llvmpipe: Fix MSVC build.
[mesa.git] / src / gallium / drivers / llvmpipe / lp_setup_tri.c
1 /**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /*
29 * Binning code for triangles
30 */
31
32 #include "util/u_math.h"
33 #include "util/u_memory.h"
34 #include "util/u_rect.h"
35 #include "lp_perf.h"
36 #include "lp_setup_context.h"
37 #include "lp_setup_coef.h"
38 #include "lp_rast.h"
39 #include "lp_state_fs.h"
40
41 #define NUM_CHANNELS 4
42
43
44
45 static INLINE int
46 subpixel_snap(float a)
47 {
48 return util_iround(FIXED_ONE * a);
49 }
50
51 static INLINE float
52 fixed_to_float(int a)
53 {
54 return a * (1.0 / FIXED_ONE);
55 }
56
57
58
59
60
61
62
63 /**
64 * Alloc space for a new triangle plus the input.a0/dadx/dady arrays
65 * immediately after it.
66 * The memory is allocated from the per-scene pool, not per-tile.
67 * \param tri_size returns number of bytes allocated
68 * \param nr_inputs number of fragment shader inputs
69 * \return pointer to triangle space
70 */
71 struct lp_rast_triangle *
72 lp_setup_alloc_triangle(struct lp_scene *scene,
73 unsigned nr_inputs,
74 unsigned nr_planes,
75 unsigned *tri_size)
76 {
77 unsigned input_array_sz = NUM_CHANNELS * (nr_inputs + 1) * sizeof(float);
78 struct lp_rast_triangle *tri;
79 unsigned tri_bytes, bytes;
80 char *inputs;
81
82 tri_bytes = align(Offset(struct lp_rast_triangle, plane[nr_planes]), 16);
83 bytes = tri_bytes + (3 * input_array_sz);
84
85 tri = lp_scene_alloc_aligned( scene, bytes, 16 );
86
87 if (tri) {
88 inputs = ((char *)tri) + tri_bytes;
89 tri->inputs.a0 = (float (*)[4]) inputs;
90 tri->inputs.dadx = (float (*)[4]) (inputs + input_array_sz);
91 tri->inputs.dady = (float (*)[4]) (inputs + 2 * input_array_sz);
92
93 *tri_size = bytes;
94 }
95
96 return tri;
97 }
98
99 void
100 lp_setup_print_vertex(struct lp_setup_context *setup,
101 const char *name,
102 const float (*v)[4])
103 {
104 int i, j;
105
106 debug_printf(" wpos (%s[0]) xyzw %f %f %f %f\n",
107 name,
108 v[0][0], v[0][1], v[0][2], v[0][3]);
109
110 for (i = 0; i < setup->fs.nr_inputs; i++) {
111 const float *in = v[setup->fs.input[i].src_index];
112
113 debug_printf(" in[%d] (%s[%d]) %s%s%s%s ",
114 i,
115 name, setup->fs.input[i].src_index,
116 (setup->fs.input[i].usage_mask & 0x1) ? "x" : " ",
117 (setup->fs.input[i].usage_mask & 0x2) ? "y" : " ",
118 (setup->fs.input[i].usage_mask & 0x4) ? "z" : " ",
119 (setup->fs.input[i].usage_mask & 0x8) ? "w" : " ");
120
121 for (j = 0; j < 4; j++)
122 if (setup->fs.input[i].usage_mask & (1<<j))
123 debug_printf("%.5f ", in[j]);
124
125 debug_printf("\n");
126 }
127 }
128
129
130 /**
131 * Print triangle vertex attribs (for debug).
132 */
133 void
134 lp_setup_print_triangle(struct lp_setup_context *setup,
135 const float (*v0)[4],
136 const float (*v1)[4],
137 const float (*v2)[4])
138 {
139 debug_printf("triangle\n");
140
141 {
142 const float ex = v0[0][0] - v2[0][0];
143 const float ey = v0[0][1] - v2[0][1];
144 const float fx = v1[0][0] - v2[0][0];
145 const float fy = v1[0][1] - v2[0][1];
146
147 /* det = cross(e,f).z */
148 const float det = ex * fy - ey * fx;
149 if (det < 0.0f)
150 debug_printf(" - ccw\n");
151 else if (det > 0.0f)
152 debug_printf(" - cw\n");
153 else
154 debug_printf(" - zero area\n");
155 }
156
157 lp_setup_print_vertex(setup, "v0", v0);
158 lp_setup_print_vertex(setup, "v1", v1);
159 lp_setup_print_vertex(setup, "v2", v2);
160 }
161
162
163 #define MAX_PLANES 8
164 static unsigned
165 lp_rast_tri_tab[MAX_PLANES+1] = {
166 0, /* should be impossible */
167 LP_RAST_OP_TRIANGLE_1,
168 LP_RAST_OP_TRIANGLE_2,
169 LP_RAST_OP_TRIANGLE_3,
170 LP_RAST_OP_TRIANGLE_4,
171 LP_RAST_OP_TRIANGLE_5,
172 LP_RAST_OP_TRIANGLE_6,
173 LP_RAST_OP_TRIANGLE_7,
174 LP_RAST_OP_TRIANGLE_8
175 };
176
177
178
179 /**
180 * The primitive covers the whole tile- shade whole tile.
181 *
182 * \param tx, ty the tile position in tiles, not pixels
183 */
184 static boolean
185 lp_setup_whole_tile(struct lp_setup_context *setup,
186 const struct lp_rast_shader_inputs *inputs,
187 int tx, int ty)
188 {
189 struct lp_scene *scene = setup->scene;
190
191 LP_COUNT(nr_fully_covered_64);
192
193 /* if variant is opaque and scissor doesn't effect the tile */
194 if (inputs->opaque) {
195 if (!scene->fb.zsbuf) {
196 /*
197 * All previous rendering will be overwritten so reset the bin.
198 */
199 lp_scene_bin_reset( scene, tx, ty );
200 }
201
202 LP_COUNT(nr_shade_opaque_64);
203 return lp_scene_bin_command( scene, tx, ty,
204 LP_RAST_OP_SHADE_TILE_OPAQUE,
205 lp_rast_arg_inputs(inputs) );
206 } else {
207 LP_COUNT(nr_shade_64);
208 return lp_scene_bin_command( scene, tx, ty,
209 LP_RAST_OP_SHADE_TILE,
210 lp_rast_arg_inputs(inputs) );
211 }
212 }
213
214
215 /**
216 * Do basic setup for triangle rasterization and determine which
217 * framebuffer tiles are touched. Put the triangle in the scene's
218 * bins for the tiles which we overlap.
219 */
220 static boolean
221 do_triangle_ccw(struct lp_setup_context *setup,
222 const float (*v0)[4],
223 const float (*v1)[4],
224 const float (*v2)[4],
225 boolean frontfacing )
226 {
227 struct lp_scene *scene = setup->scene;
228 struct lp_rast_triangle *tri;
229 int x[3];
230 int y[3];
231 struct u_rect bbox;
232 unsigned tri_bytes;
233 int i;
234 int nr_planes = 3;
235
236 if (0)
237 lp_setup_print_triangle(setup, v0, v1, v2);
238
239 if (setup->scissor_test) {
240 nr_planes = 7;
241 }
242 else {
243 nr_planes = 3;
244 }
245
246 /* x/y positions in fixed point */
247 x[0] = subpixel_snap(v0[0][0] - setup->pixel_offset);
248 x[1] = subpixel_snap(v1[0][0] - setup->pixel_offset);
249 x[2] = subpixel_snap(v2[0][0] - setup->pixel_offset);
250 y[0] = subpixel_snap(v0[0][1] - setup->pixel_offset);
251 y[1] = subpixel_snap(v1[0][1] - setup->pixel_offset);
252 y[2] = subpixel_snap(v2[0][1] - setup->pixel_offset);
253
254
255 /* Bounding rectangle (in pixels) */
256 {
257 /* Yes this is necessary to accurately calculate bounding boxes
258 * with the two fill-conventions we support. GL (normally) ends
259 * up needing a bottom-left fill convention, which requires
260 * slightly different rounding.
261 */
262 int adj = (setup->pixel_offset != 0) ? 1 : 0;
263
264 bbox.x0 = (MIN3(x[0], x[1], x[2]) + (FIXED_ONE-1)) >> FIXED_ORDER;
265 bbox.x1 = (MAX3(x[0], x[1], x[2]) + (FIXED_ONE-1)) >> FIXED_ORDER;
266 bbox.y0 = (MIN3(y[0], y[1], y[2]) + (FIXED_ONE-1) + adj) >> FIXED_ORDER;
267 bbox.y1 = (MAX3(y[0], y[1], y[2]) + (FIXED_ONE-1) + adj) >> FIXED_ORDER;
268
269 /* Inclusive coordinates:
270 */
271 bbox.x1--;
272 bbox.y1--;
273 }
274
275 if (bbox.x1 < bbox.x0 ||
276 bbox.y1 < bbox.y0) {
277 if (0) debug_printf("empty bounding box\n");
278 LP_COUNT(nr_culled_tris);
279 return TRUE;
280 }
281
282 if (!u_rect_test_intersection(&setup->draw_region, &bbox)) {
283 if (0) debug_printf("offscreen\n");
284 LP_COUNT(nr_culled_tris);
285 return TRUE;
286 }
287
288 u_rect_find_intersection(&setup->draw_region, &bbox);
289
290 tri = lp_setup_alloc_triangle(scene,
291 setup->fs.nr_inputs,
292 nr_planes,
293 &tri_bytes);
294 if (!tri)
295 return FALSE;
296
297 #ifdef DEBUG
298 tri->v[0][0] = v0[0][0];
299 tri->v[1][0] = v1[0][0];
300 tri->v[2][0] = v2[0][0];
301 tri->v[0][1] = v0[0][1];
302 tri->v[1][1] = v1[0][1];
303 tri->v[2][1] = v2[0][1];
304 #endif
305
306 tri->plane[0].dcdy = x[0] - x[1];
307 tri->plane[1].dcdy = x[1] - x[2];
308 tri->plane[2].dcdy = x[2] - x[0];
309
310 tri->plane[0].dcdx = y[0] - y[1];
311 tri->plane[1].dcdx = y[1] - y[2];
312 tri->plane[2].dcdx = y[2] - y[0];
313
314 LP_COUNT(nr_tris);
315
316 /* Setup parameter interpolants:
317 */
318 lp_setup_tri_coef( setup, &tri->inputs, v0, v1, v2, frontfacing );
319
320 tri->inputs.facing = frontfacing ? 1.0F : -1.0F;
321 tri->inputs.disable = FALSE;
322 tri->inputs.opaque = setup->fs.current.variant->opaque;
323 tri->inputs.state = setup->fs.stored;
324
325
326 for (i = 0; i < 3; i++) {
327 struct lp_rast_plane *plane = &tri->plane[i];
328
329 /* half-edge constants, will be interated over the whole render
330 * target.
331 */
332 plane->c = plane->dcdx * x[i] - plane->dcdy * y[i];
333
334 /* correct for top-left vs. bottom-left fill convention.
335 *
336 * note that we're overloading gl_rasterization_rules to mean
337 * both (0.5,0.5) pixel centers *and* bottom-left filling
338 * convention.
339 *
340 * GL actually has a top-left filling convention, but GL's
341 * notion of "top" differs from gallium's...
342 *
343 * Also, sometimes (in FBO cases) GL will render upside down
344 * to its usual method, in which case it will probably want
345 * to use the opposite, top-left convention.
346 *
347 * XXX: Chances are this will get stripped away. In fact this
348 * is only meaningful if:
349 *
350 * (plane->c & (FIXED_ONE-1)) == 0
351 *
352 */
353 if ((plane->c & (FIXED_ONE-1)) == 0) {
354 if (plane->dcdx < 0) {
355 /* both fill conventions want this - adjust for left edges */
356 plane->c++;
357 }
358 else if (plane->dcdx == 0) {
359 if (setup->pixel_offset == 0) {
360 /* correct for top-left fill convention:
361 */
362 if (plane->dcdy > 0) plane->c++;
363 }
364 else {
365 /* correct for bottom-left fill convention:
366 */
367 if (plane->dcdy < 0) plane->c++;
368 }
369 }
370 }
371
372 plane->c = (plane->c + (FIXED_ONE-1)) / FIXED_ONE;
373
374
375 /* find trivial reject offsets for each edge for a single-pixel
376 * sized block. These will be scaled up at each recursive level to
377 * match the active blocksize. Scaling in this way works best if
378 * the blocks are square.
379 */
380 plane->eo = 0;
381 if (plane->dcdx < 0) plane->eo -= plane->dcdx;
382 if (plane->dcdy > 0) plane->eo += plane->dcdy;
383
384 /* Calculate trivial accept offsets from the above.
385 */
386 plane->ei = plane->dcdy - plane->dcdx - plane->eo;
387 }
388
389
390 /*
391 * When rasterizing scissored tris, use the intersection of the
392 * triangle bounding box and the scissor rect to generate the
393 * scissor planes.
394 *
395 * This permits us to cut off the triangle "tails" that are present
396 * in the intermediate recursive levels caused when two of the
397 * triangles edges don't diverge quickly enough to trivially reject
398 * exterior blocks from the triangle.
399 *
400 * It's not really clear if it's worth worrying about these tails,
401 * but since we generate the planes for each scissored tri, it's
402 * free to trim them in this case.
403 *
404 * Note that otherwise, the scissor planes only vary in 'C' value,
405 * and even then only on state-changes. Could alternatively store
406 * these planes elsewhere.
407 */
408 if (nr_planes == 7) {
409 tri->plane[3].dcdx = -1;
410 tri->plane[3].dcdy = 0;
411 tri->plane[3].c = 1-bbox.x0;
412 tri->plane[3].ei = 0;
413 tri->plane[3].eo = 1;
414
415 tri->plane[4].dcdx = 1;
416 tri->plane[4].dcdy = 0;
417 tri->plane[4].c = bbox.x1+1;
418 tri->plane[4].ei = -1;
419 tri->plane[4].eo = 0;
420
421 tri->plane[5].dcdx = 0;
422 tri->plane[5].dcdy = 1;
423 tri->plane[5].c = 1-bbox.y0;
424 tri->plane[5].ei = 0;
425 tri->plane[5].eo = 1;
426
427 tri->plane[6].dcdx = 0;
428 tri->plane[6].dcdy = -1;
429 tri->plane[6].c = bbox.y1+1;
430 tri->plane[6].ei = -1;
431 tri->plane[6].eo = 0;
432 }
433
434 return lp_setup_bin_triangle( setup, tri, &bbox, nr_planes );
435 }
436
437 /*
438 * Round to nearest less or equal power of two of the input.
439 *
440 * Undefined if no bit set exists, so code should check against 0 first.
441 */
442 static INLINE uint32_t
443 floor_pot(uint32_t n)
444 {
445 #if defined(PIPE_CC_GCC) && defined(PIPE_ARCH_X86)
446 if (n == 0)
447 return 0;
448
449 __asm__("bsr %1,%0"
450 : "=r" (n)
451 : "rm" (n));
452 return 1 << n;
453 #else
454 n |= (n >> 1);
455 n |= (n >> 2);
456 n |= (n >> 4);
457 n |= (n >> 8);
458 n |= (n >> 16);
459 return n - (n >> 1);
460 #endif
461 }
462
463
464 boolean
465 lp_setup_bin_triangle( struct lp_setup_context *setup,
466 struct lp_rast_triangle *tri,
467 const struct u_rect *bbox,
468 int nr_planes )
469 {
470 struct lp_scene *scene = setup->scene;
471 int i;
472
473 /* What is the largest power-of-two boundary this triangle crosses:
474 */
475 int dx = floor_pot((bbox->x0 ^ bbox->x1) |
476 (bbox->y0 ^ bbox->y1));
477
478 /* The largest dimension of the rasterized area of the triangle
479 * (aligned to a 4x4 grid), rounded down to the nearest power of two:
480 */
481 int sz = floor_pot((bbox->x1 - (bbox->x0 & ~3)) |
482 (bbox->y1 - (bbox->y0 & ~3)));
483
484 /* Determine which tile(s) intersect the triangle's bounding box
485 */
486 if (dx < TILE_SIZE)
487 {
488 int ix0 = bbox->x0 / TILE_SIZE;
489 int iy0 = bbox->y0 / TILE_SIZE;
490 int px = bbox->x0 & 63 & ~3;
491 int py = bbox->y0 & 63 & ~3;
492 int mask = px | (py << 8);
493
494 assert(iy0 == bbox->y1 / TILE_SIZE &&
495 ix0 == bbox->x1 / TILE_SIZE);
496
497 if (nr_planes == 3) {
498 if (sz < 4)
499 {
500 /* Triangle is contained in a single 4x4 stamp:
501 */
502
503 return lp_scene_bin_command( scene, ix0, iy0,
504 LP_RAST_OP_TRIANGLE_3_4,
505 lp_rast_arg_triangle(tri, mask) );
506 }
507
508 if (sz < 16)
509 {
510 /* Triangle is contained in a single 16x16 block:
511 */
512 return lp_scene_bin_command( scene, ix0, iy0,
513 LP_RAST_OP_TRIANGLE_3_16,
514 lp_rast_arg_triangle(tri, mask) );
515 }
516 }
517 else if (nr_planes == 4 && sz < 16)
518 {
519 return lp_scene_bin_command( scene, ix0, iy0,
520 LP_RAST_OP_TRIANGLE_4_16,
521 lp_rast_arg_triangle(tri, mask) );
522 }
523
524
525 /* Triangle is contained in a single tile:
526 */
527 return lp_scene_bin_command( scene, ix0, iy0,
528 lp_rast_tri_tab[nr_planes],
529 lp_rast_arg_triangle(tri, (1<<nr_planes)-1) );
530 }
531 else
532 {
533 int c[MAX_PLANES];
534 int ei[MAX_PLANES];
535 int eo[MAX_PLANES];
536 int xstep[MAX_PLANES];
537 int ystep[MAX_PLANES];
538 int x, y;
539
540 int ix0 = bbox->x0 / TILE_SIZE;
541 int iy0 = bbox->y0 / TILE_SIZE;
542 int ix1 = bbox->x1 / TILE_SIZE;
543 int iy1 = bbox->y1 / TILE_SIZE;
544
545 for (i = 0; i < nr_planes; i++) {
546 c[i] = (tri->plane[i].c +
547 tri->plane[i].dcdy * iy0 * TILE_SIZE -
548 tri->plane[i].dcdx * ix0 * TILE_SIZE);
549
550 ei[i] = tri->plane[i].ei << TILE_ORDER;
551 eo[i] = tri->plane[i].eo << TILE_ORDER;
552 xstep[i] = -(tri->plane[i].dcdx << TILE_ORDER);
553 ystep[i] = tri->plane[i].dcdy << TILE_ORDER;
554 }
555
556
557
558 /* Test tile-sized blocks against the triangle.
559 * Discard blocks fully outside the tri. If the block is fully
560 * contained inside the tri, bin an lp_rast_shade_tile command.
561 * Else, bin a lp_rast_triangle command.
562 */
563 for (y = iy0; y <= iy1; y++)
564 {
565 boolean in = FALSE; /* are we inside the triangle? */
566 int cx[MAX_PLANES];
567
568 for (i = 0; i < nr_planes; i++)
569 cx[i] = c[i];
570
571 for (x = ix0; x <= ix1; x++)
572 {
573 int out = 0;
574 int partial = 0;
575
576 for (i = 0; i < nr_planes; i++) {
577 int planeout = cx[i] + eo[i];
578 int planepartial = cx[i] + ei[i] - 1;
579 out |= (planeout >> 31);
580 partial |= (planepartial >> 31) & (1<<i);
581 }
582
583 if (out) {
584 /* do nothing */
585 if (in)
586 break; /* exiting triangle, all done with this row */
587 LP_COUNT(nr_empty_64);
588 }
589 else if (partial) {
590 /* Not trivially accepted by at least one plane -
591 * rasterize/shade partial tile
592 */
593 int count = util_bitcount(partial);
594 in = TRUE;
595 if (!lp_scene_bin_command( scene, x, y,
596 lp_rast_tri_tab[count],
597 lp_rast_arg_triangle(tri, partial) ))
598 goto fail;
599
600 LP_COUNT(nr_partially_covered_64);
601 }
602 else {
603 /* triangle covers the whole tile- shade whole tile */
604 LP_COUNT(nr_fully_covered_64);
605 in = TRUE;
606 if (!lp_setup_whole_tile(setup, &tri->inputs, x, y))
607 goto fail;
608 }
609
610 /* Iterate cx values across the region:
611 */
612 for (i = 0; i < nr_planes; i++)
613 cx[i] += xstep[i];
614 }
615
616 /* Iterate c values down the region:
617 */
618 for (i = 0; i < nr_planes; i++)
619 c[i] += ystep[i];
620 }
621 }
622
623 return TRUE;
624
625 fail:
626 /* Need to disable any partially binned triangle. This is easier
627 * than trying to locate all the triangle, shade-tile, etc,
628 * commands which may have been binned.
629 */
630 tri->inputs.disable = TRUE;
631 return FALSE;
632 }
633
634
635 /**
636 * Try to draw the triangle, restart the scene on failure.
637 */
638 static void retry_triangle_ccw( struct lp_setup_context *setup,
639 const float (*v0)[4],
640 const float (*v1)[4],
641 const float (*v2)[4],
642 boolean front)
643 {
644 if (!do_triangle_ccw( setup, v0, v1, v2, front ))
645 {
646 if (!lp_setup_flush_and_restart(setup))
647 return;
648
649 if (!do_triangle_ccw( setup, v0, v1, v2, front ))
650 return;
651 }
652 }
653
654 static INLINE float
655 calc_area(const float (*v0)[4],
656 const float (*v1)[4],
657 const float (*v2)[4])
658 {
659 float dx01 = v0[0][0] - v1[0][0];
660 float dy01 = v0[0][1] - v1[0][1];
661 float dx20 = v2[0][0] - v0[0][0];
662 float dy20 = v2[0][1] - v0[0][1];
663 return dx01 * dy20 - dx20 * dy01;
664 }
665
666
667 /**
668 * Draw triangle if it's CW, cull otherwise.
669 */
670 static void triangle_cw( struct lp_setup_context *setup,
671 const float (*v0)[4],
672 const float (*v1)[4],
673 const float (*v2)[4] )
674 {
675 float area = calc_area(v0, v1, v2);
676
677 if (area < 0.0f)
678 retry_triangle_ccw(setup, v0, v2, v1, !setup->ccw_is_frontface);
679 }
680
681
682 static void triangle_ccw( struct lp_setup_context *setup,
683 const float (*v0)[4],
684 const float (*v1)[4],
685 const float (*v2)[4])
686 {
687 float area = calc_area(v0, v1, v2);
688
689 if (area > 0.0f)
690 retry_triangle_ccw(setup, v0, v1, v2, setup->ccw_is_frontface);
691 }
692
693 /**
694 * Draw triangle whether it's CW or CCW.
695 */
696 static void triangle_both( struct lp_setup_context *setup,
697 const float (*v0)[4],
698 const float (*v1)[4],
699 const float (*v2)[4] )
700 {
701 float area = calc_area(v0, v1, v2);
702
703 if (area > 0.0f)
704 retry_triangle_ccw( setup, v0, v1, v2, setup->ccw_is_frontface );
705 else if (area < 0.0f)
706 retry_triangle_ccw( setup, v0, v2, v1, !setup->ccw_is_frontface );
707 }
708
709
710 static void triangle_nop( struct lp_setup_context *setup,
711 const float (*v0)[4],
712 const float (*v1)[4],
713 const float (*v2)[4] )
714 {
715 }
716
717
718 void
719 lp_setup_choose_triangle( struct lp_setup_context *setup )
720 {
721 switch (setup->cullmode) {
722 case PIPE_FACE_NONE:
723 setup->triangle = triangle_both;
724 break;
725 case PIPE_FACE_BACK:
726 setup->triangle = setup->ccw_is_frontface ? triangle_ccw : triangle_cw;
727 break;
728 case PIPE_FACE_FRONT:
729 setup->triangle = setup->ccw_is_frontface ? triangle_cw : triangle_ccw;
730 break;
731 default:
732 setup->triangle = triangle_nop;
733 break;
734 }
735 }