llvmpipe: use llvm for attribute interpolant calculation
[mesa.git] / src / gallium / drivers / llvmpipe / lp_setup_tri.c
1 /**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /*
29 * Binning code for triangles
30 */
31
32 #include "util/u_math.h"
33 #include "util/u_memory.h"
34 #include "util/u_rect.h"
35 #include "lp_perf.h"
36 #include "lp_setup_context.h"
37 #include "lp_rast.h"
38 #include "lp_state_fs.h"
39 #include "lp_state_setup.h"
40
41 #define NUM_CHANNELS 4
42
43
44
45 static INLINE int
46 subpixel_snap(float a)
47 {
48 return util_iround(FIXED_ONE * a);
49 }
50
51 static INLINE float
52 fixed_to_float(int a)
53 {
54 return a * (1.0 / FIXED_ONE);
55 }
56
57
58
59
60
61
62
63 /**
64 * Alloc space for a new triangle plus the input.a0/dadx/dady arrays
65 * immediately after it.
66 * The memory is allocated from the per-scene pool, not per-tile.
67 * \param tri_size returns number of bytes allocated
68 * \param num_inputs number of fragment shader inputs
69 * \return pointer to triangle space
70 */
71 struct lp_rast_triangle *
72 lp_setup_alloc_triangle(struct lp_scene *scene,
73 unsigned num_inputs,
74 unsigned nr_planes,
75 unsigned *tri_size)
76 {
77 unsigned input_array_sz = NUM_CHANNELS * (num_inputs + 1) * sizeof(float);
78 struct lp_rast_triangle *tri;
79 unsigned tri_bytes, bytes;
80 char *inputs;
81
82 tri_bytes = align(Offset(struct lp_rast_triangle, plane[nr_planes]), 16);
83 bytes = tri_bytes + (3 * input_array_sz);
84
85 tri = lp_scene_alloc_aligned( scene, bytes, 16 );
86
87 if (tri) {
88 inputs = ((char *)tri) + tri_bytes;
89 tri->inputs.a0 = (float (*)[4]) inputs;
90 tri->inputs.dadx = (float (*)[4]) (inputs + input_array_sz);
91 tri->inputs.dady = (float (*)[4]) (inputs + 2 * input_array_sz);
92
93 *tri_size = bytes;
94 }
95
96 return tri;
97 }
98
99 void
100 lp_setup_print_vertex(struct lp_setup_context *setup,
101 const char *name,
102 const float (*v)[4])
103 {
104 const struct lp_setup_variant_key *key = &setup->setup.variant->key;
105 int i, j;
106
107 debug_printf(" wpos (%s[0]) xyzw %f %f %f %f\n",
108 name,
109 v[0][0], v[0][1], v[0][2], v[0][3]);
110
111 for (i = 0; i < key->num_inputs; i++) {
112 const float *in = v[key->inputs[i].src_index];
113
114 debug_printf(" in[%d] (%s[%d]) %s%s%s%s ",
115 i,
116 name, key->inputs[i].src_index,
117 (key->inputs[i].usage_mask & 0x1) ? "x" : " ",
118 (key->inputs[i].usage_mask & 0x2) ? "y" : " ",
119 (key->inputs[i].usage_mask & 0x4) ? "z" : " ",
120 (key->inputs[i].usage_mask & 0x8) ? "w" : " ");
121
122 for (j = 0; j < 4; j++)
123 if (key->inputs[i].usage_mask & (1<<j))
124 debug_printf("%.5f ", in[j]);
125
126 debug_printf("\n");
127 }
128 }
129
130
131 /**
132 * Print triangle vertex attribs (for debug).
133 */
134 void
135 lp_setup_print_triangle(struct lp_setup_context *setup,
136 const float (*v0)[4],
137 const float (*v1)[4],
138 const float (*v2)[4])
139 {
140 debug_printf("triangle\n");
141
142 {
143 const float ex = v0[0][0] - v2[0][0];
144 const float ey = v0[0][1] - v2[0][1];
145 const float fx = v1[0][0] - v2[0][0];
146 const float fy = v1[0][1] - v2[0][1];
147
148 /* det = cross(e,f).z */
149 const float det = ex * fy - ey * fx;
150 if (det < 0.0f)
151 debug_printf(" - ccw\n");
152 else if (det > 0.0f)
153 debug_printf(" - cw\n");
154 else
155 debug_printf(" - zero area\n");
156 }
157
158 lp_setup_print_vertex(setup, "v0", v0);
159 lp_setup_print_vertex(setup, "v1", v1);
160 lp_setup_print_vertex(setup, "v2", v2);
161 }
162
163
164 static unsigned
165 lp_rast_tri_tab[9] = {
166 0, /* should be impossible */
167 LP_RAST_OP_TRIANGLE_1,
168 LP_RAST_OP_TRIANGLE_2,
169 LP_RAST_OP_TRIANGLE_3,
170 LP_RAST_OP_TRIANGLE_4,
171 LP_RAST_OP_TRIANGLE_5,
172 LP_RAST_OP_TRIANGLE_6,
173 LP_RAST_OP_TRIANGLE_7,
174 LP_RAST_OP_TRIANGLE_8
175 };
176
177
178
179 /**
180 * The primitive covers the whole tile- shade whole tile.
181 *
182 * \param tx, ty the tile position in tiles, not pixels
183 */
184 static boolean
185 lp_setup_whole_tile(struct lp_setup_context *setup,
186 const struct lp_rast_shader_inputs *inputs,
187 int tx, int ty)
188 {
189 struct lp_scene *scene = setup->scene;
190
191 LP_COUNT(nr_fully_covered_64);
192
193 /* if variant is opaque and scissor doesn't effect the tile */
194 if (inputs->opaque) {
195 if (!scene->fb.zsbuf) {
196 /*
197 * All previous rendering will be overwritten so reset the bin.
198 */
199 lp_scene_bin_reset( scene, tx, ty );
200 }
201
202 LP_COUNT(nr_shade_opaque_64);
203 return lp_scene_bin_command( scene, tx, ty,
204 LP_RAST_OP_SHADE_TILE_OPAQUE,
205 lp_rast_arg_inputs(inputs) );
206 } else {
207 LP_COUNT(nr_shade_64);
208 return lp_scene_bin_command( scene, tx, ty,
209 LP_RAST_OP_SHADE_TILE,
210 lp_rast_arg_inputs(inputs) );
211 }
212 }
213
214
215 /**
216 * Do basic setup for triangle rasterization and determine which
217 * framebuffer tiles are touched. Put the triangle in the scene's
218 * bins for the tiles which we overlap.
219 */
220 static boolean
221 do_triangle_ccw(struct lp_setup_context *setup,
222 const float (*v0)[4],
223 const float (*v1)[4],
224 const float (*v2)[4],
225 boolean frontfacing )
226 {
227 struct lp_scene *scene = setup->scene;
228 const struct lp_setup_variant_key *key = &setup->setup.variant->key;
229 struct lp_rast_triangle *tri;
230 int x[3];
231 int y[3];
232 int area;
233 struct u_rect bbox;
234 unsigned tri_bytes;
235 int i;
236 int nr_planes = 3;
237
238 if (0)
239 lp_setup_print_triangle(setup, v0, v1, v2);
240
241 if (setup->scissor_test) {
242 nr_planes = 7;
243 }
244 else {
245 nr_planes = 3;
246 }
247
248 /* x/y positions in fixed point */
249 x[0] = subpixel_snap(v0[0][0] - setup->pixel_offset);
250 x[1] = subpixel_snap(v1[0][0] - setup->pixel_offset);
251 x[2] = subpixel_snap(v2[0][0] - setup->pixel_offset);
252 y[0] = subpixel_snap(v0[0][1] - setup->pixel_offset);
253 y[1] = subpixel_snap(v1[0][1] - setup->pixel_offset);
254 y[2] = subpixel_snap(v2[0][1] - setup->pixel_offset);
255
256
257 /* Bounding rectangle (in pixels) */
258 {
259 /* Yes this is necessary to accurately calculate bounding boxes
260 * with the two fill-conventions we support. GL (normally) ends
261 * up needing a bottom-left fill convention, which requires
262 * slightly different rounding.
263 */
264 int adj = (setup->pixel_offset != 0) ? 1 : 0;
265
266 bbox.x0 = (MIN3(x[0], x[1], x[2]) + (FIXED_ONE-1)) >> FIXED_ORDER;
267 bbox.x1 = (MAX3(x[0], x[1], x[2]) + (FIXED_ONE-1)) >> FIXED_ORDER;
268 bbox.y0 = (MIN3(y[0], y[1], y[2]) + (FIXED_ONE-1) + adj) >> FIXED_ORDER;
269 bbox.y1 = (MAX3(y[0], y[1], y[2]) + (FIXED_ONE-1) + adj) >> FIXED_ORDER;
270
271 /* Inclusive coordinates:
272 */
273 bbox.x1--;
274 bbox.y1--;
275 }
276
277 if (bbox.x1 < bbox.x0 ||
278 bbox.y1 < bbox.y0) {
279 if (0) debug_printf("empty bounding box\n");
280 LP_COUNT(nr_culled_tris);
281 return TRUE;
282 }
283
284 if (!u_rect_test_intersection(&setup->draw_region, &bbox)) {
285 if (0) debug_printf("offscreen\n");
286 LP_COUNT(nr_culled_tris);
287 return TRUE;
288 }
289
290 u_rect_find_intersection(&setup->draw_region, &bbox);
291
292 tri = lp_setup_alloc_triangle(scene,
293 key->num_inputs,
294 nr_planes,
295 &tri_bytes);
296 if (!tri)
297 return FALSE;
298
299 #ifdef DEBUG
300 tri->v[0][0] = v0[0][0];
301 tri->v[1][0] = v1[0][0];
302 tri->v[2][0] = v2[0][0];
303 tri->v[0][1] = v0[0][1];
304 tri->v[1][1] = v1[0][1];
305 tri->v[2][1] = v2[0][1];
306 #endif
307
308 tri->plane[0].dcdy = x[0] - x[1];
309 tri->plane[1].dcdy = x[1] - x[2];
310 tri->plane[2].dcdy = x[2] - x[0];
311
312 tri->plane[0].dcdx = y[0] - y[1];
313 tri->plane[1].dcdx = y[1] - y[2];
314 tri->plane[2].dcdx = y[2] - y[0];
315
316 area = (tri->plane[0].dcdy * tri->plane[2].dcdx -
317 tri->plane[2].dcdy * tri->plane[0].dcdx);
318
319 LP_COUNT(nr_tris);
320
321 /* Cull non-ccw and zero-sized triangles.
322 *
323 * XXX: subject to overflow??
324 */
325 if (area <= 0) {
326 lp_scene_putback_data( scene, tri_bytes );
327 LP_COUNT(nr_culled_tris);
328 return TRUE;
329 }
330
331 /* Setup parameter interpolants:
332 */
333 setup->setup.variant->jit_function( v0,
334 v1,
335 v2,
336 frontfacing,
337 tri->inputs.a0,
338 tri->inputs.dadx,
339 tri->inputs.dady,
340 &setup->setup.variant->key );
341
342 tri->inputs.facing = frontfacing ? 1.0F : -1.0F;
343 tri->inputs.disable = FALSE;
344 tri->inputs.opaque = setup->fs.current.variant->opaque;
345 tri->inputs.state = setup->fs.stored;
346
347 if (0)
348 lp_dump_setup_coef(&setup->setup.variant->key,
349 (const float (*)[4])tri->inputs.a0,
350 (const float (*)[4])tri->inputs.dadx,
351 (const float (*)[4])tri->inputs.dady);
352
353 for (i = 0; i < 3; i++) {
354 struct lp_rast_plane *plane = &tri->plane[i];
355
356 /* half-edge constants, will be interated over the whole render
357 * target.
358 */
359 plane->c = plane->dcdx * x[i] - plane->dcdy * y[i];
360
361 /* correct for top-left vs. bottom-left fill convention.
362 *
363 * note that we're overloading gl_rasterization_rules to mean
364 * both (0.5,0.5) pixel centers *and* bottom-left filling
365 * convention.
366 *
367 * GL actually has a top-left filling convention, but GL's
368 * notion of "top" differs from gallium's...
369 *
370 * Also, sometimes (in FBO cases) GL will render upside down
371 * to its usual method, in which case it will probably want
372 * to use the opposite, top-left convention.
373 */
374 if (plane->dcdx < 0) {
375 /* both fill conventions want this - adjust for left edges */
376 plane->c++;
377 }
378 else if (plane->dcdx == 0) {
379 if (setup->pixel_offset == 0) {
380 /* correct for top-left fill convention:
381 */
382 if (plane->dcdy > 0) plane->c++;
383 }
384 else {
385 /* correct for bottom-left fill convention:
386 */
387 if (plane->dcdy < 0) plane->c++;
388 }
389 }
390
391 plane->dcdx *= FIXED_ONE;
392 plane->dcdy *= FIXED_ONE;
393
394 /* find trivial reject offsets for each edge for a single-pixel
395 * sized block. These will be scaled up at each recursive level to
396 * match the active blocksize. Scaling in this way works best if
397 * the blocks are square.
398 */
399 plane->eo = 0;
400 if (plane->dcdx < 0) plane->eo -= plane->dcdx;
401 if (plane->dcdy > 0) plane->eo += plane->dcdy;
402
403 /* Calculate trivial accept offsets from the above.
404 */
405 plane->ei = plane->dcdy - plane->dcdx - plane->eo;
406 }
407
408
409 /*
410 * When rasterizing scissored tris, use the intersection of the
411 * triangle bounding box and the scissor rect to generate the
412 * scissor planes.
413 *
414 * This permits us to cut off the triangle "tails" that are present
415 * in the intermediate recursive levels caused when two of the
416 * triangles edges don't diverge quickly enough to trivially reject
417 * exterior blocks from the triangle.
418 *
419 * It's not really clear if it's worth worrying about these tails,
420 * but since we generate the planes for each scissored tri, it's
421 * free to trim them in this case.
422 *
423 * Note that otherwise, the scissor planes only vary in 'C' value,
424 * and even then only on state-changes. Could alternatively store
425 * these planes elsewhere.
426 */
427 if (nr_planes == 7) {
428 tri->plane[3].dcdx = -1;
429 tri->plane[3].dcdy = 0;
430 tri->plane[3].c = 1-bbox.x0;
431 tri->plane[3].ei = 0;
432 tri->plane[3].eo = 1;
433
434 tri->plane[4].dcdx = 1;
435 tri->plane[4].dcdy = 0;
436 tri->plane[4].c = bbox.x1+1;
437 tri->plane[4].ei = -1;
438 tri->plane[4].eo = 0;
439
440 tri->plane[5].dcdx = 0;
441 tri->plane[5].dcdy = 1;
442 tri->plane[5].c = 1-bbox.y0;
443 tri->plane[5].ei = 0;
444 tri->plane[5].eo = 1;
445
446 tri->plane[6].dcdx = 0;
447 tri->plane[6].dcdy = -1;
448 tri->plane[6].c = bbox.y1+1;
449 tri->plane[6].ei = -1;
450 tri->plane[6].eo = 0;
451 }
452
453 return lp_setup_bin_triangle( setup, tri, &bbox, nr_planes );
454 }
455
456 /*
457 * Round to nearest less or equal power of two of the input.
458 *
459 * Undefined if no bit set exists, so code should check against 0 first.
460 */
461 static INLINE uint32_t
462 floor_pot(uint32_t n)
463 {
464 #if defined(PIPE_CC_GCC) && defined(PIPE_ARCH_X86)
465 if (n == 0)
466 return 0;
467
468 __asm__("bsr %1,%0"
469 : "=r" (n)
470 : "rm" (n));
471 return 1 << n;
472 #else
473 n |= (n >> 1);
474 n |= (n >> 2);
475 n |= (n >> 4);
476 n |= (n >> 8);
477 n |= (n >> 16);
478 return n - (n >> 1);
479 #endif
480 }
481
482
483 boolean
484 lp_setup_bin_triangle( struct lp_setup_context *setup,
485 struct lp_rast_triangle *tri,
486 const struct u_rect *bbox,
487 int nr_planes )
488 {
489 struct lp_scene *scene = setup->scene;
490 int i;
491
492 /* What is the largest power-of-two boundary this triangle crosses:
493 */
494 int dx = floor_pot((bbox->x0 ^ bbox->x1) |
495 (bbox->y0 ^ bbox->y1));
496
497 /* The largest dimension of the rasterized area of the triangle
498 * (aligned to a 4x4 grid), rounded down to the nearest power of two:
499 */
500 int sz = floor_pot((bbox->x1 - (bbox->x0 & ~3)) |
501 (bbox->y1 - (bbox->y0 & ~3)));
502
503 if (nr_planes == 3) {
504 if (sz < 4 && dx < 64)
505 {
506 /* Triangle is contained in a single 4x4 stamp:
507 */
508 int mask = (bbox->x0 & 63 & ~3) | ((bbox->y0 & 63 & ~3) << 8);
509
510 return lp_scene_bin_command( scene,
511 bbox->x0/64, bbox->y0/64,
512 LP_RAST_OP_TRIANGLE_3_4,
513 lp_rast_arg_triangle(tri, mask) );
514 }
515
516 if (sz < 16 && dx < 64)
517 {
518 int mask = (bbox->x0 & 63 & ~3) | ((bbox->y0 & 63 & ~3) << 8);
519
520 /* Triangle is contained in a single 16x16 block:
521 */
522 return lp_scene_bin_command( scene,
523 bbox->x0/64, bbox->y0/64,
524 LP_RAST_OP_TRIANGLE_3_16,
525 lp_rast_arg_triangle(tri, mask) );
526 }
527 }
528
529
530 /* Determine which tile(s) intersect the triangle's bounding box
531 */
532 if (dx < TILE_SIZE)
533 {
534 int ix0 = bbox->x0 / TILE_SIZE;
535 int iy0 = bbox->y0 / TILE_SIZE;
536
537 assert(iy0 == bbox->y1 / TILE_SIZE &&
538 ix0 == bbox->x1 / TILE_SIZE);
539
540 /* Triangle is contained in a single tile:
541 */
542 return lp_scene_bin_command( scene, ix0, iy0,
543 lp_rast_tri_tab[nr_planes],
544 lp_rast_arg_triangle(tri, (1<<nr_planes)-1) );
545 }
546 else
547 {
548 int c[7];
549 int ei[7];
550 int eo[7];
551 int xstep[7];
552 int ystep[7];
553 int x, y;
554
555 int ix0 = bbox->x0 / TILE_SIZE;
556 int iy0 = bbox->y0 / TILE_SIZE;
557 int ix1 = bbox->x1 / TILE_SIZE;
558 int iy1 = bbox->y1 / TILE_SIZE;
559
560 for (i = 0; i < nr_planes; i++) {
561 c[i] = (tri->plane[i].c +
562 tri->plane[i].dcdy * iy0 * TILE_SIZE -
563 tri->plane[i].dcdx * ix0 * TILE_SIZE);
564
565 ei[i] = tri->plane[i].ei << TILE_ORDER;
566 eo[i] = tri->plane[i].eo << TILE_ORDER;
567 xstep[i] = -(tri->plane[i].dcdx << TILE_ORDER);
568 ystep[i] = tri->plane[i].dcdy << TILE_ORDER;
569 }
570
571
572
573 /* Test tile-sized blocks against the triangle.
574 * Discard blocks fully outside the tri. If the block is fully
575 * contained inside the tri, bin an lp_rast_shade_tile command.
576 * Else, bin a lp_rast_triangle command.
577 */
578 for (y = iy0; y <= iy1; y++)
579 {
580 boolean in = FALSE; /* are we inside the triangle? */
581 int cx[7];
582
583 for (i = 0; i < nr_planes; i++)
584 cx[i] = c[i];
585
586 for (x = ix0; x <= ix1; x++)
587 {
588 int out = 0;
589 int partial = 0;
590
591 for (i = 0; i < nr_planes; i++) {
592 int planeout = cx[i] + eo[i];
593 int planepartial = cx[i] + ei[i] - 1;
594 out |= (planeout >> 31);
595 partial |= (planepartial >> 31) & (1<<i);
596 }
597
598 if (out) {
599 /* do nothing */
600 if (in)
601 break; /* exiting triangle, all done with this row */
602 LP_COUNT(nr_empty_64);
603 }
604 else if (partial) {
605 /* Not trivially accepted by at least one plane -
606 * rasterize/shade partial tile
607 */
608 int count = util_bitcount(partial);
609 in = TRUE;
610 if (!lp_scene_bin_command( scene, x, y,
611 lp_rast_tri_tab[count],
612 lp_rast_arg_triangle(tri, partial) ))
613 goto fail;
614
615 LP_COUNT(nr_partially_covered_64);
616 }
617 else {
618 /* triangle covers the whole tile- shade whole tile */
619 LP_COUNT(nr_fully_covered_64);
620 in = TRUE;
621 if (!lp_setup_whole_tile(setup, &tri->inputs, x, y))
622 goto fail;
623 }
624
625 /* Iterate cx values across the region:
626 */
627 for (i = 0; i < nr_planes; i++)
628 cx[i] += xstep[i];
629 }
630
631 /* Iterate c values down the region:
632 */
633 for (i = 0; i < nr_planes; i++)
634 c[i] += ystep[i];
635 }
636 }
637
638 return TRUE;
639
640 fail:
641 /* Need to disable any partially binned triangle. This is easier
642 * than trying to locate all the triangle, shade-tile, etc,
643 * commands which may have been binned.
644 */
645 tri->inputs.disable = TRUE;
646 return FALSE;
647 }
648
649
650 /**
651 * Draw triangle if it's CW, cull otherwise.
652 */
653 static void triangle_cw( struct lp_setup_context *setup,
654 const float (*v0)[4],
655 const float (*v1)[4],
656 const float (*v2)[4] )
657 {
658 if (!do_triangle_ccw( setup, v1, v0, v2, !setup->ccw_is_frontface ))
659 {
660 lp_setup_flush_and_restart(setup);
661
662 if (!do_triangle_ccw( setup, v1, v0, v2, !setup->ccw_is_frontface ))
663 assert(0);
664 }
665 }
666
667
668 /**
669 * Draw triangle if it's CCW, cull otherwise.
670 */
671 static void triangle_ccw( struct lp_setup_context *setup,
672 const float (*v0)[4],
673 const float (*v1)[4],
674 const float (*v2)[4] )
675 {
676 if (!do_triangle_ccw( setup, v0, v1, v2, setup->ccw_is_frontface ))
677 {
678 lp_setup_flush_and_restart(setup);
679 if (!do_triangle_ccw( setup, v0, v1, v2, setup->ccw_is_frontface ))
680 assert(0);
681 }
682 }
683
684
685
686 /**
687 * Draw triangle whether it's CW or CCW.
688 */
689 static void triangle_both( struct lp_setup_context *setup,
690 const float (*v0)[4],
691 const float (*v1)[4],
692 const float (*v2)[4] )
693 {
694 /* edge vectors e = v0 - v2, f = v1 - v2 */
695 const float ex = v0[0][0] - v2[0][0];
696 const float ey = v0[0][1] - v2[0][1];
697 const float fx = v1[0][0] - v2[0][0];
698 const float fy = v1[0][1] - v2[0][1];
699
700 /* det = cross(e,f).z */
701 const float det = ex * fy - ey * fx;
702 if (det < 0.0f)
703 triangle_ccw( setup, v0, v1, v2 );
704 else if (det > 0.0f)
705 triangle_cw( setup, v0, v1, v2 );
706 }
707
708
709 static void triangle_nop( struct lp_setup_context *setup,
710 const float (*v0)[4],
711 const float (*v1)[4],
712 const float (*v2)[4] )
713 {
714 }
715
716
717 void
718 lp_setup_choose_triangle( struct lp_setup_context *setup )
719 {
720 switch (setup->cullmode) {
721 case PIPE_FACE_NONE:
722 setup->triangle = triangle_both;
723 break;
724 case PIPE_FACE_BACK:
725 setup->triangle = setup->ccw_is_frontface ? triangle_ccw : triangle_cw;
726 break;
727 case PIPE_FACE_FRONT:
728 setup->triangle = setup->ccw_is_frontface ? triangle_cw : triangle_ccw;
729 break;
730 default:
731 setup->triangle = triangle_nop;
732 break;
733 }
734 }