llvmpipe: handle up to 8 planes in triangle binner
[mesa.git] / src / gallium / drivers / llvmpipe / lp_setup_tri.c
1 /**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /*
29 * Binning code for triangles
30 */
31
32 #include "util/u_math.h"
33 #include "util/u_memory.h"
34 #include "util/u_rect.h"
35 #include "lp_perf.h"
36 #include "lp_setup_context.h"
37 #include "lp_setup_coef.h"
38 #include "lp_rast.h"
39 #include "lp_state_fs.h"
40
41 #define NUM_CHANNELS 4
42
43
44
45 static INLINE int
46 subpixel_snap(float a)
47 {
48 return util_iround(FIXED_ONE * a);
49 }
50
51 static INLINE float
52 fixed_to_float(int a)
53 {
54 return a * (1.0 / FIXED_ONE);
55 }
56
57
58
59
60
61
62
63 /**
64 * Alloc space for a new triangle plus the input.a0/dadx/dady arrays
65 * immediately after it.
66 * The memory is allocated from the per-scene pool, not per-tile.
67 * \param tri_size returns number of bytes allocated
68 * \param nr_inputs number of fragment shader inputs
69 * \return pointer to triangle space
70 */
71 struct lp_rast_triangle *
72 lp_setup_alloc_triangle(struct lp_scene *scene,
73 unsigned nr_inputs,
74 unsigned nr_planes,
75 unsigned *tri_size)
76 {
77 unsigned input_array_sz = NUM_CHANNELS * (nr_inputs + 1) * sizeof(float);
78 struct lp_rast_triangle *tri;
79 unsigned tri_bytes, bytes;
80 char *inputs;
81
82 tri_bytes = align(Offset(struct lp_rast_triangle, plane[nr_planes]), 16);
83 bytes = tri_bytes + (3 * input_array_sz);
84
85 tri = lp_scene_alloc_aligned( scene, bytes, 16 );
86
87 if (tri) {
88 inputs = ((char *)tri) + tri_bytes;
89 tri->inputs.a0 = (float (*)[4]) inputs;
90 tri->inputs.dadx = (float (*)[4]) (inputs + input_array_sz);
91 tri->inputs.dady = (float (*)[4]) (inputs + 2 * input_array_sz);
92
93 *tri_size = bytes;
94 }
95
96 return tri;
97 }
98
99 void
100 lp_setup_print_vertex(struct lp_setup_context *setup,
101 const char *name,
102 const float (*v)[4])
103 {
104 int i, j;
105
106 debug_printf(" wpos (%s[0]) xyzw %f %f %f %f\n",
107 name,
108 v[0][0], v[0][1], v[0][2], v[0][3]);
109
110 for (i = 0; i < setup->fs.nr_inputs; i++) {
111 const float *in = v[setup->fs.input[i].src_index];
112
113 debug_printf(" in[%d] (%s[%d]) %s%s%s%s ",
114 i,
115 name, setup->fs.input[i].src_index,
116 (setup->fs.input[i].usage_mask & 0x1) ? "x" : " ",
117 (setup->fs.input[i].usage_mask & 0x2) ? "y" : " ",
118 (setup->fs.input[i].usage_mask & 0x4) ? "z" : " ",
119 (setup->fs.input[i].usage_mask & 0x8) ? "w" : " ");
120
121 for (j = 0; j < 4; j++)
122 if (setup->fs.input[i].usage_mask & (1<<j))
123 debug_printf("%.5f ", in[j]);
124
125 debug_printf("\n");
126 }
127 }
128
129
130 /**
131 * Print triangle vertex attribs (for debug).
132 */
133 void
134 lp_setup_print_triangle(struct lp_setup_context *setup,
135 const float (*v0)[4],
136 const float (*v1)[4],
137 const float (*v2)[4])
138 {
139 debug_printf("triangle\n");
140
141 {
142 const float ex = v0[0][0] - v2[0][0];
143 const float ey = v0[0][1] - v2[0][1];
144 const float fx = v1[0][0] - v2[0][0];
145 const float fy = v1[0][1] - v2[0][1];
146
147 /* det = cross(e,f).z */
148 const float det = ex * fy - ey * fx;
149 if (det < 0.0f)
150 debug_printf(" - ccw\n");
151 else if (det > 0.0f)
152 debug_printf(" - cw\n");
153 else
154 debug_printf(" - zero area\n");
155 }
156
157 lp_setup_print_vertex(setup, "v0", v0);
158 lp_setup_print_vertex(setup, "v1", v1);
159 lp_setup_print_vertex(setup, "v2", v2);
160 }
161
162
163 #define MAX_PLANES 8
164 static unsigned
165 lp_rast_tri_tab[MAX_PLANES+1] = {
166 0, /* should be impossible */
167 LP_RAST_OP_TRIANGLE_1,
168 LP_RAST_OP_TRIANGLE_2,
169 LP_RAST_OP_TRIANGLE_3,
170 LP_RAST_OP_TRIANGLE_4,
171 LP_RAST_OP_TRIANGLE_5,
172 LP_RAST_OP_TRIANGLE_6,
173 LP_RAST_OP_TRIANGLE_7,
174 LP_RAST_OP_TRIANGLE_8
175 };
176
177
178
179 /**
180 * The primitive covers the whole tile- shade whole tile.
181 *
182 * \param tx, ty the tile position in tiles, not pixels
183 */
184 static boolean
185 lp_setup_whole_tile(struct lp_setup_context *setup,
186 const struct lp_rast_shader_inputs *inputs,
187 int tx, int ty)
188 {
189 struct lp_scene *scene = setup->scene;
190
191 LP_COUNT(nr_fully_covered_64);
192
193 /* if variant is opaque and scissor doesn't effect the tile */
194 if (inputs->opaque) {
195 if (!scene->fb.zsbuf) {
196 /*
197 * All previous rendering will be overwritten so reset the bin.
198 */
199 lp_scene_bin_reset( scene, tx, ty );
200 }
201
202 LP_COUNT(nr_shade_opaque_64);
203 return lp_scene_bin_command( scene, tx, ty,
204 LP_RAST_OP_SHADE_TILE_OPAQUE,
205 lp_rast_arg_inputs(inputs) );
206 } else {
207 LP_COUNT(nr_shade_64);
208 return lp_scene_bin_command( scene, tx, ty,
209 LP_RAST_OP_SHADE_TILE,
210 lp_rast_arg_inputs(inputs) );
211 }
212 }
213
214
215 /**
216 * Do basic setup for triangle rasterization and determine which
217 * framebuffer tiles are touched. Put the triangle in the scene's
218 * bins for the tiles which we overlap.
219 */
220 static boolean
221 do_triangle_ccw(struct lp_setup_context *setup,
222 const float (*v0)[4],
223 const float (*v1)[4],
224 const float (*v2)[4],
225 boolean frontfacing )
226 {
227 struct lp_scene *scene = setup->scene;
228 struct lp_rast_triangle *tri;
229 int x[3];
230 int y[3];
231 int area;
232 struct u_rect bbox;
233 unsigned tri_bytes;
234 int i;
235 int nr_planes = 3;
236
237 if (0)
238 lp_setup_print_triangle(setup, v0, v1, v2);
239
240 if (setup->scissor_test) {
241 nr_planes = 7;
242 }
243 else {
244 nr_planes = 3;
245 }
246
247 /* x/y positions in fixed point */
248 x[0] = subpixel_snap(v0[0][0] - setup->pixel_offset);
249 x[1] = subpixel_snap(v1[0][0] - setup->pixel_offset);
250 x[2] = subpixel_snap(v2[0][0] - setup->pixel_offset);
251 y[0] = subpixel_snap(v0[0][1] - setup->pixel_offset);
252 y[1] = subpixel_snap(v1[0][1] - setup->pixel_offset);
253 y[2] = subpixel_snap(v2[0][1] - setup->pixel_offset);
254
255
256 /* Bounding rectangle (in pixels) */
257 {
258 /* Yes this is necessary to accurately calculate bounding boxes
259 * with the two fill-conventions we support. GL (normally) ends
260 * up needing a bottom-left fill convention, which requires
261 * slightly different rounding.
262 */
263 int adj = (setup->pixel_offset != 0) ? 1 : 0;
264
265 bbox.x0 = (MIN3(x[0], x[1], x[2]) + (FIXED_ONE-1)) >> FIXED_ORDER;
266 bbox.x1 = (MAX3(x[0], x[1], x[2]) + (FIXED_ONE-1)) >> FIXED_ORDER;
267 bbox.y0 = (MIN3(y[0], y[1], y[2]) + (FIXED_ONE-1) + adj) >> FIXED_ORDER;
268 bbox.y1 = (MAX3(y[0], y[1], y[2]) + (FIXED_ONE-1) + adj) >> FIXED_ORDER;
269
270 /* Inclusive coordinates:
271 */
272 bbox.x1--;
273 bbox.y1--;
274 }
275
276 if (bbox.x1 < bbox.x0 ||
277 bbox.y1 < bbox.y0) {
278 if (0) debug_printf("empty bounding box\n");
279 LP_COUNT(nr_culled_tris);
280 return TRUE;
281 }
282
283 if (!u_rect_test_intersection(&setup->draw_region, &bbox)) {
284 if (0) debug_printf("offscreen\n");
285 LP_COUNT(nr_culled_tris);
286 return TRUE;
287 }
288
289 u_rect_find_intersection(&setup->draw_region, &bbox);
290
291 tri = lp_setup_alloc_triangle(scene,
292 setup->fs.nr_inputs,
293 nr_planes,
294 &tri_bytes);
295 if (!tri)
296 return FALSE;
297
298 #ifdef DEBUG
299 tri->v[0][0] = v0[0][0];
300 tri->v[1][0] = v1[0][0];
301 tri->v[2][0] = v2[0][0];
302 tri->v[0][1] = v0[0][1];
303 tri->v[1][1] = v1[0][1];
304 tri->v[2][1] = v2[0][1];
305 #endif
306
307 tri->plane[0].dcdy = x[0] - x[1];
308 tri->plane[1].dcdy = x[1] - x[2];
309 tri->plane[2].dcdy = x[2] - x[0];
310
311 tri->plane[0].dcdx = y[0] - y[1];
312 tri->plane[1].dcdx = y[1] - y[2];
313 tri->plane[2].dcdx = y[2] - y[0];
314
315 area = (tri->plane[0].dcdy * tri->plane[2].dcdx -
316 tri->plane[2].dcdy * tri->plane[0].dcdx);
317
318 LP_COUNT(nr_tris);
319
320 /* Cull non-ccw and zero-sized triangles.
321 *
322 * XXX: subject to overflow??
323 */
324 if (area <= 0) {
325 lp_scene_putback_data( scene, tri_bytes );
326 LP_COUNT(nr_culled_tris);
327 return TRUE;
328 }
329
330 /* Setup parameter interpolants:
331 */
332 lp_setup_tri_coef( setup, &tri->inputs, v0, v1, v2, frontfacing );
333
334 tri->inputs.facing = frontfacing ? 1.0F : -1.0F;
335 tri->inputs.disable = FALSE;
336 tri->inputs.opaque = setup->fs.current.variant->opaque;
337 tri->inputs.state = setup->fs.stored;
338
339
340 for (i = 0; i < 3; i++) {
341 struct lp_rast_plane *plane = &tri->plane[i];
342
343 /* half-edge constants, will be interated over the whole render
344 * target.
345 */
346 plane->c = plane->dcdx * x[i] - plane->dcdy * y[i];
347
348 /* correct for top-left vs. bottom-left fill convention.
349 *
350 * note that we're overloading gl_rasterization_rules to mean
351 * both (0.5,0.5) pixel centers *and* bottom-left filling
352 * convention.
353 *
354 * GL actually has a top-left filling convention, but GL's
355 * notion of "top" differs from gallium's...
356 *
357 * Also, sometimes (in FBO cases) GL will render upside down
358 * to its usual method, in which case it will probably want
359 * to use the opposite, top-left convention.
360 */
361 if (plane->dcdx < 0) {
362 /* both fill conventions want this - adjust for left edges */
363 plane->c++;
364 }
365 else if (plane->dcdx == 0) {
366 if (setup->pixel_offset == 0) {
367 /* correct for top-left fill convention:
368 */
369 if (plane->dcdy > 0) plane->c++;
370 }
371 else {
372 /* correct for bottom-left fill convention:
373 */
374 if (plane->dcdy < 0) plane->c++;
375 }
376 }
377
378 plane->dcdx *= FIXED_ONE;
379 plane->dcdy *= FIXED_ONE;
380
381 /* find trivial reject offsets for each edge for a single-pixel
382 * sized block. These will be scaled up at each recursive level to
383 * match the active blocksize. Scaling in this way works best if
384 * the blocks are square.
385 */
386 plane->eo = 0;
387 if (plane->dcdx < 0) plane->eo -= plane->dcdx;
388 if (plane->dcdy > 0) plane->eo += plane->dcdy;
389
390 /* Calculate trivial accept offsets from the above.
391 */
392 plane->ei = plane->dcdy - plane->dcdx - plane->eo;
393 }
394
395
396 /*
397 * When rasterizing scissored tris, use the intersection of the
398 * triangle bounding box and the scissor rect to generate the
399 * scissor planes.
400 *
401 * This permits us to cut off the triangle "tails" that are present
402 * in the intermediate recursive levels caused when two of the
403 * triangles edges don't diverge quickly enough to trivially reject
404 * exterior blocks from the triangle.
405 *
406 * It's not really clear if it's worth worrying about these tails,
407 * but since we generate the planes for each scissored tri, it's
408 * free to trim them in this case.
409 *
410 * Note that otherwise, the scissor planes only vary in 'C' value,
411 * and even then only on state-changes. Could alternatively store
412 * these planes elsewhere.
413 */
414 if (nr_planes == 7) {
415 tri->plane[3].dcdx = -1;
416 tri->plane[3].dcdy = 0;
417 tri->plane[3].c = 1-bbox.x0;
418 tri->plane[3].ei = 0;
419 tri->plane[3].eo = 1;
420
421 tri->plane[4].dcdx = 1;
422 tri->plane[4].dcdy = 0;
423 tri->plane[4].c = bbox.x1+1;
424 tri->plane[4].ei = -1;
425 tri->plane[4].eo = 0;
426
427 tri->plane[5].dcdx = 0;
428 tri->plane[5].dcdy = 1;
429 tri->plane[5].c = 1-bbox.y0;
430 tri->plane[5].ei = 0;
431 tri->plane[5].eo = 1;
432
433 tri->plane[6].dcdx = 0;
434 tri->plane[6].dcdy = -1;
435 tri->plane[6].c = bbox.y1+1;
436 tri->plane[6].ei = -1;
437 tri->plane[6].eo = 0;
438 }
439
440 return lp_setup_bin_triangle( setup, tri, &bbox, nr_planes );
441 }
442
443 /*
444 * Round to nearest less or equal power of two of the input.
445 *
446 * Undefined if no bit set exists, so code should check against 0 first.
447 */
448 static INLINE uint32_t
449 floor_pot(uint32_t n)
450 {
451 #if defined(PIPE_CC_GCC) && defined(PIPE_ARCH_X86)
452 if (n == 0)
453 return 0;
454
455 __asm__("bsr %1,%0"
456 : "=r" (n)
457 : "rm" (n));
458 return 1 << n;
459 #else
460 n |= (n >> 1);
461 n |= (n >> 2);
462 n |= (n >> 4);
463 n |= (n >> 8);
464 n |= (n >> 16);
465 return n - (n >> 1);
466 #endif
467 }
468
469
470 boolean
471 lp_setup_bin_triangle( struct lp_setup_context *setup,
472 struct lp_rast_triangle *tri,
473 const struct u_rect *bbox,
474 int nr_planes )
475 {
476 struct lp_scene *scene = setup->scene;
477 int i;
478
479 /* What is the largest power-of-two boundary this triangle crosses:
480 */
481 int dx = floor_pot((bbox->x0 ^ bbox->x1) |
482 (bbox->y0 ^ bbox->y1));
483
484 /* The largest dimension of the rasterized area of the triangle
485 * (aligned to a 4x4 grid), rounded down to the nearest power of two:
486 */
487 int sz = floor_pot((bbox->x1 - (bbox->x0 & ~3)) |
488 (bbox->y1 - (bbox->y0 & ~3)));
489
490 if (nr_planes == 3) {
491 if (sz < 4 && dx < 64)
492 {
493 /* Triangle is contained in a single 4x4 stamp:
494 */
495 int mask = (bbox->x0 & 63 & ~3) | ((bbox->y0 & 63 & ~3) << 8);
496
497 return lp_scene_bin_command( scene,
498 bbox->x0/64, bbox->y0/64,
499 LP_RAST_OP_TRIANGLE_3_4,
500 lp_rast_arg_triangle(tri, mask) );
501 }
502
503 if (sz < 16 && dx < 64)
504 {
505 int mask = (bbox->x0 & 63 & ~3) | ((bbox->y0 & 63 & ~3) << 8);
506
507 /* Triangle is contained in a single 16x16 block:
508 */
509 return lp_scene_bin_command( scene,
510 bbox->x0/64, bbox->y0/64,
511 LP_RAST_OP_TRIANGLE_3_16,
512 lp_rast_arg_triangle(tri, mask) );
513 }
514 }
515
516
517 /* Determine which tile(s) intersect the triangle's bounding box
518 */
519 if (dx < TILE_SIZE)
520 {
521 int ix0 = bbox->x0 / TILE_SIZE;
522 int iy0 = bbox->y0 / TILE_SIZE;
523
524 assert(iy0 == bbox->y1 / TILE_SIZE &&
525 ix0 == bbox->x1 / TILE_SIZE);
526
527 /* Triangle is contained in a single tile:
528 */
529 return lp_scene_bin_command( scene, ix0, iy0,
530 lp_rast_tri_tab[nr_planes],
531 lp_rast_arg_triangle(tri, (1<<nr_planes)-1) );
532 }
533 else
534 {
535 int c[MAX_PLANES];
536 int ei[MAX_PLANES];
537 int eo[MAX_PLANES];
538 int xstep[MAX_PLANES];
539 int ystep[MAX_PLANES];
540 int x, y;
541
542 int ix0 = bbox->x0 / TILE_SIZE;
543 int iy0 = bbox->y0 / TILE_SIZE;
544 int ix1 = bbox->x1 / TILE_SIZE;
545 int iy1 = bbox->y1 / TILE_SIZE;
546
547 for (i = 0; i < nr_planes; i++) {
548 c[i] = (tri->plane[i].c +
549 tri->plane[i].dcdy * iy0 * TILE_SIZE -
550 tri->plane[i].dcdx * ix0 * TILE_SIZE);
551
552 ei[i] = tri->plane[i].ei << TILE_ORDER;
553 eo[i] = tri->plane[i].eo << TILE_ORDER;
554 xstep[i] = -(tri->plane[i].dcdx << TILE_ORDER);
555 ystep[i] = tri->plane[i].dcdy << TILE_ORDER;
556 }
557
558
559
560 /* Test tile-sized blocks against the triangle.
561 * Discard blocks fully outside the tri. If the block is fully
562 * contained inside the tri, bin an lp_rast_shade_tile command.
563 * Else, bin a lp_rast_triangle command.
564 */
565 for (y = iy0; y <= iy1; y++)
566 {
567 boolean in = FALSE; /* are we inside the triangle? */
568 int cx[MAX_PLANES];
569
570 for (i = 0; i < nr_planes; i++)
571 cx[i] = c[i];
572
573 for (x = ix0; x <= ix1; x++)
574 {
575 int out = 0;
576 int partial = 0;
577
578 for (i = 0; i < nr_planes; i++) {
579 int planeout = cx[i] + eo[i];
580 int planepartial = cx[i] + ei[i] - 1;
581 out |= (planeout >> 31);
582 partial |= (planepartial >> 31) & (1<<i);
583 }
584
585 if (out) {
586 /* do nothing */
587 if (in)
588 break; /* exiting triangle, all done with this row */
589 LP_COUNT(nr_empty_64);
590 }
591 else if (partial) {
592 /* Not trivially accepted by at least one plane -
593 * rasterize/shade partial tile
594 */
595 int count = util_bitcount(partial);
596 in = TRUE;
597 if (!lp_scene_bin_command( scene, x, y,
598 lp_rast_tri_tab[count],
599 lp_rast_arg_triangle(tri, partial) ))
600 goto fail;
601
602 LP_COUNT(nr_partially_covered_64);
603 }
604 else {
605 /* triangle covers the whole tile- shade whole tile */
606 LP_COUNT(nr_fully_covered_64);
607 in = TRUE;
608 if (!lp_setup_whole_tile(setup, &tri->inputs, x, y))
609 goto fail;
610 }
611
612 /* Iterate cx values across the region:
613 */
614 for (i = 0; i < nr_planes; i++)
615 cx[i] += xstep[i];
616 }
617
618 /* Iterate c values down the region:
619 */
620 for (i = 0; i < nr_planes; i++)
621 c[i] += ystep[i];
622 }
623 }
624
625 return TRUE;
626
627 fail:
628 /* Need to disable any partially binned triangle. This is easier
629 * than trying to locate all the triangle, shade-tile, etc,
630 * commands which may have been binned.
631 */
632 tri->inputs.disable = TRUE;
633 return FALSE;
634 }
635
636
637 /**
638 * Draw triangle if it's CW, cull otherwise.
639 */
640 static void triangle_cw( struct lp_setup_context *setup,
641 const float (*v0)[4],
642 const float (*v1)[4],
643 const float (*v2)[4] )
644 {
645 if (!do_triangle_ccw( setup, v1, v0, v2, !setup->ccw_is_frontface ))
646 {
647 lp_setup_flush_and_restart(setup);
648
649 if (!do_triangle_ccw( setup, v1, v0, v2, !setup->ccw_is_frontface ))
650 assert(0);
651 }
652 }
653
654
655 /**
656 * Draw triangle if it's CCW, cull otherwise.
657 */
658 static void triangle_ccw( struct lp_setup_context *setup,
659 const float (*v0)[4],
660 const float (*v1)[4],
661 const float (*v2)[4] )
662 {
663 if (!do_triangle_ccw( setup, v0, v1, v2, setup->ccw_is_frontface ))
664 {
665 lp_setup_flush_and_restart(setup);
666 if (!do_triangle_ccw( setup, v0, v1, v2, setup->ccw_is_frontface ))
667 assert(0);
668 }
669 }
670
671
672
673 /**
674 * Draw triangle whether it's CW or CCW.
675 */
676 static void triangle_both( struct lp_setup_context *setup,
677 const float (*v0)[4],
678 const float (*v1)[4],
679 const float (*v2)[4] )
680 {
681 /* edge vectors e = v0 - v2, f = v1 - v2 */
682 const float ex = v0[0][0] - v2[0][0];
683 const float ey = v0[0][1] - v2[0][1];
684 const float fx = v1[0][0] - v2[0][0];
685 const float fy = v1[0][1] - v2[0][1];
686
687 /* det = cross(e,f).z */
688 const float det = ex * fy - ey * fx;
689 if (det < 0.0f)
690 triangle_ccw( setup, v0, v1, v2 );
691 else if (det > 0.0f)
692 triangle_cw( setup, v0, v1, v2 );
693 }
694
695
696 static void triangle_nop( struct lp_setup_context *setup,
697 const float (*v0)[4],
698 const float (*v1)[4],
699 const float (*v2)[4] )
700 {
701 }
702
703
704 void
705 lp_setup_choose_triangle( struct lp_setup_context *setup )
706 {
707 switch (setup->cullmode) {
708 case PIPE_FACE_NONE:
709 setup->triangle = triangle_both;
710 break;
711 case PIPE_FACE_BACK:
712 setup->triangle = setup->ccw_is_frontface ? triangle_ccw : triangle_cw;
713 break;
714 case PIPE_FACE_FRONT:
715 setup->triangle = setup->ccw_is_frontface ? triangle_cw : triangle_ccw;
716 break;
717 default:
718 setup->triangle = triangle_nop;
719 break;
720 }
721 }