llvmpipe: Silence compiler warnings.
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - stipple (TBI)
35 * - early depth test
36 * - fragment shader
37 * - alpha test
38 * - depth/stencil test (stencil TBI)
39 * - blending
40 *
41 * This file has only the glue to assembly the fragment pipeline. The actual
42 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
43 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
44 * muster the LLVM JIT execution engine to create a function that follows an
45 * established binary interface and that can be called from C directly.
46 *
47 * A big source of complexity here is that we often want to run different
48 * stages with different precisions and data types and precisions. For example,
49 * the fragment shader needs typically to be done in floats, but the
50 * depth/stencil test and blending is better done in the type that most closely
51 * matches the depth/stencil and color buffer respectively.
52 *
53 * Since the width of a SIMD vector register stays the same regardless of the
54 * element type, different types imply different number of elements, so we must
55 * code generate more instances of the stages with larger types to be able to
56 * feed/consume the stages with smaller types.
57 *
58 * @author Jose Fonseca <jfonseca@vmware.com>
59 */
60
61 #include "pipe/p_defines.h"
62 #include "util/u_memory.h"
63 #include "util/u_format.h"
64 #include "util/u_debug_dump.h"
65 #include "pipe/internal/p_winsys_screen.h"
66 #include "pipe/p_shader_tokens.h"
67 #include "draw/draw_context.h"
68 #include "tgsi/tgsi_dump.h"
69 #include "tgsi/tgsi_scan.h"
70 #include "tgsi/tgsi_parse.h"
71 #include "lp_bld_type.h"
72 #include "lp_bld_const.h"
73 #include "lp_bld_conv.h"
74 #include "lp_bld_intr.h"
75 #include "lp_bld_logic.h"
76 #include "lp_bld_depth.h"
77 #include "lp_bld_interp.h"
78 #include "lp_bld_tgsi.h"
79 #include "lp_bld_alpha.h"
80 #include "lp_bld_blend.h"
81 #include "lp_bld_swizzle.h"
82 #include "lp_bld_flow.h"
83 #include "lp_bld_debug.h"
84 #include "lp_screen.h"
85 #include "lp_context.h"
86 #include "lp_buffer.h"
87 #include "lp_state.h"
88 #include "lp_quad.h"
89 #include "lp_tex_sample.h"
90
91
92 static const unsigned char quad_offset_x[4] = {0, 1, 0, 1};
93 static const unsigned char quad_offset_y[4] = {0, 0, 1, 1};
94
95
96 /*
97 * Derive from the quad's upper left scalar coordinates the coordinates for
98 * all other quad pixels
99 */
100 static void
101 generate_pos0(LLVMBuilderRef builder,
102 LLVMValueRef x,
103 LLVMValueRef y,
104 LLVMValueRef *x0,
105 LLVMValueRef *y0)
106 {
107 LLVMTypeRef int_elem_type = LLVMInt32Type();
108 LLVMTypeRef int_vec_type = LLVMVectorType(int_elem_type, QUAD_SIZE);
109 LLVMTypeRef elem_type = LLVMFloatType();
110 LLVMTypeRef vec_type = LLVMVectorType(elem_type, QUAD_SIZE);
111 LLVMValueRef x_offsets[QUAD_SIZE];
112 LLVMValueRef y_offsets[QUAD_SIZE];
113 unsigned i;
114
115 x = lp_build_broadcast(builder, int_vec_type, x);
116 y = lp_build_broadcast(builder, int_vec_type, y);
117
118 for(i = 0; i < QUAD_SIZE; ++i) {
119 x_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_x[i], 0);
120 y_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_y[i], 0);
121 }
122
123 x = LLVMBuildAdd(builder, x, LLVMConstVector(x_offsets, QUAD_SIZE), "");
124 y = LLVMBuildAdd(builder, y, LLVMConstVector(y_offsets, QUAD_SIZE), "");
125
126 *x0 = LLVMBuildSIToFP(builder, x, vec_type, "");
127 *y0 = LLVMBuildSIToFP(builder, y, vec_type, "");
128 }
129
130
131 /**
132 * Generate the depth test.
133 */
134 static void
135 generate_depth(LLVMBuilderRef builder,
136 const struct lp_fragment_shader_variant_key *key,
137 struct lp_type src_type,
138 struct lp_build_mask_context *mask,
139 LLVMValueRef src,
140 LLVMValueRef dst_ptr)
141 {
142 const struct util_format_description *format_desc;
143 struct lp_type dst_type;
144
145 if(!key->depth.enabled)
146 return;
147
148 format_desc = util_format_description(key->zsbuf_format);
149 assert(format_desc);
150
151 /* Pick the depth type. */
152 dst_type = lp_depth_type(format_desc, src_type.width*src_type.length);
153
154 /* FIXME: Cope with a depth test type with a different bit width. */
155 assert(dst_type.width == src_type.width);
156 assert(dst_type.length == src_type.length);
157
158 #if 1
159 src = lp_build_clamped_float_to_unsigned_norm(builder,
160 src_type,
161 dst_type.width,
162 src);
163 #else
164 lp_build_conv(builder, src_type, dst_type, &src, 1, &src, 1);
165 #endif
166
167 lp_build_depth_test(builder,
168 &key->depth,
169 dst_type,
170 format_desc,
171 mask,
172 src,
173 dst_ptr);
174 }
175
176
177 /**
178 * Generate the fragment shader, depth/stencil test, and alpha tests.
179 */
180 static void
181 generate_fs(struct llvmpipe_context *lp,
182 struct lp_fragment_shader *shader,
183 const struct lp_fragment_shader_variant_key *key,
184 LLVMBuilderRef builder,
185 struct lp_type type,
186 LLVMValueRef context_ptr,
187 unsigned i,
188 const struct lp_build_interp_soa_context *interp,
189 struct lp_build_sampler_soa *sampler,
190 LLVMValueRef *pmask,
191 LLVMValueRef *color,
192 LLVMValueRef depth_ptr)
193 {
194 const struct tgsi_token *tokens = shader->base.tokens;
195 LLVMTypeRef elem_type;
196 LLVMTypeRef vec_type;
197 LLVMTypeRef int_vec_type;
198 LLVMValueRef consts_ptr;
199 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][NUM_CHANNELS];
200 LLVMValueRef z = interp->pos[2];
201 struct lp_build_flow_context *flow;
202 struct lp_build_mask_context mask;
203 boolean early_depth_test;
204 unsigned attrib;
205 unsigned chan;
206
207 elem_type = lp_build_elem_type(type);
208 vec_type = lp_build_vec_type(type);
209 int_vec_type = lp_build_int_vec_type(type);
210
211 consts_ptr = lp_jit_context_constants(builder, context_ptr);
212
213 flow = lp_build_flow_create(builder);
214
215 memset(outputs, 0, sizeof outputs);
216
217 lp_build_flow_scope_begin(flow);
218
219 /* Declare the color and z variables */
220 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
221 color[chan] = LLVMGetUndef(vec_type);
222 lp_build_flow_scope_declare(flow, &color[chan]);
223 }
224 lp_build_flow_scope_declare(flow, &z);
225
226 lp_build_mask_begin(&mask, flow, type, *pmask);
227
228 early_depth_test =
229 key->depth.enabled &&
230 !key->alpha.enabled &&
231 !shader->info.uses_kill &&
232 !shader->info.writes_z;
233
234 if(early_depth_test)
235 generate_depth(builder, key,
236 type, &mask,
237 z, depth_ptr);
238
239 lp_build_tgsi_soa(builder, tokens, type, &mask,
240 consts_ptr, interp->pos, interp->inputs,
241 outputs, sampler);
242
243 for (attrib = 0; attrib < shader->info.num_outputs; ++attrib) {
244 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
245 if(outputs[attrib][chan]) {
246 lp_build_name(outputs[attrib][chan], "output%u.%u.%c", i, attrib, "xyzw"[chan]);
247
248 switch (shader->info.output_semantic_name[attrib]) {
249 case TGSI_SEMANTIC_COLOR:
250 {
251 unsigned cbuf = shader->info.output_semantic_index[attrib];
252
253 lp_build_name(outputs[attrib][chan], "color%u.%u.%c", i, attrib, "rgba"[chan]);
254
255 /* Alpha test */
256 /* XXX: should the alpha reference value be passed separately? */
257 if(cbuf == 0 && chan == 3) {
258 LLVMValueRef alpha = outputs[attrib][chan];
259 LLVMValueRef alpha_ref_value;
260 alpha_ref_value = lp_jit_context_alpha_ref_value(builder, context_ptr);
261 alpha_ref_value = lp_build_broadcast(builder, vec_type, alpha_ref_value);
262 lp_build_alpha_test(builder, &key->alpha, type,
263 &mask, alpha, alpha_ref_value);
264 }
265
266 if(cbuf == 0)
267 color[chan] = outputs[attrib][chan];
268
269 break;
270 }
271
272 case TGSI_SEMANTIC_POSITION:
273 if(chan == 2)
274 z = outputs[attrib][chan];
275 break;
276 }
277 }
278 }
279 }
280
281 if(!early_depth_test)
282 generate_depth(builder, key,
283 type, &mask,
284 z, depth_ptr);
285
286 lp_build_mask_end(&mask);
287
288 lp_build_flow_scope_end(flow);
289
290 lp_build_flow_destroy(flow);
291
292 *pmask = mask.value;
293
294 }
295
296
297 /**
298 * Generate color blending and color output.
299 */
300 static void
301 generate_blend(const struct pipe_blend_state *blend,
302 LLVMBuilderRef builder,
303 struct lp_type type,
304 LLVMValueRef context_ptr,
305 LLVMValueRef mask,
306 LLVMValueRef *src,
307 LLVMValueRef dst_ptr)
308 {
309 struct lp_build_context bld;
310 struct lp_build_flow_context *flow;
311 struct lp_build_mask_context mask_ctx;
312 LLVMTypeRef vec_type;
313 LLVMTypeRef int_vec_type;
314 LLVMValueRef const_ptr;
315 LLVMValueRef con[4];
316 LLVMValueRef dst[4];
317 LLVMValueRef res[4];
318 unsigned chan;
319
320 lp_build_context_init(&bld, builder, type);
321
322 flow = lp_build_flow_create(builder);
323 lp_build_mask_begin(&mask_ctx, flow, type, mask);
324
325 vec_type = lp_build_vec_type(type);
326 int_vec_type = lp_build_int_vec_type(type);
327
328 const_ptr = lp_jit_context_blend_color(builder, context_ptr);
329 const_ptr = LLVMBuildBitCast(builder, const_ptr,
330 LLVMPointerType(vec_type, 0), "");
331
332 for(chan = 0; chan < 4; ++chan) {
333 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
334 con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), "");
335
336 dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), "");
337
338 lp_build_name(con[chan], "con.%c", "rgba"[chan]);
339 lp_build_name(dst[chan], "dst.%c", "rgba"[chan]);
340 }
341
342 lp_build_blend_soa(builder, blend, type, src, dst, con, res);
343
344 for(chan = 0; chan < 4; ++chan) {
345 if(blend->colormask & (1 << chan)) {
346 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
347 lp_build_name(res[chan], "res.%c", "rgba"[chan]);
348 res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]);
349 LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, ""));
350 }
351 }
352
353 lp_build_mask_end(&mask_ctx);
354 lp_build_flow_destroy(flow);
355 }
356
357
358 /**
359 * Generate the runtime callable function for the whole fragment pipeline.
360 */
361 static struct lp_fragment_shader_variant *
362 generate_fragment(struct llvmpipe_context *lp,
363 struct lp_fragment_shader *shader,
364 const struct lp_fragment_shader_variant_key *key)
365 {
366 struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
367 struct lp_fragment_shader_variant *variant;
368 struct lp_type fs_type;
369 struct lp_type blend_type;
370 LLVMTypeRef fs_elem_type;
371 LLVMTypeRef fs_vec_type;
372 LLVMTypeRef fs_int_vec_type;
373 LLVMTypeRef blend_vec_type;
374 LLVMTypeRef blend_int_vec_type;
375 LLVMTypeRef arg_types[9];
376 LLVMTypeRef func_type;
377 LLVMValueRef context_ptr;
378 LLVMValueRef x;
379 LLVMValueRef y;
380 LLVMValueRef a0_ptr;
381 LLVMValueRef dadx_ptr;
382 LLVMValueRef dady_ptr;
383 LLVMValueRef mask_ptr;
384 LLVMValueRef color_ptr;
385 LLVMValueRef depth_ptr;
386 LLVMBasicBlockRef block;
387 LLVMBuilderRef builder;
388 LLVMValueRef x0;
389 LLVMValueRef y0;
390 struct lp_build_sampler_soa *sampler;
391 struct lp_build_interp_soa_context interp;
392 LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
393 LLVMValueRef fs_out_color[NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
394 LLVMValueRef blend_mask;
395 LLVMValueRef blend_in_color[NUM_CHANNELS];
396 unsigned num_fs;
397 unsigned i;
398 unsigned chan;
399
400 #ifdef DEBUG
401 tgsi_dump(shader->base.tokens, 0);
402 if(key->depth.enabled) {
403 debug_printf("depth.format = %s\n", pf_name(key->zsbuf_format));
404 debug_printf("depth.func = %s\n", debug_dump_func(key->depth.func, TRUE));
405 debug_printf("depth.writemask = %u\n", key->depth.writemask);
406 }
407 if(key->alpha.enabled) {
408 debug_printf("alpha.func = %s\n", debug_dump_func(key->alpha.func, TRUE));
409 debug_printf("alpha.ref_value = %f\n", key->alpha.ref_value);
410 }
411 if(key->blend.logicop_enable) {
412 debug_printf("blend.logicop_func = %u\n", key->blend.logicop_func);
413 }
414 else if(key->blend.blend_enable) {
415 debug_printf("blend.rgb_func = %s\n", debug_dump_blend_func (key->blend.rgb_func, TRUE));
416 debug_printf("rgb_src_factor = %s\n", debug_dump_blend_factor(key->blend.rgb_src_factor, TRUE));
417 debug_printf("rgb_dst_factor = %s\n", debug_dump_blend_factor(key->blend.rgb_dst_factor, TRUE));
418 debug_printf("alpha_func = %s\n", debug_dump_blend_func (key->blend.alpha_func, TRUE));
419 debug_printf("alpha_src_factor = %s\n", debug_dump_blend_factor(key->blend.alpha_src_factor, TRUE));
420 debug_printf("alpha_dst_factor = %s\n", debug_dump_blend_factor(key->blend.alpha_dst_factor, TRUE));
421 }
422 debug_printf("blend.colormask = 0x%x\n", key->blend.colormask);
423 for(i = 0; i < PIPE_MAX_SAMPLERS; ++i) {
424 if(key->sampler[i].format) {
425 debug_printf("sampler[%u] = \n", i);
426 debug_printf(" .format = %s\n",
427 pf_name(key->sampler[i].format));
428 debug_printf(" .target = %s\n",
429 debug_dump_tex_target(key->sampler[i].target, TRUE));
430 debug_printf(" .pot = %u %u %u\n",
431 key->sampler[i].pot_width,
432 key->sampler[i].pot_height,
433 key->sampler[i].pot_depth);
434 debug_printf(" .wrap = %s %s %s\n",
435 debug_dump_tex_wrap(key->sampler[i].wrap_s, TRUE),
436 debug_dump_tex_wrap(key->sampler[i].wrap_t, TRUE),
437 debug_dump_tex_wrap(key->sampler[i].wrap_r, TRUE));
438 debug_printf(" .min_img_filter = %s\n",
439 debug_dump_tex_filter(key->sampler[i].min_img_filter, TRUE));
440 debug_printf(" .min_mip_filter = %s\n",
441 debug_dump_tex_mipfilter(key->sampler[i].min_mip_filter, TRUE));
442 debug_printf(" .mag_img_filter = %s\n",
443 debug_dump_tex_filter(key->sampler[i].mag_img_filter, TRUE));
444 if(key->sampler[i].compare_mode)
445 debug_printf(" .compare_mode = %s\n", debug_dump_func(key->sampler[i].compare_func, TRUE));
446 debug_printf(" .normalized_coords = %u\n", key->sampler[i].normalized_coords);
447 debug_printf(" .prefilter = %u\n", key->sampler[i].prefilter);
448 }
449 }
450
451 #endif
452
453 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
454 if(!variant)
455 return NULL;
456
457 variant->shader = shader;
458 memcpy(&variant->key, key, sizeof *key);
459
460 /* TODO: actually pick these based on the fs and color buffer
461 * characteristics. */
462
463 memset(&fs_type, 0, sizeof fs_type);
464 fs_type.floating = TRUE; /* floating point values */
465 fs_type.sign = TRUE; /* values are signed */
466 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
467 fs_type.width = 32; /* 32-bit float */
468 fs_type.length = 4; /* 4 element per vector */
469 num_fs = 4;
470
471 memset(&blend_type, 0, sizeof blend_type);
472 blend_type.floating = FALSE; /* values are integers */
473 blend_type.sign = FALSE; /* values are unsigned */
474 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
475 blend_type.width = 8; /* 8-bit ubyte values */
476 blend_type.length = 16; /* 16 elements per vector */
477
478 /*
479 * Generate the function prototype. Any change here must be reflected in
480 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
481 */
482
483 fs_elem_type = lp_build_elem_type(fs_type);
484 fs_vec_type = lp_build_vec_type(fs_type);
485 fs_int_vec_type = lp_build_int_vec_type(fs_type);
486
487 blend_vec_type = lp_build_vec_type(blend_type);
488 blend_int_vec_type = lp_build_int_vec_type(blend_type);
489
490 arg_types[0] = screen->context_ptr_type; /* context */
491 arg_types[1] = LLVMInt32Type(); /* x */
492 arg_types[2] = LLVMInt32Type(); /* y */
493 arg_types[3] = LLVMPointerType(fs_elem_type, 0); /* a0 */
494 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* dadx */
495 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dady */
496 arg_types[6] = LLVMPointerType(fs_int_vec_type, 0); /* mask */
497 arg_types[7] = LLVMPointerType(blend_vec_type, 0); /* color */
498 arg_types[8] = LLVMPointerType(fs_int_vec_type, 0); /* depth */
499
500 func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0);
501
502 variant->function = LLVMAddFunction(screen->module, "shader", func_type);
503 LLVMSetFunctionCallConv(variant->function, LLVMCCallConv);
504 for(i = 0; i < Elements(arg_types); ++i)
505 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
506 LLVMAddAttribute(LLVMGetParam(variant->function, i), LLVMNoAliasAttribute);
507
508 context_ptr = LLVMGetParam(variant->function, 0);
509 x = LLVMGetParam(variant->function, 1);
510 y = LLVMGetParam(variant->function, 2);
511 a0_ptr = LLVMGetParam(variant->function, 3);
512 dadx_ptr = LLVMGetParam(variant->function, 4);
513 dady_ptr = LLVMGetParam(variant->function, 5);
514 mask_ptr = LLVMGetParam(variant->function, 6);
515 color_ptr = LLVMGetParam(variant->function, 7);
516 depth_ptr = LLVMGetParam(variant->function, 8);
517
518 lp_build_name(context_ptr, "context");
519 lp_build_name(x, "x");
520 lp_build_name(y, "y");
521 lp_build_name(a0_ptr, "a0");
522 lp_build_name(dadx_ptr, "dadx");
523 lp_build_name(dady_ptr, "dady");
524 lp_build_name(mask_ptr, "mask");
525 lp_build_name(color_ptr, "color");
526 lp_build_name(depth_ptr, "depth");
527
528 /*
529 * Function body
530 */
531
532 block = LLVMAppendBasicBlock(variant->function, "entry");
533 builder = LLVMCreateBuilder();
534 LLVMPositionBuilderAtEnd(builder, block);
535
536 generate_pos0(builder, x, y, &x0, &y0);
537
538 lp_build_interp_soa_init(&interp, shader->base.tokens, builder, fs_type,
539 a0_ptr, dadx_ptr, dady_ptr,
540 x0, y0, 2, 0);
541
542 #if 0
543 /* C texture sampling */
544 sampler = lp_c_sampler_soa_create(context_ptr);
545 #else
546 /* code generated texture sampling */
547 sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr);
548 #endif
549
550 for(i = 0; i < num_fs; ++i) {
551 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
552 LLVMValueRef out_color[NUM_CHANNELS];
553 LLVMValueRef depth_ptr_i;
554
555 if(i != 0)
556 lp_build_interp_soa_update(&interp);
557
558 fs_mask[i] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, mask_ptr, &index, 1, ""), "");
559 depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &index, 1, "");
560
561 generate_fs(lp, shader, key,
562 builder,
563 fs_type,
564 context_ptr,
565 i,
566 &interp,
567 sampler,
568 &fs_mask[i],
569 out_color,
570 depth_ptr_i);
571
572 for(chan = 0; chan < NUM_CHANNELS; ++chan)
573 fs_out_color[chan][i] = out_color[chan];
574 }
575
576 sampler->destroy(sampler);
577
578 /*
579 * Convert the fs's output color and mask to fit to the blending type.
580 */
581
582 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
583 lp_build_conv(builder, fs_type, blend_type,
584 fs_out_color[chan], num_fs,
585 &blend_in_color[chan], 1);
586 lp_build_name(blend_in_color[chan], "color.%c", "rgba"[chan]);
587
588 }
589
590 lp_build_conv_mask(builder, fs_type, blend_type,
591 fs_mask, num_fs,
592 &blend_mask, 1);
593
594 /*
595 * Blending.
596 */
597
598 generate_blend(&key->blend,
599 builder,
600 blend_type,
601 context_ptr,
602 blend_mask,
603 blend_in_color,
604 color_ptr);
605
606 LLVMBuildRetVoid(builder);
607
608 LLVMDisposeBuilder(builder);
609
610 /*
611 * Translate the LLVM IR into machine code.
612 */
613
614 if(LLVMVerifyFunction(variant->function, LLVMPrintMessageAction)) {
615 LLVMDumpValue(variant->function);
616 abort();
617 }
618
619 LLVMRunFunctionPassManager(screen->pass, variant->function);
620
621 #ifdef DEBUG
622 LLVMDumpValue(variant->function);
623 debug_printf("\n");
624 #endif
625
626 variant->jit_function = (lp_jit_frag_func)LLVMGetPointerToGlobal(screen->engine, variant->function);
627
628 #ifdef DEBUG
629 lp_disassemble(variant->jit_function);
630 #endif
631
632 variant->next = shader->variants;
633 shader->variants = variant;
634
635 return variant;
636 }
637
638
639 void *
640 llvmpipe_create_fs_state(struct pipe_context *pipe,
641 const struct pipe_shader_state *templ)
642 {
643 struct lp_fragment_shader *shader;
644
645 shader = CALLOC_STRUCT(lp_fragment_shader);
646 if (!shader)
647 return NULL;
648
649 /* get/save the summary info for this shader */
650 tgsi_scan_shader(templ->tokens, &shader->info);
651
652 /* we need to keep a local copy of the tokens */
653 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
654
655 return shader;
656 }
657
658
659 void
660 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
661 {
662 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
663
664 llvmpipe->fs = (struct lp_fragment_shader *) fs;
665
666 llvmpipe->dirty |= LP_NEW_FS;
667 }
668
669
670 void
671 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
672 {
673 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
674 struct llvmpipe_screen *screen = llvmpipe_screen(pipe->screen);
675 struct lp_fragment_shader *shader = fs;
676 struct lp_fragment_shader_variant *variant;
677
678 assert(fs != llvmpipe->fs);
679 (void) llvmpipe;
680
681 variant = shader->variants;
682 while(variant) {
683 struct lp_fragment_shader_variant *next = variant->next;
684
685 if(variant->function) {
686 if(variant->jit_function)
687 LLVMFreeMachineCodeForFunction(screen->engine, variant->function);
688 LLVMDeleteFunction(variant->function);
689 }
690
691 FREE(variant);
692
693 variant = next;
694 }
695
696 FREE((void *) shader->base.tokens);
697 FREE(shader);
698 }
699
700
701
702 void
703 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
704 uint shader, uint index,
705 const struct pipe_constant_buffer *constants)
706 {
707 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
708 struct pipe_buffer *buffer = constants ? constants->buffer : NULL;
709 unsigned size = buffer ? buffer->size : 0;
710 const void *data = buffer ? llvmpipe_buffer(buffer)->data : NULL;
711
712 assert(shader < PIPE_SHADER_TYPES);
713 assert(index == 0);
714
715 if(shader == PIPE_SHADER_VERTEX)
716 draw_flush(llvmpipe->draw);
717
718 /* note: reference counting */
719 pipe_buffer_reference(&llvmpipe->constants[shader].buffer, buffer);
720
721 if(shader == PIPE_SHADER_FRAGMENT) {
722 llvmpipe->jit_context.constants = data;
723 }
724
725 if(shader == PIPE_SHADER_VERTEX) {
726 draw_set_mapped_constant_buffer(llvmpipe->draw, data, size);
727 }
728
729 llvmpipe->dirty |= LP_NEW_CONSTANTS;
730 }
731
732
733 /**
734 * We need to generate several variants of the fragment pipeline to match
735 * all the combinations of the contributing state atoms.
736 *
737 * TODO: there is actually no reason to tie this to context state -- the
738 * generated code could be cached globally in the screen.
739 */
740 static void
741 make_variant_key(struct llvmpipe_context *lp,
742 struct lp_fragment_shader *shader,
743 struct lp_fragment_shader_variant_key *key)
744 {
745 unsigned i;
746
747 memset(key, 0, sizeof *key);
748
749 if(lp->framebuffer.zsbuf &&
750 lp->depth_stencil->depth.enabled) {
751 key->zsbuf_format = lp->framebuffer.zsbuf->format;
752 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
753 }
754
755 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
756 if(key->alpha.enabled)
757 key->alpha.func = lp->depth_stencil->alpha.func;
758 /* alpha.ref_value is passed in jit_context */
759
760 if(lp->framebuffer.cbufs[0]) {
761 const struct util_format_description *format_desc;
762 unsigned chan;
763
764 memcpy(&key->blend, lp->blend, sizeof key->blend);
765
766 format_desc = util_format_description(lp->framebuffer.cbufs[0]->format);
767 assert(format_desc->layout == UTIL_FORMAT_COLORSPACE_RGB ||
768 format_desc->layout == UTIL_FORMAT_COLORSPACE_SRGB);
769
770 /* mask out color channels not present in the color buffer */
771 for(chan = 0; chan < 4; ++chan) {
772 enum util_format_swizzle swizzle = format_desc->swizzle[chan];
773 if(swizzle > 4)
774 key->blend.colormask &= ~(1 << chan);
775 }
776 }
777
778 for(i = 0; i < PIPE_MAX_SAMPLERS; ++i)
779 if(shader->info.file_mask[TGSI_FILE_SAMPLER] & (1 << i))
780 lp_sampler_static_state(&key->sampler[i], lp->texture[i], lp->sampler[i]);
781 }
782
783
784 void
785 llvmpipe_update_fs(struct llvmpipe_context *lp)
786 {
787 struct lp_fragment_shader *shader = lp->fs;
788 struct lp_fragment_shader_variant_key key;
789 struct lp_fragment_shader_variant *variant;
790
791 make_variant_key(lp, shader, &key);
792
793 variant = shader->variants;
794 while(variant) {
795 if(memcmp(&variant->key, &key, sizeof key) == 0)
796 break;
797
798 variant = variant->next;
799 }
800
801 if(!variant)
802 variant = generate_fragment(lp, shader, &key);
803
804 shader->current = variant;
805 }