21e675c34e1cd1929842f6f0e2e9ddb19769fddb
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - stipple (TBI)
35 * - early depth test
36 * - fragment shader
37 * - alpha test
38 * - depth/stencil test (stencil TBI)
39 * - blending
40 *
41 * This file has only the glue to assembly the fragment pipeline. The actual
42 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
43 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
44 * muster the LLVM JIT execution engine to create a function that follows an
45 * established binary interface and that can be called from C directly.
46 *
47 * A big source of complexity here is that we often want to run different
48 * stages with different precisions and data types and precisions. For example,
49 * the fragment shader needs typically to be done in floats, but the
50 * depth/stencil test and blending is better done in the type that most closely
51 * matches the depth/stencil and color buffer respectively.
52 *
53 * Since the width of a SIMD vector register stays the same regardless of the
54 * element type, different types imply different number of elements, so we must
55 * code generate more instances of the stages with larger types to be able to
56 * feed/consume the stages with smaller types.
57 *
58 * @author Jose Fonseca <jfonseca@vmware.com>
59 */
60
61 #include "pipe/p_defines.h"
62 #include "util/u_memory.h"
63 #include "util/u_format.h"
64 #include "util/u_debug_dump.h"
65 #include "pipe/internal/p_winsys_screen.h"
66 #include "pipe/p_shader_tokens.h"
67 #include "draw/draw_context.h"
68 #include "tgsi/tgsi_dump.h"
69 #include "tgsi/tgsi_scan.h"
70 #include "tgsi/tgsi_parse.h"
71 #include "lp_bld_type.h"
72 #include "lp_bld_const.h"
73 #include "lp_bld_conv.h"
74 #include "lp_bld_intr.h"
75 #include "lp_bld_logic.h"
76 #include "lp_bld_depth.h"
77 #include "lp_bld_interp.h"
78 #include "lp_bld_tgsi.h"
79 #include "lp_bld_alpha.h"
80 #include "lp_bld_blend.h"
81 #include "lp_bld_swizzle.h"
82 #include "lp_bld_flow.h"
83 #include "lp_bld_debug.h"
84 #include "lp_screen.h"
85 #include "lp_context.h"
86 #include "lp_state.h"
87 #include "lp_quad.h"
88 #include "lp_tex_sample.h"
89
90
91 static const unsigned char quad_offset_x[4] = {0, 1, 0, 1};
92 static const unsigned char quad_offset_y[4] = {0, 0, 1, 1};
93
94
95 /*
96 * Derive from the quad's upper left scalar coordinates the coordinates for
97 * all other quad pixels
98 */
99 static void
100 generate_pos0(LLVMBuilderRef builder,
101 LLVMValueRef x,
102 LLVMValueRef y,
103 LLVMValueRef *x0,
104 LLVMValueRef *y0)
105 {
106 LLVMTypeRef int_elem_type = LLVMInt32Type();
107 LLVMTypeRef int_vec_type = LLVMVectorType(int_elem_type, QUAD_SIZE);
108 LLVMTypeRef elem_type = LLVMFloatType();
109 LLVMTypeRef vec_type = LLVMVectorType(elem_type, QUAD_SIZE);
110 LLVMValueRef x_offsets[QUAD_SIZE];
111 LLVMValueRef y_offsets[QUAD_SIZE];
112 unsigned i;
113
114 x = lp_build_broadcast(builder, int_vec_type, x);
115 y = lp_build_broadcast(builder, int_vec_type, y);
116
117 for(i = 0; i < QUAD_SIZE; ++i) {
118 x_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_x[i], 0);
119 y_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_y[i], 0);
120 }
121
122 x = LLVMBuildAdd(builder, x, LLVMConstVector(x_offsets, QUAD_SIZE), "");
123 y = LLVMBuildAdd(builder, y, LLVMConstVector(y_offsets, QUAD_SIZE), "");
124
125 *x0 = LLVMBuildSIToFP(builder, x, vec_type, "");
126 *y0 = LLVMBuildSIToFP(builder, y, vec_type, "");
127 }
128
129
130 /**
131 * Generate the depth test.
132 */
133 static void
134 generate_depth(LLVMBuilderRef builder,
135 const struct lp_fragment_shader_variant_key *key,
136 union lp_type src_type,
137 struct lp_build_mask_context *mask,
138 LLVMValueRef src,
139 LLVMValueRef dst_ptr)
140 {
141 const struct util_format_description *format_desc;
142 union lp_type dst_type;
143
144 if(!key->depth.enabled)
145 return;
146
147 format_desc = util_format_description(key->zsbuf_format);
148 assert(format_desc);
149
150 /* Pick the depth type. */
151 dst_type = lp_depth_type(format_desc, src_type.width*src_type.length);
152
153 /* FIXME: Cope with a depth test type with a different bit width. */
154 assert(dst_type.width == src_type.width);
155 assert(dst_type.length == src_type.length);
156
157 #if 1
158 src = lp_build_clamped_float_to_unsigned_norm(builder,
159 src_type,
160 dst_type.width,
161 src);
162 #else
163 lp_build_conv(builder, src_type, dst_type, &src, 1, &src, 1);
164 #endif
165
166 lp_build_depth_test(builder,
167 &key->depth,
168 dst_type,
169 format_desc,
170 mask,
171 src,
172 dst_ptr);
173 }
174
175
176 /**
177 * Generate the fragment shader, depth/stencil test, and alpha tests.
178 */
179 static void
180 generate_fs(struct llvmpipe_context *lp,
181 struct lp_fragment_shader *shader,
182 const struct lp_fragment_shader_variant_key *key,
183 LLVMBuilderRef builder,
184 union lp_type type,
185 LLVMValueRef context_ptr,
186 unsigned i,
187 const struct lp_build_interp_soa_context *interp,
188 struct lp_build_sampler_soa *sampler,
189 LLVMValueRef *pmask,
190 LLVMValueRef *color,
191 LLVMValueRef depth_ptr)
192 {
193 const struct tgsi_token *tokens = shader->base.tokens;
194 LLVMTypeRef elem_type;
195 LLVMTypeRef vec_type;
196 LLVMTypeRef int_vec_type;
197 LLVMValueRef consts_ptr;
198 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][NUM_CHANNELS];
199 LLVMValueRef z = interp->pos[2];
200 struct lp_build_mask_context mask;
201 boolean early_depth_test;
202 unsigned attrib;
203 unsigned chan;
204
205 elem_type = lp_build_elem_type(type);
206 vec_type = lp_build_vec_type(type);
207 int_vec_type = lp_build_int_vec_type(type);
208
209 consts_ptr = lp_jit_context_constants(builder, context_ptr);
210
211 lp_build_mask_begin(&mask, builder, type, *pmask);
212
213 early_depth_test =
214 key->depth.enabled &&
215 !key->alpha.enabled &&
216 !shader->info.uses_kill &&
217 !shader->info.writes_z;
218
219 if(early_depth_test)
220 generate_depth(builder, key,
221 type, &mask,
222 z, depth_ptr);
223
224 memset(outputs, 0, sizeof outputs);
225
226 lp_build_tgsi_soa(builder, tokens, type, &mask,
227 consts_ptr, interp->pos, interp->inputs,
228 outputs, sampler);
229
230 for (attrib = 0; attrib < shader->info.num_outputs; ++attrib) {
231 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
232 if(outputs[attrib][chan]) {
233 lp_build_name(outputs[attrib][chan], "output%u.%u.%c", i, attrib, "xyzw"[chan]);
234
235 switch (shader->info.output_semantic_name[attrib]) {
236 case TGSI_SEMANTIC_COLOR:
237 {
238 unsigned cbuf = shader->info.output_semantic_index[attrib];
239
240 lp_build_name(outputs[attrib][chan], "color%u.%u.%c", i, attrib, "rgba"[chan]);
241
242 /* Alpha test */
243 /* XXX: should the alpha reference value be passed separately? */
244 if(cbuf == 0 && chan == 3) {
245 LLVMValueRef alpha = outputs[attrib][chan];
246 LLVMValueRef alpha_ref_value;
247 alpha_ref_value = lp_jit_context_alpha_ref_value(builder, context_ptr);
248 alpha_ref_value = lp_build_broadcast(builder, vec_type, alpha_ref_value);
249 lp_build_alpha_test(builder, &key->alpha, type,
250 &mask, alpha, alpha_ref_value);
251 }
252
253 if(cbuf == 0)
254 color[chan] = outputs[attrib][chan];
255
256 break;
257 }
258
259 case TGSI_SEMANTIC_POSITION:
260 if(chan == 2)
261 z = outputs[attrib][chan];
262 break;
263 }
264 }
265 }
266 }
267
268 if(!early_depth_test)
269 generate_depth(builder, key,
270 type, &mask,
271 z, depth_ptr);
272
273 lp_build_mask_end(&mask);
274
275 *pmask = mask.value;
276
277 }
278
279
280 /**
281 * Generate color blending and color output.
282 */
283 static void
284 generate_blend(const struct pipe_blend_state *blend,
285 LLVMBuilderRef builder,
286 union lp_type type,
287 LLVMValueRef context_ptr,
288 LLVMValueRef mask,
289 LLVMValueRef *src,
290 LLVMValueRef dst_ptr)
291 {
292 struct lp_build_context bld;
293 LLVMTypeRef vec_type;
294 LLVMTypeRef int_vec_type;
295 LLVMValueRef const_ptr;
296 LLVMValueRef con[4];
297 LLVMValueRef dst[4];
298 LLVMValueRef res[4];
299 unsigned chan;
300
301 vec_type = lp_build_vec_type(type);
302 int_vec_type = lp_build_int_vec_type(type);
303
304 lp_build_context_init(&bld, builder, type);
305
306 const_ptr = lp_jit_context_blend_color(builder, context_ptr);
307 const_ptr = LLVMBuildBitCast(builder, const_ptr,
308 LLVMPointerType(vec_type, 0), "");
309
310 for(chan = 0; chan < 4; ++chan) {
311 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
312 con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), "");
313
314 dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), "");
315
316 lp_build_name(con[chan], "con.%c", "rgba"[chan]);
317 lp_build_name(dst[chan], "dst.%c", "rgba"[chan]);
318 }
319
320 lp_build_blend_soa(builder, blend, type, src, dst, con, res);
321
322 for(chan = 0; chan < 4; ++chan) {
323 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
324 lp_build_name(res[chan], "res.%c", "rgba"[chan]);
325 res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]);
326 LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, ""));
327 }
328 }
329
330
331 /**
332 * Generate the runtime callable function for the whole fragment pipeline.
333 */
334 static struct lp_fragment_shader_variant *
335 generate_fragment(struct llvmpipe_context *lp,
336 struct lp_fragment_shader *shader,
337 const struct lp_fragment_shader_variant_key *key)
338 {
339 struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
340 struct lp_fragment_shader_variant *variant;
341 union lp_type fs_type;
342 union lp_type blend_type;
343 LLVMTypeRef fs_elem_type;
344 LLVMTypeRef fs_vec_type;
345 LLVMTypeRef fs_int_vec_type;
346 LLVMTypeRef blend_vec_type;
347 LLVMTypeRef blend_int_vec_type;
348 LLVMTypeRef arg_types[9];
349 LLVMTypeRef func_type;
350 LLVMValueRef context_ptr;
351 LLVMValueRef x;
352 LLVMValueRef y;
353 LLVMValueRef a0_ptr;
354 LLVMValueRef dadx_ptr;
355 LLVMValueRef dady_ptr;
356 LLVMValueRef mask_ptr;
357 LLVMValueRef color_ptr;
358 LLVMValueRef depth_ptr;
359 LLVMBasicBlockRef block;
360 LLVMBuilderRef builder;
361 LLVMValueRef x0;
362 LLVMValueRef y0;
363 struct lp_build_sampler_soa *sampler;
364 struct lp_build_interp_soa_context interp;
365 LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
366 LLVMValueRef fs_out_color[NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
367 LLVMValueRef blend_mask;
368 LLVMValueRef blend_in_color[NUM_CHANNELS];
369 unsigned num_fs;
370 unsigned i;
371 unsigned chan;
372
373 #ifdef DEBUG
374 tgsi_dump(shader->base.tokens, 0);
375 if(key->depth.enabled) {
376 debug_printf("depth.func = %s\n", debug_dump_func(key->depth.func, TRUE));
377 debug_printf("depth.writemask = %u\n", key->depth.writemask);
378 debug_printf("depth.occlusion_count = %u\n", key->depth.occlusion_count);
379 }
380 if(key->alpha.enabled) {
381 debug_printf("alpha.func = %s\n", debug_dump_func(key->alpha.func, TRUE));
382 debug_printf("alpha.ref_value = %f\n", key->alpha.ref_value);
383 }
384 if(key->blend.logicop_enable) {
385 debug_printf("blend.logicop_func = %u\n", key->blend.logicop_func);
386 }
387 else if(key->blend.blend_enable) {
388 debug_printf("blend.rgb_func = %s\n", debug_dump_blend_func (key->blend.rgb_func, TRUE));
389 debug_printf("rgb_src_factor = %s\n", debug_dump_blend_factor(key->blend.rgb_src_factor, TRUE));
390 debug_printf("rgb_dst_factor = %s\n", debug_dump_blend_factor(key->blend.rgb_dst_factor, TRUE));
391 debug_printf("alpha_func = %s\n", debug_dump_blend_func (key->blend.alpha_func, TRUE));
392 debug_printf("alpha_src_factor = %s\n", debug_dump_blend_factor(key->blend.alpha_src_factor, TRUE));
393 debug_printf("alpha_dst_factor = %s\n", debug_dump_blend_factor(key->blend.alpha_dst_factor, TRUE));
394 }
395 debug_printf("blend.colormask = 0x%x\n", key->blend.colormask);
396 #endif
397
398 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
399 if(!variant)
400 return NULL;
401
402 variant->shader = shader;
403 memcpy(&variant->key, key, sizeof *key);
404
405 /* TODO: actually pick these based on the fs and color buffer
406 * characteristics. */
407
408 fs_type.value = 0;
409 fs_type.floating = TRUE; /* floating point values */
410 fs_type.sign = TRUE; /* values are signed */
411 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
412 fs_type.width = 32; /* 32-bit float */
413 fs_type.length = 4; /* 4 element per vector */
414 num_fs = 4;
415
416 blend_type.value = 0;
417 blend_type.floating = FALSE; /* values are integers */
418 blend_type.sign = FALSE; /* values are unsigned */
419 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
420 blend_type.width = 8; /* 8-bit ubyte values */
421 blend_type.length = 16; /* 16 elements per vector */
422
423 /*
424 * Generate the function prototype. Any change here must be reflected in
425 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
426 */
427
428 fs_elem_type = lp_build_elem_type(fs_type);
429 fs_vec_type = lp_build_vec_type(fs_type);
430 fs_int_vec_type = lp_build_int_vec_type(fs_type);
431
432 blend_vec_type = lp_build_vec_type(blend_type);
433 blend_int_vec_type = lp_build_int_vec_type(blend_type);
434
435 arg_types[0] = screen->context_ptr_type; /* context */
436 arg_types[1] = LLVMInt32Type(); /* x */
437 arg_types[2] = LLVMInt32Type(); /* y */
438 arg_types[3] = LLVMPointerType(fs_elem_type, 0); /* a0 */
439 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* dadx */
440 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dady */
441 arg_types[6] = LLVMPointerType(fs_int_vec_type, 0); /* mask */
442 arg_types[7] = LLVMPointerType(blend_vec_type, 0); /* color */
443 arg_types[8] = LLVMPointerType(fs_int_vec_type, 0); /* depth */
444
445 func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0);
446
447 variant->function = LLVMAddFunction(screen->module, "shader", func_type);
448 LLVMSetFunctionCallConv(variant->function, LLVMCCallConv);
449 for(i = 0; i < Elements(arg_types); ++i)
450 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
451 LLVMAddAttribute(LLVMGetParam(variant->function, i), LLVMNoAliasAttribute);
452
453 context_ptr = LLVMGetParam(variant->function, 0);
454 x = LLVMGetParam(variant->function, 1);
455 y = LLVMGetParam(variant->function, 2);
456 a0_ptr = LLVMGetParam(variant->function, 3);
457 dadx_ptr = LLVMGetParam(variant->function, 4);
458 dady_ptr = LLVMGetParam(variant->function, 5);
459 mask_ptr = LLVMGetParam(variant->function, 6);
460 color_ptr = LLVMGetParam(variant->function, 7);
461 depth_ptr = LLVMGetParam(variant->function, 8);
462
463 lp_build_name(context_ptr, "context");
464 lp_build_name(x, "x");
465 lp_build_name(y, "y");
466 lp_build_name(a0_ptr, "a0");
467 lp_build_name(dadx_ptr, "dadx");
468 lp_build_name(dady_ptr, "dady");
469 lp_build_name(mask_ptr, "mask");
470 lp_build_name(color_ptr, "color");
471 lp_build_name(depth_ptr, "depth");
472
473 /*
474 * Function body
475 */
476
477 block = LLVMAppendBasicBlock(variant->function, "entry");
478 builder = LLVMCreateBuilder();
479 LLVMPositionBuilderAtEnd(builder, block);
480
481 generate_pos0(builder, x, y, &x0, &y0);
482
483 lp_build_interp_soa_init(&interp, shader->base.tokens, builder, fs_type,
484 a0_ptr, dadx_ptr, dady_ptr,
485 x0, y0, 2, 0);
486
487 #if 0
488 /* C texture sampling */
489 sampler = lp_c_sampler_soa_create(context_ptr);
490 #else
491 /* code generated texture sampling */
492 sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr);
493 #endif
494
495 for(i = 0; i < num_fs; ++i) {
496 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
497 LLVMValueRef out_color[NUM_CHANNELS];
498 LLVMValueRef depth_ptr_i;
499
500 if(i != 0)
501 lp_build_interp_soa_update(&interp);
502
503 fs_mask[i] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, mask_ptr, &index, 1, ""), "");
504 depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &index, 1, "");
505
506 generate_fs(lp, shader, key,
507 builder,
508 fs_type,
509 context_ptr,
510 i,
511 &interp,
512 sampler,
513 &fs_mask[i],
514 out_color,
515 depth_ptr_i);
516
517 for(chan = 0; chan < NUM_CHANNELS; ++chan)
518 fs_out_color[chan][i] = out_color[chan];
519 }
520
521 sampler->destroy(sampler);
522
523 /*
524 * Convert the fs's output color and mask to fit to the blending type.
525 */
526
527 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
528 lp_build_conv(builder, fs_type, blend_type,
529 fs_out_color[chan], num_fs,
530 &blend_in_color[chan], 1);
531 lp_build_name(blend_in_color[chan], "color.%c", "rgba"[chan]);
532
533 }
534
535 lp_build_conv_mask(builder, fs_type, blend_type,
536 fs_mask, num_fs,
537 &blend_mask, 1);
538
539 /*
540 * Blending.
541 */
542
543 generate_blend(&key->blend,
544 builder,
545 blend_type,
546 context_ptr,
547 blend_mask,
548 blend_in_color,
549 color_ptr);
550
551 LLVMBuildRetVoid(builder);
552
553 LLVMDisposeBuilder(builder);
554
555 /*
556 * Translate the LLVM IR into machine code.
557 */
558
559 LLVMRunFunctionPassManager(screen->pass, variant->function);
560
561 #ifdef DEBUG
562 LLVMDumpValue(variant->function);
563 debug_printf("\n");
564 #endif
565
566 if(LLVMVerifyFunction(variant->function, LLVMPrintMessageAction)) {
567 LLVMDumpValue(variant->function);
568 abort();
569 }
570
571 variant->jit_function = (lp_jit_frag_func)LLVMGetPointerToGlobal(screen->engine, variant->function);
572
573 #ifdef DEBUG
574 lp_disassemble(variant->jit_function);
575 #endif
576
577 variant->next = shader->variants;
578 shader->variants = variant;
579
580 return variant;
581 }
582
583
584 void *
585 llvmpipe_create_fs_state(struct pipe_context *pipe,
586 const struct pipe_shader_state *templ)
587 {
588 struct lp_fragment_shader *shader;
589
590 shader = CALLOC_STRUCT(lp_fragment_shader);
591 if (!shader)
592 return NULL;
593
594 /* get/save the summary info for this shader */
595 tgsi_scan_shader(templ->tokens, &shader->info);
596
597 /* we need to keep a local copy of the tokens */
598 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
599
600 return shader;
601 }
602
603
604 void
605 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
606 {
607 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
608
609 llvmpipe->fs = (struct lp_fragment_shader *) fs;
610
611 llvmpipe->dirty |= LP_NEW_FS;
612 }
613
614
615 void
616 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
617 {
618 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
619 struct llvmpipe_screen *screen = llvmpipe_screen(pipe->screen);
620 struct lp_fragment_shader *shader = fs;
621 struct lp_fragment_shader_variant *variant;
622
623 assert(fs != llvmpipe->fs);
624
625 variant = shader->variants;
626 while(variant) {
627 struct lp_fragment_shader_variant *next = variant->next;
628
629 if(variant->function) {
630 if(variant->jit_function)
631 LLVMFreeMachineCodeForFunction(screen->engine, variant->function);
632 LLVMDeleteFunction(variant->function);
633 }
634
635 FREE(variant);
636
637 variant = next;
638 }
639
640 FREE((void *) shader->base.tokens);
641 FREE(shader);
642 }
643
644
645
646 void
647 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
648 uint shader, uint index,
649 const struct pipe_constant_buffer *buf)
650 {
651 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
652
653 assert(shader < PIPE_SHADER_TYPES);
654 assert(index == 0);
655
656 /* note: reference counting */
657 pipe_buffer_reference(&llvmpipe->constants[shader].buffer,
658 buf ? buf->buffer : NULL);
659
660 llvmpipe->dirty |= LP_NEW_CONSTANTS;
661 }
662
663
664 /**
665 * We need to generate several variants of the fragment pipeline to match
666 * all the combinations of the contributing state atoms.
667 *
668 * TODO: there is actually no reason to tie this to context state -- the
669 * generated code could be cached globally in the screen.
670 */
671 static void
672 make_variant_key(struct llvmpipe_context *lp,
673 struct lp_fragment_shader *shader,
674 struct lp_fragment_shader_variant_key *key)
675 {
676 unsigned i;
677
678 memset(key, 0, sizeof *key);
679
680 if(lp->framebuffer.zsbuf &&
681 lp->depth_stencil->depth.enabled) {
682 key->zsbuf_format = lp->framebuffer.zsbuf->format;
683 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
684 }
685
686 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
687 if(key->alpha.enabled)
688 key->alpha.func = lp->depth_stencil->alpha.func;
689 /* alpha.ref_value is passed in jit_context */
690
691 memcpy(&key->blend, lp->blend, sizeof key->blend);
692
693 for(i = 0; i < PIPE_MAX_SAMPLERS; ++i)
694 if(shader->info.file_mask[TGSI_FILE_SAMPLER] & (1 << i))
695 lp_sampler_static_state(&key->sampler[i], lp->texture[i], lp->sampler[i]);
696 }
697
698
699 void
700 llvmpipe_update_fs(struct llvmpipe_context *lp)
701 {
702 struct lp_fragment_shader *shader = lp->fs;
703 struct lp_fragment_shader_variant_key key;
704 struct lp_fragment_shader_variant *variant;
705
706 make_variant_key(lp, shader, &key);
707
708 variant = shader->variants;
709 while(variant) {
710 if(memcmp(&variant->key, &key, sizeof key) == 0)
711 break;
712
713 variant = variant->next;
714 }
715
716 if(!variant)
717 variant = generate_fragment(lp, shader, &key);
718
719 shader->current = variant;
720 }