llvmpipe: Remove unnecessary null check of shader.
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - early depth test
35 * - fragment shader
36 * - alpha test
37 * - depth/stencil test
38 * - blending
39 *
40 * This file has only the glue to assemble the fragment pipeline. The actual
41 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
42 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
43 * muster the LLVM JIT execution engine to create a function that follows an
44 * established binary interface and that can be called from C directly.
45 *
46 * A big source of complexity here is that we often want to run different
47 * stages with different precisions and data types and precisions. For example,
48 * the fragment shader needs typically to be done in floats, but the
49 * depth/stencil test and blending is better done in the type that most closely
50 * matches the depth/stencil and color buffer respectively.
51 *
52 * Since the width of a SIMD vector register stays the same regardless of the
53 * element type, different types imply different number of elements, so we must
54 * code generate more instances of the stages with larger types to be able to
55 * feed/consume the stages with smaller types.
56 *
57 * @author Jose Fonseca <jfonseca@vmware.com>
58 */
59
60 #include <limits.h>
61 #include "pipe/p_defines.h"
62 #include "util/u_inlines.h"
63 #include "util/u_memory.h"
64 #include "util/u_pointer.h"
65 #include "util/u_format.h"
66 #include "util/u_dump.h"
67 #include "util/u_string.h"
68 #include "util/u_simple_list.h"
69 #include "util/u_dual_blend.h"
70 #include "os/os_time.h"
71 #include "pipe/p_shader_tokens.h"
72 #include "draw/draw_context.h"
73 #include "tgsi/tgsi_dump.h"
74 #include "tgsi/tgsi_scan.h"
75 #include "tgsi/tgsi_parse.h"
76 #include "gallivm/lp_bld_type.h"
77 #include "gallivm/lp_bld_const.h"
78 #include "gallivm/lp_bld_conv.h"
79 #include "gallivm/lp_bld_init.h"
80 #include "gallivm/lp_bld_intr.h"
81 #include "gallivm/lp_bld_logic.h"
82 #include "gallivm/lp_bld_tgsi.h"
83 #include "gallivm/lp_bld_swizzle.h"
84 #include "gallivm/lp_bld_flow.h"
85 #include "gallivm/lp_bld_debug.h"
86 #include "gallivm/lp_bld_arit.h"
87 #include "gallivm/lp_bld_pack.h"
88 #include "gallivm/lp_bld_format.h"
89 #include "gallivm/lp_bld_quad.h"
90
91 #include "lp_bld_alpha.h"
92 #include "lp_bld_blend.h"
93 #include "lp_bld_depth.h"
94 #include "lp_bld_interp.h"
95 #include "lp_context.h"
96 #include "lp_debug.h"
97 #include "lp_perf.h"
98 #include "lp_setup.h"
99 #include "lp_state.h"
100 #include "lp_tex_sample.h"
101 #include "lp_flush.h"
102 #include "lp_state_fs.h"
103 #include "lp_rast.h"
104
105
106 /** Fragment shader number (for debugging) */
107 static unsigned fs_no = 0;
108
109
110 /**
111 * Expand the relevant bits of mask_input to a n*4-dword mask for the
112 * n*four pixels in n 2x2 quads. This will set the n*four elements of the
113 * quad mask vector to 0 or ~0.
114 * Grouping is 01, 23 for 2 quad mode hence only 0 and 2 are valid
115 * quad arguments with fs length 8.
116 *
117 * \param first_quad which quad(s) of the quad group to test, in [0,3]
118 * \param mask_input bitwise mask for the whole 4x4 stamp
119 */
120 static LLVMValueRef
121 generate_quad_mask(struct gallivm_state *gallivm,
122 struct lp_type fs_type,
123 unsigned first_quad,
124 LLVMValueRef mask_input) /* int32 */
125 {
126 LLVMBuilderRef builder = gallivm->builder;
127 struct lp_type mask_type;
128 LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
129 LLVMValueRef bits[16];
130 LLVMValueRef mask;
131 int shift, i;
132
133 /*
134 * XXX: We'll need a different path for 16 x u8
135 */
136 assert(fs_type.width == 32);
137 assert(fs_type.length <= Elements(bits));
138 mask_type = lp_int_type(fs_type);
139
140 /*
141 * mask_input >>= (quad * 4)
142 */
143 switch (first_quad) {
144 case 0:
145 shift = 0;
146 break;
147 case 1:
148 assert(fs_type.length == 4);
149 shift = 2;
150 break;
151 case 2:
152 shift = 8;
153 break;
154 case 3:
155 assert(fs_type.length == 4);
156 shift = 10;
157 break;
158 default:
159 assert(0);
160 shift = 0;
161 }
162
163 mask_input = LLVMBuildLShr(builder,
164 mask_input,
165 LLVMConstInt(i32t, shift, 0),
166 "");
167
168 /*
169 * mask = { mask_input & (1 << i), for i in [0,3] }
170 */
171 mask = lp_build_broadcast(gallivm,
172 lp_build_vec_type(gallivm, mask_type),
173 mask_input);
174
175 for (i = 0; i < fs_type.length / 4; i++) {
176 unsigned j = 2 * (i % 2) + (i / 2) * 8;
177 bits[4*i + 0] = LLVMConstInt(i32t, 1 << (j + 0), 0);
178 bits[4*i + 1] = LLVMConstInt(i32t, 1 << (j + 1), 0);
179 bits[4*i + 2] = LLVMConstInt(i32t, 1 << (j + 4), 0);
180 bits[4*i + 3] = LLVMConstInt(i32t, 1 << (j + 5), 0);
181 }
182 mask = LLVMBuildAnd(builder, mask, LLVMConstVector(bits, fs_type.length), "");
183
184 /*
185 * mask = mask != 0 ? ~0 : 0
186 */
187 mask = lp_build_compare(gallivm,
188 mask_type, PIPE_FUNC_NOTEQUAL,
189 mask,
190 lp_build_const_int_vec(gallivm, mask_type, 0));
191
192 return mask;
193 }
194
195
196 #define EARLY_DEPTH_TEST 0x1
197 #define LATE_DEPTH_TEST 0x2
198 #define EARLY_DEPTH_WRITE 0x4
199 #define LATE_DEPTH_WRITE 0x8
200
201 static int
202 find_output_by_semantic( const struct tgsi_shader_info *info,
203 unsigned semantic,
204 unsigned index )
205 {
206 int i;
207
208 for (i = 0; i < info->num_outputs; i++)
209 if (info->output_semantic_name[i] == semantic &&
210 info->output_semantic_index[i] == index)
211 return i;
212
213 return -1;
214 }
215
216
217 /**
218 * Generate the fragment shader, depth/stencil test, and alpha tests.
219 */
220 static void
221 generate_fs_loop(struct gallivm_state *gallivm,
222 struct lp_fragment_shader *shader,
223 const struct lp_fragment_shader_variant_key *key,
224 LLVMBuilderRef builder,
225 struct lp_type type,
226 LLVMValueRef context_ptr,
227 LLVMValueRef num_loop,
228 struct lp_build_interp_soa_context *interp,
229 struct lp_build_sampler_soa *sampler,
230 LLVMValueRef mask_store,
231 LLVMValueRef (*out_color)[4],
232 LLVMValueRef depth_ptr,
233 LLVMValueRef depth_stride,
234 LLVMValueRef facing,
235 LLVMValueRef thread_data_ptr)
236 {
237 const struct util_format_description *zs_format_desc = NULL;
238 const struct tgsi_token *tokens = shader->base.tokens;
239 LLVMTypeRef vec_type;
240 LLVMValueRef mask_ptr, mask_val;
241 LLVMValueRef consts_ptr;
242 LLVMValueRef z;
243 LLVMValueRef z_value, s_value;
244 LLVMValueRef z_fb, s_fb;
245 LLVMValueRef stencil_refs[2];
246 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
247 struct lp_build_for_loop_state loop_state;
248 struct lp_build_mask_context mask;
249 /*
250 * TODO: figure out if simple_shader optimization is really worthwile to
251 * keep. Disabled because it may hide some real bugs in the (depth/stencil)
252 * code since tests tend to take another codepath than real shaders.
253 */
254 boolean simple_shader = (shader->info.base.file_count[TGSI_FILE_SAMPLER] == 0 &&
255 shader->info.base.num_inputs < 3 &&
256 shader->info.base.num_instructions < 8) && 0;
257 const boolean dual_source_blend = key->blend.rt[0].blend_enable &&
258 util_blend_state_is_dual(&key->blend, 0);
259 unsigned attrib;
260 unsigned chan;
261 unsigned cbuf;
262 unsigned depth_mode;
263
264 struct lp_bld_tgsi_system_values system_values;
265
266 memset(&system_values, 0, sizeof(system_values));
267
268 if (key->depth.enabled ||
269 key->stencil[0].enabled) {
270
271 zs_format_desc = util_format_description(key->zsbuf_format);
272 assert(zs_format_desc);
273
274 if (!shader->info.base.writes_z) {
275 if (key->alpha.enabled || shader->info.base.uses_kill) {
276 /* With alpha test and kill, can do the depth test early
277 * and hopefully eliminate some quads. But need to do a
278 * special deferred depth write once the final mask value
279 * is known. This only works though if there's either no
280 * stencil test or the stencil value isn't written.
281 */
282 if (key->stencil[0].enabled && (key->stencil[0].writemask ||
283 (key->stencil[1].enabled &&
284 key->stencil[1].writemask)))
285 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
286 else
287 depth_mode = EARLY_DEPTH_TEST | LATE_DEPTH_WRITE;
288 }
289 else
290 depth_mode = EARLY_DEPTH_TEST | EARLY_DEPTH_WRITE;
291 }
292 else {
293 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
294 }
295
296 if (!(key->depth.enabled && key->depth.writemask) &&
297 !(key->stencil[0].enabled && (key->stencil[0].writemask ||
298 (key->stencil[1].enabled &&
299 key->stencil[1].writemask))))
300 depth_mode &= ~(LATE_DEPTH_WRITE | EARLY_DEPTH_WRITE);
301 }
302 else {
303 depth_mode = 0;
304 }
305
306
307 stencil_refs[0] = lp_jit_context_stencil_ref_front_value(gallivm, context_ptr);
308 stencil_refs[1] = lp_jit_context_stencil_ref_back_value(gallivm, context_ptr);
309
310 vec_type = lp_build_vec_type(gallivm, type);
311
312 consts_ptr = lp_jit_context_constants(gallivm, context_ptr);
313
314 lp_build_for_loop_begin(&loop_state, gallivm,
315 lp_build_const_int32(gallivm, 0),
316 LLVMIntULT,
317 num_loop,
318 lp_build_const_int32(gallivm, 1));
319
320 mask_ptr = LLVMBuildGEP(builder, mask_store,
321 &loop_state.counter, 1, "mask_ptr");
322 mask_val = LLVMBuildLoad(builder, mask_ptr, "");
323
324 memset(outputs, 0, sizeof outputs);
325
326 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
327 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
328 out_color[cbuf][chan] = lp_build_array_alloca(gallivm,
329 lp_build_vec_type(gallivm,
330 type),
331 num_loop, "color");
332 }
333 }
334 if (dual_source_blend) {
335 assert(key->nr_cbufs <= 1);
336 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
337 out_color[1][chan] = lp_build_array_alloca(gallivm,
338 lp_build_vec_type(gallivm,
339 type),
340 num_loop, "color1");
341 }
342 }
343
344
345 /* 'mask' will control execution based on quad's pixel alive/killed state */
346 lp_build_mask_begin(&mask, gallivm, type, mask_val);
347
348 if (!(depth_mode & EARLY_DEPTH_TEST) && !simple_shader)
349 lp_build_mask_check(&mask);
350
351 lp_build_interp_soa_update_pos_dyn(interp, gallivm, loop_state.counter);
352 z = interp->pos[2];
353
354 if (depth_mode & EARLY_DEPTH_TEST) {
355 lp_build_depth_stencil_load_swizzled(gallivm, type,
356 zs_format_desc, key->resource_1d,
357 depth_ptr, depth_stride,
358 &z_fb, &s_fb, loop_state.counter);
359 lp_build_depth_stencil_test(gallivm,
360 &key->depth,
361 key->stencil,
362 type,
363 zs_format_desc,
364 &mask,
365 stencil_refs,
366 z, z_fb, s_fb,
367 facing,
368 &z_value, &s_value,
369 !simple_shader);
370
371 if (depth_mode & EARLY_DEPTH_WRITE) {
372 lp_build_depth_stencil_write_swizzled(gallivm, type,
373 zs_format_desc, key->resource_1d,
374 NULL, NULL, NULL, loop_state.counter,
375 depth_ptr, depth_stride,
376 z_value, s_value);
377 }
378 /*
379 * Note mask check if stencil is enabled must be after ds write not after
380 * stencil test otherwise new stencil values may not get written if all
381 * fragments got killed by depth/stencil test.
382 */
383 if (!simple_shader && key->stencil[0].enabled)
384 lp_build_mask_check(&mask);
385 }
386
387 lp_build_interp_soa_update_inputs_dyn(interp, gallivm, loop_state.counter);
388
389 /* Build the actual shader */
390 lp_build_tgsi_soa(gallivm, tokens, type, &mask,
391 consts_ptr, &system_values,
392 interp->inputs,
393 outputs, sampler, &shader->info.base, NULL);
394
395 /* Alpha test */
396 if (key->alpha.enabled) {
397 int color0 = find_output_by_semantic(&shader->info.base,
398 TGSI_SEMANTIC_COLOR,
399 0);
400
401 if (color0 != -1 && outputs[color0][3]) {
402 const struct util_format_description *cbuf_format_desc;
403 LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
404 LLVMValueRef alpha_ref_value;
405
406 alpha_ref_value = lp_jit_context_alpha_ref_value(gallivm, context_ptr);
407 alpha_ref_value = lp_build_broadcast(gallivm, vec_type, alpha_ref_value);
408
409 cbuf_format_desc = util_format_description(key->cbuf_format[0]);
410
411 lp_build_alpha_test(gallivm, key->alpha.func, type, cbuf_format_desc,
412 &mask, alpha, alpha_ref_value,
413 (depth_mode & LATE_DEPTH_TEST) != 0);
414 }
415 }
416
417 /* Late Z test */
418 if (depth_mode & LATE_DEPTH_TEST) {
419 int pos0 = find_output_by_semantic(&shader->info.base,
420 TGSI_SEMANTIC_POSITION,
421 0);
422
423 if (pos0 != -1 && outputs[pos0][2]) {
424 z = LLVMBuildLoad(builder, outputs[pos0][2], "output.z");
425 }
426
427 lp_build_depth_stencil_load_swizzled(gallivm, type,
428 zs_format_desc, key->resource_1d,
429 depth_ptr, depth_stride,
430 &z_fb, &s_fb, loop_state.counter);
431
432 lp_build_depth_stencil_test(gallivm,
433 &key->depth,
434 key->stencil,
435 type,
436 zs_format_desc,
437 &mask,
438 stencil_refs,
439 z, z_fb, s_fb,
440 facing,
441 &z_value, &s_value,
442 !simple_shader);
443 /* Late Z write */
444 if (depth_mode & LATE_DEPTH_WRITE) {
445 lp_build_depth_stencil_write_swizzled(gallivm, type,
446 zs_format_desc, key->resource_1d,
447 NULL, NULL, NULL, loop_state.counter,
448 depth_ptr, depth_stride,
449 z_value, s_value);
450 }
451 }
452 else if ((depth_mode & EARLY_DEPTH_TEST) &&
453 (depth_mode & LATE_DEPTH_WRITE))
454 {
455 /* Need to apply a reduced mask to the depth write. Reload the
456 * depth value, update from zs_value with the new mask value and
457 * write that out.
458 */
459 lp_build_depth_stencil_write_swizzled(gallivm, type,
460 zs_format_desc, key->resource_1d,
461 &mask, z_fb, s_fb, loop_state.counter,
462 depth_ptr, depth_stride,
463 z_value, s_value);
464 }
465
466
467 /* Color write */
468 for (attrib = 0; attrib < shader->info.base.num_outputs; ++attrib)
469 {
470 unsigned cbuf = shader->info.base.output_semantic_index[attrib];
471 if ((shader->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_COLOR) &&
472 ((cbuf < key->nr_cbufs) || (cbuf == 1 && dual_source_blend)))
473 {
474 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
475 if(outputs[attrib][chan]) {
476 /* XXX: just initialize outputs to point at colors[] and
477 * skip this.
478 */
479 LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
480 LLVMValueRef color_ptr;
481 color_ptr = LLVMBuildGEP(builder, out_color[cbuf][chan],
482 &loop_state.counter, 1, "");
483 lp_build_name(out, "color%u.%c", attrib, "rgba"[chan]);
484 LLVMBuildStore(builder, out, color_ptr);
485 }
486 }
487 }
488 }
489
490 if (key->occlusion_count) {
491 LLVMValueRef counter = lp_jit_thread_data_counter(gallivm, thread_data_ptr);
492 lp_build_name(counter, "counter");
493 lp_build_occlusion_count(gallivm, type,
494 lp_build_mask_value(&mask), counter);
495 }
496
497 mask_val = lp_build_mask_end(&mask);
498 LLVMBuildStore(builder, mask_val, mask_ptr);
499 lp_build_for_loop_end(&loop_state);
500 }
501
502
503 /**
504 * This function will reorder pixels from the fragment shader SoA to memory layout AoS
505 *
506 * Fragment Shader outputs pixels in small 2x2 blocks
507 * e.g. (0, 0), (1, 0), (0, 1), (1, 1) ; (2, 0) ...
508 *
509 * However in memory pixels are stored in rows
510 * e.g. (0, 0), (1, 0), (2, 0), (3, 0) ; (0, 1) ...
511 *
512 * @param type fragment shader type (4x or 8x float)
513 * @param num_fs number of fs_src
514 * @param is_1d whether we're outputting to a 1d resource
515 * @param dst_channels number of output channels
516 * @param fs_src output from fragment shader
517 * @param dst pointer to store result
518 * @param pad_inline is channel padding inline or at end of row
519 * @return the number of dsts
520 */
521 static int
522 generate_fs_twiddle(struct gallivm_state *gallivm,
523 struct lp_type type,
524 unsigned num_fs,
525 unsigned dst_channels,
526 LLVMValueRef fs_src[][4],
527 LLVMValueRef* dst,
528 bool pad_inline)
529 {
530 LLVMValueRef src[16];
531
532 bool swizzle_pad;
533 bool twiddle;
534 bool split;
535
536 unsigned pixels = type.length / 4;
537 unsigned reorder_group;
538 unsigned src_channels;
539 unsigned src_count;
540 unsigned i;
541
542 src_channels = dst_channels < 3 ? dst_channels : 4;
543 src_count = num_fs * src_channels;
544
545 assert(pixels == 2 || pixels == 1);
546 assert(num_fs * src_channels <= Elements(src));
547
548 /*
549 * Transpose from SoA -> AoS
550 */
551 for (i = 0; i < num_fs; ++i) {
552 lp_build_transpose_aos_n(gallivm, type, &fs_src[i][0], src_channels, &src[i * src_channels]);
553 }
554
555 /*
556 * Pick transformation options
557 */
558 swizzle_pad = false;
559 twiddle = false;
560 split = false;
561 reorder_group = 0;
562
563 if (dst_channels == 1) {
564 twiddle = true;
565
566 if (pixels == 2) {
567 split = true;
568 }
569 } else if (dst_channels == 2) {
570 if (pixels == 1) {
571 reorder_group = 1;
572 }
573 } else if (dst_channels > 2) {
574 if (pixels == 1) {
575 reorder_group = 2;
576 } else {
577 twiddle = true;
578 }
579
580 if (!pad_inline && dst_channels == 3 && pixels > 1) {
581 swizzle_pad = true;
582 }
583 }
584
585 /*
586 * Split the src in half
587 */
588 if (split) {
589 for (i = num_fs; i > 0; --i) {
590 src[(i - 1)*2 + 1] = lp_build_extract_range(gallivm, src[i - 1], 4, 4);
591 src[(i - 1)*2 + 0] = lp_build_extract_range(gallivm, src[i - 1], 0, 4);
592 }
593
594 src_count *= 2;
595 type.length = 4;
596 }
597
598 /*
599 * Ensure pixels are in memory order
600 */
601 if (reorder_group) {
602 /* Twiddle pixels by reordering the array, e.g.:
603 *
604 * src_count = 8 -> 0 2 1 3 4 6 5 7
605 * src_count = 16 -> 0 1 4 5 2 3 6 7 8 9 12 13 10 11 14 15
606 */
607 const unsigned reorder_sw[] = { 0, 2, 1, 3 };
608
609 for (i = 0; i < src_count; ++i) {
610 unsigned group = i / reorder_group;
611 unsigned block = (group / 4) * 4 * reorder_group;
612 unsigned j = block + (reorder_sw[group % 4] * reorder_group) + (i % reorder_group);
613 dst[i] = src[j];
614 }
615 } else if (twiddle) {
616 /* Twiddle pixels across elements of array */
617 lp_bld_quad_twiddle(gallivm, type, src, src_count, dst);
618 } else {
619 /* Do nothing */
620 memcpy(dst, src, sizeof(LLVMValueRef) * src_count);
621 }
622
623 /*
624 * Moves any padding between pixels to the end
625 * e.g. RGBXRGBX -> RGBRGBXX
626 */
627 if (swizzle_pad) {
628 unsigned char swizzles[16];
629 unsigned elems = pixels * dst_channels;
630
631 for (i = 0; i < type.length; ++i) {
632 if (i < elems)
633 swizzles[i] = i % dst_channels + (i / dst_channels) * 4;
634 else
635 swizzles[i] = LP_BLD_SWIZZLE_DONTCARE;
636 }
637
638 for (i = 0; i < src_count; ++i) {
639 dst[i] = lp_build_swizzle_aos_n(gallivm, dst[i], swizzles, type.length, type.length);
640 }
641 }
642
643 return src_count;
644 }
645
646
647 /**
648 * Load an unswizzled block of pixels from memory
649 */
650 static void
651 load_unswizzled_block(struct gallivm_state *gallivm,
652 LLVMValueRef base_ptr,
653 LLVMValueRef stride,
654 unsigned block_width,
655 unsigned block_height,
656 LLVMValueRef* dst,
657 struct lp_type dst_type,
658 unsigned dst_count,
659 unsigned dst_alignment)
660 {
661 LLVMBuilderRef builder = gallivm->builder;
662 unsigned row_size = dst_count / block_height;
663 unsigned i;
664
665 /* Ensure block exactly fits into dst */
666 assert((block_width * block_height) % dst_count == 0);
667
668 for (i = 0; i < dst_count; ++i) {
669 unsigned x = i % row_size;
670 unsigned y = i / row_size;
671
672 LLVMValueRef bx = lp_build_const_int32(gallivm, x * (dst_type.width / 8) * dst_type.length);
673 LLVMValueRef by = LLVMBuildMul(builder, lp_build_const_int32(gallivm, y), stride, "");
674
675 LLVMValueRef gep[2];
676 LLVMValueRef dst_ptr;
677
678 gep[0] = lp_build_const_int32(gallivm, 0);
679 gep[1] = LLVMBuildAdd(builder, bx, by, "");
680
681 dst_ptr = LLVMBuildGEP(builder, base_ptr, gep, 2, "");
682 dst_ptr = LLVMBuildBitCast(builder, dst_ptr, LLVMPointerType(lp_build_vec_type(gallivm, dst_type), 0), "");
683
684 dst[i] = LLVMBuildLoad(builder, dst_ptr, "");
685
686 lp_set_load_alignment(dst[i], dst_alignment);
687 }
688 }
689
690
691 /**
692 * Store an unswizzled block of pixels to memory
693 */
694 static void
695 store_unswizzled_block(struct gallivm_state *gallivm,
696 LLVMValueRef base_ptr,
697 LLVMValueRef stride,
698 unsigned block_width,
699 unsigned block_height,
700 LLVMValueRef* src,
701 struct lp_type src_type,
702 unsigned src_count,
703 unsigned src_alignment)
704 {
705 LLVMBuilderRef builder = gallivm->builder;
706 unsigned row_size = src_count / block_height;
707 unsigned i;
708
709 /* Ensure src exactly fits into block */
710 assert((block_width * block_height) % src_count == 0);
711
712 for (i = 0; i < src_count; ++i) {
713 unsigned x = i % row_size;
714 unsigned y = i / row_size;
715
716 LLVMValueRef bx = lp_build_const_int32(gallivm, x * (src_type.width / 8) * src_type.length);
717 LLVMValueRef by = LLVMBuildMul(builder, lp_build_const_int32(gallivm, y), stride, "");
718
719 LLVMValueRef gep[2];
720 LLVMValueRef src_ptr;
721
722 gep[0] = lp_build_const_int32(gallivm, 0);
723 gep[1] = LLVMBuildAdd(builder, bx, by, "");
724
725 src_ptr = LLVMBuildGEP(builder, base_ptr, gep, 2, "");
726 src_ptr = LLVMBuildBitCast(builder, src_ptr, LLVMPointerType(lp_build_vec_type(gallivm, src_type), 0), "");
727
728 src_ptr = LLVMBuildStore(builder, src[i], src_ptr);
729
730 lp_set_store_alignment(src_ptr, src_alignment);
731 }
732 }
733
734
735 /**
736 * Checks if a format description is an arithmetic format
737 *
738 * A format which has irregular channel sizes such as R3_G3_B2 or R5_G6_B5.
739 */
740 static INLINE boolean
741 is_arithmetic_format(const struct util_format_description *format_desc)
742 {
743 boolean arith = false;
744 unsigned i;
745
746 for (i = 0; i < format_desc->nr_channels; ++i) {
747 arith |= format_desc->channel[i].size != format_desc->channel[0].size;
748 arith |= (format_desc->channel[i].size % 8) != 0;
749 }
750
751 return arith;
752 }
753
754
755 /**
756 * Checks if this format requires special handling due to required expansion
757 * to floats for blending, and furthermore has "natural" packed AoS -> unpacked
758 * SoA conversion.
759 */
760 static INLINE boolean
761 format_expands_to_float_soa(const struct util_format_description *format_desc)
762 {
763 if (format_desc->format == PIPE_FORMAT_R11G11B10_FLOAT ||
764 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) {
765 return true;
766 }
767 return false;
768 }
769
770
771 /**
772 * Retrieves the type representing the memory layout for a format
773 *
774 * e.g. RGBA16F = 4x half-float and R3G3B2 = 1x byte
775 */
776 static INLINE void
777 lp_mem_type_from_format_desc(const struct util_format_description *format_desc,
778 struct lp_type* type)
779 {
780 unsigned i;
781 unsigned chan;
782
783 if (format_expands_to_float_soa(format_desc)) {
784 /* just make this a 32bit uint */
785 type->floating = false;
786 type->fixed = false;
787 type->sign = false;
788 type->norm = false;
789 type->width = 32;
790 type->length = 1;
791 return;
792 }
793
794 for (i = 0; i < 4; i++)
795 if (format_desc->channel[i].type != UTIL_FORMAT_TYPE_VOID)
796 break;
797 chan = i;
798
799 memset(type, 0, sizeof(struct lp_type));
800 type->floating = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FLOAT;
801 type->fixed = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FIXED;
802 type->sign = format_desc->channel[chan].type != UTIL_FORMAT_TYPE_UNSIGNED;
803 type->norm = format_desc->channel[chan].normalized;
804
805 if (is_arithmetic_format(format_desc)) {
806 type->width = 0;
807 type->length = 1;
808
809 for (i = 0; i < format_desc->nr_channels; ++i) {
810 type->width += format_desc->channel[i].size;
811 }
812 } else {
813 type->width = format_desc->channel[chan].size;
814 type->length = format_desc->nr_channels;
815 }
816 }
817
818
819 /**
820 * Retrieves the type for a format which is usable in the blending code.
821 *
822 * e.g. RGBA16F = 4x float, R3G3B2 = 3x byte
823 */
824 static INLINE void
825 lp_blend_type_from_format_desc(const struct util_format_description *format_desc,
826 struct lp_type* type)
827 {
828 unsigned i;
829 unsigned chan;
830
831 if (format_expands_to_float_soa(format_desc)) {
832 /* always use ordinary floats for blending */
833 type->floating = true;
834 type->fixed = false;
835 type->sign = true;
836 type->norm = false;
837 type->width = 32;
838 type->length = 4;
839 return;
840 }
841
842 for (i = 0; i < 4; i++)
843 if (format_desc->channel[i].type != UTIL_FORMAT_TYPE_VOID)
844 break;
845 chan = i;
846
847 memset(type, 0, sizeof(struct lp_type));
848 type->floating = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FLOAT;
849 type->fixed = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FIXED;
850 type->sign = format_desc->channel[chan].type != UTIL_FORMAT_TYPE_UNSIGNED;
851 type->norm = format_desc->channel[chan].normalized;
852 type->width = format_desc->channel[chan].size;
853 type->length = format_desc->nr_channels;
854
855 for (i = 1; i < format_desc->nr_channels; ++i) {
856 if (format_desc->channel[i].size > type->width)
857 type->width = format_desc->channel[i].size;
858 }
859
860 if (type->floating) {
861 type->width = 32;
862 } else {
863 if (type->width <= 8) {
864 type->width = 8;
865 } else if (type->width <= 16) {
866 type->width = 16;
867 } else {
868 type->width = 32;
869 }
870 }
871
872 if (is_arithmetic_format(format_desc) && type->length == 3) {
873 type->length = 4;
874 }
875 }
876
877
878 /**
879 * Scale a normalized value from src_bits to dst_bits.
880 *
881 * The exact calculation is
882 *
883 * dst = iround(src * dst_mask / src_mask)
884 *
885 * or with integer rounding
886 *
887 * dst = src * (2*dst_mask + sign(src)*src_mask) / (2*src_mask)
888 *
889 * where
890 *
891 * src_mask = (1 << src_bits) - 1
892 * dst_mask = (1 << dst_bits) - 1
893 *
894 * but we try to avoid division and multiplication through shifts.
895 */
896 static INLINE LLVMValueRef
897 scale_bits(struct gallivm_state *gallivm,
898 int src_bits,
899 int dst_bits,
900 LLVMValueRef src,
901 struct lp_type src_type)
902 {
903 LLVMBuilderRef builder = gallivm->builder;
904 LLVMValueRef result = src;
905
906 if (dst_bits < src_bits) {
907 int delta_bits = src_bits - dst_bits;
908
909 if (delta_bits <= dst_bits) {
910 /*
911 * Approximate the rescaling with a single shift.
912 *
913 * This gives the wrong rounding.
914 */
915
916 result = LLVMBuildLShr(builder,
917 src,
918 lp_build_const_int_vec(gallivm, src_type, delta_bits),
919 "");
920
921 } else {
922 /*
923 * Try more accurate rescaling.
924 */
925
926 /*
927 * Drop the least significant bits to make space for the multiplication.
928 *
929 * XXX: A better approach would be to use a wider integer type as intermediate. But
930 * this is enough to convert alpha from 16bits -> 2 when rendering to
931 * PIPE_FORMAT_R10G10B10A2_UNORM.
932 */
933 result = LLVMBuildLShr(builder,
934 src,
935 lp_build_const_int_vec(gallivm, src_type, dst_bits),
936 "");
937
938
939 result = LLVMBuildMul(builder,
940 result,
941 lp_build_const_int_vec(gallivm, src_type, (1LL << dst_bits) - 1),
942 "");
943
944 /*
945 * Add a rounding term before the division.
946 *
947 * TODO: Handle signed integers too.
948 */
949 if (!src_type.sign) {
950 result = LLVMBuildAdd(builder,
951 result,
952 lp_build_const_int_vec(gallivm, src_type, (1LL << (delta_bits - 1))),
953 "");
954 }
955
956 /*
957 * Approximate the division by src_mask with a src_bits shift.
958 *
959 * Given the src has already been shifted by dst_bits, all we need
960 * to do is to shift by the difference.
961 */
962
963 result = LLVMBuildLShr(builder,
964 result,
965 lp_build_const_int_vec(gallivm, src_type, delta_bits),
966 "");
967 }
968
969 } else if (dst_bits > src_bits) {
970 /* Scale up bits */
971 int db = dst_bits - src_bits;
972
973 /* Shift left by difference in bits */
974 result = LLVMBuildShl(builder,
975 src,
976 lp_build_const_int_vec(gallivm, src_type, db),
977 "");
978
979 if (db < src_bits) {
980 /* Enough bits in src to fill the remainder */
981 LLVMValueRef lower = LLVMBuildLShr(builder,
982 src,
983 lp_build_const_int_vec(gallivm, src_type, src_bits - db),
984 "");
985
986 result = LLVMBuildOr(builder, result, lower, "");
987 } else if (db > src_bits) {
988 /* Need to repeatedly copy src bits to fill remainder in dst */
989 unsigned n;
990
991 for (n = src_bits; n < dst_bits; n *= 2) {
992 LLVMValueRef shuv = lp_build_const_int_vec(gallivm, src_type, n);
993
994 result = LLVMBuildOr(builder,
995 result,
996 LLVMBuildLShr(builder, result, shuv, ""),
997 "");
998 }
999 }
1000 }
1001
1002 return result;
1003 }
1004
1005
1006 /**
1007 * Convert from memory format to blending format
1008 *
1009 * e.g. GL_R3G3B2 is 1 byte in memory but 3 bytes for blending
1010 */
1011 static void
1012 convert_to_blend_type(struct gallivm_state *gallivm,
1013 unsigned block_size,
1014 const struct util_format_description *src_fmt,
1015 struct lp_type src_type,
1016 struct lp_type dst_type,
1017 LLVMValueRef* src, // and dst
1018 unsigned num_srcs)
1019 {
1020 LLVMValueRef *dst = src;
1021 LLVMBuilderRef builder = gallivm->builder;
1022 struct lp_type blend_type;
1023 struct lp_type mem_type;
1024 unsigned i, j, k;
1025 unsigned pixels = block_size / num_srcs;
1026 bool is_arith;
1027
1028 /*
1029 * full custom path for packed floats and srgb formats - none of the later
1030 * functions would do anything useful, and given the lp_type representation they
1031 * can't be fixed. Should really have some SoA blend path for these kind of
1032 * formats rather than hacking them in here.
1033 */
1034 if (format_expands_to_float_soa(src_fmt)) {
1035 LLVMValueRef tmpsrc[4];
1036 /*
1037 * This is pretty suboptimal for this case blending in SoA would be much
1038 * better, since conversion gets us SoA values so need to convert back.
1039 */
1040 assert(src_type.width == 32);
1041 assert(dst_type.floating);
1042 assert(dst_type.width == 32);
1043 assert(dst_type.length % 4 == 0);
1044 assert(num_srcs % 4 == 0);
1045
1046 for (i = 0; i < 4; i++) {
1047 tmpsrc[i] = src[i];
1048 }
1049 for (i = 0; i < num_srcs / 4; i++) {
1050 LLVMValueRef tmpsoa[4];
1051 LLVMValueRef tmps = tmpsrc[i];
1052 if (dst_type.length == 8) {
1053 LLVMValueRef shuffles[8];
1054 unsigned j;
1055 /* fetch was 4 values but need 8-wide output values */
1056 tmps = lp_build_concat(gallivm, &tmpsrc[i * 2], src_type, 2);
1057 /*
1058 * for 8-wide aos transpose would give us wrong order not matching
1059 * incoming converted fs values and mask. ARGH.
1060 */
1061 for (j = 0; j < 4; j++) {
1062 shuffles[j] = lp_build_const_int32(gallivm, j * 2);
1063 shuffles[j + 4] = lp_build_const_int32(gallivm, j * 2 + 1);
1064 }
1065 tmps = LLVMBuildShuffleVector(builder, tmps, tmps,
1066 LLVMConstVector(shuffles, 8), "");
1067 }
1068 if (src_fmt->format == PIPE_FORMAT_R11G11B10_FLOAT) {
1069 lp_build_r11g11b10_to_float(gallivm, tmps, tmpsoa);
1070 }
1071 else {
1072 lp_build_unpack_rgba_soa(gallivm, src_fmt, dst_type, tmps, tmpsoa);
1073 }
1074 lp_build_transpose_aos(gallivm, dst_type, tmpsoa, &src[i * 4]);
1075 }
1076 return;
1077 }
1078
1079 lp_mem_type_from_format_desc(src_fmt, &mem_type);
1080 lp_blend_type_from_format_desc(src_fmt, &blend_type);
1081
1082 /* Is the format arithmetic */
1083 is_arith = blend_type.length * blend_type.width != mem_type.width * mem_type.length;
1084 is_arith &= !(mem_type.width == 16 && mem_type.floating);
1085
1086 /* Pad if necessary */
1087 if (!is_arith && src_type.length < dst_type.length) {
1088 for (i = 0; i < num_srcs; ++i) {
1089 dst[i] = lp_build_pad_vector(gallivm, src[i], dst_type.length);
1090 }
1091
1092 src_type.length = dst_type.length;
1093 }
1094
1095 /* Special case for half-floats */
1096 if (mem_type.width == 16 && mem_type.floating) {
1097 assert(blend_type.width == 32 && blend_type.floating);
1098 lp_build_conv_auto(gallivm, src_type, &dst_type, dst, num_srcs, dst);
1099 is_arith = false;
1100 }
1101
1102 if (!is_arith) {
1103 return;
1104 }
1105
1106 src_type.width = blend_type.width * blend_type.length;
1107 blend_type.length *= pixels;
1108 src_type.length *= pixels / (src_type.length / mem_type.length);
1109
1110 for (i = 0; i < num_srcs; ++i) {
1111 LLVMValueRef chans[4];
1112 LLVMValueRef res = NULL;
1113
1114 dst[i] = LLVMBuildZExt(builder, src[i], lp_build_vec_type(gallivm, src_type), "");
1115
1116 for (j = 0; j < src_fmt->nr_channels; ++j) {
1117 unsigned mask = 0;
1118 unsigned sa = src_fmt->channel[j].shift;
1119 #ifdef PIPE_ARCH_LITTLE_ENDIAN
1120 unsigned from_lsb = j;
1121 #else
1122 unsigned from_lsb = src_fmt->nr_channels - j - 1;
1123 #endif
1124
1125 for (k = 0; k < src_fmt->channel[j].size; ++k) {
1126 mask |= 1 << k;
1127 }
1128
1129 /* Extract bits from source */
1130 chans[j] = LLVMBuildLShr(builder,
1131 dst[i],
1132 lp_build_const_int_vec(gallivm, src_type, sa),
1133 "");
1134
1135 chans[j] = LLVMBuildAnd(builder,
1136 chans[j],
1137 lp_build_const_int_vec(gallivm, src_type, mask),
1138 "");
1139
1140 /* Scale bits */
1141 if (src_type.norm) {
1142 chans[j] = scale_bits(gallivm, src_fmt->channel[j].size,
1143 blend_type.width, chans[j], src_type);
1144 }
1145
1146 /* Insert bits into correct position */
1147 chans[j] = LLVMBuildShl(builder,
1148 chans[j],
1149 lp_build_const_int_vec(gallivm, src_type, from_lsb * blend_type.width),
1150 "");
1151
1152 if (j == 0) {
1153 res = chans[j];
1154 } else {
1155 res = LLVMBuildOr(builder, res, chans[j], "");
1156 }
1157 }
1158
1159 dst[i] = LLVMBuildBitCast(builder, res, lp_build_vec_type(gallivm, blend_type), "");
1160 }
1161 }
1162
1163
1164 /**
1165 * Convert from blending format to memory format
1166 *
1167 * e.g. GL_R3G3B2 is 3 bytes for blending but 1 byte in memory
1168 */
1169 static void
1170 convert_from_blend_type(struct gallivm_state *gallivm,
1171 unsigned block_size,
1172 const struct util_format_description *src_fmt,
1173 struct lp_type src_type,
1174 struct lp_type dst_type,
1175 LLVMValueRef* src, // and dst
1176 unsigned num_srcs)
1177 {
1178 LLVMValueRef* dst = src;
1179 unsigned i, j, k;
1180 struct lp_type mem_type;
1181 struct lp_type blend_type;
1182 LLVMBuilderRef builder = gallivm->builder;
1183 unsigned pixels = block_size / num_srcs;
1184 bool is_arith;
1185
1186 /*
1187 * full custom path for packed floats and srgb formats - none of the later
1188 * functions would do anything useful, and given the lp_type representation they
1189 * can't be fixed. Should really have some SoA blend path for these kind of
1190 * formats rather than hacking them in here.
1191 */
1192 if (format_expands_to_float_soa(src_fmt)) {
1193 /*
1194 * This is pretty suboptimal for this case blending in SoA would be much
1195 * better - we need to transpose the AoS values back to SoA values for
1196 * conversion/packing.
1197 */
1198 assert(src_type.floating);
1199 assert(src_type.width == 32);
1200 assert(src_type.length % 4 == 0);
1201 assert(dst_type.width == 32);
1202
1203 for (i = 0; i < num_srcs / 4; i++) {
1204 LLVMValueRef tmpsoa[4], tmpdst;
1205 lp_build_transpose_aos(gallivm, src_type, &src[i * 4], tmpsoa);
1206 /* really really need SoA here */
1207
1208 if (src_fmt->format == PIPE_FORMAT_R11G11B10_FLOAT) {
1209 tmpdst = lp_build_float_to_r11g11b10(gallivm, tmpsoa);
1210 }
1211 else {
1212 tmpdst = lp_build_float_to_srgb_packed(gallivm, src_fmt,
1213 src_type, tmpsoa);
1214 }
1215
1216 if (src_type.length == 8) {
1217 LLVMValueRef tmpaos, shuffles[8];
1218 unsigned j;
1219 /*
1220 * for 8-wide aos transpose has given us wrong order not matching
1221 * output order. HMPF. Also need to split the output values manually.
1222 */
1223 for (j = 0; j < 4; j++) {
1224 shuffles[j * 2] = lp_build_const_int32(gallivm, j);
1225 shuffles[j * 2 + 1] = lp_build_const_int32(gallivm, j + 4);
1226 }
1227 tmpaos = LLVMBuildShuffleVector(builder, tmpdst, tmpdst,
1228 LLVMConstVector(shuffles, 8), "");
1229 src[i * 2] = lp_build_extract_range(gallivm, tmpaos, 0, 4);
1230 src[i * 2 + 1] = lp_build_extract_range(gallivm, tmpaos, 4, 4);
1231 }
1232 else {
1233 src[i] = tmpdst;
1234 }
1235 }
1236 return;
1237 }
1238
1239 lp_mem_type_from_format_desc(src_fmt, &mem_type);
1240 lp_blend_type_from_format_desc(src_fmt, &blend_type);
1241
1242 is_arith = (blend_type.length * blend_type.width != mem_type.width * mem_type.length);
1243
1244 /* Special case for half-floats */
1245 if (mem_type.width == 16 && mem_type.floating) {
1246 int length = dst_type.length;
1247 assert(blend_type.width == 32 && blend_type.floating);
1248
1249 dst_type.length = src_type.length;
1250
1251 lp_build_conv_auto(gallivm, src_type, &dst_type, dst, num_srcs, dst);
1252
1253 dst_type.length = length;
1254 is_arith = false;
1255 }
1256
1257 /* Remove any padding */
1258 if (!is_arith && (src_type.length % mem_type.length)) {
1259 src_type.length -= (src_type.length % mem_type.length);
1260
1261 for (i = 0; i < num_srcs; ++i) {
1262 dst[i] = lp_build_extract_range(gallivm, dst[i], 0, src_type.length);
1263 }
1264 }
1265
1266 /* No bit arithmetic to do */
1267 if (!is_arith) {
1268 return;
1269 }
1270
1271 src_type.length = pixels;
1272 src_type.width = blend_type.length * blend_type.width;
1273 dst_type.length = pixels;
1274
1275 for (i = 0; i < num_srcs; ++i) {
1276 LLVMValueRef chans[4];
1277 LLVMValueRef res = NULL;
1278
1279 dst[i] = LLVMBuildBitCast(builder, src[i], lp_build_vec_type(gallivm, src_type), "");
1280
1281 for (j = 0; j < src_fmt->nr_channels; ++j) {
1282 unsigned mask = 0;
1283 unsigned sa = src_fmt->channel[j].shift;
1284 #ifdef PIPE_ARCH_LITTLE_ENDIAN
1285 unsigned from_lsb = j;
1286 #else
1287 unsigned from_lsb = src_fmt->nr_channels - j - 1;
1288 #endif
1289
1290 assert(blend_type.width > src_fmt->channel[j].size);
1291
1292 for (k = 0; k < blend_type.width; ++k) {
1293 mask |= 1 << k;
1294 }
1295
1296 /* Extract bits */
1297 chans[j] = LLVMBuildLShr(builder,
1298 dst[i],
1299 lp_build_const_int_vec(gallivm, src_type, from_lsb * blend_type.width),
1300 "");
1301
1302 chans[j] = LLVMBuildAnd(builder,
1303 chans[j],
1304 lp_build_const_int_vec(gallivm, src_type, mask),
1305 "");
1306
1307 /* Scale down bits */
1308 if (src_type.norm) {
1309 chans[j] = scale_bits(gallivm, blend_type.width,
1310 src_fmt->channel[j].size, chans[j], src_type);
1311 }
1312
1313 /* Insert bits */
1314 chans[j] = LLVMBuildShl(builder,
1315 chans[j],
1316 lp_build_const_int_vec(gallivm, src_type, sa),
1317 "");
1318
1319 sa += src_fmt->channel[j].size;
1320
1321 if (j == 0) {
1322 res = chans[j];
1323 } else {
1324 res = LLVMBuildOr(builder, res, chans[j], "");
1325 }
1326 }
1327
1328 assert (dst_type.width != 24);
1329
1330 dst[i] = LLVMBuildTrunc(builder, res, lp_build_vec_type(gallivm, dst_type), "");
1331 }
1332 }
1333
1334
1335 /**
1336 * Convert alpha to same blend type as src
1337 */
1338 static void
1339 convert_alpha(struct gallivm_state *gallivm,
1340 struct lp_type row_type,
1341 struct lp_type alpha_type,
1342 const unsigned block_size,
1343 const unsigned block_height,
1344 const unsigned src_count,
1345 const unsigned dst_channels,
1346 const bool pad_inline,
1347 LLVMValueRef* src_alpha)
1348 {
1349 LLVMBuilderRef builder = gallivm->builder;
1350 unsigned i, j;
1351 unsigned length = row_type.length;
1352 row_type.length = alpha_type.length;
1353
1354 /* Twiddle the alpha to match pixels */
1355 lp_bld_quad_twiddle(gallivm, alpha_type, src_alpha, block_height, src_alpha);
1356
1357 /*
1358 * TODO this should use single lp_build_conv call for
1359 * src_count == 1 && dst_channels == 1 case (dropping the concat below)
1360 */
1361 for (i = 0; i < block_height; ++i) {
1362 lp_build_conv(gallivm, alpha_type, row_type, &src_alpha[i], 1, &src_alpha[i], 1);
1363 }
1364
1365 alpha_type = row_type;
1366 row_type.length = length;
1367
1368 /* If only one channel we can only need the single alpha value per pixel */
1369 if (src_count == 1 && dst_channels == 1) {
1370
1371 lp_build_concat_n(gallivm, alpha_type, src_alpha, block_height, src_alpha, src_count);
1372 } else {
1373 /* If there are more srcs than rows then we need to split alpha up */
1374 if (src_count > block_height) {
1375 for (i = src_count; i > 0; --i) {
1376 unsigned pixels = block_size / src_count;
1377 unsigned idx = i - 1;
1378
1379 src_alpha[idx] = lp_build_extract_range(gallivm, src_alpha[(idx * pixels) / 4],
1380 (idx * pixels) % 4, pixels);
1381 }
1382 }
1383
1384 /* If there is a src for each pixel broadcast the alpha across whole row */
1385 if (src_count == block_size) {
1386 for (i = 0; i < src_count; ++i) {
1387 src_alpha[i] = lp_build_broadcast(gallivm, lp_build_vec_type(gallivm, row_type), src_alpha[i]);
1388 }
1389 } else {
1390 unsigned pixels = block_size / src_count;
1391 unsigned channels = pad_inline ? TGSI_NUM_CHANNELS : dst_channels;
1392 unsigned alpha_span = 1;
1393 LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH];
1394
1395 /* Check if we need 2 src_alphas for our shuffles */
1396 if (pixels > alpha_type.length) {
1397 alpha_span = 2;
1398 }
1399
1400 /* Broadcast alpha across all channels, e.g. a1a2 to a1a1a1a1a2a2a2a2 */
1401 for (j = 0; j < row_type.length; ++j) {
1402 if (j < pixels * channels) {
1403 shuffles[j] = lp_build_const_int32(gallivm, j / channels);
1404 } else {
1405 shuffles[j] = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context));
1406 }
1407 }
1408
1409 for (i = 0; i < src_count; ++i) {
1410 unsigned idx1 = i, idx2 = i;
1411
1412 if (alpha_span > 1){
1413 idx1 *= alpha_span;
1414 idx2 = idx1 + 1;
1415 }
1416
1417 src_alpha[i] = LLVMBuildShuffleVector(builder,
1418 src_alpha[idx1],
1419 src_alpha[idx2],
1420 LLVMConstVector(shuffles, row_type.length),
1421 "");
1422 }
1423 }
1424 }
1425 }
1426
1427
1428 /**
1429 * Generates the blend function for unswizzled colour buffers
1430 * Also generates the read & write from colour buffer
1431 */
1432 static void
1433 generate_unswizzled_blend(struct gallivm_state *gallivm,
1434 unsigned rt,
1435 struct lp_fragment_shader_variant *variant,
1436 enum pipe_format out_format,
1437 unsigned int num_fs,
1438 struct lp_type fs_type,
1439 LLVMValueRef* fs_mask,
1440 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][4],
1441 LLVMValueRef context_ptr,
1442 LLVMValueRef color_ptr,
1443 LLVMValueRef stride,
1444 unsigned partial_mask,
1445 boolean do_branch)
1446 {
1447 const unsigned alpha_channel = 3;
1448 const unsigned block_width = LP_RASTER_BLOCK_SIZE;
1449 const unsigned block_height = LP_RASTER_BLOCK_SIZE;
1450 const unsigned block_size = block_width * block_height;
1451 const unsigned lp_integer_vector_width = 128;
1452
1453 LLVMBuilderRef builder = gallivm->builder;
1454 LLVMValueRef fs_src[4][TGSI_NUM_CHANNELS];
1455 LLVMValueRef fs_src1[4][TGSI_NUM_CHANNELS];
1456 LLVMValueRef src_alpha[4 * 4];
1457 LLVMValueRef src1_alpha[4 * 4];
1458 LLVMValueRef src_mask[4 * 4];
1459 LLVMValueRef src[4 * 4];
1460 LLVMValueRef src1[4 * 4];
1461 LLVMValueRef dst[4 * 4];
1462 LLVMValueRef blend_color;
1463 LLVMValueRef blend_alpha;
1464 LLVMValueRef i32_zero;
1465 LLVMValueRef check_mask;
1466 LLVMValueRef undef_src_val;
1467
1468 struct lp_build_mask_context mask_ctx;
1469 struct lp_type mask_type;
1470 struct lp_type blend_type;
1471 struct lp_type row_type;
1472 struct lp_type dst_type;
1473
1474 unsigned char swizzle[TGSI_NUM_CHANNELS];
1475 unsigned vector_width;
1476 unsigned src_channels = TGSI_NUM_CHANNELS;
1477 unsigned dst_channels;
1478 unsigned dst_count;
1479 unsigned src_count;
1480 unsigned i, j;
1481
1482 const struct util_format_description* out_format_desc = util_format_description(out_format);
1483
1484 unsigned dst_alignment;
1485
1486 bool pad_inline = is_arithmetic_format(out_format_desc);
1487 bool has_alpha = false;
1488 const boolean dual_source_blend = variant->key.blend.rt[0].blend_enable &&
1489 util_blend_state_is_dual(&variant->key.blend, 0);
1490
1491 const boolean is_1d = variant->key.resource_1d;
1492 unsigned num_fullblock_fs = is_1d ? 2 * num_fs : num_fs;
1493
1494 mask_type = lp_int32_vec4_type();
1495 mask_type.length = fs_type.length;
1496
1497 for (i = num_fs; i < num_fullblock_fs; i++) {
1498 fs_mask[i] = lp_build_zero(gallivm, mask_type);
1499 }
1500
1501 /* Do not bother executing code when mask is empty.. */
1502 if (do_branch) {
1503 check_mask = LLVMConstNull(lp_build_int_vec_type(gallivm, mask_type));
1504
1505 for (i = 0; i < num_fullblock_fs; ++i) {
1506 check_mask = LLVMBuildOr(builder, check_mask, fs_mask[i], "");
1507 }
1508
1509 lp_build_mask_begin(&mask_ctx, gallivm, mask_type, check_mask);
1510 lp_build_mask_check(&mask_ctx);
1511 }
1512
1513 partial_mask |= !variant->opaque;
1514 i32_zero = lp_build_const_int32(gallivm, 0);
1515
1516 #if HAVE_LLVM < 0x0302
1517 /*
1518 * undef triggers a crash in LLVMBuildTrunc in convert_from_blend_type in some
1519 * cases (seen with r10g10b10a2, 128bit wide vectors) (only used for 1d case).
1520 */
1521 undef_src_val = lp_build_zero(gallivm, fs_type);
1522 #else
1523 undef_src_val = lp_build_undef(gallivm, fs_type);
1524 #endif
1525
1526
1527 /* Get type from output format */
1528 lp_blend_type_from_format_desc(out_format_desc, &row_type);
1529 lp_mem_type_from_format_desc(out_format_desc, &dst_type);
1530
1531 row_type.length = fs_type.length;
1532 vector_width = dst_type.floating ? lp_native_vector_width : lp_integer_vector_width;
1533
1534 /* Compute correct swizzle and count channels */
1535 memset(swizzle, LP_BLD_SWIZZLE_DONTCARE, TGSI_NUM_CHANNELS);
1536 dst_channels = 0;
1537
1538 for (i = 0; i < TGSI_NUM_CHANNELS; ++i) {
1539 /* Ensure channel is used */
1540 if (out_format_desc->swizzle[i] >= TGSI_NUM_CHANNELS) {
1541 continue;
1542 }
1543
1544 /* Ensure not already written to (happens in case with GL_ALPHA) */
1545 if (swizzle[out_format_desc->swizzle[i]] < TGSI_NUM_CHANNELS) {
1546 continue;
1547 }
1548
1549 /* Ensure we havn't already found all channels */
1550 if (dst_channels >= out_format_desc->nr_channels) {
1551 continue;
1552 }
1553
1554 swizzle[out_format_desc->swizzle[i]] = i;
1555 ++dst_channels;
1556
1557 if (i == alpha_channel) {
1558 has_alpha = true;
1559 }
1560 }
1561
1562 if (format_expands_to_float_soa(out_format_desc)) {
1563 /*
1564 * the code above can't work for layout_other
1565 * for srgb it would sort of work but we short-circuit swizzles, etc.
1566 * as that is done as part of unpack / pack.
1567 */
1568 dst_channels = 4; /* HACK: this is fake 4 really but need it due to transpose stuff later */
1569 has_alpha = true;
1570 swizzle[0] = 0;
1571 swizzle[1] = 1;
1572 swizzle[2] = 2;
1573 swizzle[3] = 3;
1574 pad_inline = true; /* HACK: prevent rgbxrgbx->rgbrgbxx conversion later */
1575 }
1576
1577 /* If 3 channels then pad to include alpha for 4 element transpose */
1578 if (dst_channels == 3 && !has_alpha) {
1579 for (i = 0; i < TGSI_NUM_CHANNELS; i++) {
1580 if (swizzle[i] > TGSI_NUM_CHANNELS)
1581 swizzle[i] = 3;
1582 }
1583 if (out_format_desc->nr_channels == 4) {
1584 dst_channels = 4;
1585 }
1586 }
1587
1588 /*
1589 * Load shader output
1590 */
1591 for (i = 0; i < num_fullblock_fs; ++i) {
1592 /* Always load alpha for use in blending */
1593 LLVMValueRef alpha;
1594 if (i < num_fs) {
1595 alpha = LLVMBuildLoad(builder, fs_out_color[rt][alpha_channel][i], "");
1596 }
1597 else {
1598 alpha = undef_src_val;
1599 }
1600
1601 /* Load each channel */
1602 for (j = 0; j < dst_channels; ++j) {
1603 assert(swizzle[j] < 4);
1604 if (i < num_fs) {
1605 fs_src[i][j] = LLVMBuildLoad(builder, fs_out_color[rt][swizzle[j]][i], "");
1606 }
1607 else {
1608 fs_src[i][j] = undef_src_val;
1609 }
1610 }
1611
1612 /* If 3 channels then pad to include alpha for 4 element transpose */
1613 /*
1614 * XXX If we include that here maybe could actually use it instead of
1615 * separate alpha for blending?
1616 */
1617 if (dst_channels == 3 && !has_alpha) {
1618 fs_src[i][3] = alpha;
1619 }
1620
1621 /* We split the row_mask and row_alpha as we want 128bit interleave */
1622 if (fs_type.length == 8) {
1623 src_mask[i*2 + 0] = lp_build_extract_range(gallivm, fs_mask[i], 0, src_channels);
1624 src_mask[i*2 + 1] = lp_build_extract_range(gallivm, fs_mask[i], src_channels, src_channels);
1625
1626 src_alpha[i*2 + 0] = lp_build_extract_range(gallivm, alpha, 0, src_channels);
1627 src_alpha[i*2 + 1] = lp_build_extract_range(gallivm, alpha, src_channels, src_channels);
1628 } else {
1629 src_mask[i] = fs_mask[i];
1630 src_alpha[i] = alpha;
1631 }
1632 }
1633 if (dual_source_blend) {
1634 /* same as above except different src/dst, skip masks and comments... */
1635 for (i = 0; i < num_fullblock_fs; ++i) {
1636 LLVMValueRef alpha;
1637 if (i < num_fs) {
1638 alpha = LLVMBuildLoad(builder, fs_out_color[1][alpha_channel][i], "");
1639 }
1640 else {
1641 alpha = undef_src_val;
1642 }
1643
1644 for (j = 0; j < dst_channels; ++j) {
1645 assert(swizzle[j] < 4);
1646 if (i < num_fs) {
1647 fs_src1[i][j] = LLVMBuildLoad(builder, fs_out_color[1][swizzle[j]][i], "");
1648 }
1649 else {
1650 fs_src1[i][j] = undef_src_val;
1651 }
1652 }
1653 if (dst_channels == 3 && !has_alpha) {
1654 fs_src1[i][3] = alpha;
1655 }
1656 if (fs_type.length == 8) {
1657 src1_alpha[i*2 + 0] = lp_build_extract_range(gallivm, alpha, 0, src_channels);
1658 src1_alpha[i*2 + 1] = lp_build_extract_range(gallivm, alpha, src_channels, src_channels);
1659 } else {
1660 src1_alpha[i] = alpha;
1661 }
1662 }
1663 }
1664
1665 if (util_format_is_pure_integer(out_format)) {
1666 /*
1667 * In this case fs_type was really ints or uints disguised as floats,
1668 * fix that up now.
1669 */
1670 fs_type.floating = 0;
1671 fs_type.sign = dst_type.sign;
1672 for (i = 0; i < num_fullblock_fs; ++i) {
1673 for (j = 0; j < dst_channels; ++j) {
1674 fs_src[i][j] = LLVMBuildBitCast(builder, fs_src[i][j],
1675 lp_build_vec_type(gallivm, fs_type), "");
1676 }
1677 if (dst_channels == 3 && !has_alpha) {
1678 fs_src[i][3] = LLVMBuildBitCast(builder, fs_src[i][3],
1679 lp_build_vec_type(gallivm, fs_type), "");
1680 }
1681 }
1682 }
1683
1684 /*
1685 * Pixel twiddle from fragment shader order to memory order
1686 */
1687 src_count = generate_fs_twiddle(gallivm, fs_type, num_fullblock_fs,
1688 dst_channels, fs_src, src, pad_inline);
1689 if (dual_source_blend) {
1690 generate_fs_twiddle(gallivm, fs_type, num_fullblock_fs, dst_channels,
1691 fs_src1, src1, pad_inline);
1692 }
1693
1694 src_channels = dst_channels < 3 ? dst_channels : 4;
1695 if (src_count != num_fullblock_fs * src_channels) {
1696 unsigned ds = src_count / (num_fullblock_fs * src_channels);
1697 row_type.length /= ds;
1698 fs_type.length = row_type.length;
1699 }
1700
1701 blend_type = row_type;
1702 mask_type.length = 4;
1703
1704 /* Convert src to row_type */
1705 if (dual_source_blend) {
1706 struct lp_type old_row_type = row_type;
1707 lp_build_conv_auto(gallivm, fs_type, &row_type, src, src_count, src);
1708 src_count = lp_build_conv_auto(gallivm, fs_type, &old_row_type, src1, src_count, src1);
1709 }
1710 else {
1711 src_count = lp_build_conv_auto(gallivm, fs_type, &row_type, src, src_count, src);
1712 }
1713
1714 /* If the rows are not an SSE vector, combine them to become SSE size! */
1715 if ((row_type.width * row_type.length) % 128) {
1716 unsigned bits = row_type.width * row_type.length;
1717 unsigned combined;
1718
1719 assert(src_count >= (vector_width / bits));
1720
1721 dst_count = src_count / (vector_width / bits);
1722
1723 combined = lp_build_concat_n(gallivm, row_type, src, src_count, src, dst_count);
1724 if (dual_source_blend) {
1725 lp_build_concat_n(gallivm, row_type, src1, src_count, src1, dst_count);
1726 }
1727
1728 row_type.length *= combined;
1729 src_count /= combined;
1730
1731 bits = row_type.width * row_type.length;
1732 assert(bits == 128 || bits == 256);
1733 }
1734
1735
1736 /*
1737 * Blend Colour conversion
1738 */
1739 blend_color = lp_jit_context_f_blend_color(gallivm, context_ptr);
1740 blend_color = LLVMBuildPointerCast(builder, blend_color, LLVMPointerType(lp_build_vec_type(gallivm, fs_type), 0), "");
1741 blend_color = LLVMBuildLoad(builder, LLVMBuildGEP(builder, blend_color, &i32_zero, 1, ""), "");
1742
1743 /* Convert */
1744 lp_build_conv(gallivm, fs_type, blend_type, &blend_color, 1, &blend_color, 1);
1745
1746 if (out_format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) {
1747 /*
1748 * since blending is done with floats, there was no conversion.
1749 * However, the rules according to fixed point renderbuffers still
1750 * apply, that is we must clamp inputs to 0.0/1.0.
1751 * (This would apply to separate alpha conversion too but we currently
1752 * force has_alpha to be true.)
1753 * TODO: should skip this with "fake" blend, since post-blend conversion
1754 * will clamp anyway.
1755 * TODO: could also skip this if fragment color clamping is enabled. We
1756 * don't support it natively so it gets baked into the shader however, so
1757 * can't really tell here.
1758 */
1759 struct lp_build_context f32_bld;
1760 assert(row_type.floating);
1761 lp_build_context_init(&f32_bld, gallivm, row_type);
1762 for (i = 0; i < src_count; i++) {
1763 src[i] = lp_build_clamp(&f32_bld, src[i], f32_bld.zero, f32_bld.one);
1764 }
1765 if (dual_source_blend) {
1766 for (i = 0; i < src_count; i++) {
1767 src1[i] = lp_build_clamp(&f32_bld, src1[i], f32_bld.zero, f32_bld.one);
1768 }
1769 }
1770 /* probably can't be different than row_type but better safe than sorry... */
1771 lp_build_context_init(&f32_bld, gallivm, blend_type);
1772 blend_color = lp_build_clamp(&f32_bld, blend_color, f32_bld.zero, f32_bld.one);
1773 }
1774
1775 /* Extract alpha */
1776 blend_alpha = lp_build_extract_broadcast(gallivm, blend_type, row_type, blend_color, lp_build_const_int32(gallivm, 3));
1777
1778 /* Swizzle to appropriate channels, e.g. from RGBA to BGRA BGRA */
1779 pad_inline &= (dst_channels * (block_size / src_count) * row_type.width) != vector_width;
1780 if (pad_inline) {
1781 /* Use all 4 channels e.g. from RGBA RGBA to RGxx RGxx */
1782 blend_color = lp_build_swizzle_aos_n(gallivm, blend_color, swizzle, TGSI_NUM_CHANNELS, row_type.length);
1783 } else {
1784 /* Only use dst_channels e.g. RGBA RGBA to RG RG xxxx */
1785 blend_color = lp_build_swizzle_aos_n(gallivm, blend_color, swizzle, dst_channels, row_type.length);
1786 }
1787
1788 /*
1789 * Mask conversion
1790 */
1791 lp_bld_quad_twiddle(gallivm, mask_type, &src_mask[0], block_height, &src_mask[0]);
1792
1793 if (src_count < block_height) {
1794 lp_build_concat_n(gallivm, mask_type, src_mask, 4, src_mask, src_count);
1795 } else if (src_count > block_height) {
1796 for (i = src_count; i > 0; --i) {
1797 unsigned pixels = block_size / src_count;
1798 unsigned idx = i - 1;
1799
1800 src_mask[idx] = lp_build_extract_range(gallivm, src_mask[(idx * pixels) / 4],
1801 (idx * pixels) % 4, pixels);
1802 }
1803 }
1804
1805 assert(mask_type.width == 32);
1806
1807 for (i = 0; i < src_count; ++i) {
1808 unsigned pixels = block_size / src_count;
1809 unsigned pixel_width = row_type.width * dst_channels;
1810
1811 if (pixel_width == 24) {
1812 mask_type.width = 8;
1813 mask_type.length = vector_width / mask_type.width;
1814 } else {
1815 mask_type.length = pixels;
1816 mask_type.width = row_type.width * dst_channels;
1817
1818 src_mask[i] = LLVMBuildIntCast(builder, src_mask[i], lp_build_int_vec_type(gallivm, mask_type), "");
1819
1820 mask_type.length *= dst_channels;
1821 mask_type.width /= dst_channels;
1822 }
1823
1824 src_mask[i] = LLVMBuildBitCast(builder, src_mask[i], lp_build_int_vec_type(gallivm, mask_type), "");
1825 src_mask[i] = lp_build_pad_vector(gallivm, src_mask[i], row_type.length);
1826 }
1827
1828 /*
1829 * Alpha conversion
1830 */
1831 if (!has_alpha) {
1832 struct lp_type alpha_type = fs_type;
1833 alpha_type.length = 4;
1834 convert_alpha(gallivm, row_type, alpha_type,
1835 block_size, block_height,
1836 src_count, dst_channels,
1837 pad_inline, src_alpha);
1838 if (dual_source_blend) {
1839 convert_alpha(gallivm, row_type, alpha_type,
1840 block_size, block_height,
1841 src_count, dst_channels,
1842 pad_inline, src1_alpha);
1843 }
1844 }
1845
1846
1847 /*
1848 * Load dst from memory
1849 */
1850 if (src_count < block_height) {
1851 dst_count = block_height;
1852 } else {
1853 dst_count = src_count;
1854 }
1855
1856 dst_type.length *= block_size / dst_count;
1857
1858 if (format_expands_to_float_soa(out_format_desc)) {
1859 /*
1860 * we need multiple values at once for the conversion, so can as well
1861 * load them vectorized here too instead of concatenating later.
1862 * (Still need concatenation later for 8-wide vectors).
1863 */
1864 dst_count = block_height;
1865 dst_type.length = block_width;
1866 }
1867
1868 /*
1869 * Compute the alignment of the destination pointer in bytes
1870 * We fetch 1-4 pixels, if the format has pot alignment then those fetches
1871 * are always aligned by MIN2(16, fetch_width) except for buffers (not
1872 * 1d tex but can't distinguish here) so need to stick with per-pixel
1873 * alignment in this case.
1874 */
1875 if (is_1d) {
1876 dst_alignment = (out_format_desc->block.bits + 7)/(out_format_desc->block.width * 8);
1877 }
1878 else {
1879 dst_alignment = dst_type.length * dst_type.width / 8;
1880 }
1881 /* Force power-of-two alignment by extracting only the least-significant-bit */
1882 dst_alignment = 1 << (ffs(dst_alignment) - 1);
1883 /*
1884 * Resource base and stride pointers are aligned to 16 bytes, so that's
1885 * the maximum alignment we can guarantee
1886 */
1887 dst_alignment = MIN2(16, dst_alignment);
1888
1889 if (is_1d) {
1890 load_unswizzled_block(gallivm, color_ptr, stride, block_width, 1,
1891 dst, dst_type, dst_count / 4, dst_alignment);
1892 for (i = dst_count / 4; i < dst_count; i++) {
1893 dst[i] = lp_build_undef(gallivm, dst_type);
1894 }
1895
1896 }
1897 else {
1898 load_unswizzled_block(gallivm, color_ptr, stride, block_width, block_height,
1899 dst, dst_type, dst_count, dst_alignment);
1900 }
1901
1902
1903 /*
1904 * Convert from dst/output format to src/blending format.
1905 *
1906 * This is necessary as we can only read 1 row from memory at a time,
1907 * so the minimum dst_count will ever be at this point is 4.
1908 *
1909 * With, for example, R8 format you can have all 16 pixels in a 128 bit vector,
1910 * this will take the 4 dsts and combine them into 1 src so we can perform blending
1911 * on all 16 pixels in that single vector at once.
1912 */
1913 if (dst_count > src_count) {
1914 lp_build_concat_n(gallivm, dst_type, dst, 4, dst, src_count);
1915 }
1916
1917 /*
1918 * Blending
1919 */
1920 /* XXX this is broken for RGB8 formats -
1921 * they get expanded from 12 to 16 elements (to include alpha)
1922 * by convert_to_blend_type then reduced to 15 instead of 12
1923 * by convert_from_blend_type (a simple fix though breaks A8...).
1924 * R16G16B16 also crashes differently however something going wrong
1925 * inside llvm handling npot vector sizes seemingly.
1926 * It seems some cleanup could be done here (like skipping conversion/blend
1927 * when not needed).
1928 */
1929 convert_to_blend_type(gallivm, block_size, out_format_desc, dst_type, row_type, dst, src_count);
1930
1931 /*
1932 * FIXME: Really should get logic ops / masks out of generic blend / row
1933 * format. Logic ops will definitely not work on the blend float format
1934 * used for SRGB here and I think OpenGL expects this to work as expected
1935 * (that is incoming values converted to srgb then logic op applied).
1936 */
1937 for (i = 0; i < src_count; ++i) {
1938 dst[i] = lp_build_blend_aos(gallivm,
1939 &variant->key.blend,
1940 out_format,
1941 row_type,
1942 rt,
1943 src[i],
1944 has_alpha ? NULL : src_alpha[i],
1945 src1[i],
1946 has_alpha ? NULL : src1_alpha[i],
1947 dst[i],
1948 partial_mask ? src_mask[i] : NULL,
1949 blend_color,
1950 has_alpha ? NULL : blend_alpha,
1951 swizzle,
1952 pad_inline ? 4 : dst_channels);
1953 }
1954
1955 convert_from_blend_type(gallivm, block_size, out_format_desc, row_type, dst_type, dst, src_count);
1956
1957 /* Split the blend rows back to memory rows */
1958 if (dst_count > src_count) {
1959 row_type.length = dst_type.length * (dst_count / src_count);
1960
1961 if (src_count == 1) {
1962 dst[1] = lp_build_extract_range(gallivm, dst[0], row_type.length / 2, row_type.length / 2);
1963 dst[0] = lp_build_extract_range(gallivm, dst[0], 0, row_type.length / 2);
1964
1965 row_type.length /= 2;
1966 src_count *= 2;
1967 }
1968
1969 dst[3] = lp_build_extract_range(gallivm, dst[1], row_type.length / 2, row_type.length / 2);
1970 dst[2] = lp_build_extract_range(gallivm, dst[1], 0, row_type.length / 2);
1971 dst[1] = lp_build_extract_range(gallivm, dst[0], row_type.length / 2, row_type.length / 2);
1972 dst[0] = lp_build_extract_range(gallivm, dst[0], 0, row_type.length / 2);
1973
1974 row_type.length /= 2;
1975 src_count *= 2;
1976 }
1977
1978 /*
1979 * Store blend result to memory
1980 */
1981 if (is_1d) {
1982 store_unswizzled_block(gallivm, color_ptr, stride, block_width, 1,
1983 dst, dst_type, dst_count / 4, dst_alignment);
1984 }
1985 else {
1986 store_unswizzled_block(gallivm, color_ptr, stride, block_width, block_height,
1987 dst, dst_type, dst_count, dst_alignment);
1988 }
1989
1990 if (do_branch) {
1991 lp_build_mask_end(&mask_ctx);
1992 }
1993 }
1994
1995
1996 /**
1997 * Generate the runtime callable function for the whole fragment pipeline.
1998 * Note that the function which we generate operates on a block of 16
1999 * pixels at at time. The block contains 2x2 quads. Each quad contains
2000 * 2x2 pixels.
2001 */
2002 static void
2003 generate_fragment(struct llvmpipe_context *lp,
2004 struct lp_fragment_shader *shader,
2005 struct lp_fragment_shader_variant *variant,
2006 unsigned partial_mask)
2007 {
2008 struct gallivm_state *gallivm = variant->gallivm;
2009 const struct lp_fragment_shader_variant_key *key = &variant->key;
2010 struct lp_shader_input inputs[PIPE_MAX_SHADER_INPUTS];
2011 char func_name[256];
2012 struct lp_type fs_type;
2013 struct lp_type blend_type;
2014 LLVMTypeRef fs_elem_type;
2015 LLVMTypeRef blend_vec_type;
2016 LLVMTypeRef arg_types[13];
2017 LLVMTypeRef func_type;
2018 LLVMTypeRef int32_type = LLVMInt32TypeInContext(gallivm->context);
2019 LLVMTypeRef int8_type = LLVMInt8TypeInContext(gallivm->context);
2020 LLVMValueRef context_ptr;
2021 LLVMValueRef x;
2022 LLVMValueRef y;
2023 LLVMValueRef a0_ptr;
2024 LLVMValueRef dadx_ptr;
2025 LLVMValueRef dady_ptr;
2026 LLVMValueRef color_ptr_ptr;
2027 LLVMValueRef stride_ptr;
2028 LLVMValueRef depth_ptr;
2029 LLVMValueRef depth_stride;
2030 LLVMValueRef mask_input;
2031 LLVMValueRef thread_data_ptr;
2032 LLVMBasicBlockRef block;
2033 LLVMBuilderRef builder;
2034 struct lp_build_sampler_soa *sampler;
2035 struct lp_build_interp_soa_context interp;
2036 LLVMValueRef fs_mask[16 / 4];
2037 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][16 / 4];
2038 LLVMValueRef function;
2039 LLVMValueRef facing;
2040 unsigned num_fs;
2041 unsigned i;
2042 unsigned chan;
2043 unsigned cbuf;
2044 boolean cbuf0_write_all;
2045 const boolean dual_source_blend = key->blend.rt[0].blend_enable &&
2046 util_blend_state_is_dual(&key->blend, 0);
2047
2048 assert(lp_native_vector_width / 32 >= 4);
2049
2050 /* Adjust color input interpolation according to flatshade state:
2051 */
2052 memcpy(inputs, shader->inputs, shader->info.base.num_inputs * sizeof inputs[0]);
2053 for (i = 0; i < shader->info.base.num_inputs; i++) {
2054 if (inputs[i].interp == LP_INTERP_COLOR) {
2055 if (key->flatshade)
2056 inputs[i].interp = LP_INTERP_CONSTANT;
2057 else
2058 inputs[i].interp = LP_INTERP_PERSPECTIVE;
2059 }
2060 }
2061
2062 /* check if writes to cbuf[0] are to be copied to all cbufs */
2063 cbuf0_write_all = FALSE;
2064 for (i = 0;i < shader->info.base.num_properties; i++) {
2065 if (shader->info.base.properties[i].name ==
2066 TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS) {
2067 cbuf0_write_all = TRUE;
2068 break;
2069 }
2070 }
2071
2072 /* TODO: actually pick these based on the fs and color buffer
2073 * characteristics. */
2074
2075 memset(&fs_type, 0, sizeof fs_type);
2076 fs_type.floating = TRUE; /* floating point values */
2077 fs_type.sign = TRUE; /* values are signed */
2078 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
2079 fs_type.width = 32; /* 32-bit float */
2080 fs_type.length = MIN2(lp_native_vector_width / 32, 16); /* n*4 elements per vector */
2081
2082 memset(&blend_type, 0, sizeof blend_type);
2083 blend_type.floating = FALSE; /* values are integers */
2084 blend_type.sign = FALSE; /* values are unsigned */
2085 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
2086 blend_type.width = 8; /* 8-bit ubyte values */
2087 blend_type.length = 16; /* 16 elements per vector */
2088
2089 /*
2090 * Generate the function prototype. Any change here must be reflected in
2091 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
2092 */
2093
2094 fs_elem_type = lp_build_elem_type(gallivm, fs_type);
2095
2096 blend_vec_type = lp_build_vec_type(gallivm, blend_type);
2097
2098 util_snprintf(func_name, sizeof(func_name), "fs%u_variant%u_%s",
2099 shader->no, variant->no, partial_mask ? "partial" : "whole");
2100
2101 arg_types[0] = variant->jit_context_ptr_type; /* context */
2102 arg_types[1] = int32_type; /* x */
2103 arg_types[2] = int32_type; /* y */
2104 arg_types[3] = int32_type; /* facing */
2105 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* a0 */
2106 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dadx */
2107 arg_types[6] = LLVMPointerType(fs_elem_type, 0); /* dady */
2108 arg_types[7] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */
2109 arg_types[8] = LLVMPointerType(int8_type, 0); /* depth */
2110 arg_types[9] = int32_type; /* mask_input */
2111 arg_types[10] = variant->jit_thread_data_ptr_type; /* per thread data */
2112 arg_types[11] = LLVMPointerType(int32_type, 0); /* stride */
2113 arg_types[12] = int32_type; /* depth_stride */
2114
2115 func_type = LLVMFunctionType(LLVMVoidTypeInContext(gallivm->context),
2116 arg_types, Elements(arg_types), 0);
2117
2118 function = LLVMAddFunction(gallivm->module, func_name, func_type);
2119 LLVMSetFunctionCallConv(function, LLVMCCallConv);
2120
2121 variant->function[partial_mask] = function;
2122
2123 /* XXX: need to propagate noalias down into color param now we are
2124 * passing a pointer-to-pointer?
2125 */
2126 for(i = 0; i < Elements(arg_types); ++i)
2127 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
2128 LLVMAddAttribute(LLVMGetParam(function, i), LLVMNoAliasAttribute);
2129
2130 context_ptr = LLVMGetParam(function, 0);
2131 x = LLVMGetParam(function, 1);
2132 y = LLVMGetParam(function, 2);
2133 facing = LLVMGetParam(function, 3);
2134 a0_ptr = LLVMGetParam(function, 4);
2135 dadx_ptr = LLVMGetParam(function, 5);
2136 dady_ptr = LLVMGetParam(function, 6);
2137 color_ptr_ptr = LLVMGetParam(function, 7);
2138 depth_ptr = LLVMGetParam(function, 8);
2139 mask_input = LLVMGetParam(function, 9);
2140 thread_data_ptr = LLVMGetParam(function, 10);
2141 stride_ptr = LLVMGetParam(function, 11);
2142 depth_stride = LLVMGetParam(function, 12);
2143
2144 lp_build_name(context_ptr, "context");
2145 lp_build_name(x, "x");
2146 lp_build_name(y, "y");
2147 lp_build_name(a0_ptr, "a0");
2148 lp_build_name(dadx_ptr, "dadx");
2149 lp_build_name(dady_ptr, "dady");
2150 lp_build_name(color_ptr_ptr, "color_ptr_ptr");
2151 lp_build_name(depth_ptr, "depth");
2152 lp_build_name(thread_data_ptr, "thread_data");
2153 lp_build_name(mask_input, "mask_input");
2154 lp_build_name(stride_ptr, "stride_ptr");
2155 lp_build_name(depth_stride, "depth_stride");
2156
2157 /*
2158 * Function body
2159 */
2160
2161 block = LLVMAppendBasicBlockInContext(gallivm->context, function, "entry");
2162 builder = gallivm->builder;
2163 assert(builder);
2164 LLVMPositionBuilderAtEnd(builder, block);
2165
2166 /* code generated texture sampling */
2167 sampler = lp_llvm_sampler_soa_create(key->state, context_ptr);
2168
2169 num_fs = 16 / fs_type.length; /* number of loops per 4x4 stamp */
2170 /* for 1d resources only run "upper half" of stamp */
2171 if (key->resource_1d)
2172 num_fs /= 2;
2173
2174 {
2175 LLVMValueRef num_loop = lp_build_const_int32(gallivm, num_fs);
2176 LLVMTypeRef mask_type = lp_build_int_vec_type(gallivm, fs_type);
2177 LLVMValueRef mask_store = lp_build_array_alloca(gallivm, mask_type,
2178 num_loop, "mask_store");
2179 LLVMValueRef color_store[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS];
2180
2181 /*
2182 * The shader input interpolation info is not explicitely baked in the
2183 * shader key, but everything it derives from (TGSI, and flatshade) is
2184 * already included in the shader key.
2185 */
2186 lp_build_interp_soa_init(&interp,
2187 gallivm,
2188 shader->info.base.num_inputs,
2189 inputs,
2190 shader->info.base.pixel_center_integer,
2191 builder, fs_type,
2192 a0_ptr, dadx_ptr, dady_ptr,
2193 x, y);
2194
2195 for (i = 0; i < num_fs; i++) {
2196 LLVMValueRef mask;
2197 LLVMValueRef indexi = lp_build_const_int32(gallivm, i);
2198 LLVMValueRef mask_ptr = LLVMBuildGEP(builder, mask_store,
2199 &indexi, 1, "mask_ptr");
2200
2201 if (partial_mask) {
2202 mask = generate_quad_mask(gallivm, fs_type,
2203 i*fs_type.length/4, mask_input);
2204 }
2205 else {
2206 mask = lp_build_const_int_vec(gallivm, fs_type, ~0);
2207 }
2208 LLVMBuildStore(builder, mask, mask_ptr);
2209 }
2210
2211 generate_fs_loop(gallivm,
2212 shader, key,
2213 builder,
2214 fs_type,
2215 context_ptr,
2216 num_loop,
2217 &interp,
2218 sampler,
2219 mask_store, /* output */
2220 color_store,
2221 depth_ptr,
2222 depth_stride,
2223 facing,
2224 thread_data_ptr);
2225
2226 for (i = 0; i < num_fs; i++) {
2227 LLVMValueRef indexi = lp_build_const_int32(gallivm, i);
2228 LLVMValueRef ptr = LLVMBuildGEP(builder, mask_store,
2229 &indexi, 1, "");
2230 fs_mask[i] = LLVMBuildLoad(builder, ptr, "mask");
2231 /* This is fucked up need to reorganize things */
2232 for (cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
2233 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
2234 ptr = LLVMBuildGEP(builder,
2235 color_store[cbuf * !cbuf0_write_all][chan],
2236 &indexi, 1, "");
2237 fs_out_color[cbuf][chan][i] = ptr;
2238 }
2239 }
2240 if (dual_source_blend) {
2241 /* only support one dual source blend target hence always use output 1 */
2242 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
2243 ptr = LLVMBuildGEP(builder,
2244 color_store[1][chan],
2245 &indexi, 1, "");
2246 fs_out_color[1][chan][i] = ptr;
2247 }
2248 }
2249 }
2250 }
2251
2252 sampler->destroy(sampler);
2253
2254 /* Loop over color outputs / color buffers to do blending.
2255 */
2256 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
2257 LLVMValueRef color_ptr;
2258 LLVMValueRef stride;
2259 LLVMValueRef index = lp_build_const_int32(gallivm, cbuf);
2260
2261 boolean do_branch = ((key->depth.enabled
2262 || key->stencil[0].enabled
2263 || key->alpha.enabled)
2264 && !shader->info.base.uses_kill);
2265
2266 color_ptr = LLVMBuildLoad(builder,
2267 LLVMBuildGEP(builder, color_ptr_ptr, &index, 1, ""),
2268 "");
2269
2270 lp_build_name(color_ptr, "color_ptr%d", cbuf);
2271
2272 stride = LLVMBuildLoad(builder,
2273 LLVMBuildGEP(builder, stride_ptr, &index, 1, ""),
2274 "");
2275
2276 generate_unswizzled_blend(gallivm, cbuf, variant, key->cbuf_format[cbuf],
2277 num_fs, fs_type, fs_mask, fs_out_color,
2278 context_ptr, color_ptr, stride, partial_mask, do_branch);
2279 }
2280
2281 LLVMBuildRetVoid(builder);
2282
2283 gallivm_verify_function(gallivm, function);
2284
2285 variant->nr_instrs += lp_build_count_instructions(function);
2286 }
2287
2288
2289 static void
2290 dump_fs_variant_key(const struct lp_fragment_shader_variant_key *key)
2291 {
2292 unsigned i;
2293
2294 debug_printf("fs variant %p:\n", (void *) key);
2295
2296 if (key->flatshade) {
2297 debug_printf("flatshade = 1\n");
2298 }
2299 for (i = 0; i < key->nr_cbufs; ++i) {
2300 debug_printf("cbuf_format[%u] = %s\n", i, util_format_name(key->cbuf_format[i]));
2301 }
2302 if (key->depth.enabled) {
2303 debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
2304 debug_printf("depth.func = %s\n", util_dump_func(key->depth.func, TRUE));
2305 debug_printf("depth.writemask = %u\n", key->depth.writemask);
2306 }
2307
2308 for (i = 0; i < 2; ++i) {
2309 if (key->stencil[i].enabled) {
2310 debug_printf("stencil[%u].func = %s\n", i, util_dump_func(key->stencil[i].func, TRUE));
2311 debug_printf("stencil[%u].fail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].fail_op, TRUE));
2312 debug_printf("stencil[%u].zpass_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zpass_op, TRUE));
2313 debug_printf("stencil[%u].zfail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zfail_op, TRUE));
2314 debug_printf("stencil[%u].valuemask = 0x%x\n", i, key->stencil[i].valuemask);
2315 debug_printf("stencil[%u].writemask = 0x%x\n", i, key->stencil[i].writemask);
2316 }
2317 }
2318
2319 if (key->alpha.enabled) {
2320 debug_printf("alpha.func = %s\n", util_dump_func(key->alpha.func, TRUE));
2321 }
2322
2323 if (key->occlusion_count) {
2324 debug_printf("occlusion_count = 1\n");
2325 }
2326
2327 if (key->blend.logicop_enable) {
2328 debug_printf("blend.logicop_func = %s\n", util_dump_logicop(key->blend.logicop_func, TRUE));
2329 }
2330 else if (key->blend.rt[0].blend_enable) {
2331 debug_printf("blend.rgb_func = %s\n", util_dump_blend_func (key->blend.rt[0].rgb_func, TRUE));
2332 debug_printf("blend.rgb_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
2333 debug_printf("blend.rgb_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
2334 debug_printf("blend.alpha_func = %s\n", util_dump_blend_func (key->blend.rt[0].alpha_func, TRUE));
2335 debug_printf("blend.alpha_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
2336 debug_printf("blend.alpha_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
2337 }
2338 debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
2339 for (i = 0; i < key->nr_samplers; ++i) {
2340 const struct lp_static_sampler_state *sampler = &key->state[i].sampler_state;
2341 debug_printf("sampler[%u] = \n", i);
2342 debug_printf(" .wrap = %s %s %s\n",
2343 util_dump_tex_wrap(sampler->wrap_s, TRUE),
2344 util_dump_tex_wrap(sampler->wrap_t, TRUE),
2345 util_dump_tex_wrap(sampler->wrap_r, TRUE));
2346 debug_printf(" .min_img_filter = %s\n",
2347 util_dump_tex_filter(sampler->min_img_filter, TRUE));
2348 debug_printf(" .min_mip_filter = %s\n",
2349 util_dump_tex_mipfilter(sampler->min_mip_filter, TRUE));
2350 debug_printf(" .mag_img_filter = %s\n",
2351 util_dump_tex_filter(sampler->mag_img_filter, TRUE));
2352 if (sampler->compare_mode != PIPE_TEX_COMPARE_NONE)
2353 debug_printf(" .compare_func = %s\n", util_dump_func(sampler->compare_func, TRUE));
2354 debug_printf(" .normalized_coords = %u\n", sampler->normalized_coords);
2355 debug_printf(" .min_max_lod_equal = %u\n", sampler->min_max_lod_equal);
2356 debug_printf(" .lod_bias_non_zero = %u\n", sampler->lod_bias_non_zero);
2357 debug_printf(" .apply_min_lod = %u\n", sampler->apply_min_lod);
2358 debug_printf(" .apply_max_lod = %u\n", sampler->apply_max_lod);
2359 }
2360 for (i = 0; i < key->nr_sampler_views; ++i) {
2361 const struct lp_static_texture_state *texture = &key->state[i].texture_state;
2362 debug_printf("texture[%u] = \n", i);
2363 debug_printf(" .format = %s\n",
2364 util_format_name(texture->format));
2365 debug_printf(" .target = %s\n",
2366 util_dump_tex_target(texture->target, TRUE));
2367 debug_printf(" .level_zero_only = %u\n",
2368 texture->level_zero_only);
2369 debug_printf(" .pot = %u %u %u\n",
2370 texture->pot_width,
2371 texture->pot_height,
2372 texture->pot_depth);
2373 }
2374 }
2375
2376
2377 void
2378 lp_debug_fs_variant(const struct lp_fragment_shader_variant *variant)
2379 {
2380 debug_printf("llvmpipe: Fragment shader #%u variant #%u:\n",
2381 variant->shader->no, variant->no);
2382 tgsi_dump(variant->shader->base.tokens, 0);
2383 dump_fs_variant_key(&variant->key);
2384 debug_printf("variant->opaque = %u\n", variant->opaque);
2385 debug_printf("\n");
2386 }
2387
2388
2389 /**
2390 * Generate a new fragment shader variant from the shader code and
2391 * other state indicated by the key.
2392 */
2393 static struct lp_fragment_shader_variant *
2394 generate_variant(struct llvmpipe_context *lp,
2395 struct lp_fragment_shader *shader,
2396 const struct lp_fragment_shader_variant_key *key)
2397 {
2398 struct lp_fragment_shader_variant *variant;
2399 const struct util_format_description *cbuf0_format_desc;
2400 boolean fullcolormask;
2401
2402 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
2403 if(!variant)
2404 return NULL;
2405
2406 variant->gallivm = gallivm_create();
2407 if (!variant->gallivm) {
2408 FREE(variant);
2409 return NULL;
2410 }
2411
2412 variant->shader = shader;
2413 variant->list_item_global.base = variant;
2414 variant->list_item_local.base = variant;
2415 variant->no = shader->variants_created++;
2416
2417 memcpy(&variant->key, key, shader->variant_key_size);
2418
2419 /*
2420 * Determine whether we are touching all channels in the color buffer.
2421 */
2422 fullcolormask = FALSE;
2423 if (key->nr_cbufs == 1) {
2424 cbuf0_format_desc = util_format_description(key->cbuf_format[0]);
2425 fullcolormask = util_format_colormask_full(cbuf0_format_desc, key->blend.rt[0].colormask);
2426 }
2427
2428 variant->opaque =
2429 !key->blend.logicop_enable &&
2430 !key->blend.rt[0].blend_enable &&
2431 fullcolormask &&
2432 !key->stencil[0].enabled &&
2433 !key->alpha.enabled &&
2434 !key->depth.enabled &&
2435 !shader->info.base.uses_kill
2436 ? TRUE : FALSE;
2437
2438 if ((shader->info.base.num_tokens <= 1) &&
2439 !key->depth.enabled && !key->stencil[0].enabled) {
2440 variant->ps_inv_multiplier = 0;
2441 } else {
2442 variant->ps_inv_multiplier = 1;
2443 }
2444
2445 if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
2446 lp_debug_fs_variant(variant);
2447 }
2448
2449 lp_jit_init_types(variant);
2450
2451 if (variant->jit_function[RAST_EDGE_TEST] == NULL)
2452 generate_fragment(lp, shader, variant, RAST_EDGE_TEST);
2453
2454 if (variant->jit_function[RAST_WHOLE] == NULL) {
2455 if (variant->opaque) {
2456 /* Specialized shader, which doesn't need to read the color buffer. */
2457 generate_fragment(lp, shader, variant, RAST_WHOLE);
2458 }
2459 }
2460
2461 /*
2462 * Compile everything
2463 */
2464
2465 gallivm_compile_module(variant->gallivm);
2466
2467 if (variant->function[RAST_EDGE_TEST]) {
2468 variant->jit_function[RAST_EDGE_TEST] = (lp_jit_frag_func)
2469 gallivm_jit_function(variant->gallivm,
2470 variant->function[RAST_EDGE_TEST]);
2471 }
2472
2473 if (variant->function[RAST_WHOLE]) {
2474 variant->jit_function[RAST_WHOLE] = (lp_jit_frag_func)
2475 gallivm_jit_function(variant->gallivm,
2476 variant->function[RAST_WHOLE]);
2477 } else if (!variant->jit_function[RAST_WHOLE]) {
2478 variant->jit_function[RAST_WHOLE] = variant->jit_function[RAST_EDGE_TEST];
2479 }
2480
2481 return variant;
2482 }
2483
2484
2485 static void *
2486 llvmpipe_create_fs_state(struct pipe_context *pipe,
2487 const struct pipe_shader_state *templ)
2488 {
2489 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
2490 struct lp_fragment_shader *shader;
2491 int nr_samplers;
2492 int nr_sampler_views;
2493 int i;
2494
2495 shader = CALLOC_STRUCT(lp_fragment_shader);
2496 if (!shader)
2497 return NULL;
2498
2499 shader->no = fs_no++;
2500 make_empty_list(&shader->variants);
2501
2502 /* get/save the summary info for this shader */
2503 lp_build_tgsi_info(templ->tokens, &shader->info);
2504
2505 /* we need to keep a local copy of the tokens */
2506 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
2507
2508 shader->draw_data = draw_create_fragment_shader(llvmpipe->draw, templ);
2509 if (shader->draw_data == NULL) {
2510 FREE((void *) shader->base.tokens);
2511 FREE(shader);
2512 return NULL;
2513 }
2514
2515 nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
2516 nr_sampler_views = shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
2517
2518 shader->variant_key_size = Offset(struct lp_fragment_shader_variant_key,
2519 state[MAX2(nr_samplers, nr_sampler_views)]);
2520
2521 for (i = 0; i < shader->info.base.num_inputs; i++) {
2522 shader->inputs[i].usage_mask = shader->info.base.input_usage_mask[i];
2523 shader->inputs[i].cyl_wrap = shader->info.base.input_cylindrical_wrap[i];
2524
2525 switch (shader->info.base.input_interpolate[i]) {
2526 case TGSI_INTERPOLATE_CONSTANT:
2527 shader->inputs[i].interp = LP_INTERP_CONSTANT;
2528 break;
2529 case TGSI_INTERPOLATE_LINEAR:
2530 shader->inputs[i].interp = LP_INTERP_LINEAR;
2531 break;
2532 case TGSI_INTERPOLATE_PERSPECTIVE:
2533 shader->inputs[i].interp = LP_INTERP_PERSPECTIVE;
2534 break;
2535 case TGSI_INTERPOLATE_COLOR:
2536 shader->inputs[i].interp = LP_INTERP_COLOR;
2537 break;
2538 default:
2539 assert(0);
2540 break;
2541 }
2542
2543 switch (shader->info.base.input_semantic_name[i]) {
2544 case TGSI_SEMANTIC_FACE:
2545 shader->inputs[i].interp = LP_INTERP_FACING;
2546 break;
2547 case TGSI_SEMANTIC_POSITION:
2548 /* Position was already emitted above
2549 */
2550 shader->inputs[i].interp = LP_INTERP_POSITION;
2551 shader->inputs[i].src_index = 0;
2552 continue;
2553 }
2554
2555 shader->inputs[i].src_index = i+1;
2556 }
2557
2558 if (LP_DEBUG & DEBUG_TGSI) {
2559 unsigned attrib;
2560 debug_printf("llvmpipe: Create fragment shader #%u %p:\n",
2561 shader->no, (void *) shader);
2562 tgsi_dump(templ->tokens, 0);
2563 debug_printf("usage masks:\n");
2564 for (attrib = 0; attrib < shader->info.base.num_inputs; ++attrib) {
2565 unsigned usage_mask = shader->info.base.input_usage_mask[attrib];
2566 debug_printf(" IN[%u].%s%s%s%s\n",
2567 attrib,
2568 usage_mask & TGSI_WRITEMASK_X ? "x" : "",
2569 usage_mask & TGSI_WRITEMASK_Y ? "y" : "",
2570 usage_mask & TGSI_WRITEMASK_Z ? "z" : "",
2571 usage_mask & TGSI_WRITEMASK_W ? "w" : "");
2572 }
2573 debug_printf("\n");
2574 }
2575
2576 return shader;
2577 }
2578
2579
2580 static void
2581 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
2582 {
2583 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
2584
2585 if (llvmpipe->fs == fs)
2586 return;
2587
2588 llvmpipe->fs = (struct lp_fragment_shader *) fs;
2589
2590 draw_bind_fragment_shader(llvmpipe->draw,
2591 (llvmpipe->fs ? llvmpipe->fs->draw_data : NULL));
2592
2593 llvmpipe->dirty |= LP_NEW_FS;
2594 }
2595
2596
2597 /**
2598 * Remove shader variant from two lists: the shader's variant list
2599 * and the context's variant list.
2600 */
2601 void
2602 llvmpipe_remove_shader_variant(struct llvmpipe_context *lp,
2603 struct lp_fragment_shader_variant *variant)
2604 {
2605 unsigned i;
2606
2607 if (gallivm_debug & GALLIVM_DEBUG_IR) {
2608 debug_printf("llvmpipe: del fs #%u var #%u v created #%u v cached"
2609 " #%u v total cached #%u\n",
2610 variant->shader->no,
2611 variant->no,
2612 variant->shader->variants_created,
2613 variant->shader->variants_cached,
2614 lp->nr_fs_variants);
2615 }
2616
2617 /* free all the variant's JIT'd functions */
2618 for (i = 0; i < Elements(variant->function); i++) {
2619 if (variant->function[i]) {
2620 gallivm_free_function(variant->gallivm,
2621 variant->function[i],
2622 variant->jit_function[i]);
2623 }
2624 }
2625
2626 gallivm_destroy(variant->gallivm);
2627
2628 /* remove from shader's list */
2629 remove_from_list(&variant->list_item_local);
2630 variant->shader->variants_cached--;
2631
2632 /* remove from context's list */
2633 remove_from_list(&variant->list_item_global);
2634 lp->nr_fs_variants--;
2635 lp->nr_fs_instrs -= variant->nr_instrs;
2636
2637 FREE(variant);
2638 }
2639
2640
2641 static void
2642 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
2643 {
2644 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
2645 struct lp_fragment_shader *shader = fs;
2646 struct lp_fs_variant_list_item *li;
2647
2648 assert(fs != llvmpipe->fs);
2649
2650 /*
2651 * XXX: we need to flush the context until we have some sort of reference
2652 * counting in fragment shaders as they may still be binned
2653 * Flushing alone might not sufficient we need to wait on it too.
2654 */
2655 llvmpipe_finish(pipe, __FUNCTION__);
2656
2657 /* Delete all the variants */
2658 li = first_elem(&shader->variants);
2659 while(!at_end(&shader->variants, li)) {
2660 struct lp_fs_variant_list_item *next = next_elem(li);
2661 llvmpipe_remove_shader_variant(llvmpipe, li->base);
2662 li = next;
2663 }
2664
2665 /* Delete draw module's data */
2666 draw_delete_fragment_shader(llvmpipe->draw, shader->draw_data);
2667
2668 assert(shader->variants_cached == 0);
2669 FREE((void *) shader->base.tokens);
2670 FREE(shader);
2671 }
2672
2673
2674
2675 static void
2676 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
2677 uint shader, uint index,
2678 struct pipe_constant_buffer *cb)
2679 {
2680 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
2681 struct pipe_resource *constants = cb ? cb->buffer : NULL;
2682
2683 assert(shader < PIPE_SHADER_TYPES);
2684 assert(index < Elements(llvmpipe->constants[shader]));
2685
2686 /* note: reference counting */
2687 util_copy_constant_buffer(&llvmpipe->constants[shader][index], cb);
2688
2689 if (shader == PIPE_SHADER_VERTEX ||
2690 shader == PIPE_SHADER_GEOMETRY) {
2691 /* Pass the constants to the 'draw' module */
2692 const unsigned size = cb ? cb->buffer_size : 0;
2693 const ubyte *data;
2694
2695 if (constants) {
2696 data = (ubyte *) llvmpipe_resource_data(constants);
2697 }
2698 else if (cb && cb->user_buffer) {
2699 data = (ubyte *) cb->user_buffer;
2700 }
2701 else {
2702 data = NULL;
2703 }
2704
2705 if (data)
2706 data += cb->buffer_offset;
2707
2708 draw_set_mapped_constant_buffer(llvmpipe->draw, shader,
2709 index, data, size);
2710 }
2711
2712 llvmpipe->dirty |= LP_NEW_CONSTANTS;
2713
2714 if (cb && cb->user_buffer) {
2715 pipe_resource_reference(&constants, NULL);
2716 }
2717 }
2718
2719
2720 /**
2721 * Return the blend factor equivalent to a destination alpha of one.
2722 */
2723 static INLINE unsigned
2724 force_dst_alpha_one(unsigned factor, boolean clamped_zero)
2725 {
2726 switch(factor) {
2727 case PIPE_BLENDFACTOR_DST_ALPHA:
2728 return PIPE_BLENDFACTOR_ONE;
2729 case PIPE_BLENDFACTOR_INV_DST_ALPHA:
2730 return PIPE_BLENDFACTOR_ZERO;
2731 case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
2732 if (clamped_zero)
2733 return PIPE_BLENDFACTOR_ZERO;
2734 else
2735 return PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE;
2736 }
2737
2738 return factor;
2739 }
2740
2741
2742 /**
2743 * We need to generate several variants of the fragment pipeline to match
2744 * all the combinations of the contributing state atoms.
2745 *
2746 * TODO: there is actually no reason to tie this to context state -- the
2747 * generated code could be cached globally in the screen.
2748 */
2749 static void
2750 make_variant_key(struct llvmpipe_context *lp,
2751 struct lp_fragment_shader *shader,
2752 struct lp_fragment_shader_variant_key *key)
2753 {
2754 unsigned i;
2755
2756 memset(key, 0, shader->variant_key_size);
2757
2758 if (lp->framebuffer.zsbuf) {
2759 enum pipe_format zsbuf_format = lp->framebuffer.zsbuf->format;
2760 const struct util_format_description *zsbuf_desc =
2761 util_format_description(zsbuf_format);
2762
2763 if (lp->depth_stencil->depth.enabled &&
2764 util_format_has_depth(zsbuf_desc)) {
2765 key->zsbuf_format = zsbuf_format;
2766 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
2767 }
2768 if (lp->depth_stencil->stencil[0].enabled &&
2769 util_format_has_stencil(zsbuf_desc)) {
2770 key->zsbuf_format = zsbuf_format;
2771 memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil);
2772 }
2773 if (llvmpipe_resource_is_1d(lp->framebuffer.zsbuf->texture)) {
2774 key->resource_1d = TRUE;
2775 }
2776 }
2777
2778 /* alpha test only applies if render buffer 0 is non-integer (or does not exist) */
2779 if (!lp->framebuffer.nr_cbufs ||
2780 !util_format_is_pure_integer(lp->framebuffer.cbufs[0]->format)) {
2781 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
2782 }
2783 if(key->alpha.enabled)
2784 key->alpha.func = lp->depth_stencil->alpha.func;
2785 /* alpha.ref_value is passed in jit_context */
2786
2787 key->flatshade = lp->rasterizer->flatshade;
2788 if (lp->active_occlusion_queries) {
2789 key->occlusion_count = TRUE;
2790 }
2791
2792 if (lp->framebuffer.nr_cbufs) {
2793 memcpy(&key->blend, lp->blend, sizeof key->blend);
2794 }
2795
2796 key->nr_cbufs = lp->framebuffer.nr_cbufs;
2797
2798 if (!key->blend.independent_blend_enable) {
2799 /* we always need independent blend otherwise the fixups below won't work */
2800 for (i = 1; i < key->nr_cbufs; i++) {
2801 memcpy(&key->blend.rt[i], &key->blend.rt[0], sizeof(key->blend.rt[0]));
2802 }
2803 key->blend.independent_blend_enable = 1;
2804 }
2805
2806 for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
2807 enum pipe_format format = lp->framebuffer.cbufs[i]->format;
2808 struct pipe_rt_blend_state *blend_rt = &key->blend.rt[i];
2809 const struct util_format_description *format_desc;
2810
2811 key->cbuf_format[i] = format;
2812
2813 /*
2814 * Figure out if this is a 1d resource. Note that OpenGL allows crazy
2815 * mixing of 2d textures with height 1 and 1d textures, so make sure
2816 * we pick 1d if any cbuf or zsbuf is 1d.
2817 */
2818 if (llvmpipe_resource_is_1d(lp->framebuffer.cbufs[0]->texture)) {
2819 key->resource_1d = TRUE;
2820 }
2821
2822 format_desc = util_format_description(format);
2823 assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||
2824 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB);
2825
2826 /*
2827 * Mask out color channels not present in the color buffer.
2828 */
2829 blend_rt->colormask &= util_format_colormask(format_desc);
2830
2831 /*
2832 * Disable blend for integer formats.
2833 */
2834 if (util_format_is_pure_integer(format)) {
2835 blend_rt->blend_enable = 0;
2836 }
2837
2838 /*
2839 * Our swizzled render tiles always have an alpha channel, but the linear
2840 * render target format often does not, so force here the dst alpha to be
2841 * one.
2842 *
2843 * This is not a mere optimization. Wrong results will be produced if the
2844 * dst alpha is used, the dst format does not have alpha, and the previous
2845 * rendering was not flushed from the swizzled to linear buffer. For
2846 * example, NonPowTwo DCT.
2847 *
2848 * TODO: This should be generalized to all channels for better
2849 * performance, but only alpha causes correctness issues.
2850 *
2851 * Also, force rgb/alpha func/factors match, to make AoS blending easier.
2852 */
2853 if (format_desc->swizzle[3] > UTIL_FORMAT_SWIZZLE_W ||
2854 format_desc->swizzle[3] == format_desc->swizzle[0]) {
2855 /* Doesn't cover mixed snorm/unorm but can't render to them anyway */
2856 boolean clamped_zero = !util_format_is_float(format) &&
2857 !util_format_is_snorm(format);
2858 blend_rt->rgb_src_factor = force_dst_alpha_one(blend_rt->rgb_src_factor,
2859 clamped_zero);
2860 blend_rt->rgb_dst_factor = force_dst_alpha_one(blend_rt->rgb_dst_factor,
2861 clamped_zero);
2862 blend_rt->alpha_func = blend_rt->rgb_func;
2863 blend_rt->alpha_src_factor = blend_rt->rgb_src_factor;
2864 blend_rt->alpha_dst_factor = blend_rt->rgb_dst_factor;
2865 }
2866 }
2867
2868 /* This value will be the same for all the variants of a given shader:
2869 */
2870 key->nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
2871
2872 for(i = 0; i < key->nr_samplers; ++i) {
2873 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
2874 lp_sampler_static_sampler_state(&key->state[i].sampler_state,
2875 lp->samplers[PIPE_SHADER_FRAGMENT][i]);
2876 }
2877 }
2878
2879 /*
2880 * XXX If TGSI_FILE_SAMPLER_VIEW exists assume all texture opcodes
2881 * are dx10-style? Can't really have mixed opcodes, at least not
2882 * if we want to skip the holes here (without rescanning tgsi).
2883 */
2884 if (shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] != -1) {
2885 key->nr_sampler_views = shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
2886 for(i = 0; i < key->nr_sampler_views; ++i) {
2887 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER_VIEW] & (1 << i)) {
2888 lp_sampler_static_texture_state(&key->state[i].texture_state,
2889 lp->sampler_views[PIPE_SHADER_FRAGMENT][i]);
2890 }
2891 }
2892 }
2893 else {
2894 key->nr_sampler_views = key->nr_samplers;
2895 for(i = 0; i < key->nr_sampler_views; ++i) {
2896 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
2897 lp_sampler_static_texture_state(&key->state[i].texture_state,
2898 lp->sampler_views[PIPE_SHADER_FRAGMENT][i]);
2899 }
2900 }
2901 }
2902 }
2903
2904
2905
2906 /**
2907 * Update fragment shader state. This is called just prior to drawing
2908 * something when some fragment-related state has changed.
2909 */
2910 void
2911 llvmpipe_update_fs(struct llvmpipe_context *lp)
2912 {
2913 struct lp_fragment_shader *shader = lp->fs;
2914 struct lp_fragment_shader_variant_key key;
2915 struct lp_fragment_shader_variant *variant = NULL;
2916 struct lp_fs_variant_list_item *li;
2917
2918 make_variant_key(lp, shader, &key);
2919
2920 /* Search the variants for one which matches the key */
2921 li = first_elem(&shader->variants);
2922 while(!at_end(&shader->variants, li)) {
2923 if(memcmp(&li->base->key, &key, shader->variant_key_size) == 0) {
2924 variant = li->base;
2925 break;
2926 }
2927 li = next_elem(li);
2928 }
2929
2930 if (variant) {
2931 /* Move this variant to the head of the list to implement LRU
2932 * deletion of shader's when we have too many.
2933 */
2934 move_to_head(&lp->fs_variants_list, &variant->list_item_global);
2935 }
2936 else {
2937 /* variant not found, create it now */
2938 int64_t t0, t1, dt;
2939 unsigned i;
2940 unsigned variants_to_cull;
2941
2942 if (0) {
2943 debug_printf("%u variants,\t%u instrs,\t%u instrs/variant\n",
2944 lp->nr_fs_variants,
2945 lp->nr_fs_instrs,
2946 lp->nr_fs_variants ? lp->nr_fs_instrs / lp->nr_fs_variants : 0);
2947 }
2948
2949 /* First, check if we've exceeded the max number of shader variants.
2950 * If so, free 25% of them (the least recently used ones).
2951 */
2952 variants_to_cull = lp->nr_fs_variants >= LP_MAX_SHADER_VARIANTS ? LP_MAX_SHADER_VARIANTS / 4 : 0;
2953
2954 if (variants_to_cull ||
2955 lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS) {
2956 struct pipe_context *pipe = &lp->pipe;
2957
2958 /*
2959 * XXX: we need to flush the context until we have some sort of
2960 * reference counting in fragment shaders as they may still be binned
2961 * Flushing alone might not be sufficient we need to wait on it too.
2962 */
2963 llvmpipe_finish(pipe, __FUNCTION__);
2964
2965 /*
2966 * We need to re-check lp->nr_fs_variants because an arbitrarliy large
2967 * number of shader variants (potentially all of them) could be
2968 * pending for destruction on flush.
2969 */
2970
2971 for (i = 0; i < variants_to_cull || lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS; i++) {
2972 struct lp_fs_variant_list_item *item;
2973 if (is_empty_list(&lp->fs_variants_list)) {
2974 break;
2975 }
2976 item = last_elem(&lp->fs_variants_list);
2977 assert(item);
2978 assert(item->base);
2979 llvmpipe_remove_shader_variant(lp, item->base);
2980 }
2981 }
2982
2983 /*
2984 * Generate the new variant.
2985 */
2986 t0 = os_time_get();
2987 variant = generate_variant(lp, shader, &key);
2988 t1 = os_time_get();
2989 dt = t1 - t0;
2990 LP_COUNT_ADD(llvm_compile_time, dt);
2991 LP_COUNT_ADD(nr_llvm_compiles, 2); /* emit vs. omit in/out test */
2992
2993 llvmpipe_variant_count++;
2994
2995 /* Put the new variant into the list */
2996 if (variant) {
2997 insert_at_head(&shader->variants, &variant->list_item_local);
2998 insert_at_head(&lp->fs_variants_list, &variant->list_item_global);
2999 lp->nr_fs_variants++;
3000 lp->nr_fs_instrs += variant->nr_instrs;
3001 shader->variants_cached++;
3002 }
3003 }
3004
3005 /* Bind this variant */
3006 lp_setup_set_fs_variant(lp->setup, variant);
3007 }
3008
3009
3010
3011
3012
3013 void
3014 llvmpipe_init_fs_funcs(struct llvmpipe_context *llvmpipe)
3015 {
3016 llvmpipe->pipe.create_fs_state = llvmpipe_create_fs_state;
3017 llvmpipe->pipe.bind_fs_state = llvmpipe_bind_fs_state;
3018 llvmpipe->pipe.delete_fs_state = llvmpipe_delete_fs_state;
3019
3020 llvmpipe->pipe.set_constant_buffer = llvmpipe_set_constant_buffer;
3021 }
3022
3023 /*
3024 * Rasterization is disabled if there is no pixel shader and
3025 * both depth and stencil testing are disabled:
3026 * http://msdn.microsoft.com/en-us/library/windows/desktop/bb205125
3027 */
3028 boolean
3029 llvmpipe_rasterization_disabled(struct llvmpipe_context *lp)
3030 {
3031 boolean null_fs = !lp->fs || lp->fs->info.base.num_tokens <= 1;
3032
3033 return (null_fs &&
3034 !lp->depth_stencil->depth.enabled &&
3035 !lp->depth_stencil->stencil[0].enabled);
3036 }