llvmpipe: Simplify and fix system variables fetch.
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - early depth test
35 * - fragment shader
36 * - alpha test
37 * - depth/stencil test
38 * - blending
39 *
40 * This file has only the glue to assemble the fragment pipeline. The actual
41 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
42 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
43 * muster the LLVM JIT execution engine to create a function that follows an
44 * established binary interface and that can be called from C directly.
45 *
46 * A big source of complexity here is that we often want to run different
47 * stages with different precisions and data types and precisions. For example,
48 * the fragment shader needs typically to be done in floats, but the
49 * depth/stencil test and blending is better done in the type that most closely
50 * matches the depth/stencil and color buffer respectively.
51 *
52 * Since the width of a SIMD vector register stays the same regardless of the
53 * element type, different types imply different number of elements, so we must
54 * code generate more instances of the stages with larger types to be able to
55 * feed/consume the stages with smaller types.
56 *
57 * @author Jose Fonseca <jfonseca@vmware.com>
58 */
59
60 #include <limits.h>
61 #include "pipe/p_defines.h"
62 #include "util/u_inlines.h"
63 #include "util/u_memory.h"
64 #include "util/u_pointer.h"
65 #include "util/u_format.h"
66 #include "util/u_dump.h"
67 #include "util/u_string.h"
68 #include "util/u_simple_list.h"
69 #include "os/os_time.h"
70 #include "pipe/p_shader_tokens.h"
71 #include "draw/draw_context.h"
72 #include "tgsi/tgsi_dump.h"
73 #include "tgsi/tgsi_scan.h"
74 #include "tgsi/tgsi_parse.h"
75 #include "gallivm/lp_bld_type.h"
76 #include "gallivm/lp_bld_const.h"
77 #include "gallivm/lp_bld_conv.h"
78 #include "gallivm/lp_bld_init.h"
79 #include "gallivm/lp_bld_intr.h"
80 #include "gallivm/lp_bld_logic.h"
81 #include "gallivm/lp_bld_tgsi.h"
82 #include "gallivm/lp_bld_swizzle.h"
83 #include "gallivm/lp_bld_flow.h"
84 #include "gallivm/lp_bld_debug.h"
85
86 #include "lp_bld_alpha.h"
87 #include "lp_bld_blend.h"
88 #include "lp_bld_depth.h"
89 #include "lp_bld_interp.h"
90 #include "lp_context.h"
91 #include "lp_debug.h"
92 #include "lp_perf.h"
93 #include "lp_setup.h"
94 #include "lp_state.h"
95 #include "lp_tex_sample.h"
96 #include "lp_flush.h"
97 #include "lp_state_fs.h"
98
99
100 #include <llvm-c/Analysis.h>
101 #include <llvm-c/BitWriter.h>
102
103
104 /** Fragment shader number (for debugging) */
105 static unsigned fs_no = 0;
106
107
108 /**
109 * Expand the relevent bits of mask_input to a 4-dword mask for the
110 * four pixels in a 2x2 quad. This will set the four elements of the
111 * quad mask vector to 0 or ~0.
112 *
113 * \param quad which quad of the quad group to test, in [0,3]
114 * \param mask_input bitwise mask for the whole 4x4 stamp
115 */
116 static LLVMValueRef
117 generate_quad_mask(struct gallivm_state *gallivm,
118 struct lp_type fs_type,
119 unsigned quad,
120 LLVMValueRef mask_input) /* int32 */
121 {
122 LLVMBuilderRef builder = gallivm->builder;
123 struct lp_type mask_type;
124 LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
125 LLVMValueRef bits[4];
126 LLVMValueRef mask;
127 int shift;
128
129 /*
130 * XXX: We'll need a different path for 16 x u8
131 */
132 assert(fs_type.width == 32);
133 assert(fs_type.length == 4);
134 mask_type = lp_int_type(fs_type);
135
136 /*
137 * mask_input >>= (quad * 4)
138 */
139 switch (quad) {
140 case 0:
141 shift = 0;
142 break;
143 case 1:
144 shift = 2;
145 break;
146 case 2:
147 shift = 8;
148 break;
149 case 3:
150 shift = 10;
151 break;
152 default:
153 assert(0);
154 shift = 0;
155 }
156
157 mask_input = LLVMBuildLShr(builder,
158 mask_input,
159 LLVMConstInt(i32t, shift, 0),
160 "");
161
162 /*
163 * mask = { mask_input & (1 << i), for i in [0,3] }
164 */
165 mask = lp_build_broadcast(gallivm,
166 lp_build_vec_type(gallivm, mask_type),
167 mask_input);
168
169 bits[0] = LLVMConstInt(i32t, 1 << 0, 0);
170 bits[1] = LLVMConstInt(i32t, 1 << 1, 0);
171 bits[2] = LLVMConstInt(i32t, 1 << 4, 0);
172 bits[3] = LLVMConstInt(i32t, 1 << 5, 0);
173
174 mask = LLVMBuildAnd(builder, mask, LLVMConstVector(bits, 4), "");
175
176 /*
177 * mask = mask != 0 ? ~0 : 0
178 */
179 mask = lp_build_compare(gallivm,
180 mask_type, PIPE_FUNC_NOTEQUAL,
181 mask,
182 lp_build_const_int_vec(gallivm, mask_type, 0));
183
184 return mask;
185 }
186
187
188 #define EARLY_DEPTH_TEST 0x1
189 #define LATE_DEPTH_TEST 0x2
190 #define EARLY_DEPTH_WRITE 0x4
191 #define LATE_DEPTH_WRITE 0x8
192
193 static int
194 find_output_by_semantic( const struct tgsi_shader_info *info,
195 unsigned semantic,
196 unsigned index )
197 {
198 int i;
199
200 for (i = 0; i < info->num_outputs; i++)
201 if (info->output_semantic_name[i] == semantic &&
202 info->output_semantic_index[i] == index)
203 return i;
204
205 return -1;
206 }
207
208
209 /**
210 * Generate the fragment shader, depth/stencil test, and alpha tests.
211 * \param i which quad in the tile, in range [0,3]
212 * \param partial_mask if 1, do mask_input testing
213 */
214 static void
215 generate_fs(struct gallivm_state *gallivm,
216 struct lp_fragment_shader *shader,
217 const struct lp_fragment_shader_variant_key *key,
218 LLVMBuilderRef builder,
219 struct lp_type type,
220 LLVMValueRef context_ptr,
221 unsigned i,
222 struct lp_build_interp_soa_context *interp,
223 struct lp_build_sampler_soa *sampler,
224 LLVMValueRef *pmask,
225 LLVMValueRef (*color)[4],
226 LLVMValueRef depth_ptr,
227 LLVMValueRef facing,
228 unsigned partial_mask,
229 LLVMValueRef mask_input,
230 LLVMValueRef counter)
231 {
232 const struct util_format_description *zs_format_desc = NULL;
233 const struct tgsi_token *tokens = shader->base.tokens;
234 LLVMTypeRef vec_type;
235 LLVMValueRef consts_ptr;
236 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
237 LLVMValueRef z;
238 LLVMValueRef zs_value = NULL;
239 LLVMValueRef stencil_refs[2];
240 struct lp_build_mask_context mask;
241 boolean simple_shader = (shader->info.base.file_count[TGSI_FILE_SAMPLER] == 0 &&
242 shader->info.base.num_inputs < 3 &&
243 shader->info.base.num_instructions < 8);
244 unsigned attrib;
245 unsigned chan;
246 unsigned cbuf;
247 unsigned depth_mode;
248
249 if (key->depth.enabled ||
250 key->stencil[0].enabled ||
251 key->stencil[1].enabled) {
252
253 zs_format_desc = util_format_description(key->zsbuf_format);
254 assert(zs_format_desc);
255
256 if (!shader->info.base.writes_z) {
257 if (key->alpha.enabled || shader->info.base.uses_kill)
258 /* With alpha test and kill, can do the depth test early
259 * and hopefully eliminate some quads. But need to do a
260 * special deferred depth write once the final mask value
261 * is known.
262 */
263 depth_mode = EARLY_DEPTH_TEST | LATE_DEPTH_WRITE;
264 else
265 depth_mode = EARLY_DEPTH_TEST | EARLY_DEPTH_WRITE;
266 }
267 else {
268 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
269 }
270
271 if (!(key->depth.enabled && key->depth.writemask) &&
272 !(key->stencil[0].enabled && key->stencil[0].writemask))
273 depth_mode &= ~(LATE_DEPTH_WRITE | EARLY_DEPTH_WRITE);
274 }
275 else {
276 depth_mode = 0;
277 }
278
279 assert(i < 4);
280
281 stencil_refs[0] = lp_jit_context_stencil_ref_front_value(gallivm, context_ptr);
282 stencil_refs[1] = lp_jit_context_stencil_ref_back_value(gallivm, context_ptr);
283
284 vec_type = lp_build_vec_type(gallivm, type);
285
286 consts_ptr = lp_jit_context_constants(gallivm, context_ptr);
287
288 memset(outputs, 0, sizeof outputs);
289
290 /* Declare the color and z variables */
291 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
292 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
293 color[cbuf][chan] = lp_build_alloca(gallivm, vec_type, "color");
294 }
295 }
296
297 /* do triangle edge testing */
298 if (partial_mask) {
299 *pmask = generate_quad_mask(gallivm, type,
300 i, mask_input);
301 }
302 else {
303 *pmask = lp_build_const_int_vec(gallivm, type, ~0);
304 }
305
306 /* 'mask' will control execution based on quad's pixel alive/killed state */
307 lp_build_mask_begin(&mask, gallivm, type, *pmask);
308
309 if (!(depth_mode & EARLY_DEPTH_TEST) && !simple_shader)
310 lp_build_mask_check(&mask);
311
312 lp_build_interp_soa_update_pos(interp, gallivm, i);
313 z = interp->pos[2];
314
315 if (depth_mode & EARLY_DEPTH_TEST) {
316 lp_build_depth_stencil_test(gallivm,
317 &key->depth,
318 key->stencil,
319 type,
320 zs_format_desc,
321 &mask,
322 stencil_refs,
323 z,
324 depth_ptr, facing,
325 &zs_value,
326 !simple_shader);
327
328 if (depth_mode & EARLY_DEPTH_WRITE) {
329 lp_build_depth_write(builder, zs_format_desc, depth_ptr, zs_value);
330 }
331 }
332
333 lp_build_interp_soa_update_inputs(interp, gallivm, i);
334
335 /* Build the actual shader */
336 lp_build_tgsi_soa(gallivm, tokens, type, &mask,
337 consts_ptr, NULL, /* instance id */
338 interp->pos, interp->inputs,
339 outputs, sampler, &shader->info.base);
340
341 /* Alpha test */
342 if (key->alpha.enabled) {
343 int color0 = find_output_by_semantic(&shader->info.base,
344 TGSI_SEMANTIC_COLOR,
345 0);
346
347 if (color0 != -1 && outputs[color0][3]) {
348 const struct util_format_description *cbuf_format_desc;
349 LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
350 LLVMValueRef alpha_ref_value;
351
352 alpha_ref_value = lp_jit_context_alpha_ref_value(gallivm, context_ptr);
353 alpha_ref_value = lp_build_broadcast(gallivm, vec_type, alpha_ref_value);
354
355 cbuf_format_desc = util_format_description(key->cbuf_format[0]);
356
357 lp_build_alpha_test(gallivm, key->alpha.func, type, cbuf_format_desc,
358 &mask, alpha, alpha_ref_value,
359 (depth_mode & LATE_DEPTH_TEST) != 0);
360 }
361 }
362
363 /* Late Z test */
364 if (depth_mode & LATE_DEPTH_TEST) {
365 int pos0 = find_output_by_semantic(&shader->info.base,
366 TGSI_SEMANTIC_POSITION,
367 0);
368
369 if (pos0 != -1 && outputs[pos0][2]) {
370 z = LLVMBuildLoad(builder, outputs[pos0][2], "output.z");
371 }
372
373 lp_build_depth_stencil_test(gallivm,
374 &key->depth,
375 key->stencil,
376 type,
377 zs_format_desc,
378 &mask,
379 stencil_refs,
380 z,
381 depth_ptr, facing,
382 &zs_value,
383 !simple_shader);
384 /* Late Z write */
385 if (depth_mode & LATE_DEPTH_WRITE) {
386 lp_build_depth_write(builder, zs_format_desc, depth_ptr, zs_value);
387 }
388 }
389 else if ((depth_mode & EARLY_DEPTH_TEST) &&
390 (depth_mode & LATE_DEPTH_WRITE))
391 {
392 /* Need to apply a reduced mask to the depth write. Reload the
393 * depth value, update from zs_value with the new mask value and
394 * write that out.
395 */
396 lp_build_deferred_depth_write(gallivm,
397 type,
398 zs_format_desc,
399 &mask,
400 depth_ptr,
401 zs_value);
402 }
403
404
405 /* Color write */
406 for (attrib = 0; attrib < shader->info.base.num_outputs; ++attrib)
407 {
408 if (shader->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_COLOR &&
409 shader->info.base.output_semantic_index[attrib] < key->nr_cbufs)
410 {
411 unsigned cbuf = shader->info.base.output_semantic_index[attrib];
412 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
413 if(outputs[attrib][chan]) {
414 /* XXX: just initialize outputs to point at colors[] and
415 * skip this.
416 */
417 LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
418 lp_build_name(out, "color%u.%u.%c", i, attrib, "rgba"[chan]);
419 LLVMBuildStore(builder, out, color[cbuf][chan]);
420 }
421 }
422 }
423 }
424
425 if (counter)
426 lp_build_occlusion_count(gallivm, type,
427 lp_build_mask_value(&mask), counter);
428
429 *pmask = lp_build_mask_end(&mask);
430 }
431
432
433 /**
434 * Generate color blending and color output.
435 * \param rt the render target index (to index blend, colormask state)
436 * \param type the pixel color type
437 * \param context_ptr pointer to the runtime JIT context
438 * \param mask execution mask (active fragment/pixel mask)
439 * \param src colors from the fragment shader
440 * \param dst_ptr the destination color buffer pointer
441 */
442 static void
443 generate_blend(struct gallivm_state *gallivm,
444 const struct pipe_blend_state *blend,
445 unsigned rt,
446 LLVMBuilderRef builder,
447 struct lp_type type,
448 LLVMValueRef context_ptr,
449 LLVMValueRef mask,
450 LLVMValueRef *src,
451 LLVMValueRef dst_ptr,
452 boolean do_branch)
453 {
454 struct lp_build_context bld;
455 struct lp_build_mask_context mask_ctx;
456 LLVMTypeRef vec_type;
457 LLVMValueRef const_ptr;
458 LLVMValueRef con[4];
459 LLVMValueRef dst[4];
460 LLVMValueRef res[4];
461 unsigned chan;
462
463 lp_build_context_init(&bld, gallivm, type);
464
465 lp_build_mask_begin(&mask_ctx, gallivm, type, mask);
466 if (do_branch)
467 lp_build_mask_check(&mask_ctx);
468
469 vec_type = lp_build_vec_type(gallivm, type);
470
471 const_ptr = lp_jit_context_blend_color(gallivm, context_ptr);
472 const_ptr = LLVMBuildBitCast(builder, const_ptr,
473 LLVMPointerType(vec_type, 0), "");
474
475 /* load constant blend color and colors from the dest color buffer */
476 for(chan = 0; chan < 4; ++chan) {
477 LLVMValueRef index = lp_build_const_int32(gallivm, chan);
478 con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), "");
479
480 dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), "");
481
482 lp_build_name(con[chan], "con.%c", "rgba"[chan]);
483 lp_build_name(dst[chan], "dst.%c", "rgba"[chan]);
484 }
485
486 /* do blend */
487 lp_build_blend_soa(gallivm, blend, type, rt, src, dst, con, res);
488
489 /* store results to color buffer */
490 for(chan = 0; chan < 4; ++chan) {
491 if(blend->rt[rt].colormask & (1 << chan)) {
492 LLVMValueRef index = lp_build_const_int32(gallivm, chan);
493 lp_build_name(res[chan], "res.%c", "rgba"[chan]);
494 res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]);
495 LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, ""));
496 }
497 }
498
499 lp_build_mask_end(&mask_ctx);
500 }
501
502
503 /**
504 * Generate the runtime callable function for the whole fragment pipeline.
505 * Note that the function which we generate operates on a block of 16
506 * pixels at at time. The block contains 2x2 quads. Each quad contains
507 * 2x2 pixels.
508 */
509 static void
510 generate_fragment(struct llvmpipe_context *lp,
511 struct lp_fragment_shader *shader,
512 struct lp_fragment_shader_variant *variant,
513 unsigned partial_mask)
514 {
515 struct gallivm_state *gallivm = lp->gallivm;
516 const struct lp_fragment_shader_variant_key *key = &variant->key;
517 struct lp_shader_input inputs[PIPE_MAX_SHADER_INPUTS];
518 char func_name[256];
519 struct lp_type fs_type;
520 struct lp_type blend_type;
521 LLVMTypeRef fs_elem_type;
522 LLVMTypeRef blend_vec_type;
523 LLVMTypeRef arg_types[11];
524 LLVMTypeRef func_type;
525 LLVMTypeRef int32_type = LLVMInt32TypeInContext(gallivm->context);
526 LLVMTypeRef int8_type = LLVMInt8TypeInContext(gallivm->context);
527 LLVMValueRef context_ptr;
528 LLVMValueRef x;
529 LLVMValueRef y;
530 LLVMValueRef a0_ptr;
531 LLVMValueRef dadx_ptr;
532 LLVMValueRef dady_ptr;
533 LLVMValueRef color_ptr_ptr;
534 LLVMValueRef depth_ptr;
535 LLVMValueRef mask_input;
536 LLVMValueRef counter = NULL;
537 LLVMBasicBlockRef block;
538 LLVMBuilderRef builder;
539 struct lp_build_sampler_soa *sampler;
540 struct lp_build_interp_soa_context interp;
541 LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
542 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
543 LLVMValueRef blend_mask;
544 LLVMValueRef function;
545 LLVMValueRef facing;
546 const struct util_format_description *zs_format_desc;
547 unsigned num_fs;
548 unsigned i;
549 unsigned chan;
550 unsigned cbuf;
551 boolean cbuf0_write_all;
552
553 /* Adjust color input interpolation according to flatshade state:
554 */
555 memcpy(inputs, shader->inputs, shader->info.base.num_inputs * sizeof inputs[0]);
556 for (i = 0; i < shader->info.base.num_inputs; i++) {
557 if (inputs[i].interp == LP_INTERP_COLOR) {
558 if (key->flatshade)
559 inputs[i].interp = LP_INTERP_CONSTANT;
560 else
561 inputs[i].interp = LP_INTERP_PERSPECTIVE;
562 }
563 }
564
565 /* check if writes to cbuf[0] are to be copied to all cbufs */
566 cbuf0_write_all = FALSE;
567 for (i = 0;i < shader->info.base.num_properties; i++) {
568 if (shader->info.base.properties[i].name ==
569 TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS) {
570 cbuf0_write_all = TRUE;
571 break;
572 }
573 }
574
575 /* TODO: actually pick these based on the fs and color buffer
576 * characteristics. */
577
578 memset(&fs_type, 0, sizeof fs_type);
579 fs_type.floating = TRUE; /* floating point values */
580 fs_type.sign = TRUE; /* values are signed */
581 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
582 fs_type.width = 32; /* 32-bit float */
583 fs_type.length = 4; /* 4 elements per vector */
584 num_fs = 4; /* number of quads per block */
585
586 memset(&blend_type, 0, sizeof blend_type);
587 blend_type.floating = FALSE; /* values are integers */
588 blend_type.sign = FALSE; /* values are unsigned */
589 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
590 blend_type.width = 8; /* 8-bit ubyte values */
591 blend_type.length = 16; /* 16 elements per vector */
592
593 /*
594 * Generate the function prototype. Any change here must be reflected in
595 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
596 */
597
598 fs_elem_type = lp_build_elem_type(gallivm, fs_type);
599
600 blend_vec_type = lp_build_vec_type(gallivm, blend_type);
601
602 util_snprintf(func_name, sizeof(func_name), "fs%u_variant%u_%s",
603 shader->no, variant->no, partial_mask ? "partial" : "whole");
604
605 arg_types[0] = lp_jit_get_context_type(lp); /* context */
606 arg_types[1] = int32_type; /* x */
607 arg_types[2] = int32_type; /* y */
608 arg_types[3] = int32_type; /* facing */
609 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* a0 */
610 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dadx */
611 arg_types[6] = LLVMPointerType(fs_elem_type, 0); /* dady */
612 arg_types[7] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */
613 arg_types[8] = LLVMPointerType(int8_type, 0); /* depth */
614 arg_types[9] = int32_type; /* mask_input */
615 arg_types[10] = LLVMPointerType(int32_type, 0); /* counter */
616
617 func_type = LLVMFunctionType(LLVMVoidTypeInContext(gallivm->context),
618 arg_types, Elements(arg_types), 0);
619
620 function = LLVMAddFunction(gallivm->module, func_name, func_type);
621 LLVMSetFunctionCallConv(function, LLVMCCallConv);
622
623 variant->function[partial_mask] = function;
624
625 /* XXX: need to propagate noalias down into color param now we are
626 * passing a pointer-to-pointer?
627 */
628 for(i = 0; i < Elements(arg_types); ++i)
629 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
630 LLVMAddAttribute(LLVMGetParam(function, i), LLVMNoAliasAttribute);
631
632 context_ptr = LLVMGetParam(function, 0);
633 x = LLVMGetParam(function, 1);
634 y = LLVMGetParam(function, 2);
635 facing = LLVMGetParam(function, 3);
636 a0_ptr = LLVMGetParam(function, 4);
637 dadx_ptr = LLVMGetParam(function, 5);
638 dady_ptr = LLVMGetParam(function, 6);
639 color_ptr_ptr = LLVMGetParam(function, 7);
640 depth_ptr = LLVMGetParam(function, 8);
641 mask_input = LLVMGetParam(function, 9);
642
643 lp_build_name(context_ptr, "context");
644 lp_build_name(x, "x");
645 lp_build_name(y, "y");
646 lp_build_name(a0_ptr, "a0");
647 lp_build_name(dadx_ptr, "dadx");
648 lp_build_name(dady_ptr, "dady");
649 lp_build_name(color_ptr_ptr, "color_ptr_ptr");
650 lp_build_name(depth_ptr, "depth");
651 lp_build_name(mask_input, "mask_input");
652
653 if (key->occlusion_count) {
654 counter = LLVMGetParam(function, 10);
655 lp_build_name(counter, "counter");
656 }
657
658 /*
659 * Function body
660 */
661
662 block = LLVMAppendBasicBlockInContext(gallivm->context, function, "entry");
663 builder = gallivm->builder;
664 assert(builder);
665 LLVMPositionBuilderAtEnd(builder, block);
666
667 /*
668 * The shader input interpolation info is not explicitely baked in the
669 * shader key, but everything it derives from (TGSI, and flatshade) is
670 * already included in the shader key.
671 */
672 lp_build_interp_soa_init(&interp,
673 gallivm,
674 shader->info.base.num_inputs,
675 inputs,
676 builder, fs_type,
677 a0_ptr, dadx_ptr, dady_ptr,
678 x, y);
679
680 /* code generated texture sampling */
681 sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr);
682
683 /* loop over quads in the block */
684 zs_format_desc = util_format_description(key->zsbuf_format);
685
686 for(i = 0; i < num_fs; ++i) {
687 LLVMValueRef depth_offset = LLVMConstInt(int32_type,
688 i*fs_type.length*zs_format_desc->block.bits/8,
689 0);
690 LLVMValueRef out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS];
691 LLVMValueRef depth_ptr_i;
692
693 depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &depth_offset, 1, "");
694
695 generate_fs(gallivm,
696 shader, key,
697 builder,
698 fs_type,
699 context_ptr,
700 i,
701 &interp,
702 sampler,
703 &fs_mask[i], /* output */
704 out_color,
705 depth_ptr_i,
706 facing,
707 partial_mask,
708 mask_input,
709 counter);
710
711 for (cbuf = 0; cbuf < key->nr_cbufs; cbuf++)
712 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan)
713 fs_out_color[cbuf][chan][i] =
714 out_color[cbuf * !cbuf0_write_all][chan];
715 }
716
717 sampler->destroy(sampler);
718
719 /* Loop over color outputs / color buffers to do blending.
720 */
721 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
722 LLVMValueRef color_ptr;
723 LLVMValueRef index = lp_build_const_int32(gallivm, cbuf);
724 LLVMValueRef blend_in_color[TGSI_NUM_CHANNELS];
725 unsigned rt;
726
727 /*
728 * Convert the fs's output color and mask to fit to the blending type.
729 */
730 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
731 LLVMValueRef fs_color_vals[LP_MAX_VECTOR_LENGTH];
732
733 for (i = 0; i < num_fs; i++) {
734 fs_color_vals[i] =
735 LLVMBuildLoad(builder, fs_out_color[cbuf][chan][i], "fs_color_vals");
736 }
737
738 lp_build_conv(gallivm, fs_type, blend_type,
739 fs_color_vals,
740 num_fs,
741 &blend_in_color[chan], 1);
742
743 lp_build_name(blend_in_color[chan], "color%d.%c", cbuf, "rgba"[chan]);
744 }
745
746 if (partial_mask || !variant->opaque) {
747 lp_build_conv_mask(lp->gallivm, fs_type, blend_type,
748 fs_mask, num_fs,
749 &blend_mask, 1);
750 } else {
751 blend_mask = lp_build_const_int_vec(lp->gallivm, blend_type, ~0);
752 }
753
754 color_ptr = LLVMBuildLoad(builder,
755 LLVMBuildGEP(builder, color_ptr_ptr, &index, 1, ""),
756 "");
757 lp_build_name(color_ptr, "color_ptr%d", cbuf);
758
759 /* which blend/colormask state to use */
760 rt = key->blend.independent_blend_enable ? cbuf : 0;
761
762 /*
763 * Blending.
764 */
765 {
766 /* Could the 4x4 have been killed?
767 */
768 boolean do_branch = ((key->depth.enabled || key->stencil[0].enabled) &&
769 !key->alpha.enabled &&
770 !shader->info.base.uses_kill);
771
772 generate_blend(lp->gallivm,
773 &key->blend,
774 rt,
775 builder,
776 blend_type,
777 context_ptr,
778 blend_mask,
779 blend_in_color,
780 color_ptr,
781 do_branch);
782 }
783 }
784
785 LLVMBuildRetVoid(builder);
786
787 /* Verify the LLVM IR. If invalid, dump and abort */
788 #ifdef DEBUG
789 if(LLVMVerifyFunction(function, LLVMPrintMessageAction)) {
790 if (1)
791 lp_debug_dump_value(function);
792 abort();
793 }
794 #endif
795
796 /* Apply optimizations to LLVM IR */
797 LLVMRunFunctionPassManager(gallivm->passmgr, function);
798
799 if ((gallivm_debug & GALLIVM_DEBUG_IR) || (LP_DEBUG & DEBUG_FS)) {
800 /* Print the LLVM IR to stderr */
801 lp_debug_dump_value(function);
802 debug_printf("\n");
803 }
804
805 /* Dump byte code to a file */
806 if (0) {
807 LLVMWriteBitcodeToFile(gallivm->module, "llvmpipe.bc");
808 }
809
810 variant->nr_instrs += lp_build_count_instructions(function);
811 /*
812 * Translate the LLVM IR into machine code.
813 */
814 {
815 void *f = LLVMGetPointerToGlobal(gallivm->engine, function);
816
817 variant->jit_function[partial_mask] = (lp_jit_frag_func)pointer_to_func(f);
818
819 if ((gallivm_debug & GALLIVM_DEBUG_ASM) || (LP_DEBUG & DEBUG_FS)) {
820 lp_disassemble(f);
821 }
822 lp_func_delete_body(function);
823 }
824 }
825
826
827 static void
828 dump_fs_variant_key(const struct lp_fragment_shader_variant_key *key)
829 {
830 unsigned i;
831
832 debug_printf("fs variant %p:\n", (void *) key);
833
834 if (key->flatshade) {
835 debug_printf("flatshade = 1\n");
836 }
837 for (i = 0; i < key->nr_cbufs; ++i) {
838 debug_printf("cbuf_format[%u] = %s\n", i, util_format_name(key->cbuf_format[i]));
839 }
840 if (key->depth.enabled) {
841 debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
842 debug_printf("depth.func = %s\n", util_dump_func(key->depth.func, TRUE));
843 debug_printf("depth.writemask = %u\n", key->depth.writemask);
844 }
845
846 for (i = 0; i < 2; ++i) {
847 if (key->stencil[i].enabled) {
848 debug_printf("stencil[%u].func = %s\n", i, util_dump_func(key->stencil[i].func, TRUE));
849 debug_printf("stencil[%u].fail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].fail_op, TRUE));
850 debug_printf("stencil[%u].zpass_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zpass_op, TRUE));
851 debug_printf("stencil[%u].zfail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zfail_op, TRUE));
852 debug_printf("stencil[%u].valuemask = 0x%x\n", i, key->stencil[i].valuemask);
853 debug_printf("stencil[%u].writemask = 0x%x\n", i, key->stencil[i].writemask);
854 }
855 }
856
857 if (key->alpha.enabled) {
858 debug_printf("alpha.func = %s\n", util_dump_func(key->alpha.func, TRUE));
859 }
860
861 if (key->occlusion_count) {
862 debug_printf("occlusion_count = 1\n");
863 }
864
865 if (key->blend.logicop_enable) {
866 debug_printf("blend.logicop_func = %s\n", util_dump_logicop(key->blend.logicop_func, TRUE));
867 }
868 else if (key->blend.rt[0].blend_enable) {
869 debug_printf("blend.rgb_func = %s\n", util_dump_blend_func (key->blend.rt[0].rgb_func, TRUE));
870 debug_printf("blend.rgb_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
871 debug_printf("blend.rgb_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
872 debug_printf("blend.alpha_func = %s\n", util_dump_blend_func (key->blend.rt[0].alpha_func, TRUE));
873 debug_printf("blend.alpha_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
874 debug_printf("blend.alpha_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
875 }
876 debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
877 for (i = 0; i < key->nr_samplers; ++i) {
878 debug_printf("sampler[%u] = \n", i);
879 debug_printf(" .format = %s\n",
880 util_format_name(key->sampler[i].format));
881 debug_printf(" .target = %s\n",
882 util_dump_tex_target(key->sampler[i].target, TRUE));
883 debug_printf(" .pot = %u %u %u\n",
884 key->sampler[i].pot_width,
885 key->sampler[i].pot_height,
886 key->sampler[i].pot_depth);
887 debug_printf(" .wrap = %s %s %s\n",
888 util_dump_tex_wrap(key->sampler[i].wrap_s, TRUE),
889 util_dump_tex_wrap(key->sampler[i].wrap_t, TRUE),
890 util_dump_tex_wrap(key->sampler[i].wrap_r, TRUE));
891 debug_printf(" .min_img_filter = %s\n",
892 util_dump_tex_filter(key->sampler[i].min_img_filter, TRUE));
893 debug_printf(" .min_mip_filter = %s\n",
894 util_dump_tex_mipfilter(key->sampler[i].min_mip_filter, TRUE));
895 debug_printf(" .mag_img_filter = %s\n",
896 util_dump_tex_filter(key->sampler[i].mag_img_filter, TRUE));
897 if (key->sampler[i].compare_mode != PIPE_TEX_COMPARE_NONE)
898 debug_printf(" .compare_func = %s\n", util_dump_func(key->sampler[i].compare_func, TRUE));
899 debug_printf(" .normalized_coords = %u\n", key->sampler[i].normalized_coords);
900 debug_printf(" .min_max_lod_equal = %u\n", key->sampler[i].min_max_lod_equal);
901 debug_printf(" .lod_bias_non_zero = %u\n", key->sampler[i].lod_bias_non_zero);
902 debug_printf(" .apply_min_lod = %u\n", key->sampler[i].apply_min_lod);
903 debug_printf(" .apply_max_lod = %u\n", key->sampler[i].apply_max_lod);
904 }
905 }
906
907
908 void
909 lp_debug_fs_variant(const struct lp_fragment_shader_variant *variant)
910 {
911 debug_printf("llvmpipe: Fragment shader #%u variant #%u:\n",
912 variant->shader->no, variant->no);
913 tgsi_dump(variant->shader->base.tokens, 0);
914 dump_fs_variant_key(&variant->key);
915 debug_printf("variant->opaque = %u\n", variant->opaque);
916 debug_printf("\n");
917 }
918
919
920 /**
921 * Generate a new fragment shader variant from the shader code and
922 * other state indicated by the key.
923 */
924 static struct lp_fragment_shader_variant *
925 generate_variant(struct llvmpipe_context *lp,
926 struct lp_fragment_shader *shader,
927 const struct lp_fragment_shader_variant_key *key)
928 {
929 struct lp_fragment_shader_variant *variant;
930 const struct util_format_description *cbuf0_format_desc;
931 boolean fullcolormask;
932
933 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
934 if(!variant)
935 return NULL;
936
937 variant->shader = shader;
938 variant->list_item_global.base = variant;
939 variant->list_item_local.base = variant;
940 variant->no = shader->variants_created++;
941
942 memcpy(&variant->key, key, shader->variant_key_size);
943
944 /*
945 * Determine whether we are touching all channels in the color buffer.
946 */
947 fullcolormask = FALSE;
948 if (key->nr_cbufs == 1) {
949 cbuf0_format_desc = util_format_description(key->cbuf_format[0]);
950 fullcolormask = util_format_colormask_full(cbuf0_format_desc, key->blend.rt[0].colormask);
951 }
952
953 variant->opaque =
954 !key->blend.logicop_enable &&
955 !key->blend.rt[0].blend_enable &&
956 fullcolormask &&
957 !key->stencil[0].enabled &&
958 !key->alpha.enabled &&
959 !key->depth.enabled &&
960 !shader->info.base.uses_kill
961 ? TRUE : FALSE;
962
963
964 if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
965 lp_debug_fs_variant(variant);
966 }
967
968 generate_fragment(lp, shader, variant, RAST_EDGE_TEST);
969
970 if (variant->opaque) {
971 /* Specialized shader, which doesn't need to read the color buffer. */
972 generate_fragment(lp, shader, variant, RAST_WHOLE);
973 } else {
974 variant->jit_function[RAST_WHOLE] = variant->jit_function[RAST_EDGE_TEST];
975 }
976
977 return variant;
978 }
979
980
981 static void *
982 llvmpipe_create_fs_state(struct pipe_context *pipe,
983 const struct pipe_shader_state *templ)
984 {
985 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
986 struct lp_fragment_shader *shader;
987 int nr_samplers;
988 int i;
989
990 shader = CALLOC_STRUCT(lp_fragment_shader);
991 if (!shader)
992 return NULL;
993
994 shader->no = fs_no++;
995 make_empty_list(&shader->variants);
996
997 /* get/save the summary info for this shader */
998 lp_build_tgsi_info(templ->tokens, &shader->info);
999
1000 /* we need to keep a local copy of the tokens */
1001 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
1002
1003 shader->draw_data = draw_create_fragment_shader(llvmpipe->draw, templ);
1004 if (shader->draw_data == NULL) {
1005 FREE((void *) shader->base.tokens);
1006 FREE(shader);
1007 return NULL;
1008 }
1009
1010 nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
1011
1012 shader->variant_key_size = Offset(struct lp_fragment_shader_variant_key,
1013 sampler[nr_samplers]);
1014
1015 for (i = 0; i < shader->info.base.num_inputs; i++) {
1016 shader->inputs[i].usage_mask = shader->info.base.input_usage_mask[i];
1017 shader->inputs[i].cyl_wrap = shader->info.base.input_cylindrical_wrap[i];
1018
1019 switch (shader->info.base.input_interpolate[i]) {
1020 case TGSI_INTERPOLATE_CONSTANT:
1021 shader->inputs[i].interp = LP_INTERP_CONSTANT;
1022 break;
1023 case TGSI_INTERPOLATE_LINEAR:
1024 shader->inputs[i].interp = LP_INTERP_LINEAR;
1025 break;
1026 case TGSI_INTERPOLATE_PERSPECTIVE:
1027 shader->inputs[i].interp = LP_INTERP_PERSPECTIVE;
1028 break;
1029 case TGSI_INTERPOLATE_COLOR:
1030 shader->inputs[i].interp = LP_INTERP_COLOR;
1031 break;
1032 default:
1033 assert(0);
1034 break;
1035 }
1036
1037 switch (shader->info.base.input_semantic_name[i]) {
1038 case TGSI_SEMANTIC_FACE:
1039 shader->inputs[i].interp = LP_INTERP_FACING;
1040 break;
1041 case TGSI_SEMANTIC_POSITION:
1042 /* Position was already emitted above
1043 */
1044 shader->inputs[i].interp = LP_INTERP_POSITION;
1045 shader->inputs[i].src_index = 0;
1046 continue;
1047 }
1048
1049 shader->inputs[i].src_index = i+1;
1050 }
1051
1052 if (LP_DEBUG & DEBUG_TGSI) {
1053 unsigned attrib;
1054 debug_printf("llvmpipe: Create fragment shader #%u %p:\n",
1055 shader->no, (void *) shader);
1056 tgsi_dump(templ->tokens, 0);
1057 debug_printf("usage masks:\n");
1058 for (attrib = 0; attrib < shader->info.base.num_inputs; ++attrib) {
1059 unsigned usage_mask = shader->info.base.input_usage_mask[attrib];
1060 debug_printf(" IN[%u].%s%s%s%s\n",
1061 attrib,
1062 usage_mask & TGSI_WRITEMASK_X ? "x" : "",
1063 usage_mask & TGSI_WRITEMASK_Y ? "y" : "",
1064 usage_mask & TGSI_WRITEMASK_Z ? "z" : "",
1065 usage_mask & TGSI_WRITEMASK_W ? "w" : "");
1066 }
1067 debug_printf("\n");
1068 }
1069
1070 return shader;
1071 }
1072
1073
1074 static void
1075 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
1076 {
1077 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1078
1079 if (llvmpipe->fs == fs)
1080 return;
1081
1082 draw_flush(llvmpipe->draw);
1083
1084 llvmpipe->fs = (struct lp_fragment_shader *) fs;
1085
1086 draw_bind_fragment_shader(llvmpipe->draw,
1087 (llvmpipe->fs ? llvmpipe->fs->draw_data : NULL));
1088
1089 llvmpipe->dirty |= LP_NEW_FS;
1090 }
1091
1092
1093 /**
1094 * Remove shader variant from two lists: the shader's variant list
1095 * and the context's variant list.
1096 */
1097 void
1098 llvmpipe_remove_shader_variant(struct llvmpipe_context *lp,
1099 struct lp_fragment_shader_variant *variant)
1100 {
1101 unsigned i;
1102
1103 if (gallivm_debug & GALLIVM_DEBUG_IR) {
1104 debug_printf("llvmpipe: del fs #%u var #%u v created #%u v cached"
1105 " #%u v total cached #%u\n",
1106 variant->shader->no,
1107 variant->no,
1108 variant->shader->variants_created,
1109 variant->shader->variants_cached,
1110 lp->nr_fs_variants);
1111 }
1112
1113 /* free all the variant's JIT'd functions */
1114 for (i = 0; i < Elements(variant->function); i++) {
1115 if (variant->function[i]) {
1116 if (variant->jit_function[i])
1117 LLVMFreeMachineCodeForFunction(lp->gallivm->engine,
1118 variant->function[i]);
1119 LLVMDeleteFunction(variant->function[i]);
1120 }
1121 }
1122
1123 /* remove from shader's list */
1124 remove_from_list(&variant->list_item_local);
1125 variant->shader->variants_cached--;
1126
1127 /* remove from context's list */
1128 remove_from_list(&variant->list_item_global);
1129 lp->nr_fs_variants--;
1130 lp->nr_fs_instrs -= variant->nr_instrs;
1131
1132 FREE(variant);
1133 }
1134
1135
1136 static void
1137 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
1138 {
1139 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1140 struct lp_fragment_shader *shader = fs;
1141 struct lp_fs_variant_list_item *li;
1142
1143 assert(fs != llvmpipe->fs);
1144
1145 /*
1146 * XXX: we need to flush the context until we have some sort of reference
1147 * counting in fragment shaders as they may still be binned
1148 * Flushing alone might not sufficient we need to wait on it too.
1149 */
1150 llvmpipe_finish(pipe, __FUNCTION__);
1151
1152 /* Delete all the variants */
1153 li = first_elem(&shader->variants);
1154 while(!at_end(&shader->variants, li)) {
1155 struct lp_fs_variant_list_item *next = next_elem(li);
1156 llvmpipe_remove_shader_variant(llvmpipe, li->base);
1157 li = next;
1158 }
1159
1160 /* Delete draw module's data */
1161 draw_delete_fragment_shader(llvmpipe->draw, shader->draw_data);
1162
1163 assert(shader->variants_cached == 0);
1164 FREE((void *) shader->base.tokens);
1165 FREE(shader);
1166 }
1167
1168
1169
1170 static void
1171 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
1172 uint shader, uint index,
1173 struct pipe_constant_buffer *cb)
1174 {
1175 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1176 struct pipe_resource *constants = cb ? cb->buffer : NULL;
1177 unsigned size;
1178 const void *data;
1179
1180 if (cb && cb->user_buffer) {
1181 constants = llvmpipe_user_buffer_create(pipe->screen,
1182 (void *) cb->user_buffer,
1183 cb->buffer_size,
1184 PIPE_BIND_CONSTANT_BUFFER);
1185 }
1186
1187 size = constants ? constants->width0 : 0;
1188 data = constants ? llvmpipe_resource_data(constants) : NULL;
1189
1190 assert(shader < PIPE_SHADER_TYPES);
1191 assert(index < PIPE_MAX_CONSTANT_BUFFERS);
1192
1193 if(llvmpipe->constants[shader][index] == constants)
1194 return;
1195
1196 draw_flush(llvmpipe->draw);
1197
1198 /* note: reference counting */
1199 pipe_resource_reference(&llvmpipe->constants[shader][index], constants);
1200
1201 if(shader == PIPE_SHADER_VERTEX ||
1202 shader == PIPE_SHADER_GEOMETRY) {
1203 draw_set_mapped_constant_buffer(llvmpipe->draw, shader,
1204 index, data, size);
1205 }
1206
1207 llvmpipe->dirty |= LP_NEW_CONSTANTS;
1208
1209 if (cb && cb->user_buffer) {
1210 pipe_resource_reference(&constants, NULL);
1211 }
1212 }
1213
1214
1215 /**
1216 * Return the blend factor equivalent to a destination alpha of one.
1217 */
1218 static INLINE unsigned
1219 force_dst_alpha_one(unsigned factor)
1220 {
1221 switch(factor) {
1222 case PIPE_BLENDFACTOR_DST_ALPHA:
1223 return PIPE_BLENDFACTOR_ONE;
1224 case PIPE_BLENDFACTOR_INV_DST_ALPHA:
1225 return PIPE_BLENDFACTOR_ZERO;
1226 case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
1227 return PIPE_BLENDFACTOR_ZERO;
1228 }
1229
1230 return factor;
1231 }
1232
1233
1234 /**
1235 * We need to generate several variants of the fragment pipeline to match
1236 * all the combinations of the contributing state atoms.
1237 *
1238 * TODO: there is actually no reason to tie this to context state -- the
1239 * generated code could be cached globally in the screen.
1240 */
1241 static void
1242 make_variant_key(struct llvmpipe_context *lp,
1243 struct lp_fragment_shader *shader,
1244 struct lp_fragment_shader_variant_key *key)
1245 {
1246 unsigned i;
1247
1248 memset(key, 0, shader->variant_key_size);
1249
1250 if (lp->framebuffer.zsbuf) {
1251 if (lp->depth_stencil->depth.enabled) {
1252 key->zsbuf_format = lp->framebuffer.zsbuf->format;
1253 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
1254 }
1255 if (lp->depth_stencil->stencil[0].enabled) {
1256 key->zsbuf_format = lp->framebuffer.zsbuf->format;
1257 memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil);
1258 }
1259 }
1260
1261 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
1262 if(key->alpha.enabled)
1263 key->alpha.func = lp->depth_stencil->alpha.func;
1264 /* alpha.ref_value is passed in jit_context */
1265
1266 key->flatshade = lp->rasterizer->flatshade;
1267 if (lp->active_query_count) {
1268 key->occlusion_count = TRUE;
1269 }
1270
1271 if (lp->framebuffer.nr_cbufs) {
1272 memcpy(&key->blend, lp->blend, sizeof key->blend);
1273 }
1274
1275 key->nr_cbufs = lp->framebuffer.nr_cbufs;
1276 for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
1277 enum pipe_format format = lp->framebuffer.cbufs[i]->format;
1278 struct pipe_rt_blend_state *blend_rt = &key->blend.rt[i];
1279 const struct util_format_description *format_desc;
1280
1281 key->cbuf_format[i] = format;
1282
1283 format_desc = util_format_description(format);
1284 assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||
1285 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB);
1286
1287 blend_rt->colormask = lp->blend->rt[i].colormask;
1288
1289 /*
1290 * Mask out color channels not present in the color buffer.
1291 */
1292 blend_rt->colormask &= util_format_colormask(format_desc);
1293
1294 /*
1295 * Our swizzled render tiles always have an alpha channel, but the linear
1296 * render target format often does not, so force here the dst alpha to be
1297 * one.
1298 *
1299 * This is not a mere optimization. Wrong results will be produced if the
1300 * dst alpha is used, the dst format does not have alpha, and the previous
1301 * rendering was not flushed from the swizzled to linear buffer. For
1302 * example, NonPowTwo DCT.
1303 *
1304 * TODO: This should be generalized to all channels for better
1305 * performance, but only alpha causes correctness issues.
1306 *
1307 * Also, force rgb/alpha func/factors match, to make AoS blending easier.
1308 */
1309 if (format_desc->swizzle[3] > UTIL_FORMAT_SWIZZLE_W ||
1310 format_desc->swizzle[3] == format_desc->swizzle[0]) {
1311 blend_rt->rgb_src_factor = force_dst_alpha_one(blend_rt->rgb_src_factor);
1312 blend_rt->rgb_dst_factor = force_dst_alpha_one(blend_rt->rgb_dst_factor);
1313 blend_rt->alpha_func = blend_rt->rgb_func;
1314 blend_rt->alpha_src_factor = blend_rt->rgb_src_factor;
1315 blend_rt->alpha_dst_factor = blend_rt->rgb_dst_factor;
1316 }
1317 }
1318
1319 /* This value will be the same for all the variants of a given shader:
1320 */
1321 key->nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
1322
1323 for(i = 0; i < key->nr_samplers; ++i) {
1324 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
1325 lp_sampler_static_state(&key->sampler[i],
1326 lp->fragment_sampler_views[i],
1327 lp->sampler[i]);
1328 }
1329 }
1330 }
1331
1332
1333
1334 /**
1335 * Update fragment shader state. This is called just prior to drawing
1336 * something when some fragment-related state has changed.
1337 */
1338 void
1339 llvmpipe_update_fs(struct llvmpipe_context *lp)
1340 {
1341 struct lp_fragment_shader *shader = lp->fs;
1342 struct lp_fragment_shader_variant_key key;
1343 struct lp_fragment_shader_variant *variant = NULL;
1344 struct lp_fs_variant_list_item *li;
1345
1346 make_variant_key(lp, shader, &key);
1347
1348 /* Search the variants for one which matches the key */
1349 li = first_elem(&shader->variants);
1350 while(!at_end(&shader->variants, li)) {
1351 if(memcmp(&li->base->key, &key, shader->variant_key_size) == 0) {
1352 variant = li->base;
1353 break;
1354 }
1355 li = next_elem(li);
1356 }
1357
1358 if (variant) {
1359 /* Move this variant to the head of the list to implement LRU
1360 * deletion of shader's when we have too many.
1361 */
1362 move_to_head(&lp->fs_variants_list, &variant->list_item_global);
1363 }
1364 else {
1365 /* variant not found, create it now */
1366 int64_t t0, t1, dt;
1367 unsigned i;
1368 unsigned variants_to_cull;
1369
1370 if (0) {
1371 debug_printf("%u variants,\t%u instrs,\t%u instrs/variant\n",
1372 lp->nr_fs_variants,
1373 lp->nr_fs_instrs,
1374 lp->nr_fs_variants ? lp->nr_fs_instrs / lp->nr_fs_variants : 0);
1375 }
1376
1377 /* First, check if we've exceeded the max number of shader variants.
1378 * If so, free 25% of them (the least recently used ones).
1379 */
1380 variants_to_cull = lp->nr_fs_variants >= LP_MAX_SHADER_VARIANTS ? LP_MAX_SHADER_VARIANTS / 4 : 0;
1381
1382 if (variants_to_cull ||
1383 lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS) {
1384 struct pipe_context *pipe = &lp->pipe;
1385
1386 /*
1387 * XXX: we need to flush the context until we have some sort of
1388 * reference counting in fragment shaders as they may still be binned
1389 * Flushing alone might not be sufficient we need to wait on it too.
1390 */
1391 llvmpipe_finish(pipe, __FUNCTION__);
1392
1393 /*
1394 * We need to re-check lp->nr_fs_variants because an arbitrarliy large
1395 * number of shader variants (potentially all of them) could be
1396 * pending for destruction on flush.
1397 */
1398
1399 for (i = 0; i < variants_to_cull || lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS; i++) {
1400 struct lp_fs_variant_list_item *item;
1401 if (is_empty_list(&lp->fs_variants_list)) {
1402 break;
1403 }
1404 item = last_elem(&lp->fs_variants_list);
1405 assert(item);
1406 assert(item->base);
1407 llvmpipe_remove_shader_variant(lp, item->base);
1408 }
1409 }
1410
1411 /*
1412 * Generate the new variant.
1413 */
1414 t0 = os_time_get();
1415 variant = generate_variant(lp, shader, &key);
1416 t1 = os_time_get();
1417 dt = t1 - t0;
1418 LP_COUNT_ADD(llvm_compile_time, dt);
1419 LP_COUNT_ADD(nr_llvm_compiles, 2); /* emit vs. omit in/out test */
1420
1421 llvmpipe_variant_count++;
1422
1423 /* Put the new variant into the list */
1424 if (variant) {
1425 insert_at_head(&shader->variants, &variant->list_item_local);
1426 insert_at_head(&lp->fs_variants_list, &variant->list_item_global);
1427 lp->nr_fs_variants++;
1428 lp->nr_fs_instrs += variant->nr_instrs;
1429 shader->variants_cached++;
1430 }
1431 }
1432
1433 /* Bind this variant */
1434 lp_setup_set_fs_variant(lp->setup, variant);
1435 }
1436
1437
1438
1439
1440
1441
1442
1443 void
1444 llvmpipe_init_fs_funcs(struct llvmpipe_context *llvmpipe)
1445 {
1446 llvmpipe->pipe.create_fs_state = llvmpipe_create_fs_state;
1447 llvmpipe->pipe.bind_fs_state = llvmpipe_bind_fs_state;
1448 llvmpipe->pipe.delete_fs_state = llvmpipe_delete_fs_state;
1449
1450 llvmpipe->pipe.set_constant_buffer = llvmpipe_set_constant_buffer;
1451 }