llvmpipe: (trivial) get rid of triangle subdivision code
[mesa.git] / src / gallium / drivers / llvmpipe / lp_setup_tri.c
1 /**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /*
29 * Binning code for triangles
30 */
31
32 #include "util/u_math.h"
33 #include "util/u_memory.h"
34 #include "util/u_rect.h"
35 #include "util/u_sse.h"
36 #include "lp_perf.h"
37 #include "lp_setup_context.h"
38 #include "lp_rast.h"
39 #include "lp_state_fs.h"
40 #include "lp_state_setup.h"
41 #include "lp_context.h"
42
43 #include <inttypes.h>
44
45 #define NUM_CHANNELS 4
46
47 #if defined(PIPE_ARCH_SSE)
48 #include <emmintrin.h>
49 #endif
50
51 static INLINE int
52 subpixel_snap(float a)
53 {
54 return util_iround(FIXED_ONE * a);
55 }
56
57 static INLINE float
58 fixed_to_float(int a)
59 {
60 return a * (1.0f / FIXED_ONE);
61 }
62
63
64 /* Position and area in fixed point coordinates */
65 struct fixed_position {
66 int32_t x[4];
67 int32_t y[4];
68 int64_t area;
69 int32_t dx01;
70 int32_t dy01;
71 int32_t dx20;
72 int32_t dy20;
73 };
74
75
76 /**
77 * Alloc space for a new triangle plus the input.a0/dadx/dady arrays
78 * immediately after it.
79 * The memory is allocated from the per-scene pool, not per-tile.
80 * \param tri_size returns number of bytes allocated
81 * \param num_inputs number of fragment shader inputs
82 * \return pointer to triangle space
83 */
84 struct lp_rast_triangle *
85 lp_setup_alloc_triangle(struct lp_scene *scene,
86 unsigned nr_inputs,
87 unsigned nr_planes,
88 unsigned *tri_size)
89 {
90 unsigned input_array_sz = NUM_CHANNELS * (nr_inputs + 1) * sizeof(float);
91 unsigned plane_sz = nr_planes * sizeof(struct lp_rast_plane);
92 struct lp_rast_triangle *tri;
93
94 *tri_size = (sizeof(struct lp_rast_triangle) +
95 3 * input_array_sz +
96 plane_sz);
97
98 tri = lp_scene_alloc_aligned( scene, *tri_size, 16 );
99 if (tri == NULL)
100 return NULL;
101
102 tri->inputs.stride = input_array_sz;
103
104 {
105 char *a = (char *)tri;
106 char *b = (char *)&GET_PLANES(tri)[nr_planes];
107 assert(b - a == *tri_size);
108 }
109
110 return tri;
111 }
112
113 void
114 lp_setup_print_vertex(struct lp_setup_context *setup,
115 const char *name,
116 const float (*v)[4])
117 {
118 const struct lp_setup_variant_key *key = &setup->setup.variant->key;
119 int i, j;
120
121 debug_printf(" wpos (%s[0]) xyzw %f %f %f %f\n",
122 name,
123 v[0][0], v[0][1], v[0][2], v[0][3]);
124
125 for (i = 0; i < key->num_inputs; i++) {
126 const float *in = v[key->inputs[i].src_index];
127
128 debug_printf(" in[%d] (%s[%d]) %s%s%s%s ",
129 i,
130 name, key->inputs[i].src_index,
131 (key->inputs[i].usage_mask & 0x1) ? "x" : " ",
132 (key->inputs[i].usage_mask & 0x2) ? "y" : " ",
133 (key->inputs[i].usage_mask & 0x4) ? "z" : " ",
134 (key->inputs[i].usage_mask & 0x8) ? "w" : " ");
135
136 for (j = 0; j < 4; j++)
137 if (key->inputs[i].usage_mask & (1<<j))
138 debug_printf("%.5f ", in[j]);
139
140 debug_printf("\n");
141 }
142 }
143
144
145 /**
146 * Print triangle vertex attribs (for debug).
147 */
148 void
149 lp_setup_print_triangle(struct lp_setup_context *setup,
150 const float (*v0)[4],
151 const float (*v1)[4],
152 const float (*v2)[4])
153 {
154 debug_printf("triangle\n");
155
156 {
157 const float ex = v0[0][0] - v2[0][0];
158 const float ey = v0[0][1] - v2[0][1];
159 const float fx = v1[0][0] - v2[0][0];
160 const float fy = v1[0][1] - v2[0][1];
161
162 /* det = cross(e,f).z */
163 const float det = ex * fy - ey * fx;
164 if (det < 0.0f)
165 debug_printf(" - ccw\n");
166 else if (det > 0.0f)
167 debug_printf(" - cw\n");
168 else
169 debug_printf(" - zero area\n");
170 }
171
172 lp_setup_print_vertex(setup, "v0", v0);
173 lp_setup_print_vertex(setup, "v1", v1);
174 lp_setup_print_vertex(setup, "v2", v2);
175 }
176
177
178 #define MAX_PLANES 8
179 static unsigned
180 lp_rast_tri_tab[MAX_PLANES+1] = {
181 0, /* should be impossible */
182 LP_RAST_OP_TRIANGLE_1,
183 LP_RAST_OP_TRIANGLE_2,
184 LP_RAST_OP_TRIANGLE_3,
185 LP_RAST_OP_TRIANGLE_4,
186 LP_RAST_OP_TRIANGLE_5,
187 LP_RAST_OP_TRIANGLE_6,
188 LP_RAST_OP_TRIANGLE_7,
189 LP_RAST_OP_TRIANGLE_8
190 };
191
192 static unsigned
193 lp_rast_32_tri_tab[MAX_PLANES+1] = {
194 0, /* should be impossible */
195 LP_RAST_OP_TRIANGLE_32_1,
196 LP_RAST_OP_TRIANGLE_32_2,
197 LP_RAST_OP_TRIANGLE_32_3,
198 LP_RAST_OP_TRIANGLE_32_4,
199 LP_RAST_OP_TRIANGLE_32_5,
200 LP_RAST_OP_TRIANGLE_32_6,
201 LP_RAST_OP_TRIANGLE_32_7,
202 LP_RAST_OP_TRIANGLE_32_8
203 };
204
205
206
207 /**
208 * The primitive covers the whole tile- shade whole tile.
209 *
210 * \param tx, ty the tile position in tiles, not pixels
211 */
212 static boolean
213 lp_setup_whole_tile(struct lp_setup_context *setup,
214 const struct lp_rast_shader_inputs *inputs,
215 int tx, int ty)
216 {
217 struct lp_scene *scene = setup->scene;
218
219 LP_COUNT(nr_fully_covered_64);
220
221 /* if variant is opaque and scissor doesn't effect the tile */
222 if (inputs->opaque) {
223 /* Several things prevent this optimization from working:
224 * - For layered rendering we can't determine if this covers the same layer
225 * as previous rendering (or in case of clears those actually always cover
226 * all layers so optimization is impossible). Need to use fb_max_layer and
227 * not setup->layer_slot to determine this since even if there's currently
228 * no slot assigned previous rendering could have used one.
229 * - If there were any Begin/End query commands in the scene then those
230 * would get removed which would be very wrong. Furthermore, if queries
231 * were just active we also can't do the optimization since to get
232 * accurate query results we unfortunately need to execute the rendering
233 * commands.
234 */
235 if (!scene->fb.zsbuf && scene->fb_max_layer == 0 && !scene->had_queries) {
236 /*
237 * All previous rendering will be overwritten so reset the bin.
238 */
239 lp_scene_bin_reset( scene, tx, ty );
240 }
241
242 LP_COUNT(nr_shade_opaque_64);
243 return lp_scene_bin_cmd_with_state( scene, tx, ty,
244 setup->fs.stored,
245 LP_RAST_OP_SHADE_TILE_OPAQUE,
246 lp_rast_arg_inputs(inputs) );
247 } else {
248 LP_COUNT(nr_shade_64);
249 return lp_scene_bin_cmd_with_state( scene, tx, ty,
250 setup->fs.stored,
251 LP_RAST_OP_SHADE_TILE,
252 lp_rast_arg_inputs(inputs) );
253 }
254 }
255
256
257 /**
258 * Do basic setup for triangle rasterization and determine which
259 * framebuffer tiles are touched. Put the triangle in the scene's
260 * bins for the tiles which we overlap.
261 */
262 static boolean
263 do_triangle_ccw(struct lp_setup_context *setup,
264 struct fixed_position* position,
265 const float (*v0)[4],
266 const float (*v1)[4],
267 const float (*v2)[4],
268 boolean frontfacing )
269 {
270 struct lp_scene *scene = setup->scene;
271 const struct lp_setup_variant_key *key = &setup->setup.variant->key;
272 struct lp_rast_triangle *tri;
273 struct lp_rast_plane *plane;
274 struct u_rect bbox;
275 unsigned tri_bytes;
276 int nr_planes = 3;
277 unsigned viewport_index = 0;
278 unsigned layer = 0;
279
280 /* Area should always be positive here */
281 assert(position->area > 0);
282
283 if (0)
284 lp_setup_print_triangle(setup, v0, v1, v2);
285
286 if (setup->scissor_test) {
287 nr_planes = 7;
288 if (setup->viewport_index_slot > 0) {
289 unsigned *udata = (unsigned*)v0[setup->viewport_index_slot];
290 viewport_index = lp_clamp_viewport_idx(*udata);
291 }
292 }
293 else {
294 nr_planes = 3;
295 }
296 if (setup->layer_slot > 0) {
297 layer = *(unsigned*)v1[setup->layer_slot];
298 layer = MIN2(layer, scene->fb_max_layer);
299 }
300
301 /* Bounding rectangle (in pixels) */
302 {
303 /* Yes this is necessary to accurately calculate bounding boxes
304 * with the two fill-conventions we support. GL (normally) ends
305 * up needing a bottom-left fill convention, which requires
306 * slightly different rounding.
307 */
308 int adj = (setup->pixel_offset != 0) ? 1 : 0;
309
310 /* Inclusive x0, exclusive x1 */
311 bbox.x0 = MIN3(position->x[0], position->x[1], position->x[2]) >> FIXED_ORDER;
312 bbox.x1 = (MAX3(position->x[0], position->x[1], position->x[2]) - 1) >> FIXED_ORDER;
313
314 /* Inclusive / exclusive depending upon adj (bottom-left or top-right) */
315 bbox.y0 = (MIN3(position->y[0], position->y[1], position->y[2]) + adj) >> FIXED_ORDER;
316 bbox.y1 = (MAX3(position->y[0], position->y[1], position->y[2]) - 1 + adj) >> FIXED_ORDER;
317 }
318
319 if (bbox.x1 < bbox.x0 ||
320 bbox.y1 < bbox.y0) {
321 if (0) debug_printf("empty bounding box\n");
322 LP_COUNT(nr_culled_tris);
323 return TRUE;
324 }
325
326 if (!u_rect_test_intersection(&setup->draw_regions[viewport_index], &bbox)) {
327 if (0) debug_printf("offscreen\n");
328 LP_COUNT(nr_culled_tris);
329 return TRUE;
330 }
331
332 /* Can safely discard negative regions, but need to keep hold of
333 * information about when the triangle extends past screen
334 * boundaries. See trimmed_box in lp_setup_bin_triangle().
335 */
336 bbox.x0 = MAX2(bbox.x0, 0);
337 bbox.y0 = MAX2(bbox.y0, 0);
338
339 tri = lp_setup_alloc_triangle(scene,
340 key->num_inputs,
341 nr_planes,
342 &tri_bytes);
343 if (!tri)
344 return FALSE;
345
346 #if 0
347 tri->v[0][0] = v0[0][0];
348 tri->v[1][0] = v1[0][0];
349 tri->v[2][0] = v2[0][0];
350 tri->v[0][1] = v0[0][1];
351 tri->v[1][1] = v1[0][1];
352 tri->v[2][1] = v2[0][1];
353 #endif
354
355 LP_COUNT(nr_tris);
356
357 /* Setup parameter interpolants:
358 */
359 setup->setup.variant->jit_function( v0,
360 v1,
361 v2,
362 frontfacing,
363 GET_A0(&tri->inputs),
364 GET_DADX(&tri->inputs),
365 GET_DADY(&tri->inputs) );
366
367 tri->inputs.frontfacing = frontfacing;
368 tri->inputs.disable = FALSE;
369 tri->inputs.opaque = setup->fs.current.variant->opaque;
370 tri->inputs.layer = layer;
371 tri->inputs.viewport_index = viewport_index;
372
373 if (0)
374 lp_dump_setup_coef(&setup->setup.variant->key,
375 (const float (*)[4])GET_A0(&tri->inputs),
376 (const float (*)[4])GET_DADX(&tri->inputs),
377 (const float (*)[4])GET_DADY(&tri->inputs));
378
379 plane = GET_PLANES(tri);
380
381 #if defined(PIPE_ARCH_SSE)
382 if (setup->fb.width <= MAX_FIXED_LENGTH32 &&
383 setup->fb.height <= MAX_FIXED_LENGTH32 &&
384 (bbox.x1 - bbox.x0) <= MAX_FIXED_LENGTH32 &&
385 (bbox.y1 - bbox.y0) <= MAX_FIXED_LENGTH32) {
386 __m128i vertx, verty;
387 __m128i shufx, shufy;
388 __m128i dcdx, dcdy, c;
389 __m128i unused;
390 __m128i dcdx_neg_mask;
391 __m128i dcdy_neg_mask;
392 __m128i dcdx_zero_mask;
393 __m128i top_left_flag;
394 __m128i c_inc_mask, c_inc;
395 __m128i eo, p0, p1, p2;
396 __m128i zero = _mm_setzero_si128();
397 PIPE_ALIGN_VAR(16) int32_t temp_vec[4];
398
399 vertx = _mm_loadu_si128((__m128i *)position->x); /* vertex x coords */
400 verty = _mm_loadu_si128((__m128i *)position->y); /* vertex y coords */
401
402 shufx = _mm_shuffle_epi32(vertx, _MM_SHUFFLE(3,0,2,1));
403 shufy = _mm_shuffle_epi32(verty, _MM_SHUFFLE(3,0,2,1));
404
405 dcdx = _mm_sub_epi32(verty, shufy);
406 dcdy = _mm_sub_epi32(vertx, shufx);
407
408 dcdx_neg_mask = _mm_srai_epi32(dcdx, 31);
409 dcdx_zero_mask = _mm_cmpeq_epi32(dcdx, zero);
410 dcdy_neg_mask = _mm_srai_epi32(dcdy, 31);
411
412 top_left_flag = _mm_set1_epi32((setup->bottom_edge_rule == 0) ? ~0 : 0);
413
414 c_inc_mask = _mm_or_si128(dcdx_neg_mask,
415 _mm_and_si128(dcdx_zero_mask,
416 _mm_xor_si128(dcdy_neg_mask,
417 top_left_flag)));
418
419 c_inc = _mm_srli_epi32(c_inc_mask, 31);
420
421 c = _mm_sub_epi32(mm_mullo_epi32(dcdx, vertx),
422 mm_mullo_epi32(dcdy, verty));
423
424 c = _mm_add_epi32(c, c_inc);
425
426 /* Scale up to match c:
427 */
428 dcdx = _mm_slli_epi32(dcdx, FIXED_ORDER);
429 dcdy = _mm_slli_epi32(dcdy, FIXED_ORDER);
430
431 /* Calculate trivial reject values:
432 */
433 eo = _mm_sub_epi32(_mm_andnot_si128(dcdy_neg_mask, dcdy),
434 _mm_and_si128(dcdx_neg_mask, dcdx));
435
436 /* ei = _mm_sub_epi32(_mm_sub_epi32(dcdy, dcdx), eo); */
437
438 /* Pointless transpose which gets undone immediately in
439 * rasterization:
440 */
441 transpose4_epi32(&c, &dcdx, &dcdy, &eo,
442 &p0, &p1, &p2, &unused);
443
444 #define STORE_PLANE(plane, vec) do { \
445 _mm_store_si128((__m128i *)&temp_vec, vec); \
446 plane.c = (int64_t)temp_vec[0]; \
447 plane.dcdx = temp_vec[1]; \
448 plane.dcdy = temp_vec[2]; \
449 plane.eo = temp_vec[3]; \
450 } while(0)
451
452 STORE_PLANE(plane[0], p0);
453 STORE_PLANE(plane[1], p1);
454 STORE_PLANE(plane[2], p2);
455 #undef STORE_PLANE
456 } else
457 #endif
458 {
459 int i;
460 plane[0].dcdy = position->dx01;
461 plane[1].dcdy = position->x[1] - position->x[2];
462 plane[2].dcdy = position->dx20;
463 plane[0].dcdx = position->dy01;
464 plane[1].dcdx = position->y[1] - position->y[2];
465 plane[2].dcdx = position->dy20;
466
467 for (i = 0; i < 3; i++) {
468 /* half-edge constants, will be interated over the whole render
469 * target.
470 */
471 plane[i].c = IMUL64(plane[i].dcdx, position->x[i]) -
472 IMUL64(plane[i].dcdy, position->y[i]);
473
474 /* correct for top-left vs. bottom-left fill convention.
475 */
476 if (plane[i].dcdx < 0) {
477 /* both fill conventions want this - adjust for left edges */
478 plane[i].c++;
479 }
480 else if (plane[i].dcdx == 0) {
481 if (setup->bottom_edge_rule == 0){
482 /* correct for top-left fill convention:
483 */
484 if (plane[i].dcdy > 0) plane[i].c++;
485 }
486 else {
487 /* correct for bottom-left fill convention:
488 */
489 if (plane[i].dcdy < 0) plane[i].c++;
490 }
491 }
492
493 /* Scale up to match c:
494 */
495 assert((plane[i].dcdx << FIXED_ORDER) >> FIXED_ORDER == plane[i].dcdx);
496 assert((plane[i].dcdy << FIXED_ORDER) >> FIXED_ORDER == plane[i].dcdy);
497 plane[i].dcdx <<= FIXED_ORDER;
498 plane[i].dcdy <<= FIXED_ORDER;
499
500 /* find trivial reject offsets for each edge for a single-pixel
501 * sized block. These will be scaled up at each recursive level to
502 * match the active blocksize. Scaling in this way works best if
503 * the blocks are square.
504 */
505 plane[i].eo = 0;
506 if (plane[i].dcdx < 0) plane[i].eo -= plane[i].dcdx;
507 if (plane[i].dcdy > 0) plane[i].eo += plane[i].dcdy;
508 }
509 }
510
511 if (0) {
512 debug_printf("p0: %"PRIx64"/%08x/%08x/%"PRIx64"\n",
513 plane[0].c,
514 plane[0].dcdx,
515 plane[0].dcdy,
516 plane[0].eo);
517
518 debug_printf("p1: %"PRIx64"/%08x/%08x/%"PRIx64"\n",
519 plane[1].c,
520 plane[1].dcdx,
521 plane[1].dcdy,
522 plane[1].eo);
523
524 debug_printf("p2: %"PRIx64"/%08x/%08x/%"PRIx64"\n",
525 plane[2].c,
526 plane[2].dcdx,
527 plane[2].dcdy,
528 plane[2].eo);
529 }
530
531
532 /*
533 * When rasterizing scissored tris, use the intersection of the
534 * triangle bounding box and the scissor rect to generate the
535 * scissor planes.
536 *
537 * This permits us to cut off the triangle "tails" that are present
538 * in the intermediate recursive levels caused when two of the
539 * triangles edges don't diverge quickly enough to trivially reject
540 * exterior blocks from the triangle.
541 *
542 * It's not really clear if it's worth worrying about these tails,
543 * but since we generate the planes for each scissored tri, it's
544 * free to trim them in this case.
545 *
546 * Note that otherwise, the scissor planes only vary in 'C' value,
547 * and even then only on state-changes. Could alternatively store
548 * these planes elsewhere.
549 */
550 if (nr_planes == 7) {
551 const struct u_rect *scissor = &setup->scissors[viewport_index];
552
553 plane[3].dcdx = -1;
554 plane[3].dcdy = 0;
555 plane[3].c = 1-scissor->x0;
556 plane[3].eo = 1;
557
558 plane[4].dcdx = 1;
559 plane[4].dcdy = 0;
560 plane[4].c = scissor->x1+1;
561 plane[4].eo = 0;
562
563 plane[5].dcdx = 0;
564 plane[5].dcdy = 1;
565 plane[5].c = 1-scissor->y0;
566 plane[5].eo = 1;
567
568 plane[6].dcdx = 0;
569 plane[6].dcdy = -1;
570 plane[6].c = scissor->y1+1;
571 plane[6].eo = 0;
572 }
573
574 return lp_setup_bin_triangle(setup, tri, &bbox, nr_planes, viewport_index);
575 }
576
577 /*
578 * Round to nearest less or equal power of two of the input.
579 *
580 * Undefined if no bit set exists, so code should check against 0 first.
581 */
582 static INLINE uint32_t
583 floor_pot(uint32_t n)
584 {
585 #if defined(PIPE_CC_GCC) && defined(PIPE_ARCH_X86)
586 if (n == 0)
587 return 0;
588
589 __asm__("bsr %1,%0"
590 : "=r" (n)
591 : "rm" (n));
592 return 1 << n;
593 #else
594 n |= (n >> 1);
595 n |= (n >> 2);
596 n |= (n >> 4);
597 n |= (n >> 8);
598 n |= (n >> 16);
599 return n - (n >> 1);
600 #endif
601 }
602
603
604 boolean
605 lp_setup_bin_triangle( struct lp_setup_context *setup,
606 struct lp_rast_triangle *tri,
607 const struct u_rect *bbox,
608 int nr_planes,
609 unsigned viewport_index )
610 {
611 struct lp_scene *scene = setup->scene;
612 struct u_rect trimmed_box = *bbox;
613 int i;
614 /* What is the largest power-of-two boundary this triangle crosses:
615 */
616 int dx = floor_pot((bbox->x0 ^ bbox->x1) |
617 (bbox->y0 ^ bbox->y1));
618
619 /* The largest dimension of the rasterized area of the triangle
620 * (aligned to a 4x4 grid), rounded down to the nearest power of two:
621 */
622 int max_sz = ((bbox->x1 - (bbox->x0 & ~3)) |
623 (bbox->y1 - (bbox->y0 & ~3)));
624 int sz = floor_pot(max_sz);
625 boolean use_32bits = max_sz <= MAX_FIXED_LENGTH32;
626
627 /* Now apply scissor, etc to the bounding box. Could do this
628 * earlier, but it confuses the logic for tri-16 and would force
629 * the rasterizer to also respect scissor, etc, just for the rare
630 * cases where a small triangle extends beyond the scissor.
631 */
632 u_rect_find_intersection(&setup->draw_regions[viewport_index],
633 &trimmed_box);
634
635 /* Determine which tile(s) intersect the triangle's bounding box
636 */
637 if (dx < TILE_SIZE)
638 {
639 int ix0 = bbox->x0 / TILE_SIZE;
640 int iy0 = bbox->y0 / TILE_SIZE;
641 unsigned px = bbox->x0 & 63 & ~3;
642 unsigned py = bbox->y0 & 63 & ~3;
643
644 assert(iy0 == bbox->y1 / TILE_SIZE &&
645 ix0 == bbox->x1 / TILE_SIZE);
646
647 if (nr_planes == 3) {
648 if (sz < 4)
649 {
650 /* Triangle is contained in a single 4x4 stamp:
651 */
652 assert(px + 4 <= TILE_SIZE);
653 assert(py + 4 <= TILE_SIZE);
654 return lp_scene_bin_cmd_with_state( scene, ix0, iy0,
655 setup->fs.stored,
656 use_32bits ?
657 LP_RAST_OP_TRIANGLE_32_3_4 :
658 LP_RAST_OP_TRIANGLE_3_4,
659 lp_rast_arg_triangle_contained(tri, px, py) );
660 }
661
662 if (sz < 16)
663 {
664 /* Triangle is contained in a single 16x16 block:
665 */
666
667 /*
668 * The 16x16 block is only 4x4 aligned, and can exceed the tile
669 * dimensions if the triangle is 16 pixels in one dimension but 4
670 * in the other. So budge the 16x16 back inside the tile.
671 */
672 px = MIN2(px, TILE_SIZE - 16);
673 py = MIN2(py, TILE_SIZE - 16);
674
675 assert(px + 16 <= TILE_SIZE);
676 assert(py + 16 <= TILE_SIZE);
677
678 return lp_scene_bin_cmd_with_state( scene, ix0, iy0,
679 setup->fs.stored,
680 use_32bits ?
681 LP_RAST_OP_TRIANGLE_32_3_16 :
682 LP_RAST_OP_TRIANGLE_3_16,
683 lp_rast_arg_triangle_contained(tri, px, py) );
684 }
685 }
686 else if (nr_planes == 4 && sz < 16)
687 {
688 px = MIN2(px, TILE_SIZE - 16);
689 py = MIN2(py, TILE_SIZE - 16);
690
691 assert(px + 16 <= TILE_SIZE);
692 assert(py + 16 <= TILE_SIZE);
693
694 return lp_scene_bin_cmd_with_state(scene, ix0, iy0,
695 setup->fs.stored,
696 use_32bits ?
697 LP_RAST_OP_TRIANGLE_32_4_16 :
698 LP_RAST_OP_TRIANGLE_4_16,
699 lp_rast_arg_triangle_contained(tri, px, py));
700 }
701
702
703 /* Triangle is contained in a single tile:
704 */
705 return lp_scene_bin_cmd_with_state(
706 scene, ix0, iy0, setup->fs.stored,
707 use_32bits ? lp_rast_32_tri_tab[nr_planes] : lp_rast_tri_tab[nr_planes],
708 lp_rast_arg_triangle(tri, (1<<nr_planes)-1));
709 }
710 else
711 {
712 struct lp_rast_plane *plane = GET_PLANES(tri);
713 int64_t c[MAX_PLANES];
714 int64_t ei[MAX_PLANES];
715
716 int64_t eo[MAX_PLANES];
717 int64_t xstep[MAX_PLANES];
718 int64_t ystep[MAX_PLANES];
719 int x, y;
720
721 int ix0 = trimmed_box.x0 / TILE_SIZE;
722 int iy0 = trimmed_box.y0 / TILE_SIZE;
723 int ix1 = trimmed_box.x1 / TILE_SIZE;
724 int iy1 = trimmed_box.y1 / TILE_SIZE;
725
726 for (i = 0; i < nr_planes; i++) {
727 c[i] = (plane[i].c +
728 IMUL64(plane[i].dcdy, iy0) * TILE_SIZE -
729 IMUL64(plane[i].dcdx, ix0) * TILE_SIZE);
730
731 ei[i] = (plane[i].dcdy -
732 plane[i].dcdx -
733 plane[i].eo) << TILE_ORDER;
734
735 eo[i] = plane[i].eo << TILE_ORDER;
736 xstep[i] = -(((int64_t)plane[i].dcdx) << TILE_ORDER);
737 ystep[i] = ((int64_t)plane[i].dcdy) << TILE_ORDER;
738 }
739
740
741
742 /* Test tile-sized blocks against the triangle.
743 * Discard blocks fully outside the tri. If the block is fully
744 * contained inside the tri, bin an lp_rast_shade_tile command.
745 * Else, bin a lp_rast_triangle command.
746 */
747 for (y = iy0; y <= iy1; y++)
748 {
749 boolean in = FALSE; /* are we inside the triangle? */
750 int64_t cx[MAX_PLANES];
751
752 for (i = 0; i < nr_planes; i++)
753 cx[i] = c[i];
754
755 for (x = ix0; x <= ix1; x++)
756 {
757 int out = 0;
758 int partial = 0;
759
760 for (i = 0; i < nr_planes; i++) {
761 int64_t planeout = cx[i] + eo[i];
762 int64_t planepartial = cx[i] + ei[i] - 1;
763 out |= (planeout >> 63);
764 partial |= (planepartial >> 63) & (1<<i);
765 }
766
767 if (out) {
768 /* do nothing */
769 if (in)
770 break; /* exiting triangle, all done with this row */
771 LP_COUNT(nr_empty_64);
772 }
773 else if (partial) {
774 /* Not trivially accepted by at least one plane -
775 * rasterize/shade partial tile
776 */
777 int count = util_bitcount(partial);
778 in = TRUE;
779
780 if (!lp_scene_bin_cmd_with_state( scene, x, y,
781 setup->fs.stored,
782 use_32bits ?
783 lp_rast_32_tri_tab[count] :
784 lp_rast_tri_tab[count],
785 lp_rast_arg_triangle(tri, partial) ))
786 goto fail;
787
788 LP_COUNT(nr_partially_covered_64);
789 }
790 else {
791 /* triangle covers the whole tile- shade whole tile */
792 LP_COUNT(nr_fully_covered_64);
793 in = TRUE;
794 if (!lp_setup_whole_tile(setup, &tri->inputs, x, y))
795 goto fail;
796 }
797
798 /* Iterate cx values across the region: */
799 for (i = 0; i < nr_planes; i++)
800 cx[i] += xstep[i];
801 }
802
803 /* Iterate c values down the region: */
804 for (i = 0; i < nr_planes; i++)
805 c[i] += ystep[i];
806 }
807 }
808
809 return TRUE;
810
811 fail:
812 /* Need to disable any partially binned triangle. This is easier
813 * than trying to locate all the triangle, shade-tile, etc,
814 * commands which may have been binned.
815 */
816 tri->inputs.disable = TRUE;
817 return FALSE;
818 }
819
820
821 /**
822 * Try to draw the triangle, restart the scene on failure.
823 */
824 static void retry_triangle_ccw( struct lp_setup_context *setup,
825 struct fixed_position* position,
826 const float (*v0)[4],
827 const float (*v1)[4],
828 const float (*v2)[4],
829 boolean front)
830 {
831 if (!do_triangle_ccw( setup, position, v0, v1, v2, front ))
832 {
833 if (!lp_setup_flush_and_restart(setup))
834 return;
835
836 if (!do_triangle_ccw( setup, position, v0, v1, v2, front ))
837 return;
838 }
839 }
840
841 /**
842 * Calculate fixed position data for a triangle
843 */
844 static INLINE void
845 calc_fixed_position( struct lp_setup_context *setup,
846 struct fixed_position* position,
847 const float (*v0)[4],
848 const float (*v1)[4],
849 const float (*v2)[4])
850 {
851 position->x[0] = subpixel_snap(v0[0][0] - setup->pixel_offset);
852 position->x[1] = subpixel_snap(v1[0][0] - setup->pixel_offset);
853 position->x[2] = subpixel_snap(v2[0][0] - setup->pixel_offset);
854 position->x[3] = 0;
855
856 position->y[0] = subpixel_snap(v0[0][1] - setup->pixel_offset);
857 position->y[1] = subpixel_snap(v1[0][1] - setup->pixel_offset);
858 position->y[2] = subpixel_snap(v2[0][1] - setup->pixel_offset);
859 position->y[3] = 0;
860
861 position->dx01 = position->x[0] - position->x[1];
862 position->dy01 = position->y[0] - position->y[1];
863
864 position->dx20 = position->x[2] - position->x[0];
865 position->dy20 = position->y[2] - position->y[0];
866
867 position->area = IMUL64(position->dx01, position->dy20) -
868 IMUL64(position->dx20, position->dy01);
869 }
870
871
872 /**
873 * Rotate a triangle, flipping its clockwise direction,
874 * Swaps values for xy[0] and xy[1]
875 */
876 static INLINE void
877 rotate_fixed_position_01( struct fixed_position* position )
878 {
879 int x, y;
880
881 x = position->x[1];
882 y = position->y[1];
883 position->x[1] = position->x[0];
884 position->y[1] = position->y[0];
885 position->x[0] = x;
886 position->y[0] = y;
887
888 position->dx01 = -position->dx01;
889 position->dy01 = -position->dy01;
890 position->dx20 = position->x[2] - position->x[0];
891 position->dy20 = position->y[2] - position->y[0];
892
893 position->area = -position->area;
894 }
895
896
897 /**
898 * Rotate a triangle, flipping its clockwise direction,
899 * Swaps values for xy[1] and xy[2]
900 */
901 static INLINE void
902 rotate_fixed_position_12( struct fixed_position* position )
903 {
904 int x, y;
905
906 x = position->x[2];
907 y = position->y[2];
908 position->x[2] = position->x[1];
909 position->y[2] = position->y[1];
910 position->x[1] = x;
911 position->y[1] = y;
912
913 x = position->dx01;
914 y = position->dy01;
915 position->dx01 = -position->dx20;
916 position->dy01 = -position->dy20;
917 position->dx20 = -x;
918 position->dy20 = -y;
919
920 position->area = -position->area;
921 }
922
923
924 /**
925 * Draw triangle if it's CW, cull otherwise.
926 */
927 static void triangle_cw( struct lp_setup_context *setup,
928 const float (*v0)[4],
929 const float (*v1)[4],
930 const float (*v2)[4] )
931 {
932 struct fixed_position position;
933
934 calc_fixed_position(setup, &position, v0, v1, v2);
935
936 if (position.area < 0) {
937 if (setup->flatshade_first) {
938 rotate_fixed_position_12(&position);
939 retry_triangle_ccw(setup, &position, v0, v2, v1, !setup->ccw_is_frontface);
940 } else {
941 rotate_fixed_position_01(&position);
942 retry_triangle_ccw(setup, &position, v1, v0, v2, !setup->ccw_is_frontface);
943 }
944 }
945 }
946
947
948 static void triangle_ccw( struct lp_setup_context *setup,
949 const float (*v0)[4],
950 const float (*v1)[4],
951 const float (*v2)[4])
952 {
953 struct fixed_position position;
954
955 calc_fixed_position(setup, &position, v0, v1, v2);
956
957 if (position.area > 0)
958 retry_triangle_ccw(setup, &position, v0, v1, v2, setup->ccw_is_frontface);
959 }
960
961 /**
962 * Draw triangle whether it's CW or CCW.
963 */
964 static void triangle_both( struct lp_setup_context *setup,
965 const float (*v0)[4],
966 const float (*v1)[4],
967 const float (*v2)[4] )
968 {
969 struct fixed_position position;
970 struct llvmpipe_context *lp_context = (struct llvmpipe_context *)setup->pipe;
971
972 if (lp_context->active_statistics_queries &&
973 !llvmpipe_rasterization_disabled(lp_context)) {
974 lp_context->pipeline_statistics.c_primitives++;
975 }
976
977 calc_fixed_position(setup, &position, v0, v1, v2);
978
979 if (0) {
980 assert(!util_is_inf_or_nan(v0[0][0]));
981 assert(!util_is_inf_or_nan(v0[0][1]));
982 assert(!util_is_inf_or_nan(v1[0][0]));
983 assert(!util_is_inf_or_nan(v1[0][1]));
984 assert(!util_is_inf_or_nan(v2[0][0]));
985 assert(!util_is_inf_or_nan(v2[0][1]));
986 }
987
988 if (position.area > 0)
989 retry_triangle_ccw( setup, &position, v0, v1, v2, setup->ccw_is_frontface );
990 else if (position.area < 0) {
991 if (setup->flatshade_first) {
992 rotate_fixed_position_12( &position );
993 retry_triangle_ccw( setup, &position, v0, v2, v1, !setup->ccw_is_frontface );
994 } else {
995 rotate_fixed_position_01( &position );
996 retry_triangle_ccw( setup, &position, v1, v0, v2, !setup->ccw_is_frontface );
997 }
998 }
999 }
1000
1001
1002 static void triangle_nop( struct lp_setup_context *setup,
1003 const float (*v0)[4],
1004 const float (*v1)[4],
1005 const float (*v2)[4] )
1006 {
1007 }
1008
1009
1010 void
1011 lp_setup_choose_triangle( struct lp_setup_context *setup )
1012 {
1013 switch (setup->cullmode) {
1014 case PIPE_FACE_NONE:
1015 setup->triangle = triangle_both;
1016 break;
1017 case PIPE_FACE_BACK:
1018 setup->triangle = setup->ccw_is_frontface ? triangle_ccw : triangle_cw;
1019 break;
1020 case PIPE_FACE_FRONT:
1021 setup->triangle = setup->ccw_is_frontface ? triangle_cw : triangle_ccw;
1022 break;
1023 default:
1024 setup->triangle = triangle_nop;
1025 break;
1026 }
1027 }