llvmpipe: add multisample alpha to coverage support.
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 VMware, Inc.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - early depth test
35 * - fragment shader
36 * - alpha test
37 * - depth/stencil test
38 * - blending
39 *
40 * This file has only the glue to assemble the fragment pipeline. The actual
41 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
42 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
43 * muster the LLVM JIT execution engine to create a function that follows an
44 * established binary interface and that can be called from C directly.
45 *
46 * A big source of complexity here is that we often want to run different
47 * stages with different precisions and data types and precisions. For example,
48 * the fragment shader needs typically to be done in floats, but the
49 * depth/stencil test and blending is better done in the type that most closely
50 * matches the depth/stencil and color buffer respectively.
51 *
52 * Since the width of a SIMD vector register stays the same regardless of the
53 * element type, different types imply different number of elements, so we must
54 * code generate more instances of the stages with larger types to be able to
55 * feed/consume the stages with smaller types.
56 *
57 * @author Jose Fonseca <jfonseca@vmware.com>
58 */
59
60 #include <limits.h>
61 #include "pipe/p_defines.h"
62 #include "util/u_inlines.h"
63 #include "util/u_memory.h"
64 #include "util/u_pointer.h"
65 #include "util/format/u_format.h"
66 #include "util/u_dump.h"
67 #include "util/u_string.h"
68 #include "util/simple_list.h"
69 #include "util/u_dual_blend.h"
70 #include "util/os_time.h"
71 #include "pipe/p_shader_tokens.h"
72 #include "draw/draw_context.h"
73 #include "tgsi/tgsi_dump.h"
74 #include "tgsi/tgsi_scan.h"
75 #include "tgsi/tgsi_parse.h"
76 #include "gallivm/lp_bld_type.h"
77 #include "gallivm/lp_bld_const.h"
78 #include "gallivm/lp_bld_conv.h"
79 #include "gallivm/lp_bld_init.h"
80 #include "gallivm/lp_bld_intr.h"
81 #include "gallivm/lp_bld_logic.h"
82 #include "gallivm/lp_bld_tgsi.h"
83 #include "gallivm/lp_bld_nir.h"
84 #include "gallivm/lp_bld_swizzle.h"
85 #include "gallivm/lp_bld_flow.h"
86 #include "gallivm/lp_bld_debug.h"
87 #include "gallivm/lp_bld_arit.h"
88 #include "gallivm/lp_bld_bitarit.h"
89 #include "gallivm/lp_bld_pack.h"
90 #include "gallivm/lp_bld_format.h"
91 #include "gallivm/lp_bld_quad.h"
92
93 #include "lp_bld_alpha.h"
94 #include "lp_bld_blend.h"
95 #include "lp_bld_depth.h"
96 #include "lp_bld_interp.h"
97 #include "lp_context.h"
98 #include "lp_debug.h"
99 #include "lp_perf.h"
100 #include "lp_setup.h"
101 #include "lp_state.h"
102 #include "lp_tex_sample.h"
103 #include "lp_flush.h"
104 #include "lp_state_fs.h"
105 #include "lp_rast.h"
106 #include "nir/nir_to_tgsi_info.h"
107
108 /** Fragment shader number (for debugging) */
109 static unsigned fs_no = 0;
110
111
112 /**
113 * Expand the relevant bits of mask_input to a n*4-dword mask for the
114 * n*four pixels in n 2x2 quads. This will set the n*four elements of the
115 * quad mask vector to 0 or ~0.
116 * Grouping is 01, 23 for 2 quad mode hence only 0 and 2 are valid
117 * quad arguments with fs length 8.
118 *
119 * \param first_quad which quad(s) of the quad group to test, in [0,3]
120 * \param mask_input bitwise mask for the whole 4x4 stamp
121 */
122 static LLVMValueRef
123 generate_quad_mask(struct gallivm_state *gallivm,
124 struct lp_type fs_type,
125 unsigned first_quad,
126 unsigned sample,
127 LLVMValueRef mask_input) /* int64 */
128 {
129 LLVMBuilderRef builder = gallivm->builder;
130 struct lp_type mask_type;
131 LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
132 LLVMValueRef bits[16];
133 LLVMValueRef mask, bits_vec;
134 int shift, i;
135
136 /*
137 * XXX: We'll need a different path for 16 x u8
138 */
139 assert(fs_type.width == 32);
140 assert(fs_type.length <= ARRAY_SIZE(bits));
141 mask_type = lp_int_type(fs_type);
142
143 /*
144 * mask_input >>= (quad * 4)
145 */
146 switch (first_quad) {
147 case 0:
148 shift = 0;
149 break;
150 case 1:
151 assert(fs_type.length == 4);
152 shift = 2;
153 break;
154 case 2:
155 shift = 8;
156 break;
157 case 3:
158 assert(fs_type.length == 4);
159 shift = 10;
160 break;
161 default:
162 assert(0);
163 shift = 0;
164 }
165
166 mask_input = LLVMBuildLShr(builder, mask_input, lp_build_const_int64(gallivm, 16 * sample), "");
167 mask_input = LLVMBuildTrunc(builder, mask_input,
168 i32t, "");
169 mask_input = LLVMBuildAnd(builder, mask_input, lp_build_const_int32(gallivm, 0xffff), "");
170
171 mask_input = LLVMBuildLShr(builder,
172 mask_input,
173 LLVMConstInt(i32t, shift, 0),
174 "");
175
176 /*
177 * mask = { mask_input & (1 << i), for i in [0,3] }
178 */
179 mask = lp_build_broadcast(gallivm,
180 lp_build_vec_type(gallivm, mask_type),
181 mask_input);
182
183 for (i = 0; i < fs_type.length / 4; i++) {
184 unsigned j = 2 * (i % 2) + (i / 2) * 8;
185 bits[4*i + 0] = LLVMConstInt(i32t, 1ULL << (j + 0), 0);
186 bits[4*i + 1] = LLVMConstInt(i32t, 1ULL << (j + 1), 0);
187 bits[4*i + 2] = LLVMConstInt(i32t, 1ULL << (j + 4), 0);
188 bits[4*i + 3] = LLVMConstInt(i32t, 1ULL << (j + 5), 0);
189 }
190 bits_vec = LLVMConstVector(bits, fs_type.length);
191 mask = LLVMBuildAnd(builder, mask, bits_vec, "");
192
193 /*
194 * mask = mask == bits ? ~0 : 0
195 */
196 mask = lp_build_compare(gallivm,
197 mask_type, PIPE_FUNC_EQUAL,
198 mask, bits_vec);
199
200 return mask;
201 }
202
203
204 #define EARLY_DEPTH_TEST 0x1
205 #define LATE_DEPTH_TEST 0x2
206 #define EARLY_DEPTH_WRITE 0x4
207 #define LATE_DEPTH_WRITE 0x8
208
209 static int
210 find_output_by_semantic( const struct tgsi_shader_info *info,
211 unsigned semantic,
212 unsigned index )
213 {
214 int i;
215
216 for (i = 0; i < info->num_outputs; i++)
217 if (info->output_semantic_name[i] == semantic &&
218 info->output_semantic_index[i] == index)
219 return i;
220
221 return -1;
222 }
223
224
225 /**
226 * Fetch the specified lp_jit_viewport structure for a given viewport_index.
227 */
228 static LLVMValueRef
229 lp_llvm_viewport(LLVMValueRef context_ptr,
230 struct gallivm_state *gallivm,
231 LLVMValueRef viewport_index)
232 {
233 LLVMBuilderRef builder = gallivm->builder;
234 LLVMValueRef ptr;
235 LLVMValueRef res;
236 struct lp_type viewport_type =
237 lp_type_float_vec(32, 32 * LP_JIT_VIEWPORT_NUM_FIELDS);
238
239 ptr = lp_jit_context_viewports(gallivm, context_ptr);
240 ptr = LLVMBuildPointerCast(builder, ptr,
241 LLVMPointerType(lp_build_vec_type(gallivm, viewport_type), 0), "");
242
243 res = lp_build_pointer_get(builder, ptr, viewport_index);
244
245 return res;
246 }
247
248
249 static LLVMValueRef
250 lp_build_depth_clamp(struct gallivm_state *gallivm,
251 LLVMBuilderRef builder,
252 struct lp_type type,
253 LLVMValueRef context_ptr,
254 LLVMValueRef thread_data_ptr,
255 LLVMValueRef z)
256 {
257 LLVMValueRef viewport, min_depth, max_depth;
258 LLVMValueRef viewport_index;
259 struct lp_build_context f32_bld;
260
261 assert(type.floating);
262 lp_build_context_init(&f32_bld, gallivm, type);
263
264 /*
265 * Assumes clamping of the viewport index will occur in setup/gs. Value
266 * is passed through the rasterization stage via lp_rast_shader_inputs.
267 *
268 * See: draw_clamp_viewport_idx and lp_clamp_viewport_idx for clamping
269 * semantics.
270 */
271 viewport_index = lp_jit_thread_data_raster_state_viewport_index(gallivm,
272 thread_data_ptr);
273
274 /*
275 * Load the min and max depth from the lp_jit_context.viewports
276 * array of lp_jit_viewport structures.
277 */
278 viewport = lp_llvm_viewport(context_ptr, gallivm, viewport_index);
279
280 /* viewports[viewport_index].min_depth */
281 min_depth = LLVMBuildExtractElement(builder, viewport,
282 lp_build_const_int32(gallivm, LP_JIT_VIEWPORT_MIN_DEPTH), "");
283 min_depth = lp_build_broadcast_scalar(&f32_bld, min_depth);
284
285 /* viewports[viewport_index].max_depth */
286 max_depth = LLVMBuildExtractElement(builder, viewport,
287 lp_build_const_int32(gallivm, LP_JIT_VIEWPORT_MAX_DEPTH), "");
288 max_depth = lp_build_broadcast_scalar(&f32_bld, max_depth);
289
290 /*
291 * Clamp to the min and max depth values for the given viewport.
292 */
293 return lp_build_clamp(&f32_bld, z, min_depth, max_depth);
294 }
295
296 static void
297 lp_build_sample_alpha_to_coverage(struct gallivm_state *gallivm,
298 struct lp_type type,
299 unsigned coverage_samples,
300 LLVMValueRef num_loop,
301 LLVMValueRef loop_counter,
302 LLVMValueRef coverage_mask_store,
303 LLVMValueRef alpha)
304 {
305 struct lp_build_context bld;
306 LLVMBuilderRef builder = gallivm->builder;
307 float step = 1.0 / coverage_samples;
308
309 lp_build_context_init(&bld, gallivm, type);
310 for (unsigned s = 0; s < coverage_samples; s++) {
311 LLVMValueRef alpha_ref_value = lp_build_const_vec(gallivm, type, step * s);
312 LLVMValueRef test = lp_build_cmp(&bld, PIPE_FUNC_GREATER, alpha, alpha_ref_value);
313
314 LLVMValueRef s_mask_idx = LLVMBuildMul(builder, lp_build_const_int32(gallivm, s), num_loop, "");
315 s_mask_idx = LLVMBuildAdd(builder, s_mask_idx, loop_counter, "");
316 LLVMValueRef s_mask_ptr = LLVMBuildGEP(builder, coverage_mask_store, &s_mask_idx, 1, "");
317 LLVMValueRef s_mask = LLVMBuildLoad(builder, s_mask_ptr, "");
318 s_mask = LLVMBuildAnd(builder, s_mask, test, "");
319 LLVMBuildStore(builder, s_mask, s_mask_ptr);
320 }
321 }
322
323 /**
324 * Generate the fragment shader, depth/stencil test, and alpha tests.
325 */
326 static void
327 generate_fs_loop(struct gallivm_state *gallivm,
328 struct lp_fragment_shader *shader,
329 const struct lp_fragment_shader_variant_key *key,
330 LLVMBuilderRef builder,
331 struct lp_type type,
332 LLVMValueRef context_ptr,
333 LLVMValueRef sample_pos_array,
334 LLVMValueRef num_loop,
335 struct lp_build_interp_soa_context *interp,
336 const struct lp_build_sampler_soa *sampler,
337 const struct lp_build_image_soa *image,
338 LLVMValueRef mask_store,
339 LLVMValueRef (*out_color)[4],
340 LLVMValueRef depth_base_ptr,
341 LLVMValueRef depth_stride,
342 LLVMValueRef depth_sample_stride,
343 LLVMValueRef facing,
344 LLVMValueRef thread_data_ptr)
345 {
346 const struct util_format_description *zs_format_desc = NULL;
347 const struct tgsi_token *tokens = shader->base.tokens;
348 struct lp_type int_type = lp_int_type(type);
349 LLVMTypeRef vec_type, int_vec_type;
350 LLVMValueRef mask_ptr = NULL, mask_val = NULL;
351 LLVMValueRef consts_ptr, num_consts_ptr;
352 LLVMValueRef ssbo_ptr, num_ssbo_ptr;
353 LLVMValueRef z;
354 LLVMValueRef z_value, s_value;
355 LLVMValueRef z_fb, s_fb;
356 LLVMValueRef depth_ptr;
357 LLVMValueRef stencil_refs[2];
358 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
359 LLVMValueRef zs_samples = lp_build_const_int32(gallivm, key->zsbuf_nr_samples);
360 struct lp_build_for_loop_state loop_state, sample_loop_state;
361 struct lp_build_mask_context mask;
362 /*
363 * TODO: figure out if simple_shader optimization is really worthwile to
364 * keep. Disabled because it may hide some real bugs in the (depth/stencil)
365 * code since tests tend to take another codepath than real shaders.
366 */
367 boolean simple_shader = (shader->info.base.file_count[TGSI_FILE_SAMPLER] == 0 &&
368 shader->info.base.num_inputs < 3 &&
369 shader->info.base.num_instructions < 8) && 0;
370 const boolean dual_source_blend = key->blend.rt[0].blend_enable &&
371 util_blend_state_is_dual(&key->blend, 0);
372 unsigned attrib;
373 unsigned chan;
374 unsigned cbuf;
375 unsigned depth_mode;
376
377 struct lp_bld_tgsi_system_values system_values;
378
379 memset(&system_values, 0, sizeof(system_values));
380
381 /* truncate then sign extend. */
382 system_values.front_facing = LLVMBuildTrunc(gallivm->builder, facing, LLVMInt1TypeInContext(gallivm->context), "");
383 system_values.front_facing = LLVMBuildSExt(gallivm->builder, system_values.front_facing, LLVMInt32TypeInContext(gallivm->context), "");
384
385 if (key->depth.enabled ||
386 key->stencil[0].enabled) {
387
388 zs_format_desc = util_format_description(key->zsbuf_format);
389 assert(zs_format_desc);
390
391 if (shader->info.base.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL])
392 depth_mode = EARLY_DEPTH_TEST | EARLY_DEPTH_WRITE;
393 else if (!shader->info.base.writes_z && !shader->info.base.writes_stencil) {
394 if (shader->info.base.writes_memory)
395 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
396 else if (key->alpha.enabled ||
397 key->blend.alpha_to_coverage ||
398 shader->info.base.uses_kill ||
399 shader->info.base.writes_samplemask) {
400 /* With alpha test and kill, can do the depth test early
401 * and hopefully eliminate some quads. But need to do a
402 * special deferred depth write once the final mask value
403 * is known. This only works though if there's either no
404 * stencil test or the stencil value isn't written.
405 */
406 if (key->stencil[0].enabled && (key->stencil[0].writemask ||
407 (key->stencil[1].enabled &&
408 key->stencil[1].writemask)))
409 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
410 else
411 depth_mode = EARLY_DEPTH_TEST | LATE_DEPTH_WRITE;
412 }
413 else
414 depth_mode = EARLY_DEPTH_TEST | EARLY_DEPTH_WRITE;
415 }
416 else {
417 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
418 }
419
420 if (!(key->depth.enabled && key->depth.writemask) &&
421 !(key->stencil[0].enabled && (key->stencil[0].writemask ||
422 (key->stencil[1].enabled &&
423 key->stencil[1].writemask))))
424 depth_mode &= ~(LATE_DEPTH_WRITE | EARLY_DEPTH_WRITE);
425 }
426 else {
427 depth_mode = 0;
428 }
429
430 vec_type = lp_build_vec_type(gallivm, type);
431 int_vec_type = lp_build_vec_type(gallivm, int_type);
432
433 stencil_refs[0] = lp_jit_context_stencil_ref_front_value(gallivm, context_ptr);
434 stencil_refs[1] = lp_jit_context_stencil_ref_back_value(gallivm, context_ptr);
435 /* convert scalar stencil refs into vectors */
436 stencil_refs[0] = lp_build_broadcast(gallivm, int_vec_type, stencil_refs[0]);
437 stencil_refs[1] = lp_build_broadcast(gallivm, int_vec_type, stencil_refs[1]);
438
439 consts_ptr = lp_jit_context_constants(gallivm, context_ptr);
440 num_consts_ptr = lp_jit_context_num_constants(gallivm, context_ptr);
441
442 ssbo_ptr = lp_jit_context_ssbos(gallivm, context_ptr);
443 num_ssbo_ptr = lp_jit_context_num_ssbos(gallivm, context_ptr);
444
445 memset(outputs, 0, sizeof outputs);
446
447 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
448 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
449 out_color[cbuf][chan] = lp_build_array_alloca(gallivm,
450 lp_build_vec_type(gallivm,
451 type),
452 num_loop, "color");
453 }
454 }
455 if (dual_source_blend) {
456 assert(key->nr_cbufs <= 1);
457 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
458 out_color[1][chan] = lp_build_array_alloca(gallivm,
459 lp_build_vec_type(gallivm,
460 type),
461 num_loop, "color1");
462 }
463 }
464
465 lp_build_for_loop_begin(&loop_state, gallivm,
466 lp_build_const_int32(gallivm, 0),
467 LLVMIntULT,
468 num_loop,
469 lp_build_const_int32(gallivm, 1));
470
471 if (key->multisample) {
472 /* create shader execution mask by combining all sample masks. */
473 for (unsigned s = 0; s < key->coverage_samples; s++) {
474 LLVMValueRef s_mask_idx = LLVMBuildMul(builder, num_loop, lp_build_const_int32(gallivm, s), "");
475 s_mask_idx = LLVMBuildAdd(builder, s_mask_idx, loop_state.counter, "");
476 LLVMValueRef s_mask = lp_build_pointer_get(builder, mask_store, s_mask_idx);
477 if (s == 0)
478 mask_val = s_mask;
479 else
480 mask_val = LLVMBuildOr(builder, s_mask, mask_val, "");
481 }
482 } else {
483 mask_ptr = LLVMBuildGEP(builder, mask_store,
484 &loop_state.counter, 1, "mask_ptr");
485 mask_val = LLVMBuildLoad(builder, mask_ptr, "");
486 }
487
488 /* 'mask' will control execution based on quad's pixel alive/killed state */
489 lp_build_mask_begin(&mask, gallivm, type, mask_val);
490
491 if (!(depth_mode & EARLY_DEPTH_TEST) && !simple_shader)
492 lp_build_mask_check(&mask);
493
494 /* Create storage for recombining sample masks after early Z pass. */
495 LLVMValueRef s_mask_or = lp_build_alloca(gallivm, lp_build_int_vec_type(gallivm, type), "cov_mask_early_depth");
496 LLVMBuildStore(builder, LLVMConstNull(lp_build_int_vec_type(gallivm, type)), s_mask_or);
497
498 LLVMValueRef s_mask = NULL, s_mask_ptr = NULL;
499 LLVMValueRef z_sample_value_store = NULL, s_sample_value_store = NULL;
500 LLVMValueRef z_fb_store = NULL, s_fb_store = NULL;
501 LLVMTypeRef z_type = NULL, z_fb_type = NULL;
502
503 /* Run early depth once per sample */
504 if (key->multisample) {
505
506 if (zs_format_desc) {
507 struct lp_type zs_type = lp_depth_type(zs_format_desc, type.length);
508 struct lp_type z_type = zs_type;
509 struct lp_type s_type = zs_type;
510 if (zs_format_desc->block.bits < type.width)
511 z_type.width = type.width;
512 else if (zs_format_desc->block.bits > 32) {
513 z_type.width = z_type.width / 2;
514 s_type.width = s_type.width / 2;
515 s_type.floating = 0;
516 }
517 z_sample_value_store = lp_build_array_alloca(gallivm, lp_build_int_vec_type(gallivm, type),
518 zs_samples, "z_sample_store");
519 s_sample_value_store = lp_build_array_alloca(gallivm, lp_build_int_vec_type(gallivm, type),
520 zs_samples, "s_sample_store");
521 z_fb_store = lp_build_array_alloca(gallivm, lp_build_vec_type(gallivm, z_type),
522 zs_samples, "z_fb_store");
523 s_fb_store = lp_build_array_alloca(gallivm, lp_build_vec_type(gallivm, s_type),
524 zs_samples, "s_fb_store");
525 }
526 lp_build_for_loop_begin(&sample_loop_state, gallivm,
527 lp_build_const_int32(gallivm, 0),
528 LLVMIntULT, lp_build_const_int32(gallivm, key->coverage_samples),
529 lp_build_const_int32(gallivm, 1));
530
531 LLVMValueRef s_mask_idx = LLVMBuildMul(builder, sample_loop_state.counter, num_loop, "");
532 s_mask_idx = LLVMBuildAdd(builder, s_mask_idx, loop_state.counter, "");
533 s_mask_ptr = LLVMBuildGEP(builder, mask_store, &s_mask_idx, 1, "");
534
535 s_mask = LLVMBuildLoad(builder, s_mask_ptr, "");
536 s_mask = LLVMBuildAnd(builder, s_mask, mask_val, "");
537 }
538
539
540 /* for multisample Z needs to be interpolated at sample points for testing. */
541 lp_build_interp_soa_update_pos_dyn(interp, gallivm, loop_state.counter, key->multisample ? sample_loop_state.counter : NULL);
542 z = interp->pos[2];
543
544 depth_ptr = depth_base_ptr;
545 if (key->multisample) {
546 LLVMValueRef sample_offset = LLVMBuildMul(builder, sample_loop_state.counter, depth_sample_stride, "");
547 depth_ptr = LLVMBuildGEP(builder, depth_ptr, &sample_offset, 1, "");
548 }
549
550 if (depth_mode & EARLY_DEPTH_TEST) {
551 /*
552 * Clamp according to ARB_depth_clamp semantics.
553 */
554 if (key->depth_clamp) {
555 z = lp_build_depth_clamp(gallivm, builder, type, context_ptr,
556 thread_data_ptr, z);
557 }
558 lp_build_depth_stencil_load_swizzled(gallivm, type,
559 zs_format_desc, key->resource_1d,
560 depth_ptr, depth_stride,
561 &z_fb, &s_fb, loop_state.counter);
562 lp_build_depth_stencil_test(gallivm,
563 &key->depth,
564 key->stencil,
565 type,
566 zs_format_desc,
567 key->multisample ? NULL : &mask,
568 &s_mask,
569 stencil_refs,
570 z, z_fb, s_fb,
571 facing,
572 &z_value, &s_value,
573 !simple_shader);
574
575 if (depth_mode & EARLY_DEPTH_WRITE) {
576 lp_build_depth_stencil_write_swizzled(gallivm, type,
577 zs_format_desc, key->resource_1d,
578 NULL, NULL, NULL, loop_state.counter,
579 depth_ptr, depth_stride,
580 z_value, s_value);
581 }
582 /*
583 * Note mask check if stencil is enabled must be after ds write not after
584 * stencil test otherwise new stencil values may not get written if all
585 * fragments got killed by depth/stencil test.
586 */
587 if (!simple_shader && key->stencil[0].enabled && !key->multisample)
588 lp_build_mask_check(&mask);
589
590 if (key->multisample) {
591 z_fb_type = LLVMTypeOf(z_fb);
592 z_type = LLVMTypeOf(z_value);
593 lp_build_pointer_set(builder, z_sample_value_store, sample_loop_state.counter, LLVMBuildBitCast(builder, z_value, lp_build_int_vec_type(gallivm, type), ""));
594 lp_build_pointer_set(builder, s_sample_value_store, sample_loop_state.counter, LLVMBuildBitCast(builder, s_value, lp_build_int_vec_type(gallivm, type), ""));
595 lp_build_pointer_set(builder, z_fb_store, sample_loop_state.counter, z_fb);
596 lp_build_pointer_set(builder, s_fb_store, sample_loop_state.counter, s_fb);
597 }
598 }
599
600 if (key->multisample) {
601 /*
602 * Store the post-early Z coverage mask.
603 * Recombine the resulting coverage masks post early Z into the fragment
604 * shader execution mask.
605 */
606 LLVMValueRef tmp_s_mask_or = LLVMBuildLoad(builder, s_mask_or, "");
607 tmp_s_mask_or = LLVMBuildOr(builder, tmp_s_mask_or, s_mask, "");
608 LLVMBuildStore(builder, tmp_s_mask_or, s_mask_or);
609
610 LLVMBuildStore(builder, s_mask, s_mask_ptr);
611
612 lp_build_for_loop_end(&sample_loop_state);
613
614 /* recombined all the coverage masks in the shader exec mask. */
615 tmp_s_mask_or = LLVMBuildLoad(builder, s_mask_or, "");
616 lp_build_mask_update(&mask, tmp_s_mask_or);
617
618 /* for multisample Z needs to be re interpolated at pixel center */
619 lp_build_interp_soa_update_pos_dyn(interp, gallivm, loop_state.counter, NULL);
620 }
621
622 system_values.sample_pos = sample_pos_array;
623
624 lp_build_interp_soa_update_inputs_dyn(interp, gallivm, loop_state.counter, NULL, NULL);
625
626 struct lp_build_tgsi_params params;
627 memset(&params, 0, sizeof(params));
628
629 params.type = type;
630 params.mask = &mask;
631 params.consts_ptr = consts_ptr;
632 params.const_sizes_ptr = num_consts_ptr;
633 params.system_values = &system_values;
634 params.inputs = interp->inputs;
635 params.context_ptr = context_ptr;
636 params.thread_data_ptr = thread_data_ptr;
637 params.sampler = sampler;
638 params.info = &shader->info.base;
639 params.ssbo_ptr = ssbo_ptr;
640 params.ssbo_sizes_ptr = num_ssbo_ptr;
641 params.image = image;
642
643 /* Build the actual shader */
644 if (shader->base.type == PIPE_SHADER_IR_TGSI)
645 lp_build_tgsi_soa(gallivm, tokens, &params,
646 outputs);
647 else
648 lp_build_nir_soa(gallivm, shader->base.ir.nir, &params,
649 outputs);
650
651 /* Alpha test */
652 if (key->alpha.enabled) {
653 int color0 = find_output_by_semantic(&shader->info.base,
654 TGSI_SEMANTIC_COLOR,
655 0);
656
657 if (color0 != -1 && outputs[color0][3]) {
658 const struct util_format_description *cbuf_format_desc;
659 LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
660 LLVMValueRef alpha_ref_value;
661
662 alpha_ref_value = lp_jit_context_alpha_ref_value(gallivm, context_ptr);
663 alpha_ref_value = lp_build_broadcast(gallivm, vec_type, alpha_ref_value);
664
665 cbuf_format_desc = util_format_description(key->cbuf_format[0]);
666
667 lp_build_alpha_test(gallivm, key->alpha.func, type, cbuf_format_desc,
668 &mask, alpha, alpha_ref_value,
669 (depth_mode & LATE_DEPTH_TEST) != 0);
670 }
671 }
672
673 /* Emulate Alpha to Coverage with Alpha test */
674 if (key->blend.alpha_to_coverage) {
675 int color0 = find_output_by_semantic(&shader->info.base,
676 TGSI_SEMANTIC_COLOR,
677 0);
678
679 if (color0 != -1 && outputs[color0][3]) {
680 LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
681
682 if (!key->multisample) {
683 lp_build_alpha_to_coverage(gallivm, type,
684 &mask, alpha,
685 (depth_mode & LATE_DEPTH_TEST) != 0);
686 } else {
687 lp_build_sample_alpha_to_coverage(gallivm, type, key->coverage_samples, num_loop,
688 loop_state.counter,
689 mask_store, alpha);
690 }
691 }
692 }
693
694 if (shader->info.base.writes_samplemask) {
695 int smaski = find_output_by_semantic(&shader->info.base,
696 TGSI_SEMANTIC_SAMPLEMASK,
697 0);
698 LLVMValueRef smask;
699 struct lp_build_context smask_bld;
700 lp_build_context_init(&smask_bld, gallivm, int_type);
701
702 assert(smaski >= 0);
703 smask = LLVMBuildLoad(builder, outputs[smaski][0], "smask");
704 /*
705 * Pixel is alive according to the first sample in the mask.
706 */
707 smask = LLVMBuildBitCast(builder, smask, smask_bld.vec_type, "");
708 smask = lp_build_and(&smask_bld, smask, smask_bld.one);
709 smask = lp_build_cmp(&smask_bld, PIPE_FUNC_NOTEQUAL, smask, smask_bld.zero);
710 lp_build_mask_update(&mask, smask);
711 }
712
713 if (key->multisample) {
714 /* execute depth test for each sample */
715 lp_build_for_loop_begin(&sample_loop_state, gallivm,
716 lp_build_const_int32(gallivm, 0),
717 LLVMIntULT, lp_build_const_int32(gallivm, key->coverage_samples),
718 lp_build_const_int32(gallivm, 1));
719
720 /* load the per-sample coverage mask */
721 LLVMValueRef s_mask_idx = LLVMBuildMul(builder, sample_loop_state.counter, num_loop, "");
722 s_mask_idx = LLVMBuildAdd(builder, s_mask_idx, loop_state.counter, "");
723 s_mask_ptr = LLVMBuildGEP(builder, mask_store, &s_mask_idx, 1, "");
724
725 /* combine the execution mask post fragment shader with the coverage mask. */
726 s_mask = LLVMBuildLoad(builder, s_mask_ptr, "");
727 s_mask = LLVMBuildAnd(builder, s_mask, lp_build_mask_value(&mask), "");
728 }
729
730 depth_ptr = depth_base_ptr;
731 if (key->multisample) {
732 LLVMValueRef sample_offset = LLVMBuildMul(builder, sample_loop_state.counter, depth_sample_stride, "");
733 depth_ptr = LLVMBuildGEP(builder, depth_ptr, &sample_offset, 1, "");
734 }
735
736 /* Late Z test */
737 if (depth_mode & LATE_DEPTH_TEST) {
738 int pos0 = find_output_by_semantic(&shader->info.base,
739 TGSI_SEMANTIC_POSITION,
740 0);
741 int s_out = find_output_by_semantic(&shader->info.base,
742 TGSI_SEMANTIC_STENCIL,
743 0);
744 if (pos0 != -1 && outputs[pos0][2]) {
745 z = LLVMBuildLoad(builder, outputs[pos0][2], "output.z");
746 }
747 /*
748 * Clamp according to ARB_depth_clamp semantics.
749 */
750 if (key->depth_clamp) {
751 z = lp_build_depth_clamp(gallivm, builder, type, context_ptr,
752 thread_data_ptr, z);
753 }
754
755 if (s_out != -1 && outputs[s_out][1]) {
756 /* there's only one value, and spec says to discard additional bits */
757 LLVMValueRef s_max_mask = lp_build_const_int_vec(gallivm, int_type, 255);
758 stencil_refs[0] = LLVMBuildLoad(builder, outputs[s_out][1], "output.s");
759 stencil_refs[0] = LLVMBuildBitCast(builder, stencil_refs[0], int_vec_type, "");
760 stencil_refs[0] = LLVMBuildAnd(builder, stencil_refs[0], s_max_mask, "");
761 stencil_refs[1] = stencil_refs[0];
762 }
763
764 lp_build_depth_stencil_load_swizzled(gallivm, type,
765 zs_format_desc, key->resource_1d,
766 depth_ptr, depth_stride,
767 &z_fb, &s_fb, loop_state.counter);
768
769 lp_build_depth_stencil_test(gallivm,
770 &key->depth,
771 key->stencil,
772 type,
773 zs_format_desc,
774 key->multisample ? NULL : &mask,
775 &s_mask,
776 stencil_refs,
777 z, z_fb, s_fb,
778 facing,
779 &z_value, &s_value,
780 !simple_shader);
781 /* Late Z write */
782 if (depth_mode & LATE_DEPTH_WRITE) {
783 lp_build_depth_stencil_write_swizzled(gallivm, type,
784 zs_format_desc, key->resource_1d,
785 NULL, NULL, NULL, loop_state.counter,
786 depth_ptr, depth_stride,
787 z_value, s_value);
788 }
789 }
790 else if ((depth_mode & EARLY_DEPTH_TEST) &&
791 (depth_mode & LATE_DEPTH_WRITE))
792 {
793 /* Need to apply a reduced mask to the depth write. Reload the
794 * depth value, update from zs_value with the new mask value and
795 * write that out.
796 */
797 if (key->multisample) {
798 z_value = LLVMBuildBitCast(builder, lp_build_pointer_get(builder, z_sample_value_store, sample_loop_state.counter), z_type, "");;
799 s_value = lp_build_pointer_get(builder, s_sample_value_store, sample_loop_state.counter);
800 z_fb = LLVMBuildBitCast(builder, lp_build_pointer_get(builder, z_fb_store, sample_loop_state.counter), z_fb_type, "");
801 s_fb = lp_build_pointer_get(builder, s_fb_store, sample_loop_state.counter);
802 }
803 lp_build_depth_stencil_write_swizzled(gallivm, type,
804 zs_format_desc, key->resource_1d,
805 key->multisample ? s_mask : lp_build_mask_value(&mask), z_fb, s_fb, loop_state.counter,
806 depth_ptr, depth_stride,
807 z_value, s_value);
808 }
809
810 if (key->multisample) {
811 /* store the sample mask for this loop */
812 LLVMBuildStore(builder, s_mask, s_mask_ptr);
813 lp_build_for_loop_end(&sample_loop_state);
814 }
815
816 /* Color write */
817 for (attrib = 0; attrib < shader->info.base.num_outputs; ++attrib)
818 {
819 unsigned cbuf = shader->info.base.output_semantic_index[attrib];
820 if ((shader->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_COLOR) &&
821 ((cbuf < key->nr_cbufs) || (cbuf == 1 && dual_source_blend)))
822 {
823 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
824 if(outputs[attrib][chan]) {
825 /* XXX: just initialize outputs to point at colors[] and
826 * skip this.
827 */
828 LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
829 LLVMValueRef color_ptr;
830 color_ptr = LLVMBuildGEP(builder, out_color[cbuf][chan],
831 &loop_state.counter, 1, "");
832 lp_build_name(out, "color%u.%c", attrib, "rgba"[chan]);
833 LLVMBuildStore(builder, out, color_ptr);
834 }
835 }
836 }
837 }
838
839 if (key->occlusion_count) {
840 LLVMValueRef counter = lp_jit_thread_data_counter(gallivm, thread_data_ptr);
841 lp_build_name(counter, "counter");
842 lp_build_occlusion_count(gallivm, type,
843 lp_build_mask_value(&mask), counter);
844 }
845
846 mask_val = lp_build_mask_end(&mask);
847 if (!key->multisample)
848 LLVMBuildStore(builder, mask_val, mask_ptr);
849 lp_build_for_loop_end(&loop_state);
850 }
851
852
853 /**
854 * This function will reorder pixels from the fragment shader SoA to memory layout AoS
855 *
856 * Fragment Shader outputs pixels in small 2x2 blocks
857 * e.g. (0, 0), (1, 0), (0, 1), (1, 1) ; (2, 0) ...
858 *
859 * However in memory pixels are stored in rows
860 * e.g. (0, 0), (1, 0), (2, 0), (3, 0) ; (0, 1) ...
861 *
862 * @param type fragment shader type (4x or 8x float)
863 * @param num_fs number of fs_src
864 * @param is_1d whether we're outputting to a 1d resource
865 * @param dst_channels number of output channels
866 * @param fs_src output from fragment shader
867 * @param dst pointer to store result
868 * @param pad_inline is channel padding inline or at end of row
869 * @return the number of dsts
870 */
871 static int
872 generate_fs_twiddle(struct gallivm_state *gallivm,
873 struct lp_type type,
874 unsigned num_fs,
875 unsigned dst_channels,
876 LLVMValueRef fs_src[][4],
877 LLVMValueRef* dst,
878 bool pad_inline)
879 {
880 LLVMValueRef src[16];
881
882 bool swizzle_pad;
883 bool twiddle;
884 bool split;
885
886 unsigned pixels = type.length / 4;
887 unsigned reorder_group;
888 unsigned src_channels;
889 unsigned src_count;
890 unsigned i;
891
892 src_channels = dst_channels < 3 ? dst_channels : 4;
893 src_count = num_fs * src_channels;
894
895 assert(pixels == 2 || pixels == 1);
896 assert(num_fs * src_channels <= ARRAY_SIZE(src));
897
898 /*
899 * Transpose from SoA -> AoS
900 */
901 for (i = 0; i < num_fs; ++i) {
902 lp_build_transpose_aos_n(gallivm, type, &fs_src[i][0], src_channels, &src[i * src_channels]);
903 }
904
905 /*
906 * Pick transformation options
907 */
908 swizzle_pad = false;
909 twiddle = false;
910 split = false;
911 reorder_group = 0;
912
913 if (dst_channels == 1) {
914 twiddle = true;
915
916 if (pixels == 2) {
917 split = true;
918 }
919 } else if (dst_channels == 2) {
920 if (pixels == 1) {
921 reorder_group = 1;
922 }
923 } else if (dst_channels > 2) {
924 if (pixels == 1) {
925 reorder_group = 2;
926 } else {
927 twiddle = true;
928 }
929
930 if (!pad_inline && dst_channels == 3 && pixels > 1) {
931 swizzle_pad = true;
932 }
933 }
934
935 /*
936 * Split the src in half
937 */
938 if (split) {
939 for (i = num_fs; i > 0; --i) {
940 src[(i - 1)*2 + 1] = lp_build_extract_range(gallivm, src[i - 1], 4, 4);
941 src[(i - 1)*2 + 0] = lp_build_extract_range(gallivm, src[i - 1], 0, 4);
942 }
943
944 src_count *= 2;
945 type.length = 4;
946 }
947
948 /*
949 * Ensure pixels are in memory order
950 */
951 if (reorder_group) {
952 /* Twiddle pixels by reordering the array, e.g.:
953 *
954 * src_count = 8 -> 0 2 1 3 4 6 5 7
955 * src_count = 16 -> 0 1 4 5 2 3 6 7 8 9 12 13 10 11 14 15
956 */
957 const unsigned reorder_sw[] = { 0, 2, 1, 3 };
958
959 for (i = 0; i < src_count; ++i) {
960 unsigned group = i / reorder_group;
961 unsigned block = (group / 4) * 4 * reorder_group;
962 unsigned j = block + (reorder_sw[group % 4] * reorder_group) + (i % reorder_group);
963 dst[i] = src[j];
964 }
965 } else if (twiddle) {
966 /* Twiddle pixels across elements of array */
967 /*
968 * XXX: we should avoid this in some cases, but would need to tell
969 * lp_build_conv to reorder (or deal with it ourselves).
970 */
971 lp_bld_quad_twiddle(gallivm, type, src, src_count, dst);
972 } else {
973 /* Do nothing */
974 memcpy(dst, src, sizeof(LLVMValueRef) * src_count);
975 }
976
977 /*
978 * Moves any padding between pixels to the end
979 * e.g. RGBXRGBX -> RGBRGBXX
980 */
981 if (swizzle_pad) {
982 unsigned char swizzles[16];
983 unsigned elems = pixels * dst_channels;
984
985 for (i = 0; i < type.length; ++i) {
986 if (i < elems)
987 swizzles[i] = i % dst_channels + (i / dst_channels) * 4;
988 else
989 swizzles[i] = LP_BLD_SWIZZLE_DONTCARE;
990 }
991
992 for (i = 0; i < src_count; ++i) {
993 dst[i] = lp_build_swizzle_aos_n(gallivm, dst[i], swizzles, type.length, type.length);
994 }
995 }
996
997 return src_count;
998 }
999
1000
1001 /*
1002 * Untwiddle and transpose, much like the above.
1003 * However, this is after conversion, so we get packed vectors.
1004 * At this time only handle 4x16i8 rgba / 2x16i8 rg / 1x16i8 r data,
1005 * the vectors will look like:
1006 * r0r1r4r5r2r3r6r7r8r9r12... (albeit color channels may
1007 * be swizzled here). Extending to 16bit should be trivial.
1008 * Should also be extended to handle twice wide vectors with AVX2...
1009 */
1010 static void
1011 fs_twiddle_transpose(struct gallivm_state *gallivm,
1012 struct lp_type type,
1013 LLVMValueRef *src,
1014 unsigned src_count,
1015 LLVMValueRef *dst)
1016 {
1017 unsigned i, j;
1018 struct lp_type type64, type16, type32;
1019 LLVMTypeRef type64_t, type8_t, type16_t, type32_t;
1020 LLVMBuilderRef builder = gallivm->builder;
1021 LLVMValueRef tmp[4], shuf[8];
1022 for (j = 0; j < 2; j++) {
1023 shuf[j*4 + 0] = lp_build_const_int32(gallivm, j*4 + 0);
1024 shuf[j*4 + 1] = lp_build_const_int32(gallivm, j*4 + 2);
1025 shuf[j*4 + 2] = lp_build_const_int32(gallivm, j*4 + 1);
1026 shuf[j*4 + 3] = lp_build_const_int32(gallivm, j*4 + 3);
1027 }
1028
1029 assert(src_count == 4 || src_count == 2 || src_count == 1);
1030 assert(type.width == 8);
1031 assert(type.length == 16);
1032
1033 type8_t = lp_build_vec_type(gallivm, type);
1034
1035 type64 = type;
1036 type64.length /= 8;
1037 type64.width *= 8;
1038 type64_t = lp_build_vec_type(gallivm, type64);
1039
1040 type16 = type;
1041 type16.length /= 2;
1042 type16.width *= 2;
1043 type16_t = lp_build_vec_type(gallivm, type16);
1044
1045 type32 = type;
1046 type32.length /= 4;
1047 type32.width *= 4;
1048 type32_t = lp_build_vec_type(gallivm, type32);
1049
1050 lp_build_transpose_aos_n(gallivm, type, src, src_count, tmp);
1051
1052 if (src_count == 1) {
1053 /* transpose was no-op, just untwiddle */
1054 LLVMValueRef shuf_vec;
1055 shuf_vec = LLVMConstVector(shuf, 8);
1056 tmp[0] = LLVMBuildBitCast(builder, src[0], type16_t, "");
1057 tmp[0] = LLVMBuildShuffleVector(builder, tmp[0], tmp[0], shuf_vec, "");
1058 dst[0] = LLVMBuildBitCast(builder, tmp[0], type8_t, "");
1059 } else if (src_count == 2) {
1060 LLVMValueRef shuf_vec;
1061 shuf_vec = LLVMConstVector(shuf, 4);
1062
1063 for (i = 0; i < 2; i++) {
1064 tmp[i] = LLVMBuildBitCast(builder, tmp[i], type32_t, "");
1065 tmp[i] = LLVMBuildShuffleVector(builder, tmp[i], tmp[i], shuf_vec, "");
1066 dst[i] = LLVMBuildBitCast(builder, tmp[i], type8_t, "");
1067 }
1068 } else {
1069 for (j = 0; j < 2; j++) {
1070 LLVMValueRef lo, hi, lo2, hi2;
1071 /*
1072 * Note that if we only really have 3 valid channels (rgb)
1073 * and we don't need alpha we could substitute a undef here
1074 * for the respective channel (causing llvm to drop conversion
1075 * for alpha).
1076 */
1077 /* we now have rgba0rgba1rgba4rgba5 etc, untwiddle */
1078 lo2 = LLVMBuildBitCast(builder, tmp[j*2], type64_t, "");
1079 hi2 = LLVMBuildBitCast(builder, tmp[j*2 + 1], type64_t, "");
1080 lo = lp_build_interleave2(gallivm, type64, lo2, hi2, 0);
1081 hi = lp_build_interleave2(gallivm, type64, lo2, hi2, 1);
1082 dst[j*2] = LLVMBuildBitCast(builder, lo, type8_t, "");
1083 dst[j*2 + 1] = LLVMBuildBitCast(builder, hi, type8_t, "");
1084 }
1085 }
1086 }
1087
1088
1089 /**
1090 * Load an unswizzled block of pixels from memory
1091 */
1092 static void
1093 load_unswizzled_block(struct gallivm_state *gallivm,
1094 LLVMValueRef base_ptr,
1095 LLVMValueRef stride,
1096 unsigned block_width,
1097 unsigned block_height,
1098 LLVMValueRef* dst,
1099 struct lp_type dst_type,
1100 unsigned dst_count,
1101 unsigned dst_alignment)
1102 {
1103 LLVMBuilderRef builder = gallivm->builder;
1104 unsigned row_size = dst_count / block_height;
1105 unsigned i;
1106
1107 /* Ensure block exactly fits into dst */
1108 assert((block_width * block_height) % dst_count == 0);
1109
1110 for (i = 0; i < dst_count; ++i) {
1111 unsigned x = i % row_size;
1112 unsigned y = i / row_size;
1113
1114 LLVMValueRef bx = lp_build_const_int32(gallivm, x * (dst_type.width / 8) * dst_type.length);
1115 LLVMValueRef by = LLVMBuildMul(builder, lp_build_const_int32(gallivm, y), stride, "");
1116
1117 LLVMValueRef gep[2];
1118 LLVMValueRef dst_ptr;
1119
1120 gep[0] = lp_build_const_int32(gallivm, 0);
1121 gep[1] = LLVMBuildAdd(builder, bx, by, "");
1122
1123 dst_ptr = LLVMBuildGEP(builder, base_ptr, gep, 2, "");
1124 dst_ptr = LLVMBuildBitCast(builder, dst_ptr,
1125 LLVMPointerType(lp_build_vec_type(gallivm, dst_type), 0), "");
1126
1127 dst[i] = LLVMBuildLoad(builder, dst_ptr, "");
1128
1129 LLVMSetAlignment(dst[i], dst_alignment);
1130 }
1131 }
1132
1133
1134 /**
1135 * Store an unswizzled block of pixels to memory
1136 */
1137 static void
1138 store_unswizzled_block(struct gallivm_state *gallivm,
1139 LLVMValueRef base_ptr,
1140 LLVMValueRef stride,
1141 unsigned block_width,
1142 unsigned block_height,
1143 LLVMValueRef* src,
1144 struct lp_type src_type,
1145 unsigned src_count,
1146 unsigned src_alignment)
1147 {
1148 LLVMBuilderRef builder = gallivm->builder;
1149 unsigned row_size = src_count / block_height;
1150 unsigned i;
1151
1152 /* Ensure src exactly fits into block */
1153 assert((block_width * block_height) % src_count == 0);
1154
1155 for (i = 0; i < src_count; ++i) {
1156 unsigned x = i % row_size;
1157 unsigned y = i / row_size;
1158
1159 LLVMValueRef bx = lp_build_const_int32(gallivm, x * (src_type.width / 8) * src_type.length);
1160 LLVMValueRef by = LLVMBuildMul(builder, lp_build_const_int32(gallivm, y), stride, "");
1161
1162 LLVMValueRef gep[2];
1163 LLVMValueRef src_ptr;
1164
1165 gep[0] = lp_build_const_int32(gallivm, 0);
1166 gep[1] = LLVMBuildAdd(builder, bx, by, "");
1167
1168 src_ptr = LLVMBuildGEP(builder, base_ptr, gep, 2, "");
1169 src_ptr = LLVMBuildBitCast(builder, src_ptr,
1170 LLVMPointerType(lp_build_vec_type(gallivm, src_type), 0), "");
1171
1172 src_ptr = LLVMBuildStore(builder, src[i], src_ptr);
1173
1174 LLVMSetAlignment(src_ptr, src_alignment);
1175 }
1176 }
1177
1178
1179 /**
1180 * Checks if a format description is an arithmetic format
1181 *
1182 * A format which has irregular channel sizes such as R3_G3_B2 or R5_G6_B5.
1183 */
1184 static inline boolean
1185 is_arithmetic_format(const struct util_format_description *format_desc)
1186 {
1187 boolean arith = false;
1188 unsigned i;
1189
1190 for (i = 0; i < format_desc->nr_channels; ++i) {
1191 arith |= format_desc->channel[i].size != format_desc->channel[0].size;
1192 arith |= (format_desc->channel[i].size % 8) != 0;
1193 }
1194
1195 return arith;
1196 }
1197
1198
1199 /**
1200 * Checks if this format requires special handling due to required expansion
1201 * to floats for blending, and furthermore has "natural" packed AoS -> unpacked
1202 * SoA conversion.
1203 */
1204 static inline boolean
1205 format_expands_to_float_soa(const struct util_format_description *format_desc)
1206 {
1207 if (format_desc->format == PIPE_FORMAT_R11G11B10_FLOAT ||
1208 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) {
1209 return true;
1210 }
1211 return false;
1212 }
1213
1214
1215 /**
1216 * Retrieves the type representing the memory layout for a format
1217 *
1218 * e.g. RGBA16F = 4x half-float and R3G3B2 = 1x byte
1219 */
1220 static inline void
1221 lp_mem_type_from_format_desc(const struct util_format_description *format_desc,
1222 struct lp_type* type)
1223 {
1224 unsigned i;
1225 unsigned chan;
1226
1227 if (format_expands_to_float_soa(format_desc)) {
1228 /* just make this a uint with width of block */
1229 type->floating = false;
1230 type->fixed = false;
1231 type->sign = false;
1232 type->norm = false;
1233 type->width = format_desc->block.bits;
1234 type->length = 1;
1235 return;
1236 }
1237
1238 for (i = 0; i < 4; i++)
1239 if (format_desc->channel[i].type != UTIL_FORMAT_TYPE_VOID)
1240 break;
1241 chan = i;
1242
1243 memset(type, 0, sizeof(struct lp_type));
1244 type->floating = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FLOAT;
1245 type->fixed = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FIXED;
1246 type->sign = format_desc->channel[chan].type != UTIL_FORMAT_TYPE_UNSIGNED;
1247 type->norm = format_desc->channel[chan].normalized;
1248
1249 if (is_arithmetic_format(format_desc)) {
1250 type->width = 0;
1251 type->length = 1;
1252
1253 for (i = 0; i < format_desc->nr_channels; ++i) {
1254 type->width += format_desc->channel[i].size;
1255 }
1256 } else {
1257 type->width = format_desc->channel[chan].size;
1258 type->length = format_desc->nr_channels;
1259 }
1260 }
1261
1262
1263 /**
1264 * Retrieves the type for a format which is usable in the blending code.
1265 *
1266 * e.g. RGBA16F = 4x float, R3G3B2 = 3x byte
1267 */
1268 static inline void
1269 lp_blend_type_from_format_desc(const struct util_format_description *format_desc,
1270 struct lp_type* type)
1271 {
1272 unsigned i;
1273 unsigned chan;
1274
1275 if (format_expands_to_float_soa(format_desc)) {
1276 /* always use ordinary floats for blending */
1277 type->floating = true;
1278 type->fixed = false;
1279 type->sign = true;
1280 type->norm = false;
1281 type->width = 32;
1282 type->length = 4;
1283 return;
1284 }
1285
1286 for (i = 0; i < 4; i++)
1287 if (format_desc->channel[i].type != UTIL_FORMAT_TYPE_VOID)
1288 break;
1289 chan = i;
1290
1291 memset(type, 0, sizeof(struct lp_type));
1292 type->floating = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FLOAT;
1293 type->fixed = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FIXED;
1294 type->sign = format_desc->channel[chan].type != UTIL_FORMAT_TYPE_UNSIGNED;
1295 type->norm = format_desc->channel[chan].normalized;
1296 type->width = format_desc->channel[chan].size;
1297 type->length = format_desc->nr_channels;
1298
1299 for (i = 1; i < format_desc->nr_channels; ++i) {
1300 if (format_desc->channel[i].size > type->width)
1301 type->width = format_desc->channel[i].size;
1302 }
1303
1304 if (type->floating) {
1305 type->width = 32;
1306 } else {
1307 if (type->width <= 8) {
1308 type->width = 8;
1309 } else if (type->width <= 16) {
1310 type->width = 16;
1311 } else {
1312 type->width = 32;
1313 }
1314 }
1315
1316 if (is_arithmetic_format(format_desc) && type->length == 3) {
1317 type->length = 4;
1318 }
1319 }
1320
1321
1322 /**
1323 * Scale a normalized value from src_bits to dst_bits.
1324 *
1325 * The exact calculation is
1326 *
1327 * dst = iround(src * dst_mask / src_mask)
1328 *
1329 * or with integer rounding
1330 *
1331 * dst = src * (2*dst_mask + sign(src)*src_mask) / (2*src_mask)
1332 *
1333 * where
1334 *
1335 * src_mask = (1 << src_bits) - 1
1336 * dst_mask = (1 << dst_bits) - 1
1337 *
1338 * but we try to avoid division and multiplication through shifts.
1339 */
1340 static inline LLVMValueRef
1341 scale_bits(struct gallivm_state *gallivm,
1342 int src_bits,
1343 int dst_bits,
1344 LLVMValueRef src,
1345 struct lp_type src_type)
1346 {
1347 LLVMBuilderRef builder = gallivm->builder;
1348 LLVMValueRef result = src;
1349
1350 if (dst_bits < src_bits) {
1351 int delta_bits = src_bits - dst_bits;
1352
1353 if (delta_bits <= dst_bits) {
1354 /*
1355 * Approximate the rescaling with a single shift.
1356 *
1357 * This gives the wrong rounding.
1358 */
1359
1360 result = LLVMBuildLShr(builder,
1361 src,
1362 lp_build_const_int_vec(gallivm, src_type, delta_bits),
1363 "");
1364
1365 } else {
1366 /*
1367 * Try more accurate rescaling.
1368 */
1369
1370 /*
1371 * Drop the least significant bits to make space for the multiplication.
1372 *
1373 * XXX: A better approach would be to use a wider integer type as intermediate. But
1374 * this is enough to convert alpha from 16bits -> 2 when rendering to
1375 * PIPE_FORMAT_R10G10B10A2_UNORM.
1376 */
1377 result = LLVMBuildLShr(builder,
1378 src,
1379 lp_build_const_int_vec(gallivm, src_type, dst_bits),
1380 "");
1381
1382
1383 result = LLVMBuildMul(builder,
1384 result,
1385 lp_build_const_int_vec(gallivm, src_type, (1LL << dst_bits) - 1),
1386 "");
1387
1388 /*
1389 * Add a rounding term before the division.
1390 *
1391 * TODO: Handle signed integers too.
1392 */
1393 if (!src_type.sign) {
1394 result = LLVMBuildAdd(builder,
1395 result,
1396 lp_build_const_int_vec(gallivm, src_type, (1LL << (delta_bits - 1))),
1397 "");
1398 }
1399
1400 /*
1401 * Approximate the division by src_mask with a src_bits shift.
1402 *
1403 * Given the src has already been shifted by dst_bits, all we need
1404 * to do is to shift by the difference.
1405 */
1406
1407 result = LLVMBuildLShr(builder,
1408 result,
1409 lp_build_const_int_vec(gallivm, src_type, delta_bits),
1410 "");
1411 }
1412
1413 } else if (dst_bits > src_bits) {
1414 /* Scale up bits */
1415 int db = dst_bits - src_bits;
1416
1417 /* Shift left by difference in bits */
1418 result = LLVMBuildShl(builder,
1419 src,
1420 lp_build_const_int_vec(gallivm, src_type, db),
1421 "");
1422
1423 if (db <= src_bits) {
1424 /* Enough bits in src to fill the remainder */
1425 LLVMValueRef lower = LLVMBuildLShr(builder,
1426 src,
1427 lp_build_const_int_vec(gallivm, src_type, src_bits - db),
1428 "");
1429
1430 result = LLVMBuildOr(builder, result, lower, "");
1431 } else if (db > src_bits) {
1432 /* Need to repeatedly copy src bits to fill remainder in dst */
1433 unsigned n;
1434
1435 for (n = src_bits; n < dst_bits; n *= 2) {
1436 LLVMValueRef shuv = lp_build_const_int_vec(gallivm, src_type, n);
1437
1438 result = LLVMBuildOr(builder,
1439 result,
1440 LLVMBuildLShr(builder, result, shuv, ""),
1441 "");
1442 }
1443 }
1444 }
1445
1446 return result;
1447 }
1448
1449 /**
1450 * If RT is a smallfloat (needing denorms) format
1451 */
1452 static inline int
1453 have_smallfloat_format(struct lp_type dst_type,
1454 enum pipe_format format)
1455 {
1456 return ((dst_type.floating && dst_type.width != 32) ||
1457 /* due to format handling hacks this format doesn't have floating set
1458 * here (and actually has width set to 32 too) so special case this. */
1459 (format == PIPE_FORMAT_R11G11B10_FLOAT));
1460 }
1461
1462
1463 /**
1464 * Convert from memory format to blending format
1465 *
1466 * e.g. GL_R3G3B2 is 1 byte in memory but 3 bytes for blending
1467 */
1468 static void
1469 convert_to_blend_type(struct gallivm_state *gallivm,
1470 unsigned block_size,
1471 const struct util_format_description *src_fmt,
1472 struct lp_type src_type,
1473 struct lp_type dst_type,
1474 LLVMValueRef* src, // and dst
1475 unsigned num_srcs)
1476 {
1477 LLVMValueRef *dst = src;
1478 LLVMBuilderRef builder = gallivm->builder;
1479 struct lp_type blend_type;
1480 struct lp_type mem_type;
1481 unsigned i, j;
1482 unsigned pixels = block_size / num_srcs;
1483 bool is_arith;
1484
1485 /*
1486 * full custom path for packed floats and srgb formats - none of the later
1487 * functions would do anything useful, and given the lp_type representation they
1488 * can't be fixed. Should really have some SoA blend path for these kind of
1489 * formats rather than hacking them in here.
1490 */
1491 if (format_expands_to_float_soa(src_fmt)) {
1492 LLVMValueRef tmpsrc[4];
1493 /*
1494 * This is pretty suboptimal for this case blending in SoA would be much
1495 * better, since conversion gets us SoA values so need to convert back.
1496 */
1497 assert(src_type.width == 32 || src_type.width == 16);
1498 assert(dst_type.floating);
1499 assert(dst_type.width == 32);
1500 assert(dst_type.length % 4 == 0);
1501 assert(num_srcs % 4 == 0);
1502
1503 if (src_type.width == 16) {
1504 /* expand 4x16bit values to 4x32bit */
1505 struct lp_type type32x4 = src_type;
1506 LLVMTypeRef ltype32x4;
1507 unsigned num_fetch = dst_type.length == 8 ? num_srcs / 2 : num_srcs / 4;
1508 type32x4.width = 32;
1509 ltype32x4 = lp_build_vec_type(gallivm, type32x4);
1510 for (i = 0; i < num_fetch; i++) {
1511 src[i] = LLVMBuildZExt(builder, src[i], ltype32x4, "");
1512 }
1513 src_type.width = 32;
1514 }
1515 for (i = 0; i < 4; i++) {
1516 tmpsrc[i] = src[i];
1517 }
1518 for (i = 0; i < num_srcs / 4; i++) {
1519 LLVMValueRef tmpsoa[4];
1520 LLVMValueRef tmps = tmpsrc[i];
1521 if (dst_type.length == 8) {
1522 LLVMValueRef shuffles[8];
1523 unsigned j;
1524 /* fetch was 4 values but need 8-wide output values */
1525 tmps = lp_build_concat(gallivm, &tmpsrc[i * 2], src_type, 2);
1526 /*
1527 * for 8-wide aos transpose would give us wrong order not matching
1528 * incoming converted fs values and mask. ARGH.
1529 */
1530 for (j = 0; j < 4; j++) {
1531 shuffles[j] = lp_build_const_int32(gallivm, j * 2);
1532 shuffles[j + 4] = lp_build_const_int32(gallivm, j * 2 + 1);
1533 }
1534 tmps = LLVMBuildShuffleVector(builder, tmps, tmps,
1535 LLVMConstVector(shuffles, 8), "");
1536 }
1537 if (src_fmt->format == PIPE_FORMAT_R11G11B10_FLOAT) {
1538 lp_build_r11g11b10_to_float(gallivm, tmps, tmpsoa);
1539 }
1540 else {
1541 lp_build_unpack_rgba_soa(gallivm, src_fmt, dst_type, tmps, tmpsoa);
1542 }
1543 lp_build_transpose_aos(gallivm, dst_type, tmpsoa, &src[i * 4]);
1544 }
1545 return;
1546 }
1547
1548 lp_mem_type_from_format_desc(src_fmt, &mem_type);
1549 lp_blend_type_from_format_desc(src_fmt, &blend_type);
1550
1551 /* Is the format arithmetic */
1552 is_arith = blend_type.length * blend_type.width != mem_type.width * mem_type.length;
1553 is_arith &= !(mem_type.width == 16 && mem_type.floating);
1554
1555 /* Pad if necessary */
1556 if (!is_arith && src_type.length < dst_type.length) {
1557 for (i = 0; i < num_srcs; ++i) {
1558 dst[i] = lp_build_pad_vector(gallivm, src[i], dst_type.length);
1559 }
1560
1561 src_type.length = dst_type.length;
1562 }
1563
1564 /* Special case for half-floats */
1565 if (mem_type.width == 16 && mem_type.floating) {
1566 assert(blend_type.width == 32 && blend_type.floating);
1567 lp_build_conv_auto(gallivm, src_type, &dst_type, dst, num_srcs, dst);
1568 is_arith = false;
1569 }
1570
1571 if (!is_arith) {
1572 return;
1573 }
1574
1575 src_type.width = blend_type.width * blend_type.length;
1576 blend_type.length *= pixels;
1577 src_type.length *= pixels / (src_type.length / mem_type.length);
1578
1579 for (i = 0; i < num_srcs; ++i) {
1580 LLVMValueRef chans[4];
1581 LLVMValueRef res = NULL;
1582
1583 dst[i] = LLVMBuildZExt(builder, src[i], lp_build_vec_type(gallivm, src_type), "");
1584
1585 for (j = 0; j < src_fmt->nr_channels; ++j) {
1586 unsigned mask = 0;
1587 unsigned sa = src_fmt->channel[j].shift;
1588 #if UTIL_ARCH_LITTLE_ENDIAN
1589 unsigned from_lsb = j;
1590 #else
1591 unsigned from_lsb = src_fmt->nr_channels - j - 1;
1592 #endif
1593
1594 mask = (1 << src_fmt->channel[j].size) - 1;
1595
1596 /* Extract bits from source */
1597 chans[j] = LLVMBuildLShr(builder,
1598 dst[i],
1599 lp_build_const_int_vec(gallivm, src_type, sa),
1600 "");
1601
1602 chans[j] = LLVMBuildAnd(builder,
1603 chans[j],
1604 lp_build_const_int_vec(gallivm, src_type, mask),
1605 "");
1606
1607 /* Scale bits */
1608 if (src_type.norm) {
1609 chans[j] = scale_bits(gallivm, src_fmt->channel[j].size,
1610 blend_type.width, chans[j], src_type);
1611 }
1612
1613 /* Insert bits into correct position */
1614 chans[j] = LLVMBuildShl(builder,
1615 chans[j],
1616 lp_build_const_int_vec(gallivm, src_type, from_lsb * blend_type.width),
1617 "");
1618
1619 if (j == 0) {
1620 res = chans[j];
1621 } else {
1622 res = LLVMBuildOr(builder, res, chans[j], "");
1623 }
1624 }
1625
1626 dst[i] = LLVMBuildBitCast(builder, res, lp_build_vec_type(gallivm, blend_type), "");
1627 }
1628 }
1629
1630
1631 /**
1632 * Convert from blending format to memory format
1633 *
1634 * e.g. GL_R3G3B2 is 3 bytes for blending but 1 byte in memory
1635 */
1636 static void
1637 convert_from_blend_type(struct gallivm_state *gallivm,
1638 unsigned block_size,
1639 const struct util_format_description *src_fmt,
1640 struct lp_type src_type,
1641 struct lp_type dst_type,
1642 LLVMValueRef* src, // and dst
1643 unsigned num_srcs)
1644 {
1645 LLVMValueRef* dst = src;
1646 unsigned i, j, k;
1647 struct lp_type mem_type;
1648 struct lp_type blend_type;
1649 LLVMBuilderRef builder = gallivm->builder;
1650 unsigned pixels = block_size / num_srcs;
1651 bool is_arith;
1652
1653 /*
1654 * full custom path for packed floats and srgb formats - none of the later
1655 * functions would do anything useful, and given the lp_type representation they
1656 * can't be fixed. Should really have some SoA blend path for these kind of
1657 * formats rather than hacking them in here.
1658 */
1659 if (format_expands_to_float_soa(src_fmt)) {
1660 /*
1661 * This is pretty suboptimal for this case blending in SoA would be much
1662 * better - we need to transpose the AoS values back to SoA values for
1663 * conversion/packing.
1664 */
1665 assert(src_type.floating);
1666 assert(src_type.width == 32);
1667 assert(src_type.length % 4 == 0);
1668 assert(dst_type.width == 32 || dst_type.width == 16);
1669
1670 for (i = 0; i < num_srcs / 4; i++) {
1671 LLVMValueRef tmpsoa[4], tmpdst;
1672 lp_build_transpose_aos(gallivm, src_type, &src[i * 4], tmpsoa);
1673 /* really really need SoA here */
1674
1675 if (src_fmt->format == PIPE_FORMAT_R11G11B10_FLOAT) {
1676 tmpdst = lp_build_float_to_r11g11b10(gallivm, tmpsoa);
1677 }
1678 else {
1679 tmpdst = lp_build_float_to_srgb_packed(gallivm, src_fmt,
1680 src_type, tmpsoa);
1681 }
1682
1683 if (src_type.length == 8) {
1684 LLVMValueRef tmpaos, shuffles[8];
1685 unsigned j;
1686 /*
1687 * for 8-wide aos transpose has given us wrong order not matching
1688 * output order. HMPF. Also need to split the output values manually.
1689 */
1690 for (j = 0; j < 4; j++) {
1691 shuffles[j * 2] = lp_build_const_int32(gallivm, j);
1692 shuffles[j * 2 + 1] = lp_build_const_int32(gallivm, j + 4);
1693 }
1694 tmpaos = LLVMBuildShuffleVector(builder, tmpdst, tmpdst,
1695 LLVMConstVector(shuffles, 8), "");
1696 src[i * 2] = lp_build_extract_range(gallivm, tmpaos, 0, 4);
1697 src[i * 2 + 1] = lp_build_extract_range(gallivm, tmpaos, 4, 4);
1698 }
1699 else {
1700 src[i] = tmpdst;
1701 }
1702 }
1703 if (dst_type.width == 16) {
1704 struct lp_type type16x8 = dst_type;
1705 struct lp_type type32x4 = dst_type;
1706 LLVMTypeRef ltype16x4, ltypei64, ltypei128;
1707 unsigned num_fetch = src_type.length == 8 ? num_srcs / 2 : num_srcs / 4;
1708 type16x8.length = 8;
1709 type32x4.width = 32;
1710 ltypei128 = LLVMIntTypeInContext(gallivm->context, 128);
1711 ltypei64 = LLVMIntTypeInContext(gallivm->context, 64);
1712 ltype16x4 = lp_build_vec_type(gallivm, dst_type);
1713 /* We could do vector truncation but it doesn't generate very good code */
1714 for (i = 0; i < num_fetch; i++) {
1715 src[i] = lp_build_pack2(gallivm, type32x4, type16x8,
1716 src[i], lp_build_zero(gallivm, type32x4));
1717 src[i] = LLVMBuildBitCast(builder, src[i], ltypei128, "");
1718 src[i] = LLVMBuildTrunc(builder, src[i], ltypei64, "");
1719 src[i] = LLVMBuildBitCast(builder, src[i], ltype16x4, "");
1720 }
1721 }
1722 return;
1723 }
1724
1725 lp_mem_type_from_format_desc(src_fmt, &mem_type);
1726 lp_blend_type_from_format_desc(src_fmt, &blend_type);
1727
1728 is_arith = (blend_type.length * blend_type.width != mem_type.width * mem_type.length);
1729
1730 /* Special case for half-floats */
1731 if (mem_type.width == 16 && mem_type.floating) {
1732 int length = dst_type.length;
1733 assert(blend_type.width == 32 && blend_type.floating);
1734
1735 dst_type.length = src_type.length;
1736
1737 lp_build_conv_auto(gallivm, src_type, &dst_type, dst, num_srcs, dst);
1738
1739 dst_type.length = length;
1740 is_arith = false;
1741 }
1742
1743 /* Remove any padding */
1744 if (!is_arith && (src_type.length % mem_type.length)) {
1745 src_type.length -= (src_type.length % mem_type.length);
1746
1747 for (i = 0; i < num_srcs; ++i) {
1748 dst[i] = lp_build_extract_range(gallivm, dst[i], 0, src_type.length);
1749 }
1750 }
1751
1752 /* No bit arithmetic to do */
1753 if (!is_arith) {
1754 return;
1755 }
1756
1757 src_type.length = pixels;
1758 src_type.width = blend_type.length * blend_type.width;
1759 dst_type.length = pixels;
1760
1761 for (i = 0; i < num_srcs; ++i) {
1762 LLVMValueRef chans[4];
1763 LLVMValueRef res = NULL;
1764
1765 dst[i] = LLVMBuildBitCast(builder, src[i], lp_build_vec_type(gallivm, src_type), "");
1766
1767 for (j = 0; j < src_fmt->nr_channels; ++j) {
1768 unsigned mask = 0;
1769 unsigned sa = src_fmt->channel[j].shift;
1770 unsigned sz_a = src_fmt->channel[j].size;
1771 #if UTIL_ARCH_LITTLE_ENDIAN
1772 unsigned from_lsb = j;
1773 #else
1774 unsigned from_lsb = src_fmt->nr_channels - j - 1;
1775 #endif
1776
1777 assert(blend_type.width > src_fmt->channel[j].size);
1778
1779 for (k = 0; k < blend_type.width; ++k) {
1780 mask |= 1 << k;
1781 }
1782
1783 /* Extract bits */
1784 chans[j] = LLVMBuildLShr(builder,
1785 dst[i],
1786 lp_build_const_int_vec(gallivm, src_type,
1787 from_lsb * blend_type.width),
1788 "");
1789
1790 chans[j] = LLVMBuildAnd(builder,
1791 chans[j],
1792 lp_build_const_int_vec(gallivm, src_type, mask),
1793 "");
1794
1795 /* Scale down bits */
1796 if (src_type.norm) {
1797 chans[j] = scale_bits(gallivm, blend_type.width,
1798 src_fmt->channel[j].size, chans[j], src_type);
1799 } else if (!src_type.floating && sz_a < blend_type.width) {
1800 LLVMValueRef mask_val = lp_build_const_int_vec(gallivm, src_type, (1UL << sz_a) - 1);
1801 LLVMValueRef mask = LLVMBuildICmp(builder, LLVMIntUGT, chans[j], mask_val, "");
1802 chans[j] = LLVMBuildSelect(builder, mask, mask_val, chans[j], "");
1803 }
1804
1805 /* Insert bits */
1806 chans[j] = LLVMBuildShl(builder,
1807 chans[j],
1808 lp_build_const_int_vec(gallivm, src_type, sa),
1809 "");
1810
1811 sa += src_fmt->channel[j].size;
1812
1813 if (j == 0) {
1814 res = chans[j];
1815 } else {
1816 res = LLVMBuildOr(builder, res, chans[j], "");
1817 }
1818 }
1819
1820 assert (dst_type.width != 24);
1821
1822 dst[i] = LLVMBuildTrunc(builder, res, lp_build_vec_type(gallivm, dst_type), "");
1823 }
1824 }
1825
1826
1827 /**
1828 * Convert alpha to same blend type as src
1829 */
1830 static void
1831 convert_alpha(struct gallivm_state *gallivm,
1832 struct lp_type row_type,
1833 struct lp_type alpha_type,
1834 const unsigned block_size,
1835 const unsigned block_height,
1836 const unsigned src_count,
1837 const unsigned dst_channels,
1838 const bool pad_inline,
1839 LLVMValueRef* src_alpha)
1840 {
1841 LLVMBuilderRef builder = gallivm->builder;
1842 unsigned i, j;
1843 unsigned length = row_type.length;
1844 row_type.length = alpha_type.length;
1845
1846 /* Twiddle the alpha to match pixels */
1847 lp_bld_quad_twiddle(gallivm, alpha_type, src_alpha, block_height, src_alpha);
1848
1849 /*
1850 * TODO this should use single lp_build_conv call for
1851 * src_count == 1 && dst_channels == 1 case (dropping the concat below)
1852 */
1853 for (i = 0; i < block_height; ++i) {
1854 lp_build_conv(gallivm, alpha_type, row_type, &src_alpha[i], 1, &src_alpha[i], 1);
1855 }
1856
1857 alpha_type = row_type;
1858 row_type.length = length;
1859
1860 /* If only one channel we can only need the single alpha value per pixel */
1861 if (src_count == 1 && dst_channels == 1) {
1862
1863 lp_build_concat_n(gallivm, alpha_type, src_alpha, block_height, src_alpha, src_count);
1864 } else {
1865 /* If there are more srcs than rows then we need to split alpha up */
1866 if (src_count > block_height) {
1867 for (i = src_count; i > 0; --i) {
1868 unsigned pixels = block_size / src_count;
1869 unsigned idx = i - 1;
1870
1871 src_alpha[idx] = lp_build_extract_range(gallivm, src_alpha[(idx * pixels) / 4],
1872 (idx * pixels) % 4, pixels);
1873 }
1874 }
1875
1876 /* If there is a src for each pixel broadcast the alpha across whole row */
1877 if (src_count == block_size) {
1878 for (i = 0; i < src_count; ++i) {
1879 src_alpha[i] = lp_build_broadcast(gallivm,
1880 lp_build_vec_type(gallivm, row_type), src_alpha[i]);
1881 }
1882 } else {
1883 unsigned pixels = block_size / src_count;
1884 unsigned channels = pad_inline ? TGSI_NUM_CHANNELS : dst_channels;
1885 unsigned alpha_span = 1;
1886 LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH];
1887
1888 /* Check if we need 2 src_alphas for our shuffles */
1889 if (pixels > alpha_type.length) {
1890 alpha_span = 2;
1891 }
1892
1893 /* Broadcast alpha across all channels, e.g. a1a2 to a1a1a1a1a2a2a2a2 */
1894 for (j = 0; j < row_type.length; ++j) {
1895 if (j < pixels * channels) {
1896 shuffles[j] = lp_build_const_int32(gallivm, j / channels);
1897 } else {
1898 shuffles[j] = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context));
1899 }
1900 }
1901
1902 for (i = 0; i < src_count; ++i) {
1903 unsigned idx1 = i, idx2 = i;
1904
1905 if (alpha_span > 1){
1906 idx1 *= alpha_span;
1907 idx2 = idx1 + 1;
1908 }
1909
1910 src_alpha[i] = LLVMBuildShuffleVector(builder,
1911 src_alpha[idx1],
1912 src_alpha[idx2],
1913 LLVMConstVector(shuffles, row_type.length),
1914 "");
1915 }
1916 }
1917 }
1918 }
1919
1920
1921 /**
1922 * Generates the blend function for unswizzled colour buffers
1923 * Also generates the read & write from colour buffer
1924 */
1925 static void
1926 generate_unswizzled_blend(struct gallivm_state *gallivm,
1927 unsigned rt,
1928 struct lp_fragment_shader_variant *variant,
1929 enum pipe_format out_format,
1930 unsigned int num_fs,
1931 struct lp_type fs_type,
1932 LLVMValueRef* fs_mask,
1933 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][4],
1934 LLVMValueRef context_ptr,
1935 LLVMValueRef color_ptr,
1936 LLVMValueRef stride,
1937 unsigned partial_mask,
1938 boolean do_branch)
1939 {
1940 const unsigned alpha_channel = 3;
1941 const unsigned block_width = LP_RASTER_BLOCK_SIZE;
1942 const unsigned block_height = LP_RASTER_BLOCK_SIZE;
1943 const unsigned block_size = block_width * block_height;
1944 const unsigned lp_integer_vector_width = 128;
1945
1946 LLVMBuilderRef builder = gallivm->builder;
1947 LLVMValueRef fs_src[4][TGSI_NUM_CHANNELS];
1948 LLVMValueRef fs_src1[4][TGSI_NUM_CHANNELS];
1949 LLVMValueRef src_alpha[4 * 4];
1950 LLVMValueRef src1_alpha[4 * 4] = { NULL };
1951 LLVMValueRef src_mask[4 * 4];
1952 LLVMValueRef src[4 * 4];
1953 LLVMValueRef src1[4 * 4];
1954 LLVMValueRef dst[4 * 4];
1955 LLVMValueRef blend_color;
1956 LLVMValueRef blend_alpha;
1957 LLVMValueRef i32_zero;
1958 LLVMValueRef check_mask;
1959 LLVMValueRef undef_src_val;
1960
1961 struct lp_build_mask_context mask_ctx;
1962 struct lp_type mask_type;
1963 struct lp_type blend_type;
1964 struct lp_type row_type;
1965 struct lp_type dst_type;
1966 struct lp_type ls_type;
1967
1968 unsigned char swizzle[TGSI_NUM_CHANNELS];
1969 unsigned vector_width;
1970 unsigned src_channels = TGSI_NUM_CHANNELS;
1971 unsigned dst_channels;
1972 unsigned dst_count;
1973 unsigned src_count;
1974 unsigned i, j;
1975
1976 const struct util_format_description* out_format_desc = util_format_description(out_format);
1977
1978 unsigned dst_alignment;
1979
1980 bool pad_inline = is_arithmetic_format(out_format_desc);
1981 bool has_alpha = false;
1982 const boolean dual_source_blend = variant->key.blend.rt[0].blend_enable &&
1983 util_blend_state_is_dual(&variant->key.blend, 0);
1984
1985 const boolean is_1d = variant->key.resource_1d;
1986 boolean twiddle_after_convert = FALSE;
1987 unsigned num_fullblock_fs = is_1d ? 2 * num_fs : num_fs;
1988 LLVMValueRef fpstate = 0;
1989
1990 /* Get type from output format */
1991 lp_blend_type_from_format_desc(out_format_desc, &row_type);
1992 lp_mem_type_from_format_desc(out_format_desc, &dst_type);
1993
1994 /*
1995 * Technically this code should go into lp_build_smallfloat_to_float
1996 * and lp_build_float_to_smallfloat but due to the
1997 * http://llvm.org/bugs/show_bug.cgi?id=6393
1998 * llvm reorders the mxcsr intrinsics in a way that breaks the code.
1999 * So the ordering is important here and there shouldn't be any
2000 * llvm ir instrunctions in this function before
2001 * this, otherwise half-float format conversions won't work
2002 * (again due to llvm bug #6393).
2003 */
2004 if (have_smallfloat_format(dst_type, out_format)) {
2005 /* We need to make sure that denorms are ok for half float
2006 conversions */
2007 fpstate = lp_build_fpstate_get(gallivm);
2008 lp_build_fpstate_set_denorms_zero(gallivm, FALSE);
2009 }
2010
2011 mask_type = lp_int32_vec4_type();
2012 mask_type.length = fs_type.length;
2013
2014 for (i = num_fs; i < num_fullblock_fs; i++) {
2015 fs_mask[i] = lp_build_zero(gallivm, mask_type);
2016 }
2017
2018 /* Do not bother executing code when mask is empty.. */
2019 if (do_branch) {
2020 check_mask = LLVMConstNull(lp_build_int_vec_type(gallivm, mask_type));
2021
2022 for (i = 0; i < num_fullblock_fs; ++i) {
2023 check_mask = LLVMBuildOr(builder, check_mask, fs_mask[i], "");
2024 }
2025
2026 lp_build_mask_begin(&mask_ctx, gallivm, mask_type, check_mask);
2027 lp_build_mask_check(&mask_ctx);
2028 }
2029
2030 partial_mask |= !variant->opaque;
2031 i32_zero = lp_build_const_int32(gallivm, 0);
2032
2033 undef_src_val = lp_build_undef(gallivm, fs_type);
2034
2035 row_type.length = fs_type.length;
2036 vector_width = dst_type.floating ? lp_native_vector_width : lp_integer_vector_width;
2037
2038 /* Compute correct swizzle and count channels */
2039 memset(swizzle, LP_BLD_SWIZZLE_DONTCARE, TGSI_NUM_CHANNELS);
2040 dst_channels = 0;
2041
2042 for (i = 0; i < TGSI_NUM_CHANNELS; ++i) {
2043 /* Ensure channel is used */
2044 if (out_format_desc->swizzle[i] >= TGSI_NUM_CHANNELS) {
2045 continue;
2046 }
2047
2048 /* Ensure not already written to (happens in case with GL_ALPHA) */
2049 if (swizzle[out_format_desc->swizzle[i]] < TGSI_NUM_CHANNELS) {
2050 continue;
2051 }
2052
2053 /* Ensure we havn't already found all channels */
2054 if (dst_channels >= out_format_desc->nr_channels) {
2055 continue;
2056 }
2057
2058 swizzle[out_format_desc->swizzle[i]] = i;
2059 ++dst_channels;
2060
2061 if (i == alpha_channel) {
2062 has_alpha = true;
2063 }
2064 }
2065
2066 if (format_expands_to_float_soa(out_format_desc)) {
2067 /*
2068 * the code above can't work for layout_other
2069 * for srgb it would sort of work but we short-circuit swizzles, etc.
2070 * as that is done as part of unpack / pack.
2071 */
2072 dst_channels = 4; /* HACK: this is fake 4 really but need it due to transpose stuff later */
2073 has_alpha = true;
2074 swizzle[0] = 0;
2075 swizzle[1] = 1;
2076 swizzle[2] = 2;
2077 swizzle[3] = 3;
2078 pad_inline = true; /* HACK: prevent rgbxrgbx->rgbrgbxx conversion later */
2079 }
2080
2081 /* If 3 channels then pad to include alpha for 4 element transpose */
2082 if (dst_channels == 3) {
2083 assert (!has_alpha);
2084 for (i = 0; i < TGSI_NUM_CHANNELS; i++) {
2085 if (swizzle[i] > TGSI_NUM_CHANNELS)
2086 swizzle[i] = 3;
2087 }
2088 if (out_format_desc->nr_channels == 4) {
2089 dst_channels = 4;
2090 /*
2091 * We use alpha from the color conversion, not separate one.
2092 * We had to include it for transpose, hence it will get converted
2093 * too (albeit when doing transpose after conversion, that would
2094 * no longer be the case necessarily).
2095 * (It works only with 4 channel dsts, e.g. rgbx formats, because
2096 * otherwise we really have padding, not alpha, included.)
2097 */
2098 has_alpha = true;
2099 }
2100 }
2101
2102 /*
2103 * Load shader output
2104 */
2105 for (i = 0; i < num_fullblock_fs; ++i) {
2106 /* Always load alpha for use in blending */
2107 LLVMValueRef alpha;
2108 if (i < num_fs) {
2109 alpha = LLVMBuildLoad(builder, fs_out_color[rt][alpha_channel][i], "");
2110 }
2111 else {
2112 alpha = undef_src_val;
2113 }
2114
2115 /* Load each channel */
2116 for (j = 0; j < dst_channels; ++j) {
2117 assert(swizzle[j] < 4);
2118 if (i < num_fs) {
2119 fs_src[i][j] = LLVMBuildLoad(builder, fs_out_color[rt][swizzle[j]][i], "");
2120 }
2121 else {
2122 fs_src[i][j] = undef_src_val;
2123 }
2124 }
2125
2126 /* If 3 channels then pad to include alpha for 4 element transpose */
2127 /*
2128 * XXX If we include that here maybe could actually use it instead of
2129 * separate alpha for blending?
2130 * (Difficult though we actually convert pad channels, not alpha.)
2131 */
2132 if (dst_channels == 3 && !has_alpha) {
2133 fs_src[i][3] = alpha;
2134 }
2135
2136 /* We split the row_mask and row_alpha as we want 128bit interleave */
2137 if (fs_type.length == 8) {
2138 src_mask[i*2 + 0] = lp_build_extract_range(gallivm, fs_mask[i],
2139 0, src_channels);
2140 src_mask[i*2 + 1] = lp_build_extract_range(gallivm, fs_mask[i],
2141 src_channels, src_channels);
2142
2143 src_alpha[i*2 + 0] = lp_build_extract_range(gallivm, alpha, 0, src_channels);
2144 src_alpha[i*2 + 1] = lp_build_extract_range(gallivm, alpha,
2145 src_channels, src_channels);
2146 } else {
2147 src_mask[i] = fs_mask[i];
2148 src_alpha[i] = alpha;
2149 }
2150 }
2151 if (dual_source_blend) {
2152 /* same as above except different src/dst, skip masks and comments... */
2153 for (i = 0; i < num_fullblock_fs; ++i) {
2154 LLVMValueRef alpha;
2155 if (i < num_fs) {
2156 alpha = LLVMBuildLoad(builder, fs_out_color[1][alpha_channel][i], "");
2157 }
2158 else {
2159 alpha = undef_src_val;
2160 }
2161
2162 for (j = 0; j < dst_channels; ++j) {
2163 assert(swizzle[j] < 4);
2164 if (i < num_fs) {
2165 fs_src1[i][j] = LLVMBuildLoad(builder, fs_out_color[1][swizzle[j]][i], "");
2166 }
2167 else {
2168 fs_src1[i][j] = undef_src_val;
2169 }
2170 }
2171 if (dst_channels == 3 && !has_alpha) {
2172 fs_src1[i][3] = alpha;
2173 }
2174 if (fs_type.length == 8) {
2175 src1_alpha[i*2 + 0] = lp_build_extract_range(gallivm, alpha, 0, src_channels);
2176 src1_alpha[i*2 + 1] = lp_build_extract_range(gallivm, alpha,
2177 src_channels, src_channels);
2178 } else {
2179 src1_alpha[i] = alpha;
2180 }
2181 }
2182 }
2183
2184 if (util_format_is_pure_integer(out_format)) {
2185 /*
2186 * In this case fs_type was really ints or uints disguised as floats,
2187 * fix that up now.
2188 */
2189 fs_type.floating = 0;
2190 fs_type.sign = dst_type.sign;
2191 for (i = 0; i < num_fullblock_fs; ++i) {
2192 for (j = 0; j < dst_channels; ++j) {
2193 fs_src[i][j] = LLVMBuildBitCast(builder, fs_src[i][j],
2194 lp_build_vec_type(gallivm, fs_type), "");
2195 }
2196 if (dst_channels == 3 && !has_alpha) {
2197 fs_src[i][3] = LLVMBuildBitCast(builder, fs_src[i][3],
2198 lp_build_vec_type(gallivm, fs_type), "");
2199 }
2200 }
2201 }
2202
2203 /*
2204 * We actually should generally do conversion first (for non-1d cases)
2205 * when the blend format is 8 or 16 bits. The reason is obvious,
2206 * there's 2 or 4 times less vectors to deal with for the interleave...
2207 * Albeit for the AVX (not AVX2) case there's no benefit with 16 bit
2208 * vectors (as it can do 32bit unpack with 256bit vectors, but 8/16bit
2209 * unpack only with 128bit vectors).
2210 * Note: for 16bit sizes really need matching pack conversion code
2211 */
2212 if (!is_1d && dst_channels != 3 && dst_type.width == 8) {
2213 twiddle_after_convert = TRUE;
2214 }
2215
2216 /*
2217 * Pixel twiddle from fragment shader order to memory order
2218 */
2219 if (!twiddle_after_convert) {
2220 src_count = generate_fs_twiddle(gallivm, fs_type, num_fullblock_fs,
2221 dst_channels, fs_src, src, pad_inline);
2222 if (dual_source_blend) {
2223 generate_fs_twiddle(gallivm, fs_type, num_fullblock_fs, dst_channels,
2224 fs_src1, src1, pad_inline);
2225 }
2226 } else {
2227 src_count = num_fullblock_fs * dst_channels;
2228 /*
2229 * We reorder things a bit here, so the cases for 4-wide and 8-wide
2230 * (AVX) turn out the same later when untwiddling/transpose (albeit
2231 * for true AVX2 path untwiddle needs to be different).
2232 * For now just order by colors first (so we can use unpack later).
2233 */
2234 for (j = 0; j < num_fullblock_fs; j++) {
2235 for (i = 0; i < dst_channels; i++) {
2236 src[i*num_fullblock_fs + j] = fs_src[j][i];
2237 if (dual_source_blend) {
2238 src1[i*num_fullblock_fs + j] = fs_src1[j][i];
2239 }
2240 }
2241 }
2242 }
2243
2244 src_channels = dst_channels < 3 ? dst_channels : 4;
2245 if (src_count != num_fullblock_fs * src_channels) {
2246 unsigned ds = src_count / (num_fullblock_fs * src_channels);
2247 row_type.length /= ds;
2248 fs_type.length = row_type.length;
2249 }
2250
2251 blend_type = row_type;
2252 mask_type.length = 4;
2253
2254 /* Convert src to row_type */
2255 if (dual_source_blend) {
2256 struct lp_type old_row_type = row_type;
2257 lp_build_conv_auto(gallivm, fs_type, &row_type, src, src_count, src);
2258 src_count = lp_build_conv_auto(gallivm, fs_type, &old_row_type, src1, src_count, src1);
2259 }
2260 else {
2261 src_count = lp_build_conv_auto(gallivm, fs_type, &row_type, src, src_count, src);
2262 }
2263
2264 /* If the rows are not an SSE vector, combine them to become SSE size! */
2265 if ((row_type.width * row_type.length) % 128) {
2266 unsigned bits = row_type.width * row_type.length;
2267 unsigned combined;
2268
2269 assert(src_count >= (vector_width / bits));
2270
2271 dst_count = src_count / (vector_width / bits);
2272
2273 combined = lp_build_concat_n(gallivm, row_type, src, src_count, src, dst_count);
2274 if (dual_source_blend) {
2275 lp_build_concat_n(gallivm, row_type, src1, src_count, src1, dst_count);
2276 }
2277
2278 row_type.length *= combined;
2279 src_count /= combined;
2280
2281 bits = row_type.width * row_type.length;
2282 assert(bits == 128 || bits == 256);
2283 }
2284
2285 if (twiddle_after_convert) {
2286 fs_twiddle_transpose(gallivm, row_type, src, src_count, src);
2287 if (dual_source_blend) {
2288 fs_twiddle_transpose(gallivm, row_type, src1, src_count, src1);
2289 }
2290 }
2291
2292 /*
2293 * Blend Colour conversion
2294 */
2295 blend_color = lp_jit_context_f_blend_color(gallivm, context_ptr);
2296 blend_color = LLVMBuildPointerCast(builder, blend_color,
2297 LLVMPointerType(lp_build_vec_type(gallivm, fs_type), 0), "");
2298 blend_color = LLVMBuildLoad(builder, LLVMBuildGEP(builder, blend_color,
2299 &i32_zero, 1, ""), "");
2300
2301 /* Convert */
2302 lp_build_conv(gallivm, fs_type, blend_type, &blend_color, 1, &blend_color, 1);
2303
2304 if (out_format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) {
2305 /*
2306 * since blending is done with floats, there was no conversion.
2307 * However, the rules according to fixed point renderbuffers still
2308 * apply, that is we must clamp inputs to 0.0/1.0.
2309 * (This would apply to separate alpha conversion too but we currently
2310 * force has_alpha to be true.)
2311 * TODO: should skip this with "fake" blend, since post-blend conversion
2312 * will clamp anyway.
2313 * TODO: could also skip this if fragment color clamping is enabled. We
2314 * don't support it natively so it gets baked into the shader however, so
2315 * can't really tell here.
2316 */
2317 struct lp_build_context f32_bld;
2318 assert(row_type.floating);
2319 lp_build_context_init(&f32_bld, gallivm, row_type);
2320 for (i = 0; i < src_count; i++) {
2321 src[i] = lp_build_clamp_zero_one_nanzero(&f32_bld, src[i]);
2322 }
2323 if (dual_source_blend) {
2324 for (i = 0; i < src_count; i++) {
2325 src1[i] = lp_build_clamp_zero_one_nanzero(&f32_bld, src1[i]);
2326 }
2327 }
2328 /* probably can't be different than row_type but better safe than sorry... */
2329 lp_build_context_init(&f32_bld, gallivm, blend_type);
2330 blend_color = lp_build_clamp(&f32_bld, blend_color, f32_bld.zero, f32_bld.one);
2331 }
2332
2333 /* Extract alpha */
2334 blend_alpha = lp_build_extract_broadcast(gallivm, blend_type, row_type, blend_color, lp_build_const_int32(gallivm, 3));
2335
2336 /* Swizzle to appropriate channels, e.g. from RGBA to BGRA BGRA */
2337 pad_inline &= (dst_channels * (block_size / src_count) * row_type.width) != vector_width;
2338 if (pad_inline) {
2339 /* Use all 4 channels e.g. from RGBA RGBA to RGxx RGxx */
2340 blend_color = lp_build_swizzle_aos_n(gallivm, blend_color, swizzle, TGSI_NUM_CHANNELS, row_type.length);
2341 } else {
2342 /* Only use dst_channels e.g. RGBA RGBA to RG RG xxxx */
2343 blend_color = lp_build_swizzle_aos_n(gallivm, blend_color, swizzle, dst_channels, row_type.length);
2344 }
2345
2346 /*
2347 * Mask conversion
2348 */
2349 lp_bld_quad_twiddle(gallivm, mask_type, &src_mask[0], block_height, &src_mask[0]);
2350
2351 if (src_count < block_height) {
2352 lp_build_concat_n(gallivm, mask_type, src_mask, 4, src_mask, src_count);
2353 } else if (src_count > block_height) {
2354 for (i = src_count; i > 0; --i) {
2355 unsigned pixels = block_size / src_count;
2356 unsigned idx = i - 1;
2357
2358 src_mask[idx] = lp_build_extract_range(gallivm, src_mask[(idx * pixels) / 4],
2359 (idx * pixels) % 4, pixels);
2360 }
2361 }
2362
2363 assert(mask_type.width == 32);
2364
2365 for (i = 0; i < src_count; ++i) {
2366 unsigned pixels = block_size / src_count;
2367 unsigned pixel_width = row_type.width * dst_channels;
2368
2369 if (pixel_width == 24) {
2370 mask_type.width = 8;
2371 mask_type.length = vector_width / mask_type.width;
2372 } else {
2373 mask_type.length = pixels;
2374 mask_type.width = row_type.width * dst_channels;
2375
2376 /*
2377 * If mask_type width is smaller than 32bit, this doesn't quite
2378 * generate the most efficient code (could use some pack).
2379 */
2380 src_mask[i] = LLVMBuildIntCast(builder, src_mask[i],
2381 lp_build_int_vec_type(gallivm, mask_type), "");
2382
2383 mask_type.length *= dst_channels;
2384 mask_type.width /= dst_channels;
2385 }
2386
2387 src_mask[i] = LLVMBuildBitCast(builder, src_mask[i],
2388 lp_build_int_vec_type(gallivm, mask_type), "");
2389 src_mask[i] = lp_build_pad_vector(gallivm, src_mask[i], row_type.length);
2390 }
2391
2392 /*
2393 * Alpha conversion
2394 */
2395 if (!has_alpha) {
2396 struct lp_type alpha_type = fs_type;
2397 alpha_type.length = 4;
2398 convert_alpha(gallivm, row_type, alpha_type,
2399 block_size, block_height,
2400 src_count, dst_channels,
2401 pad_inline, src_alpha);
2402 if (dual_source_blend) {
2403 convert_alpha(gallivm, row_type, alpha_type,
2404 block_size, block_height,
2405 src_count, dst_channels,
2406 pad_inline, src1_alpha);
2407 }
2408 }
2409
2410
2411 /*
2412 * Load dst from memory
2413 */
2414 if (src_count < block_height) {
2415 dst_count = block_height;
2416 } else {
2417 dst_count = src_count;
2418 }
2419
2420 dst_type.length *= block_size / dst_count;
2421
2422 if (format_expands_to_float_soa(out_format_desc)) {
2423 /*
2424 * we need multiple values at once for the conversion, so can as well
2425 * load them vectorized here too instead of concatenating later.
2426 * (Still need concatenation later for 8-wide vectors).
2427 */
2428 dst_count = block_height;
2429 dst_type.length = block_width;
2430 }
2431
2432 /*
2433 * Compute the alignment of the destination pointer in bytes
2434 * We fetch 1-4 pixels, if the format has pot alignment then those fetches
2435 * are always aligned by MIN2(16, fetch_width) except for buffers (not
2436 * 1d tex but can't distinguish here) so need to stick with per-pixel
2437 * alignment in this case.
2438 */
2439 if (is_1d) {
2440 dst_alignment = (out_format_desc->block.bits + 7)/(out_format_desc->block.width * 8);
2441 }
2442 else {
2443 dst_alignment = dst_type.length * dst_type.width / 8;
2444 }
2445 /* Force power-of-two alignment by extracting only the least-significant-bit */
2446 dst_alignment = 1 << (ffs(dst_alignment) - 1);
2447 /*
2448 * Resource base and stride pointers are aligned to 16 bytes, so that's
2449 * the maximum alignment we can guarantee
2450 */
2451 dst_alignment = MIN2(16, dst_alignment);
2452
2453 ls_type = dst_type;
2454
2455 if (dst_count > src_count) {
2456 if ((dst_type.width == 8 || dst_type.width == 16) &&
2457 util_is_power_of_two_or_zero(dst_type.length) &&
2458 dst_type.length * dst_type.width < 128) {
2459 /*
2460 * Never try to load values as 4xi8 which we will then
2461 * concatenate to larger vectors. This gives llvm a real
2462 * headache (the problem is the type legalizer (?) will
2463 * try to load that as 4xi8 zext to 4xi32 to fill the vector,
2464 * then the shuffles to concatenate are more or less impossible
2465 * - llvm is easily capable of generating a sequence of 32
2466 * pextrb/pinsrb instructions for that. Albeit it appears to
2467 * be fixed in llvm 4.0. So, load and concatenate with 32bit
2468 * width to avoid the trouble (16bit seems not as bad, llvm
2469 * probably recognizes the load+shuffle as only one shuffle
2470 * is necessary, but we can do just the same anyway).
2471 */
2472 ls_type.length = dst_type.length * dst_type.width / 32;
2473 ls_type.width = 32;
2474 }
2475 }
2476
2477 if (is_1d) {
2478 load_unswizzled_block(gallivm, color_ptr, stride, block_width, 1,
2479 dst, ls_type, dst_count / 4, dst_alignment);
2480 for (i = dst_count / 4; i < dst_count; i++) {
2481 dst[i] = lp_build_undef(gallivm, ls_type);
2482 }
2483
2484 }
2485 else {
2486 load_unswizzled_block(gallivm, color_ptr, stride, block_width, block_height,
2487 dst, ls_type, dst_count, dst_alignment);
2488 }
2489
2490
2491 /*
2492 * Convert from dst/output format to src/blending format.
2493 *
2494 * This is necessary as we can only read 1 row from memory at a time,
2495 * so the minimum dst_count will ever be at this point is 4.
2496 *
2497 * With, for example, R8 format you can have all 16 pixels in a 128 bit vector,
2498 * this will take the 4 dsts and combine them into 1 src so we can perform blending
2499 * on all 16 pixels in that single vector at once.
2500 */
2501 if (dst_count > src_count) {
2502 if (ls_type.length != dst_type.length && ls_type.length == 1) {
2503 LLVMTypeRef elem_type = lp_build_elem_type(gallivm, ls_type);
2504 LLVMTypeRef ls_vec_type = LLVMVectorType(elem_type, 1);
2505 for (i = 0; i < dst_count; i++) {
2506 dst[i] = LLVMBuildBitCast(builder, dst[i], ls_vec_type, "");
2507 }
2508 }
2509
2510 lp_build_concat_n(gallivm, ls_type, dst, 4, dst, src_count);
2511
2512 if (ls_type.length != dst_type.length) {
2513 struct lp_type tmp_type = dst_type;
2514 tmp_type.length = dst_type.length * 4 / src_count;
2515 for (i = 0; i < src_count; i++) {
2516 dst[i] = LLVMBuildBitCast(builder, dst[i],
2517 lp_build_vec_type(gallivm, tmp_type), "");
2518 }
2519 }
2520 }
2521
2522 /*
2523 * Blending
2524 */
2525 /* XXX this is broken for RGB8 formats -
2526 * they get expanded from 12 to 16 elements (to include alpha)
2527 * by convert_to_blend_type then reduced to 15 instead of 12
2528 * by convert_from_blend_type (a simple fix though breaks A8...).
2529 * R16G16B16 also crashes differently however something going wrong
2530 * inside llvm handling npot vector sizes seemingly.
2531 * It seems some cleanup could be done here (like skipping conversion/blend
2532 * when not needed).
2533 */
2534 convert_to_blend_type(gallivm, block_size, out_format_desc, dst_type,
2535 row_type, dst, src_count);
2536
2537 /*
2538 * FIXME: Really should get logic ops / masks out of generic blend / row
2539 * format. Logic ops will definitely not work on the blend float format
2540 * used for SRGB here and I think OpenGL expects this to work as expected
2541 * (that is incoming values converted to srgb then logic op applied).
2542 */
2543 for (i = 0; i < src_count; ++i) {
2544 dst[i] = lp_build_blend_aos(gallivm,
2545 &variant->key.blend,
2546 out_format,
2547 row_type,
2548 rt,
2549 src[i],
2550 has_alpha ? NULL : src_alpha[i],
2551 src1[i],
2552 has_alpha ? NULL : src1_alpha[i],
2553 dst[i],
2554 partial_mask ? src_mask[i] : NULL,
2555 blend_color,
2556 has_alpha ? NULL : blend_alpha,
2557 swizzle,
2558 pad_inline ? 4 : dst_channels);
2559 }
2560
2561 convert_from_blend_type(gallivm, block_size, out_format_desc,
2562 row_type, dst_type, dst, src_count);
2563
2564 /* Split the blend rows back to memory rows */
2565 if (dst_count > src_count) {
2566 row_type.length = dst_type.length * (dst_count / src_count);
2567
2568 if (src_count == 1) {
2569 dst[1] = lp_build_extract_range(gallivm, dst[0], row_type.length / 2, row_type.length / 2);
2570 dst[0] = lp_build_extract_range(gallivm, dst[0], 0, row_type.length / 2);
2571
2572 row_type.length /= 2;
2573 src_count *= 2;
2574 }
2575
2576 dst[3] = lp_build_extract_range(gallivm, dst[1], row_type.length / 2, row_type.length / 2);
2577 dst[2] = lp_build_extract_range(gallivm, dst[1], 0, row_type.length / 2);
2578 dst[1] = lp_build_extract_range(gallivm, dst[0], row_type.length / 2, row_type.length / 2);
2579 dst[0] = lp_build_extract_range(gallivm, dst[0], 0, row_type.length / 2);
2580
2581 row_type.length /= 2;
2582 src_count *= 2;
2583 }
2584
2585 /*
2586 * Store blend result to memory
2587 */
2588 if (is_1d) {
2589 store_unswizzled_block(gallivm, color_ptr, stride, block_width, 1,
2590 dst, dst_type, dst_count / 4, dst_alignment);
2591 }
2592 else {
2593 store_unswizzled_block(gallivm, color_ptr, stride, block_width, block_height,
2594 dst, dst_type, dst_count, dst_alignment);
2595 }
2596
2597 if (have_smallfloat_format(dst_type, out_format)) {
2598 lp_build_fpstate_set(gallivm, fpstate);
2599 }
2600
2601 if (do_branch) {
2602 lp_build_mask_end(&mask_ctx);
2603 }
2604 }
2605
2606
2607 /**
2608 * Generate the runtime callable function for the whole fragment pipeline.
2609 * Note that the function which we generate operates on a block of 16
2610 * pixels at at time. The block contains 2x2 quads. Each quad contains
2611 * 2x2 pixels.
2612 */
2613 static void
2614 generate_fragment(struct llvmpipe_context *lp,
2615 struct lp_fragment_shader *shader,
2616 struct lp_fragment_shader_variant *variant,
2617 unsigned partial_mask)
2618 {
2619 struct gallivm_state *gallivm = variant->gallivm;
2620 struct lp_fragment_shader_variant_key *key = &variant->key;
2621 struct lp_shader_input inputs[PIPE_MAX_SHADER_INPUTS];
2622 char func_name[64];
2623 struct lp_type fs_type;
2624 struct lp_type blend_type;
2625 LLVMTypeRef fs_elem_type;
2626 LLVMTypeRef blend_vec_type;
2627 LLVMTypeRef arg_types[15];
2628 LLVMTypeRef func_type;
2629 LLVMTypeRef int32_type = LLVMInt32TypeInContext(gallivm->context);
2630 LLVMTypeRef int8_type = LLVMInt8TypeInContext(gallivm->context);
2631 LLVMValueRef context_ptr;
2632 LLVMValueRef x;
2633 LLVMValueRef y;
2634 LLVMValueRef a0_ptr;
2635 LLVMValueRef dadx_ptr;
2636 LLVMValueRef dady_ptr;
2637 LLVMValueRef color_ptr_ptr;
2638 LLVMValueRef stride_ptr;
2639 LLVMValueRef color_sample_stride_ptr;
2640 LLVMValueRef depth_ptr;
2641 LLVMValueRef depth_stride;
2642 LLVMValueRef depth_sample_stride;
2643 LLVMValueRef mask_input;
2644 LLVMValueRef thread_data_ptr;
2645 LLVMBasicBlockRef block;
2646 LLVMBuilderRef builder;
2647 struct lp_build_sampler_soa *sampler;
2648 struct lp_build_image_soa *image;
2649 struct lp_build_interp_soa_context interp;
2650 LLVMValueRef fs_mask[(16 / 4) * LP_MAX_SAMPLES];
2651 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][16 / 4];
2652 LLVMValueRef function;
2653 LLVMValueRef facing;
2654 unsigned num_fs;
2655 unsigned i;
2656 unsigned chan;
2657 unsigned cbuf;
2658 boolean cbuf0_write_all;
2659 const boolean dual_source_blend = key->blend.rt[0].blend_enable &&
2660 util_blend_state_is_dual(&key->blend, 0);
2661
2662 assert(lp_native_vector_width / 32 >= 4);
2663
2664 /* Adjust color input interpolation according to flatshade state:
2665 */
2666 memcpy(inputs, shader->inputs, shader->info.base.num_inputs * sizeof inputs[0]);
2667 for (i = 0; i < shader->info.base.num_inputs; i++) {
2668 if (inputs[i].interp == LP_INTERP_COLOR) {
2669 if (key->flatshade)
2670 inputs[i].interp = LP_INTERP_CONSTANT;
2671 else
2672 inputs[i].interp = LP_INTERP_PERSPECTIVE;
2673 }
2674 }
2675
2676 /* check if writes to cbuf[0] are to be copied to all cbufs */
2677 cbuf0_write_all =
2678 shader->info.base.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS];
2679
2680 /* TODO: actually pick these based on the fs and color buffer
2681 * characteristics. */
2682
2683 memset(&fs_type, 0, sizeof fs_type);
2684 fs_type.floating = TRUE; /* floating point values */
2685 fs_type.sign = TRUE; /* values are signed */
2686 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
2687 fs_type.width = 32; /* 32-bit float */
2688 fs_type.length = MIN2(lp_native_vector_width / 32, 16); /* n*4 elements per vector */
2689
2690 memset(&blend_type, 0, sizeof blend_type);
2691 blend_type.floating = FALSE; /* values are integers */
2692 blend_type.sign = FALSE; /* values are unsigned */
2693 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
2694 blend_type.width = 8; /* 8-bit ubyte values */
2695 blend_type.length = 16; /* 16 elements per vector */
2696
2697 /*
2698 * Generate the function prototype. Any change here must be reflected in
2699 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
2700 */
2701
2702 fs_elem_type = lp_build_elem_type(gallivm, fs_type);
2703
2704 blend_vec_type = lp_build_vec_type(gallivm, blend_type);
2705
2706 snprintf(func_name, sizeof(func_name), "fs%u_variant%u_%s",
2707 shader->no, variant->no, partial_mask ? "partial" : "whole");
2708
2709 arg_types[0] = variant->jit_context_ptr_type; /* context */
2710 arg_types[1] = int32_type; /* x */
2711 arg_types[2] = int32_type; /* y */
2712 arg_types[3] = int32_type; /* facing */
2713 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* a0 */
2714 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dadx */
2715 arg_types[6] = LLVMPointerType(fs_elem_type, 0); /* dady */
2716 arg_types[7] = LLVMPointerType(LLVMPointerType(int8_type, 0), 0); /* color */
2717 arg_types[8] = LLVMPointerType(int8_type, 0); /* depth */
2718 arg_types[9] = LLVMInt64TypeInContext(gallivm->context); /* mask_input */
2719 arg_types[10] = variant->jit_thread_data_ptr_type; /* per thread data */
2720 arg_types[11] = LLVMPointerType(int32_type, 0); /* stride */
2721 arg_types[12] = int32_type; /* depth_stride */
2722 arg_types[13] = LLVMPointerType(int32_type, 0); /* color sample strides */
2723 arg_types[14] = int32_type; /* depth sample stride */
2724
2725 func_type = LLVMFunctionType(LLVMVoidTypeInContext(gallivm->context),
2726 arg_types, ARRAY_SIZE(arg_types), 0);
2727
2728 function = LLVMAddFunction(gallivm->module, func_name, func_type);
2729 LLVMSetFunctionCallConv(function, LLVMCCallConv);
2730
2731 variant->function[partial_mask] = function;
2732
2733 /* XXX: need to propagate noalias down into color param now we are
2734 * passing a pointer-to-pointer?
2735 */
2736 for(i = 0; i < ARRAY_SIZE(arg_types); ++i)
2737 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
2738 lp_add_function_attr(function, i + 1, LP_FUNC_ATTR_NOALIAS);
2739
2740 context_ptr = LLVMGetParam(function, 0);
2741 x = LLVMGetParam(function, 1);
2742 y = LLVMGetParam(function, 2);
2743 facing = LLVMGetParam(function, 3);
2744 a0_ptr = LLVMGetParam(function, 4);
2745 dadx_ptr = LLVMGetParam(function, 5);
2746 dady_ptr = LLVMGetParam(function, 6);
2747 color_ptr_ptr = LLVMGetParam(function, 7);
2748 depth_ptr = LLVMGetParam(function, 8);
2749 mask_input = LLVMGetParam(function, 9);
2750 thread_data_ptr = LLVMGetParam(function, 10);
2751 stride_ptr = LLVMGetParam(function, 11);
2752 depth_stride = LLVMGetParam(function, 12);
2753 color_sample_stride_ptr = LLVMGetParam(function, 13);
2754 depth_sample_stride = LLVMGetParam(function, 14);
2755
2756 lp_build_name(context_ptr, "context");
2757 lp_build_name(x, "x");
2758 lp_build_name(y, "y");
2759 lp_build_name(a0_ptr, "a0");
2760 lp_build_name(dadx_ptr, "dadx");
2761 lp_build_name(dady_ptr, "dady");
2762 lp_build_name(color_ptr_ptr, "color_ptr_ptr");
2763 lp_build_name(depth_ptr, "depth");
2764 lp_build_name(mask_input, "mask_input");
2765 lp_build_name(thread_data_ptr, "thread_data");
2766 lp_build_name(stride_ptr, "stride_ptr");
2767 lp_build_name(depth_stride, "depth_stride");
2768 lp_build_name(color_sample_stride_ptr, "color_sample_stride_ptr");
2769 lp_build_name(depth_sample_stride, "depth_sample_stride");
2770
2771 /*
2772 * Function body
2773 */
2774
2775 block = LLVMAppendBasicBlockInContext(gallivm->context, function, "entry");
2776 builder = gallivm->builder;
2777 assert(builder);
2778 LLVMPositionBuilderAtEnd(builder, block);
2779
2780 /*
2781 * Must not count ps invocations if there's a null shader.
2782 * (It would be ok to count with null shader if there's d/s tests,
2783 * but only if there's d/s buffers too, which is different
2784 * to implicit rasterization disable which must not depend
2785 * on the d/s buffers.)
2786 * Could use popcount on mask, but pixel accuracy is not required.
2787 * Could disable if there's no stats query, but maybe not worth it.
2788 */
2789 if (shader->info.base.num_instructions > 1) {
2790 LLVMValueRef invocs, val;
2791 invocs = lp_jit_thread_data_invocations(gallivm, thread_data_ptr);
2792 val = LLVMBuildLoad(builder, invocs, "");
2793 val = LLVMBuildAdd(builder, val,
2794 LLVMConstInt(LLVMInt64TypeInContext(gallivm->context), 1, 0),
2795 "invoc_count");
2796 LLVMBuildStore(builder, val, invocs);
2797 }
2798
2799 /* code generated texture sampling */
2800 sampler = lp_llvm_sampler_soa_create(key->samplers);
2801 image = lp_llvm_image_soa_create(lp_fs_variant_key_images(key));
2802
2803 num_fs = 16 / fs_type.length; /* number of loops per 4x4 stamp */
2804 /* for 1d resources only run "upper half" of stamp */
2805 if (key->resource_1d)
2806 num_fs /= 2;
2807
2808 {
2809 LLVMValueRef num_loop = lp_build_const_int32(gallivm, num_fs);
2810 LLVMTypeRef mask_type = lp_build_int_vec_type(gallivm, fs_type);
2811 LLVMValueRef num_loop_samp = lp_build_const_int32(gallivm, num_fs * key->coverage_samples);
2812 LLVMValueRef mask_store = lp_build_array_alloca(gallivm, mask_type,
2813 num_loop_samp, "mask_store");
2814
2815 LLVMTypeRef flt_type = LLVMFloatTypeInContext(gallivm->context);
2816 LLVMValueRef glob_sample_pos = LLVMAddGlobal(gallivm->module, flt_type, "");
2817 LLVMValueRef sample_pos_array;
2818
2819 if (key->multisample && key->coverage_samples == 4) {
2820 LLVMValueRef sample_pos_arr[8];
2821 for (unsigned i = 0; i < 4; i++) {
2822 sample_pos_arr[i * 2] = LLVMConstReal(flt_type, lp_sample_pos_4x[i][0]);
2823 sample_pos_arr[i * 2 + 1] = LLVMConstReal(flt_type, lp_sample_pos_4x[i][1]);
2824 }
2825 sample_pos_array = LLVMConstArray(LLVMFloatTypeInContext(gallivm->context), sample_pos_arr, 8);
2826 } else {
2827 LLVMValueRef sample_pos_arr[2];
2828 sample_pos_arr[0] = LLVMConstReal(flt_type, 0.5);
2829 sample_pos_arr[1] = LLVMConstReal(flt_type, 0.5);
2830 sample_pos_array = LLVMConstArray(LLVMFloatTypeInContext(gallivm->context), sample_pos_arr, 2);
2831 }
2832 LLVMSetInitializer(glob_sample_pos, sample_pos_array);
2833
2834 LLVMValueRef color_store[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS];
2835 boolean pixel_center_integer =
2836 shader->info.base.properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER];
2837
2838 /*
2839 * The shader input interpolation info is not explicitely baked in the
2840 * shader key, but everything it derives from (TGSI, and flatshade) is
2841 * already included in the shader key.
2842 */
2843 lp_build_interp_soa_init(&interp,
2844 gallivm,
2845 shader->info.base.num_inputs,
2846 inputs,
2847 pixel_center_integer,
2848 key->coverage_samples, glob_sample_pos,
2849 num_loop,
2850 key->depth_clamp,
2851 builder, fs_type,
2852 a0_ptr, dadx_ptr, dady_ptr,
2853 x, y);
2854
2855 for (i = 0; i < num_fs; i++) {
2856 if (key->multisample) {
2857 LLVMValueRef smask_val = LLVMBuildLoad(builder, lp_jit_context_sample_mask(gallivm, context_ptr), "");
2858
2859 /*
2860 * For multisampling, extract the per-sample mask from the incoming 64-bit mask,
2861 * store to the per sample mask storage. Or all of them together to generate
2862 * the fragment shader mask. (sample shading TODO).
2863 * Take the incoming state coverage mask into account.
2864 */
2865 for (unsigned s = 0; s < key->coverage_samples; s++) {
2866 LLVMValueRef sindexi = lp_build_const_int32(gallivm, i + (s * num_fs));
2867 LLVMValueRef sample_mask_ptr = LLVMBuildGEP(builder, mask_store,
2868 &sindexi, 1, "sample_mask_ptr");
2869 LLVMValueRef s_mask = generate_quad_mask(gallivm, fs_type,
2870 i*fs_type.length/4, s, mask_input);
2871
2872 LLVMValueRef smask_bit = LLVMBuildAnd(builder, smask_val, lp_build_const_int32(gallivm, (1 << s)), "");
2873 LLVMValueRef cmp = LLVMBuildICmp(builder, LLVMIntNE, smask_bit, lp_build_const_int32(gallivm, 0), "");
2874 smask_bit = LLVMBuildSExt(builder, cmp, int32_type, "");
2875 smask_bit = lp_build_broadcast(gallivm, mask_type, smask_bit);
2876
2877 s_mask = LLVMBuildAnd(builder, s_mask, smask_bit, "");
2878 LLVMBuildStore(builder, s_mask, sample_mask_ptr);
2879 }
2880 } else {
2881 LLVMValueRef mask;
2882 LLVMValueRef indexi = lp_build_const_int32(gallivm, i);
2883 LLVMValueRef mask_ptr = LLVMBuildGEP(builder, mask_store,
2884 &indexi, 1, "mask_ptr");
2885
2886 if (partial_mask) {
2887 mask = generate_quad_mask(gallivm, fs_type,
2888 i*fs_type.length/4, 0, mask_input);
2889 }
2890 else {
2891 mask = lp_build_const_int_vec(gallivm, fs_type, ~0);
2892 }
2893 LLVMBuildStore(builder, mask, mask_ptr);
2894 }
2895 }
2896
2897 generate_fs_loop(gallivm,
2898 shader, key,
2899 builder,
2900 fs_type,
2901 context_ptr,
2902 glob_sample_pos,
2903 num_loop,
2904 &interp,
2905 sampler,
2906 image,
2907 mask_store, /* output */
2908 color_store,
2909 depth_ptr,
2910 depth_stride,
2911 depth_sample_stride,
2912 facing,
2913 thread_data_ptr);
2914
2915 for (i = 0; i < num_fs; i++) {
2916 LLVMValueRef indexi = lp_build_const_int32(gallivm, i);
2917 LLVMValueRef ptr;
2918 for (unsigned s = 0; s < key->coverage_samples; s++) {
2919 int idx = (i + (s * num_fs));
2920 LLVMValueRef sindexi = lp_build_const_int32(gallivm, idx);
2921 ptr = LLVMBuildGEP(builder, mask_store, &sindexi, 1, "");
2922
2923 fs_mask[idx] = LLVMBuildLoad(builder, ptr, "smask");
2924 }
2925
2926 /* This is fucked up need to reorganize things */
2927 for (cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
2928 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
2929 ptr = LLVMBuildGEP(builder,
2930 color_store[cbuf * !cbuf0_write_all][chan],
2931 &indexi, 1, "");
2932 fs_out_color[cbuf][chan][i] = ptr;
2933 }
2934 }
2935 if (dual_source_blend) {
2936 /* only support one dual source blend target hence always use output 1 */
2937 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
2938 ptr = LLVMBuildGEP(builder,
2939 color_store[1][chan],
2940 &indexi, 1, "");
2941 fs_out_color[1][chan][i] = ptr;
2942 }
2943 }
2944 }
2945 }
2946
2947 sampler->destroy(sampler);
2948 image->destroy(image);
2949 /* Loop over color outputs / color buffers to do blending.
2950 */
2951 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
2952 if (key->cbuf_format[cbuf] != PIPE_FORMAT_NONE) {
2953 LLVMValueRef color_ptr;
2954 LLVMValueRef stride;
2955 LLVMValueRef sample_stride = NULL;
2956 LLVMValueRef index = lp_build_const_int32(gallivm, cbuf);
2957
2958 boolean do_branch = ((key->depth.enabled
2959 || key->stencil[0].enabled
2960 || key->alpha.enabled)
2961 && !shader->info.base.uses_kill);
2962
2963 color_ptr = LLVMBuildLoad(builder,
2964 LLVMBuildGEP(builder, color_ptr_ptr,
2965 &index, 1, ""),
2966 "");
2967
2968 stride = LLVMBuildLoad(builder,
2969 LLVMBuildGEP(builder, stride_ptr, &index, 1, ""),
2970 "");
2971
2972 if (key->multisample)
2973 sample_stride = LLVMBuildLoad(builder,
2974 LLVMBuildGEP(builder, color_sample_stride_ptr,
2975 &index, 1, ""), "");
2976
2977 for (unsigned s = 0; s < key->cbuf_nr_samples[cbuf]; s++) {
2978 unsigned mask_idx = num_fs * (key->multisample ? s : 0);
2979 LLVMValueRef out_ptr = color_ptr;;
2980
2981 if (key->multisample) {
2982 LLVMValueRef sample_offset = LLVMBuildMul(builder, sample_stride, lp_build_const_int32(gallivm, s), "");
2983 out_ptr = LLVMBuildGEP(builder, out_ptr, &sample_offset, 1, "");
2984 }
2985 out_ptr = LLVMBuildBitCast(builder, out_ptr, LLVMPointerType(blend_vec_type, 0), "");
2986
2987 lp_build_name(out_ptr, "color_ptr%d", cbuf);
2988
2989 generate_unswizzled_blend(gallivm, cbuf, variant,
2990 key->cbuf_format[cbuf],
2991 num_fs, fs_type, &fs_mask[mask_idx], fs_out_color,
2992 context_ptr, out_ptr, stride,
2993 partial_mask, do_branch);
2994 }
2995 }
2996 }
2997
2998 LLVMBuildRetVoid(builder);
2999
3000 gallivm_verify_function(gallivm, function);
3001 }
3002
3003
3004 static void
3005 dump_fs_variant_key(struct lp_fragment_shader_variant_key *key)
3006 {
3007 unsigned i;
3008
3009 debug_printf("fs variant %p:\n", (void *) key);
3010
3011 if (key->flatshade) {
3012 debug_printf("flatshade = 1\n");
3013 }
3014 if (key->multisample) {
3015 debug_printf("multisample = 1\n");
3016 debug_printf("coverage samples = %d\n", key->coverage_samples);
3017 }
3018 for (i = 0; i < key->nr_cbufs; ++i) {
3019 debug_printf("cbuf_format[%u] = %s\n", i, util_format_name(key->cbuf_format[i]));
3020 debug_printf("cbuf nr_samples[%u] = %d\n", i, key->cbuf_nr_samples[i]);
3021 }
3022 if (key->depth.enabled || key->stencil[0].enabled) {
3023 debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
3024 debug_printf("depth nr_samples = %d\n", key->zsbuf_nr_samples);
3025 }
3026 if (key->depth.enabled) {
3027 debug_printf("depth.func = %s\n", util_str_func(key->depth.func, TRUE));
3028 debug_printf("depth.writemask = %u\n", key->depth.writemask);
3029 }
3030
3031 for (i = 0; i < 2; ++i) {
3032 if (key->stencil[i].enabled) {
3033 debug_printf("stencil[%u].func = %s\n", i, util_str_func(key->stencil[i].func, TRUE));
3034 debug_printf("stencil[%u].fail_op = %s\n", i, util_str_stencil_op(key->stencil[i].fail_op, TRUE));
3035 debug_printf("stencil[%u].zpass_op = %s\n", i, util_str_stencil_op(key->stencil[i].zpass_op, TRUE));
3036 debug_printf("stencil[%u].zfail_op = %s\n", i, util_str_stencil_op(key->stencil[i].zfail_op, TRUE));
3037 debug_printf("stencil[%u].valuemask = 0x%x\n", i, key->stencil[i].valuemask);
3038 debug_printf("stencil[%u].writemask = 0x%x\n", i, key->stencil[i].writemask);
3039 }
3040 }
3041
3042 if (key->alpha.enabled) {
3043 debug_printf("alpha.func = %s\n", util_str_func(key->alpha.func, TRUE));
3044 }
3045
3046 if (key->occlusion_count) {
3047 debug_printf("occlusion_count = 1\n");
3048 }
3049
3050 if (key->blend.logicop_enable) {
3051 debug_printf("blend.logicop_func = %s\n", util_str_logicop(key->blend.logicop_func, TRUE));
3052 }
3053 else if (key->blend.rt[0].blend_enable) {
3054 debug_printf("blend.rgb_func = %s\n", util_str_blend_func (key->blend.rt[0].rgb_func, TRUE));
3055 debug_printf("blend.rgb_src_factor = %s\n", util_str_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
3056 debug_printf("blend.rgb_dst_factor = %s\n", util_str_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
3057 debug_printf("blend.alpha_func = %s\n", util_str_blend_func (key->blend.rt[0].alpha_func, TRUE));
3058 debug_printf("blend.alpha_src_factor = %s\n", util_str_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
3059 debug_printf("blend.alpha_dst_factor = %s\n", util_str_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
3060 }
3061 debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
3062 if (key->blend.alpha_to_coverage) {
3063 debug_printf("blend.alpha_to_coverage is enabled\n");
3064 }
3065 for (i = 0; i < key->nr_samplers; ++i) {
3066 const struct lp_static_sampler_state *sampler = &key->samplers[i].sampler_state;
3067 debug_printf("sampler[%u] = \n", i);
3068 debug_printf(" .wrap = %s %s %s\n",
3069 util_str_tex_wrap(sampler->wrap_s, TRUE),
3070 util_str_tex_wrap(sampler->wrap_t, TRUE),
3071 util_str_tex_wrap(sampler->wrap_r, TRUE));
3072 debug_printf(" .min_img_filter = %s\n",
3073 util_str_tex_filter(sampler->min_img_filter, TRUE));
3074 debug_printf(" .min_mip_filter = %s\n",
3075 util_str_tex_mipfilter(sampler->min_mip_filter, TRUE));
3076 debug_printf(" .mag_img_filter = %s\n",
3077 util_str_tex_filter(sampler->mag_img_filter, TRUE));
3078 if (sampler->compare_mode != PIPE_TEX_COMPARE_NONE)
3079 debug_printf(" .compare_func = %s\n", util_str_func(sampler->compare_func, TRUE));
3080 debug_printf(" .normalized_coords = %u\n", sampler->normalized_coords);
3081 debug_printf(" .min_max_lod_equal = %u\n", sampler->min_max_lod_equal);
3082 debug_printf(" .lod_bias_non_zero = %u\n", sampler->lod_bias_non_zero);
3083 debug_printf(" .apply_min_lod = %u\n", sampler->apply_min_lod);
3084 debug_printf(" .apply_max_lod = %u\n", sampler->apply_max_lod);
3085 }
3086 for (i = 0; i < key->nr_sampler_views; ++i) {
3087 const struct lp_static_texture_state *texture = &key->samplers[i].texture_state;
3088 debug_printf("texture[%u] = \n", i);
3089 debug_printf(" .format = %s\n",
3090 util_format_name(texture->format));
3091 debug_printf(" .target = %s\n",
3092 util_str_tex_target(texture->target, TRUE));
3093 debug_printf(" .level_zero_only = %u\n",
3094 texture->level_zero_only);
3095 debug_printf(" .pot = %u %u %u\n",
3096 texture->pot_width,
3097 texture->pot_height,
3098 texture->pot_depth);
3099 }
3100 struct lp_image_static_state *images = lp_fs_variant_key_images(key);
3101 for (i = 0; i < key->nr_images; ++i) {
3102 const struct lp_static_texture_state *image = &images[i].image_state;
3103 debug_printf("image[%u] = \n", i);
3104 debug_printf(" .format = %s\n",
3105 util_format_name(image->format));
3106 debug_printf(" .target = %s\n",
3107 util_str_tex_target(image->target, TRUE));
3108 debug_printf(" .level_zero_only = %u\n",
3109 image->level_zero_only);
3110 debug_printf(" .pot = %u %u %u\n",
3111 image->pot_width,
3112 image->pot_height,
3113 image->pot_depth);
3114 }
3115 }
3116
3117
3118 void
3119 lp_debug_fs_variant(struct lp_fragment_shader_variant *variant)
3120 {
3121 debug_printf("llvmpipe: Fragment shader #%u variant #%u:\n",
3122 variant->shader->no, variant->no);
3123 if (variant->shader->base.type == PIPE_SHADER_IR_TGSI)
3124 tgsi_dump(variant->shader->base.tokens, 0);
3125 else
3126 nir_print_shader(variant->shader->base.ir.nir, stderr);
3127 dump_fs_variant_key(&variant->key);
3128 debug_printf("variant->opaque = %u\n", variant->opaque);
3129 debug_printf("\n");
3130 }
3131
3132
3133 /**
3134 * Generate a new fragment shader variant from the shader code and
3135 * other state indicated by the key.
3136 */
3137 static struct lp_fragment_shader_variant *
3138 generate_variant(struct llvmpipe_context *lp,
3139 struct lp_fragment_shader *shader,
3140 const struct lp_fragment_shader_variant_key *key)
3141 {
3142 struct lp_fragment_shader_variant *variant;
3143 const struct util_format_description *cbuf0_format_desc = NULL;
3144 boolean fullcolormask;
3145 char module_name[64];
3146
3147 variant = MALLOC(sizeof *variant + shader->variant_key_size - sizeof variant->key);
3148 if (!variant)
3149 return NULL;
3150
3151 memset(variant, 0, sizeof(*variant));
3152 snprintf(module_name, sizeof(module_name), "fs%u_variant%u",
3153 shader->no, shader->variants_created);
3154
3155 variant->gallivm = gallivm_create(module_name, lp->context);
3156 if (!variant->gallivm) {
3157 FREE(variant);
3158 return NULL;
3159 }
3160
3161 variant->shader = shader;
3162 variant->list_item_global.base = variant;
3163 variant->list_item_local.base = variant;
3164 variant->no = shader->variants_created++;
3165
3166 memcpy(&variant->key, key, shader->variant_key_size);
3167
3168 /*
3169 * Determine whether we are touching all channels in the color buffer.
3170 */
3171 fullcolormask = FALSE;
3172 if (key->nr_cbufs == 1) {
3173 cbuf0_format_desc = util_format_description(key->cbuf_format[0]);
3174 fullcolormask = util_format_colormask_full(cbuf0_format_desc, key->blend.rt[0].colormask);
3175 }
3176
3177 variant->opaque =
3178 !key->blend.logicop_enable &&
3179 !key->blend.rt[0].blend_enable &&
3180 fullcolormask &&
3181 !key->stencil[0].enabled &&
3182 !key->alpha.enabled &&
3183 !key->blend.alpha_to_coverage &&
3184 !key->depth.enabled &&
3185 !shader->info.base.uses_kill &&
3186 !shader->info.base.writes_samplemask
3187 ? TRUE : FALSE;
3188
3189 if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
3190 lp_debug_fs_variant(variant);
3191 }
3192
3193 lp_jit_init_types(variant);
3194
3195 if (variant->jit_function[RAST_EDGE_TEST] == NULL)
3196 generate_fragment(lp, shader, variant, RAST_EDGE_TEST);
3197
3198 if (variant->jit_function[RAST_WHOLE] == NULL) {
3199 if (variant->opaque) {
3200 /* Specialized shader, which doesn't need to read the color buffer. */
3201 generate_fragment(lp, shader, variant, RAST_WHOLE);
3202 }
3203 }
3204
3205 /*
3206 * Compile everything
3207 */
3208
3209 gallivm_compile_module(variant->gallivm);
3210
3211 variant->nr_instrs += lp_build_count_ir_module(variant->gallivm->module);
3212
3213 if (variant->function[RAST_EDGE_TEST]) {
3214 variant->jit_function[RAST_EDGE_TEST] = (lp_jit_frag_func)
3215 gallivm_jit_function(variant->gallivm,
3216 variant->function[RAST_EDGE_TEST]);
3217 }
3218
3219 if (variant->function[RAST_WHOLE]) {
3220 variant->jit_function[RAST_WHOLE] = (lp_jit_frag_func)
3221 gallivm_jit_function(variant->gallivm,
3222 variant->function[RAST_WHOLE]);
3223 } else if (!variant->jit_function[RAST_WHOLE]) {
3224 variant->jit_function[RAST_WHOLE] = variant->jit_function[RAST_EDGE_TEST];
3225 }
3226
3227 gallivm_free_ir(variant->gallivm);
3228
3229 return variant;
3230 }
3231
3232
3233 static void *
3234 llvmpipe_create_fs_state(struct pipe_context *pipe,
3235 const struct pipe_shader_state *templ)
3236 {
3237 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3238 struct lp_fragment_shader *shader;
3239 int nr_samplers;
3240 int nr_sampler_views;
3241 int nr_images;
3242 int i;
3243
3244 shader = CALLOC_STRUCT(lp_fragment_shader);
3245 if (!shader)
3246 return NULL;
3247
3248 shader->no = fs_no++;
3249 make_empty_list(&shader->variants);
3250
3251 shader->base.type = templ->type;
3252 if (templ->type == PIPE_SHADER_IR_TGSI) {
3253 /* get/save the summary info for this shader */
3254 lp_build_tgsi_info(templ->tokens, &shader->info);
3255
3256 /* we need to keep a local copy of the tokens */
3257 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
3258 } else {
3259 shader->base.ir.nir = templ->ir.nir;
3260 nir_tgsi_scan_shader(templ->ir.nir, &shader->info.base, true);
3261 }
3262
3263 shader->draw_data = draw_create_fragment_shader(llvmpipe->draw, templ);
3264 if (shader->draw_data == NULL) {
3265 FREE((void *) shader->base.tokens);
3266 FREE(shader);
3267 return NULL;
3268 }
3269
3270 nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
3271 nr_sampler_views = shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
3272 nr_images = shader->info.base.file_max[TGSI_FILE_IMAGE] + 1;
3273 shader->variant_key_size = lp_fs_variant_key_size(MAX2(nr_samplers, nr_sampler_views), nr_images);
3274
3275 for (i = 0; i < shader->info.base.num_inputs; i++) {
3276 shader->inputs[i].usage_mask = shader->info.base.input_usage_mask[i];
3277 shader->inputs[i].cyl_wrap = shader->info.base.input_cylindrical_wrap[i];
3278 shader->inputs[i].location = shader->info.base.input_interpolate_loc[i];
3279
3280 switch (shader->info.base.input_interpolate[i]) {
3281 case TGSI_INTERPOLATE_CONSTANT:
3282 shader->inputs[i].interp = LP_INTERP_CONSTANT;
3283 break;
3284 case TGSI_INTERPOLATE_LINEAR:
3285 shader->inputs[i].interp = LP_INTERP_LINEAR;
3286 break;
3287 case TGSI_INTERPOLATE_PERSPECTIVE:
3288 shader->inputs[i].interp = LP_INTERP_PERSPECTIVE;
3289 break;
3290 case TGSI_INTERPOLATE_COLOR:
3291 shader->inputs[i].interp = LP_INTERP_COLOR;
3292 break;
3293 default:
3294 assert(0);
3295 break;
3296 }
3297
3298 switch (shader->info.base.input_semantic_name[i]) {
3299 case TGSI_SEMANTIC_FACE:
3300 shader->inputs[i].interp = LP_INTERP_FACING;
3301 break;
3302 case TGSI_SEMANTIC_POSITION:
3303 /* Position was already emitted above
3304 */
3305 shader->inputs[i].interp = LP_INTERP_POSITION;
3306 shader->inputs[i].src_index = 0;
3307 continue;
3308 }
3309
3310 /* XXX this is a completely pointless index map... */
3311 shader->inputs[i].src_index = i+1;
3312 }
3313
3314 if (LP_DEBUG & DEBUG_TGSI) {
3315 unsigned attrib;
3316 debug_printf("llvmpipe: Create fragment shader #%u %p:\n",
3317 shader->no, (void *) shader);
3318 tgsi_dump(templ->tokens, 0);
3319 debug_printf("usage masks:\n");
3320 for (attrib = 0; attrib < shader->info.base.num_inputs; ++attrib) {
3321 unsigned usage_mask = shader->info.base.input_usage_mask[attrib];
3322 debug_printf(" IN[%u].%s%s%s%s\n",
3323 attrib,
3324 usage_mask & TGSI_WRITEMASK_X ? "x" : "",
3325 usage_mask & TGSI_WRITEMASK_Y ? "y" : "",
3326 usage_mask & TGSI_WRITEMASK_Z ? "z" : "",
3327 usage_mask & TGSI_WRITEMASK_W ? "w" : "");
3328 }
3329 debug_printf("\n");
3330 }
3331
3332 return shader;
3333 }
3334
3335
3336 static void
3337 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
3338 {
3339 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3340 struct lp_fragment_shader *lp_fs = (struct lp_fragment_shader *)fs;
3341 if (llvmpipe->fs == lp_fs)
3342 return;
3343
3344 draw_bind_fragment_shader(llvmpipe->draw,
3345 (lp_fs ? lp_fs->draw_data : NULL));
3346
3347 llvmpipe->fs = lp_fs;
3348
3349 llvmpipe->dirty |= LP_NEW_FS;
3350 }
3351
3352
3353 /**
3354 * Remove shader variant from two lists: the shader's variant list
3355 * and the context's variant list.
3356 */
3357 static void
3358 llvmpipe_remove_shader_variant(struct llvmpipe_context *lp,
3359 struct lp_fragment_shader_variant *variant)
3360 {
3361 if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
3362 debug_printf("llvmpipe: del fs #%u var %u v created %u v cached %u "
3363 "v total cached %u inst %u total inst %u\n",
3364 variant->shader->no, variant->no,
3365 variant->shader->variants_created,
3366 variant->shader->variants_cached,
3367 lp->nr_fs_variants, variant->nr_instrs, lp->nr_fs_instrs);
3368 }
3369
3370 gallivm_destroy(variant->gallivm);
3371
3372 /* remove from shader's list */
3373 remove_from_list(&variant->list_item_local);
3374 variant->shader->variants_cached--;
3375
3376 /* remove from context's list */
3377 remove_from_list(&variant->list_item_global);
3378 lp->nr_fs_variants--;
3379 lp->nr_fs_instrs -= variant->nr_instrs;
3380
3381 FREE(variant);
3382 }
3383
3384
3385 static void
3386 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
3387 {
3388 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3389 struct lp_fragment_shader *shader = fs;
3390 struct lp_fs_variant_list_item *li;
3391
3392 assert(fs != llvmpipe->fs);
3393
3394 /*
3395 * XXX: we need to flush the context until we have some sort of reference
3396 * counting in fragment shaders as they may still be binned
3397 * Flushing alone might not sufficient we need to wait on it too.
3398 */
3399 llvmpipe_finish(pipe, __FUNCTION__);
3400
3401 /* Delete all the variants */
3402 li = first_elem(&shader->variants);
3403 while(!at_end(&shader->variants, li)) {
3404 struct lp_fs_variant_list_item *next = next_elem(li);
3405 llvmpipe_remove_shader_variant(llvmpipe, li->base);
3406 li = next;
3407 }
3408
3409 /* Delete draw module's data */
3410 draw_delete_fragment_shader(llvmpipe->draw, shader->draw_data);
3411
3412 if (shader->base.ir.nir)
3413 ralloc_free(shader->base.ir.nir);
3414 assert(shader->variants_cached == 0);
3415 FREE((void *) shader->base.tokens);
3416 FREE(shader);
3417 }
3418
3419
3420
3421 static void
3422 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
3423 enum pipe_shader_type shader, uint index,
3424 const struct pipe_constant_buffer *cb)
3425 {
3426 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3427 struct pipe_resource *constants = cb ? cb->buffer : NULL;
3428
3429 assert(shader < PIPE_SHADER_TYPES);
3430 assert(index < ARRAY_SIZE(llvmpipe->constants[shader]));
3431
3432 /* note: reference counting */
3433 util_copy_constant_buffer(&llvmpipe->constants[shader][index], cb);
3434
3435 if (constants) {
3436 if (!(constants->bind & PIPE_BIND_CONSTANT_BUFFER)) {
3437 debug_printf("Illegal set constant without bind flag\n");
3438 constants->bind |= PIPE_BIND_CONSTANT_BUFFER;
3439 }
3440 }
3441
3442 if (shader == PIPE_SHADER_VERTEX ||
3443 shader == PIPE_SHADER_GEOMETRY ||
3444 shader == PIPE_SHADER_TESS_CTRL ||
3445 shader == PIPE_SHADER_TESS_EVAL) {
3446 /* Pass the constants to the 'draw' module */
3447 const unsigned size = cb ? cb->buffer_size : 0;
3448 const ubyte *data;
3449
3450 if (constants) {
3451 data = (ubyte *) llvmpipe_resource_data(constants);
3452 }
3453 else if (cb && cb->user_buffer) {
3454 data = (ubyte *) cb->user_buffer;
3455 }
3456 else {
3457 data = NULL;
3458 }
3459
3460 if (data)
3461 data += cb->buffer_offset;
3462
3463 draw_set_mapped_constant_buffer(llvmpipe->draw, shader,
3464 index, data, size);
3465 }
3466 else if (shader == PIPE_SHADER_COMPUTE)
3467 llvmpipe->cs_dirty |= LP_CSNEW_CONSTANTS;
3468 else
3469 llvmpipe->dirty |= LP_NEW_FS_CONSTANTS;
3470
3471 if (cb && cb->user_buffer) {
3472 pipe_resource_reference(&constants, NULL);
3473 }
3474 }
3475
3476 static void
3477 llvmpipe_set_shader_buffers(struct pipe_context *pipe,
3478 enum pipe_shader_type shader, unsigned start_slot,
3479 unsigned count, const struct pipe_shader_buffer *buffers,
3480 unsigned writable_bitmask)
3481 {
3482 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3483 unsigned i, idx;
3484 for (i = start_slot, idx = 0; i < start_slot + count; i++, idx++) {
3485 const struct pipe_shader_buffer *buffer = buffers ? &buffers[idx] : NULL;
3486
3487 util_copy_shader_buffer(&llvmpipe->ssbos[shader][i], buffer);
3488
3489 if (shader == PIPE_SHADER_VERTEX ||
3490 shader == PIPE_SHADER_GEOMETRY ||
3491 shader == PIPE_SHADER_TESS_CTRL ||
3492 shader == PIPE_SHADER_TESS_EVAL) {
3493 const unsigned size = buffer ? buffer->buffer_size : 0;
3494 const ubyte *data = NULL;
3495 if (buffer && buffer->buffer)
3496 data = (ubyte *) llvmpipe_resource_data(buffer->buffer);
3497 if (data)
3498 data += buffer->buffer_offset;
3499 draw_set_mapped_shader_buffer(llvmpipe->draw, shader,
3500 i, data, size);
3501 } else if (shader == PIPE_SHADER_COMPUTE) {
3502 llvmpipe->cs_dirty |= LP_CSNEW_SSBOS;
3503 } else if (shader == PIPE_SHADER_FRAGMENT) {
3504 llvmpipe->dirty |= LP_NEW_FS_SSBOS;
3505 }
3506 }
3507 }
3508
3509 static void
3510 llvmpipe_set_shader_images(struct pipe_context *pipe,
3511 enum pipe_shader_type shader, unsigned start_slot,
3512 unsigned count, const struct pipe_image_view *images)
3513 {
3514 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3515 unsigned i, idx;
3516
3517 draw_flush(llvmpipe->draw);
3518 for (i = start_slot, idx = 0; i < start_slot + count; i++, idx++) {
3519 const struct pipe_image_view *image = images ? &images[idx] : NULL;
3520
3521 util_copy_image_view(&llvmpipe->images[shader][i], image);
3522 }
3523
3524 llvmpipe->num_images[shader] = start_slot + count;
3525 if (shader == PIPE_SHADER_VERTEX ||
3526 shader == PIPE_SHADER_GEOMETRY ||
3527 shader == PIPE_SHADER_TESS_CTRL ||
3528 shader == PIPE_SHADER_TESS_EVAL) {
3529 draw_set_images(llvmpipe->draw,
3530 shader,
3531 llvmpipe->images[shader],
3532 start_slot + count);
3533 } else if (shader == PIPE_SHADER_COMPUTE)
3534 llvmpipe->cs_dirty |= LP_CSNEW_IMAGES;
3535 else
3536 llvmpipe->dirty |= LP_NEW_FS_IMAGES;
3537 }
3538
3539 /**
3540 * Return the blend factor equivalent to a destination alpha of one.
3541 */
3542 static inline unsigned
3543 force_dst_alpha_one(unsigned factor, boolean clamped_zero)
3544 {
3545 switch(factor) {
3546 case PIPE_BLENDFACTOR_DST_ALPHA:
3547 return PIPE_BLENDFACTOR_ONE;
3548 case PIPE_BLENDFACTOR_INV_DST_ALPHA:
3549 return PIPE_BLENDFACTOR_ZERO;
3550 case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
3551 if (clamped_zero)
3552 return PIPE_BLENDFACTOR_ZERO;
3553 else
3554 return PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE;
3555 }
3556
3557 return factor;
3558 }
3559
3560
3561 /**
3562 * We need to generate several variants of the fragment pipeline to match
3563 * all the combinations of the contributing state atoms.
3564 *
3565 * TODO: there is actually no reason to tie this to context state -- the
3566 * generated code could be cached globally in the screen.
3567 */
3568 static struct lp_fragment_shader_variant_key *
3569 make_variant_key(struct llvmpipe_context *lp,
3570 struct lp_fragment_shader *shader,
3571 char *store)
3572 {
3573 unsigned i;
3574 struct lp_fragment_shader_variant_key *key;
3575
3576 key = (struct lp_fragment_shader_variant_key *)store;
3577
3578 memset(key, 0, offsetof(struct lp_fragment_shader_variant_key, samplers[1]));
3579
3580 if (lp->framebuffer.zsbuf) {
3581 enum pipe_format zsbuf_format = lp->framebuffer.zsbuf->format;
3582 const struct util_format_description *zsbuf_desc =
3583 util_format_description(zsbuf_format);
3584
3585 if (lp->depth_stencil->depth.enabled &&
3586 util_format_has_depth(zsbuf_desc)) {
3587 key->zsbuf_format = zsbuf_format;
3588 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
3589 }
3590 if (lp->depth_stencil->stencil[0].enabled &&
3591 util_format_has_stencil(zsbuf_desc)) {
3592 key->zsbuf_format = zsbuf_format;
3593 memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil);
3594 }
3595 if (llvmpipe_resource_is_1d(lp->framebuffer.zsbuf->texture)) {
3596 key->resource_1d = TRUE;
3597 }
3598 key->zsbuf_nr_samples = util_res_sample_count(lp->framebuffer.zsbuf->texture);
3599 }
3600
3601 /*
3602 * Propagate the depth clamp setting from the rasterizer state.
3603 * depth_clip == 0 implies depth clamping is enabled.
3604 *
3605 * When clip_halfz is enabled, then always clamp the depth values.
3606 *
3607 * XXX: This is incorrect for GL, but correct for d3d10 (depth
3608 * clamp is always active in d3d10, regardless if depth clip is
3609 * enabled or not).
3610 * (GL has an always-on [0,1] clamp on fs depth output instead
3611 * to ensure the depth values stay in range. Doesn't look like
3612 * we do that, though...)
3613 */
3614 if (lp->rasterizer->clip_halfz) {
3615 key->depth_clamp = 1;
3616 } else {
3617 key->depth_clamp = (lp->rasterizer->depth_clip_near == 0) ? 1 : 0;
3618 }
3619
3620 /* alpha test only applies if render buffer 0 is non-integer (or does not exist) */
3621 if (!lp->framebuffer.nr_cbufs ||
3622 !lp->framebuffer.cbufs[0] ||
3623 !util_format_is_pure_integer(lp->framebuffer.cbufs[0]->format)) {
3624 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
3625 }
3626 if(key->alpha.enabled)
3627 key->alpha.func = lp->depth_stencil->alpha.func;
3628 /* alpha.ref_value is passed in jit_context */
3629
3630 key->flatshade = lp->rasterizer->flatshade;
3631 key->multisample = lp->rasterizer->multisample;
3632 if (lp->active_occlusion_queries && !lp->queries_disabled) {
3633 key->occlusion_count = TRUE;
3634 }
3635
3636 if (lp->framebuffer.nr_cbufs) {
3637 memcpy(&key->blend, lp->blend, sizeof key->blend);
3638 }
3639
3640 key->coverage_samples = 1;
3641 if (key->multisample)
3642 key->coverage_samples = util_framebuffer_get_num_samples(&lp->framebuffer);
3643 key->nr_cbufs = lp->framebuffer.nr_cbufs;
3644
3645 if (!key->blend.independent_blend_enable) {
3646 /* we always need independent blend otherwise the fixups below won't work */
3647 for (i = 1; i < key->nr_cbufs; i++) {
3648 memcpy(&key->blend.rt[i], &key->blend.rt[0], sizeof(key->blend.rt[0]));
3649 }
3650 key->blend.independent_blend_enable = 1;
3651 }
3652
3653 for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
3654 struct pipe_rt_blend_state *blend_rt = &key->blend.rt[i];
3655
3656 if (lp->framebuffer.cbufs[i]) {
3657 enum pipe_format format = lp->framebuffer.cbufs[i]->format;
3658 const struct util_format_description *format_desc;
3659
3660 key->cbuf_format[i] = format;
3661 key->cbuf_nr_samples[i] = util_res_sample_count(lp->framebuffer.cbufs[i]->texture);
3662
3663 /*
3664 * Figure out if this is a 1d resource. Note that OpenGL allows crazy
3665 * mixing of 2d textures with height 1 and 1d textures, so make sure
3666 * we pick 1d if any cbuf or zsbuf is 1d.
3667 */
3668 if (llvmpipe_resource_is_1d(lp->framebuffer.cbufs[i]->texture)) {
3669 key->resource_1d = TRUE;
3670 }
3671
3672 format_desc = util_format_description(format);
3673 assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||
3674 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB);
3675
3676 /*
3677 * Mask out color channels not present in the color buffer.
3678 */
3679 blend_rt->colormask &= util_format_colormask(format_desc);
3680
3681 /*
3682 * Disable blend for integer formats.
3683 */
3684 if (util_format_is_pure_integer(format)) {
3685 blend_rt->blend_enable = 0;
3686 }
3687
3688 /*
3689 * Our swizzled render tiles always have an alpha channel, but the
3690 * linear render target format often does not, so force here the dst
3691 * alpha to be one.
3692 *
3693 * This is not a mere optimization. Wrong results will be produced if
3694 * the dst alpha is used, the dst format does not have alpha, and the
3695 * previous rendering was not flushed from the swizzled to linear
3696 * buffer. For example, NonPowTwo DCT.
3697 *
3698 * TODO: This should be generalized to all channels for better
3699 * performance, but only alpha causes correctness issues.
3700 *
3701 * Also, force rgb/alpha func/factors match, to make AoS blending
3702 * easier.
3703 */
3704 if (format_desc->swizzle[3] > PIPE_SWIZZLE_W ||
3705 format_desc->swizzle[3] == format_desc->swizzle[0]) {
3706 /* Doesn't cover mixed snorm/unorm but can't render to them anyway */
3707 boolean clamped_zero = !util_format_is_float(format) &&
3708 !util_format_is_snorm(format);
3709 blend_rt->rgb_src_factor =
3710 force_dst_alpha_one(blend_rt->rgb_src_factor, clamped_zero);
3711 blend_rt->rgb_dst_factor =
3712 force_dst_alpha_one(blend_rt->rgb_dst_factor, clamped_zero);
3713 blend_rt->alpha_func = blend_rt->rgb_func;
3714 blend_rt->alpha_src_factor = blend_rt->rgb_src_factor;
3715 blend_rt->alpha_dst_factor = blend_rt->rgb_dst_factor;
3716 }
3717 }
3718 else {
3719 /* no color buffer for this fragment output */
3720 key->cbuf_format[i] = PIPE_FORMAT_NONE;
3721 key->cbuf_nr_samples[i] = 0;
3722 blend_rt->colormask = 0x0;
3723 blend_rt->blend_enable = 0;
3724 }
3725 }
3726
3727 /* This value will be the same for all the variants of a given shader:
3728 */
3729 key->nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
3730
3731 struct lp_sampler_static_state *fs_sampler;
3732
3733 fs_sampler = key->samplers;
3734
3735 memset(fs_sampler, 0, MAX2(key->nr_samplers, key->nr_sampler_views) * sizeof *fs_sampler);
3736
3737 for(i = 0; i < key->nr_samplers; ++i) {
3738 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
3739 lp_sampler_static_sampler_state(&fs_sampler[i].sampler_state,
3740 lp->samplers[PIPE_SHADER_FRAGMENT][i]);
3741 }
3742 }
3743
3744 /*
3745 * XXX If TGSI_FILE_SAMPLER_VIEW exists assume all texture opcodes
3746 * are dx10-style? Can't really have mixed opcodes, at least not
3747 * if we want to skip the holes here (without rescanning tgsi).
3748 */
3749 if (shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] != -1) {
3750 key->nr_sampler_views = shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
3751 for(i = 0; i < key->nr_sampler_views; ++i) {
3752 /*
3753 * Note sview may exceed what's representable by file_mask.
3754 * This will still work, the only downside is that not actually
3755 * used views may be included in the shader key.
3756 */
3757 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER_VIEW] & (1u << (i & 31))) {
3758 lp_sampler_static_texture_state(&fs_sampler[i].texture_state,
3759 lp->sampler_views[PIPE_SHADER_FRAGMENT][i]);
3760 }
3761 }
3762 }
3763 else {
3764 key->nr_sampler_views = key->nr_samplers;
3765 for(i = 0; i < key->nr_sampler_views; ++i) {
3766 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
3767 lp_sampler_static_texture_state(&fs_sampler[i].texture_state,
3768 lp->sampler_views[PIPE_SHADER_FRAGMENT][i]);
3769 }
3770 }
3771 }
3772
3773 struct lp_image_static_state *lp_image;
3774 lp_image = lp_fs_variant_key_images(key);
3775 key->nr_images = shader->info.base.file_max[TGSI_FILE_IMAGE] + 1;
3776 for (i = 0; i < key->nr_images; ++i) {
3777 if (shader->info.base.file_mask[TGSI_FILE_IMAGE] & (1 << i)) {
3778 lp_sampler_static_texture_state_image(&lp_image[i].image_state,
3779 &lp->images[PIPE_SHADER_FRAGMENT][i]);
3780 }
3781 }
3782 return key;
3783 }
3784
3785
3786
3787 /**
3788 * Update fragment shader state. This is called just prior to drawing
3789 * something when some fragment-related state has changed.
3790 */
3791 void
3792 llvmpipe_update_fs(struct llvmpipe_context *lp)
3793 {
3794 struct lp_fragment_shader *shader = lp->fs;
3795 struct lp_fragment_shader_variant_key *key;
3796 struct lp_fragment_shader_variant *variant = NULL;
3797 struct lp_fs_variant_list_item *li;
3798 char store[LP_FS_MAX_VARIANT_KEY_SIZE];
3799
3800 key = make_variant_key(lp, shader, store);
3801
3802 /* Search the variants for one which matches the key */
3803 li = first_elem(&shader->variants);
3804 while(!at_end(&shader->variants, li)) {
3805 if(memcmp(&li->base->key, key, shader->variant_key_size) == 0) {
3806 variant = li->base;
3807 break;
3808 }
3809 li = next_elem(li);
3810 }
3811
3812 if (variant) {
3813 /* Move this variant to the head of the list to implement LRU
3814 * deletion of shader's when we have too many.
3815 */
3816 move_to_head(&lp->fs_variants_list, &variant->list_item_global);
3817 }
3818 else {
3819 /* variant not found, create it now */
3820 int64_t t0, t1, dt;
3821 unsigned i;
3822 unsigned variants_to_cull;
3823
3824 if (LP_DEBUG & DEBUG_FS) {
3825 debug_printf("%u variants,\t%u instrs,\t%u instrs/variant\n",
3826 lp->nr_fs_variants,
3827 lp->nr_fs_instrs,
3828 lp->nr_fs_variants ? lp->nr_fs_instrs / lp->nr_fs_variants : 0);
3829 }
3830
3831 /* First, check if we've exceeded the max number of shader variants.
3832 * If so, free 6.25% of them (the least recently used ones).
3833 */
3834 variants_to_cull = lp->nr_fs_variants >= LP_MAX_SHADER_VARIANTS ? LP_MAX_SHADER_VARIANTS / 16 : 0;
3835
3836 if (variants_to_cull ||
3837 lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS) {
3838 struct pipe_context *pipe = &lp->pipe;
3839
3840 if (gallivm_debug & GALLIVM_DEBUG_PERF) {
3841 debug_printf("Evicting FS: %u fs variants,\t%u total variants,"
3842 "\t%u instrs,\t%u instrs/variant\n",
3843 shader->variants_cached,
3844 lp->nr_fs_variants, lp->nr_fs_instrs,
3845 lp->nr_fs_instrs / lp->nr_fs_variants);
3846 }
3847
3848 /*
3849 * XXX: we need to flush the context until we have some sort of
3850 * reference counting in fragment shaders as they may still be binned
3851 * Flushing alone might not be sufficient we need to wait on it too.
3852 */
3853 llvmpipe_finish(pipe, __FUNCTION__);
3854
3855 /*
3856 * We need to re-check lp->nr_fs_variants because an arbitrarliy large
3857 * number of shader variants (potentially all of them) could be
3858 * pending for destruction on flush.
3859 */
3860
3861 for (i = 0; i < variants_to_cull || lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS; i++) {
3862 struct lp_fs_variant_list_item *item;
3863 if (is_empty_list(&lp->fs_variants_list)) {
3864 break;
3865 }
3866 item = last_elem(&lp->fs_variants_list);
3867 assert(item);
3868 assert(item->base);
3869 llvmpipe_remove_shader_variant(lp, item->base);
3870 }
3871 }
3872
3873 /*
3874 * Generate the new variant.
3875 */
3876 t0 = os_time_get();
3877 variant = generate_variant(lp, shader, key);
3878 t1 = os_time_get();
3879 dt = t1 - t0;
3880 LP_COUNT_ADD(llvm_compile_time, dt);
3881 LP_COUNT_ADD(nr_llvm_compiles, 2); /* emit vs. omit in/out test */
3882
3883 /* Put the new variant into the list */
3884 if (variant) {
3885 insert_at_head(&shader->variants, &variant->list_item_local);
3886 insert_at_head(&lp->fs_variants_list, &variant->list_item_global);
3887 lp->nr_fs_variants++;
3888 lp->nr_fs_instrs += variant->nr_instrs;
3889 shader->variants_cached++;
3890 }
3891 }
3892
3893 /* Bind this variant */
3894 lp_setup_set_fs_variant(lp->setup, variant);
3895 }
3896
3897
3898
3899
3900
3901 void
3902 llvmpipe_init_fs_funcs(struct llvmpipe_context *llvmpipe)
3903 {
3904 llvmpipe->pipe.create_fs_state = llvmpipe_create_fs_state;
3905 llvmpipe->pipe.bind_fs_state = llvmpipe_bind_fs_state;
3906 llvmpipe->pipe.delete_fs_state = llvmpipe_delete_fs_state;
3907
3908 llvmpipe->pipe.set_constant_buffer = llvmpipe_set_constant_buffer;
3909
3910 llvmpipe->pipe.set_shader_buffers = llvmpipe_set_shader_buffers;
3911 llvmpipe->pipe.set_shader_images = llvmpipe_set_shader_images;
3912 }
3913
3914