gallium: fix windows build from params change.
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 VMware, Inc.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - early depth test
35 * - fragment shader
36 * - alpha test
37 * - depth/stencil test
38 * - blending
39 *
40 * This file has only the glue to assemble the fragment pipeline. The actual
41 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
42 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
43 * muster the LLVM JIT execution engine to create a function that follows an
44 * established binary interface and that can be called from C directly.
45 *
46 * A big source of complexity here is that we often want to run different
47 * stages with different precisions and data types and precisions. For example,
48 * the fragment shader needs typically to be done in floats, but the
49 * depth/stencil test and blending is better done in the type that most closely
50 * matches the depth/stencil and color buffer respectively.
51 *
52 * Since the width of a SIMD vector register stays the same regardless of the
53 * element type, different types imply different number of elements, so we must
54 * code generate more instances of the stages with larger types to be able to
55 * feed/consume the stages with smaller types.
56 *
57 * @author Jose Fonseca <jfonseca@vmware.com>
58 */
59
60 #include <limits.h>
61 #include "pipe/p_defines.h"
62 #include "util/u_inlines.h"
63 #include "util/u_memory.h"
64 #include "util/u_pointer.h"
65 #include "util/u_format.h"
66 #include "util/u_dump.h"
67 #include "util/u_string.h"
68 #include "util/simple_list.h"
69 #include "util/u_dual_blend.h"
70 #include "util/os_time.h"
71 #include "pipe/p_shader_tokens.h"
72 #include "draw/draw_context.h"
73 #include "tgsi/tgsi_dump.h"
74 #include "tgsi/tgsi_scan.h"
75 #include "tgsi/tgsi_parse.h"
76 #include "gallivm/lp_bld_type.h"
77 #include "gallivm/lp_bld_const.h"
78 #include "gallivm/lp_bld_conv.h"
79 #include "gallivm/lp_bld_init.h"
80 #include "gallivm/lp_bld_intr.h"
81 #include "gallivm/lp_bld_logic.h"
82 #include "gallivm/lp_bld_tgsi.h"
83 #include "gallivm/lp_bld_swizzle.h"
84 #include "gallivm/lp_bld_flow.h"
85 #include "gallivm/lp_bld_debug.h"
86 #include "gallivm/lp_bld_arit.h"
87 #include "gallivm/lp_bld_bitarit.h"
88 #include "gallivm/lp_bld_pack.h"
89 #include "gallivm/lp_bld_format.h"
90 #include "gallivm/lp_bld_quad.h"
91
92 #include "lp_bld_alpha.h"
93 #include "lp_bld_blend.h"
94 #include "lp_bld_depth.h"
95 #include "lp_bld_interp.h"
96 #include "lp_context.h"
97 #include "lp_debug.h"
98 #include "lp_perf.h"
99 #include "lp_setup.h"
100 #include "lp_state.h"
101 #include "lp_tex_sample.h"
102 #include "lp_flush.h"
103 #include "lp_state_fs.h"
104 #include "lp_rast.h"
105
106
107 /** Fragment shader number (for debugging) */
108 static unsigned fs_no = 0;
109
110
111 /**
112 * Expand the relevant bits of mask_input to a n*4-dword mask for the
113 * n*four pixels in n 2x2 quads. This will set the n*four elements of the
114 * quad mask vector to 0 or ~0.
115 * Grouping is 01, 23 for 2 quad mode hence only 0 and 2 are valid
116 * quad arguments with fs length 8.
117 *
118 * \param first_quad which quad(s) of the quad group to test, in [0,3]
119 * \param mask_input bitwise mask for the whole 4x4 stamp
120 */
121 static LLVMValueRef
122 generate_quad_mask(struct gallivm_state *gallivm,
123 struct lp_type fs_type,
124 unsigned first_quad,
125 LLVMValueRef mask_input) /* int32 */
126 {
127 LLVMBuilderRef builder = gallivm->builder;
128 struct lp_type mask_type;
129 LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
130 LLVMValueRef bits[16];
131 LLVMValueRef mask, bits_vec;
132 int shift, i;
133
134 /*
135 * XXX: We'll need a different path for 16 x u8
136 */
137 assert(fs_type.width == 32);
138 assert(fs_type.length <= ARRAY_SIZE(bits));
139 mask_type = lp_int_type(fs_type);
140
141 /*
142 * mask_input >>= (quad * 4)
143 */
144 switch (first_quad) {
145 case 0:
146 shift = 0;
147 break;
148 case 1:
149 assert(fs_type.length == 4);
150 shift = 2;
151 break;
152 case 2:
153 shift = 8;
154 break;
155 case 3:
156 assert(fs_type.length == 4);
157 shift = 10;
158 break;
159 default:
160 assert(0);
161 shift = 0;
162 }
163
164 mask_input = LLVMBuildLShr(builder,
165 mask_input,
166 LLVMConstInt(i32t, shift, 0),
167 "");
168
169 /*
170 * mask = { mask_input & (1 << i), for i in [0,3] }
171 */
172 mask = lp_build_broadcast(gallivm,
173 lp_build_vec_type(gallivm, mask_type),
174 mask_input);
175
176 for (i = 0; i < fs_type.length / 4; i++) {
177 unsigned j = 2 * (i % 2) + (i / 2) * 8;
178 bits[4*i + 0] = LLVMConstInt(i32t, 1ULL << (j + 0), 0);
179 bits[4*i + 1] = LLVMConstInt(i32t, 1ULL << (j + 1), 0);
180 bits[4*i + 2] = LLVMConstInt(i32t, 1ULL << (j + 4), 0);
181 bits[4*i + 3] = LLVMConstInt(i32t, 1ULL << (j + 5), 0);
182 }
183 bits_vec = LLVMConstVector(bits, fs_type.length);
184 mask = LLVMBuildAnd(builder, mask, bits_vec, "");
185
186 /*
187 * mask = mask == bits ? ~0 : 0
188 */
189 mask = lp_build_compare(gallivm,
190 mask_type, PIPE_FUNC_EQUAL,
191 mask, bits_vec);
192
193 return mask;
194 }
195
196
197 #define EARLY_DEPTH_TEST 0x1
198 #define LATE_DEPTH_TEST 0x2
199 #define EARLY_DEPTH_WRITE 0x4
200 #define LATE_DEPTH_WRITE 0x8
201
202 static int
203 find_output_by_semantic( const struct tgsi_shader_info *info,
204 unsigned semantic,
205 unsigned index )
206 {
207 int i;
208
209 for (i = 0; i < info->num_outputs; i++)
210 if (info->output_semantic_name[i] == semantic &&
211 info->output_semantic_index[i] == index)
212 return i;
213
214 return -1;
215 }
216
217
218 /**
219 * Fetch the specified lp_jit_viewport structure for a given viewport_index.
220 */
221 static LLVMValueRef
222 lp_llvm_viewport(LLVMValueRef context_ptr,
223 struct gallivm_state *gallivm,
224 LLVMValueRef viewport_index)
225 {
226 LLVMBuilderRef builder = gallivm->builder;
227 LLVMValueRef ptr;
228 LLVMValueRef res;
229 struct lp_type viewport_type =
230 lp_type_float_vec(32, 32 * LP_JIT_VIEWPORT_NUM_FIELDS);
231
232 ptr = lp_jit_context_viewports(gallivm, context_ptr);
233 ptr = LLVMBuildPointerCast(builder, ptr,
234 LLVMPointerType(lp_build_vec_type(gallivm, viewport_type), 0), "");
235
236 res = lp_build_pointer_get(builder, ptr, viewport_index);
237
238 return res;
239 }
240
241
242 static LLVMValueRef
243 lp_build_depth_clamp(struct gallivm_state *gallivm,
244 LLVMBuilderRef builder,
245 struct lp_type type,
246 LLVMValueRef context_ptr,
247 LLVMValueRef thread_data_ptr,
248 LLVMValueRef z)
249 {
250 LLVMValueRef viewport, min_depth, max_depth;
251 LLVMValueRef viewport_index;
252 struct lp_build_context f32_bld;
253
254 assert(type.floating);
255 lp_build_context_init(&f32_bld, gallivm, type);
256
257 /*
258 * Assumes clamping of the viewport index will occur in setup/gs. Value
259 * is passed through the rasterization stage via lp_rast_shader_inputs.
260 *
261 * See: draw_clamp_viewport_idx and lp_clamp_viewport_idx for clamping
262 * semantics.
263 */
264 viewport_index = lp_jit_thread_data_raster_state_viewport_index(gallivm,
265 thread_data_ptr);
266
267 /*
268 * Load the min and max depth from the lp_jit_context.viewports
269 * array of lp_jit_viewport structures.
270 */
271 viewport = lp_llvm_viewport(context_ptr, gallivm, viewport_index);
272
273 /* viewports[viewport_index].min_depth */
274 min_depth = LLVMBuildExtractElement(builder, viewport,
275 lp_build_const_int32(gallivm, LP_JIT_VIEWPORT_MIN_DEPTH), "");
276 min_depth = lp_build_broadcast_scalar(&f32_bld, min_depth);
277
278 /* viewports[viewport_index].max_depth */
279 max_depth = LLVMBuildExtractElement(builder, viewport,
280 lp_build_const_int32(gallivm, LP_JIT_VIEWPORT_MAX_DEPTH), "");
281 max_depth = lp_build_broadcast_scalar(&f32_bld, max_depth);
282
283 /*
284 * Clamp to the min and max depth values for the given viewport.
285 */
286 return lp_build_clamp(&f32_bld, z, min_depth, max_depth);
287 }
288
289
290 /**
291 * Generate the fragment shader, depth/stencil test, and alpha tests.
292 */
293 static void
294 generate_fs_loop(struct gallivm_state *gallivm,
295 struct lp_fragment_shader *shader,
296 const struct lp_fragment_shader_variant_key *key,
297 LLVMBuilderRef builder,
298 struct lp_type type,
299 LLVMValueRef context_ptr,
300 LLVMValueRef num_loop,
301 struct lp_build_interp_soa_context *interp,
302 const struct lp_build_sampler_soa *sampler,
303 LLVMValueRef mask_store,
304 LLVMValueRef (*out_color)[4],
305 LLVMValueRef depth_ptr,
306 LLVMValueRef depth_stride,
307 LLVMValueRef facing,
308 LLVMValueRef thread_data_ptr)
309 {
310 const struct util_format_description *zs_format_desc = NULL;
311 const struct tgsi_token *tokens = shader->base.tokens;
312 struct lp_type int_type = lp_int_type(type);
313 LLVMTypeRef vec_type, int_vec_type;
314 LLVMValueRef mask_ptr, mask_val;
315 LLVMValueRef consts_ptr, num_consts_ptr;
316 LLVMValueRef ssbo_ptr, num_ssbo_ptr;
317 LLVMValueRef z;
318 LLVMValueRef z_value, s_value;
319 LLVMValueRef z_fb, s_fb;
320 LLVMValueRef stencil_refs[2];
321 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
322 struct lp_build_for_loop_state loop_state;
323 struct lp_build_mask_context mask;
324 /*
325 * TODO: figure out if simple_shader optimization is really worthwile to
326 * keep. Disabled because it may hide some real bugs in the (depth/stencil)
327 * code since tests tend to take another codepath than real shaders.
328 */
329 boolean simple_shader = (shader->info.base.file_count[TGSI_FILE_SAMPLER] == 0 &&
330 shader->info.base.num_inputs < 3 &&
331 shader->info.base.num_instructions < 8) && 0;
332 const boolean dual_source_blend = key->blend.rt[0].blend_enable &&
333 util_blend_state_is_dual(&key->blend, 0);
334 unsigned attrib;
335 unsigned chan;
336 unsigned cbuf;
337 unsigned depth_mode;
338
339 struct lp_bld_tgsi_system_values system_values;
340
341 memset(&system_values, 0, sizeof(system_values));
342
343 if (key->depth.enabled ||
344 key->stencil[0].enabled) {
345
346 zs_format_desc = util_format_description(key->zsbuf_format);
347 assert(zs_format_desc);
348
349 if (!shader->info.base.writes_z && !shader->info.base.writes_stencil) {
350 if (key->alpha.enabled ||
351 key->blend.alpha_to_coverage ||
352 shader->info.base.uses_kill ||
353 shader->info.base.writes_samplemask) {
354 /* With alpha test and kill, can do the depth test early
355 * and hopefully eliminate some quads. But need to do a
356 * special deferred depth write once the final mask value
357 * is known. This only works though if there's either no
358 * stencil test or the stencil value isn't written.
359 */
360 if (key->stencil[0].enabled && (key->stencil[0].writemask ||
361 (key->stencil[1].enabled &&
362 key->stencil[1].writemask)))
363 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
364 else
365 depth_mode = EARLY_DEPTH_TEST | LATE_DEPTH_WRITE;
366 }
367 else
368 depth_mode = EARLY_DEPTH_TEST | EARLY_DEPTH_WRITE;
369 }
370 else {
371 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
372 }
373
374 if (!(key->depth.enabled && key->depth.writemask) &&
375 !(key->stencil[0].enabled && (key->stencil[0].writemask ||
376 (key->stencil[1].enabled &&
377 key->stencil[1].writemask))))
378 depth_mode &= ~(LATE_DEPTH_WRITE | EARLY_DEPTH_WRITE);
379 }
380 else {
381 depth_mode = 0;
382 }
383
384 vec_type = lp_build_vec_type(gallivm, type);
385 int_vec_type = lp_build_vec_type(gallivm, int_type);
386
387 stencil_refs[0] = lp_jit_context_stencil_ref_front_value(gallivm, context_ptr);
388 stencil_refs[1] = lp_jit_context_stencil_ref_back_value(gallivm, context_ptr);
389 /* convert scalar stencil refs into vectors */
390 stencil_refs[0] = lp_build_broadcast(gallivm, int_vec_type, stencil_refs[0]);
391 stencil_refs[1] = lp_build_broadcast(gallivm, int_vec_type, stencil_refs[1]);
392
393 consts_ptr = lp_jit_context_constants(gallivm, context_ptr);
394 num_consts_ptr = lp_jit_context_num_constants(gallivm, context_ptr);
395
396 ssbo_ptr = lp_jit_context_ssbos(gallivm, context_ptr);
397 num_ssbo_ptr = lp_jit_context_num_ssbos(gallivm, context_ptr);
398
399 lp_build_for_loop_begin(&loop_state, gallivm,
400 lp_build_const_int32(gallivm, 0),
401 LLVMIntULT,
402 num_loop,
403 lp_build_const_int32(gallivm, 1));
404
405 mask_ptr = LLVMBuildGEP(builder, mask_store,
406 &loop_state.counter, 1, "mask_ptr");
407 mask_val = LLVMBuildLoad(builder, mask_ptr, "");
408
409 memset(outputs, 0, sizeof outputs);
410
411 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
412 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
413 out_color[cbuf][chan] = lp_build_array_alloca(gallivm,
414 lp_build_vec_type(gallivm,
415 type),
416 num_loop, "color");
417 }
418 }
419 if (dual_source_blend) {
420 assert(key->nr_cbufs <= 1);
421 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
422 out_color[1][chan] = lp_build_array_alloca(gallivm,
423 lp_build_vec_type(gallivm,
424 type),
425 num_loop, "color1");
426 }
427 }
428
429
430 /* 'mask' will control execution based on quad's pixel alive/killed state */
431 lp_build_mask_begin(&mask, gallivm, type, mask_val);
432
433 if (!(depth_mode & EARLY_DEPTH_TEST) && !simple_shader)
434 lp_build_mask_check(&mask);
435
436 lp_build_interp_soa_update_pos_dyn(interp, gallivm, loop_state.counter);
437 z = interp->pos[2];
438
439 if (depth_mode & EARLY_DEPTH_TEST) {
440 /*
441 * Clamp according to ARB_depth_clamp semantics.
442 */
443 if (key->depth_clamp) {
444 z = lp_build_depth_clamp(gallivm, builder, type, context_ptr,
445 thread_data_ptr, z);
446 }
447 lp_build_depth_stencil_load_swizzled(gallivm, type,
448 zs_format_desc, key->resource_1d,
449 depth_ptr, depth_stride,
450 &z_fb, &s_fb, loop_state.counter);
451 lp_build_depth_stencil_test(gallivm,
452 &key->depth,
453 key->stencil,
454 type,
455 zs_format_desc,
456 &mask,
457 stencil_refs,
458 z, z_fb, s_fb,
459 facing,
460 &z_value, &s_value,
461 !simple_shader);
462
463 if (depth_mode & EARLY_DEPTH_WRITE) {
464 lp_build_depth_stencil_write_swizzled(gallivm, type,
465 zs_format_desc, key->resource_1d,
466 NULL, NULL, NULL, loop_state.counter,
467 depth_ptr, depth_stride,
468 z_value, s_value);
469 }
470 /*
471 * Note mask check if stencil is enabled must be after ds write not after
472 * stencil test otherwise new stencil values may not get written if all
473 * fragments got killed by depth/stencil test.
474 */
475 if (!simple_shader && key->stencil[0].enabled)
476 lp_build_mask_check(&mask);
477 }
478
479 lp_build_interp_soa_update_inputs_dyn(interp, gallivm, loop_state.counter);
480
481 struct lp_build_tgsi_params params;
482 memset(&params, 0, sizeof(params));
483
484 params.type = type;
485 params.mask = &mask;
486 params.consts_ptr = consts_ptr;
487 params.const_sizes_ptr = num_consts_ptr;
488 params.system_values = &system_values;
489 params.inputs = interp->inputs;
490 params.context_ptr = context_ptr;
491 params.thread_data_ptr = thread_data_ptr;
492 params.sampler = sampler;
493 params.info = &shader->info.base;
494 params.ssbo_ptr = ssbo_ptr;
495 params.ssbo_sizes_ptr = num_ssbo_ptr;
496
497 /* Build the actual shader */
498 lp_build_tgsi_soa(gallivm, tokens, &params,
499 outputs);
500
501 /* Alpha test */
502 if (key->alpha.enabled) {
503 int color0 = find_output_by_semantic(&shader->info.base,
504 TGSI_SEMANTIC_COLOR,
505 0);
506
507 if (color0 != -1 && outputs[color0][3]) {
508 const struct util_format_description *cbuf_format_desc;
509 LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
510 LLVMValueRef alpha_ref_value;
511
512 alpha_ref_value = lp_jit_context_alpha_ref_value(gallivm, context_ptr);
513 alpha_ref_value = lp_build_broadcast(gallivm, vec_type, alpha_ref_value);
514
515 cbuf_format_desc = util_format_description(key->cbuf_format[0]);
516
517 lp_build_alpha_test(gallivm, key->alpha.func, type, cbuf_format_desc,
518 &mask, alpha, alpha_ref_value,
519 (depth_mode & LATE_DEPTH_TEST) != 0);
520 }
521 }
522
523 /* Emulate Alpha to Coverage with Alpha test */
524 if (key->blend.alpha_to_coverage) {
525 int color0 = find_output_by_semantic(&shader->info.base,
526 TGSI_SEMANTIC_COLOR,
527 0);
528
529 if (color0 != -1 && outputs[color0][3]) {
530 LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
531
532 lp_build_alpha_to_coverage(gallivm, type,
533 &mask, alpha,
534 (depth_mode & LATE_DEPTH_TEST) != 0);
535 }
536 }
537
538 if (shader->info.base.writes_samplemask) {
539 int smaski = find_output_by_semantic(&shader->info.base,
540 TGSI_SEMANTIC_SAMPLEMASK,
541 0);
542 LLVMValueRef smask;
543 struct lp_build_context smask_bld;
544 lp_build_context_init(&smask_bld, gallivm, int_type);
545
546 assert(smaski >= 0);
547 smask = LLVMBuildLoad(builder, outputs[smaski][0], "smask");
548 /*
549 * Pixel is alive according to the first sample in the mask.
550 */
551 smask = LLVMBuildBitCast(builder, smask, smask_bld.vec_type, "");
552 smask = lp_build_and(&smask_bld, smask, smask_bld.one);
553 smask = lp_build_cmp(&smask_bld, PIPE_FUNC_NOTEQUAL, smask, smask_bld.zero);
554 lp_build_mask_update(&mask, smask);
555 }
556
557 /* Late Z test */
558 if (depth_mode & LATE_DEPTH_TEST) {
559 int pos0 = find_output_by_semantic(&shader->info.base,
560 TGSI_SEMANTIC_POSITION,
561 0);
562 int s_out = find_output_by_semantic(&shader->info.base,
563 TGSI_SEMANTIC_STENCIL,
564 0);
565 if (pos0 != -1 && outputs[pos0][2]) {
566 z = LLVMBuildLoad(builder, outputs[pos0][2], "output.z");
567 }
568 /*
569 * Clamp according to ARB_depth_clamp semantics.
570 */
571 if (key->depth_clamp) {
572 z = lp_build_depth_clamp(gallivm, builder, type, context_ptr,
573 thread_data_ptr, z);
574 }
575
576 if (s_out != -1 && outputs[s_out][1]) {
577 /* there's only one value, and spec says to discard additional bits */
578 LLVMValueRef s_max_mask = lp_build_const_int_vec(gallivm, int_type, 255);
579 stencil_refs[0] = LLVMBuildLoad(builder, outputs[s_out][1], "output.s");
580 stencil_refs[0] = LLVMBuildBitCast(builder, stencil_refs[0], int_vec_type, "");
581 stencil_refs[0] = LLVMBuildAnd(builder, stencil_refs[0], s_max_mask, "");
582 stencil_refs[1] = stencil_refs[0];
583 }
584
585 lp_build_depth_stencil_load_swizzled(gallivm, type,
586 zs_format_desc, key->resource_1d,
587 depth_ptr, depth_stride,
588 &z_fb, &s_fb, loop_state.counter);
589
590 lp_build_depth_stencil_test(gallivm,
591 &key->depth,
592 key->stencil,
593 type,
594 zs_format_desc,
595 &mask,
596 stencil_refs,
597 z, z_fb, s_fb,
598 facing,
599 &z_value, &s_value,
600 !simple_shader);
601 /* Late Z write */
602 if (depth_mode & LATE_DEPTH_WRITE) {
603 lp_build_depth_stencil_write_swizzled(gallivm, type,
604 zs_format_desc, key->resource_1d,
605 NULL, NULL, NULL, loop_state.counter,
606 depth_ptr, depth_stride,
607 z_value, s_value);
608 }
609 }
610 else if ((depth_mode & EARLY_DEPTH_TEST) &&
611 (depth_mode & LATE_DEPTH_WRITE))
612 {
613 /* Need to apply a reduced mask to the depth write. Reload the
614 * depth value, update from zs_value with the new mask value and
615 * write that out.
616 */
617 lp_build_depth_stencil_write_swizzled(gallivm, type,
618 zs_format_desc, key->resource_1d,
619 &mask, z_fb, s_fb, loop_state.counter,
620 depth_ptr, depth_stride,
621 z_value, s_value);
622 }
623
624
625 /* Color write */
626 for (attrib = 0; attrib < shader->info.base.num_outputs; ++attrib)
627 {
628 unsigned cbuf = shader->info.base.output_semantic_index[attrib];
629 if ((shader->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_COLOR) &&
630 ((cbuf < key->nr_cbufs) || (cbuf == 1 && dual_source_blend)))
631 {
632 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
633 if(outputs[attrib][chan]) {
634 /* XXX: just initialize outputs to point at colors[] and
635 * skip this.
636 */
637 LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
638 LLVMValueRef color_ptr;
639 color_ptr = LLVMBuildGEP(builder, out_color[cbuf][chan],
640 &loop_state.counter, 1, "");
641 lp_build_name(out, "color%u.%c", attrib, "rgba"[chan]);
642 LLVMBuildStore(builder, out, color_ptr);
643 }
644 }
645 }
646 }
647
648 if (key->occlusion_count) {
649 LLVMValueRef counter = lp_jit_thread_data_counter(gallivm, thread_data_ptr);
650 lp_build_name(counter, "counter");
651 lp_build_occlusion_count(gallivm, type,
652 lp_build_mask_value(&mask), counter);
653 }
654
655 mask_val = lp_build_mask_end(&mask);
656 LLVMBuildStore(builder, mask_val, mask_ptr);
657 lp_build_for_loop_end(&loop_state);
658 }
659
660
661 /**
662 * This function will reorder pixels from the fragment shader SoA to memory layout AoS
663 *
664 * Fragment Shader outputs pixels in small 2x2 blocks
665 * e.g. (0, 0), (1, 0), (0, 1), (1, 1) ; (2, 0) ...
666 *
667 * However in memory pixels are stored in rows
668 * e.g. (0, 0), (1, 0), (2, 0), (3, 0) ; (0, 1) ...
669 *
670 * @param type fragment shader type (4x or 8x float)
671 * @param num_fs number of fs_src
672 * @param is_1d whether we're outputting to a 1d resource
673 * @param dst_channels number of output channels
674 * @param fs_src output from fragment shader
675 * @param dst pointer to store result
676 * @param pad_inline is channel padding inline or at end of row
677 * @return the number of dsts
678 */
679 static int
680 generate_fs_twiddle(struct gallivm_state *gallivm,
681 struct lp_type type,
682 unsigned num_fs,
683 unsigned dst_channels,
684 LLVMValueRef fs_src[][4],
685 LLVMValueRef* dst,
686 bool pad_inline)
687 {
688 LLVMValueRef src[16];
689
690 bool swizzle_pad;
691 bool twiddle;
692 bool split;
693
694 unsigned pixels = type.length / 4;
695 unsigned reorder_group;
696 unsigned src_channels;
697 unsigned src_count;
698 unsigned i;
699
700 src_channels = dst_channels < 3 ? dst_channels : 4;
701 src_count = num_fs * src_channels;
702
703 assert(pixels == 2 || pixels == 1);
704 assert(num_fs * src_channels <= ARRAY_SIZE(src));
705
706 /*
707 * Transpose from SoA -> AoS
708 */
709 for (i = 0; i < num_fs; ++i) {
710 lp_build_transpose_aos_n(gallivm, type, &fs_src[i][0], src_channels, &src[i * src_channels]);
711 }
712
713 /*
714 * Pick transformation options
715 */
716 swizzle_pad = false;
717 twiddle = false;
718 split = false;
719 reorder_group = 0;
720
721 if (dst_channels == 1) {
722 twiddle = true;
723
724 if (pixels == 2) {
725 split = true;
726 }
727 } else if (dst_channels == 2) {
728 if (pixels == 1) {
729 reorder_group = 1;
730 }
731 } else if (dst_channels > 2) {
732 if (pixels == 1) {
733 reorder_group = 2;
734 } else {
735 twiddle = true;
736 }
737
738 if (!pad_inline && dst_channels == 3 && pixels > 1) {
739 swizzle_pad = true;
740 }
741 }
742
743 /*
744 * Split the src in half
745 */
746 if (split) {
747 for (i = num_fs; i > 0; --i) {
748 src[(i - 1)*2 + 1] = lp_build_extract_range(gallivm, src[i - 1], 4, 4);
749 src[(i - 1)*2 + 0] = lp_build_extract_range(gallivm, src[i - 1], 0, 4);
750 }
751
752 src_count *= 2;
753 type.length = 4;
754 }
755
756 /*
757 * Ensure pixels are in memory order
758 */
759 if (reorder_group) {
760 /* Twiddle pixels by reordering the array, e.g.:
761 *
762 * src_count = 8 -> 0 2 1 3 4 6 5 7
763 * src_count = 16 -> 0 1 4 5 2 3 6 7 8 9 12 13 10 11 14 15
764 */
765 const unsigned reorder_sw[] = { 0, 2, 1, 3 };
766
767 for (i = 0; i < src_count; ++i) {
768 unsigned group = i / reorder_group;
769 unsigned block = (group / 4) * 4 * reorder_group;
770 unsigned j = block + (reorder_sw[group % 4] * reorder_group) + (i % reorder_group);
771 dst[i] = src[j];
772 }
773 } else if (twiddle) {
774 /* Twiddle pixels across elements of array */
775 /*
776 * XXX: we should avoid this in some cases, but would need to tell
777 * lp_build_conv to reorder (or deal with it ourselves).
778 */
779 lp_bld_quad_twiddle(gallivm, type, src, src_count, dst);
780 } else {
781 /* Do nothing */
782 memcpy(dst, src, sizeof(LLVMValueRef) * src_count);
783 }
784
785 /*
786 * Moves any padding between pixels to the end
787 * e.g. RGBXRGBX -> RGBRGBXX
788 */
789 if (swizzle_pad) {
790 unsigned char swizzles[16];
791 unsigned elems = pixels * dst_channels;
792
793 for (i = 0; i < type.length; ++i) {
794 if (i < elems)
795 swizzles[i] = i % dst_channels + (i / dst_channels) * 4;
796 else
797 swizzles[i] = LP_BLD_SWIZZLE_DONTCARE;
798 }
799
800 for (i = 0; i < src_count; ++i) {
801 dst[i] = lp_build_swizzle_aos_n(gallivm, dst[i], swizzles, type.length, type.length);
802 }
803 }
804
805 return src_count;
806 }
807
808
809 /*
810 * Untwiddle and transpose, much like the above.
811 * However, this is after conversion, so we get packed vectors.
812 * At this time only handle 4x16i8 rgba / 2x16i8 rg / 1x16i8 r data,
813 * the vectors will look like:
814 * r0r1r4r5r2r3r6r7r8r9r12... (albeit color channels may
815 * be swizzled here). Extending to 16bit should be trivial.
816 * Should also be extended to handle twice wide vectors with AVX2...
817 */
818 static void
819 fs_twiddle_transpose(struct gallivm_state *gallivm,
820 struct lp_type type,
821 LLVMValueRef *src,
822 unsigned src_count,
823 LLVMValueRef *dst)
824 {
825 unsigned i, j;
826 struct lp_type type64, type16, type32;
827 LLVMTypeRef type64_t, type8_t, type16_t, type32_t;
828 LLVMBuilderRef builder = gallivm->builder;
829 LLVMValueRef tmp[4], shuf[8];
830 for (j = 0; j < 2; j++) {
831 shuf[j*4 + 0] = lp_build_const_int32(gallivm, j*4 + 0);
832 shuf[j*4 + 1] = lp_build_const_int32(gallivm, j*4 + 2);
833 shuf[j*4 + 2] = lp_build_const_int32(gallivm, j*4 + 1);
834 shuf[j*4 + 3] = lp_build_const_int32(gallivm, j*4 + 3);
835 }
836
837 assert(src_count == 4 || src_count == 2 || src_count == 1);
838 assert(type.width == 8);
839 assert(type.length == 16);
840
841 type8_t = lp_build_vec_type(gallivm, type);
842
843 type64 = type;
844 type64.length /= 8;
845 type64.width *= 8;
846 type64_t = lp_build_vec_type(gallivm, type64);
847
848 type16 = type;
849 type16.length /= 2;
850 type16.width *= 2;
851 type16_t = lp_build_vec_type(gallivm, type16);
852
853 type32 = type;
854 type32.length /= 4;
855 type32.width *= 4;
856 type32_t = lp_build_vec_type(gallivm, type32);
857
858 lp_build_transpose_aos_n(gallivm, type, src, src_count, tmp);
859
860 if (src_count == 1) {
861 /* transpose was no-op, just untwiddle */
862 LLVMValueRef shuf_vec;
863 shuf_vec = LLVMConstVector(shuf, 8);
864 tmp[0] = LLVMBuildBitCast(builder, src[0], type16_t, "");
865 tmp[0] = LLVMBuildShuffleVector(builder, tmp[0], tmp[0], shuf_vec, "");
866 dst[0] = LLVMBuildBitCast(builder, tmp[0], type8_t, "");
867 } else if (src_count == 2) {
868 LLVMValueRef shuf_vec;
869 shuf_vec = LLVMConstVector(shuf, 4);
870
871 for (i = 0; i < 2; i++) {
872 tmp[i] = LLVMBuildBitCast(builder, tmp[i], type32_t, "");
873 tmp[i] = LLVMBuildShuffleVector(builder, tmp[i], tmp[i], shuf_vec, "");
874 dst[i] = LLVMBuildBitCast(builder, tmp[i], type8_t, "");
875 }
876 } else {
877 for (j = 0; j < 2; j++) {
878 LLVMValueRef lo, hi, lo2, hi2;
879 /*
880 * Note that if we only really have 3 valid channels (rgb)
881 * and we don't need alpha we could substitute a undef here
882 * for the respective channel (causing llvm to drop conversion
883 * for alpha).
884 */
885 /* we now have rgba0rgba1rgba4rgba5 etc, untwiddle */
886 lo2 = LLVMBuildBitCast(builder, tmp[j*2], type64_t, "");
887 hi2 = LLVMBuildBitCast(builder, tmp[j*2 + 1], type64_t, "");
888 lo = lp_build_interleave2(gallivm, type64, lo2, hi2, 0);
889 hi = lp_build_interleave2(gallivm, type64, lo2, hi2, 1);
890 dst[j*2] = LLVMBuildBitCast(builder, lo, type8_t, "");
891 dst[j*2 + 1] = LLVMBuildBitCast(builder, hi, type8_t, "");
892 }
893 }
894 }
895
896
897 /**
898 * Load an unswizzled block of pixels from memory
899 */
900 static void
901 load_unswizzled_block(struct gallivm_state *gallivm,
902 LLVMValueRef base_ptr,
903 LLVMValueRef stride,
904 unsigned block_width,
905 unsigned block_height,
906 LLVMValueRef* dst,
907 struct lp_type dst_type,
908 unsigned dst_count,
909 unsigned dst_alignment)
910 {
911 LLVMBuilderRef builder = gallivm->builder;
912 unsigned row_size = dst_count / block_height;
913 unsigned i;
914
915 /* Ensure block exactly fits into dst */
916 assert((block_width * block_height) % dst_count == 0);
917
918 for (i = 0; i < dst_count; ++i) {
919 unsigned x = i % row_size;
920 unsigned y = i / row_size;
921
922 LLVMValueRef bx = lp_build_const_int32(gallivm, x * (dst_type.width / 8) * dst_type.length);
923 LLVMValueRef by = LLVMBuildMul(builder, lp_build_const_int32(gallivm, y), stride, "");
924
925 LLVMValueRef gep[2];
926 LLVMValueRef dst_ptr;
927
928 gep[0] = lp_build_const_int32(gallivm, 0);
929 gep[1] = LLVMBuildAdd(builder, bx, by, "");
930
931 dst_ptr = LLVMBuildGEP(builder, base_ptr, gep, 2, "");
932 dst_ptr = LLVMBuildBitCast(builder, dst_ptr,
933 LLVMPointerType(lp_build_vec_type(gallivm, dst_type), 0), "");
934
935 dst[i] = LLVMBuildLoad(builder, dst_ptr, "");
936
937 LLVMSetAlignment(dst[i], dst_alignment);
938 }
939 }
940
941
942 /**
943 * Store an unswizzled block of pixels to memory
944 */
945 static void
946 store_unswizzled_block(struct gallivm_state *gallivm,
947 LLVMValueRef base_ptr,
948 LLVMValueRef stride,
949 unsigned block_width,
950 unsigned block_height,
951 LLVMValueRef* src,
952 struct lp_type src_type,
953 unsigned src_count,
954 unsigned src_alignment)
955 {
956 LLVMBuilderRef builder = gallivm->builder;
957 unsigned row_size = src_count / block_height;
958 unsigned i;
959
960 /* Ensure src exactly fits into block */
961 assert((block_width * block_height) % src_count == 0);
962
963 for (i = 0; i < src_count; ++i) {
964 unsigned x = i % row_size;
965 unsigned y = i / row_size;
966
967 LLVMValueRef bx = lp_build_const_int32(gallivm, x * (src_type.width / 8) * src_type.length);
968 LLVMValueRef by = LLVMBuildMul(builder, lp_build_const_int32(gallivm, y), stride, "");
969
970 LLVMValueRef gep[2];
971 LLVMValueRef src_ptr;
972
973 gep[0] = lp_build_const_int32(gallivm, 0);
974 gep[1] = LLVMBuildAdd(builder, bx, by, "");
975
976 src_ptr = LLVMBuildGEP(builder, base_ptr, gep, 2, "");
977 src_ptr = LLVMBuildBitCast(builder, src_ptr,
978 LLVMPointerType(lp_build_vec_type(gallivm, src_type), 0), "");
979
980 src_ptr = LLVMBuildStore(builder, src[i], src_ptr);
981
982 LLVMSetAlignment(src_ptr, src_alignment);
983 }
984 }
985
986
987 /**
988 * Checks if a format description is an arithmetic format
989 *
990 * A format which has irregular channel sizes such as R3_G3_B2 or R5_G6_B5.
991 */
992 static inline boolean
993 is_arithmetic_format(const struct util_format_description *format_desc)
994 {
995 boolean arith = false;
996 unsigned i;
997
998 for (i = 0; i < format_desc->nr_channels; ++i) {
999 arith |= format_desc->channel[i].size != format_desc->channel[0].size;
1000 arith |= (format_desc->channel[i].size % 8) != 0;
1001 }
1002
1003 return arith;
1004 }
1005
1006
1007 /**
1008 * Checks if this format requires special handling due to required expansion
1009 * to floats for blending, and furthermore has "natural" packed AoS -> unpacked
1010 * SoA conversion.
1011 */
1012 static inline boolean
1013 format_expands_to_float_soa(const struct util_format_description *format_desc)
1014 {
1015 if (format_desc->format == PIPE_FORMAT_R11G11B10_FLOAT ||
1016 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) {
1017 return true;
1018 }
1019 return false;
1020 }
1021
1022
1023 /**
1024 * Retrieves the type representing the memory layout for a format
1025 *
1026 * e.g. RGBA16F = 4x half-float and R3G3B2 = 1x byte
1027 */
1028 static inline void
1029 lp_mem_type_from_format_desc(const struct util_format_description *format_desc,
1030 struct lp_type* type)
1031 {
1032 unsigned i;
1033 unsigned chan;
1034
1035 if (format_expands_to_float_soa(format_desc)) {
1036 /* just make this a uint with width of block */
1037 type->floating = false;
1038 type->fixed = false;
1039 type->sign = false;
1040 type->norm = false;
1041 type->width = format_desc->block.bits;
1042 type->length = 1;
1043 return;
1044 }
1045
1046 for (i = 0; i < 4; i++)
1047 if (format_desc->channel[i].type != UTIL_FORMAT_TYPE_VOID)
1048 break;
1049 chan = i;
1050
1051 memset(type, 0, sizeof(struct lp_type));
1052 type->floating = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FLOAT;
1053 type->fixed = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FIXED;
1054 type->sign = format_desc->channel[chan].type != UTIL_FORMAT_TYPE_UNSIGNED;
1055 type->norm = format_desc->channel[chan].normalized;
1056
1057 if (is_arithmetic_format(format_desc)) {
1058 type->width = 0;
1059 type->length = 1;
1060
1061 for (i = 0; i < format_desc->nr_channels; ++i) {
1062 type->width += format_desc->channel[i].size;
1063 }
1064 } else {
1065 type->width = format_desc->channel[chan].size;
1066 type->length = format_desc->nr_channels;
1067 }
1068 }
1069
1070
1071 /**
1072 * Retrieves the type for a format which is usable in the blending code.
1073 *
1074 * e.g. RGBA16F = 4x float, R3G3B2 = 3x byte
1075 */
1076 static inline void
1077 lp_blend_type_from_format_desc(const struct util_format_description *format_desc,
1078 struct lp_type* type)
1079 {
1080 unsigned i;
1081 unsigned chan;
1082
1083 if (format_expands_to_float_soa(format_desc)) {
1084 /* always use ordinary floats for blending */
1085 type->floating = true;
1086 type->fixed = false;
1087 type->sign = true;
1088 type->norm = false;
1089 type->width = 32;
1090 type->length = 4;
1091 return;
1092 }
1093
1094 for (i = 0; i < 4; i++)
1095 if (format_desc->channel[i].type != UTIL_FORMAT_TYPE_VOID)
1096 break;
1097 chan = i;
1098
1099 memset(type, 0, sizeof(struct lp_type));
1100 type->floating = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FLOAT;
1101 type->fixed = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FIXED;
1102 type->sign = format_desc->channel[chan].type != UTIL_FORMAT_TYPE_UNSIGNED;
1103 type->norm = format_desc->channel[chan].normalized;
1104 type->width = format_desc->channel[chan].size;
1105 type->length = format_desc->nr_channels;
1106
1107 for (i = 1; i < format_desc->nr_channels; ++i) {
1108 if (format_desc->channel[i].size > type->width)
1109 type->width = format_desc->channel[i].size;
1110 }
1111
1112 if (type->floating) {
1113 type->width = 32;
1114 } else {
1115 if (type->width <= 8) {
1116 type->width = 8;
1117 } else if (type->width <= 16) {
1118 type->width = 16;
1119 } else {
1120 type->width = 32;
1121 }
1122 }
1123
1124 if (is_arithmetic_format(format_desc) && type->length == 3) {
1125 type->length = 4;
1126 }
1127 }
1128
1129
1130 /**
1131 * Scale a normalized value from src_bits to dst_bits.
1132 *
1133 * The exact calculation is
1134 *
1135 * dst = iround(src * dst_mask / src_mask)
1136 *
1137 * or with integer rounding
1138 *
1139 * dst = src * (2*dst_mask + sign(src)*src_mask) / (2*src_mask)
1140 *
1141 * where
1142 *
1143 * src_mask = (1 << src_bits) - 1
1144 * dst_mask = (1 << dst_bits) - 1
1145 *
1146 * but we try to avoid division and multiplication through shifts.
1147 */
1148 static inline LLVMValueRef
1149 scale_bits(struct gallivm_state *gallivm,
1150 int src_bits,
1151 int dst_bits,
1152 LLVMValueRef src,
1153 struct lp_type src_type)
1154 {
1155 LLVMBuilderRef builder = gallivm->builder;
1156 LLVMValueRef result = src;
1157
1158 if (dst_bits < src_bits) {
1159 int delta_bits = src_bits - dst_bits;
1160
1161 if (delta_bits <= dst_bits) {
1162 /*
1163 * Approximate the rescaling with a single shift.
1164 *
1165 * This gives the wrong rounding.
1166 */
1167
1168 result = LLVMBuildLShr(builder,
1169 src,
1170 lp_build_const_int_vec(gallivm, src_type, delta_bits),
1171 "");
1172
1173 } else {
1174 /*
1175 * Try more accurate rescaling.
1176 */
1177
1178 /*
1179 * Drop the least significant bits to make space for the multiplication.
1180 *
1181 * XXX: A better approach would be to use a wider integer type as intermediate. But
1182 * this is enough to convert alpha from 16bits -> 2 when rendering to
1183 * PIPE_FORMAT_R10G10B10A2_UNORM.
1184 */
1185 result = LLVMBuildLShr(builder,
1186 src,
1187 lp_build_const_int_vec(gallivm, src_type, dst_bits),
1188 "");
1189
1190
1191 result = LLVMBuildMul(builder,
1192 result,
1193 lp_build_const_int_vec(gallivm, src_type, (1LL << dst_bits) - 1),
1194 "");
1195
1196 /*
1197 * Add a rounding term before the division.
1198 *
1199 * TODO: Handle signed integers too.
1200 */
1201 if (!src_type.sign) {
1202 result = LLVMBuildAdd(builder,
1203 result,
1204 lp_build_const_int_vec(gallivm, src_type, (1LL << (delta_bits - 1))),
1205 "");
1206 }
1207
1208 /*
1209 * Approximate the division by src_mask with a src_bits shift.
1210 *
1211 * Given the src has already been shifted by dst_bits, all we need
1212 * to do is to shift by the difference.
1213 */
1214
1215 result = LLVMBuildLShr(builder,
1216 result,
1217 lp_build_const_int_vec(gallivm, src_type, delta_bits),
1218 "");
1219 }
1220
1221 } else if (dst_bits > src_bits) {
1222 /* Scale up bits */
1223 int db = dst_bits - src_bits;
1224
1225 /* Shift left by difference in bits */
1226 result = LLVMBuildShl(builder,
1227 src,
1228 lp_build_const_int_vec(gallivm, src_type, db),
1229 "");
1230
1231 if (db <= src_bits) {
1232 /* Enough bits in src to fill the remainder */
1233 LLVMValueRef lower = LLVMBuildLShr(builder,
1234 src,
1235 lp_build_const_int_vec(gallivm, src_type, src_bits - db),
1236 "");
1237
1238 result = LLVMBuildOr(builder, result, lower, "");
1239 } else if (db > src_bits) {
1240 /* Need to repeatedly copy src bits to fill remainder in dst */
1241 unsigned n;
1242
1243 for (n = src_bits; n < dst_bits; n *= 2) {
1244 LLVMValueRef shuv = lp_build_const_int_vec(gallivm, src_type, n);
1245
1246 result = LLVMBuildOr(builder,
1247 result,
1248 LLVMBuildLShr(builder, result, shuv, ""),
1249 "");
1250 }
1251 }
1252 }
1253
1254 return result;
1255 }
1256
1257 /**
1258 * If RT is a smallfloat (needing denorms) format
1259 */
1260 static inline int
1261 have_smallfloat_format(struct lp_type dst_type,
1262 enum pipe_format format)
1263 {
1264 return ((dst_type.floating && dst_type.width != 32) ||
1265 /* due to format handling hacks this format doesn't have floating set
1266 * here (and actually has width set to 32 too) so special case this. */
1267 (format == PIPE_FORMAT_R11G11B10_FLOAT));
1268 }
1269
1270
1271 /**
1272 * Convert from memory format to blending format
1273 *
1274 * e.g. GL_R3G3B2 is 1 byte in memory but 3 bytes for blending
1275 */
1276 static void
1277 convert_to_blend_type(struct gallivm_state *gallivm,
1278 unsigned block_size,
1279 const struct util_format_description *src_fmt,
1280 struct lp_type src_type,
1281 struct lp_type dst_type,
1282 LLVMValueRef* src, // and dst
1283 unsigned num_srcs)
1284 {
1285 LLVMValueRef *dst = src;
1286 LLVMBuilderRef builder = gallivm->builder;
1287 struct lp_type blend_type;
1288 struct lp_type mem_type;
1289 unsigned i, j;
1290 unsigned pixels = block_size / num_srcs;
1291 bool is_arith;
1292
1293 /*
1294 * full custom path for packed floats and srgb formats - none of the later
1295 * functions would do anything useful, and given the lp_type representation they
1296 * can't be fixed. Should really have some SoA blend path for these kind of
1297 * formats rather than hacking them in here.
1298 */
1299 if (format_expands_to_float_soa(src_fmt)) {
1300 LLVMValueRef tmpsrc[4];
1301 /*
1302 * This is pretty suboptimal for this case blending in SoA would be much
1303 * better, since conversion gets us SoA values so need to convert back.
1304 */
1305 assert(src_type.width == 32 || src_type.width == 16);
1306 assert(dst_type.floating);
1307 assert(dst_type.width == 32);
1308 assert(dst_type.length % 4 == 0);
1309 assert(num_srcs % 4 == 0);
1310
1311 if (src_type.width == 16) {
1312 /* expand 4x16bit values to 4x32bit */
1313 struct lp_type type32x4 = src_type;
1314 LLVMTypeRef ltype32x4;
1315 unsigned num_fetch = dst_type.length == 8 ? num_srcs / 2 : num_srcs / 4;
1316 type32x4.width = 32;
1317 ltype32x4 = lp_build_vec_type(gallivm, type32x4);
1318 for (i = 0; i < num_fetch; i++) {
1319 src[i] = LLVMBuildZExt(builder, src[i], ltype32x4, "");
1320 }
1321 src_type.width = 32;
1322 }
1323 for (i = 0; i < 4; i++) {
1324 tmpsrc[i] = src[i];
1325 }
1326 for (i = 0; i < num_srcs / 4; i++) {
1327 LLVMValueRef tmpsoa[4];
1328 LLVMValueRef tmps = tmpsrc[i];
1329 if (dst_type.length == 8) {
1330 LLVMValueRef shuffles[8];
1331 unsigned j;
1332 /* fetch was 4 values but need 8-wide output values */
1333 tmps = lp_build_concat(gallivm, &tmpsrc[i * 2], src_type, 2);
1334 /*
1335 * for 8-wide aos transpose would give us wrong order not matching
1336 * incoming converted fs values and mask. ARGH.
1337 */
1338 for (j = 0; j < 4; j++) {
1339 shuffles[j] = lp_build_const_int32(gallivm, j * 2);
1340 shuffles[j + 4] = lp_build_const_int32(gallivm, j * 2 + 1);
1341 }
1342 tmps = LLVMBuildShuffleVector(builder, tmps, tmps,
1343 LLVMConstVector(shuffles, 8), "");
1344 }
1345 if (src_fmt->format == PIPE_FORMAT_R11G11B10_FLOAT) {
1346 lp_build_r11g11b10_to_float(gallivm, tmps, tmpsoa);
1347 }
1348 else {
1349 lp_build_unpack_rgba_soa(gallivm, src_fmt, dst_type, tmps, tmpsoa);
1350 }
1351 lp_build_transpose_aos(gallivm, dst_type, tmpsoa, &src[i * 4]);
1352 }
1353 return;
1354 }
1355
1356 lp_mem_type_from_format_desc(src_fmt, &mem_type);
1357 lp_blend_type_from_format_desc(src_fmt, &blend_type);
1358
1359 /* Is the format arithmetic */
1360 is_arith = blend_type.length * blend_type.width != mem_type.width * mem_type.length;
1361 is_arith &= !(mem_type.width == 16 && mem_type.floating);
1362
1363 /* Pad if necessary */
1364 if (!is_arith && src_type.length < dst_type.length) {
1365 for (i = 0; i < num_srcs; ++i) {
1366 dst[i] = lp_build_pad_vector(gallivm, src[i], dst_type.length);
1367 }
1368
1369 src_type.length = dst_type.length;
1370 }
1371
1372 /* Special case for half-floats */
1373 if (mem_type.width == 16 && mem_type.floating) {
1374 assert(blend_type.width == 32 && blend_type.floating);
1375 lp_build_conv_auto(gallivm, src_type, &dst_type, dst, num_srcs, dst);
1376 is_arith = false;
1377 }
1378
1379 if (!is_arith) {
1380 return;
1381 }
1382
1383 src_type.width = blend_type.width * blend_type.length;
1384 blend_type.length *= pixels;
1385 src_type.length *= pixels / (src_type.length / mem_type.length);
1386
1387 for (i = 0; i < num_srcs; ++i) {
1388 LLVMValueRef chans[4];
1389 LLVMValueRef res = NULL;
1390
1391 dst[i] = LLVMBuildZExt(builder, src[i], lp_build_vec_type(gallivm, src_type), "");
1392
1393 for (j = 0; j < src_fmt->nr_channels; ++j) {
1394 unsigned mask = 0;
1395 unsigned sa = src_fmt->channel[j].shift;
1396 #ifdef PIPE_ARCH_LITTLE_ENDIAN
1397 unsigned from_lsb = j;
1398 #else
1399 unsigned from_lsb = src_fmt->nr_channels - j - 1;
1400 #endif
1401
1402 mask = (1 << src_fmt->channel[j].size) - 1;
1403
1404 /* Extract bits from source */
1405 chans[j] = LLVMBuildLShr(builder,
1406 dst[i],
1407 lp_build_const_int_vec(gallivm, src_type, sa),
1408 "");
1409
1410 chans[j] = LLVMBuildAnd(builder,
1411 chans[j],
1412 lp_build_const_int_vec(gallivm, src_type, mask),
1413 "");
1414
1415 /* Scale bits */
1416 if (src_type.norm) {
1417 chans[j] = scale_bits(gallivm, src_fmt->channel[j].size,
1418 blend_type.width, chans[j], src_type);
1419 }
1420
1421 /* Insert bits into correct position */
1422 chans[j] = LLVMBuildShl(builder,
1423 chans[j],
1424 lp_build_const_int_vec(gallivm, src_type, from_lsb * blend_type.width),
1425 "");
1426
1427 if (j == 0) {
1428 res = chans[j];
1429 } else {
1430 res = LLVMBuildOr(builder, res, chans[j], "");
1431 }
1432 }
1433
1434 dst[i] = LLVMBuildBitCast(builder, res, lp_build_vec_type(gallivm, blend_type), "");
1435 }
1436 }
1437
1438
1439 /**
1440 * Convert from blending format to memory format
1441 *
1442 * e.g. GL_R3G3B2 is 3 bytes for blending but 1 byte in memory
1443 */
1444 static void
1445 convert_from_blend_type(struct gallivm_state *gallivm,
1446 unsigned block_size,
1447 const struct util_format_description *src_fmt,
1448 struct lp_type src_type,
1449 struct lp_type dst_type,
1450 LLVMValueRef* src, // and dst
1451 unsigned num_srcs)
1452 {
1453 LLVMValueRef* dst = src;
1454 unsigned i, j, k;
1455 struct lp_type mem_type;
1456 struct lp_type blend_type;
1457 LLVMBuilderRef builder = gallivm->builder;
1458 unsigned pixels = block_size / num_srcs;
1459 bool is_arith;
1460
1461 /*
1462 * full custom path for packed floats and srgb formats - none of the later
1463 * functions would do anything useful, and given the lp_type representation they
1464 * can't be fixed. Should really have some SoA blend path for these kind of
1465 * formats rather than hacking them in here.
1466 */
1467 if (format_expands_to_float_soa(src_fmt)) {
1468 /*
1469 * This is pretty suboptimal for this case blending in SoA would be much
1470 * better - we need to transpose the AoS values back to SoA values for
1471 * conversion/packing.
1472 */
1473 assert(src_type.floating);
1474 assert(src_type.width == 32);
1475 assert(src_type.length % 4 == 0);
1476 assert(dst_type.width == 32 || dst_type.width == 16);
1477
1478 for (i = 0; i < num_srcs / 4; i++) {
1479 LLVMValueRef tmpsoa[4], tmpdst;
1480 lp_build_transpose_aos(gallivm, src_type, &src[i * 4], tmpsoa);
1481 /* really really need SoA here */
1482
1483 if (src_fmt->format == PIPE_FORMAT_R11G11B10_FLOAT) {
1484 tmpdst = lp_build_float_to_r11g11b10(gallivm, tmpsoa);
1485 }
1486 else {
1487 tmpdst = lp_build_float_to_srgb_packed(gallivm, src_fmt,
1488 src_type, tmpsoa);
1489 }
1490
1491 if (src_type.length == 8) {
1492 LLVMValueRef tmpaos, shuffles[8];
1493 unsigned j;
1494 /*
1495 * for 8-wide aos transpose has given us wrong order not matching
1496 * output order. HMPF. Also need to split the output values manually.
1497 */
1498 for (j = 0; j < 4; j++) {
1499 shuffles[j * 2] = lp_build_const_int32(gallivm, j);
1500 shuffles[j * 2 + 1] = lp_build_const_int32(gallivm, j + 4);
1501 }
1502 tmpaos = LLVMBuildShuffleVector(builder, tmpdst, tmpdst,
1503 LLVMConstVector(shuffles, 8), "");
1504 src[i * 2] = lp_build_extract_range(gallivm, tmpaos, 0, 4);
1505 src[i * 2 + 1] = lp_build_extract_range(gallivm, tmpaos, 4, 4);
1506 }
1507 else {
1508 src[i] = tmpdst;
1509 }
1510 }
1511 if (dst_type.width == 16) {
1512 struct lp_type type16x8 = dst_type;
1513 struct lp_type type32x4 = dst_type;
1514 LLVMTypeRef ltype16x4, ltypei64, ltypei128;
1515 unsigned num_fetch = src_type.length == 8 ? num_srcs / 2 : num_srcs / 4;
1516 type16x8.length = 8;
1517 type32x4.width = 32;
1518 ltypei128 = LLVMIntTypeInContext(gallivm->context, 128);
1519 ltypei64 = LLVMIntTypeInContext(gallivm->context, 64);
1520 ltype16x4 = lp_build_vec_type(gallivm, dst_type);
1521 /* We could do vector truncation but it doesn't generate very good code */
1522 for (i = 0; i < num_fetch; i++) {
1523 src[i] = lp_build_pack2(gallivm, type32x4, type16x8,
1524 src[i], lp_build_zero(gallivm, type32x4));
1525 src[i] = LLVMBuildBitCast(builder, src[i], ltypei128, "");
1526 src[i] = LLVMBuildTrunc(builder, src[i], ltypei64, "");
1527 src[i] = LLVMBuildBitCast(builder, src[i], ltype16x4, "");
1528 }
1529 }
1530 return;
1531 }
1532
1533 lp_mem_type_from_format_desc(src_fmt, &mem_type);
1534 lp_blend_type_from_format_desc(src_fmt, &blend_type);
1535
1536 is_arith = (blend_type.length * blend_type.width != mem_type.width * mem_type.length);
1537
1538 /* Special case for half-floats */
1539 if (mem_type.width == 16 && mem_type.floating) {
1540 int length = dst_type.length;
1541 assert(blend_type.width == 32 && blend_type.floating);
1542
1543 dst_type.length = src_type.length;
1544
1545 lp_build_conv_auto(gallivm, src_type, &dst_type, dst, num_srcs, dst);
1546
1547 dst_type.length = length;
1548 is_arith = false;
1549 }
1550
1551 /* Remove any padding */
1552 if (!is_arith && (src_type.length % mem_type.length)) {
1553 src_type.length -= (src_type.length % mem_type.length);
1554
1555 for (i = 0; i < num_srcs; ++i) {
1556 dst[i] = lp_build_extract_range(gallivm, dst[i], 0, src_type.length);
1557 }
1558 }
1559
1560 /* No bit arithmetic to do */
1561 if (!is_arith) {
1562 return;
1563 }
1564
1565 src_type.length = pixels;
1566 src_type.width = blend_type.length * blend_type.width;
1567 dst_type.length = pixels;
1568
1569 for (i = 0; i < num_srcs; ++i) {
1570 LLVMValueRef chans[4];
1571 LLVMValueRef res = NULL;
1572
1573 dst[i] = LLVMBuildBitCast(builder, src[i], lp_build_vec_type(gallivm, src_type), "");
1574
1575 for (j = 0; j < src_fmt->nr_channels; ++j) {
1576 unsigned mask = 0;
1577 unsigned sa = src_fmt->channel[j].shift;
1578 #ifdef PIPE_ARCH_LITTLE_ENDIAN
1579 unsigned from_lsb = j;
1580 #else
1581 unsigned from_lsb = src_fmt->nr_channels - j - 1;
1582 #endif
1583
1584 assert(blend_type.width > src_fmt->channel[j].size);
1585
1586 for (k = 0; k < blend_type.width; ++k) {
1587 mask |= 1 << k;
1588 }
1589
1590 /* Extract bits */
1591 chans[j] = LLVMBuildLShr(builder,
1592 dst[i],
1593 lp_build_const_int_vec(gallivm, src_type,
1594 from_lsb * blend_type.width),
1595 "");
1596
1597 chans[j] = LLVMBuildAnd(builder,
1598 chans[j],
1599 lp_build_const_int_vec(gallivm, src_type, mask),
1600 "");
1601
1602 /* Scale down bits */
1603 if (src_type.norm) {
1604 chans[j] = scale_bits(gallivm, blend_type.width,
1605 src_fmt->channel[j].size, chans[j], src_type);
1606 }
1607
1608 /* Insert bits */
1609 chans[j] = LLVMBuildShl(builder,
1610 chans[j],
1611 lp_build_const_int_vec(gallivm, src_type, sa),
1612 "");
1613
1614 sa += src_fmt->channel[j].size;
1615
1616 if (j == 0) {
1617 res = chans[j];
1618 } else {
1619 res = LLVMBuildOr(builder, res, chans[j], "");
1620 }
1621 }
1622
1623 assert (dst_type.width != 24);
1624
1625 dst[i] = LLVMBuildTrunc(builder, res, lp_build_vec_type(gallivm, dst_type), "");
1626 }
1627 }
1628
1629
1630 /**
1631 * Convert alpha to same blend type as src
1632 */
1633 static void
1634 convert_alpha(struct gallivm_state *gallivm,
1635 struct lp_type row_type,
1636 struct lp_type alpha_type,
1637 const unsigned block_size,
1638 const unsigned block_height,
1639 const unsigned src_count,
1640 const unsigned dst_channels,
1641 const bool pad_inline,
1642 LLVMValueRef* src_alpha)
1643 {
1644 LLVMBuilderRef builder = gallivm->builder;
1645 unsigned i, j;
1646 unsigned length = row_type.length;
1647 row_type.length = alpha_type.length;
1648
1649 /* Twiddle the alpha to match pixels */
1650 lp_bld_quad_twiddle(gallivm, alpha_type, src_alpha, block_height, src_alpha);
1651
1652 /*
1653 * TODO this should use single lp_build_conv call for
1654 * src_count == 1 && dst_channels == 1 case (dropping the concat below)
1655 */
1656 for (i = 0; i < block_height; ++i) {
1657 lp_build_conv(gallivm, alpha_type, row_type, &src_alpha[i], 1, &src_alpha[i], 1);
1658 }
1659
1660 alpha_type = row_type;
1661 row_type.length = length;
1662
1663 /* If only one channel we can only need the single alpha value per pixel */
1664 if (src_count == 1 && dst_channels == 1) {
1665
1666 lp_build_concat_n(gallivm, alpha_type, src_alpha, block_height, src_alpha, src_count);
1667 } else {
1668 /* If there are more srcs than rows then we need to split alpha up */
1669 if (src_count > block_height) {
1670 for (i = src_count; i > 0; --i) {
1671 unsigned pixels = block_size / src_count;
1672 unsigned idx = i - 1;
1673
1674 src_alpha[idx] = lp_build_extract_range(gallivm, src_alpha[(idx * pixels) / 4],
1675 (idx * pixels) % 4, pixels);
1676 }
1677 }
1678
1679 /* If there is a src for each pixel broadcast the alpha across whole row */
1680 if (src_count == block_size) {
1681 for (i = 0; i < src_count; ++i) {
1682 src_alpha[i] = lp_build_broadcast(gallivm,
1683 lp_build_vec_type(gallivm, row_type), src_alpha[i]);
1684 }
1685 } else {
1686 unsigned pixels = block_size / src_count;
1687 unsigned channels = pad_inline ? TGSI_NUM_CHANNELS : dst_channels;
1688 unsigned alpha_span = 1;
1689 LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH];
1690
1691 /* Check if we need 2 src_alphas for our shuffles */
1692 if (pixels > alpha_type.length) {
1693 alpha_span = 2;
1694 }
1695
1696 /* Broadcast alpha across all channels, e.g. a1a2 to a1a1a1a1a2a2a2a2 */
1697 for (j = 0; j < row_type.length; ++j) {
1698 if (j < pixels * channels) {
1699 shuffles[j] = lp_build_const_int32(gallivm, j / channels);
1700 } else {
1701 shuffles[j] = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context));
1702 }
1703 }
1704
1705 for (i = 0; i < src_count; ++i) {
1706 unsigned idx1 = i, idx2 = i;
1707
1708 if (alpha_span > 1){
1709 idx1 *= alpha_span;
1710 idx2 = idx1 + 1;
1711 }
1712
1713 src_alpha[i] = LLVMBuildShuffleVector(builder,
1714 src_alpha[idx1],
1715 src_alpha[idx2],
1716 LLVMConstVector(shuffles, row_type.length),
1717 "");
1718 }
1719 }
1720 }
1721 }
1722
1723
1724 /**
1725 * Generates the blend function for unswizzled colour buffers
1726 * Also generates the read & write from colour buffer
1727 */
1728 static void
1729 generate_unswizzled_blend(struct gallivm_state *gallivm,
1730 unsigned rt,
1731 struct lp_fragment_shader_variant *variant,
1732 enum pipe_format out_format,
1733 unsigned int num_fs,
1734 struct lp_type fs_type,
1735 LLVMValueRef* fs_mask,
1736 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][4],
1737 LLVMValueRef context_ptr,
1738 LLVMValueRef color_ptr,
1739 LLVMValueRef stride,
1740 unsigned partial_mask,
1741 boolean do_branch)
1742 {
1743 const unsigned alpha_channel = 3;
1744 const unsigned block_width = LP_RASTER_BLOCK_SIZE;
1745 const unsigned block_height = LP_RASTER_BLOCK_SIZE;
1746 const unsigned block_size = block_width * block_height;
1747 const unsigned lp_integer_vector_width = 128;
1748
1749 LLVMBuilderRef builder = gallivm->builder;
1750 LLVMValueRef fs_src[4][TGSI_NUM_CHANNELS];
1751 LLVMValueRef fs_src1[4][TGSI_NUM_CHANNELS];
1752 LLVMValueRef src_alpha[4 * 4];
1753 LLVMValueRef src1_alpha[4 * 4] = { NULL };
1754 LLVMValueRef src_mask[4 * 4];
1755 LLVMValueRef src[4 * 4];
1756 LLVMValueRef src1[4 * 4];
1757 LLVMValueRef dst[4 * 4];
1758 LLVMValueRef blend_color;
1759 LLVMValueRef blend_alpha;
1760 LLVMValueRef i32_zero;
1761 LLVMValueRef check_mask;
1762 LLVMValueRef undef_src_val;
1763
1764 struct lp_build_mask_context mask_ctx;
1765 struct lp_type mask_type;
1766 struct lp_type blend_type;
1767 struct lp_type row_type;
1768 struct lp_type dst_type;
1769 struct lp_type ls_type;
1770
1771 unsigned char swizzle[TGSI_NUM_CHANNELS];
1772 unsigned vector_width;
1773 unsigned src_channels = TGSI_NUM_CHANNELS;
1774 unsigned dst_channels;
1775 unsigned dst_count;
1776 unsigned src_count;
1777 unsigned i, j;
1778
1779 const struct util_format_description* out_format_desc = util_format_description(out_format);
1780
1781 unsigned dst_alignment;
1782
1783 bool pad_inline = is_arithmetic_format(out_format_desc);
1784 bool has_alpha = false;
1785 const boolean dual_source_blend = variant->key.blend.rt[0].blend_enable &&
1786 util_blend_state_is_dual(&variant->key.blend, 0);
1787
1788 const boolean is_1d = variant->key.resource_1d;
1789 boolean twiddle_after_convert = FALSE;
1790 unsigned num_fullblock_fs = is_1d ? 2 * num_fs : num_fs;
1791 LLVMValueRef fpstate = 0;
1792
1793 /* Get type from output format */
1794 lp_blend_type_from_format_desc(out_format_desc, &row_type);
1795 lp_mem_type_from_format_desc(out_format_desc, &dst_type);
1796
1797 /*
1798 * Technically this code should go into lp_build_smallfloat_to_float
1799 * and lp_build_float_to_smallfloat but due to the
1800 * http://llvm.org/bugs/show_bug.cgi?id=6393
1801 * llvm reorders the mxcsr intrinsics in a way that breaks the code.
1802 * So the ordering is important here and there shouldn't be any
1803 * llvm ir instrunctions in this function before
1804 * this, otherwise half-float format conversions won't work
1805 * (again due to llvm bug #6393).
1806 */
1807 if (have_smallfloat_format(dst_type, out_format)) {
1808 /* We need to make sure that denorms are ok for half float
1809 conversions */
1810 fpstate = lp_build_fpstate_get(gallivm);
1811 lp_build_fpstate_set_denorms_zero(gallivm, FALSE);
1812 }
1813
1814 mask_type = lp_int32_vec4_type();
1815 mask_type.length = fs_type.length;
1816
1817 for (i = num_fs; i < num_fullblock_fs; i++) {
1818 fs_mask[i] = lp_build_zero(gallivm, mask_type);
1819 }
1820
1821 /* Do not bother executing code when mask is empty.. */
1822 if (do_branch) {
1823 check_mask = LLVMConstNull(lp_build_int_vec_type(gallivm, mask_type));
1824
1825 for (i = 0; i < num_fullblock_fs; ++i) {
1826 check_mask = LLVMBuildOr(builder, check_mask, fs_mask[i], "");
1827 }
1828
1829 lp_build_mask_begin(&mask_ctx, gallivm, mask_type, check_mask);
1830 lp_build_mask_check(&mask_ctx);
1831 }
1832
1833 partial_mask |= !variant->opaque;
1834 i32_zero = lp_build_const_int32(gallivm, 0);
1835
1836 undef_src_val = lp_build_undef(gallivm, fs_type);
1837
1838 row_type.length = fs_type.length;
1839 vector_width = dst_type.floating ? lp_native_vector_width : lp_integer_vector_width;
1840
1841 /* Compute correct swizzle and count channels */
1842 memset(swizzle, LP_BLD_SWIZZLE_DONTCARE, TGSI_NUM_CHANNELS);
1843 dst_channels = 0;
1844
1845 for (i = 0; i < TGSI_NUM_CHANNELS; ++i) {
1846 /* Ensure channel is used */
1847 if (out_format_desc->swizzle[i] >= TGSI_NUM_CHANNELS) {
1848 continue;
1849 }
1850
1851 /* Ensure not already written to (happens in case with GL_ALPHA) */
1852 if (swizzle[out_format_desc->swizzle[i]] < TGSI_NUM_CHANNELS) {
1853 continue;
1854 }
1855
1856 /* Ensure we havn't already found all channels */
1857 if (dst_channels >= out_format_desc->nr_channels) {
1858 continue;
1859 }
1860
1861 swizzle[out_format_desc->swizzle[i]] = i;
1862 ++dst_channels;
1863
1864 if (i == alpha_channel) {
1865 has_alpha = true;
1866 }
1867 }
1868
1869 if (format_expands_to_float_soa(out_format_desc)) {
1870 /*
1871 * the code above can't work for layout_other
1872 * for srgb it would sort of work but we short-circuit swizzles, etc.
1873 * as that is done as part of unpack / pack.
1874 */
1875 dst_channels = 4; /* HACK: this is fake 4 really but need it due to transpose stuff later */
1876 has_alpha = true;
1877 swizzle[0] = 0;
1878 swizzle[1] = 1;
1879 swizzle[2] = 2;
1880 swizzle[3] = 3;
1881 pad_inline = true; /* HACK: prevent rgbxrgbx->rgbrgbxx conversion later */
1882 }
1883
1884 /* If 3 channels then pad to include alpha for 4 element transpose */
1885 if (dst_channels == 3) {
1886 assert (!has_alpha);
1887 for (i = 0; i < TGSI_NUM_CHANNELS; i++) {
1888 if (swizzle[i] > TGSI_NUM_CHANNELS)
1889 swizzle[i] = 3;
1890 }
1891 if (out_format_desc->nr_channels == 4) {
1892 dst_channels = 4;
1893 /*
1894 * We use alpha from the color conversion, not separate one.
1895 * We had to include it for transpose, hence it will get converted
1896 * too (albeit when doing transpose after conversion, that would
1897 * no longer be the case necessarily).
1898 * (It works only with 4 channel dsts, e.g. rgbx formats, because
1899 * otherwise we really have padding, not alpha, included.)
1900 */
1901 has_alpha = true;
1902 }
1903 }
1904
1905 /*
1906 * Load shader output
1907 */
1908 for (i = 0; i < num_fullblock_fs; ++i) {
1909 /* Always load alpha for use in blending */
1910 LLVMValueRef alpha;
1911 if (i < num_fs) {
1912 alpha = LLVMBuildLoad(builder, fs_out_color[rt][alpha_channel][i], "");
1913 }
1914 else {
1915 alpha = undef_src_val;
1916 }
1917
1918 /* Load each channel */
1919 for (j = 0; j < dst_channels; ++j) {
1920 assert(swizzle[j] < 4);
1921 if (i < num_fs) {
1922 fs_src[i][j] = LLVMBuildLoad(builder, fs_out_color[rt][swizzle[j]][i], "");
1923 }
1924 else {
1925 fs_src[i][j] = undef_src_val;
1926 }
1927 }
1928
1929 /* If 3 channels then pad to include alpha for 4 element transpose */
1930 /*
1931 * XXX If we include that here maybe could actually use it instead of
1932 * separate alpha for blending?
1933 * (Difficult though we actually convert pad channels, not alpha.)
1934 */
1935 if (dst_channels == 3 && !has_alpha) {
1936 fs_src[i][3] = alpha;
1937 }
1938
1939 /* We split the row_mask and row_alpha as we want 128bit interleave */
1940 if (fs_type.length == 8) {
1941 src_mask[i*2 + 0] = lp_build_extract_range(gallivm, fs_mask[i],
1942 0, src_channels);
1943 src_mask[i*2 + 1] = lp_build_extract_range(gallivm, fs_mask[i],
1944 src_channels, src_channels);
1945
1946 src_alpha[i*2 + 0] = lp_build_extract_range(gallivm, alpha, 0, src_channels);
1947 src_alpha[i*2 + 1] = lp_build_extract_range(gallivm, alpha,
1948 src_channels, src_channels);
1949 } else {
1950 src_mask[i] = fs_mask[i];
1951 src_alpha[i] = alpha;
1952 }
1953 }
1954 if (dual_source_blend) {
1955 /* same as above except different src/dst, skip masks and comments... */
1956 for (i = 0; i < num_fullblock_fs; ++i) {
1957 LLVMValueRef alpha;
1958 if (i < num_fs) {
1959 alpha = LLVMBuildLoad(builder, fs_out_color[1][alpha_channel][i], "");
1960 }
1961 else {
1962 alpha = undef_src_val;
1963 }
1964
1965 for (j = 0; j < dst_channels; ++j) {
1966 assert(swizzle[j] < 4);
1967 if (i < num_fs) {
1968 fs_src1[i][j] = LLVMBuildLoad(builder, fs_out_color[1][swizzle[j]][i], "");
1969 }
1970 else {
1971 fs_src1[i][j] = undef_src_val;
1972 }
1973 }
1974 if (dst_channels == 3 && !has_alpha) {
1975 fs_src1[i][3] = alpha;
1976 }
1977 if (fs_type.length == 8) {
1978 src1_alpha[i*2 + 0] = lp_build_extract_range(gallivm, alpha, 0, src_channels);
1979 src1_alpha[i*2 + 1] = lp_build_extract_range(gallivm, alpha,
1980 src_channels, src_channels);
1981 } else {
1982 src1_alpha[i] = alpha;
1983 }
1984 }
1985 }
1986
1987 if (util_format_is_pure_integer(out_format)) {
1988 /*
1989 * In this case fs_type was really ints or uints disguised as floats,
1990 * fix that up now.
1991 */
1992 fs_type.floating = 0;
1993 fs_type.sign = dst_type.sign;
1994 for (i = 0; i < num_fullblock_fs; ++i) {
1995 for (j = 0; j < dst_channels; ++j) {
1996 fs_src[i][j] = LLVMBuildBitCast(builder, fs_src[i][j],
1997 lp_build_vec_type(gallivm, fs_type), "");
1998 }
1999 if (dst_channels == 3 && !has_alpha) {
2000 fs_src[i][3] = LLVMBuildBitCast(builder, fs_src[i][3],
2001 lp_build_vec_type(gallivm, fs_type), "");
2002 }
2003 }
2004 }
2005
2006 /*
2007 * We actually should generally do conversion first (for non-1d cases)
2008 * when the blend format is 8 or 16 bits. The reason is obvious,
2009 * there's 2 or 4 times less vectors to deal with for the interleave...
2010 * Albeit for the AVX (not AVX2) case there's no benefit with 16 bit
2011 * vectors (as it can do 32bit unpack with 256bit vectors, but 8/16bit
2012 * unpack only with 128bit vectors).
2013 * Note: for 16bit sizes really need matching pack conversion code
2014 */
2015 if (!is_1d && dst_channels != 3 && dst_type.width == 8) {
2016 twiddle_after_convert = TRUE;
2017 }
2018
2019 /*
2020 * Pixel twiddle from fragment shader order to memory order
2021 */
2022 if (!twiddle_after_convert) {
2023 src_count = generate_fs_twiddle(gallivm, fs_type, num_fullblock_fs,
2024 dst_channels, fs_src, src, pad_inline);
2025 if (dual_source_blend) {
2026 generate_fs_twiddle(gallivm, fs_type, num_fullblock_fs, dst_channels,
2027 fs_src1, src1, pad_inline);
2028 }
2029 } else {
2030 src_count = num_fullblock_fs * dst_channels;
2031 /*
2032 * We reorder things a bit here, so the cases for 4-wide and 8-wide
2033 * (AVX) turn out the same later when untwiddling/transpose (albeit
2034 * for true AVX2 path untwiddle needs to be different).
2035 * For now just order by colors first (so we can use unpack later).
2036 */
2037 for (j = 0; j < num_fullblock_fs; j++) {
2038 for (i = 0; i < dst_channels; i++) {
2039 src[i*num_fullblock_fs + j] = fs_src[j][i];
2040 if (dual_source_blend) {
2041 src1[i*num_fullblock_fs + j] = fs_src1[j][i];
2042 }
2043 }
2044 }
2045 }
2046
2047 src_channels = dst_channels < 3 ? dst_channels : 4;
2048 if (src_count != num_fullblock_fs * src_channels) {
2049 unsigned ds = src_count / (num_fullblock_fs * src_channels);
2050 row_type.length /= ds;
2051 fs_type.length = row_type.length;
2052 }
2053
2054 blend_type = row_type;
2055 mask_type.length = 4;
2056
2057 /* Convert src to row_type */
2058 if (dual_source_blend) {
2059 struct lp_type old_row_type = row_type;
2060 lp_build_conv_auto(gallivm, fs_type, &row_type, src, src_count, src);
2061 src_count = lp_build_conv_auto(gallivm, fs_type, &old_row_type, src1, src_count, src1);
2062 }
2063 else {
2064 src_count = lp_build_conv_auto(gallivm, fs_type, &row_type, src, src_count, src);
2065 }
2066
2067 /* If the rows are not an SSE vector, combine them to become SSE size! */
2068 if ((row_type.width * row_type.length) % 128) {
2069 unsigned bits = row_type.width * row_type.length;
2070 unsigned combined;
2071
2072 assert(src_count >= (vector_width / bits));
2073
2074 dst_count = src_count / (vector_width / bits);
2075
2076 combined = lp_build_concat_n(gallivm, row_type, src, src_count, src, dst_count);
2077 if (dual_source_blend) {
2078 lp_build_concat_n(gallivm, row_type, src1, src_count, src1, dst_count);
2079 }
2080
2081 row_type.length *= combined;
2082 src_count /= combined;
2083
2084 bits = row_type.width * row_type.length;
2085 assert(bits == 128 || bits == 256);
2086 }
2087
2088 if (twiddle_after_convert) {
2089 fs_twiddle_transpose(gallivm, row_type, src, src_count, src);
2090 if (dual_source_blend) {
2091 fs_twiddle_transpose(gallivm, row_type, src1, src_count, src1);
2092 }
2093 }
2094
2095 /*
2096 * Blend Colour conversion
2097 */
2098 blend_color = lp_jit_context_f_blend_color(gallivm, context_ptr);
2099 blend_color = LLVMBuildPointerCast(builder, blend_color,
2100 LLVMPointerType(lp_build_vec_type(gallivm, fs_type), 0), "");
2101 blend_color = LLVMBuildLoad(builder, LLVMBuildGEP(builder, blend_color,
2102 &i32_zero, 1, ""), "");
2103
2104 /* Convert */
2105 lp_build_conv(gallivm, fs_type, blend_type, &blend_color, 1, &blend_color, 1);
2106
2107 if (out_format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) {
2108 /*
2109 * since blending is done with floats, there was no conversion.
2110 * However, the rules according to fixed point renderbuffers still
2111 * apply, that is we must clamp inputs to 0.0/1.0.
2112 * (This would apply to separate alpha conversion too but we currently
2113 * force has_alpha to be true.)
2114 * TODO: should skip this with "fake" blend, since post-blend conversion
2115 * will clamp anyway.
2116 * TODO: could also skip this if fragment color clamping is enabled. We
2117 * don't support it natively so it gets baked into the shader however, so
2118 * can't really tell here.
2119 */
2120 struct lp_build_context f32_bld;
2121 assert(row_type.floating);
2122 lp_build_context_init(&f32_bld, gallivm, row_type);
2123 for (i = 0; i < src_count; i++) {
2124 src[i] = lp_build_clamp_zero_one_nanzero(&f32_bld, src[i]);
2125 }
2126 if (dual_source_blend) {
2127 for (i = 0; i < src_count; i++) {
2128 src1[i] = lp_build_clamp_zero_one_nanzero(&f32_bld, src1[i]);
2129 }
2130 }
2131 /* probably can't be different than row_type but better safe than sorry... */
2132 lp_build_context_init(&f32_bld, gallivm, blend_type);
2133 blend_color = lp_build_clamp(&f32_bld, blend_color, f32_bld.zero, f32_bld.one);
2134 }
2135
2136 /* Extract alpha */
2137 blend_alpha = lp_build_extract_broadcast(gallivm, blend_type, row_type, blend_color, lp_build_const_int32(gallivm, 3));
2138
2139 /* Swizzle to appropriate channels, e.g. from RGBA to BGRA BGRA */
2140 pad_inline &= (dst_channels * (block_size / src_count) * row_type.width) != vector_width;
2141 if (pad_inline) {
2142 /* Use all 4 channels e.g. from RGBA RGBA to RGxx RGxx */
2143 blend_color = lp_build_swizzle_aos_n(gallivm, blend_color, swizzle, TGSI_NUM_CHANNELS, row_type.length);
2144 } else {
2145 /* Only use dst_channels e.g. RGBA RGBA to RG RG xxxx */
2146 blend_color = lp_build_swizzle_aos_n(gallivm, blend_color, swizzle, dst_channels, row_type.length);
2147 }
2148
2149 /*
2150 * Mask conversion
2151 */
2152 lp_bld_quad_twiddle(gallivm, mask_type, &src_mask[0], block_height, &src_mask[0]);
2153
2154 if (src_count < block_height) {
2155 lp_build_concat_n(gallivm, mask_type, src_mask, 4, src_mask, src_count);
2156 } else if (src_count > block_height) {
2157 for (i = src_count; i > 0; --i) {
2158 unsigned pixels = block_size / src_count;
2159 unsigned idx = i - 1;
2160
2161 src_mask[idx] = lp_build_extract_range(gallivm, src_mask[(idx * pixels) / 4],
2162 (idx * pixels) % 4, pixels);
2163 }
2164 }
2165
2166 assert(mask_type.width == 32);
2167
2168 for (i = 0; i < src_count; ++i) {
2169 unsigned pixels = block_size / src_count;
2170 unsigned pixel_width = row_type.width * dst_channels;
2171
2172 if (pixel_width == 24) {
2173 mask_type.width = 8;
2174 mask_type.length = vector_width / mask_type.width;
2175 } else {
2176 mask_type.length = pixels;
2177 mask_type.width = row_type.width * dst_channels;
2178
2179 /*
2180 * If mask_type width is smaller than 32bit, this doesn't quite
2181 * generate the most efficient code (could use some pack).
2182 */
2183 src_mask[i] = LLVMBuildIntCast(builder, src_mask[i],
2184 lp_build_int_vec_type(gallivm, mask_type), "");
2185
2186 mask_type.length *= dst_channels;
2187 mask_type.width /= dst_channels;
2188 }
2189
2190 src_mask[i] = LLVMBuildBitCast(builder, src_mask[i],
2191 lp_build_int_vec_type(gallivm, mask_type), "");
2192 src_mask[i] = lp_build_pad_vector(gallivm, src_mask[i], row_type.length);
2193 }
2194
2195 /*
2196 * Alpha conversion
2197 */
2198 if (!has_alpha) {
2199 struct lp_type alpha_type = fs_type;
2200 alpha_type.length = 4;
2201 convert_alpha(gallivm, row_type, alpha_type,
2202 block_size, block_height,
2203 src_count, dst_channels,
2204 pad_inline, src_alpha);
2205 if (dual_source_blend) {
2206 convert_alpha(gallivm, row_type, alpha_type,
2207 block_size, block_height,
2208 src_count, dst_channels,
2209 pad_inline, src1_alpha);
2210 }
2211 }
2212
2213
2214 /*
2215 * Load dst from memory
2216 */
2217 if (src_count < block_height) {
2218 dst_count = block_height;
2219 } else {
2220 dst_count = src_count;
2221 }
2222
2223 dst_type.length *= block_size / dst_count;
2224
2225 if (format_expands_to_float_soa(out_format_desc)) {
2226 /*
2227 * we need multiple values at once for the conversion, so can as well
2228 * load them vectorized here too instead of concatenating later.
2229 * (Still need concatenation later for 8-wide vectors).
2230 */
2231 dst_count = block_height;
2232 dst_type.length = block_width;
2233 }
2234
2235 /*
2236 * Compute the alignment of the destination pointer in bytes
2237 * We fetch 1-4 pixels, if the format has pot alignment then those fetches
2238 * are always aligned by MIN2(16, fetch_width) except for buffers (not
2239 * 1d tex but can't distinguish here) so need to stick with per-pixel
2240 * alignment in this case.
2241 */
2242 if (is_1d) {
2243 dst_alignment = (out_format_desc->block.bits + 7)/(out_format_desc->block.width * 8);
2244 }
2245 else {
2246 dst_alignment = dst_type.length * dst_type.width / 8;
2247 }
2248 /* Force power-of-two alignment by extracting only the least-significant-bit */
2249 dst_alignment = 1 << (ffs(dst_alignment) - 1);
2250 /*
2251 * Resource base and stride pointers are aligned to 16 bytes, so that's
2252 * the maximum alignment we can guarantee
2253 */
2254 dst_alignment = MIN2(16, dst_alignment);
2255
2256 ls_type = dst_type;
2257
2258 if (dst_count > src_count) {
2259 if ((dst_type.width == 8 || dst_type.width == 16) &&
2260 util_is_power_of_two_or_zero(dst_type.length) &&
2261 dst_type.length * dst_type.width < 128) {
2262 /*
2263 * Never try to load values as 4xi8 which we will then
2264 * concatenate to larger vectors. This gives llvm a real
2265 * headache (the problem is the type legalizer (?) will
2266 * try to load that as 4xi8 zext to 4xi32 to fill the vector,
2267 * then the shuffles to concatenate are more or less impossible
2268 * - llvm is easily capable of generating a sequence of 32
2269 * pextrb/pinsrb instructions for that. Albeit it appears to
2270 * be fixed in llvm 4.0. So, load and concatenate with 32bit
2271 * width to avoid the trouble (16bit seems not as bad, llvm
2272 * probably recognizes the load+shuffle as only one shuffle
2273 * is necessary, but we can do just the same anyway).
2274 */
2275 ls_type.length = dst_type.length * dst_type.width / 32;
2276 ls_type.width = 32;
2277 }
2278 }
2279
2280 if (is_1d) {
2281 load_unswizzled_block(gallivm, color_ptr, stride, block_width, 1,
2282 dst, ls_type, dst_count / 4, dst_alignment);
2283 for (i = dst_count / 4; i < dst_count; i++) {
2284 dst[i] = lp_build_undef(gallivm, ls_type);
2285 }
2286
2287 }
2288 else {
2289 load_unswizzled_block(gallivm, color_ptr, stride, block_width, block_height,
2290 dst, ls_type, dst_count, dst_alignment);
2291 }
2292
2293
2294 /*
2295 * Convert from dst/output format to src/blending format.
2296 *
2297 * This is necessary as we can only read 1 row from memory at a time,
2298 * so the minimum dst_count will ever be at this point is 4.
2299 *
2300 * With, for example, R8 format you can have all 16 pixels in a 128 bit vector,
2301 * this will take the 4 dsts and combine them into 1 src so we can perform blending
2302 * on all 16 pixels in that single vector at once.
2303 */
2304 if (dst_count > src_count) {
2305 if (ls_type.length != dst_type.length && ls_type.length == 1) {
2306 LLVMTypeRef elem_type = lp_build_elem_type(gallivm, ls_type);
2307 LLVMTypeRef ls_vec_type = LLVMVectorType(elem_type, 1);
2308 for (i = 0; i < dst_count; i++) {
2309 dst[i] = LLVMBuildBitCast(builder, dst[i], ls_vec_type, "");
2310 }
2311 }
2312
2313 lp_build_concat_n(gallivm, ls_type, dst, 4, dst, src_count);
2314
2315 if (ls_type.length != dst_type.length) {
2316 struct lp_type tmp_type = dst_type;
2317 tmp_type.length = dst_type.length * 4 / src_count;
2318 for (i = 0; i < src_count; i++) {
2319 dst[i] = LLVMBuildBitCast(builder, dst[i],
2320 lp_build_vec_type(gallivm, tmp_type), "");
2321 }
2322 }
2323 }
2324
2325 /*
2326 * Blending
2327 */
2328 /* XXX this is broken for RGB8 formats -
2329 * they get expanded from 12 to 16 elements (to include alpha)
2330 * by convert_to_blend_type then reduced to 15 instead of 12
2331 * by convert_from_blend_type (a simple fix though breaks A8...).
2332 * R16G16B16 also crashes differently however something going wrong
2333 * inside llvm handling npot vector sizes seemingly.
2334 * It seems some cleanup could be done here (like skipping conversion/blend
2335 * when not needed).
2336 */
2337 convert_to_blend_type(gallivm, block_size, out_format_desc, dst_type,
2338 row_type, dst, src_count);
2339
2340 /*
2341 * FIXME: Really should get logic ops / masks out of generic blend / row
2342 * format. Logic ops will definitely not work on the blend float format
2343 * used for SRGB here and I think OpenGL expects this to work as expected
2344 * (that is incoming values converted to srgb then logic op applied).
2345 */
2346 for (i = 0; i < src_count; ++i) {
2347 dst[i] = lp_build_blend_aos(gallivm,
2348 &variant->key.blend,
2349 out_format,
2350 row_type,
2351 rt,
2352 src[i],
2353 has_alpha ? NULL : src_alpha[i],
2354 src1[i],
2355 has_alpha ? NULL : src1_alpha[i],
2356 dst[i],
2357 partial_mask ? src_mask[i] : NULL,
2358 blend_color,
2359 has_alpha ? NULL : blend_alpha,
2360 swizzle,
2361 pad_inline ? 4 : dst_channels);
2362 }
2363
2364 convert_from_blend_type(gallivm, block_size, out_format_desc,
2365 row_type, dst_type, dst, src_count);
2366
2367 /* Split the blend rows back to memory rows */
2368 if (dst_count > src_count) {
2369 row_type.length = dst_type.length * (dst_count / src_count);
2370
2371 if (src_count == 1) {
2372 dst[1] = lp_build_extract_range(gallivm, dst[0], row_type.length / 2, row_type.length / 2);
2373 dst[0] = lp_build_extract_range(gallivm, dst[0], 0, row_type.length / 2);
2374
2375 row_type.length /= 2;
2376 src_count *= 2;
2377 }
2378
2379 dst[3] = lp_build_extract_range(gallivm, dst[1], row_type.length / 2, row_type.length / 2);
2380 dst[2] = lp_build_extract_range(gallivm, dst[1], 0, row_type.length / 2);
2381 dst[1] = lp_build_extract_range(gallivm, dst[0], row_type.length / 2, row_type.length / 2);
2382 dst[0] = lp_build_extract_range(gallivm, dst[0], 0, row_type.length / 2);
2383
2384 row_type.length /= 2;
2385 src_count *= 2;
2386 }
2387
2388 /*
2389 * Store blend result to memory
2390 */
2391 if (is_1d) {
2392 store_unswizzled_block(gallivm, color_ptr, stride, block_width, 1,
2393 dst, dst_type, dst_count / 4, dst_alignment);
2394 }
2395 else {
2396 store_unswizzled_block(gallivm, color_ptr, stride, block_width, block_height,
2397 dst, dst_type, dst_count, dst_alignment);
2398 }
2399
2400 if (have_smallfloat_format(dst_type, out_format)) {
2401 lp_build_fpstate_set(gallivm, fpstate);
2402 }
2403
2404 if (do_branch) {
2405 lp_build_mask_end(&mask_ctx);
2406 }
2407 }
2408
2409
2410 /**
2411 * Generate the runtime callable function for the whole fragment pipeline.
2412 * Note that the function which we generate operates on a block of 16
2413 * pixels at at time. The block contains 2x2 quads. Each quad contains
2414 * 2x2 pixels.
2415 */
2416 static void
2417 generate_fragment(struct llvmpipe_context *lp,
2418 struct lp_fragment_shader *shader,
2419 struct lp_fragment_shader_variant *variant,
2420 unsigned partial_mask)
2421 {
2422 struct gallivm_state *gallivm = variant->gallivm;
2423 const struct lp_fragment_shader_variant_key *key = &variant->key;
2424 struct lp_shader_input inputs[PIPE_MAX_SHADER_INPUTS];
2425 char func_name[64];
2426 struct lp_type fs_type;
2427 struct lp_type blend_type;
2428 LLVMTypeRef fs_elem_type;
2429 LLVMTypeRef blend_vec_type;
2430 LLVMTypeRef arg_types[13];
2431 LLVMTypeRef func_type;
2432 LLVMTypeRef int32_type = LLVMInt32TypeInContext(gallivm->context);
2433 LLVMTypeRef int8_type = LLVMInt8TypeInContext(gallivm->context);
2434 LLVMValueRef context_ptr;
2435 LLVMValueRef x;
2436 LLVMValueRef y;
2437 LLVMValueRef a0_ptr;
2438 LLVMValueRef dadx_ptr;
2439 LLVMValueRef dady_ptr;
2440 LLVMValueRef color_ptr_ptr;
2441 LLVMValueRef stride_ptr;
2442 LLVMValueRef depth_ptr;
2443 LLVMValueRef depth_stride;
2444 LLVMValueRef mask_input;
2445 LLVMValueRef thread_data_ptr;
2446 LLVMBasicBlockRef block;
2447 LLVMBuilderRef builder;
2448 struct lp_build_sampler_soa *sampler;
2449 struct lp_build_interp_soa_context interp;
2450 LLVMValueRef fs_mask[16 / 4];
2451 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][16 / 4];
2452 LLVMValueRef function;
2453 LLVMValueRef facing;
2454 unsigned num_fs;
2455 unsigned i;
2456 unsigned chan;
2457 unsigned cbuf;
2458 boolean cbuf0_write_all;
2459 const boolean dual_source_blend = key->blend.rt[0].blend_enable &&
2460 util_blend_state_is_dual(&key->blend, 0);
2461
2462 assert(lp_native_vector_width / 32 >= 4);
2463
2464 /* Adjust color input interpolation according to flatshade state:
2465 */
2466 memcpy(inputs, shader->inputs, shader->info.base.num_inputs * sizeof inputs[0]);
2467 for (i = 0; i < shader->info.base.num_inputs; i++) {
2468 if (inputs[i].interp == LP_INTERP_COLOR) {
2469 if (key->flatshade)
2470 inputs[i].interp = LP_INTERP_CONSTANT;
2471 else
2472 inputs[i].interp = LP_INTERP_PERSPECTIVE;
2473 }
2474 }
2475
2476 /* check if writes to cbuf[0] are to be copied to all cbufs */
2477 cbuf0_write_all =
2478 shader->info.base.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS];
2479
2480 /* TODO: actually pick these based on the fs and color buffer
2481 * characteristics. */
2482
2483 memset(&fs_type, 0, sizeof fs_type);
2484 fs_type.floating = TRUE; /* floating point values */
2485 fs_type.sign = TRUE; /* values are signed */
2486 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
2487 fs_type.width = 32; /* 32-bit float */
2488 fs_type.length = MIN2(lp_native_vector_width / 32, 16); /* n*4 elements per vector */
2489
2490 memset(&blend_type, 0, sizeof blend_type);
2491 blend_type.floating = FALSE; /* values are integers */
2492 blend_type.sign = FALSE; /* values are unsigned */
2493 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
2494 blend_type.width = 8; /* 8-bit ubyte values */
2495 blend_type.length = 16; /* 16 elements per vector */
2496
2497 /*
2498 * Generate the function prototype. Any change here must be reflected in
2499 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
2500 */
2501
2502 fs_elem_type = lp_build_elem_type(gallivm, fs_type);
2503
2504 blend_vec_type = lp_build_vec_type(gallivm, blend_type);
2505
2506 snprintf(func_name, sizeof(func_name), "fs%u_variant%u_%s",
2507 shader->no, variant->no, partial_mask ? "partial" : "whole");
2508
2509 arg_types[0] = variant->jit_context_ptr_type; /* context */
2510 arg_types[1] = int32_type; /* x */
2511 arg_types[2] = int32_type; /* y */
2512 arg_types[3] = int32_type; /* facing */
2513 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* a0 */
2514 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dadx */
2515 arg_types[6] = LLVMPointerType(fs_elem_type, 0); /* dady */
2516 arg_types[7] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */
2517 arg_types[8] = LLVMPointerType(int8_type, 0); /* depth */
2518 arg_types[9] = int32_type; /* mask_input */
2519 arg_types[10] = variant->jit_thread_data_ptr_type; /* per thread data */
2520 arg_types[11] = LLVMPointerType(int32_type, 0); /* stride */
2521 arg_types[12] = int32_type; /* depth_stride */
2522
2523 func_type = LLVMFunctionType(LLVMVoidTypeInContext(gallivm->context),
2524 arg_types, ARRAY_SIZE(arg_types), 0);
2525
2526 function = LLVMAddFunction(gallivm->module, func_name, func_type);
2527 LLVMSetFunctionCallConv(function, LLVMCCallConv);
2528
2529 variant->function[partial_mask] = function;
2530
2531 /* XXX: need to propagate noalias down into color param now we are
2532 * passing a pointer-to-pointer?
2533 */
2534 for(i = 0; i < ARRAY_SIZE(arg_types); ++i)
2535 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
2536 lp_add_function_attr(function, i + 1, LP_FUNC_ATTR_NOALIAS);
2537
2538 context_ptr = LLVMGetParam(function, 0);
2539 x = LLVMGetParam(function, 1);
2540 y = LLVMGetParam(function, 2);
2541 facing = LLVMGetParam(function, 3);
2542 a0_ptr = LLVMGetParam(function, 4);
2543 dadx_ptr = LLVMGetParam(function, 5);
2544 dady_ptr = LLVMGetParam(function, 6);
2545 color_ptr_ptr = LLVMGetParam(function, 7);
2546 depth_ptr = LLVMGetParam(function, 8);
2547 mask_input = LLVMGetParam(function, 9);
2548 thread_data_ptr = LLVMGetParam(function, 10);
2549 stride_ptr = LLVMGetParam(function, 11);
2550 depth_stride = LLVMGetParam(function, 12);
2551
2552 lp_build_name(context_ptr, "context");
2553 lp_build_name(x, "x");
2554 lp_build_name(y, "y");
2555 lp_build_name(a0_ptr, "a0");
2556 lp_build_name(dadx_ptr, "dadx");
2557 lp_build_name(dady_ptr, "dady");
2558 lp_build_name(color_ptr_ptr, "color_ptr_ptr");
2559 lp_build_name(depth_ptr, "depth");
2560 lp_build_name(mask_input, "mask_input");
2561 lp_build_name(thread_data_ptr, "thread_data");
2562 lp_build_name(stride_ptr, "stride_ptr");
2563 lp_build_name(depth_stride, "depth_stride");
2564
2565 /*
2566 * Function body
2567 */
2568
2569 block = LLVMAppendBasicBlockInContext(gallivm->context, function, "entry");
2570 builder = gallivm->builder;
2571 assert(builder);
2572 LLVMPositionBuilderAtEnd(builder, block);
2573
2574 /*
2575 * Must not count ps invocations if there's a null shader.
2576 * (It would be ok to count with null shader if there's d/s tests,
2577 * but only if there's d/s buffers too, which is different
2578 * to implicit rasterization disable which must not depend
2579 * on the d/s buffers.)
2580 * Could use popcount on mask, but pixel accuracy is not required.
2581 * Could disable if there's no stats query, but maybe not worth it.
2582 */
2583 if (shader->info.base.num_instructions > 1) {
2584 LLVMValueRef invocs, val;
2585 invocs = lp_jit_thread_data_invocations(gallivm, thread_data_ptr);
2586 val = LLVMBuildLoad(builder, invocs, "");
2587 val = LLVMBuildAdd(builder, val,
2588 LLVMConstInt(LLVMInt64TypeInContext(gallivm->context), 1, 0),
2589 "invoc_count");
2590 LLVMBuildStore(builder, val, invocs);
2591 }
2592
2593 /* code generated texture sampling */
2594 sampler = lp_llvm_sampler_soa_create(key->state);
2595
2596 num_fs = 16 / fs_type.length; /* number of loops per 4x4 stamp */
2597 /* for 1d resources only run "upper half" of stamp */
2598 if (key->resource_1d)
2599 num_fs /= 2;
2600
2601 {
2602 LLVMValueRef num_loop = lp_build_const_int32(gallivm, num_fs);
2603 LLVMTypeRef mask_type = lp_build_int_vec_type(gallivm, fs_type);
2604 LLVMValueRef mask_store = lp_build_array_alloca(gallivm, mask_type,
2605 num_loop, "mask_store");
2606 LLVMValueRef color_store[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS];
2607 boolean pixel_center_integer =
2608 shader->info.base.properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER];
2609
2610 /*
2611 * The shader input interpolation info is not explicitely baked in the
2612 * shader key, but everything it derives from (TGSI, and flatshade) is
2613 * already included in the shader key.
2614 */
2615 lp_build_interp_soa_init(&interp,
2616 gallivm,
2617 shader->info.base.num_inputs,
2618 inputs,
2619 pixel_center_integer,
2620 key->depth_clamp,
2621 builder, fs_type,
2622 a0_ptr, dadx_ptr, dady_ptr,
2623 x, y);
2624
2625 for (i = 0; i < num_fs; i++) {
2626 LLVMValueRef mask;
2627 LLVMValueRef indexi = lp_build_const_int32(gallivm, i);
2628 LLVMValueRef mask_ptr = LLVMBuildGEP(builder, mask_store,
2629 &indexi, 1, "mask_ptr");
2630
2631 if (partial_mask) {
2632 mask = generate_quad_mask(gallivm, fs_type,
2633 i*fs_type.length/4, mask_input);
2634 }
2635 else {
2636 mask = lp_build_const_int_vec(gallivm, fs_type, ~0);
2637 }
2638 LLVMBuildStore(builder, mask, mask_ptr);
2639 }
2640
2641 generate_fs_loop(gallivm,
2642 shader, key,
2643 builder,
2644 fs_type,
2645 context_ptr,
2646 num_loop,
2647 &interp,
2648 sampler,
2649 mask_store, /* output */
2650 color_store,
2651 depth_ptr,
2652 depth_stride,
2653 facing,
2654 thread_data_ptr);
2655
2656 for (i = 0; i < num_fs; i++) {
2657 LLVMValueRef indexi = lp_build_const_int32(gallivm, i);
2658 LLVMValueRef ptr = LLVMBuildGEP(builder, mask_store,
2659 &indexi, 1, "");
2660 fs_mask[i] = LLVMBuildLoad(builder, ptr, "mask");
2661 /* This is fucked up need to reorganize things */
2662 for (cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
2663 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
2664 ptr = LLVMBuildGEP(builder,
2665 color_store[cbuf * !cbuf0_write_all][chan],
2666 &indexi, 1, "");
2667 fs_out_color[cbuf][chan][i] = ptr;
2668 }
2669 }
2670 if (dual_source_blend) {
2671 /* only support one dual source blend target hence always use output 1 */
2672 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
2673 ptr = LLVMBuildGEP(builder,
2674 color_store[1][chan],
2675 &indexi, 1, "");
2676 fs_out_color[1][chan][i] = ptr;
2677 }
2678 }
2679 }
2680 }
2681
2682 sampler->destroy(sampler);
2683
2684 /* Loop over color outputs / color buffers to do blending.
2685 */
2686 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
2687 if (key->cbuf_format[cbuf] != PIPE_FORMAT_NONE) {
2688 LLVMValueRef color_ptr;
2689 LLVMValueRef stride;
2690 LLVMValueRef index = lp_build_const_int32(gallivm, cbuf);
2691
2692 boolean do_branch = ((key->depth.enabled
2693 || key->stencil[0].enabled
2694 || key->alpha.enabled)
2695 && !shader->info.base.uses_kill);
2696
2697 color_ptr = LLVMBuildLoad(builder,
2698 LLVMBuildGEP(builder, color_ptr_ptr,
2699 &index, 1, ""),
2700 "");
2701
2702 lp_build_name(color_ptr, "color_ptr%d", cbuf);
2703
2704 stride = LLVMBuildLoad(builder,
2705 LLVMBuildGEP(builder, stride_ptr, &index, 1, ""),
2706 "");
2707
2708 generate_unswizzled_blend(gallivm, cbuf, variant,
2709 key->cbuf_format[cbuf],
2710 num_fs, fs_type, fs_mask, fs_out_color,
2711 context_ptr, color_ptr, stride,
2712 partial_mask, do_branch);
2713 }
2714 }
2715
2716 LLVMBuildRetVoid(builder);
2717
2718 gallivm_verify_function(gallivm, function);
2719 }
2720
2721
2722 static void
2723 dump_fs_variant_key(const struct lp_fragment_shader_variant_key *key)
2724 {
2725 unsigned i;
2726
2727 debug_printf("fs variant %p:\n", (void *) key);
2728
2729 if (key->flatshade) {
2730 debug_printf("flatshade = 1\n");
2731 }
2732 for (i = 0; i < key->nr_cbufs; ++i) {
2733 debug_printf("cbuf_format[%u] = %s\n", i, util_format_name(key->cbuf_format[i]));
2734 }
2735 if (key->depth.enabled || key->stencil[0].enabled) {
2736 debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
2737 }
2738 if (key->depth.enabled) {
2739 debug_printf("depth.func = %s\n", util_str_func(key->depth.func, TRUE));
2740 debug_printf("depth.writemask = %u\n", key->depth.writemask);
2741 }
2742
2743 for (i = 0; i < 2; ++i) {
2744 if (key->stencil[i].enabled) {
2745 debug_printf("stencil[%u].func = %s\n", i, util_str_func(key->stencil[i].func, TRUE));
2746 debug_printf("stencil[%u].fail_op = %s\n", i, util_str_stencil_op(key->stencil[i].fail_op, TRUE));
2747 debug_printf("stencil[%u].zpass_op = %s\n", i, util_str_stencil_op(key->stencil[i].zpass_op, TRUE));
2748 debug_printf("stencil[%u].zfail_op = %s\n", i, util_str_stencil_op(key->stencil[i].zfail_op, TRUE));
2749 debug_printf("stencil[%u].valuemask = 0x%x\n", i, key->stencil[i].valuemask);
2750 debug_printf("stencil[%u].writemask = 0x%x\n", i, key->stencil[i].writemask);
2751 }
2752 }
2753
2754 if (key->alpha.enabled) {
2755 debug_printf("alpha.func = %s\n", util_str_func(key->alpha.func, TRUE));
2756 }
2757
2758 if (key->occlusion_count) {
2759 debug_printf("occlusion_count = 1\n");
2760 }
2761
2762 if (key->blend.logicop_enable) {
2763 debug_printf("blend.logicop_func = %s\n", util_str_logicop(key->blend.logicop_func, TRUE));
2764 }
2765 else if (key->blend.rt[0].blend_enable) {
2766 debug_printf("blend.rgb_func = %s\n", util_str_blend_func (key->blend.rt[0].rgb_func, TRUE));
2767 debug_printf("blend.rgb_src_factor = %s\n", util_str_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
2768 debug_printf("blend.rgb_dst_factor = %s\n", util_str_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
2769 debug_printf("blend.alpha_func = %s\n", util_str_blend_func (key->blend.rt[0].alpha_func, TRUE));
2770 debug_printf("blend.alpha_src_factor = %s\n", util_str_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
2771 debug_printf("blend.alpha_dst_factor = %s\n", util_str_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
2772 }
2773 debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
2774 if (key->blend.alpha_to_coverage) {
2775 debug_printf("blend.alpha_to_coverage is enabled\n");
2776 }
2777 for (i = 0; i < key->nr_samplers; ++i) {
2778 const struct lp_static_sampler_state *sampler = &key->state[i].sampler_state;
2779 debug_printf("sampler[%u] = \n", i);
2780 debug_printf(" .wrap = %s %s %s\n",
2781 util_str_tex_wrap(sampler->wrap_s, TRUE),
2782 util_str_tex_wrap(sampler->wrap_t, TRUE),
2783 util_str_tex_wrap(sampler->wrap_r, TRUE));
2784 debug_printf(" .min_img_filter = %s\n",
2785 util_str_tex_filter(sampler->min_img_filter, TRUE));
2786 debug_printf(" .min_mip_filter = %s\n",
2787 util_str_tex_mipfilter(sampler->min_mip_filter, TRUE));
2788 debug_printf(" .mag_img_filter = %s\n",
2789 util_str_tex_filter(sampler->mag_img_filter, TRUE));
2790 if (sampler->compare_mode != PIPE_TEX_COMPARE_NONE)
2791 debug_printf(" .compare_func = %s\n", util_str_func(sampler->compare_func, TRUE));
2792 debug_printf(" .normalized_coords = %u\n", sampler->normalized_coords);
2793 debug_printf(" .min_max_lod_equal = %u\n", sampler->min_max_lod_equal);
2794 debug_printf(" .lod_bias_non_zero = %u\n", sampler->lod_bias_non_zero);
2795 debug_printf(" .apply_min_lod = %u\n", sampler->apply_min_lod);
2796 debug_printf(" .apply_max_lod = %u\n", sampler->apply_max_lod);
2797 }
2798 for (i = 0; i < key->nr_sampler_views; ++i) {
2799 const struct lp_static_texture_state *texture = &key->state[i].texture_state;
2800 debug_printf("texture[%u] = \n", i);
2801 debug_printf(" .format = %s\n",
2802 util_format_name(texture->format));
2803 debug_printf(" .target = %s\n",
2804 util_str_tex_target(texture->target, TRUE));
2805 debug_printf(" .level_zero_only = %u\n",
2806 texture->level_zero_only);
2807 debug_printf(" .pot = %u %u %u\n",
2808 texture->pot_width,
2809 texture->pot_height,
2810 texture->pot_depth);
2811 }
2812 }
2813
2814
2815 void
2816 lp_debug_fs_variant(const struct lp_fragment_shader_variant *variant)
2817 {
2818 debug_printf("llvmpipe: Fragment shader #%u variant #%u:\n",
2819 variant->shader->no, variant->no);
2820 tgsi_dump(variant->shader->base.tokens, 0);
2821 dump_fs_variant_key(&variant->key);
2822 debug_printf("variant->opaque = %u\n", variant->opaque);
2823 debug_printf("\n");
2824 }
2825
2826
2827 /**
2828 * Generate a new fragment shader variant from the shader code and
2829 * other state indicated by the key.
2830 */
2831 static struct lp_fragment_shader_variant *
2832 generate_variant(struct llvmpipe_context *lp,
2833 struct lp_fragment_shader *shader,
2834 const struct lp_fragment_shader_variant_key *key)
2835 {
2836 struct lp_fragment_shader_variant *variant;
2837 const struct util_format_description *cbuf0_format_desc = NULL;
2838 boolean fullcolormask;
2839 char module_name[64];
2840
2841 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
2842 if (!variant)
2843 return NULL;
2844
2845 snprintf(module_name, sizeof(module_name), "fs%u_variant%u",
2846 shader->no, shader->variants_created);
2847
2848 variant->gallivm = gallivm_create(module_name, lp->context);
2849 if (!variant->gallivm) {
2850 FREE(variant);
2851 return NULL;
2852 }
2853
2854 variant->shader = shader;
2855 variant->list_item_global.base = variant;
2856 variant->list_item_local.base = variant;
2857 variant->no = shader->variants_created++;
2858
2859 memcpy(&variant->key, key, shader->variant_key_size);
2860
2861 /*
2862 * Determine whether we are touching all channels in the color buffer.
2863 */
2864 fullcolormask = FALSE;
2865 if (key->nr_cbufs == 1) {
2866 cbuf0_format_desc = util_format_description(key->cbuf_format[0]);
2867 fullcolormask = util_format_colormask_full(cbuf0_format_desc, key->blend.rt[0].colormask);
2868 }
2869
2870 variant->opaque =
2871 !key->blend.logicop_enable &&
2872 !key->blend.rt[0].blend_enable &&
2873 fullcolormask &&
2874 !key->stencil[0].enabled &&
2875 !key->alpha.enabled &&
2876 !key->blend.alpha_to_coverage &&
2877 !key->depth.enabled &&
2878 !shader->info.base.uses_kill &&
2879 !shader->info.base.writes_samplemask
2880 ? TRUE : FALSE;
2881
2882 if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
2883 lp_debug_fs_variant(variant);
2884 }
2885
2886 lp_jit_init_types(variant);
2887
2888 if (variant->jit_function[RAST_EDGE_TEST] == NULL)
2889 generate_fragment(lp, shader, variant, RAST_EDGE_TEST);
2890
2891 if (variant->jit_function[RAST_WHOLE] == NULL) {
2892 if (variant->opaque) {
2893 /* Specialized shader, which doesn't need to read the color buffer. */
2894 generate_fragment(lp, shader, variant, RAST_WHOLE);
2895 }
2896 }
2897
2898 /*
2899 * Compile everything
2900 */
2901
2902 gallivm_compile_module(variant->gallivm);
2903
2904 variant->nr_instrs += lp_build_count_ir_module(variant->gallivm->module);
2905
2906 if (variant->function[RAST_EDGE_TEST]) {
2907 variant->jit_function[RAST_EDGE_TEST] = (lp_jit_frag_func)
2908 gallivm_jit_function(variant->gallivm,
2909 variant->function[RAST_EDGE_TEST]);
2910 }
2911
2912 if (variant->function[RAST_WHOLE]) {
2913 variant->jit_function[RAST_WHOLE] = (lp_jit_frag_func)
2914 gallivm_jit_function(variant->gallivm,
2915 variant->function[RAST_WHOLE]);
2916 } else if (!variant->jit_function[RAST_WHOLE]) {
2917 variant->jit_function[RAST_WHOLE] = variant->jit_function[RAST_EDGE_TEST];
2918 }
2919
2920 gallivm_free_ir(variant->gallivm);
2921
2922 return variant;
2923 }
2924
2925
2926 static void *
2927 llvmpipe_create_fs_state(struct pipe_context *pipe,
2928 const struct pipe_shader_state *templ)
2929 {
2930 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
2931 struct lp_fragment_shader *shader;
2932 int nr_samplers;
2933 int nr_sampler_views;
2934 int i;
2935
2936 shader = CALLOC_STRUCT(lp_fragment_shader);
2937 if (!shader)
2938 return NULL;
2939
2940 shader->no = fs_no++;
2941 make_empty_list(&shader->variants);
2942
2943 /* get/save the summary info for this shader */
2944 lp_build_tgsi_info(templ->tokens, &shader->info);
2945
2946 /* we need to keep a local copy of the tokens */
2947 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
2948
2949 shader->draw_data = draw_create_fragment_shader(llvmpipe->draw, templ);
2950 if (shader->draw_data == NULL) {
2951 FREE((void *) shader->base.tokens);
2952 FREE(shader);
2953 return NULL;
2954 }
2955
2956 nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
2957 nr_sampler_views = shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
2958
2959 shader->variant_key_size = Offset(struct lp_fragment_shader_variant_key,
2960 state[MAX2(nr_samplers, nr_sampler_views)]);
2961
2962 for (i = 0; i < shader->info.base.num_inputs; i++) {
2963 shader->inputs[i].usage_mask = shader->info.base.input_usage_mask[i];
2964 shader->inputs[i].cyl_wrap = shader->info.base.input_cylindrical_wrap[i];
2965
2966 switch (shader->info.base.input_interpolate[i]) {
2967 case TGSI_INTERPOLATE_CONSTANT:
2968 shader->inputs[i].interp = LP_INTERP_CONSTANT;
2969 break;
2970 case TGSI_INTERPOLATE_LINEAR:
2971 shader->inputs[i].interp = LP_INTERP_LINEAR;
2972 break;
2973 case TGSI_INTERPOLATE_PERSPECTIVE:
2974 shader->inputs[i].interp = LP_INTERP_PERSPECTIVE;
2975 break;
2976 case TGSI_INTERPOLATE_COLOR:
2977 shader->inputs[i].interp = LP_INTERP_COLOR;
2978 break;
2979 default:
2980 assert(0);
2981 break;
2982 }
2983
2984 switch (shader->info.base.input_semantic_name[i]) {
2985 case TGSI_SEMANTIC_FACE:
2986 shader->inputs[i].interp = LP_INTERP_FACING;
2987 break;
2988 case TGSI_SEMANTIC_POSITION:
2989 /* Position was already emitted above
2990 */
2991 shader->inputs[i].interp = LP_INTERP_POSITION;
2992 shader->inputs[i].src_index = 0;
2993 continue;
2994 }
2995
2996 /* XXX this is a completely pointless index map... */
2997 shader->inputs[i].src_index = i+1;
2998 }
2999
3000 if (LP_DEBUG & DEBUG_TGSI) {
3001 unsigned attrib;
3002 debug_printf("llvmpipe: Create fragment shader #%u %p:\n",
3003 shader->no, (void *) shader);
3004 tgsi_dump(templ->tokens, 0);
3005 debug_printf("usage masks:\n");
3006 for (attrib = 0; attrib < shader->info.base.num_inputs; ++attrib) {
3007 unsigned usage_mask = shader->info.base.input_usage_mask[attrib];
3008 debug_printf(" IN[%u].%s%s%s%s\n",
3009 attrib,
3010 usage_mask & TGSI_WRITEMASK_X ? "x" : "",
3011 usage_mask & TGSI_WRITEMASK_Y ? "y" : "",
3012 usage_mask & TGSI_WRITEMASK_Z ? "z" : "",
3013 usage_mask & TGSI_WRITEMASK_W ? "w" : "");
3014 }
3015 debug_printf("\n");
3016 }
3017
3018 return shader;
3019 }
3020
3021
3022 static void
3023 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
3024 {
3025 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3026
3027 if (llvmpipe->fs == fs)
3028 return;
3029
3030 llvmpipe->fs = (struct lp_fragment_shader *) fs;
3031
3032 draw_bind_fragment_shader(llvmpipe->draw,
3033 (llvmpipe->fs ? llvmpipe->fs->draw_data : NULL));
3034
3035 llvmpipe->dirty |= LP_NEW_FS;
3036 }
3037
3038
3039 /**
3040 * Remove shader variant from two lists: the shader's variant list
3041 * and the context's variant list.
3042 */
3043 static void
3044 llvmpipe_remove_shader_variant(struct llvmpipe_context *lp,
3045 struct lp_fragment_shader_variant *variant)
3046 {
3047 if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
3048 debug_printf("llvmpipe: del fs #%u var %u v created %u v cached %u "
3049 "v total cached %u inst %u total inst %u\n",
3050 variant->shader->no, variant->no,
3051 variant->shader->variants_created,
3052 variant->shader->variants_cached,
3053 lp->nr_fs_variants, variant->nr_instrs, lp->nr_fs_instrs);
3054 }
3055
3056 gallivm_destroy(variant->gallivm);
3057
3058 /* remove from shader's list */
3059 remove_from_list(&variant->list_item_local);
3060 variant->shader->variants_cached--;
3061
3062 /* remove from context's list */
3063 remove_from_list(&variant->list_item_global);
3064 lp->nr_fs_variants--;
3065 lp->nr_fs_instrs -= variant->nr_instrs;
3066
3067 FREE(variant);
3068 }
3069
3070
3071 static void
3072 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
3073 {
3074 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3075 struct lp_fragment_shader *shader = fs;
3076 struct lp_fs_variant_list_item *li;
3077
3078 assert(fs != llvmpipe->fs);
3079
3080 /*
3081 * XXX: we need to flush the context until we have some sort of reference
3082 * counting in fragment shaders as they may still be binned
3083 * Flushing alone might not sufficient we need to wait on it too.
3084 */
3085 llvmpipe_finish(pipe, __FUNCTION__);
3086
3087 /* Delete all the variants */
3088 li = first_elem(&shader->variants);
3089 while(!at_end(&shader->variants, li)) {
3090 struct lp_fs_variant_list_item *next = next_elem(li);
3091 llvmpipe_remove_shader_variant(llvmpipe, li->base);
3092 li = next;
3093 }
3094
3095 /* Delete draw module's data */
3096 draw_delete_fragment_shader(llvmpipe->draw, shader->draw_data);
3097
3098 assert(shader->variants_cached == 0);
3099 FREE((void *) shader->base.tokens);
3100 FREE(shader);
3101 }
3102
3103
3104
3105 static void
3106 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
3107 enum pipe_shader_type shader, uint index,
3108 const struct pipe_constant_buffer *cb)
3109 {
3110 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3111 struct pipe_resource *constants = cb ? cb->buffer : NULL;
3112
3113 assert(shader < PIPE_SHADER_TYPES);
3114 assert(index < ARRAY_SIZE(llvmpipe->constants[shader]));
3115
3116 /* note: reference counting */
3117 util_copy_constant_buffer(&llvmpipe->constants[shader][index], cb);
3118
3119 if (constants) {
3120 if (!(constants->bind & PIPE_BIND_CONSTANT_BUFFER)) {
3121 debug_printf("Illegal set constant without bind flag\n");
3122 constants->bind |= PIPE_BIND_CONSTANT_BUFFER;
3123 }
3124 }
3125
3126 if (shader == PIPE_SHADER_VERTEX ||
3127 shader == PIPE_SHADER_GEOMETRY) {
3128 /* Pass the constants to the 'draw' module */
3129 const unsigned size = cb ? cb->buffer_size : 0;
3130 const ubyte *data;
3131
3132 if (constants) {
3133 data = (ubyte *) llvmpipe_resource_data(constants);
3134 }
3135 else if (cb && cb->user_buffer) {
3136 data = (ubyte *) cb->user_buffer;
3137 }
3138 else {
3139 data = NULL;
3140 }
3141
3142 if (data)
3143 data += cb->buffer_offset;
3144
3145 draw_set_mapped_constant_buffer(llvmpipe->draw, shader,
3146 index, data, size);
3147 }
3148 else {
3149 llvmpipe->dirty |= LP_NEW_FS_CONSTANTS;
3150 }
3151
3152 if (cb && cb->user_buffer) {
3153 pipe_resource_reference(&constants, NULL);
3154 }
3155 }
3156
3157 static void
3158 llvmpipe_set_shader_buffers(struct pipe_context *pipe,
3159 enum pipe_shader_type shader, unsigned start_slot,
3160 unsigned count, const struct pipe_shader_buffer *buffers,
3161 unsigned writable_bitmask)
3162 {
3163 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3164 unsigned i, idx;
3165 for (i = start_slot, idx = 0; i < start_slot + count; i++, idx++) {
3166 const struct pipe_shader_buffer *buffer = buffers ? &buffers[idx] : NULL;
3167
3168 util_copy_shader_buffer(&llvmpipe->ssbos[shader][i], buffer);
3169
3170 if (shader == PIPE_SHADER_VERTEX ||
3171 shader == PIPE_SHADER_GEOMETRY) {
3172 const unsigned size = buffer ? buffer->buffer_size : 0;
3173 const ubyte *data = NULL;
3174 if (buffer && buffer->buffer)
3175 data = (ubyte *) llvmpipe_resource_data(buffer->buffer);
3176 if (data)
3177 data += buffer->buffer_offset;
3178 draw_set_mapped_shader_buffer(llvmpipe->draw, shader,
3179 i, data, size);
3180 } else if (shader == PIPE_SHADER_FRAGMENT) {
3181 llvmpipe->dirty |= LP_NEW_FS_SSBOS;
3182 }
3183 }
3184 }
3185
3186 /**
3187 * Return the blend factor equivalent to a destination alpha of one.
3188 */
3189 static inline unsigned
3190 force_dst_alpha_one(unsigned factor, boolean clamped_zero)
3191 {
3192 switch(factor) {
3193 case PIPE_BLENDFACTOR_DST_ALPHA:
3194 return PIPE_BLENDFACTOR_ONE;
3195 case PIPE_BLENDFACTOR_INV_DST_ALPHA:
3196 return PIPE_BLENDFACTOR_ZERO;
3197 case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
3198 if (clamped_zero)
3199 return PIPE_BLENDFACTOR_ZERO;
3200 else
3201 return PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE;
3202 }
3203
3204 return factor;
3205 }
3206
3207
3208 /**
3209 * We need to generate several variants of the fragment pipeline to match
3210 * all the combinations of the contributing state atoms.
3211 *
3212 * TODO: there is actually no reason to tie this to context state -- the
3213 * generated code could be cached globally in the screen.
3214 */
3215 static void
3216 make_variant_key(struct llvmpipe_context *lp,
3217 struct lp_fragment_shader *shader,
3218 struct lp_fragment_shader_variant_key *key)
3219 {
3220 unsigned i;
3221
3222 memset(key, 0, shader->variant_key_size);
3223
3224 if (lp->framebuffer.zsbuf) {
3225 enum pipe_format zsbuf_format = lp->framebuffer.zsbuf->format;
3226 const struct util_format_description *zsbuf_desc =
3227 util_format_description(zsbuf_format);
3228
3229 if (lp->depth_stencil->depth.enabled &&
3230 util_format_has_depth(zsbuf_desc)) {
3231 key->zsbuf_format = zsbuf_format;
3232 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
3233 }
3234 if (lp->depth_stencil->stencil[0].enabled &&
3235 util_format_has_stencil(zsbuf_desc)) {
3236 key->zsbuf_format = zsbuf_format;
3237 memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil);
3238 }
3239 if (llvmpipe_resource_is_1d(lp->framebuffer.zsbuf->texture)) {
3240 key->resource_1d = TRUE;
3241 }
3242 }
3243
3244 /*
3245 * Propagate the depth clamp setting from the rasterizer state.
3246 * depth_clip == 0 implies depth clamping is enabled.
3247 *
3248 * When clip_halfz is enabled, then always clamp the depth values.
3249 *
3250 * XXX: This is incorrect for GL, but correct for d3d10 (depth
3251 * clamp is always active in d3d10, regardless if depth clip is
3252 * enabled or not).
3253 * (GL has an always-on [0,1] clamp on fs depth output instead
3254 * to ensure the depth values stay in range. Doesn't look like
3255 * we do that, though...)
3256 */
3257 if (lp->rasterizer->clip_halfz) {
3258 key->depth_clamp = 1;
3259 } else {
3260 key->depth_clamp = (lp->rasterizer->depth_clip_near == 0) ? 1 : 0;
3261 }
3262
3263 /* alpha test only applies if render buffer 0 is non-integer (or does not exist) */
3264 if (!lp->framebuffer.nr_cbufs ||
3265 !lp->framebuffer.cbufs[0] ||
3266 !util_format_is_pure_integer(lp->framebuffer.cbufs[0]->format)) {
3267 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
3268 }
3269 if(key->alpha.enabled)
3270 key->alpha.func = lp->depth_stencil->alpha.func;
3271 /* alpha.ref_value is passed in jit_context */
3272
3273 key->flatshade = lp->rasterizer->flatshade;
3274 if (lp->active_occlusion_queries) {
3275 key->occlusion_count = TRUE;
3276 }
3277
3278 if (lp->framebuffer.nr_cbufs) {
3279 memcpy(&key->blend, lp->blend, sizeof key->blend);
3280 }
3281
3282 key->nr_cbufs = lp->framebuffer.nr_cbufs;
3283
3284 if (!key->blend.independent_blend_enable) {
3285 /* we always need independent blend otherwise the fixups below won't work */
3286 for (i = 1; i < key->nr_cbufs; i++) {
3287 memcpy(&key->blend.rt[i], &key->blend.rt[0], sizeof(key->blend.rt[0]));
3288 }
3289 key->blend.independent_blend_enable = 1;
3290 }
3291
3292 for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
3293 struct pipe_rt_blend_state *blend_rt = &key->blend.rt[i];
3294
3295 if (lp->framebuffer.cbufs[i]) {
3296 enum pipe_format format = lp->framebuffer.cbufs[i]->format;
3297 const struct util_format_description *format_desc;
3298
3299 key->cbuf_format[i] = format;
3300
3301 /*
3302 * Figure out if this is a 1d resource. Note that OpenGL allows crazy
3303 * mixing of 2d textures with height 1 and 1d textures, so make sure
3304 * we pick 1d if any cbuf or zsbuf is 1d.
3305 */
3306 if (llvmpipe_resource_is_1d(lp->framebuffer.cbufs[i]->texture)) {
3307 key->resource_1d = TRUE;
3308 }
3309
3310 format_desc = util_format_description(format);
3311 assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||
3312 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB);
3313
3314 /*
3315 * Mask out color channels not present in the color buffer.
3316 */
3317 blend_rt->colormask &= util_format_colormask(format_desc);
3318
3319 /*
3320 * Disable blend for integer formats.
3321 */
3322 if (util_format_is_pure_integer(format)) {
3323 blend_rt->blend_enable = 0;
3324 }
3325
3326 /*
3327 * Our swizzled render tiles always have an alpha channel, but the
3328 * linear render target format often does not, so force here the dst
3329 * alpha to be one.
3330 *
3331 * This is not a mere optimization. Wrong results will be produced if
3332 * the dst alpha is used, the dst format does not have alpha, and the
3333 * previous rendering was not flushed from the swizzled to linear
3334 * buffer. For example, NonPowTwo DCT.
3335 *
3336 * TODO: This should be generalized to all channels for better
3337 * performance, but only alpha causes correctness issues.
3338 *
3339 * Also, force rgb/alpha func/factors match, to make AoS blending
3340 * easier.
3341 */
3342 if (format_desc->swizzle[3] > PIPE_SWIZZLE_W ||
3343 format_desc->swizzle[3] == format_desc->swizzle[0]) {
3344 /* Doesn't cover mixed snorm/unorm but can't render to them anyway */
3345 boolean clamped_zero = !util_format_is_float(format) &&
3346 !util_format_is_snorm(format);
3347 blend_rt->rgb_src_factor =
3348 force_dst_alpha_one(blend_rt->rgb_src_factor, clamped_zero);
3349 blend_rt->rgb_dst_factor =
3350 force_dst_alpha_one(blend_rt->rgb_dst_factor, clamped_zero);
3351 blend_rt->alpha_func = blend_rt->rgb_func;
3352 blend_rt->alpha_src_factor = blend_rt->rgb_src_factor;
3353 blend_rt->alpha_dst_factor = blend_rt->rgb_dst_factor;
3354 }
3355 }
3356 else {
3357 /* no color buffer for this fragment output */
3358 key->cbuf_format[i] = PIPE_FORMAT_NONE;
3359 blend_rt->colormask = 0x0;
3360 blend_rt->blend_enable = 0;
3361 }
3362 }
3363
3364 /* This value will be the same for all the variants of a given shader:
3365 */
3366 key->nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
3367
3368 for(i = 0; i < key->nr_samplers; ++i) {
3369 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
3370 lp_sampler_static_sampler_state(&key->state[i].sampler_state,
3371 lp->samplers[PIPE_SHADER_FRAGMENT][i]);
3372 }
3373 }
3374
3375 /*
3376 * XXX If TGSI_FILE_SAMPLER_VIEW exists assume all texture opcodes
3377 * are dx10-style? Can't really have mixed opcodes, at least not
3378 * if we want to skip the holes here (without rescanning tgsi).
3379 */
3380 if (shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] != -1) {
3381 key->nr_sampler_views = shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
3382 for(i = 0; i < key->nr_sampler_views; ++i) {
3383 /*
3384 * Note sview may exceed what's representable by file_mask.
3385 * This will still work, the only downside is that not actually
3386 * used views may be included in the shader key.
3387 */
3388 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER_VIEW] & (1u << (i & 31))) {
3389 lp_sampler_static_texture_state(&key->state[i].texture_state,
3390 lp->sampler_views[PIPE_SHADER_FRAGMENT][i]);
3391 }
3392 }
3393 }
3394 else {
3395 key->nr_sampler_views = key->nr_samplers;
3396 for(i = 0; i < key->nr_sampler_views; ++i) {
3397 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
3398 lp_sampler_static_texture_state(&key->state[i].texture_state,
3399 lp->sampler_views[PIPE_SHADER_FRAGMENT][i]);
3400 }
3401 }
3402 }
3403 }
3404
3405
3406
3407 /**
3408 * Update fragment shader state. This is called just prior to drawing
3409 * something when some fragment-related state has changed.
3410 */
3411 void
3412 llvmpipe_update_fs(struct llvmpipe_context *lp)
3413 {
3414 struct lp_fragment_shader *shader = lp->fs;
3415 struct lp_fragment_shader_variant_key key;
3416 struct lp_fragment_shader_variant *variant = NULL;
3417 struct lp_fs_variant_list_item *li;
3418
3419 make_variant_key(lp, shader, &key);
3420
3421 /* Search the variants for one which matches the key */
3422 li = first_elem(&shader->variants);
3423 while(!at_end(&shader->variants, li)) {
3424 if(memcmp(&li->base->key, &key, shader->variant_key_size) == 0) {
3425 variant = li->base;
3426 break;
3427 }
3428 li = next_elem(li);
3429 }
3430
3431 if (variant) {
3432 /* Move this variant to the head of the list to implement LRU
3433 * deletion of shader's when we have too many.
3434 */
3435 move_to_head(&lp->fs_variants_list, &variant->list_item_global);
3436 }
3437 else {
3438 /* variant not found, create it now */
3439 int64_t t0, t1, dt;
3440 unsigned i;
3441 unsigned variants_to_cull;
3442
3443 if (LP_DEBUG & DEBUG_FS) {
3444 debug_printf("%u variants,\t%u instrs,\t%u instrs/variant\n",
3445 lp->nr_fs_variants,
3446 lp->nr_fs_instrs,
3447 lp->nr_fs_variants ? lp->nr_fs_instrs / lp->nr_fs_variants : 0);
3448 }
3449
3450 /* First, check if we've exceeded the max number of shader variants.
3451 * If so, free 6.25% of them (the least recently used ones).
3452 */
3453 variants_to_cull = lp->nr_fs_variants >= LP_MAX_SHADER_VARIANTS ? LP_MAX_SHADER_VARIANTS / 16 : 0;
3454
3455 if (variants_to_cull ||
3456 lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS) {
3457 struct pipe_context *pipe = &lp->pipe;
3458
3459 if (gallivm_debug & GALLIVM_DEBUG_PERF) {
3460 debug_printf("Evicting FS: %u fs variants,\t%u total variants,"
3461 "\t%u instrs,\t%u instrs/variant\n",
3462 shader->variants_cached,
3463 lp->nr_fs_variants, lp->nr_fs_instrs,
3464 lp->nr_fs_instrs / lp->nr_fs_variants);
3465 }
3466
3467 /*
3468 * XXX: we need to flush the context until we have some sort of
3469 * reference counting in fragment shaders as they may still be binned
3470 * Flushing alone might not be sufficient we need to wait on it too.
3471 */
3472 llvmpipe_finish(pipe, __FUNCTION__);
3473
3474 /*
3475 * We need to re-check lp->nr_fs_variants because an arbitrarliy large
3476 * number of shader variants (potentially all of them) could be
3477 * pending for destruction on flush.
3478 */
3479
3480 for (i = 0; i < variants_to_cull || lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS; i++) {
3481 struct lp_fs_variant_list_item *item;
3482 if (is_empty_list(&lp->fs_variants_list)) {
3483 break;
3484 }
3485 item = last_elem(&lp->fs_variants_list);
3486 assert(item);
3487 assert(item->base);
3488 llvmpipe_remove_shader_variant(lp, item->base);
3489 }
3490 }
3491
3492 /*
3493 * Generate the new variant.
3494 */
3495 t0 = os_time_get();
3496 variant = generate_variant(lp, shader, &key);
3497 t1 = os_time_get();
3498 dt = t1 - t0;
3499 LP_COUNT_ADD(llvm_compile_time, dt);
3500 LP_COUNT_ADD(nr_llvm_compiles, 2); /* emit vs. omit in/out test */
3501
3502 /* Put the new variant into the list */
3503 if (variant) {
3504 insert_at_head(&shader->variants, &variant->list_item_local);
3505 insert_at_head(&lp->fs_variants_list, &variant->list_item_global);
3506 lp->nr_fs_variants++;
3507 lp->nr_fs_instrs += variant->nr_instrs;
3508 shader->variants_cached++;
3509 }
3510 }
3511
3512 /* Bind this variant */
3513 lp_setup_set_fs_variant(lp->setup, variant);
3514 }
3515
3516
3517
3518
3519
3520 void
3521 llvmpipe_init_fs_funcs(struct llvmpipe_context *llvmpipe)
3522 {
3523 llvmpipe->pipe.create_fs_state = llvmpipe_create_fs_state;
3524 llvmpipe->pipe.bind_fs_state = llvmpipe_bind_fs_state;
3525 llvmpipe->pipe.delete_fs_state = llvmpipe_delete_fs_state;
3526
3527 llvmpipe->pipe.set_constant_buffer = llvmpipe_set_constant_buffer;
3528
3529 llvmpipe->pipe.set_shader_buffers = llvmpipe_set_shader_buffers;
3530 }
3531
3532