llvmpipe: use runtime loop instead of static loop for looping over quads
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - early depth test
35 * - fragment shader
36 * - alpha test
37 * - depth/stencil test
38 * - blending
39 *
40 * This file has only the glue to assemble the fragment pipeline. The actual
41 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
42 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
43 * muster the LLVM JIT execution engine to create a function that follows an
44 * established binary interface and that can be called from C directly.
45 *
46 * A big source of complexity here is that we often want to run different
47 * stages with different precisions and data types and precisions. For example,
48 * the fragment shader needs typically to be done in floats, but the
49 * depth/stencil test and blending is better done in the type that most closely
50 * matches the depth/stencil and color buffer respectively.
51 *
52 * Since the width of a SIMD vector register stays the same regardless of the
53 * element type, different types imply different number of elements, so we must
54 * code generate more instances of the stages with larger types to be able to
55 * feed/consume the stages with smaller types.
56 *
57 * @author Jose Fonseca <jfonseca@vmware.com>
58 */
59
60 #include <limits.h>
61 #include "pipe/p_defines.h"
62 #include "util/u_inlines.h"
63 #include "util/u_memory.h"
64 #include "util/u_pointer.h"
65 #include "util/u_format.h"
66 #include "util/u_dump.h"
67 #include "util/u_string.h"
68 #include "util/u_simple_list.h"
69 #include "os/os_time.h"
70 #include "pipe/p_shader_tokens.h"
71 #include "draw/draw_context.h"
72 #include "tgsi/tgsi_dump.h"
73 #include "tgsi/tgsi_scan.h"
74 #include "tgsi/tgsi_parse.h"
75 #include "gallivm/lp_bld_type.h"
76 #include "gallivm/lp_bld_const.h"
77 #include "gallivm/lp_bld_conv.h"
78 #include "gallivm/lp_bld_init.h"
79 #include "gallivm/lp_bld_intr.h"
80 #include "gallivm/lp_bld_logic.h"
81 #include "gallivm/lp_bld_tgsi.h"
82 #include "gallivm/lp_bld_swizzle.h"
83 #include "gallivm/lp_bld_flow.h"
84 #include "gallivm/lp_bld_debug.h"
85
86 #include "lp_bld_alpha.h"
87 #include "lp_bld_blend.h"
88 #include "lp_bld_depth.h"
89 #include "lp_bld_interp.h"
90 #include "lp_context.h"
91 #include "lp_debug.h"
92 #include "lp_perf.h"
93 #include "lp_setup.h"
94 #include "lp_state.h"
95 #include "lp_tex_sample.h"
96 #include "lp_flush.h"
97 #include "lp_state_fs.h"
98
99
100 /** Fragment shader number (for debugging) */
101 static unsigned fs_no = 0;
102
103
104 /**
105 * Expand the relevant bits of mask_input to a n*4-dword mask for the
106 * n*four pixels in n 2x2 quads. This will set the n*four elements of the
107 * quad mask vector to 0 or ~0.
108 * Grouping is 01, 23 for 2 quad mode hence only 0 and 2 are valid
109 * quad arguments with fs length 8.
110 *
111 * \param first_quad which quad(s) of the quad group to test, in [0,3]
112 * \param mask_input bitwise mask for the whole 4x4 stamp
113 */
114 static LLVMValueRef
115 generate_quad_mask(struct gallivm_state *gallivm,
116 struct lp_type fs_type,
117 unsigned first_quad,
118 LLVMValueRef mask_input) /* int32 */
119 {
120 LLVMBuilderRef builder = gallivm->builder;
121 struct lp_type mask_type;
122 LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
123 LLVMValueRef bits[16];
124 LLVMValueRef mask;
125 int shift, i;
126
127 /*
128 * XXX: We'll need a different path for 16 x u8
129 */
130 assert(fs_type.width == 32);
131 assert(fs_type.length <= Elements(bits));
132 mask_type = lp_int_type(fs_type);
133
134 /*
135 * mask_input >>= (quad * 4)
136 */
137 switch (first_quad) {
138 case 0:
139 shift = 0;
140 break;
141 case 1:
142 assert(fs_type.length == 4);
143 shift = 2;
144 break;
145 case 2:
146 shift = 8;
147 break;
148 case 3:
149 assert(fs_type.length == 4);
150 shift = 10;
151 break;
152 default:
153 assert(0);
154 shift = 0;
155 }
156
157 mask_input = LLVMBuildLShr(builder,
158 mask_input,
159 LLVMConstInt(i32t, shift, 0),
160 "");
161
162 /*
163 * mask = { mask_input & (1 << i), for i in [0,3] }
164 */
165 mask = lp_build_broadcast(gallivm,
166 lp_build_vec_type(gallivm, mask_type),
167 mask_input);
168
169 for (i = 0; i < fs_type.length / 4; i++) {
170 unsigned j = 2 * (i % 2) + (i / 2) * 8;
171 bits[4*i + 0] = LLVMConstInt(i32t, 1 << (j + 0), 0);
172 bits[4*i + 1] = LLVMConstInt(i32t, 1 << (j + 1), 0);
173 bits[4*i + 2] = LLVMConstInt(i32t, 1 << (j + 4), 0);
174 bits[4*i + 3] = LLVMConstInt(i32t, 1 << (j + 5), 0);
175 }
176 mask = LLVMBuildAnd(builder, mask, LLVMConstVector(bits, fs_type.length), "");
177
178 /*
179 * mask = mask != 0 ? ~0 : 0
180 */
181 mask = lp_build_compare(gallivm,
182 mask_type, PIPE_FUNC_NOTEQUAL,
183 mask,
184 lp_build_const_int_vec(gallivm, mask_type, 0));
185
186 return mask;
187 }
188
189
190 #define EARLY_DEPTH_TEST 0x1
191 #define LATE_DEPTH_TEST 0x2
192 #define EARLY_DEPTH_WRITE 0x4
193 #define LATE_DEPTH_WRITE 0x8
194
195 static int
196 find_output_by_semantic( const struct tgsi_shader_info *info,
197 unsigned semantic,
198 unsigned index )
199 {
200 int i;
201
202 for (i = 0; i < info->num_outputs; i++)
203 if (info->output_semantic_name[i] == semantic &&
204 info->output_semantic_index[i] == index)
205 return i;
206
207 return -1;
208 }
209
210
211 /**
212 * Generate the fragment shader, depth/stencil test, and alpha tests.
213 * \param i which quad in the tile, in range [0,3]
214 * \param partial_mask if 1, do mask_input testing
215 */
216 static void
217 generate_fs(struct gallivm_state *gallivm,
218 struct lp_fragment_shader *shader,
219 const struct lp_fragment_shader_variant_key *key,
220 LLVMBuilderRef builder,
221 struct lp_type type,
222 LLVMValueRef context_ptr,
223 unsigned i,
224 struct lp_build_interp_soa_context *interp,
225 struct lp_build_sampler_soa *sampler,
226 LLVMValueRef *pmask,
227 LLVMValueRef (*color)[4],
228 LLVMValueRef depth_ptr,
229 LLVMValueRef facing,
230 unsigned partial_mask,
231 LLVMValueRef mask_input,
232 LLVMValueRef counter)
233 {
234 const struct util_format_description *zs_format_desc = NULL;
235 const struct tgsi_token *tokens = shader->base.tokens;
236 LLVMTypeRef vec_type;
237 LLVMValueRef consts_ptr;
238 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
239 LLVMValueRef z;
240 LLVMValueRef zs_value = NULL;
241 LLVMValueRef stencil_refs[2];
242 struct lp_build_mask_context mask;
243 boolean simple_shader = (shader->info.base.file_count[TGSI_FILE_SAMPLER] == 0 &&
244 shader->info.base.num_inputs < 3 &&
245 shader->info.base.num_instructions < 8);
246 unsigned attrib;
247 unsigned chan;
248 unsigned cbuf;
249 unsigned depth_mode;
250 struct lp_bld_tgsi_system_values system_values;
251
252 memset(&system_values, 0, sizeof(system_values));
253
254 if (key->depth.enabled ||
255 key->stencil[0].enabled ||
256 key->stencil[1].enabled) {
257
258 zs_format_desc = util_format_description(key->zsbuf_format);
259 assert(zs_format_desc);
260
261 if (!shader->info.base.writes_z) {
262 if (key->alpha.enabled || shader->info.base.uses_kill)
263 /* With alpha test and kill, can do the depth test early
264 * and hopefully eliminate some quads. But need to do a
265 * special deferred depth write once the final mask value
266 * is known.
267 */
268 depth_mode = EARLY_DEPTH_TEST | LATE_DEPTH_WRITE;
269 else
270 depth_mode = EARLY_DEPTH_TEST | EARLY_DEPTH_WRITE;
271 }
272 else {
273 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
274 }
275
276 if (!(key->depth.enabled && key->depth.writemask) &&
277 !(key->stencil[0].enabled && key->stencil[0].writemask))
278 depth_mode &= ~(LATE_DEPTH_WRITE | EARLY_DEPTH_WRITE);
279 }
280 else {
281 depth_mode = 0;
282 }
283
284 assert(i < 4);
285
286 stencil_refs[0] = lp_jit_context_stencil_ref_front_value(gallivm, context_ptr);
287 stencil_refs[1] = lp_jit_context_stencil_ref_back_value(gallivm, context_ptr);
288
289 vec_type = lp_build_vec_type(gallivm, type);
290
291 consts_ptr = lp_jit_context_constants(gallivm, context_ptr);
292
293 memset(outputs, 0, sizeof outputs);
294
295 /* Declare the color and z variables */
296 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
297 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
298 color[cbuf][chan] = lp_build_alloca(gallivm, vec_type, "color");
299 }
300 }
301
302 /* do triangle edge testing */
303 if (partial_mask) {
304 *pmask = generate_quad_mask(gallivm, type,
305 i*type.length/4, mask_input);
306 }
307 else {
308 *pmask = lp_build_const_int_vec(gallivm, type, ~0);
309 }
310
311 /* 'mask' will control execution based on quad's pixel alive/killed state */
312 lp_build_mask_begin(&mask, gallivm, type, *pmask);
313
314 if (!(depth_mode & EARLY_DEPTH_TEST) && !simple_shader)
315 lp_build_mask_check(&mask);
316
317 lp_build_interp_soa_update_pos(interp, gallivm, i*type.length/4);
318 z = interp->pos[2];
319
320 if (depth_mode & EARLY_DEPTH_TEST) {
321 lp_build_depth_stencil_test(gallivm,
322 &key->depth,
323 key->stencil,
324 type,
325 zs_format_desc,
326 &mask,
327 stencil_refs,
328 z,
329 depth_ptr, facing,
330 &zs_value,
331 !simple_shader);
332
333 if (depth_mode & EARLY_DEPTH_WRITE) {
334 lp_build_depth_write(builder, zs_format_desc, depth_ptr, zs_value);
335 }
336 }
337
338 lp_build_interp_soa_update_inputs(interp, gallivm, i*type.length/4);
339
340 /* Build the actual shader */
341 lp_build_tgsi_soa(gallivm, tokens, type, &mask,
342 consts_ptr, &system_values,
343 interp->pos, interp->inputs,
344 outputs, sampler, &shader->info.base);
345
346 /* Alpha test */
347 if (key->alpha.enabled) {
348 int color0 = find_output_by_semantic(&shader->info.base,
349 TGSI_SEMANTIC_COLOR,
350 0);
351
352 if (color0 != -1 && outputs[color0][3]) {
353 const struct util_format_description *cbuf_format_desc;
354 LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
355 LLVMValueRef alpha_ref_value;
356
357 alpha_ref_value = lp_jit_context_alpha_ref_value(gallivm, context_ptr);
358 alpha_ref_value = lp_build_broadcast(gallivm, vec_type, alpha_ref_value);
359
360 cbuf_format_desc = util_format_description(key->cbuf_format[0]);
361
362 lp_build_alpha_test(gallivm, key->alpha.func, type, cbuf_format_desc,
363 &mask, alpha, alpha_ref_value,
364 (depth_mode & LATE_DEPTH_TEST) != 0);
365 }
366 }
367
368 /* Late Z test */
369 if (depth_mode & LATE_DEPTH_TEST) {
370 int pos0 = find_output_by_semantic(&shader->info.base,
371 TGSI_SEMANTIC_POSITION,
372 0);
373
374 if (pos0 != -1 && outputs[pos0][2]) {
375 z = LLVMBuildLoad(builder, outputs[pos0][2], "output.z");
376 }
377
378 lp_build_depth_stencil_test(gallivm,
379 &key->depth,
380 key->stencil,
381 type,
382 zs_format_desc,
383 &mask,
384 stencil_refs,
385 z,
386 depth_ptr, facing,
387 &zs_value,
388 !simple_shader);
389 /* Late Z write */
390 if (depth_mode & LATE_DEPTH_WRITE) {
391 lp_build_depth_write(builder, zs_format_desc, depth_ptr, zs_value);
392 }
393 }
394 else if ((depth_mode & EARLY_DEPTH_TEST) &&
395 (depth_mode & LATE_DEPTH_WRITE))
396 {
397 /* Need to apply a reduced mask to the depth write. Reload the
398 * depth value, update from zs_value with the new mask value and
399 * write that out.
400 */
401 lp_build_deferred_depth_write(gallivm,
402 type,
403 zs_format_desc,
404 &mask,
405 depth_ptr,
406 zs_value);
407 }
408
409
410 /* Color write */
411 for (attrib = 0; attrib < shader->info.base.num_outputs; ++attrib)
412 {
413 if (shader->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_COLOR &&
414 shader->info.base.output_semantic_index[attrib] < key->nr_cbufs)
415 {
416 unsigned cbuf = shader->info.base.output_semantic_index[attrib];
417 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
418 if(outputs[attrib][chan]) {
419 /* XXX: just initialize outputs to point at colors[] and
420 * skip this.
421 */
422 LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
423 lp_build_name(out, "color%u.%u.%c", i, attrib, "rgba"[chan]);
424 LLVMBuildStore(builder, out, color[cbuf][chan]);
425 }
426 }
427 }
428 }
429
430 if (counter)
431 lp_build_occlusion_count(gallivm, type,
432 lp_build_mask_value(&mask), counter);
433
434 *pmask = lp_build_mask_end(&mask);
435 }
436
437
438 /**
439 * Generate the fragment shader, depth/stencil test, and alpha tests.
440 */
441 static void
442 generate_fs_loop(struct gallivm_state *gallivm,
443 struct lp_fragment_shader *shader,
444 const struct lp_fragment_shader_variant_key *key,
445 LLVMBuilderRef builder,
446 struct lp_type type,
447 LLVMValueRef context_ptr,
448 LLVMValueRef num_loop,
449 struct lp_build_interp_soa_context *interp,
450 struct lp_build_sampler_soa *sampler,
451 LLVMValueRef mask_store,
452 LLVMValueRef (*out_color)[4],
453 LLVMValueRef depth_ptr,
454 unsigned depth_bits,
455 LLVMValueRef facing,
456 LLVMValueRef counter)
457 {
458 const struct util_format_description *zs_format_desc = NULL;
459 const struct tgsi_token *tokens = shader->base.tokens;
460 LLVMTypeRef vec_type;
461 LLVMValueRef mask_ptr, mask_val;
462 LLVMValueRef consts_ptr;
463 LLVMValueRef z;
464 LLVMValueRef zs_value = NULL;
465 LLVMValueRef stencil_refs[2];
466 LLVMValueRef depth_ptr_i;
467 LLVMValueRef depth_offset;
468 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
469 struct lp_build_for_loop_state loop_state;
470 struct lp_build_mask_context mask;
471 boolean simple_shader = (shader->info.base.file_count[TGSI_FILE_SAMPLER] == 0 &&
472 shader->info.base.num_inputs < 3 &&
473 shader->info.base.num_instructions < 8);
474 unsigned attrib;
475 unsigned chan;
476 unsigned cbuf;
477 unsigned depth_mode;
478
479 struct lp_bld_tgsi_system_values system_values;
480
481 memset(&system_values, 0, sizeof(system_values));
482
483 if (key->depth.enabled ||
484 key->stencil[0].enabled ||
485 key->stencil[1].enabled) {
486
487 zs_format_desc = util_format_description(key->zsbuf_format);
488 assert(zs_format_desc);
489
490 if (!shader->info.base.writes_z) {
491 if (key->alpha.enabled || shader->info.base.uses_kill)
492 /* With alpha test and kill, can do the depth test early
493 * and hopefully eliminate some quads. But need to do a
494 * special deferred depth write once the final mask value
495 * is known.
496 */
497 depth_mode = EARLY_DEPTH_TEST | LATE_DEPTH_WRITE;
498 else
499 depth_mode = EARLY_DEPTH_TEST | EARLY_DEPTH_WRITE;
500 }
501 else {
502 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
503 }
504
505 if (!(key->depth.enabled && key->depth.writemask) &&
506 !(key->stencil[0].enabled && key->stencil[0].writemask))
507 depth_mode &= ~(LATE_DEPTH_WRITE | EARLY_DEPTH_WRITE);
508 }
509 else {
510 depth_mode = 0;
511 }
512
513
514 stencil_refs[0] = lp_jit_context_stencil_ref_front_value(gallivm, context_ptr);
515 stencil_refs[1] = lp_jit_context_stencil_ref_back_value(gallivm, context_ptr);
516
517 vec_type = lp_build_vec_type(gallivm, type);
518
519 consts_ptr = lp_jit_context_constants(gallivm, context_ptr);
520
521 lp_build_for_loop_begin(&loop_state, gallivm,
522 lp_build_const_int32(gallivm, 0),
523 LLVMIntULT,
524 num_loop,
525 lp_build_const_int32(gallivm, 1));
526
527 mask_ptr = LLVMBuildGEP(builder, mask_store,
528 &loop_state.counter, 1, "mask_ptr");
529 mask_val = LLVMBuildLoad(builder, mask_ptr, "");
530
531 depth_offset = LLVMBuildMul(builder, loop_state.counter,
532 lp_build_const_int32(gallivm, depth_bits * type.length),
533 "");
534
535 depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &depth_offset, 1, "");
536
537 memset(outputs, 0, sizeof outputs);
538
539 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
540 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
541 out_color[cbuf][chan] = lp_build_array_alloca(gallivm,
542 lp_build_vec_type(gallivm,
543 type),
544 num_loop, "color");
545 }
546 }
547
548
549
550 /* 'mask' will control execution based on quad's pixel alive/killed state */
551 lp_build_mask_begin(&mask, gallivm, type, mask_val);
552
553 if (!(depth_mode & EARLY_DEPTH_TEST) && !simple_shader)
554 lp_build_mask_check(&mask);
555
556 lp_build_interp_soa_update_pos_dyn(interp, gallivm, loop_state.counter);
557 z = interp->pos[2];
558
559 if (depth_mode & EARLY_DEPTH_TEST) {
560 lp_build_depth_stencil_test(gallivm,
561 &key->depth,
562 key->stencil,
563 type,
564 zs_format_desc,
565 &mask,
566 stencil_refs,
567 z,
568 depth_ptr_i, facing,
569 &zs_value,
570 !simple_shader);
571
572 if (depth_mode & EARLY_DEPTH_WRITE) {
573 lp_build_depth_write(builder, zs_format_desc, depth_ptr_i, zs_value);
574 }
575 }
576
577 lp_build_interp_soa_update_inputs_dyn(interp, gallivm, loop_state.counter);
578
579 /* Build the actual shader */
580 lp_build_tgsi_soa(gallivm, tokens, type, &mask,
581 consts_ptr, &system_values,
582 interp->pos, interp->inputs,
583 outputs, sampler, &shader->info.base);
584
585 /* Alpha test */
586 if (key->alpha.enabled) {
587 int color0 = find_output_by_semantic(&shader->info.base,
588 TGSI_SEMANTIC_COLOR,
589 0);
590
591 if (color0 != -1 && outputs[color0][3]) {
592 const struct util_format_description *cbuf_format_desc;
593 LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
594 LLVMValueRef alpha_ref_value;
595
596 alpha_ref_value = lp_jit_context_alpha_ref_value(gallivm, context_ptr);
597 alpha_ref_value = lp_build_broadcast(gallivm, vec_type, alpha_ref_value);
598
599 cbuf_format_desc = util_format_description(key->cbuf_format[0]);
600
601 lp_build_alpha_test(gallivm, key->alpha.func, type, cbuf_format_desc,
602 &mask, alpha, alpha_ref_value,
603 (depth_mode & LATE_DEPTH_TEST) != 0);
604 }
605 }
606
607 /* Late Z test */
608 if (depth_mode & LATE_DEPTH_TEST) {
609 int pos0 = find_output_by_semantic(&shader->info.base,
610 TGSI_SEMANTIC_POSITION,
611 0);
612
613 if (pos0 != -1 && outputs[pos0][2]) {
614 z = LLVMBuildLoad(builder, outputs[pos0][2], "output.z");
615 }
616
617 lp_build_depth_stencil_test(gallivm,
618 &key->depth,
619 key->stencil,
620 type,
621 zs_format_desc,
622 &mask,
623 stencil_refs,
624 z,
625 depth_ptr_i, facing,
626 &zs_value,
627 !simple_shader);
628 /* Late Z write */
629 if (depth_mode & LATE_DEPTH_WRITE) {
630 lp_build_depth_write(builder, zs_format_desc, depth_ptr_i, zs_value);
631 }
632 }
633 else if ((depth_mode & EARLY_DEPTH_TEST) &&
634 (depth_mode & LATE_DEPTH_WRITE))
635 {
636 /* Need to apply a reduced mask to the depth write. Reload the
637 * depth value, update from zs_value with the new mask value and
638 * write that out.
639 */
640 lp_build_deferred_depth_write(gallivm,
641 type,
642 zs_format_desc,
643 &mask,
644 depth_ptr_i,
645 zs_value);
646 }
647
648
649 /* Color write */
650 for (attrib = 0; attrib < shader->info.base.num_outputs; ++attrib)
651 {
652 if (shader->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_COLOR &&
653 shader->info.base.output_semantic_index[attrib] < key->nr_cbufs)
654 {
655 unsigned cbuf = shader->info.base.output_semantic_index[attrib];
656 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
657 if(outputs[attrib][chan]) {
658 /* XXX: just initialize outputs to point at colors[] and
659 * skip this.
660 */
661 LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
662 LLVMValueRef color_ptr;
663 color_ptr = LLVMBuildGEP(builder, out_color[cbuf][chan],
664 &loop_state.counter, 1, "");
665 lp_build_name(out, "color%u.%c", attrib, "rgba"[chan]);
666 LLVMBuildStore(builder, out, color_ptr);
667 }
668 }
669 }
670 }
671
672 if (key->occlusion_count) {
673 lp_build_name(counter, "counter");
674 lp_build_occlusion_count(gallivm, type,
675 lp_build_mask_value(&mask), counter);
676 }
677
678 mask_val = lp_build_mask_end(&mask);
679 LLVMBuildStore(builder, mask_val, mask_ptr);
680 lp_build_for_loop_end(&loop_state);
681 }
682
683
684 /**
685 * Generate color blending and color output.
686 * \param rt the render target index (to index blend, colormask state)
687 * \param type the pixel color type
688 * \param context_ptr pointer to the runtime JIT context
689 * \param mask execution mask (active fragment/pixel mask)
690 * \param src colors from the fragment shader
691 * \param dst_ptr the destination color buffer pointer
692 */
693 static void
694 generate_blend(struct gallivm_state *gallivm,
695 const struct pipe_blend_state *blend,
696 unsigned rt,
697 LLVMBuilderRef builder,
698 struct lp_type type,
699 LLVMValueRef context_ptr,
700 LLVMValueRef mask,
701 LLVMValueRef *src,
702 LLVMValueRef dst_ptr,
703 boolean do_branch)
704 {
705 struct lp_build_context bld;
706 struct lp_build_mask_context mask_ctx;
707 LLVMTypeRef vec_type;
708 LLVMValueRef const_ptr;
709 LLVMValueRef con[4];
710 LLVMValueRef dst[4];
711 LLVMValueRef res[4];
712 unsigned chan;
713
714 lp_build_context_init(&bld, gallivm, type);
715
716 lp_build_mask_begin(&mask_ctx, gallivm, type, mask);
717 if (do_branch)
718 lp_build_mask_check(&mask_ctx);
719
720 vec_type = lp_build_vec_type(gallivm, type);
721
722 const_ptr = lp_jit_context_blend_color(gallivm, context_ptr);
723 const_ptr = LLVMBuildBitCast(builder, const_ptr,
724 LLVMPointerType(vec_type, 0), "");
725
726 /* load constant blend color and colors from the dest color buffer */
727 for(chan = 0; chan < 4; ++chan) {
728 LLVMValueRef index = lp_build_const_int32(gallivm, chan);
729 con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), "");
730
731 dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), "");
732
733 lp_build_name(con[chan], "con.%c", "rgba"[chan]);
734 lp_build_name(dst[chan], "dst.%c", "rgba"[chan]);
735 }
736
737 /* do blend */
738 lp_build_blend_soa(gallivm, blend, type, rt, src, dst, con, res);
739
740 /* store results to color buffer */
741 for(chan = 0; chan < 4; ++chan) {
742 if(blend->rt[rt].colormask & (1 << chan)) {
743 LLVMValueRef index = lp_build_const_int32(gallivm, chan);
744 lp_build_name(res[chan], "res.%c", "rgba"[chan]);
745 res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]);
746 LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, ""));
747 }
748 }
749
750 lp_build_mask_end(&mask_ctx);
751 }
752
753
754 /**
755 * Generate the runtime callable function for the whole fragment pipeline.
756 * Note that the function which we generate operates on a block of 16
757 * pixels at at time. The block contains 2x2 quads. Each quad contains
758 * 2x2 pixels.
759 */
760 static void
761 generate_fragment(struct llvmpipe_context *lp,
762 struct lp_fragment_shader *shader,
763 struct lp_fragment_shader_variant *variant,
764 unsigned partial_mask)
765 {
766 struct gallivm_state *gallivm = variant->gallivm;
767 const struct lp_fragment_shader_variant_key *key = &variant->key;
768 struct lp_shader_input inputs[PIPE_MAX_SHADER_INPUTS];
769 char func_name[256];
770 struct lp_type fs_type;
771 struct lp_type blend_type;
772 LLVMTypeRef fs_elem_type;
773 LLVMTypeRef blend_vec_type;
774 LLVMTypeRef arg_types[11];
775 LLVMTypeRef func_type;
776 LLVMTypeRef int32_type = LLVMInt32TypeInContext(gallivm->context);
777 LLVMTypeRef int8_type = LLVMInt8TypeInContext(gallivm->context);
778 LLVMValueRef context_ptr;
779 LLVMValueRef x;
780 LLVMValueRef y;
781 LLVMValueRef a0_ptr;
782 LLVMValueRef dadx_ptr;
783 LLVMValueRef dady_ptr;
784 LLVMValueRef color_ptr_ptr;
785 LLVMValueRef depth_ptr;
786 LLVMValueRef mask_input;
787 LLVMValueRef counter = NULL;
788 LLVMBasicBlockRef block;
789 LLVMBuilderRef builder;
790 struct lp_build_sampler_soa *sampler;
791 struct lp_build_interp_soa_context interp;
792 LLVMValueRef fs_mask[16 / 4];
793 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][16 / 4];
794 LLVMValueRef blend_mask;
795 LLVMValueRef function;
796 LLVMValueRef facing;
797 const struct util_format_description *zs_format_desc;
798 unsigned num_fs;
799 unsigned i;
800 unsigned chan;
801 unsigned cbuf;
802 boolean cbuf0_write_all;
803 boolean try_loop = TRUE;
804
805 assert(lp_native_vector_width / 32 >= 4);
806
807 /* Adjust color input interpolation according to flatshade state:
808 */
809 memcpy(inputs, shader->inputs, shader->info.base.num_inputs * sizeof inputs[0]);
810 for (i = 0; i < shader->info.base.num_inputs; i++) {
811 if (inputs[i].interp == LP_INTERP_COLOR) {
812 if (key->flatshade)
813 inputs[i].interp = LP_INTERP_CONSTANT;
814 else
815 inputs[i].interp = LP_INTERP_PERSPECTIVE;
816 }
817 }
818
819 /* check if writes to cbuf[0] are to be copied to all cbufs */
820 cbuf0_write_all = FALSE;
821 for (i = 0;i < shader->info.base.num_properties; i++) {
822 if (shader->info.base.properties[i].name ==
823 TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS) {
824 cbuf0_write_all = TRUE;
825 break;
826 }
827 }
828
829 /* TODO: actually pick these based on the fs and color buffer
830 * characteristics. */
831
832 memset(&fs_type, 0, sizeof fs_type);
833 fs_type.floating = TRUE; /* floating point values */
834 fs_type.sign = TRUE; /* values are signed */
835 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
836 fs_type.width = 32; /* 32-bit float */
837 fs_type.length = MIN2(lp_native_vector_width / 32, 16); /* n*4 elements per vector */
838 num_fs = 16 / fs_type.length; /* number of loops per 4x4 stamp */
839
840 memset(&blend_type, 0, sizeof blend_type);
841 blend_type.floating = FALSE; /* values are integers */
842 blend_type.sign = FALSE; /* values are unsigned */
843 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
844 blend_type.width = 8; /* 8-bit ubyte values */
845 blend_type.length = 16; /* 16 elements per vector */
846
847 /*
848 * Generate the function prototype. Any change here must be reflected in
849 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
850 */
851
852 fs_elem_type = lp_build_elem_type(gallivm, fs_type);
853
854 blend_vec_type = lp_build_vec_type(gallivm, blend_type);
855
856 util_snprintf(func_name, sizeof(func_name), "fs%u_variant%u_%s",
857 shader->no, variant->no, partial_mask ? "partial" : "whole");
858
859 arg_types[0] = variant->jit_context_ptr_type; /* context */
860 arg_types[1] = int32_type; /* x */
861 arg_types[2] = int32_type; /* y */
862 arg_types[3] = int32_type; /* facing */
863 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* a0 */
864 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dadx */
865 arg_types[6] = LLVMPointerType(fs_elem_type, 0); /* dady */
866 arg_types[7] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */
867 arg_types[8] = LLVMPointerType(int8_type, 0); /* depth */
868 arg_types[9] = int32_type; /* mask_input */
869 arg_types[10] = LLVMPointerType(int32_type, 0); /* counter */
870
871 func_type = LLVMFunctionType(LLVMVoidTypeInContext(gallivm->context),
872 arg_types, Elements(arg_types), 0);
873
874 function = LLVMAddFunction(gallivm->module, func_name, func_type);
875 LLVMSetFunctionCallConv(function, LLVMCCallConv);
876
877 variant->function[partial_mask] = function;
878
879 /* XXX: need to propagate noalias down into color param now we are
880 * passing a pointer-to-pointer?
881 */
882 for(i = 0; i < Elements(arg_types); ++i)
883 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
884 LLVMAddAttribute(LLVMGetParam(function, i), LLVMNoAliasAttribute);
885
886 context_ptr = LLVMGetParam(function, 0);
887 x = LLVMGetParam(function, 1);
888 y = LLVMGetParam(function, 2);
889 facing = LLVMGetParam(function, 3);
890 a0_ptr = LLVMGetParam(function, 4);
891 dadx_ptr = LLVMGetParam(function, 5);
892 dady_ptr = LLVMGetParam(function, 6);
893 color_ptr_ptr = LLVMGetParam(function, 7);
894 depth_ptr = LLVMGetParam(function, 8);
895 mask_input = LLVMGetParam(function, 9);
896
897 lp_build_name(context_ptr, "context");
898 lp_build_name(x, "x");
899 lp_build_name(y, "y");
900 lp_build_name(a0_ptr, "a0");
901 lp_build_name(dadx_ptr, "dadx");
902 lp_build_name(dady_ptr, "dady");
903 lp_build_name(color_ptr_ptr, "color_ptr_ptr");
904 lp_build_name(depth_ptr, "depth");
905 lp_build_name(mask_input, "mask_input");
906
907 if (key->occlusion_count) {
908 counter = LLVMGetParam(function, 10);
909 lp_build_name(counter, "counter");
910 }
911
912 /*
913 * Function body
914 */
915
916 block = LLVMAppendBasicBlockInContext(gallivm->context, function, "entry");
917 builder = gallivm->builder;
918 assert(builder);
919 LLVMPositionBuilderAtEnd(builder, block);
920
921 /* code generated texture sampling */
922 sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr);
923
924 zs_format_desc = util_format_description(key->zsbuf_format);
925
926 if (!try_loop) {
927 /*
928 * The shader input interpolation info is not explicitely baked in the
929 * shader key, but everything it derives from (TGSI, and flatshade) is
930 * already included in the shader key.
931 */
932 lp_build_interp_soa_init(&interp,
933 gallivm,
934 shader->info.base.num_inputs,
935 inputs,
936 builder, fs_type,
937 FALSE,
938 a0_ptr, dadx_ptr, dady_ptr,
939 x, y);
940
941 /* loop over quads in the block */
942 for(i = 0; i < num_fs; ++i) {
943 LLVMValueRef depth_offset = LLVMConstInt(int32_type,
944 i*fs_type.length*zs_format_desc->block.bits/8,
945 0);
946 LLVMValueRef out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS];
947 LLVMValueRef depth_ptr_i;
948
949 depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &depth_offset, 1, "");
950
951 generate_fs(gallivm,
952 shader, key,
953 builder,
954 fs_type,
955 context_ptr,
956 i,
957 &interp,
958 sampler,
959 &fs_mask[i], /* output */
960 out_color,
961 depth_ptr_i,
962 facing,
963 partial_mask,
964 mask_input,
965 counter);
966
967 for (cbuf = 0; cbuf < key->nr_cbufs; cbuf++)
968 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan)
969 fs_out_color[cbuf][chan][i] =
970 out_color[cbuf * !cbuf0_write_all][chan];
971 }
972 }
973 else {
974 unsigned depth_bits = zs_format_desc->block.bits/8;
975 LLVMValueRef num_loop = lp_build_const_int32(gallivm, num_fs);
976 LLVMTypeRef mask_type = lp_build_int_vec_type(gallivm, fs_type);
977 LLVMValueRef mask_store = lp_build_array_alloca(gallivm, mask_type,
978 num_loop, "mask_store");
979 LLVMValueRef color_store[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS];
980
981 /*
982 * The shader input interpolation info is not explicitely baked in the
983 * shader key, but everything it derives from (TGSI, and flatshade) is
984 * already included in the shader key.
985 */
986 lp_build_interp_soa_init(&interp,
987 gallivm,
988 shader->info.base.num_inputs,
989 inputs,
990 builder, fs_type,
991 TRUE,
992 a0_ptr, dadx_ptr, dady_ptr,
993 x, y);
994
995 for (i = 0; i < num_fs; i++) {
996 LLVMValueRef mask;
997 LLVMValueRef indexi = lp_build_const_int32(gallivm, i);
998 LLVMValueRef mask_ptr = LLVMBuildGEP(builder, mask_store,
999 &indexi, 1, "mask_ptr");
1000
1001 if (partial_mask) {
1002 mask = generate_quad_mask(gallivm, fs_type,
1003 i*fs_type.length/4, mask_input);
1004 }
1005 else {
1006 mask = lp_build_const_int_vec(gallivm, fs_type, ~0);
1007 }
1008 LLVMBuildStore(builder, mask, mask_ptr);
1009 }
1010
1011 generate_fs_loop(gallivm,
1012 shader, key,
1013 builder,
1014 fs_type,
1015 context_ptr,
1016 num_loop,
1017 &interp,
1018 sampler,
1019 mask_store, /* output */
1020 color_store,
1021 depth_ptr,
1022 depth_bits,
1023 facing,
1024 counter);
1025
1026 for (i = 0; i < num_fs; i++) {
1027 LLVMValueRef indexi = lp_build_const_int32(gallivm, i);
1028 LLVMValueRef ptr = LLVMBuildGEP(builder, mask_store,
1029 &indexi, 1, "");
1030 fs_mask[i] = LLVMBuildLoad(builder, ptr, "mask");
1031 /* This is fucked up need to reorganize things */
1032 for (cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
1033 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
1034 ptr = LLVMBuildGEP(builder,
1035 color_store[cbuf * !cbuf0_write_all][chan],
1036 &indexi, 1, "");
1037 fs_out_color[cbuf][chan][i] = ptr;
1038 }
1039 }
1040 }
1041 }
1042
1043 sampler->destroy(sampler);
1044
1045 /* Loop over color outputs / color buffers to do blending.
1046 */
1047 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
1048 LLVMValueRef color_ptr;
1049 LLVMValueRef index = lp_build_const_int32(gallivm, cbuf);
1050 LLVMValueRef blend_in_color[TGSI_NUM_CHANNELS];
1051 unsigned rt;
1052
1053 /*
1054 * Convert the fs's output color and mask to fit to the blending type.
1055 */
1056 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
1057 LLVMValueRef fs_color_vals[LP_MAX_VECTOR_LENGTH];
1058
1059 for (i = 0; i < num_fs; i++) {
1060 fs_color_vals[i] =
1061 LLVMBuildLoad(builder, fs_out_color[cbuf][chan][i], "fs_color_vals");
1062 }
1063
1064 lp_build_conv(gallivm, fs_type, blend_type,
1065 fs_color_vals,
1066 num_fs,
1067 &blend_in_color[chan], 1);
1068
1069 lp_build_name(blend_in_color[chan], "color%d.%c", cbuf, "rgba"[chan]);
1070 }
1071
1072 if (partial_mask || !variant->opaque) {
1073 lp_build_conv_mask(variant->gallivm, fs_type, blend_type,
1074 fs_mask, num_fs,
1075 &blend_mask, 1);
1076 } else {
1077 blend_mask = lp_build_const_int_vec(variant->gallivm, blend_type, ~0);
1078 }
1079
1080 color_ptr = LLVMBuildLoad(builder,
1081 LLVMBuildGEP(builder, color_ptr_ptr, &index, 1, ""),
1082 "");
1083 lp_build_name(color_ptr, "color_ptr%d", cbuf);
1084
1085 /* which blend/colormask state to use */
1086 rt = key->blend.independent_blend_enable ? cbuf : 0;
1087
1088 /*
1089 * Blending.
1090 */
1091 {
1092 /* Could the 4x4 have been killed?
1093 */
1094 boolean do_branch = ((key->depth.enabled || key->stencil[0].enabled) &&
1095 !key->alpha.enabled &&
1096 !shader->info.base.uses_kill);
1097
1098 generate_blend(variant->gallivm,
1099 &key->blend,
1100 rt,
1101 builder,
1102 blend_type,
1103 context_ptr,
1104 blend_mask,
1105 blend_in_color,
1106 color_ptr,
1107 do_branch);
1108 }
1109 }
1110
1111 LLVMBuildRetVoid(builder);
1112
1113 gallivm_verify_function(gallivm, function);
1114
1115 variant->nr_instrs += lp_build_count_instructions(function);
1116 }
1117
1118
1119 static void
1120 dump_fs_variant_key(const struct lp_fragment_shader_variant_key *key)
1121 {
1122 unsigned i;
1123
1124 debug_printf("fs variant %p:\n", (void *) key);
1125
1126 if (key->flatshade) {
1127 debug_printf("flatshade = 1\n");
1128 }
1129 for (i = 0; i < key->nr_cbufs; ++i) {
1130 debug_printf("cbuf_format[%u] = %s\n", i, util_format_name(key->cbuf_format[i]));
1131 }
1132 if (key->depth.enabled) {
1133 debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
1134 debug_printf("depth.func = %s\n", util_dump_func(key->depth.func, TRUE));
1135 debug_printf("depth.writemask = %u\n", key->depth.writemask);
1136 }
1137
1138 for (i = 0; i < 2; ++i) {
1139 if (key->stencil[i].enabled) {
1140 debug_printf("stencil[%u].func = %s\n", i, util_dump_func(key->stencil[i].func, TRUE));
1141 debug_printf("stencil[%u].fail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].fail_op, TRUE));
1142 debug_printf("stencil[%u].zpass_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zpass_op, TRUE));
1143 debug_printf("stencil[%u].zfail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zfail_op, TRUE));
1144 debug_printf("stencil[%u].valuemask = 0x%x\n", i, key->stencil[i].valuemask);
1145 debug_printf("stencil[%u].writemask = 0x%x\n", i, key->stencil[i].writemask);
1146 }
1147 }
1148
1149 if (key->alpha.enabled) {
1150 debug_printf("alpha.func = %s\n", util_dump_func(key->alpha.func, TRUE));
1151 }
1152
1153 if (key->occlusion_count) {
1154 debug_printf("occlusion_count = 1\n");
1155 }
1156
1157 if (key->blend.logicop_enable) {
1158 debug_printf("blend.logicop_func = %s\n", util_dump_logicop(key->blend.logicop_func, TRUE));
1159 }
1160 else if (key->blend.rt[0].blend_enable) {
1161 debug_printf("blend.rgb_func = %s\n", util_dump_blend_func (key->blend.rt[0].rgb_func, TRUE));
1162 debug_printf("blend.rgb_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
1163 debug_printf("blend.rgb_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
1164 debug_printf("blend.alpha_func = %s\n", util_dump_blend_func (key->blend.rt[0].alpha_func, TRUE));
1165 debug_printf("blend.alpha_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
1166 debug_printf("blend.alpha_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
1167 }
1168 debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
1169 for (i = 0; i < key->nr_samplers; ++i) {
1170 debug_printf("sampler[%u] = \n", i);
1171 debug_printf(" .format = %s\n",
1172 util_format_name(key->sampler[i].format));
1173 debug_printf(" .target = %s\n",
1174 util_dump_tex_target(key->sampler[i].target, TRUE));
1175 debug_printf(" .pot = %u %u %u\n",
1176 key->sampler[i].pot_width,
1177 key->sampler[i].pot_height,
1178 key->sampler[i].pot_depth);
1179 debug_printf(" .wrap = %s %s %s\n",
1180 util_dump_tex_wrap(key->sampler[i].wrap_s, TRUE),
1181 util_dump_tex_wrap(key->sampler[i].wrap_t, TRUE),
1182 util_dump_tex_wrap(key->sampler[i].wrap_r, TRUE));
1183 debug_printf(" .min_img_filter = %s\n",
1184 util_dump_tex_filter(key->sampler[i].min_img_filter, TRUE));
1185 debug_printf(" .min_mip_filter = %s\n",
1186 util_dump_tex_mipfilter(key->sampler[i].min_mip_filter, TRUE));
1187 debug_printf(" .mag_img_filter = %s\n",
1188 util_dump_tex_filter(key->sampler[i].mag_img_filter, TRUE));
1189 if (key->sampler[i].compare_mode != PIPE_TEX_COMPARE_NONE)
1190 debug_printf(" .compare_func = %s\n", util_dump_func(key->sampler[i].compare_func, TRUE));
1191 debug_printf(" .normalized_coords = %u\n", key->sampler[i].normalized_coords);
1192 debug_printf(" .min_max_lod_equal = %u\n", key->sampler[i].min_max_lod_equal);
1193 debug_printf(" .lod_bias_non_zero = %u\n", key->sampler[i].lod_bias_non_zero);
1194 debug_printf(" .apply_min_lod = %u\n", key->sampler[i].apply_min_lod);
1195 debug_printf(" .apply_max_lod = %u\n", key->sampler[i].apply_max_lod);
1196 }
1197 }
1198
1199
1200 void
1201 lp_debug_fs_variant(const struct lp_fragment_shader_variant *variant)
1202 {
1203 debug_printf("llvmpipe: Fragment shader #%u variant #%u:\n",
1204 variant->shader->no, variant->no);
1205 tgsi_dump(variant->shader->base.tokens, 0);
1206 dump_fs_variant_key(&variant->key);
1207 debug_printf("variant->opaque = %u\n", variant->opaque);
1208 debug_printf("\n");
1209 }
1210
1211
1212 /**
1213 * Generate a new fragment shader variant from the shader code and
1214 * other state indicated by the key.
1215 */
1216 static struct lp_fragment_shader_variant *
1217 generate_variant(struct llvmpipe_context *lp,
1218 struct lp_fragment_shader *shader,
1219 const struct lp_fragment_shader_variant_key *key)
1220 {
1221 struct lp_fragment_shader_variant *variant;
1222 const struct util_format_description *cbuf0_format_desc;
1223 boolean fullcolormask;
1224
1225 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
1226 if(!variant)
1227 return NULL;
1228
1229 variant->gallivm = gallivm_create();
1230 if (!variant->gallivm) {
1231 FREE(variant);
1232 return NULL;
1233 }
1234
1235 variant->shader = shader;
1236 variant->list_item_global.base = variant;
1237 variant->list_item_local.base = variant;
1238 variant->no = shader->variants_created++;
1239
1240 memcpy(&variant->key, key, shader->variant_key_size);
1241
1242 /*
1243 * Determine whether we are touching all channels in the color buffer.
1244 */
1245 fullcolormask = FALSE;
1246 if (key->nr_cbufs == 1) {
1247 cbuf0_format_desc = util_format_description(key->cbuf_format[0]);
1248 fullcolormask = util_format_colormask_full(cbuf0_format_desc, key->blend.rt[0].colormask);
1249 }
1250
1251 variant->opaque =
1252 !key->blend.logicop_enable &&
1253 !key->blend.rt[0].blend_enable &&
1254 fullcolormask &&
1255 !key->stencil[0].enabled &&
1256 !key->alpha.enabled &&
1257 !key->depth.enabled &&
1258 !shader->info.base.uses_kill
1259 ? TRUE : FALSE;
1260
1261
1262 if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
1263 lp_debug_fs_variant(variant);
1264 }
1265
1266 lp_jit_init_types(variant);
1267
1268 if (variant->jit_function[RAST_EDGE_TEST] == NULL)
1269 generate_fragment(lp, shader, variant, RAST_EDGE_TEST);
1270
1271 if (variant->jit_function[RAST_WHOLE] == NULL) {
1272 if (variant->opaque) {
1273 /* Specialized shader, which doesn't need to read the color buffer. */
1274 generate_fragment(lp, shader, variant, RAST_WHOLE);
1275 }
1276 }
1277
1278 /*
1279 * Compile everything
1280 */
1281
1282 gallivm_compile_module(variant->gallivm);
1283
1284 if (variant->function[RAST_EDGE_TEST]) {
1285 variant->jit_function[RAST_EDGE_TEST] = (lp_jit_frag_func)
1286 gallivm_jit_function(variant->gallivm,
1287 variant->function[RAST_EDGE_TEST]);
1288 }
1289
1290 if (variant->function[RAST_WHOLE]) {
1291 variant->jit_function[RAST_WHOLE] = (lp_jit_frag_func)
1292 gallivm_jit_function(variant->gallivm,
1293 variant->function[RAST_WHOLE]);
1294 } else if (!variant->jit_function[RAST_WHOLE]) {
1295 variant->jit_function[RAST_WHOLE] = variant->jit_function[RAST_EDGE_TEST];
1296 }
1297
1298 return variant;
1299 }
1300
1301
1302 static void *
1303 llvmpipe_create_fs_state(struct pipe_context *pipe,
1304 const struct pipe_shader_state *templ)
1305 {
1306 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1307 struct lp_fragment_shader *shader;
1308 int nr_samplers;
1309 int i;
1310
1311 shader = CALLOC_STRUCT(lp_fragment_shader);
1312 if (!shader)
1313 return NULL;
1314
1315 shader->no = fs_no++;
1316 make_empty_list(&shader->variants);
1317
1318 /* get/save the summary info for this shader */
1319 lp_build_tgsi_info(templ->tokens, &shader->info);
1320
1321 /* we need to keep a local copy of the tokens */
1322 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
1323
1324 shader->draw_data = draw_create_fragment_shader(llvmpipe->draw, templ);
1325 if (shader->draw_data == NULL) {
1326 FREE((void *) shader->base.tokens);
1327 FREE(shader);
1328 return NULL;
1329 }
1330
1331 nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
1332
1333 shader->variant_key_size = Offset(struct lp_fragment_shader_variant_key,
1334 sampler[nr_samplers]);
1335
1336 for (i = 0; i < shader->info.base.num_inputs; i++) {
1337 shader->inputs[i].usage_mask = shader->info.base.input_usage_mask[i];
1338 shader->inputs[i].cyl_wrap = shader->info.base.input_cylindrical_wrap[i];
1339
1340 switch (shader->info.base.input_interpolate[i]) {
1341 case TGSI_INTERPOLATE_CONSTANT:
1342 shader->inputs[i].interp = LP_INTERP_CONSTANT;
1343 break;
1344 case TGSI_INTERPOLATE_LINEAR:
1345 shader->inputs[i].interp = LP_INTERP_LINEAR;
1346 break;
1347 case TGSI_INTERPOLATE_PERSPECTIVE:
1348 shader->inputs[i].interp = LP_INTERP_PERSPECTIVE;
1349 break;
1350 case TGSI_INTERPOLATE_COLOR:
1351 shader->inputs[i].interp = LP_INTERP_COLOR;
1352 break;
1353 default:
1354 assert(0);
1355 break;
1356 }
1357
1358 switch (shader->info.base.input_semantic_name[i]) {
1359 case TGSI_SEMANTIC_FACE:
1360 shader->inputs[i].interp = LP_INTERP_FACING;
1361 break;
1362 case TGSI_SEMANTIC_POSITION:
1363 /* Position was already emitted above
1364 */
1365 shader->inputs[i].interp = LP_INTERP_POSITION;
1366 shader->inputs[i].src_index = 0;
1367 continue;
1368 }
1369
1370 shader->inputs[i].src_index = i+1;
1371 }
1372
1373 if (LP_DEBUG & DEBUG_TGSI) {
1374 unsigned attrib;
1375 debug_printf("llvmpipe: Create fragment shader #%u %p:\n",
1376 shader->no, (void *) shader);
1377 tgsi_dump(templ->tokens, 0);
1378 debug_printf("usage masks:\n");
1379 for (attrib = 0; attrib < shader->info.base.num_inputs; ++attrib) {
1380 unsigned usage_mask = shader->info.base.input_usage_mask[attrib];
1381 debug_printf(" IN[%u].%s%s%s%s\n",
1382 attrib,
1383 usage_mask & TGSI_WRITEMASK_X ? "x" : "",
1384 usage_mask & TGSI_WRITEMASK_Y ? "y" : "",
1385 usage_mask & TGSI_WRITEMASK_Z ? "z" : "",
1386 usage_mask & TGSI_WRITEMASK_W ? "w" : "");
1387 }
1388 debug_printf("\n");
1389 }
1390
1391 return shader;
1392 }
1393
1394
1395 static void
1396 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
1397 {
1398 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1399
1400 if (llvmpipe->fs == fs)
1401 return;
1402
1403 draw_flush(llvmpipe->draw);
1404
1405 llvmpipe->fs = (struct lp_fragment_shader *) fs;
1406
1407 draw_bind_fragment_shader(llvmpipe->draw,
1408 (llvmpipe->fs ? llvmpipe->fs->draw_data : NULL));
1409
1410 llvmpipe->dirty |= LP_NEW_FS;
1411 }
1412
1413
1414 /**
1415 * Remove shader variant from two lists: the shader's variant list
1416 * and the context's variant list.
1417 */
1418 void
1419 llvmpipe_remove_shader_variant(struct llvmpipe_context *lp,
1420 struct lp_fragment_shader_variant *variant)
1421 {
1422 unsigned i;
1423
1424 if (gallivm_debug & GALLIVM_DEBUG_IR) {
1425 debug_printf("llvmpipe: del fs #%u var #%u v created #%u v cached"
1426 " #%u v total cached #%u\n",
1427 variant->shader->no,
1428 variant->no,
1429 variant->shader->variants_created,
1430 variant->shader->variants_cached,
1431 lp->nr_fs_variants);
1432 }
1433
1434 /* free all the variant's JIT'd functions */
1435 for (i = 0; i < Elements(variant->function); i++) {
1436 if (variant->function[i]) {
1437 gallivm_free_function(variant->gallivm,
1438 variant->function[i],
1439 variant->jit_function[i]);
1440 }
1441 }
1442
1443 gallivm_destroy(variant->gallivm);
1444
1445 /* remove from shader's list */
1446 remove_from_list(&variant->list_item_local);
1447 variant->shader->variants_cached--;
1448
1449 /* remove from context's list */
1450 remove_from_list(&variant->list_item_global);
1451 lp->nr_fs_variants--;
1452 lp->nr_fs_instrs -= variant->nr_instrs;
1453
1454 FREE(variant);
1455 }
1456
1457
1458 static void
1459 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
1460 {
1461 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1462 struct lp_fragment_shader *shader = fs;
1463 struct lp_fs_variant_list_item *li;
1464
1465 assert(fs != llvmpipe->fs);
1466
1467 /*
1468 * XXX: we need to flush the context until we have some sort of reference
1469 * counting in fragment shaders as they may still be binned
1470 * Flushing alone might not sufficient we need to wait on it too.
1471 */
1472 llvmpipe_finish(pipe, __FUNCTION__);
1473
1474 /* Delete all the variants */
1475 li = first_elem(&shader->variants);
1476 while(!at_end(&shader->variants, li)) {
1477 struct lp_fs_variant_list_item *next = next_elem(li);
1478 llvmpipe_remove_shader_variant(llvmpipe, li->base);
1479 li = next;
1480 }
1481
1482 /* Delete draw module's data */
1483 draw_delete_fragment_shader(llvmpipe->draw, shader->draw_data);
1484
1485 assert(shader->variants_cached == 0);
1486 FREE((void *) shader->base.tokens);
1487 FREE(shader);
1488 }
1489
1490
1491
1492 static void
1493 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
1494 uint shader, uint index,
1495 struct pipe_constant_buffer *cb)
1496 {
1497 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1498 struct pipe_resource *constants = cb ? cb->buffer : NULL;
1499 unsigned size;
1500 const void *data;
1501
1502 if (cb && cb->user_buffer) {
1503 constants = llvmpipe_user_buffer_create(pipe->screen,
1504 (void *) cb->user_buffer,
1505 cb->buffer_size,
1506 PIPE_BIND_CONSTANT_BUFFER);
1507 }
1508
1509 size = constants ? constants->width0 : 0;
1510 data = constants ? llvmpipe_resource_data(constants) : NULL;
1511
1512 assert(shader < PIPE_SHADER_TYPES);
1513 assert(index < PIPE_MAX_CONSTANT_BUFFERS);
1514
1515 if(llvmpipe->constants[shader][index] == constants)
1516 return;
1517
1518 draw_flush(llvmpipe->draw);
1519
1520 /* note: reference counting */
1521 pipe_resource_reference(&llvmpipe->constants[shader][index], constants);
1522
1523 if(shader == PIPE_SHADER_VERTEX ||
1524 shader == PIPE_SHADER_GEOMETRY) {
1525 draw_set_mapped_constant_buffer(llvmpipe->draw, shader,
1526 index, data, size);
1527 }
1528
1529 llvmpipe->dirty |= LP_NEW_CONSTANTS;
1530
1531 if (cb && cb->user_buffer) {
1532 pipe_resource_reference(&constants, NULL);
1533 }
1534 }
1535
1536
1537 /**
1538 * Return the blend factor equivalent to a destination alpha of one.
1539 */
1540 static INLINE unsigned
1541 force_dst_alpha_one(unsigned factor)
1542 {
1543 switch(factor) {
1544 case PIPE_BLENDFACTOR_DST_ALPHA:
1545 return PIPE_BLENDFACTOR_ONE;
1546 case PIPE_BLENDFACTOR_INV_DST_ALPHA:
1547 return PIPE_BLENDFACTOR_ZERO;
1548 case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
1549 return PIPE_BLENDFACTOR_ZERO;
1550 }
1551
1552 return factor;
1553 }
1554
1555
1556 /**
1557 * We need to generate several variants of the fragment pipeline to match
1558 * all the combinations of the contributing state atoms.
1559 *
1560 * TODO: there is actually no reason to tie this to context state -- the
1561 * generated code could be cached globally in the screen.
1562 */
1563 static void
1564 make_variant_key(struct llvmpipe_context *lp,
1565 struct lp_fragment_shader *shader,
1566 struct lp_fragment_shader_variant_key *key)
1567 {
1568 unsigned i;
1569
1570 memset(key, 0, shader->variant_key_size);
1571
1572 if (lp->framebuffer.zsbuf) {
1573 if (lp->depth_stencil->depth.enabled) {
1574 key->zsbuf_format = lp->framebuffer.zsbuf->format;
1575 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
1576 }
1577 if (lp->depth_stencil->stencil[0].enabled) {
1578 key->zsbuf_format = lp->framebuffer.zsbuf->format;
1579 memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil);
1580 }
1581 }
1582
1583 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
1584 if(key->alpha.enabled)
1585 key->alpha.func = lp->depth_stencil->alpha.func;
1586 /* alpha.ref_value is passed in jit_context */
1587
1588 key->flatshade = lp->rasterizer->flatshade;
1589 if (lp->active_query_count) {
1590 key->occlusion_count = TRUE;
1591 }
1592
1593 if (lp->framebuffer.nr_cbufs) {
1594 memcpy(&key->blend, lp->blend, sizeof key->blend);
1595 }
1596
1597 key->nr_cbufs = lp->framebuffer.nr_cbufs;
1598 for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
1599 enum pipe_format format = lp->framebuffer.cbufs[i]->format;
1600 struct pipe_rt_blend_state *blend_rt = &key->blend.rt[i];
1601 const struct util_format_description *format_desc;
1602
1603 key->cbuf_format[i] = format;
1604
1605 format_desc = util_format_description(format);
1606 assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||
1607 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB);
1608
1609 blend_rt->colormask = lp->blend->rt[i].colormask;
1610
1611 /*
1612 * Mask out color channels not present in the color buffer.
1613 */
1614 blend_rt->colormask &= util_format_colormask(format_desc);
1615
1616 /*
1617 * Our swizzled render tiles always have an alpha channel, but the linear
1618 * render target format often does not, so force here the dst alpha to be
1619 * one.
1620 *
1621 * This is not a mere optimization. Wrong results will be produced if the
1622 * dst alpha is used, the dst format does not have alpha, and the previous
1623 * rendering was not flushed from the swizzled to linear buffer. For
1624 * example, NonPowTwo DCT.
1625 *
1626 * TODO: This should be generalized to all channels for better
1627 * performance, but only alpha causes correctness issues.
1628 *
1629 * Also, force rgb/alpha func/factors match, to make AoS blending easier.
1630 */
1631 if (format_desc->swizzle[3] > UTIL_FORMAT_SWIZZLE_W ||
1632 format_desc->swizzle[3] == format_desc->swizzle[0]) {
1633 blend_rt->rgb_src_factor = force_dst_alpha_one(blend_rt->rgb_src_factor);
1634 blend_rt->rgb_dst_factor = force_dst_alpha_one(blend_rt->rgb_dst_factor);
1635 blend_rt->alpha_func = blend_rt->rgb_func;
1636 blend_rt->alpha_src_factor = blend_rt->rgb_src_factor;
1637 blend_rt->alpha_dst_factor = blend_rt->rgb_dst_factor;
1638 }
1639 }
1640
1641 /* This value will be the same for all the variants of a given shader:
1642 */
1643 key->nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
1644
1645 for(i = 0; i < key->nr_samplers; ++i) {
1646 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
1647 lp_sampler_static_state(&key->sampler[i],
1648 lp->fragment_sampler_views[i],
1649 lp->sampler[i]);
1650 }
1651 }
1652 }
1653
1654
1655
1656 /**
1657 * Update fragment shader state. This is called just prior to drawing
1658 * something when some fragment-related state has changed.
1659 */
1660 void
1661 llvmpipe_update_fs(struct llvmpipe_context *lp)
1662 {
1663 struct lp_fragment_shader *shader = lp->fs;
1664 struct lp_fragment_shader_variant_key key;
1665 struct lp_fragment_shader_variant *variant = NULL;
1666 struct lp_fs_variant_list_item *li;
1667
1668 make_variant_key(lp, shader, &key);
1669
1670 /* Search the variants for one which matches the key */
1671 li = first_elem(&shader->variants);
1672 while(!at_end(&shader->variants, li)) {
1673 if(memcmp(&li->base->key, &key, shader->variant_key_size) == 0) {
1674 variant = li->base;
1675 break;
1676 }
1677 li = next_elem(li);
1678 }
1679
1680 if (variant) {
1681 /* Move this variant to the head of the list to implement LRU
1682 * deletion of shader's when we have too many.
1683 */
1684 move_to_head(&lp->fs_variants_list, &variant->list_item_global);
1685 }
1686 else {
1687 /* variant not found, create it now */
1688 int64_t t0, t1, dt;
1689 unsigned i;
1690 unsigned variants_to_cull;
1691
1692 if (0) {
1693 debug_printf("%u variants,\t%u instrs,\t%u instrs/variant\n",
1694 lp->nr_fs_variants,
1695 lp->nr_fs_instrs,
1696 lp->nr_fs_variants ? lp->nr_fs_instrs / lp->nr_fs_variants : 0);
1697 }
1698
1699 /* First, check if we've exceeded the max number of shader variants.
1700 * If so, free 25% of them (the least recently used ones).
1701 */
1702 variants_to_cull = lp->nr_fs_variants >= LP_MAX_SHADER_VARIANTS ? LP_MAX_SHADER_VARIANTS / 4 : 0;
1703
1704 if (variants_to_cull ||
1705 lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS) {
1706 struct pipe_context *pipe = &lp->pipe;
1707
1708 /*
1709 * XXX: we need to flush the context until we have some sort of
1710 * reference counting in fragment shaders as they may still be binned
1711 * Flushing alone might not be sufficient we need to wait on it too.
1712 */
1713 llvmpipe_finish(pipe, __FUNCTION__);
1714
1715 /*
1716 * We need to re-check lp->nr_fs_variants because an arbitrarliy large
1717 * number of shader variants (potentially all of them) could be
1718 * pending for destruction on flush.
1719 */
1720
1721 for (i = 0; i < variants_to_cull || lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS; i++) {
1722 struct lp_fs_variant_list_item *item;
1723 if (is_empty_list(&lp->fs_variants_list)) {
1724 break;
1725 }
1726 item = last_elem(&lp->fs_variants_list);
1727 assert(item);
1728 assert(item->base);
1729 llvmpipe_remove_shader_variant(lp, item->base);
1730 }
1731 }
1732
1733 /*
1734 * Generate the new variant.
1735 */
1736 t0 = os_time_get();
1737 variant = generate_variant(lp, shader, &key);
1738 t1 = os_time_get();
1739 dt = t1 - t0;
1740 LP_COUNT_ADD(llvm_compile_time, dt);
1741 LP_COUNT_ADD(nr_llvm_compiles, 2); /* emit vs. omit in/out test */
1742
1743 llvmpipe_variant_count++;
1744
1745 /* Put the new variant into the list */
1746 if (variant) {
1747 insert_at_head(&shader->variants, &variant->list_item_local);
1748 insert_at_head(&lp->fs_variants_list, &variant->list_item_global);
1749 lp->nr_fs_variants++;
1750 lp->nr_fs_instrs += variant->nr_instrs;
1751 shader->variants_cached++;
1752 }
1753 }
1754
1755 /* Bind this variant */
1756 lp_setup_set_fs_variant(lp->setup, variant);
1757 }
1758
1759
1760
1761
1762
1763
1764
1765 void
1766 llvmpipe_init_fs_funcs(struct llvmpipe_context *llvmpipe)
1767 {
1768 llvmpipe->pipe.create_fs_state = llvmpipe_create_fs_state;
1769 llvmpipe->pipe.bind_fs_state = llvmpipe_bind_fs_state;
1770 llvmpipe->pipe.delete_fs_state = llvmpipe_delete_fs_state;
1771
1772 llvmpipe->pipe.set_constant_buffer = llvmpipe_set_constant_buffer;
1773 }