llvmpipe: Don't waste time interpolating unused input channels.
[mesa.git] / src / gallium / drivers / llvmpipe / lp_setup_tri.c
1 /**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /*
29 * Binning code for triangles
30 */
31
32 #include "util/u_math.h"
33 #include "util/u_memory.h"
34 #include "lp_perf.h"
35 #include "lp_setup_context.h"
36 #include "lp_rast.h"
37 #include "lp_state_fs.h"
38
39 #define NUM_CHANNELS 4
40
41
42 /**
43 * Compute a0 for a constant-valued coefficient (GL_FLAT shading).
44 */
45 static void constant_coef( struct lp_setup_context *setup,
46 struct lp_rast_triangle *tri,
47 unsigned slot,
48 const float value,
49 unsigned i )
50 {
51 tri->inputs.a0[slot][i] = value;
52 tri->inputs.dadx[slot][i] = 0.0f;
53 tri->inputs.dady[slot][i] = 0.0f;
54 }
55
56
57 /**
58 * Compute a0, dadx and dady for a linearly interpolated coefficient,
59 * for a triangle.
60 */
61 static void linear_coef( struct lp_setup_context *setup,
62 struct lp_rast_triangle *tri,
63 float oneoverarea,
64 unsigned slot,
65 const float (*v1)[4],
66 const float (*v2)[4],
67 const float (*v3)[4],
68 unsigned vert_attr,
69 unsigned i)
70 {
71 float a1 = v1[vert_attr][i];
72 float a2 = v2[vert_attr][i];
73 float a3 = v3[vert_attr][i];
74
75 float da12 = a1 - a2;
76 float da31 = a3 - a1;
77 float dadx = (da12 * tri->dy31 - tri->dy12 * da31) * oneoverarea;
78 float dady = (da31 * tri->dx12 - tri->dx31 * da12) * oneoverarea;
79
80 tri->inputs.dadx[slot][i] = dadx;
81 tri->inputs.dady[slot][i] = dady;
82
83 /* calculate a0 as the value which would be sampled for the
84 * fragment at (0,0), taking into account that we want to sample at
85 * pixel centers, in other words (0.5, 0.5).
86 *
87 * this is neat but unfortunately not a good way to do things for
88 * triangles with very large values of dadx or dady as it will
89 * result in the subtraction and re-addition from a0 of a very
90 * large number, which means we'll end up loosing a lot of the
91 * fractional bits and precision from a0. the way to fix this is
92 * to define a0 as the sample at a pixel center somewhere near vmin
93 * instead - i'll switch to this later.
94 */
95 tri->inputs.a0[slot][i] = (a1 -
96 (dadx * (v1[0][0] - setup->pixel_offset) +
97 dady * (v1[0][1] - setup->pixel_offset)));
98 }
99
100
101 /**
102 * Compute a0, dadx and dady for a perspective-corrected interpolant,
103 * for a triangle.
104 * We basically multiply the vertex value by 1/w before computing
105 * the plane coefficients (a0, dadx, dady).
106 * Later, when we compute the value at a particular fragment position we'll
107 * divide the interpolated value by the interpolated W at that fragment.
108 */
109 static void perspective_coef( struct lp_setup_context *setup,
110 struct lp_rast_triangle *tri,
111 float oneoverarea,
112 unsigned slot,
113 const float (*v1)[4],
114 const float (*v2)[4],
115 const float (*v3)[4],
116 unsigned vert_attr,
117 unsigned i)
118 {
119 /* premultiply by 1/w (v[0][3] is always 1/w):
120 */
121 float a1 = v1[vert_attr][i] * v1[0][3];
122 float a2 = v2[vert_attr][i] * v2[0][3];
123 float a3 = v3[vert_attr][i] * v3[0][3];
124 float da12 = a1 - a2;
125 float da31 = a3 - a1;
126 float dadx = (da12 * tri->dy31 - tri->dy12 * da31) * oneoverarea;
127 float dady = (da31 * tri->dx12 - tri->dx31 * da12) * oneoverarea;
128
129 tri->inputs.dadx[slot][i] = dadx;
130 tri->inputs.dady[slot][i] = dady;
131 tri->inputs.a0[slot][i] = (a1 -
132 (dadx * (v1[0][0] - setup->pixel_offset) +
133 dady * (v1[0][1] - setup->pixel_offset)));
134 }
135
136
137 /**
138 * Special coefficient setup for gl_FragCoord.
139 * X and Y are trivial
140 * Z and W are copied from position_coef which should have already been computed.
141 * We could do a bit less work if we'd examine gl_FragCoord's swizzle mask.
142 */
143 static void
144 setup_fragcoord_coef(struct lp_setup_context *setup,
145 struct lp_rast_triangle *tri,
146 float oneoverarea,
147 unsigned slot,
148 const float (*v1)[4],
149 const float (*v2)[4],
150 const float (*v3)[4])
151 {
152 /*X*/
153 tri->inputs.a0[slot][0] = 0.0;
154 tri->inputs.dadx[slot][0] = 1.0;
155 tri->inputs.dady[slot][0] = 0.0;
156 /*Y*/
157 tri->inputs.a0[slot][1] = 0.0;
158 tri->inputs.dadx[slot][1] = 0.0;
159 tri->inputs.dady[slot][1] = 1.0;
160 /*Z*/
161 linear_coef(setup, tri, oneoverarea, slot, v1, v2, v3, 0, 2);
162 /*W*/
163 linear_coef(setup, tri, oneoverarea, slot, v1, v2, v3, 0, 3);
164 }
165
166
167 /**
168 * Setup the fragment input attribute with the front-facing value.
169 * \param frontface is the triangle front facing?
170 */
171 static void setup_facing_coef( struct lp_setup_context *setup,
172 struct lp_rast_triangle *tri,
173 unsigned slot,
174 boolean frontface )
175 {
176 /* convert TRUE to 1.0 and FALSE to -1.0 */
177 constant_coef( setup, tri, slot, 2.0f * frontface - 1.0f, 0 );
178 constant_coef( setup, tri, slot, 0.0f, 1 ); /* wasted */
179 constant_coef( setup, tri, slot, 0.0f, 2 ); /* wasted */
180 constant_coef( setup, tri, slot, 0.0f, 3 ); /* wasted */
181 }
182
183
184 /**
185 * Compute the tri->coef[] array dadx, dady, a0 values.
186 */
187 static void setup_tri_coefficients( struct lp_setup_context *setup,
188 struct lp_rast_triangle *tri,
189 float oneoverarea,
190 const float (*v1)[4],
191 const float (*v2)[4],
192 const float (*v3)[4],
193 boolean frontface)
194 {
195 unsigned slot;
196
197 /* The internal position input is in slot zero:
198 */
199 setup_fragcoord_coef(setup, tri, oneoverarea, 0, v1, v2, v3);
200
201 /* setup interpolation for all the remaining attributes:
202 */
203 for (slot = 0; slot < setup->fs.nr_inputs; slot++) {
204 unsigned vert_attr = setup->fs.input[slot].src_index;
205 unsigned i;
206
207 switch (setup->fs.input[slot].interp) {
208 case LP_INTERP_CONSTANT:
209 if (setup->flatshade_first) {
210 for (i = 0; i < NUM_CHANNELS; i++)
211 if (setup->fs.input[slot].usage_mask & (1 << i))
212 constant_coef(setup, tri, slot+1, v1[vert_attr][i], i);
213 }
214 else {
215 for (i = 0; i < NUM_CHANNELS; i++)
216 if (setup->fs.input[slot].usage_mask & (1 << i))
217 constant_coef(setup, tri, slot+1, v3[vert_attr][i], i);
218 }
219 break;
220
221 case LP_INTERP_LINEAR:
222 for (i = 0; i < NUM_CHANNELS; i++)
223 if (setup->fs.input[slot].usage_mask & (1 << i))
224 linear_coef(setup, tri, oneoverarea, slot+1, v1, v2, v3, vert_attr, i);
225 break;
226
227 case LP_INTERP_PERSPECTIVE:
228 for (i = 0; i < NUM_CHANNELS; i++)
229 if (setup->fs.input[slot].usage_mask & (1 << i))
230 perspective_coef(setup, tri, oneoverarea, slot+1, v1, v2, v3, vert_attr, i);
231 break;
232
233 case LP_INTERP_POSITION:
234 /* XXX: fix me - duplicates the values in slot zero.
235 */
236 setup_fragcoord_coef(setup, tri, oneoverarea, slot+1, v1, v2, v3);
237 break;
238
239 case LP_INTERP_FACING:
240 setup_facing_coef(setup, tri, slot+1, frontface);
241 break;
242
243 default:
244 assert(0);
245 }
246 }
247 }
248
249
250
251 static INLINE int subpixel_snap( float a )
252 {
253 return util_iround(FIXED_ONE * a - (FIXED_ONE / 2));
254 }
255
256
257
258 /**
259 * Alloc space for a new triangle plus the input.a0/dadx/dady arrays
260 * immediately after it.
261 * The memory is allocated from the per-scene pool, not per-tile.
262 * \param tri_size returns number of bytes allocated
263 * \param nr_inputs number of fragment shader inputs
264 * \return pointer to triangle space
265 */
266 static INLINE struct lp_rast_triangle *
267 alloc_triangle(struct lp_scene *scene, unsigned nr_inputs, unsigned *tri_size)
268 {
269 unsigned input_array_sz = NUM_CHANNELS * (nr_inputs + 1) * sizeof(float);
270 struct lp_rast_triangle *tri;
271 unsigned bytes;
272 char *inputs;
273
274 assert(sizeof(*tri) % 16 == 0);
275
276 bytes = sizeof(*tri) + (3 * input_array_sz);
277
278 tri = lp_scene_alloc_aligned( scene, bytes, 16 );
279
280 if (tri) {
281 inputs = (char *) (tri + 1);
282 tri->inputs.a0 = (float (*)[4]) inputs;
283 tri->inputs.dadx = (float (*)[4]) (inputs + input_array_sz);
284 tri->inputs.dady = (float (*)[4]) (inputs + 2 * input_array_sz);
285
286 *tri_size = bytes;
287 }
288
289 return tri;
290 }
291
292
293 /**
294 * Print triangle vertex attribs (for debug).
295 */
296 static void
297 print_triangle(struct lp_setup_context *setup,
298 const float (*v1)[4],
299 const float (*v2)[4],
300 const float (*v3)[4])
301 {
302 uint i;
303
304 debug_printf("llvmpipe triangle\n");
305 for (i = 0; i < setup->fs.nr_inputs; i++) {
306 debug_printf(" v1[%d]: %f %f %f %f\n", i,
307 v1[i][0], v1[i][1], v1[i][2], v1[i][3]);
308 }
309 for (i = 0; i < setup->fs.nr_inputs; i++) {
310 debug_printf(" v2[%d]: %f %f %f %f\n", i,
311 v2[i][0], v2[i][1], v2[i][2], v2[i][3]);
312 }
313 for (i = 0; i < setup->fs.nr_inputs; i++) {
314 debug_printf(" v3[%d]: %f %f %f %f\n", i,
315 v3[i][0], v3[i][1], v3[i][2], v3[i][3]);
316 }
317 }
318
319
320 /**
321 * Do basic setup for triangle rasterization and determine which
322 * framebuffer tiles are touched. Put the triangle in the scene's
323 * bins for the tiles which we overlap.
324 */
325 static void
326 do_triangle_ccw(struct lp_setup_context *setup,
327 const float (*v1)[4],
328 const float (*v2)[4],
329 const float (*v3)[4],
330 boolean frontfacing )
331 {
332 /* x/y positions in fixed point */
333 const int x1 = subpixel_snap(v1[0][0] + 0.5 - setup->pixel_offset);
334 const int x2 = subpixel_snap(v2[0][0] + 0.5 - setup->pixel_offset);
335 const int x3 = subpixel_snap(v3[0][0] + 0.5 - setup->pixel_offset);
336 const int y1 = subpixel_snap(v1[0][1] + 0.5 - setup->pixel_offset);
337 const int y2 = subpixel_snap(v2[0][1] + 0.5 - setup->pixel_offset);
338 const int y3 = subpixel_snap(v3[0][1] + 0.5 - setup->pixel_offset);
339
340 struct lp_scene *scene = lp_setup_get_current_scene(setup);
341 struct lp_rast_triangle *tri;
342 int area;
343 float oneoverarea;
344 int minx, maxx, miny, maxy;
345 unsigned tri_bytes;
346
347 if (0)
348 print_triangle(setup, v1, v2, v3);
349
350 tri = alloc_triangle(scene, setup->fs.nr_inputs, &tri_bytes);
351 if (!tri)
352 return;
353
354 #ifdef DEBUG
355 tri->v[0][0] = v1[0][0];
356 tri->v[1][0] = v2[0][0];
357 tri->v[2][0] = v3[0][0];
358 tri->v[0][1] = v1[0][1];
359 tri->v[1][1] = v2[0][1];
360 tri->v[2][1] = v3[0][1];
361 #endif
362
363 tri->dx12 = x1 - x2;
364 tri->dx23 = x2 - x3;
365 tri->dx31 = x3 - x1;
366
367 tri->dy12 = y1 - y2;
368 tri->dy23 = y2 - y3;
369 tri->dy31 = y3 - y1;
370
371 area = (tri->dx12 * tri->dy31 - tri->dx31 * tri->dy12);
372
373 LP_COUNT(nr_tris);
374
375 /* Cull non-ccw and zero-sized triangles.
376 *
377 * XXX: subject to overflow??
378 */
379 if (area <= 0) {
380 lp_scene_putback_data( scene, tri_bytes );
381 LP_COUNT(nr_culled_tris);
382 return;
383 }
384
385 /* Bounding rectangle (in pixels) */
386 minx = (MIN3(x1, x2, x3) + (FIXED_ONE-1)) >> FIXED_ORDER;
387 maxx = (MAX3(x1, x2, x3) + (FIXED_ONE-1)) >> FIXED_ORDER;
388 miny = (MIN3(y1, y2, y3) + (FIXED_ONE-1)) >> FIXED_ORDER;
389 maxy = (MAX3(y1, y2, y3) + (FIXED_ONE-1)) >> FIXED_ORDER;
390
391 if (setup->scissor_test) {
392 minx = MAX2(minx, setup->scissor.current.minx);
393 maxx = MIN2(maxx, setup->scissor.current.maxx);
394 miny = MAX2(miny, setup->scissor.current.miny);
395 maxy = MIN2(maxy, setup->scissor.current.maxy);
396 }
397
398 if (miny == maxy ||
399 minx == maxx) {
400 lp_scene_putback_data( scene, tri_bytes );
401 LP_COUNT(nr_culled_tris);
402 return;
403 }
404
405 /*
406 */
407 oneoverarea = ((float)FIXED_ONE) / (float)area;
408
409 /* Setup parameter interpolants:
410 */
411 setup_tri_coefficients( setup, tri, oneoverarea, v1, v2, v3, frontfacing );
412
413 tri->inputs.facing = frontfacing ? 1.0F : -1.0F;
414
415 /* half-edge constants, will be interated over the whole render target.
416 */
417 tri->c1 = tri->dy12 * x1 - tri->dx12 * y1;
418 tri->c2 = tri->dy23 * x2 - tri->dx23 * y2;
419 tri->c3 = tri->dy31 * x3 - tri->dx31 * y3;
420
421 /* correct for top-left fill convention:
422 */
423 if (tri->dy12 < 0 || (tri->dy12 == 0 && tri->dx12 > 0)) tri->c1++;
424 if (tri->dy23 < 0 || (tri->dy23 == 0 && tri->dx23 > 0)) tri->c2++;
425 if (tri->dy31 < 0 || (tri->dy31 == 0 && tri->dx31 > 0)) tri->c3++;
426
427 tri->dy12 *= FIXED_ONE;
428 tri->dy23 *= FIXED_ONE;
429 tri->dy31 *= FIXED_ONE;
430
431 tri->dx12 *= FIXED_ONE;
432 tri->dx23 *= FIXED_ONE;
433 tri->dx31 *= FIXED_ONE;
434
435 /* find trivial reject offsets for each edge for a single-pixel
436 * sized block. These will be scaled up at each recursive level to
437 * match the active blocksize. Scaling in this way works best if
438 * the blocks are square.
439 */
440 tri->eo1 = 0;
441 if (tri->dy12 < 0) tri->eo1 -= tri->dy12;
442 if (tri->dx12 > 0) tri->eo1 += tri->dx12;
443
444 tri->eo2 = 0;
445 if (tri->dy23 < 0) tri->eo2 -= tri->dy23;
446 if (tri->dx23 > 0) tri->eo2 += tri->dx23;
447
448 tri->eo3 = 0;
449 if (tri->dy31 < 0) tri->eo3 -= tri->dy31;
450 if (tri->dx31 > 0) tri->eo3 += tri->dx31;
451
452 /* Calculate trivial accept offsets from the above.
453 */
454 tri->ei1 = tri->dx12 - tri->dy12 - tri->eo1;
455 tri->ei2 = tri->dx23 - tri->dy23 - tri->eo2;
456 tri->ei3 = tri->dx31 - tri->dy31 - tri->eo3;
457
458 /* Fill in the inputs.step[][] arrays.
459 * We've manually unrolled some loops here.
460 */
461 {
462 const int xstep1 = -tri->dy12;
463 const int xstep2 = -tri->dy23;
464 const int xstep3 = -tri->dy31;
465 const int ystep1 = tri->dx12;
466 const int ystep2 = tri->dx23;
467 const int ystep3 = tri->dx31;
468
469 #define SETUP_STEP(i, x, y) \
470 do { \
471 tri->inputs.step[0][i] = x * xstep1 + y * ystep1; \
472 tri->inputs.step[1][i] = x * xstep2 + y * ystep2; \
473 tri->inputs.step[2][i] = x * xstep3 + y * ystep3; \
474 } while (0)
475
476 SETUP_STEP(0, 0, 0);
477 SETUP_STEP(1, 1, 0);
478 SETUP_STEP(2, 0, 1);
479 SETUP_STEP(3, 1, 1);
480
481 SETUP_STEP(4, 2, 0);
482 SETUP_STEP(5, 3, 0);
483 SETUP_STEP(6, 2, 1);
484 SETUP_STEP(7, 3, 1);
485
486 SETUP_STEP(8, 0, 2);
487 SETUP_STEP(9, 1, 2);
488 SETUP_STEP(10, 0, 3);
489 SETUP_STEP(11, 1, 3);
490
491 SETUP_STEP(12, 2, 2);
492 SETUP_STEP(13, 3, 2);
493 SETUP_STEP(14, 2, 3);
494 SETUP_STEP(15, 3, 3);
495 #undef STEP
496 }
497
498 /*
499 * All fields of 'tri' are now set. The remaining code here is
500 * concerned with binning.
501 */
502
503 /* Convert to tile coordinates:
504 */
505 minx = minx / TILE_SIZE;
506 miny = miny / TILE_SIZE;
507 maxx = maxx / TILE_SIZE;
508 maxy = maxy / TILE_SIZE;
509
510 /*
511 * Clamp to framebuffer size
512 */
513 minx = MAX2(minx, 0);
514 miny = MAX2(miny, 0);
515 maxx = MIN2(maxx, scene->tiles_x - 1);
516 maxy = MIN2(maxy, scene->tiles_y - 1);
517
518 /* Determine which tile(s) intersect the triangle's bounding box
519 */
520 if (miny == maxy && minx == maxx)
521 {
522 /* Triangle is contained in a single tile:
523 */
524 lp_scene_bin_command( scene, minx, miny, lp_rast_triangle,
525 lp_rast_arg_triangle(tri) );
526 }
527 else
528 {
529 int c1 = (tri->c1 +
530 tri->dx12 * miny * TILE_SIZE -
531 tri->dy12 * minx * TILE_SIZE);
532 int c2 = (tri->c2 +
533 tri->dx23 * miny * TILE_SIZE -
534 tri->dy23 * minx * TILE_SIZE);
535 int c3 = (tri->c3 +
536 tri->dx31 * miny * TILE_SIZE -
537 tri->dy31 * minx * TILE_SIZE);
538
539 int ei1 = tri->ei1 << TILE_ORDER;
540 int ei2 = tri->ei2 << TILE_ORDER;
541 int ei3 = tri->ei3 << TILE_ORDER;
542
543 int eo1 = tri->eo1 << TILE_ORDER;
544 int eo2 = tri->eo2 << TILE_ORDER;
545 int eo3 = tri->eo3 << TILE_ORDER;
546
547 int xstep1 = -(tri->dy12 << TILE_ORDER);
548 int xstep2 = -(tri->dy23 << TILE_ORDER);
549 int xstep3 = -(tri->dy31 << TILE_ORDER);
550
551 int ystep1 = tri->dx12 << TILE_ORDER;
552 int ystep2 = tri->dx23 << TILE_ORDER;
553 int ystep3 = tri->dx31 << TILE_ORDER;
554 int x, y;
555
556
557 /* Test tile-sized blocks against the triangle.
558 * Discard blocks fully outside the tri. If the block is fully
559 * contained inside the tri, bin an lp_rast_shade_tile command.
560 * Else, bin a lp_rast_triangle command.
561 */
562 for (y = miny; y <= maxy; y++)
563 {
564 int cx1 = c1;
565 int cx2 = c2;
566 int cx3 = c3;
567 boolean in = FALSE; /* are we inside the triangle? */
568
569 for (x = minx; x <= maxx; x++)
570 {
571 if (cx1 + eo1 < 0 ||
572 cx2 + eo2 < 0 ||
573 cx3 + eo3 < 0)
574 {
575 /* do nothing */
576 LP_COUNT(nr_empty_64);
577 if (in)
578 break; /* exiting triangle, all done with this row */
579 }
580 else if (cx1 + ei1 > 0 &&
581 cx2 + ei2 > 0 &&
582 cx3 + ei3 > 0)
583 {
584 /* triangle covers the whole tile- shade whole tile */
585 LP_COUNT(nr_fully_covered_64);
586 in = TRUE;
587 if (setup->fs.current.variant->opaque) {
588 lp_scene_bin_reset( scene, x, y );
589 lp_scene_bin_command( scene, x, y,
590 lp_rast_set_state,
591 lp_rast_arg_state(setup->fs.stored) );
592 }
593 lp_scene_bin_command( scene, x, y,
594 lp_rast_shade_tile,
595 lp_rast_arg_inputs(&tri->inputs) );
596 }
597 else
598 {
599 /* rasterizer/shade partial tile */
600 LP_COUNT(nr_partially_covered_64);
601 in = TRUE;
602 lp_scene_bin_command( scene, x, y,
603 lp_rast_triangle,
604 lp_rast_arg_triangle(tri) );
605 }
606
607 /* Iterate cx values across the region:
608 */
609 cx1 += xstep1;
610 cx2 += xstep2;
611 cx3 += xstep3;
612 }
613
614 /* Iterate c values down the region:
615 */
616 c1 += ystep1;
617 c2 += ystep2;
618 c3 += ystep3;
619 }
620 }
621 }
622
623
624 /**
625 * Draw triangle if it's CW, cull otherwise.
626 */
627 static void triangle_cw( struct lp_setup_context *setup,
628 const float (*v0)[4],
629 const float (*v1)[4],
630 const float (*v2)[4] )
631 {
632 do_triangle_ccw( setup, v1, v0, v2, !setup->ccw_is_frontface );
633 }
634
635
636 /**
637 * Draw triangle if it's CCW, cull otherwise.
638 */
639 static void triangle_ccw( struct lp_setup_context *setup,
640 const float (*v0)[4],
641 const float (*v1)[4],
642 const float (*v2)[4] )
643 {
644 do_triangle_ccw( setup, v0, v1, v2, setup->ccw_is_frontface );
645 }
646
647
648
649 /**
650 * Draw triangle whether it's CW or CCW.
651 */
652 static void triangle_both( struct lp_setup_context *setup,
653 const float (*v0)[4],
654 const float (*v1)[4],
655 const float (*v2)[4] )
656 {
657 /* edge vectors e = v0 - v2, f = v1 - v2 */
658 const float ex = v0[0][0] - v2[0][0];
659 const float ey = v0[0][1] - v2[0][1];
660 const float fx = v1[0][0] - v2[0][0];
661 const float fy = v1[0][1] - v2[0][1];
662
663 /* det = cross(e,f).z */
664 if (ex * fy - ey * fx < 0.0f)
665 triangle_ccw( setup, v0, v1, v2 );
666 else
667 triangle_cw( setup, v0, v1, v2 );
668 }
669
670
671 static void triangle_nop( struct lp_setup_context *setup,
672 const float (*v0)[4],
673 const float (*v1)[4],
674 const float (*v2)[4] )
675 {
676 }
677
678
679 void
680 lp_setup_choose_triangle( struct lp_setup_context *setup )
681 {
682 switch (setup->cullmode) {
683 case PIPE_FACE_NONE:
684 setup->triangle = triangle_both;
685 break;
686 case PIPE_FACE_BACK:
687 setup->triangle = setup->ccw_is_frontface ? triangle_ccw : triangle_cw;
688 break;
689 case PIPE_FACE_FRONT:
690 setup->triangle = setup->ccw_is_frontface ? triangle_cw : triangle_ccw;
691 break;
692 default:
693 setup->triangle = triangle_nop;
694 break;
695 }
696 }