0fc4dd665e89868beb512371f83d7e07db0fd947
[mesa.git] / src / gallium / drivers / llvmpipe / lp_setup_tri.c
1 /**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /*
29 * Binning code for triangles
30 */
31
32 #include "util/u_math.h"
33 #include "util/u_memory.h"
34 #include "lp_perf.h"
35 #include "lp_setup_context.h"
36 #include "lp_rast.h"
37 #include "lp_state_fs.h"
38
39 #define NUM_CHANNELS 4
40
41
42 /**
43 * Compute a0 for a constant-valued coefficient (GL_FLAT shading).
44 */
45 static void constant_coef( struct lp_setup_context *setup,
46 struct lp_rast_triangle *tri,
47 unsigned slot,
48 const float value,
49 unsigned i )
50 {
51 tri->inputs.a0[slot][i] = value;
52 tri->inputs.dadx[slot][i] = 0.0f;
53 tri->inputs.dady[slot][i] = 0.0f;
54 }
55
56
57 /**
58 * Compute a0, dadx and dady for a linearly interpolated coefficient,
59 * for a triangle.
60 */
61 static void linear_coef( struct lp_setup_context *setup,
62 struct lp_rast_triangle *tri,
63 float oneoverarea,
64 unsigned slot,
65 const float (*v1)[4],
66 const float (*v2)[4],
67 const float (*v3)[4],
68 unsigned vert_attr,
69 unsigned i)
70 {
71 float a1 = v1[vert_attr][i];
72 float a2 = v2[vert_attr][i];
73 float a3 = v3[vert_attr][i];
74
75 float da12 = a1 - a2;
76 float da31 = a3 - a1;
77 float dadx = (da12 * tri->dy31 - tri->dy12 * da31) * oneoverarea;
78 float dady = (da31 * tri->dx12 - tri->dx31 * da12) * oneoverarea;
79
80 tri->inputs.dadx[slot][i] = dadx;
81 tri->inputs.dady[slot][i] = dady;
82
83 /* calculate a0 as the value which would be sampled for the
84 * fragment at (0,0), taking into account that we want to sample at
85 * pixel centers, in other words (0.5, 0.5).
86 *
87 * this is neat but unfortunately not a good way to do things for
88 * triangles with very large values of dadx or dady as it will
89 * result in the subtraction and re-addition from a0 of a very
90 * large number, which means we'll end up loosing a lot of the
91 * fractional bits and precision from a0. the way to fix this is
92 * to define a0 as the sample at a pixel center somewhere near vmin
93 * instead - i'll switch to this later.
94 */
95 tri->inputs.a0[slot][i] = (a1 -
96 (dadx * (v1[0][0] - setup->pixel_offset) +
97 dady * (v1[0][1] - setup->pixel_offset)));
98 }
99
100
101 /**
102 * Compute a0, dadx and dady for a perspective-corrected interpolant,
103 * for a triangle.
104 * We basically multiply the vertex value by 1/w before computing
105 * the plane coefficients (a0, dadx, dady).
106 * Later, when we compute the value at a particular fragment position we'll
107 * divide the interpolated value by the interpolated W at that fragment.
108 */
109 static void perspective_coef( struct lp_setup_context *setup,
110 struct lp_rast_triangle *tri,
111 float oneoverarea,
112 unsigned slot,
113 const float (*v1)[4],
114 const float (*v2)[4],
115 const float (*v3)[4],
116 unsigned vert_attr,
117 unsigned i)
118 {
119 /* premultiply by 1/w (v[0][3] is always 1/w):
120 */
121 float a1 = v1[vert_attr][i] * v1[0][3];
122 float a2 = v2[vert_attr][i] * v2[0][3];
123 float a3 = v3[vert_attr][i] * v3[0][3];
124 float da12 = a1 - a2;
125 float da31 = a3 - a1;
126 float dadx = (da12 * tri->dy31 - tri->dy12 * da31) * oneoverarea;
127 float dady = (da31 * tri->dx12 - tri->dx31 * da12) * oneoverarea;
128
129 tri->inputs.dadx[slot][i] = dadx;
130 tri->inputs.dady[slot][i] = dady;
131 tri->inputs.a0[slot][i] = (a1 -
132 (dadx * (v1[0][0] - setup->pixel_offset) +
133 dady * (v1[0][1] - setup->pixel_offset)));
134 }
135
136
137 /**
138 * Special coefficient setup for gl_FragCoord.
139 * X and Y are trivial
140 * Z and W are copied from position_coef which should have already been computed.
141 * We could do a bit less work if we'd examine gl_FragCoord's swizzle mask.
142 */
143 static void
144 setup_fragcoord_coef(struct lp_setup_context *setup,
145 struct lp_rast_triangle *tri,
146 float oneoverarea,
147 unsigned slot,
148 const float (*v1)[4],
149 const float (*v2)[4],
150 const float (*v3)[4])
151 {
152 /*X*/
153 tri->inputs.a0[slot][0] = 0.0;
154 tri->inputs.dadx[slot][0] = 1.0;
155 tri->inputs.dady[slot][0] = 0.0;
156 /*Y*/
157 tri->inputs.a0[slot][1] = 0.0;
158 tri->inputs.dadx[slot][1] = 0.0;
159 tri->inputs.dady[slot][1] = 1.0;
160 /*Z*/
161 linear_coef(setup, tri, oneoverarea, slot, v1, v2, v3, 0, 2);
162 /*W*/
163 linear_coef(setup, tri, oneoverarea, slot, v1, v2, v3, 0, 3);
164 }
165
166
167 /**
168 * Setup the fragment input attribute with the front-facing value.
169 * \param frontface is the triangle front facing?
170 */
171 static void setup_facing_coef( struct lp_setup_context *setup,
172 struct lp_rast_triangle *tri,
173 unsigned slot,
174 boolean frontface )
175 {
176 /* convert TRUE to 1.0 and FALSE to -1.0 */
177 constant_coef( setup, tri, slot, 2.0f * frontface - 1.0f, 0 );
178 constant_coef( setup, tri, slot, 0.0f, 1 ); /* wasted */
179 constant_coef( setup, tri, slot, 0.0f, 2 ); /* wasted */
180 constant_coef( setup, tri, slot, 0.0f, 3 ); /* wasted */
181 }
182
183
184 /**
185 * Compute the tri->coef[] array dadx, dady, a0 values.
186 */
187 static void setup_tri_coefficients( struct lp_setup_context *setup,
188 struct lp_rast_triangle *tri,
189 float oneoverarea,
190 const float (*v1)[4],
191 const float (*v2)[4],
192 const float (*v3)[4],
193 boolean frontface)
194 {
195 unsigned slot;
196
197 /* The internal position input is in slot zero:
198 */
199 setup_fragcoord_coef(setup, tri, oneoverarea, 0, v1, v2, v3);
200
201 /* setup interpolation for all the remaining attributes:
202 */
203 for (slot = 0; slot < setup->fs.nr_inputs; slot++) {
204 unsigned vert_attr = setup->fs.input[slot].src_index;
205 unsigned i;
206
207 switch (setup->fs.input[slot].interp) {
208 case LP_INTERP_CONSTANT:
209 if (setup->flatshade_first) {
210 for (i = 0; i < NUM_CHANNELS; i++)
211 constant_coef(setup, tri, slot+1, v1[vert_attr][i], i);
212 }
213 else {
214 for (i = 0; i < NUM_CHANNELS; i++)
215 constant_coef(setup, tri, slot+1, v3[vert_attr][i], i);
216 }
217 break;
218
219 case LP_INTERP_LINEAR:
220 for (i = 0; i < NUM_CHANNELS; i++)
221 linear_coef(setup, tri, oneoverarea, slot+1, v1, v2, v3, vert_attr, i);
222 break;
223
224 case LP_INTERP_PERSPECTIVE:
225 for (i = 0; i < NUM_CHANNELS; i++)
226 perspective_coef(setup, tri, oneoverarea, slot+1, v1, v2, v3, vert_attr, i);
227 break;
228
229 case LP_INTERP_POSITION:
230 /* XXX: fix me - duplicates the values in slot zero.
231 */
232 setup_fragcoord_coef(setup, tri, oneoverarea, slot+1, v1, v2, v3);
233 break;
234
235 case LP_INTERP_FACING:
236 setup_facing_coef(setup, tri, slot+1, frontface);
237 break;
238
239 default:
240 assert(0);
241 }
242 }
243 }
244
245
246
247 static INLINE int subpixel_snap( float a )
248 {
249 return util_iround(FIXED_ONE * a - (FIXED_ONE / 2));
250 }
251
252
253
254 /**
255 * Alloc space for a new triangle plus the input.a0/dadx/dady arrays
256 * immediately after it.
257 * The memory is allocated from the per-scene pool, not per-tile.
258 * \param tri_size returns number of bytes allocated
259 * \param nr_inputs number of fragment shader inputs
260 * \return pointer to triangle space
261 */
262 static INLINE struct lp_rast_triangle *
263 alloc_triangle(struct lp_scene *scene, unsigned nr_inputs, unsigned *tri_size)
264 {
265 unsigned input_array_sz = NUM_CHANNELS * (nr_inputs + 1) * sizeof(float);
266 struct lp_rast_triangle *tri;
267 unsigned bytes;
268 char *inputs;
269
270 assert(sizeof(*tri) % 16 == 0);
271
272 bytes = sizeof(*tri) + (3 * input_array_sz);
273
274 tri = lp_scene_alloc_aligned( scene, bytes, 16 );
275
276 if (tri) {
277 inputs = (char *) (tri + 1);
278 tri->inputs.a0 = (float (*)[4]) inputs;
279 tri->inputs.dadx = (float (*)[4]) (inputs + input_array_sz);
280 tri->inputs.dady = (float (*)[4]) (inputs + 2 * input_array_sz);
281
282 *tri_size = bytes;
283 }
284
285 return tri;
286 }
287
288
289 /**
290 * Print triangle vertex attribs (for debug).
291 */
292 static void
293 print_triangle(struct lp_setup_context *setup,
294 const float (*v1)[4],
295 const float (*v2)[4],
296 const float (*v3)[4])
297 {
298 uint i;
299
300 debug_printf("llvmpipe triangle\n");
301 for (i = 0; i < setup->fs.nr_inputs; i++) {
302 debug_printf(" v1[%d]: %f %f %f %f\n", i,
303 v1[i][0], v1[i][1], v1[i][2], v1[i][3]);
304 }
305 for (i = 0; i < setup->fs.nr_inputs; i++) {
306 debug_printf(" v2[%d]: %f %f %f %f\n", i,
307 v2[i][0], v2[i][1], v2[i][2], v2[i][3]);
308 }
309 for (i = 0; i < setup->fs.nr_inputs; i++) {
310 debug_printf(" v3[%d]: %f %f %f %f\n", i,
311 v3[i][0], v3[i][1], v3[i][2], v3[i][3]);
312 }
313 }
314
315
316 /**
317 * Do basic setup for triangle rasterization and determine which
318 * framebuffer tiles are touched. Put the triangle in the scene's
319 * bins for the tiles which we overlap.
320 */
321 static void
322 do_triangle_ccw(struct lp_setup_context *setup,
323 const float (*v1)[4],
324 const float (*v2)[4],
325 const float (*v3)[4],
326 boolean frontfacing )
327 {
328 /* x/y positions in fixed point */
329 const int x1 = subpixel_snap(v1[0][0] + 0.5 - setup->pixel_offset);
330 const int x2 = subpixel_snap(v2[0][0] + 0.5 - setup->pixel_offset);
331 const int x3 = subpixel_snap(v3[0][0] + 0.5 - setup->pixel_offset);
332 const int y1 = subpixel_snap(v1[0][1] + 0.5 - setup->pixel_offset);
333 const int y2 = subpixel_snap(v2[0][1] + 0.5 - setup->pixel_offset);
334 const int y3 = subpixel_snap(v3[0][1] + 0.5 - setup->pixel_offset);
335
336 struct lp_scene *scene = lp_setup_get_current_scene(setup);
337 struct lp_rast_triangle *tri;
338 int area;
339 float oneoverarea;
340 int minx, maxx, miny, maxy;
341 unsigned tri_bytes;
342
343 if (0)
344 print_triangle(setup, v1, v2, v3);
345
346 tri = alloc_triangle(scene, setup->fs.nr_inputs, &tri_bytes);
347 if (!tri)
348 return;
349
350 #ifdef DEBUG
351 tri->v[0][0] = v1[0][0];
352 tri->v[1][0] = v2[0][0];
353 tri->v[2][0] = v3[0][0];
354 tri->v[0][1] = v1[0][1];
355 tri->v[1][1] = v2[0][1];
356 tri->v[2][1] = v3[0][1];
357 #endif
358
359 tri->dx12 = x1 - x2;
360 tri->dx23 = x2 - x3;
361 tri->dx31 = x3 - x1;
362
363 tri->dy12 = y1 - y2;
364 tri->dy23 = y2 - y3;
365 tri->dy31 = y3 - y1;
366
367 area = (tri->dx12 * tri->dy31 - tri->dx31 * tri->dy12);
368
369 LP_COUNT(nr_tris);
370
371 /* Cull non-ccw and zero-sized triangles.
372 *
373 * XXX: subject to overflow??
374 */
375 if (area <= 0) {
376 lp_scene_putback_data( scene, tri_bytes );
377 LP_COUNT(nr_culled_tris);
378 return;
379 }
380
381 /* Bounding rectangle (in pixels) */
382 minx = (MIN3(x1, x2, x3) + (FIXED_ONE-1)) >> FIXED_ORDER;
383 maxx = (MAX3(x1, x2, x3) + (FIXED_ONE-1)) >> FIXED_ORDER;
384 miny = (MIN3(y1, y2, y3) + (FIXED_ONE-1)) >> FIXED_ORDER;
385 maxy = (MAX3(y1, y2, y3) + (FIXED_ONE-1)) >> FIXED_ORDER;
386
387 if (setup->scissor_test) {
388 minx = MAX2(minx, setup->scissor.current.minx);
389 maxx = MIN2(maxx, setup->scissor.current.maxx);
390 miny = MAX2(miny, setup->scissor.current.miny);
391 maxy = MIN2(maxy, setup->scissor.current.maxy);
392 }
393
394 if (miny == maxy ||
395 minx == maxx) {
396 lp_scene_putback_data( scene, tri_bytes );
397 LP_COUNT(nr_culled_tris);
398 return;
399 }
400
401 /*
402 */
403 oneoverarea = ((float)FIXED_ONE) / (float)area;
404
405 /* Setup parameter interpolants:
406 */
407 setup_tri_coefficients( setup, tri, oneoverarea, v1, v2, v3, frontfacing );
408
409 tri->inputs.facing = frontfacing ? 1.0F : -1.0F;
410
411 /* half-edge constants, will be interated over the whole render target.
412 */
413 tri->c1 = tri->dy12 * x1 - tri->dx12 * y1;
414 tri->c2 = tri->dy23 * x2 - tri->dx23 * y2;
415 tri->c3 = tri->dy31 * x3 - tri->dx31 * y3;
416
417 /* correct for top-left fill convention:
418 */
419 if (tri->dy12 < 0 || (tri->dy12 == 0 && tri->dx12 > 0)) tri->c1++;
420 if (tri->dy23 < 0 || (tri->dy23 == 0 && tri->dx23 > 0)) tri->c2++;
421 if (tri->dy31 < 0 || (tri->dy31 == 0 && tri->dx31 > 0)) tri->c3++;
422
423 tri->dy12 *= FIXED_ONE;
424 tri->dy23 *= FIXED_ONE;
425 tri->dy31 *= FIXED_ONE;
426
427 tri->dx12 *= FIXED_ONE;
428 tri->dx23 *= FIXED_ONE;
429 tri->dx31 *= FIXED_ONE;
430
431 /* find trivial reject offsets for each edge for a single-pixel
432 * sized block. These will be scaled up at each recursive level to
433 * match the active blocksize. Scaling in this way works best if
434 * the blocks are square.
435 */
436 tri->eo1 = 0;
437 if (tri->dy12 < 0) tri->eo1 -= tri->dy12;
438 if (tri->dx12 > 0) tri->eo1 += tri->dx12;
439
440 tri->eo2 = 0;
441 if (tri->dy23 < 0) tri->eo2 -= tri->dy23;
442 if (tri->dx23 > 0) tri->eo2 += tri->dx23;
443
444 tri->eo3 = 0;
445 if (tri->dy31 < 0) tri->eo3 -= tri->dy31;
446 if (tri->dx31 > 0) tri->eo3 += tri->dx31;
447
448 /* Calculate trivial accept offsets from the above.
449 */
450 tri->ei1 = tri->dx12 - tri->dy12 - tri->eo1;
451 tri->ei2 = tri->dx23 - tri->dy23 - tri->eo2;
452 tri->ei3 = tri->dx31 - tri->dy31 - tri->eo3;
453
454 /* Fill in the inputs.step[][] arrays.
455 * We've manually unrolled some loops here.
456 */
457 {
458 const int xstep1 = -tri->dy12;
459 const int xstep2 = -tri->dy23;
460 const int xstep3 = -tri->dy31;
461 const int ystep1 = tri->dx12;
462 const int ystep2 = tri->dx23;
463 const int ystep3 = tri->dx31;
464
465 #define SETUP_STEP(i, x, y) \
466 do { \
467 tri->inputs.step[0][i] = x * xstep1 + y * ystep1; \
468 tri->inputs.step[1][i] = x * xstep2 + y * ystep2; \
469 tri->inputs.step[2][i] = x * xstep3 + y * ystep3; \
470 } while (0)
471
472 SETUP_STEP(0, 0, 0);
473 SETUP_STEP(1, 1, 0);
474 SETUP_STEP(2, 0, 1);
475 SETUP_STEP(3, 1, 1);
476
477 SETUP_STEP(4, 2, 0);
478 SETUP_STEP(5, 3, 0);
479 SETUP_STEP(6, 2, 1);
480 SETUP_STEP(7, 3, 1);
481
482 SETUP_STEP(8, 0, 2);
483 SETUP_STEP(9, 1, 2);
484 SETUP_STEP(10, 0, 3);
485 SETUP_STEP(11, 1, 3);
486
487 SETUP_STEP(12, 2, 2);
488 SETUP_STEP(13, 3, 2);
489 SETUP_STEP(14, 2, 3);
490 SETUP_STEP(15, 3, 3);
491 #undef STEP
492 }
493
494 /*
495 * All fields of 'tri' are now set. The remaining code here is
496 * concerned with binning.
497 */
498
499 /* Convert to tile coordinates:
500 */
501 minx = minx / TILE_SIZE;
502 miny = miny / TILE_SIZE;
503 maxx = maxx / TILE_SIZE;
504 maxy = maxy / TILE_SIZE;
505
506 /*
507 * Clamp to framebuffer size
508 */
509 minx = MAX2(minx, 0);
510 miny = MAX2(miny, 0);
511 maxx = MIN2(maxx, scene->tiles_x - 1);
512 maxy = MIN2(maxy, scene->tiles_y - 1);
513
514 /* Determine which tile(s) intersect the triangle's bounding box
515 */
516 if (miny == maxy && minx == maxx)
517 {
518 /* Triangle is contained in a single tile:
519 */
520 lp_scene_bin_command( scene, minx, miny, lp_rast_triangle,
521 lp_rast_arg_triangle(tri) );
522 }
523 else
524 {
525 int c1 = (tri->c1 +
526 tri->dx12 * miny * TILE_SIZE -
527 tri->dy12 * minx * TILE_SIZE);
528 int c2 = (tri->c2 +
529 tri->dx23 * miny * TILE_SIZE -
530 tri->dy23 * minx * TILE_SIZE);
531 int c3 = (tri->c3 +
532 tri->dx31 * miny * TILE_SIZE -
533 tri->dy31 * minx * TILE_SIZE);
534
535 int ei1 = tri->ei1 << TILE_ORDER;
536 int ei2 = tri->ei2 << TILE_ORDER;
537 int ei3 = tri->ei3 << TILE_ORDER;
538
539 int eo1 = tri->eo1 << TILE_ORDER;
540 int eo2 = tri->eo2 << TILE_ORDER;
541 int eo3 = tri->eo3 << TILE_ORDER;
542
543 int xstep1 = -(tri->dy12 << TILE_ORDER);
544 int xstep2 = -(tri->dy23 << TILE_ORDER);
545 int xstep3 = -(tri->dy31 << TILE_ORDER);
546
547 int ystep1 = tri->dx12 << TILE_ORDER;
548 int ystep2 = tri->dx23 << TILE_ORDER;
549 int ystep3 = tri->dx31 << TILE_ORDER;
550 int x, y;
551
552
553 /* Test tile-sized blocks against the triangle.
554 * Discard blocks fully outside the tri. If the block is fully
555 * contained inside the tri, bin an lp_rast_shade_tile command.
556 * Else, bin a lp_rast_triangle command.
557 */
558 for (y = miny; y <= maxy; y++)
559 {
560 int cx1 = c1;
561 int cx2 = c2;
562 int cx3 = c3;
563 boolean in = FALSE; /* are we inside the triangle? */
564
565 for (x = minx; x <= maxx; x++)
566 {
567 if (cx1 + eo1 < 0 ||
568 cx2 + eo2 < 0 ||
569 cx3 + eo3 < 0)
570 {
571 /* do nothing */
572 LP_COUNT(nr_empty_64);
573 if (in)
574 break; /* exiting triangle, all done with this row */
575 }
576 else if (cx1 + ei1 > 0 &&
577 cx2 + ei2 > 0 &&
578 cx3 + ei3 > 0)
579 {
580 /* triangle covers the whole tile- shade whole tile */
581 LP_COUNT(nr_fully_covered_64);
582 in = TRUE;
583 if (setup->fs.current.variant->opaque) {
584 lp_scene_bin_reset( scene, x, y );
585 lp_scene_bin_command( scene, x, y,
586 lp_rast_set_state,
587 lp_rast_arg_state(setup->fs.stored) );
588 }
589 lp_scene_bin_command( scene, x, y,
590 lp_rast_shade_tile,
591 lp_rast_arg_inputs(&tri->inputs) );
592 }
593 else
594 {
595 /* rasterizer/shade partial tile */
596 LP_COUNT(nr_partially_covered_64);
597 in = TRUE;
598 lp_scene_bin_command( scene, x, y,
599 lp_rast_triangle,
600 lp_rast_arg_triangle(tri) );
601 }
602
603 /* Iterate cx values across the region:
604 */
605 cx1 += xstep1;
606 cx2 += xstep2;
607 cx3 += xstep3;
608 }
609
610 /* Iterate c values down the region:
611 */
612 c1 += ystep1;
613 c2 += ystep2;
614 c3 += ystep3;
615 }
616 }
617 }
618
619
620 /**
621 * Draw triangle if it's CW, cull otherwise.
622 */
623 static void triangle_cw( struct lp_setup_context *setup,
624 const float (*v0)[4],
625 const float (*v1)[4],
626 const float (*v2)[4] )
627 {
628 do_triangle_ccw( setup, v1, v0, v2, !setup->ccw_is_frontface );
629 }
630
631
632 /**
633 * Draw triangle if it's CCW, cull otherwise.
634 */
635 static void triangle_ccw( struct lp_setup_context *setup,
636 const float (*v0)[4],
637 const float (*v1)[4],
638 const float (*v2)[4] )
639 {
640 do_triangle_ccw( setup, v0, v1, v2, setup->ccw_is_frontface );
641 }
642
643
644
645 /**
646 * Draw triangle whether it's CW or CCW.
647 */
648 static void triangle_both( struct lp_setup_context *setup,
649 const float (*v0)[4],
650 const float (*v1)[4],
651 const float (*v2)[4] )
652 {
653 /* edge vectors e = v0 - v2, f = v1 - v2 */
654 const float ex = v0[0][0] - v2[0][0];
655 const float ey = v0[0][1] - v2[0][1];
656 const float fx = v1[0][0] - v2[0][0];
657 const float fy = v1[0][1] - v2[0][1];
658
659 /* det = cross(e,f).z */
660 if (ex * fy - ey * fx < 0.0f)
661 triangle_ccw( setup, v0, v1, v2 );
662 else
663 triangle_cw( setup, v0, v1, v2 );
664 }
665
666
667 static void triangle_nop( struct lp_setup_context *setup,
668 const float (*v0)[4],
669 const float (*v1)[4],
670 const float (*v2)[4] )
671 {
672 }
673
674
675 void
676 lp_setup_choose_triangle( struct lp_setup_context *setup )
677 {
678 switch (setup->cullmode) {
679 case PIPE_FACE_NONE:
680 setup->triangle = triangle_both;
681 break;
682 case PIPE_FACE_BACK:
683 setup->triangle = setup->ccw_is_frontface ? triangle_ccw : triangle_cw;
684 break;
685 case PIPE_FACE_FRONT:
686 setup->triangle = setup->ccw_is_frontface ? triangle_cw : triangle_ccw;
687 break;
688 default:
689 setup->triangle = triangle_nop;
690 break;
691 }
692 }