89b2b4eb37c6b2c5ebd0c0c5194ee0c3af0582ff
[mesa.git] / src / gallium / drivers / llvmpipe / lp_setup_tri.c
1 /**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /*
29 * Binning code for triangles
30 */
31
32 #include "lp_setup_context.h"
33 #include "lp_rast.h"
34 #include "util/u_math.h"
35 #include "util/u_memory.h"
36
37 #define NUM_CHANNELS 4
38
39 /**
40 * Compute a0 for a constant-valued coefficient (GL_FLAT shading).
41 */
42 static void constant_coef( struct lp_rast_triangle *tri,
43 unsigned slot,
44 const float value,
45 unsigned i )
46 {
47 tri->inputs.a0[slot][i] = value;
48 tri->inputs.dadx[slot][i] = 0;
49 tri->inputs.dady[slot][i] = 0;
50 }
51
52 /**
53 * Compute a0, dadx and dady for a linearly interpolated coefficient,
54 * for a triangle.
55 */
56 static void linear_coef( struct lp_rast_triangle *tri,
57 unsigned slot,
58 const float (*v1)[4],
59 const float (*v2)[4],
60 const float (*v3)[4],
61 unsigned vert_attr,
62 unsigned i)
63 {
64 float a1 = v1[vert_attr][i];
65 float a2 = v2[vert_attr][i];
66 float a3 = v3[vert_attr][i];
67
68 float da12 = a1 - a2;
69 float da31 = a3 - a1;
70 float dadx = (da12 * tri->dy31 - tri->dy12 * da31) * tri->oneoverarea;
71 float dady = (da31 * tri->dx12 - tri->dx31 * da12) * tri->oneoverarea;
72
73 tri->inputs.dadx[slot][i] = dadx;
74 tri->inputs.dady[slot][i] = dady;
75
76 /* calculate a0 as the value which would be sampled for the
77 * fragment at (0,0), taking into account that we want to sample at
78 * pixel centers, in other words (0.5, 0.5).
79 *
80 * this is neat but unfortunately not a good way to do things for
81 * triangles with very large values of dadx or dady as it will
82 * result in the subtraction and re-addition from a0 of a very
83 * large number, which means we'll end up loosing a lot of the
84 * fractional bits and precision from a0. the way to fix this is
85 * to define a0 as the sample at a pixel center somewhere near vmin
86 * instead - i'll switch to this later.
87 */
88 tri->inputs.a0[slot][i] = (v1[vert_attr][i] -
89 (dadx * (v1[0][0] - 0.5f) +
90 dady * (v1[0][1] - 0.5f)));
91 }
92
93
94 /**
95 * Compute a0, dadx and dady for a perspective-corrected interpolant,
96 * for a triangle.
97 * We basically multiply the vertex value by 1/w before computing
98 * the plane coefficients (a0, dadx, dady).
99 * Later, when we compute the value at a particular fragment position we'll
100 * divide the interpolated value by the interpolated W at that fragment.
101 */
102 static void perspective_coef( struct lp_rast_triangle *tri,
103 unsigned slot,
104 const float (*v1)[4],
105 const float (*v2)[4],
106 const float (*v3)[4],
107 unsigned vert_attr,
108 unsigned i)
109 {
110 /* premultiply by 1/w (v[0][3] is always 1/w):
111 */
112 float a1 = v1[vert_attr][i] * v1[0][3];
113 float a2 = v2[vert_attr][i] * v2[0][3];
114 float a3 = v3[vert_attr][i] * v3[0][3];
115 float da12 = a1 - a2;
116 float da31 = a3 - a1;
117 float dadx = (da12 * tri->dy31 - tri->dy12 * da31) * tri->oneoverarea;
118 float dady = (da31 * tri->dx12 - tri->dx31 * da12) * tri->oneoverarea;
119
120
121 tri->inputs.dadx[slot][i] = dadx;
122 tri->inputs.dady[slot][i] = dady;
123 tri->inputs.a0[slot][i] = (a1 -
124 (dadx * (v1[0][0] - 0.5f) +
125 dady * (v1[0][1] - 0.5f)));
126 }
127
128
129 /**
130 * Special coefficient setup for gl_FragCoord.
131 * X and Y are trivial, though Y has to be inverted for OpenGL.
132 * Z and W are copied from position_coef which should have already been computed.
133 * We could do a bit less work if we'd examine gl_FragCoord's swizzle mask.
134 */
135 static void
136 setup_fragcoord_coef(struct lp_rast_triangle *tri,
137 unsigned slot,
138 const float (*v1)[4],
139 const float (*v2)[4],
140 const float (*v3)[4])
141 {
142 /*X*/
143 tri->inputs.a0[slot][0] = 0.0;
144 tri->inputs.dadx[slot][0] = 1.0;
145 tri->inputs.dady[slot][0] = 0.0;
146 /*Y*/
147 tri->inputs.a0[slot][1] = 0.0;
148 tri->inputs.dadx[slot][1] = 0.0;
149 tri->inputs.dady[slot][1] = 1.0;
150 /*Z*/
151 linear_coef(tri, slot, v1, v2, v3, 0, 2);
152 /*W*/
153 linear_coef(tri, slot, v1, v2, v3, 0, 3);
154 }
155
156
157 static void setup_facing_coef( struct lp_rast_triangle *tri,
158 unsigned slot,
159 boolean frontface )
160 {
161 constant_coef( tri, slot, 1.0f - frontface, 0 );
162 constant_coef( tri, slot, 0.0f, 1 ); /* wasted */
163 constant_coef( tri, slot, 0.0f, 2 ); /* wasted */
164 constant_coef( tri, slot, 0.0f, 3 ); /* wasted */
165 }
166
167
168 /**
169 * Compute the tri->coef[] array dadx, dady, a0 values.
170 */
171 static void setup_tri_coefficients( struct setup_context *setup,
172 struct lp_rast_triangle *tri,
173 const float (*v1)[4],
174 const float (*v2)[4],
175 const float (*v3)[4],
176 boolean frontface )
177 {
178 unsigned slot;
179
180 /* The internal position input is in slot zero:
181 */
182 setup_fragcoord_coef(tri, 0, v1, v2, v3);
183
184 /* setup interpolation for all the remaining attrbutes:
185 */
186 for (slot = 0; slot < setup->fs.nr_inputs; slot++) {
187 unsigned vert_attr = setup->fs.input[slot].src_index;
188 unsigned i;
189
190 switch (setup->fs.input[slot].interp) {
191 case LP_INTERP_CONSTANT:
192 for (i = 0; i < NUM_CHANNELS; i++)
193 constant_coef(tri, slot+1, v3[vert_attr][i], i);
194 break;
195
196 case LP_INTERP_LINEAR:
197 for (i = 0; i < NUM_CHANNELS; i++)
198 linear_coef(tri, slot+1, v1, v2, v3, vert_attr, i);
199 break;
200
201 case LP_INTERP_PERSPECTIVE:
202 for (i = 0; i < NUM_CHANNELS; i++)
203 perspective_coef(tri, slot+1, v1, v2, v3, vert_attr, i);
204 break;
205
206 case LP_INTERP_POSITION:
207 /* XXX: fix me - duplicates the values in slot zero.
208 */
209 setup_fragcoord_coef(tri, slot+1, v1, v2, v3);
210 break;
211
212 case LP_INTERP_FACING:
213 setup_facing_coef(tri, slot+1, frontface);
214 break;
215
216 default:
217 assert(0);
218 }
219 }
220 }
221
222
223
224 /* XXX: do this by add/subtracting a large floating point number:
225 */
226 static inline float subpixel_snap( float a )
227 {
228 int i = a * 16;
229 return (float)i * (1.0/16);
230 }
231
232
233 static INLINE void bin_triangle( struct cmd_block_list *list,
234 const struct lp_rast_triangle arg )
235 {
236 }
237
238
239 /* to avoid having to allocate power-of-four, square render targets,
240 * end up having a specialized version of the above that runs only at
241 * the topmost level.
242 *
243 * at the topmost level there may be an arbitary number of steps on
244 * either dimension, so this loop needs to be either separately
245 * code-generated and unrolled for each render target size, or kept as
246 * generic looping code:
247 */
248
249 #define MIN3(a,b,c) MIN2(MIN2(a,b),c)
250 #define MAX3(a,b,c) MAX2(MAX2(a,b),c)
251
252 static void
253 do_triangle_ccw(struct setup_context *setup,
254 const float (*v1)[4],
255 const float (*v2)[4],
256 const float (*v3)[4],
257 boolean frontfacing )
258 {
259 const int rt_width = setup->fb.width;
260 const int rt_height = setup->fb.height;
261
262 const float y1 = subpixel_snap(v1[0][1]);
263 const float y2 = subpixel_snap(v2[0][1]);
264 const float y3 = subpixel_snap(v3[0][1]);
265
266 const float x1 = subpixel_snap(v1[0][0]);
267 const float x2 = subpixel_snap(v2[0][0]);
268 const float x3 = subpixel_snap(v3[0][0]);
269
270 struct lp_rast_triangle *tri = get_data( &setup->data, sizeof *tri );
271 float area;
272 int minx, maxx, miny, maxy;
273 float c1, c2, c3;
274
275 tri->inputs.state = setup->fs.stored;
276
277 tri->dx12 = x1 - x2;
278 tri->dx23 = x2 - x3;
279 tri->dx31 = x3 - x1;
280
281 tri->dy12 = y1 - y2;
282 tri->dy23 = y2 - y3;
283 tri->dy31 = y3 - y1;
284
285 area = (tri->dx12 * tri->dy31 -
286 tri->dx31 * tri->dy12);
287
288 /* Cull non-ccw and zero-sized triangles.
289 */
290 if (area <= 0 || util_is_inf_or_nan(area))
291 return;
292
293 // Bounding rectangle
294 minx = util_iround(MIN3(x1, x2, x3) - .5);
295 maxx = util_iround(MAX3(x1, x2, x3) + .5);
296 miny = util_iround(MIN3(y1, y2, y3) - .5);
297 maxy = util_iround(MAX3(y1, y2, y3) + .5);
298
299 /* Clamp to framebuffer (or tile) dimensions:
300 */
301 miny = MAX2(0, miny);
302 minx = MAX2(0, minx);
303 maxy = MIN2(rt_height, maxy);
304 maxx = MIN2(rt_width, maxx);
305
306 if (miny == maxy || minx == maxx)
307 return;
308
309 tri->miny = miny;
310 tri->minx = minx;
311 tri->maxy = maxy;
312 tri->maxx = maxx;
313
314 /* The only divide in this code. Is it really needed?
315 */
316 tri->oneoverarea = 1.0f / area;
317
318 /* Setup parameter interpolants:
319 */
320 setup_tri_coefficients( setup, tri, v1, v2, v3, frontfacing );
321
322 /* half-edge constants, will be interated over the whole
323 * rendertarget.
324 */
325 tri->c1 = tri->dy12 * x1 - tri->dx12 * y1;
326 tri->c2 = tri->dy23 * x2 - tri->dx23 * y2;
327 tri->c3 = tri->dy31 * x3 - tri->dx31 * y3;
328
329 /* correct for top-left fill convention:
330 */
331 if (tri->dy12 < 0 || (tri->dy12 == 0 && tri->dx12 > 0)) tri->c1 += 1.0/16.0f;
332 if (tri->dy23 < 0 || (tri->dy23 == 0 && tri->dx23 > 0)) tri->c2 += 1.0/16.0f;
333 if (tri->dy31 < 0 || (tri->dy31 == 0 && tri->dx31 > 0)) tri->c3 += 1.0/16.0f;
334
335 /* find trivial reject offsets for each edge for a single-pixel
336 * sized block. These will be scaled up at each recursive level to
337 * match the active blocksize. Scaling in this way works best if
338 * the blocks are square.
339 */
340 tri->eo1 = 0;
341 if (tri->dy12 < 0) tri->eo1 -= tri->dy12;
342 if (tri->dx12 > 0) tri->eo1 += tri->dx12;
343
344 tri->eo2 = 0;
345 if (tri->dy23 < 0) tri->eo2 -= tri->dy23;
346 if (tri->dx23 > 0) tri->eo2 += tri->dx23;
347
348 tri->eo3 = 0;
349 if (tri->dy31 < 0) tri->eo3 -= tri->dy31;
350 if (tri->dx31 > 0) tri->eo3 += tri->dx31;
351
352 /* Calculate trivial accept offsets from the above.
353 */
354 tri->ei1 = tri->dx12 - tri->dy12 - tri->eo1;
355 tri->ei2 = tri->dx23 - tri->dy23 - tri->eo2;
356 tri->ei3 = tri->dx31 - tri->dy31 - tri->eo3;
357
358 minx &= ~(TILESIZE-1); /* aligned blocks */
359 miny &= ~(TILESIZE-1); /* aligned blocks */
360
361 c1 = tri->c1 + tri->dx12 * miny - tri->dy12 * minx;
362 c2 = tri->c2 + tri->dx23 * miny - tri->dy23 * minx;
363 c3 = tri->c3 + tri->dx31 * miny - tri->dy31 * minx;
364
365 minx /= TILESIZE;
366 miny /= TILESIZE;
367 maxx /= TILESIZE;
368 maxy /= TILESIZE;
369
370 /* Convert to tile coordinates:
371 */
372 if (miny == maxy && minx == maxx)
373 {
374 /* Triangle is contained in a single tile:
375 */
376 bin_command( &setup->tile[minx][miny], lp_rast_triangle,
377 lp_rast_arg_triangle(tri) );
378 }
379 else
380 {
381 const int step = TILESIZE;
382
383 float ei1 = tri->ei1 * step;
384 float ei2 = tri->ei2 * step;
385 float ei3 = tri->ei3 * step;
386
387 float eo1 = tri->eo1 * step;
388 float eo2 = tri->eo2 * step;
389 float eo3 = tri->eo3 * step;
390
391 float xstep1 = -step * tri->dy12;
392 float xstep2 = -step * tri->dy23;
393 float xstep3 = -step * tri->dy31;
394
395 float ystep1 = step * tri->dx12;
396 float ystep2 = step * tri->dx23;
397 float ystep3 = step * tri->dx31;
398 int x, y;
399
400
401 /* Subdivide space into NxM blocks, where each block is square and
402 * power-of-four in dimension.
403 *
404 * Trivially accept or reject blocks, else jump to per-pixel
405 * examination above.
406 */
407 for (y = miny; y <= maxy; y++)
408 {
409 float cx1 = c1;
410 float cx2 = c2;
411 float cx3 = c3;
412
413 for (x = minx; x <= maxx; x++)
414 {
415 if (cx1 + eo1 < 0 ||
416 cx2 + eo2 < 0 ||
417 cx3 + eo3 < 0)
418 {
419 /* do nothing */
420 }
421 else if (cx1 + ei1 > 0 &&
422 cx2 + ei2 > 0 &&
423 cx3 + ei3 > 0)
424 {
425 /* shade whole tile */
426 bin_command( &setup->tile[x][y], lp_rast_shade_tile,
427 lp_rast_arg_inputs(&tri->inputs) );
428 }
429 else
430 {
431 /* shade partial tile */
432 bin_command( &setup->tile[x][y],
433 lp_rast_triangle,
434 lp_rast_arg_triangle(tri) );
435 }
436
437 /* Iterate cx values across the region:
438 */
439 cx1 += xstep1;
440 cx2 += xstep2;
441 cx3 += xstep3;
442 }
443
444 /* Iterate c values down the region:
445 */
446 c1 += ystep1;
447 c2 += ystep2;
448 c3 += ystep3;
449 }
450 }
451 }
452
453 static void triangle_cw( struct setup_context *setup,
454 const float (*v0)[4],
455 const float (*v1)[4],
456 const float (*v2)[4] )
457 {
458 do_triangle_ccw( setup, v1, v0, v2, !setup->ccw_is_frontface );
459 }
460
461 static void triangle_ccw( struct setup_context *setup,
462 const float (*v0)[4],
463 const float (*v1)[4],
464 const float (*v2)[4] )
465 {
466 do_triangle_ccw( setup, v0, v1, v2, setup->ccw_is_frontface );
467 }
468
469 static void triangle_both( struct setup_context *setup,
470 const float (*v0)[4],
471 const float (*v1)[4],
472 const float (*v2)[4] )
473 {
474 /* edge vectors e = v0 - v2, f = v1 - v2 */
475 const float ex = v0[0][0] - v2[0][0];
476 const float ey = v0[0][1] - v2[0][1];
477 const float fx = v1[0][0] - v2[0][0];
478 const float fy = v1[0][1] - v2[0][1];
479
480 /* det = cross(e,f).z */
481 if (ex * fy - ey * fx < 0)
482 triangle_ccw( setup, v0, v1, v2 );
483 else
484 triangle_cw( setup, v0, v1, v2 );
485 }
486
487 static void triangle_nop( struct setup_context *setup,
488 const float (*v0)[4],
489 const float (*v1)[4],
490 const float (*v2)[4] )
491 {
492 }
493
494
495 void
496 lp_setup_choose_triangle( struct setup_context *setup )
497 {
498 switch (setup->cullmode) {
499 case PIPE_WINDING_NONE:
500 setup->triangle = triangle_both;
501 break;
502 case PIPE_WINDING_CCW:
503 setup->triangle = triangle_cw;
504 break;
505 case PIPE_WINDING_CW:
506 setup->triangle = triangle_ccw;
507 break;
508 default:
509 setup->triangle = triangle_nop;
510 break;
511 }
512 }
513
514