llvmpipe: avoid overflow in triangle culling
[mesa.git] / src / gallium / drivers / llvmpipe / lp_setup_tri.c
1 /**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /*
29 * Binning code for triangles
30 */
31
32 #include "util/u_math.h"
33 #include "util/u_memory.h"
34 #include "util/u_rect.h"
35 #include "lp_perf.h"
36 #include "lp_setup_context.h"
37 #include "lp_setup_coef.h"
38 #include "lp_rast.h"
39 #include "lp_state_fs.h"
40
41 #define NUM_CHANNELS 4
42
43
44
45 static INLINE int
46 subpixel_snap(float a)
47 {
48 return util_iround(FIXED_ONE * a);
49 }
50
51 static INLINE float
52 fixed_to_float(int a)
53 {
54 return a * (1.0 / FIXED_ONE);
55 }
56
57
58
59
60
61
62
63 /**
64 * Alloc space for a new triangle plus the input.a0/dadx/dady arrays
65 * immediately after it.
66 * The memory is allocated from the per-scene pool, not per-tile.
67 * \param tri_size returns number of bytes allocated
68 * \param nr_inputs number of fragment shader inputs
69 * \return pointer to triangle space
70 */
71 struct lp_rast_triangle *
72 lp_setup_alloc_triangle(struct lp_scene *scene,
73 unsigned nr_inputs,
74 unsigned nr_planes,
75 unsigned *tri_size)
76 {
77 unsigned input_array_sz = NUM_CHANNELS * (nr_inputs + 1) * sizeof(float);
78 struct lp_rast_triangle *tri;
79 unsigned tri_bytes, bytes;
80 char *inputs;
81
82 tri_bytes = align(Offset(struct lp_rast_triangle, plane[nr_planes]), 16);
83 bytes = tri_bytes + (3 * input_array_sz);
84
85 tri = lp_scene_alloc_aligned( scene, bytes, 16 );
86
87 if (tri) {
88 inputs = ((char *)tri) + tri_bytes;
89 tri->inputs.a0 = (float (*)[4]) inputs;
90 tri->inputs.dadx = (float (*)[4]) (inputs + input_array_sz);
91 tri->inputs.dady = (float (*)[4]) (inputs + 2 * input_array_sz);
92
93 *tri_size = bytes;
94 }
95
96 return tri;
97 }
98
99 void
100 lp_setup_print_vertex(struct lp_setup_context *setup,
101 const char *name,
102 const float (*v)[4])
103 {
104 int i, j;
105
106 debug_printf(" wpos (%s[0]) xyzw %f %f %f %f\n",
107 name,
108 v[0][0], v[0][1], v[0][2], v[0][3]);
109
110 for (i = 0; i < setup->fs.nr_inputs; i++) {
111 const float *in = v[setup->fs.input[i].src_index];
112
113 debug_printf(" in[%d] (%s[%d]) %s%s%s%s ",
114 i,
115 name, setup->fs.input[i].src_index,
116 (setup->fs.input[i].usage_mask & 0x1) ? "x" : " ",
117 (setup->fs.input[i].usage_mask & 0x2) ? "y" : " ",
118 (setup->fs.input[i].usage_mask & 0x4) ? "z" : " ",
119 (setup->fs.input[i].usage_mask & 0x8) ? "w" : " ");
120
121 for (j = 0; j < 4; j++)
122 if (setup->fs.input[i].usage_mask & (1<<j))
123 debug_printf("%.5f ", in[j]);
124
125 debug_printf("\n");
126 }
127 }
128
129
130 /**
131 * Print triangle vertex attribs (for debug).
132 */
133 void
134 lp_setup_print_triangle(struct lp_setup_context *setup,
135 const float (*v0)[4],
136 const float (*v1)[4],
137 const float (*v2)[4])
138 {
139 debug_printf("triangle\n");
140
141 {
142 const float ex = v0[0][0] - v2[0][0];
143 const float ey = v0[0][1] - v2[0][1];
144 const float fx = v1[0][0] - v2[0][0];
145 const float fy = v1[0][1] - v2[0][1];
146
147 /* det = cross(e,f).z */
148 const float det = ex * fy - ey * fx;
149 if (det < 0.0f)
150 debug_printf(" - ccw\n");
151 else if (det > 0.0f)
152 debug_printf(" - cw\n");
153 else
154 debug_printf(" - zero area\n");
155 }
156
157 lp_setup_print_vertex(setup, "v0", v0);
158 lp_setup_print_vertex(setup, "v1", v1);
159 lp_setup_print_vertex(setup, "v2", v2);
160 }
161
162
163 #define MAX_PLANES 8
164 static unsigned
165 lp_rast_tri_tab[MAX_PLANES+1] = {
166 0, /* should be impossible */
167 LP_RAST_OP_TRIANGLE_1,
168 LP_RAST_OP_TRIANGLE_2,
169 LP_RAST_OP_TRIANGLE_3,
170 LP_RAST_OP_TRIANGLE_4,
171 LP_RAST_OP_TRIANGLE_5,
172 LP_RAST_OP_TRIANGLE_6,
173 LP_RAST_OP_TRIANGLE_7,
174 LP_RAST_OP_TRIANGLE_8
175 };
176
177
178
179 /**
180 * The primitive covers the whole tile- shade whole tile.
181 *
182 * \param tx, ty the tile position in tiles, not pixels
183 */
184 static boolean
185 lp_setup_whole_tile(struct lp_setup_context *setup,
186 const struct lp_rast_shader_inputs *inputs,
187 int tx, int ty)
188 {
189 struct lp_scene *scene = setup->scene;
190
191 LP_COUNT(nr_fully_covered_64);
192
193 /* if variant is opaque and scissor doesn't effect the tile */
194 if (inputs->opaque) {
195 if (!scene->fb.zsbuf) {
196 /*
197 * All previous rendering will be overwritten so reset the bin.
198 */
199 lp_scene_bin_reset( scene, tx, ty );
200 }
201
202 LP_COUNT(nr_shade_opaque_64);
203 return lp_scene_bin_command( scene, tx, ty,
204 LP_RAST_OP_SHADE_TILE_OPAQUE,
205 lp_rast_arg_inputs(inputs) );
206 } else {
207 LP_COUNT(nr_shade_64);
208 return lp_scene_bin_command( scene, tx, ty,
209 LP_RAST_OP_SHADE_TILE,
210 lp_rast_arg_inputs(inputs) );
211 }
212 }
213
214
215 /**
216 * Do basic setup for triangle rasterization and determine which
217 * framebuffer tiles are touched. Put the triangle in the scene's
218 * bins for the tiles which we overlap.
219 */
220 static boolean
221 do_triangle_ccw(struct lp_setup_context *setup,
222 const float (*v0)[4],
223 const float (*v1)[4],
224 const float (*v2)[4],
225 boolean frontfacing )
226 {
227 struct lp_scene *scene = setup->scene;
228 struct lp_rast_triangle *tri;
229 int x[3];
230 int y[3];
231 struct u_rect bbox;
232 unsigned tri_bytes;
233 int i;
234 int nr_planes = 3;
235
236 if (0)
237 lp_setup_print_triangle(setup, v0, v1, v2);
238
239 if (setup->scissor_test) {
240 nr_planes = 7;
241 }
242 else {
243 nr_planes = 3;
244 }
245
246 /* x/y positions in fixed point */
247 x[0] = subpixel_snap(v0[0][0] - setup->pixel_offset);
248 x[1] = subpixel_snap(v1[0][0] - setup->pixel_offset);
249 x[2] = subpixel_snap(v2[0][0] - setup->pixel_offset);
250 y[0] = subpixel_snap(v0[0][1] - setup->pixel_offset);
251 y[1] = subpixel_snap(v1[0][1] - setup->pixel_offset);
252 y[2] = subpixel_snap(v2[0][1] - setup->pixel_offset);
253
254
255 /* Bounding rectangle (in pixels) */
256 {
257 /* Yes this is necessary to accurately calculate bounding boxes
258 * with the two fill-conventions we support. GL (normally) ends
259 * up needing a bottom-left fill convention, which requires
260 * slightly different rounding.
261 */
262 int adj = (setup->pixel_offset != 0) ? 1 : 0;
263
264 bbox.x0 = (MIN3(x[0], x[1], x[2]) + (FIXED_ONE-1)) >> FIXED_ORDER;
265 bbox.x1 = (MAX3(x[0], x[1], x[2]) + (FIXED_ONE-1)) >> FIXED_ORDER;
266 bbox.y0 = (MIN3(y[0], y[1], y[2]) + (FIXED_ONE-1) + adj) >> FIXED_ORDER;
267 bbox.y1 = (MAX3(y[0], y[1], y[2]) + (FIXED_ONE-1) + adj) >> FIXED_ORDER;
268
269 /* Inclusive coordinates:
270 */
271 bbox.x1--;
272 bbox.y1--;
273 }
274
275 if (bbox.x1 < bbox.x0 ||
276 bbox.y1 < bbox.y0) {
277 if (0) debug_printf("empty bounding box\n");
278 LP_COUNT(nr_culled_tris);
279 return TRUE;
280 }
281
282 if (!u_rect_test_intersection(&setup->draw_region, &bbox)) {
283 if (0) debug_printf("offscreen\n");
284 LP_COUNT(nr_culled_tris);
285 return TRUE;
286 }
287
288 u_rect_find_intersection(&setup->draw_region, &bbox);
289
290 tri = lp_setup_alloc_triangle(scene,
291 setup->fs.nr_inputs,
292 nr_planes,
293 &tri_bytes);
294 if (!tri)
295 return FALSE;
296
297 #ifdef DEBUG
298 tri->v[0][0] = v0[0][0];
299 tri->v[1][0] = v1[0][0];
300 tri->v[2][0] = v2[0][0];
301 tri->v[0][1] = v0[0][1];
302 tri->v[1][1] = v1[0][1];
303 tri->v[2][1] = v2[0][1];
304 #endif
305
306 tri->plane[0].dcdy = x[0] - x[1];
307 tri->plane[1].dcdy = x[1] - x[2];
308 tri->plane[2].dcdy = x[2] - x[0];
309
310 tri->plane[0].dcdx = y[0] - y[1];
311 tri->plane[1].dcdx = y[1] - y[2];
312 tri->plane[2].dcdx = y[2] - y[0];
313
314 LP_COUNT(nr_tris);
315
316 /* Setup parameter interpolants:
317 */
318 lp_setup_tri_coef( setup, &tri->inputs, v0, v1, v2, frontfacing );
319
320 tri->inputs.facing = frontfacing ? 1.0F : -1.0F;
321 tri->inputs.disable = FALSE;
322 tri->inputs.opaque = setup->fs.current.variant->opaque;
323 tri->inputs.state = setup->fs.stored;
324
325
326 for (i = 0; i < 3; i++) {
327 struct lp_rast_plane *plane = &tri->plane[i];
328
329 /* half-edge constants, will be interated over the whole render
330 * target.
331 */
332 plane->c = plane->dcdx * x[i] - plane->dcdy * y[i];
333
334 /* correct for top-left vs. bottom-left fill convention.
335 *
336 * note that we're overloading gl_rasterization_rules to mean
337 * both (0.5,0.5) pixel centers *and* bottom-left filling
338 * convention.
339 *
340 * GL actually has a top-left filling convention, but GL's
341 * notion of "top" differs from gallium's...
342 *
343 * Also, sometimes (in FBO cases) GL will render upside down
344 * to its usual method, in which case it will probably want
345 * to use the opposite, top-left convention.
346 */
347 if (plane->dcdx < 0) {
348 /* both fill conventions want this - adjust for left edges */
349 plane->c++;
350 }
351 else if (plane->dcdx == 0) {
352 if (setup->pixel_offset == 0) {
353 /* correct for top-left fill convention:
354 */
355 if (plane->dcdy > 0) plane->c++;
356 }
357 else {
358 /* correct for bottom-left fill convention:
359 */
360 if (plane->dcdy < 0) plane->c++;
361 }
362 }
363
364 plane->dcdx *= FIXED_ONE;
365 plane->dcdy *= FIXED_ONE;
366
367 /* find trivial reject offsets for each edge for a single-pixel
368 * sized block. These will be scaled up at each recursive level to
369 * match the active blocksize. Scaling in this way works best if
370 * the blocks are square.
371 */
372 plane->eo = 0;
373 if (plane->dcdx < 0) plane->eo -= plane->dcdx;
374 if (plane->dcdy > 0) plane->eo += plane->dcdy;
375
376 /* Calculate trivial accept offsets from the above.
377 */
378 plane->ei = plane->dcdy - plane->dcdx - plane->eo;
379 }
380
381
382 /*
383 * When rasterizing scissored tris, use the intersection of the
384 * triangle bounding box and the scissor rect to generate the
385 * scissor planes.
386 *
387 * This permits us to cut off the triangle "tails" that are present
388 * in the intermediate recursive levels caused when two of the
389 * triangles edges don't diverge quickly enough to trivially reject
390 * exterior blocks from the triangle.
391 *
392 * It's not really clear if it's worth worrying about these tails,
393 * but since we generate the planes for each scissored tri, it's
394 * free to trim them in this case.
395 *
396 * Note that otherwise, the scissor planes only vary in 'C' value,
397 * and even then only on state-changes. Could alternatively store
398 * these planes elsewhere.
399 */
400 if (nr_planes == 7) {
401 tri->plane[3].dcdx = -1;
402 tri->plane[3].dcdy = 0;
403 tri->plane[3].c = 1-bbox.x0;
404 tri->plane[3].ei = 0;
405 tri->plane[3].eo = 1;
406
407 tri->plane[4].dcdx = 1;
408 tri->plane[4].dcdy = 0;
409 tri->plane[4].c = bbox.x1+1;
410 tri->plane[4].ei = -1;
411 tri->plane[4].eo = 0;
412
413 tri->plane[5].dcdx = 0;
414 tri->plane[5].dcdy = 1;
415 tri->plane[5].c = 1-bbox.y0;
416 tri->plane[5].ei = 0;
417 tri->plane[5].eo = 1;
418
419 tri->plane[6].dcdx = 0;
420 tri->plane[6].dcdy = -1;
421 tri->plane[6].c = bbox.y1+1;
422 tri->plane[6].ei = -1;
423 tri->plane[6].eo = 0;
424 }
425
426 return lp_setup_bin_triangle( setup, tri, &bbox, nr_planes );
427 }
428
429 /*
430 * Round to nearest less or equal power of two of the input.
431 *
432 * Undefined if no bit set exists, so code should check against 0 first.
433 */
434 static INLINE uint32_t
435 floor_pot(uint32_t n)
436 {
437 #if defined(PIPE_CC_GCC) && defined(PIPE_ARCH_X86)
438 if (n == 0)
439 return 0;
440
441 __asm__("bsr %1,%0"
442 : "=r" (n)
443 : "rm" (n));
444 return 1 << n;
445 #else
446 n |= (n >> 1);
447 n |= (n >> 2);
448 n |= (n >> 4);
449 n |= (n >> 8);
450 n |= (n >> 16);
451 return n - (n >> 1);
452 #endif
453 }
454
455
456 boolean
457 lp_setup_bin_triangle( struct lp_setup_context *setup,
458 struct lp_rast_triangle *tri,
459 const struct u_rect *bbox,
460 int nr_planes )
461 {
462 struct lp_scene *scene = setup->scene;
463 int i;
464
465 /* What is the largest power-of-two boundary this triangle crosses:
466 */
467 int dx = floor_pot((bbox->x0 ^ bbox->x1) |
468 (bbox->y0 ^ bbox->y1));
469
470 /* The largest dimension of the rasterized area of the triangle
471 * (aligned to a 4x4 grid), rounded down to the nearest power of two:
472 */
473 int sz = floor_pot((bbox->x1 - (bbox->x0 & ~3)) |
474 (bbox->y1 - (bbox->y0 & ~3)));
475
476 if (nr_planes == 3) {
477 if (sz < 4 && dx < 64)
478 {
479 /* Triangle is contained in a single 4x4 stamp:
480 */
481 int mask = (bbox->x0 & 63 & ~3) | ((bbox->y0 & 63 & ~3) << 8);
482
483 return lp_scene_bin_command( scene,
484 bbox->x0/64, bbox->y0/64,
485 LP_RAST_OP_TRIANGLE_3_4,
486 lp_rast_arg_triangle(tri, mask) );
487 }
488
489 if (sz < 16 && dx < 64)
490 {
491 int mask = (bbox->x0 & 63 & ~3) | ((bbox->y0 & 63 & ~3) << 8);
492
493 /* Triangle is contained in a single 16x16 block:
494 */
495 return lp_scene_bin_command( scene,
496 bbox->x0/64, bbox->y0/64,
497 LP_RAST_OP_TRIANGLE_3_16,
498 lp_rast_arg_triangle(tri, mask) );
499 }
500 }
501
502
503 /* Determine which tile(s) intersect the triangle's bounding box
504 */
505 if (dx < TILE_SIZE)
506 {
507 int ix0 = bbox->x0 / TILE_SIZE;
508 int iy0 = bbox->y0 / TILE_SIZE;
509
510 assert(iy0 == bbox->y1 / TILE_SIZE &&
511 ix0 == bbox->x1 / TILE_SIZE);
512
513 /* Triangle is contained in a single tile:
514 */
515 return lp_scene_bin_command( scene, ix0, iy0,
516 lp_rast_tri_tab[nr_planes],
517 lp_rast_arg_triangle(tri, (1<<nr_planes)-1) );
518 }
519 else
520 {
521 int c[MAX_PLANES];
522 int ei[MAX_PLANES];
523 int eo[MAX_PLANES];
524 int xstep[MAX_PLANES];
525 int ystep[MAX_PLANES];
526 int x, y;
527
528 int ix0 = bbox->x0 / TILE_SIZE;
529 int iy0 = bbox->y0 / TILE_SIZE;
530 int ix1 = bbox->x1 / TILE_SIZE;
531 int iy1 = bbox->y1 / TILE_SIZE;
532
533 for (i = 0; i < nr_planes; i++) {
534 c[i] = (tri->plane[i].c +
535 tri->plane[i].dcdy * iy0 * TILE_SIZE -
536 tri->plane[i].dcdx * ix0 * TILE_SIZE);
537
538 ei[i] = tri->plane[i].ei << TILE_ORDER;
539 eo[i] = tri->plane[i].eo << TILE_ORDER;
540 xstep[i] = -(tri->plane[i].dcdx << TILE_ORDER);
541 ystep[i] = tri->plane[i].dcdy << TILE_ORDER;
542 }
543
544
545
546 /* Test tile-sized blocks against the triangle.
547 * Discard blocks fully outside the tri. If the block is fully
548 * contained inside the tri, bin an lp_rast_shade_tile command.
549 * Else, bin a lp_rast_triangle command.
550 */
551 for (y = iy0; y <= iy1; y++)
552 {
553 boolean in = FALSE; /* are we inside the triangle? */
554 int cx[MAX_PLANES];
555
556 for (i = 0; i < nr_planes; i++)
557 cx[i] = c[i];
558
559 for (x = ix0; x <= ix1; x++)
560 {
561 int out = 0;
562 int partial = 0;
563
564 for (i = 0; i < nr_planes; i++) {
565 int planeout = cx[i] + eo[i];
566 int planepartial = cx[i] + ei[i] - 1;
567 out |= (planeout >> 31);
568 partial |= (planepartial >> 31) & (1<<i);
569 }
570
571 if (out) {
572 /* do nothing */
573 if (in)
574 break; /* exiting triangle, all done with this row */
575 LP_COUNT(nr_empty_64);
576 }
577 else if (partial) {
578 /* Not trivially accepted by at least one plane -
579 * rasterize/shade partial tile
580 */
581 int count = util_bitcount(partial);
582 in = TRUE;
583 if (!lp_scene_bin_command( scene, x, y,
584 lp_rast_tri_tab[count],
585 lp_rast_arg_triangle(tri, partial) ))
586 goto fail;
587
588 LP_COUNT(nr_partially_covered_64);
589 }
590 else {
591 /* triangle covers the whole tile- shade whole tile */
592 LP_COUNT(nr_fully_covered_64);
593 in = TRUE;
594 if (!lp_setup_whole_tile(setup, &tri->inputs, x, y))
595 goto fail;
596 }
597
598 /* Iterate cx values across the region:
599 */
600 for (i = 0; i < nr_planes; i++)
601 cx[i] += xstep[i];
602 }
603
604 /* Iterate c values down the region:
605 */
606 for (i = 0; i < nr_planes; i++)
607 c[i] += ystep[i];
608 }
609 }
610
611 return TRUE;
612
613 fail:
614 /* Need to disable any partially binned triangle. This is easier
615 * than trying to locate all the triangle, shade-tile, etc,
616 * commands which may have been binned.
617 */
618 tri->inputs.disable = TRUE;
619 return FALSE;
620 }
621
622
623 /**
624 * Try to draw the triangle, restart the scene on failure.
625 */
626 static void retry_triangle_ccw( struct lp_setup_context *setup,
627 const float (*v0)[4],
628 const float (*v1)[4],
629 const float (*v2)[4],
630 boolean front)
631 {
632 if (!do_triangle_ccw( setup, v0, v1, v2, front ))
633 {
634 if (!lp_setup_flush_and_restart(setup))
635 return;
636
637 if (!do_triangle_ccw( setup, v0, v1, v2, front ))
638 return;
639 }
640 }
641
642 static INLINE float
643 calc_area(const float (*v0)[4],
644 const float (*v1)[4],
645 const float (*v2)[4])
646 {
647 float dx01 = v0[0][0] - v1[0][0];
648 float dy01 = v0[0][1] - v1[0][1];
649 float dx20 = v2[0][0] - v0[0][0];
650 float dy20 = v2[0][1] - v0[0][1];
651 return dx01 * dy20 - dx20 * dy01;
652 }
653
654
655 /**
656 * Draw triangle if it's CW, cull otherwise.
657 */
658 static void triangle_cw( struct lp_setup_context *setup,
659 const float (*v0)[4],
660 const float (*v1)[4],
661 const float (*v2)[4] )
662 {
663 float area = calc_area(v0, v1, v2);
664
665 if (area < 0.0f)
666 retry_triangle_ccw(setup, v0, v2, v1, !setup->ccw_is_frontface);
667 }
668
669
670 static void triangle_ccw( struct lp_setup_context *setup,
671 const float (*v0)[4],
672 const float (*v1)[4],
673 const float (*v2)[4])
674 {
675 float area = calc_area(v0, v1, v2);
676
677 if (area > 0.0f)
678 retry_triangle_ccw(setup, v0, v1, v2, setup->ccw_is_frontface);
679 }
680
681 /**
682 * Draw triangle whether it's CW or CCW.
683 */
684 static void triangle_both( struct lp_setup_context *setup,
685 const float (*v0)[4],
686 const float (*v1)[4],
687 const float (*v2)[4] )
688 {
689 float area = calc_area(v0, v1, v2);
690
691 if (area > 0.0f)
692 retry_triangle_ccw( setup, v0, v1, v2, setup->ccw_is_frontface );
693 else if (area < 0.0f)
694 retry_triangle_ccw( setup, v0, v2, v1, !setup->ccw_is_frontface );
695 }
696
697
698 static void triangle_nop( struct lp_setup_context *setup,
699 const float (*v0)[4],
700 const float (*v1)[4],
701 const float (*v2)[4] )
702 {
703 }
704
705
706 void
707 lp_setup_choose_triangle( struct lp_setup_context *setup )
708 {
709 switch (setup->cullmode) {
710 case PIPE_FACE_NONE:
711 setup->triangle = triangle_both;
712 break;
713 case PIPE_FACE_BACK:
714 setup->triangle = setup->ccw_is_frontface ? triangle_ccw : triangle_cw;
715 break;
716 case PIPE_FACE_FRONT:
717 setup->triangle = setup->ccw_is_frontface ? triangle_cw : triangle_ccw;
718 break;
719 default:
720 setup->triangle = triangle_nop;
721 break;
722 }
723 }