2db8ab2566dfd9722d7a74375126aac305a02641
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - stipple (TBI)
35 * - early depth test
36 * - fragment shader
37 * - alpha test
38 * - depth/stencil test (stencil TBI)
39 * - blending
40 *
41 * This file has only the glue to assembly the fragment pipeline. The actual
42 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
43 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
44 * muster the LLVM JIT execution engine to create a function that follows an
45 * established binary interface and that can be called from C directly.
46 *
47 * A big source of complexity here is that we often want to run different
48 * stages with different precisions and data types and precisions. For example,
49 * the fragment shader needs typically to be done in floats, but the
50 * depth/stencil test and blending is better done in the type that most closely
51 * matches the depth/stencil and color buffer respectively.
52 *
53 * Since the width of a SIMD vector register stays the same regardless of the
54 * element type, different types imply different number of elements, so we must
55 * code generate more instances of the stages with larger types to be able to
56 * feed/consume the stages with smaller types.
57 *
58 * @author Jose Fonseca <jfonseca@vmware.com>
59 */
60
61 #include <limits.h>
62 #include "pipe/p_defines.h"
63 #include "util/u_memory.h"
64 #include "util/u_format.h"
65 #include "util/u_debug_dump.h"
66 #include "pipe/internal/p_winsys_screen.h"
67 #include "pipe/p_shader_tokens.h"
68 #include "draw/draw_context.h"
69 #include "tgsi/tgsi_dump.h"
70 #include "tgsi/tgsi_scan.h"
71 #include "tgsi/tgsi_parse.h"
72 #include "lp_bld_type.h"
73 #include "lp_bld_const.h"
74 #include "lp_bld_conv.h"
75 #include "lp_bld_intr.h"
76 #include "lp_bld_logic.h"
77 #include "lp_bld_depth.h"
78 #include "lp_bld_interp.h"
79 #include "lp_bld_tgsi.h"
80 #include "lp_bld_alpha.h"
81 #include "lp_bld_blend.h"
82 #include "lp_bld_swizzle.h"
83 #include "lp_bld_flow.h"
84 #include "lp_bld_debug.h"
85 #include "lp_screen.h"
86 #include "lp_context.h"
87 #include "lp_buffer.h"
88 #include "lp_setup.h"
89 #include "lp_state.h"
90 #include "lp_tex_sample.h"
91 #include "lp_debug.h"
92
93
94 static const unsigned char quad_offset_x[4] = {0, 1, 0, 1};
95 static const unsigned char quad_offset_y[4] = {0, 0, 1, 1};
96
97
98 /*
99 * Derive from the quad's upper left scalar coordinates the coordinates for
100 * all other quad pixels
101 */
102 static void
103 generate_pos0(LLVMBuilderRef builder,
104 LLVMValueRef x,
105 LLVMValueRef y,
106 LLVMValueRef *x0,
107 LLVMValueRef *y0)
108 {
109 LLVMTypeRef int_elem_type = LLVMInt32Type();
110 LLVMTypeRef int_vec_type = LLVMVectorType(int_elem_type, QUAD_SIZE);
111 LLVMTypeRef elem_type = LLVMFloatType();
112 LLVMTypeRef vec_type = LLVMVectorType(elem_type, QUAD_SIZE);
113 LLVMValueRef x_offsets[QUAD_SIZE];
114 LLVMValueRef y_offsets[QUAD_SIZE];
115 unsigned i;
116
117 x = lp_build_broadcast(builder, int_vec_type, x);
118 y = lp_build_broadcast(builder, int_vec_type, y);
119
120 for(i = 0; i < QUAD_SIZE; ++i) {
121 x_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_x[i], 0);
122 y_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_y[i], 0);
123 }
124
125 x = LLVMBuildAdd(builder, x, LLVMConstVector(x_offsets, QUAD_SIZE), "");
126 y = LLVMBuildAdd(builder, y, LLVMConstVector(y_offsets, QUAD_SIZE), "");
127
128 *x0 = LLVMBuildSIToFP(builder, x, vec_type, "");
129 *y0 = LLVMBuildSIToFP(builder, y, vec_type, "");
130 }
131
132
133 /**
134 * Generate the depth test.
135 */
136 static void
137 generate_depth(LLVMBuilderRef builder,
138 const struct lp_fragment_shader_variant_key *key,
139 struct lp_type src_type,
140 struct lp_build_mask_context *mask,
141 LLVMValueRef src,
142 LLVMValueRef dst_ptr)
143 {
144 const struct util_format_description *format_desc;
145 struct lp_type dst_type;
146
147 if(!key->depth.enabled)
148 return;
149
150 format_desc = util_format_description(key->zsbuf_format);
151 assert(format_desc);
152
153 /*
154 * Depths are expected to be between 0 and 1, even if they are stored in
155 * floats. Setting these bits here will ensure that the lp_build_conv() call
156 * below won't try to unnecessarily clamp the incoming values.
157 */
158 if(src_type.floating) {
159 src_type.sign = FALSE;
160 src_type.norm = TRUE;
161 }
162 else {
163 assert(!src_type.sign);
164 assert(src_type.norm);
165 }
166
167 /* Pick the depth type. */
168 dst_type = lp_depth_type(format_desc, src_type.width*src_type.length);
169
170 /* FIXME: Cope with a depth test type with a different bit width. */
171 assert(dst_type.width == src_type.width);
172 assert(dst_type.length == src_type.length);
173
174 lp_build_conv(builder, src_type, dst_type, &src, 1, &src, 1);
175
176 dst_ptr = LLVMBuildBitCast(builder,
177 dst_ptr,
178 LLVMPointerType(lp_build_vec_type(dst_type), 0), "");
179
180 lp_build_depth_test(builder,
181 &key->depth,
182 dst_type,
183 format_desc,
184 mask,
185 src,
186 dst_ptr);
187 }
188
189
190 /**
191 * Generate the code to do inside/outside triangle testing for the
192 * four pixels in a 2x2 quad. This will set the four elements of the
193 * quad mask vector to 0 or ~0.
194 * \param i which quad of the quad group to test, in [0,3]
195 */
196 static void
197 generate_tri_edge_mask(LLVMBuilderRef builder,
198 unsigned i,
199 LLVMValueRef *mask, /* ivec4, out */
200 LLVMValueRef c0, /* int32 */
201 LLVMValueRef c1, /* int32 */
202 LLVMValueRef c2, /* int32 */
203 LLVMValueRef step0_ptr, /* ivec4 */
204 LLVMValueRef step1_ptr, /* ivec4 */
205 LLVMValueRef step2_ptr) /* ivec4 */
206 {
207 struct lp_build_flow_context *flow;
208 struct lp_build_if_state ifctx;
209 struct lp_type i32_type;
210 LLVMTypeRef i32vec4_type, mask_type;
211 LLVMValueRef c0_vec, c1_vec, c2_vec;
212 LLVMValueRef not_draw_all;
213 LLVMValueRef in_out_mask;
214
215 assert(i < 4);
216
217 /* int32 vector type */
218 memset(&i32_type, 0, sizeof i32_type);
219 i32_type.floating = FALSE; /* values are integers */
220 i32_type.sign = TRUE; /* values are signed */
221 i32_type.norm = FALSE; /* values are not normalized */
222 i32_type.width = 32; /* 32-bit int values */
223 i32_type.length = 4; /* 4 elements per vector */
224
225 i32vec4_type = lp_build_int32_vec4_type();
226
227 mask_type = LLVMIntType(32 * 4);
228
229 /*
230 * Use a conditional here to do detailed pixel in/out testing.
231 * We only have to do this if c0 != INT_MIN.
232 */
233 flow = lp_build_flow_create(builder);
234 lp_build_flow_scope_begin(flow);
235
236 {
237 #define OPTIMIZE_IN_OUT_TEST 0
238 #if OPTIMIZE_IN_OUT_TEST
239 /* not_draw_all = (c0 != INT_MIN) */
240 not_draw_all = LLVMBuildICmp(builder,
241 LLVMIntNE,
242 c0,
243 LLVMConstInt(LLVMInt32Type(), INT_MIN, 0),
244 "");
245
246 in_out_mask = lp_build_int_const_scalar(i32_type, ~0);
247
248
249 lp_build_flow_scope_declare(flow, &in_out_mask);
250
251 /* if (not_draw_all) {... */
252 lp_build_if(&ifctx, flow, builder, not_draw_all);
253 #endif
254 {
255 LLVMValueRef step0_vec, step1_vec, step2_vec;
256 LLVMValueRef m0_vec, m1_vec, m2_vec;
257 LLVMValueRef index, m;
258
259 /* c0_vec = {c0, c0, c0, c0}
260 * Note that we emit this code four times but LLVM optimizes away
261 * three instances of it.
262 */
263 c0_vec = lp_build_broadcast(builder, i32vec4_type, c0);
264 c1_vec = lp_build_broadcast(builder, i32vec4_type, c1);
265 c2_vec = lp_build_broadcast(builder, i32vec4_type, c2);
266 lp_build_name(c0_vec, "edgeconst0vec");
267 lp_build_name(c1_vec, "edgeconst1vec");
268 lp_build_name(c2_vec, "edgeconst2vec");
269
270 /* load step0vec, step1, step2 vec from memory */
271 index = LLVMConstInt(LLVMInt32Type(), i, 0);
272 step0_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step0_ptr, &index, 1, ""), "");
273 step1_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step1_ptr, &index, 1, ""), "");
274 step2_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step2_ptr, &index, 1, ""), "");
275 lp_build_name(step0_vec, "step0vec");
276 lp_build_name(step1_vec, "step1vec");
277 lp_build_name(step2_vec, "step2vec");
278
279 /* m0_vec = step0_ptr[i] > c0_vec */
280 m0_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step0_vec, c0_vec);
281 m1_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step1_vec, c1_vec);
282 m2_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step2_vec, c2_vec);
283
284 /* in_out_mask = m0_vec & m1_vec & m2_vec */
285 m = LLVMBuildAnd(builder, m0_vec, m1_vec, "");
286 in_out_mask = LLVMBuildAnd(builder, m, m2_vec, "");
287 lp_build_name(in_out_mask, "inoutmaskvec");
288 }
289 #if OPTIMIZE_IN_OUT_TEST
290 lp_build_endif(&ifctx);
291 #endif
292
293 }
294 lp_build_flow_scope_end(flow);
295 lp_build_flow_destroy(flow);
296
297 /* This is the initial alive/dead pixel mask for a quad of four pixels.
298 * It's an int[4] vector with each word set to 0 or ~0.
299 * Words will get cleared when pixels faile the Z test, etc.
300 */
301 *mask = in_out_mask;
302 }
303
304
305 /**
306 * Generate the fragment shader, depth/stencil test, and alpha tests.
307 * \param i which quad in the tile, in range [0,3]
308 */
309 static void
310 generate_fs(struct llvmpipe_context *lp,
311 struct lp_fragment_shader *shader,
312 const struct lp_fragment_shader_variant_key *key,
313 LLVMBuilderRef builder,
314 struct lp_type type,
315 LLVMValueRef context_ptr,
316 unsigned i,
317 const struct lp_build_interp_soa_context *interp,
318 struct lp_build_sampler_soa *sampler,
319 LLVMValueRef *pmask,
320 LLVMValueRef (*color)[4],
321 LLVMValueRef depth_ptr,
322 LLVMValueRef c0,
323 LLVMValueRef c1,
324 LLVMValueRef c2,
325 LLVMValueRef step0_ptr,
326 LLVMValueRef step1_ptr,
327 LLVMValueRef step2_ptr)
328 {
329 const struct tgsi_token *tokens = shader->base.tokens;
330 LLVMTypeRef elem_type;
331 LLVMTypeRef vec_type;
332 LLVMTypeRef int_vec_type;
333 LLVMValueRef consts_ptr;
334 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][NUM_CHANNELS];
335 LLVMValueRef z = interp->pos[2];
336 struct lp_build_flow_context *flow;
337 struct lp_build_mask_context mask;
338 boolean early_depth_test;
339 unsigned attrib;
340 unsigned chan;
341 unsigned cbuf;
342
343 assert(i < 4);
344
345 elem_type = lp_build_elem_type(type);
346 vec_type = lp_build_vec_type(type);
347 int_vec_type = lp_build_int_vec_type(type);
348
349 consts_ptr = lp_jit_context_constants(builder, context_ptr);
350
351 flow = lp_build_flow_create(builder);
352
353 memset(outputs, 0, sizeof outputs);
354
355 lp_build_flow_scope_begin(flow);
356
357 /* Declare the color and z variables */
358 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
359 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
360 color[cbuf][chan] = LLVMGetUndef(vec_type);
361 lp_build_flow_scope_declare(flow, &color[cbuf][chan]);
362 }
363 }
364 lp_build_flow_scope_declare(flow, &z);
365
366 /* do triangle edge testing */
367 generate_tri_edge_mask(builder, i, pmask,
368 c0, c1, c2, step0_ptr, step1_ptr, step2_ptr);
369
370 /* 'mask' will control execution based on quad's pixel alive/killed state */
371 lp_build_mask_begin(&mask, flow, type, *pmask);
372
373
374 early_depth_test =
375 key->depth.enabled &&
376 !key->alpha.enabled &&
377 !shader->info.uses_kill &&
378 !shader->info.writes_z;
379
380 if(early_depth_test)
381 generate_depth(builder, key,
382 type, &mask,
383 z, depth_ptr);
384
385 lp_build_tgsi_soa(builder, tokens, type, &mask,
386 consts_ptr, interp->pos, interp->inputs,
387 outputs, sampler);
388
389 for (attrib = 0; attrib < shader->info.num_outputs; ++attrib) {
390 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
391 if(outputs[attrib][chan]) {
392 lp_build_name(outputs[attrib][chan], "output%u.%u.%c", i, attrib, "xyzw"[chan]);
393
394 switch (shader->info.output_semantic_name[attrib]) {
395 case TGSI_SEMANTIC_COLOR:
396 {
397 unsigned cbuf = shader->info.output_semantic_index[attrib];
398
399 lp_build_name(outputs[attrib][chan], "color%u.%u.%c", i, attrib, "rgba"[chan]);
400
401 /* Alpha test */
402 /* XXX: should the alpha reference value be passed separately? */
403 /* XXX: should only test the final assignment to alpha */
404 if(cbuf == 0 && chan == 3) {
405 LLVMValueRef alpha = outputs[attrib][chan];
406 LLVMValueRef alpha_ref_value;
407 alpha_ref_value = lp_jit_context_alpha_ref_value(builder, context_ptr);
408 alpha_ref_value = lp_build_broadcast(builder, vec_type, alpha_ref_value);
409 lp_build_alpha_test(builder, &key->alpha, type,
410 &mask, alpha, alpha_ref_value);
411 }
412
413 color[cbuf][chan] = outputs[attrib][chan];
414 break;
415 }
416
417 case TGSI_SEMANTIC_POSITION:
418 if(chan == 2)
419 z = outputs[attrib][chan];
420 break;
421 }
422 }
423 }
424 }
425
426 if(!early_depth_test)
427 generate_depth(builder, key,
428 type, &mask,
429 z, depth_ptr);
430
431 lp_build_mask_end(&mask);
432
433 lp_build_flow_scope_end(flow);
434
435 lp_build_flow_destroy(flow);
436
437 *pmask = mask.value;
438
439 }
440
441
442 /**
443 * Generate color blending and color output.
444 */
445 static void
446 generate_blend(const struct pipe_blend_state *blend,
447 LLVMBuilderRef builder,
448 struct lp_type type,
449 LLVMValueRef context_ptr,
450 LLVMValueRef mask,
451 LLVMValueRef *src,
452 LLVMValueRef dst_ptr)
453 {
454 struct lp_build_context bld;
455 struct lp_build_flow_context *flow;
456 struct lp_build_mask_context mask_ctx;
457 LLVMTypeRef vec_type;
458 LLVMTypeRef int_vec_type;
459 LLVMValueRef const_ptr;
460 LLVMValueRef con[4];
461 LLVMValueRef dst[4];
462 LLVMValueRef res[4];
463 unsigned chan;
464
465 lp_build_context_init(&bld, builder, type);
466
467 flow = lp_build_flow_create(builder);
468
469 /* we'll use this mask context to skip blending if all pixels are dead */
470 lp_build_mask_begin(&mask_ctx, flow, type, mask);
471
472 vec_type = lp_build_vec_type(type);
473 int_vec_type = lp_build_int_vec_type(type);
474
475 const_ptr = lp_jit_context_blend_color(builder, context_ptr);
476 const_ptr = LLVMBuildBitCast(builder, const_ptr,
477 LLVMPointerType(vec_type, 0), "");
478
479 for(chan = 0; chan < 4; ++chan) {
480 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
481 con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), "");
482
483 dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), "");
484
485 lp_build_name(con[chan], "con.%c", "rgba"[chan]);
486 lp_build_name(dst[chan], "dst.%c", "rgba"[chan]);
487 }
488
489 lp_build_blend_soa(builder, blend, type, src, dst, con, res);
490
491 for(chan = 0; chan < 4; ++chan) {
492 if(blend->colormask & (1 << chan)) {
493 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
494 lp_build_name(res[chan], "res.%c", "rgba"[chan]);
495 res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]);
496 LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, ""));
497 }
498 }
499
500 lp_build_mask_end(&mask_ctx);
501 lp_build_flow_destroy(flow);
502 }
503
504
505 /**
506 * Generate the runtime callable function for the whole fragment pipeline.
507 * Note that the function which we generate operates on a block of 16
508 * pixels at at time. The block contains 2x2 quads. Each quad contains
509 * 2x2 pixels.
510 */
511 static void
512 generate_fragment(struct llvmpipe_context *lp,
513 struct lp_fragment_shader *shader,
514 struct lp_fragment_shader_variant *variant)
515 {
516 struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
517 const struct lp_fragment_shader_variant_key *key = &variant->key;
518 struct lp_type fs_type;
519 struct lp_type blend_type;
520 LLVMTypeRef fs_elem_type;
521 LLVMTypeRef fs_vec_type;
522 LLVMTypeRef fs_int_vec_type;
523 LLVMTypeRef blend_vec_type;
524 LLVMTypeRef blend_int_vec_type;
525 LLVMTypeRef arg_types[14];
526 LLVMTypeRef func_type;
527 LLVMTypeRef int32_vec4_type = lp_build_int32_vec4_type();
528 LLVMValueRef context_ptr;
529 LLVMValueRef x;
530 LLVMValueRef y;
531 LLVMValueRef a0_ptr;
532 LLVMValueRef dadx_ptr;
533 LLVMValueRef dady_ptr;
534 LLVMValueRef color_ptr_ptr;
535 LLVMValueRef depth_ptr;
536 LLVMValueRef c0, c1, c2, step0_ptr, step1_ptr, step2_ptr;
537 LLVMBasicBlockRef block;
538 LLVMBuilderRef builder;
539 LLVMValueRef x0;
540 LLVMValueRef y0;
541 struct lp_build_sampler_soa *sampler;
542 struct lp_build_interp_soa_context interp;
543 LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
544 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
545 LLVMValueRef blend_mask;
546 LLVMValueRef blend_in_color[NUM_CHANNELS];
547 unsigned num_fs;
548 unsigned i;
549 unsigned chan;
550 unsigned cbuf;
551
552
553 /* TODO: actually pick these based on the fs and color buffer
554 * characteristics. */
555
556 memset(&fs_type, 0, sizeof fs_type);
557 fs_type.floating = TRUE; /* floating point values */
558 fs_type.sign = TRUE; /* values are signed */
559 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
560 fs_type.width = 32; /* 32-bit float */
561 fs_type.length = 4; /* 4 elements per vector */
562 num_fs = 4; /* number of quads per block */
563
564 memset(&blend_type, 0, sizeof blend_type);
565 blend_type.floating = FALSE; /* values are integers */
566 blend_type.sign = FALSE; /* values are unsigned */
567 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
568 blend_type.width = 8; /* 8-bit ubyte values */
569 blend_type.length = 16; /* 16 elements per vector */
570
571 /*
572 * Generate the function prototype. Any change here must be reflected in
573 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
574 */
575
576 fs_elem_type = lp_build_elem_type(fs_type);
577 fs_vec_type = lp_build_vec_type(fs_type);
578 fs_int_vec_type = lp_build_int_vec_type(fs_type);
579
580 blend_vec_type = lp_build_vec_type(blend_type);
581 blend_int_vec_type = lp_build_int_vec_type(blend_type);
582
583 arg_types[0] = screen->context_ptr_type; /* context */
584 arg_types[1] = LLVMInt32Type(); /* x */
585 arg_types[2] = LLVMInt32Type(); /* y */
586 arg_types[3] = LLVMPointerType(fs_elem_type, 0); /* a0 */
587 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* dadx */
588 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dady */
589 arg_types[6] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */
590 arg_types[7] = LLVMPointerType(fs_int_vec_type, 0); /* depth */
591 arg_types[8] = LLVMInt32Type(); /* c0 */
592 arg_types[9] = LLVMInt32Type(); /* c1 */
593 arg_types[10] = LLVMInt32Type(); /* c2 */
594 /* Note: the step arrays are built as int32[16] but we interpret
595 * them here as int32_vec4[4].
596 */
597 arg_types[11] = LLVMPointerType(int32_vec4_type, 0);/* step0 */
598 arg_types[12] = LLVMPointerType(int32_vec4_type, 0);/* step1 */
599 arg_types[13] = LLVMPointerType(int32_vec4_type, 0);/* step2 */
600
601 func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0);
602
603 variant->function = LLVMAddFunction(screen->module, "shader", func_type);
604 LLVMSetFunctionCallConv(variant->function, LLVMCCallConv);
605
606 /* XXX: need to propagate noalias down into color param now we are
607 * passing a pointer-to-pointer?
608 */
609 for(i = 0; i < Elements(arg_types); ++i)
610 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
611 LLVMAddAttribute(LLVMGetParam(variant->function, i), LLVMNoAliasAttribute);
612
613 context_ptr = LLVMGetParam(variant->function, 0);
614 x = LLVMGetParam(variant->function, 1);
615 y = LLVMGetParam(variant->function, 2);
616 a0_ptr = LLVMGetParam(variant->function, 3);
617 dadx_ptr = LLVMGetParam(variant->function, 4);
618 dady_ptr = LLVMGetParam(variant->function, 5);
619 color_ptr_ptr = LLVMGetParam(variant->function, 6);
620 depth_ptr = LLVMGetParam(variant->function, 7);
621 c0 = LLVMGetParam(variant->function, 8);
622 c1 = LLVMGetParam(variant->function, 9);
623 c2 = LLVMGetParam(variant->function, 10);
624 step0_ptr = LLVMGetParam(variant->function, 11);
625 step1_ptr = LLVMGetParam(variant->function, 12);
626 step2_ptr = LLVMGetParam(variant->function, 13);
627
628 lp_build_name(context_ptr, "context");
629 lp_build_name(x, "x");
630 lp_build_name(y, "y");
631 lp_build_name(a0_ptr, "a0");
632 lp_build_name(dadx_ptr, "dadx");
633 lp_build_name(dady_ptr, "dady");
634 lp_build_name(color_ptr_ptr, "color_ptr");
635 lp_build_name(depth_ptr, "depth");
636 lp_build_name(c0, "c0");
637 lp_build_name(c1, "c1");
638 lp_build_name(c2, "c2");
639 lp_build_name(step0_ptr, "step0");
640 lp_build_name(step1_ptr, "step1");
641 lp_build_name(step2_ptr, "step2");
642
643 /*
644 * Function body
645 */
646
647 block = LLVMAppendBasicBlock(variant->function, "entry");
648 builder = LLVMCreateBuilder();
649 LLVMPositionBuilderAtEnd(builder, block);
650
651 generate_pos0(builder, x, y, &x0, &y0);
652
653 lp_build_interp_soa_init(&interp,
654 shader->base.tokens,
655 key->flatshade,
656 builder, fs_type,
657 a0_ptr, dadx_ptr, dady_ptr,
658 x0, y0);
659
660 /* code generated texture sampling */
661 sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr);
662
663 /* loop over quads in the block */
664 for(i = 0; i < num_fs; ++i) {
665 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
666 LLVMValueRef out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS];
667 LLVMValueRef depth_ptr_i;
668 int cbuf;
669
670 if(i != 0)
671 lp_build_interp_soa_update(&interp, i);
672
673 depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &index, 1, "");
674
675 generate_fs(lp, shader, key,
676 builder,
677 fs_type,
678 context_ptr,
679 i,
680 &interp,
681 sampler,
682 &fs_mask[i], /* output */
683 out_color,
684 depth_ptr_i,
685 c0, c1, c2,
686 step0_ptr, step1_ptr, step2_ptr);
687
688 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++)
689 for(chan = 0; chan < NUM_CHANNELS; ++chan)
690 fs_out_color[cbuf][chan][i] = out_color[cbuf][chan];
691 }
692
693 sampler->destroy(sampler);
694
695 /* Loop over color outputs / color buffers to do blending.
696 */
697 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
698 LLVMValueRef color_ptr;
699 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), cbuf, 0);
700
701 /*
702 * Convert the fs's output color and mask to fit to the blending type.
703 */
704 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
705 lp_build_conv(builder, fs_type, blend_type,
706 fs_out_color[cbuf][chan], num_fs,
707 &blend_in_color[chan], 1);
708 lp_build_name(blend_in_color[chan], "color%d.%c", cbuf, "rgba"[chan]);
709 }
710
711 lp_build_conv_mask(builder, fs_type, blend_type,
712 fs_mask, num_fs,
713 &blend_mask, 1);
714
715 color_ptr = LLVMBuildLoad(builder,
716 LLVMBuildGEP(builder, color_ptr_ptr, &index, 1, ""),
717 "");
718 lp_build_name(color_ptr, "color_ptr%d", cbuf);
719
720 /*
721 * Blending.
722 */
723 generate_blend(&key->blend,
724 builder,
725 blend_type,
726 context_ptr,
727 blend_mask,
728 blend_in_color,
729 color_ptr);
730 }
731
732 LLVMBuildRetVoid(builder);
733
734 LLVMDisposeBuilder(builder);
735
736
737 /* Verify the LLVM IR. If invalid, dump and abort */
738 #ifdef DEBUG
739 if(LLVMVerifyFunction(variant->function, LLVMPrintMessageAction)) {
740 if (1)
741 LLVMDumpValue(variant->function);
742 abort();
743 }
744 #endif
745
746 /* Apply optimizations to LLVM IR */
747 if (1)
748 LLVMRunFunctionPassManager(screen->pass, variant->function);
749
750 if (LP_DEBUG & DEBUG_JIT) {
751 /* Print the LLVM IR to stderr */
752 LLVMDumpValue(variant->function);
753 debug_printf("\n");
754 }
755
756 /*
757 * Translate the LLVM IR into machine code.
758 */
759 variant->jit_function = (lp_jit_frag_func)LLVMGetPointerToGlobal(screen->engine, variant->function);
760
761 if (LP_DEBUG & DEBUG_ASM)
762 lp_disassemble(variant->jit_function);
763
764 variant->next = shader->variants;
765 shader->variants = variant;
766 }
767
768
769 static struct lp_fragment_shader_variant *
770 generate_variant(struct llvmpipe_context *lp,
771 struct lp_fragment_shader *shader,
772 const struct lp_fragment_shader_variant_key *key)
773 {
774 struct lp_fragment_shader_variant *variant;
775
776 if (LP_DEBUG & DEBUG_JIT) {
777 unsigned i;
778
779 tgsi_dump(shader->base.tokens, 0);
780 if(key->depth.enabled) {
781 debug_printf("depth.format = %s\n", pf_name(key->zsbuf_format));
782 debug_printf("depth.func = %s\n", debug_dump_func(key->depth.func, TRUE));
783 debug_printf("depth.writemask = %u\n", key->depth.writemask);
784 }
785 if(key->alpha.enabled) {
786 debug_printf("alpha.func = %s\n", debug_dump_func(key->alpha.func, TRUE));
787 debug_printf("alpha.ref_value = %f\n", key->alpha.ref_value);
788 }
789 if(key->blend.logicop_enable) {
790 debug_printf("blend.logicop_func = %u\n", key->blend.logicop_func);
791 }
792 else if(key->blend.blend_enable) {
793 debug_printf("blend.rgb_func = %s\n", debug_dump_blend_func (key->blend.rgb_func, TRUE));
794 debug_printf("rgb_src_factor = %s\n", debug_dump_blend_factor(key->blend.rgb_src_factor, TRUE));
795 debug_printf("rgb_dst_factor = %s\n", debug_dump_blend_factor(key->blend.rgb_dst_factor, TRUE));
796 debug_printf("alpha_func = %s\n", debug_dump_blend_func (key->blend.alpha_func, TRUE));
797 debug_printf("alpha_src_factor = %s\n", debug_dump_blend_factor(key->blend.alpha_src_factor, TRUE));
798 debug_printf("alpha_dst_factor = %s\n", debug_dump_blend_factor(key->blend.alpha_dst_factor, TRUE));
799 }
800 debug_printf("blend.colormask = 0x%x\n", key->blend.colormask);
801 for(i = 0; i < PIPE_MAX_SAMPLERS; ++i) {
802 if(key->sampler[i].format) {
803 debug_printf("sampler[%u] = \n", i);
804 debug_printf(" .format = %s\n",
805 pf_name(key->sampler[i].format));
806 debug_printf(" .target = %s\n",
807 debug_dump_tex_target(key->sampler[i].target, TRUE));
808 debug_printf(" .pot = %u %u %u\n",
809 key->sampler[i].pot_width,
810 key->sampler[i].pot_height,
811 key->sampler[i].pot_depth);
812 debug_printf(" .wrap = %s %s %s\n",
813 debug_dump_tex_wrap(key->sampler[i].wrap_s, TRUE),
814 debug_dump_tex_wrap(key->sampler[i].wrap_t, TRUE),
815 debug_dump_tex_wrap(key->sampler[i].wrap_r, TRUE));
816 debug_printf(" .min_img_filter = %s\n",
817 debug_dump_tex_filter(key->sampler[i].min_img_filter, TRUE));
818 debug_printf(" .min_mip_filter = %s\n",
819 debug_dump_tex_mipfilter(key->sampler[i].min_mip_filter, TRUE));
820 debug_printf(" .mag_img_filter = %s\n",
821 debug_dump_tex_filter(key->sampler[i].mag_img_filter, TRUE));
822 if(key->sampler[i].compare_mode != PIPE_TEX_COMPARE_NONE)
823 debug_printf(" .compare_func = %s\n", debug_dump_func(key->sampler[i].compare_func, TRUE));
824 debug_printf(" .normalized_coords = %u\n", key->sampler[i].normalized_coords);
825 debug_printf(" .prefilter = %u\n", key->sampler[i].prefilter);
826 }
827 }
828 }
829
830 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
831 if(!variant)
832 return NULL;
833
834 variant->shader = shader;
835 memcpy(&variant->key, key, sizeof *key);
836
837 generate_fragment(lp, shader, variant);
838
839 return variant;
840 }
841
842
843 void *
844 llvmpipe_create_fs_state(struct pipe_context *pipe,
845 const struct pipe_shader_state *templ)
846 {
847 struct lp_fragment_shader *shader;
848
849 shader = CALLOC_STRUCT(lp_fragment_shader);
850 if (!shader)
851 return NULL;
852
853 /* get/save the summary info for this shader */
854 tgsi_scan_shader(templ->tokens, &shader->info);
855
856 /* we need to keep a local copy of the tokens */
857 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
858
859 return shader;
860 }
861
862
863 void
864 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
865 {
866 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
867
868 if (llvmpipe->fs == fs)
869 return;
870
871 draw_flush(llvmpipe->draw);
872
873 llvmpipe->fs = fs;
874
875 llvmpipe->dirty |= LP_NEW_FS;
876 }
877
878
879 void
880 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
881 {
882 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
883 struct llvmpipe_screen *screen = llvmpipe_screen(pipe->screen);
884 struct lp_fragment_shader *shader = fs;
885 struct lp_fragment_shader_variant *variant;
886
887 assert(fs != llvmpipe->fs);
888 (void) llvmpipe;
889
890 variant = shader->variants;
891 while(variant) {
892 struct lp_fragment_shader_variant *next = variant->next;
893
894 if(variant->function) {
895 if(variant->jit_function)
896 LLVMFreeMachineCodeForFunction(screen->engine, variant->function);
897 LLVMDeleteFunction(variant->function);
898 }
899
900 FREE(variant);
901
902 variant = next;
903 }
904
905 FREE((void *) shader->base.tokens);
906 FREE(shader);
907 }
908
909
910
911 void
912 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
913 uint shader, uint index,
914 const struct pipe_constant_buffer *constants)
915 {
916 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
917 struct pipe_buffer *buffer = constants ? constants->buffer : NULL;
918 unsigned size = buffer ? buffer->size : 0;
919 const void *data = buffer ? llvmpipe_buffer(buffer)->data : NULL;
920
921 assert(shader < PIPE_SHADER_TYPES);
922 assert(index == 0);
923
924 if(llvmpipe->constants[shader].buffer == buffer)
925 return;
926
927 draw_flush(llvmpipe->draw);
928
929 /* note: reference counting */
930 pipe_buffer_reference(&llvmpipe->constants[shader].buffer, buffer);
931
932 if(shader == PIPE_SHADER_VERTEX) {
933 draw_set_mapped_constant_buffer(llvmpipe->draw, PIPE_SHADER_VERTEX,
934 data, size);
935 }
936
937 llvmpipe->dirty |= LP_NEW_CONSTANTS;
938 }
939
940
941 /**
942 * We need to generate several variants of the fragment pipeline to match
943 * all the combinations of the contributing state atoms.
944 *
945 * TODO: there is actually no reason to tie this to context state -- the
946 * generated code could be cached globally in the screen.
947 */
948 static void
949 make_variant_key(struct llvmpipe_context *lp,
950 struct lp_fragment_shader *shader,
951 struct lp_fragment_shader_variant_key *key)
952 {
953 unsigned i;
954
955 memset(key, 0, sizeof *key);
956
957 if(lp->framebuffer.zsbuf &&
958 lp->depth_stencil->depth.enabled) {
959 key->zsbuf_format = lp->framebuffer.zsbuf->format;
960 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
961 }
962
963 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
964 if(key->alpha.enabled)
965 key->alpha.func = lp->depth_stencil->alpha.func;
966 /* alpha.ref_value is passed in jit_context */
967
968 key->flatshade = lp->rasterizer->flatshade;
969
970 if (lp->framebuffer.nr_cbufs) {
971 memcpy(&key->blend, lp->blend, sizeof key->blend);
972 }
973
974 key->nr_cbufs = lp->framebuffer.nr_cbufs;
975 for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
976 const struct util_format_description *format_desc;
977 unsigned chan;
978
979 format_desc = util_format_description(lp->framebuffer.cbufs[i]->format);
980 assert(format_desc->layout == UTIL_FORMAT_COLORSPACE_RGB ||
981 format_desc->layout == UTIL_FORMAT_COLORSPACE_SRGB);
982
983 /* mask out color channels not present in the color buffer.
984 * Should be simple to incorporate per-cbuf writemasks:
985 */
986 for(chan = 0; chan < 4; ++chan) {
987 enum util_format_swizzle swizzle = format_desc->swizzle[chan];
988
989 if(swizzle <= UTIL_FORMAT_SWIZZLE_W)
990 key->cbuf_blend[i].colormask |= (1 << chan);
991 }
992 }
993
994 for(i = 0; i < PIPE_MAX_SAMPLERS; ++i)
995 if(shader->info.file_mask[TGSI_FILE_SAMPLER] & (1 << i))
996 lp_sampler_static_state(&key->sampler[i], lp->texture[i], lp->sampler[i]);
997 }
998
999
1000 void
1001 llvmpipe_update_fs(struct llvmpipe_context *lp)
1002 {
1003 struct lp_fragment_shader *shader = lp->fs;
1004 struct lp_fragment_shader_variant_key key;
1005 struct lp_fragment_shader_variant *variant;
1006
1007 make_variant_key(lp, shader, &key);
1008
1009 variant = shader->variants;
1010 while(variant) {
1011 if(memcmp(&variant->key, &key, sizeof key) == 0)
1012 break;
1013
1014 variant = variant->next;
1015 }
1016
1017 if(!variant)
1018 variant = generate_variant(lp, shader, &key);
1019
1020 shader->current = variant;
1021
1022 lp_setup_set_fs_function(lp->setup,
1023 shader->current->jit_function);
1024 }