->ei3 = tri->dx31 - tri->dy31 - tri->eo3;
359
360 {
361 const int xstep1 = -tri->dy12;
362 const int xstep2 = -tri->dy23;
363 const int xstep3 = -tri->dy31;
364
365 const int ystep1 = tri->dx12;
366 const int ystep2 = tri->dx23;
367 const int ystep3 = tri->dx31;
368
369 int qx, qy, ix, iy;
370 int i = 0;
371
372 for (qy = 0; qy < 2; qy++) {
373 for (qx = 0; qx < 2; qx++) {
374 for (iy = 0; iy < 2; iy++) {
375 for (ix = 0; ix < 2; ix++, i++) {
376 int x = qx * 2 + ix;
377 int y = qy * 2 + iy;
378 tri->inputs.step[0][i] = x * xstep1 + y * ystep1;
379 tri->inputs.step[1][i] = x * xstep2 + y * ystep2;
380 tri->inputs.step[2][i] = x * xstep3 + y * ystep3;
381 }
382 }
383 }
384 }
385 }
386
387 /*
388 * All fields of 'tri' are now set. The remaining code here is
389 * concerned with binning.
390 */
391
392 /* Convert to tile coordinates:
393 */
394 minx = minx / TILE_SIZE;
395 miny = miny / TILE_SIZE;
396 maxx = maxx / TILE_SIZE;
397 maxy = maxy / TILE_SIZE;
398
399 /* Clamp maxx, maxy to framebuffer size
400 */
401 maxx = MIN2(maxx, scene->tiles_x - 1);
402 maxy = MIN2(maxy, scene->tiles_y - 1);
403
404 /* Determine which tile(s) intersect the triangle's bounding box
405 */
406 if (miny == maxy && minx == maxx)
407 {
408 /* Triangle is contained in a single tile:
409 */
410 lp_scene_bin_command( scene, minx, miny, lp_rast_triangle,
411 lp_rast_arg_triangle(tri) );
412 }
413 else
414 {
415 int c1 = (tri->c1 +
416 tri->dx12 * miny * TILE_SIZE -
417 tri->dy12 * minx * TILE_SIZE);
418 int c2 = (tri->c2 +
419 tri->dx23 * miny * TILE_SIZE -
420 tri->dy23 * minx * TILE_SIZE);
421 int c3 = (tri->c3 +
422 tri->dx31 * miny * TILE_SIZE -
423 tri->dy31 * minx * TILE_SIZE);
424
425 int ei1 = tri->ei1 << TILE_ORDER;
426 int ei2 = tri->ei2 << TILE_ORDER;
427 int ei3 = tri->ei3 << TILE_ORDER;
428
429 int eo1 = tri->eo1 << TILE_ORDER;
430 int eo2 = tri->eo2 << TILE_ORDER;
431 int eo3 = tri->eo3 << TILE_ORDER;
432
433 int xstep1 = -(tri->dy12 << TILE_ORDER);
434 int xstep2 = -(tri->dy23 << TILE_ORDER);
435 int xstep3 = -(tri->dy31 << TILE_ORDER);
436
437 int ystep1 = tri->dx12 << TILE_ORDER;
438 int ystep2 = tri->dx23 << TILE_ORDER;
439 int ystep3 = tri->dx31 << TILE_ORDER;
440 int x, y;
441
442
443 /* Test tile-sized blocks against the triangle.
444 * Discard blocks fully outside the tri. If the block is fully
445 * contained inside the tri, bin an lp_rast_shade_tile command.
446 * Else, bin a lp_rast_triangle command.
447 */
448 for (y = miny; y <= maxy; y++)
449 {
450 int cx1 = c1;
451 int cx2 = c2;
452 int cx3 = c3;
453 boolean in = FALSE; /* are we inside the triangle? */
454
455 for (x = minx; x <= maxx; x++)
456 {
457 if (cx1 + eo1 < 0 ||
458 cx2 + eo2 < 0 ||
459 cx3 + eo3 < 0)
460 {
461 /* do nothing */
462 if (in)
463 break; /* exiting triangle, all done with this row */
464 }
465 else if (cx1 + ei1 > 0 &&
466 cx2 + ei2 > 0 &&
467 cx3 + ei3 > 0)
468 {
469 in = TRUE;
470 /* triangle covers the whole tile- shade whole tile */
471 if(setup->fs.current.opaque) {
472 lp_scene_bin_reset( scene, x, y );
473 lp_scene_bin_command( scene, x, y,
474 lp_rast_set_state,
475 lp_rast_arg_state(setup->fs.stored) );
476 }
477 lp_scene_bin_command( scene, x, y,
478 lp_rast_shade_tile,
479 lp_rast_arg_inputs(&tri->inputs) );
480 }
481 else
482 {
483 in = TRUE;
484 /* shade partial tile */
485 lp_scene_bin_command( scene, x, y,
486 lp_rast_triangle,
487 lp_rast_arg_triangle(tri) );
488 }
489
490 /* Iterate cx values across the region:
491 */
492 cx1 += xstep1;
493 cx2 += xstep2;
494 cx3 += xstep3;
495 }
496
497 /* Iterate c values down the region:
498 */
499 c1 += ystep1;
500 c2 += ystep2;
501 c3 += ystep3;
502 }
503 }
504 }
505
506
507 static void triangle_cw( struct setup_context *setup,
508 const float (*v0)[4],
509 const float (*v1)[4],
510 const float (*v2)[4] )
511 {
512 do_triangle_ccw( setup, v1, v0, v2, !setup->ccw_is_frontface );
513 }
514
515
516 static void triangle_ccw( struct setup_context *setup,
517 const float (*v0)[4],
518 const float (*v1)[4],
519 const float (*v2)[4] )
520 {
521 do_triangle_ccw( setup, v0, v1, v2, setup->ccw_is_frontface );
522 }
523
524
525 static void triangle_both( struct setup_context *setup,
526 const float (*v0)[4],
527 const float (*v1)[4],
528 const float (*v2)[4] )
529 {
530 /* edge vectors e = v0 - v2, f = v1 - v2 */
531 const float ex = v0[0][0] - v2[0][0];
532 const float ey = v0[0][1] - v2[0][1];
533 const float fx = v1[0][0] - v2[0][0];
534 const float fy = v1[0][1] - v2[0][1];
535
536 /* det = cross(e,f).z */
537 if (ex * fy - ey * fx < 0.0f)
538 triangle_ccw( setup, v0, v1, v2 );
539 else
540 triangle_cw( setup, v0, v1, v2 );
541 }
542
543
544 static void triangle_nop( struct setup_context *setup,
545 const float (*v0)[4],
546 const float (*v1)[4],
547 const float (*v2)[4] )
548 {
549 }
550
551
552 void
553 lp_setup_choose_triangle( struct setup_context *setup )
554 {
555 switch (setup->cullmode) {
556 case PIPE_WINDING_NONE:
557 setup->triangle = triangle_both;
558 break;
559 case PIPE_WINDING_CCW:
560 setup->triangle = triangle_cw;
561 break;
562 case PIPE_WINDING_CW:
563 setup->triangle = triangle_ccw;
564 break;
565 default:
566 setup->triangle = triangle_nop;
567 break;
568 }
569 }