r300: Zero-initialize register for NV_vertex_program
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - stipple (TBI)
35 * - early depth test
36 * - fragment shader
37 * - alpha test
38 * - depth/stencil test (stencil TBI)
39 * - blending
40 *
41 * This file has only the glue to assembly the fragment pipeline. The actual
42 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
43 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
44 * muster the LLVM JIT execution engine to create a function that follows an
45 * established binary interface and that can be called from C directly.
46 *
47 * A big source of complexity here is that we often want to run different
48 * stages with different precisions and data types and precisions. For example,
49 * the fragment shader needs typically to be done in floats, but the
50 * depth/stencil test and blending is better done in the type that most closely
51 * matches the depth/stencil and color buffer respectively.
52 *
53 * Since the width of a SIMD vector register stays the same regardless of the
54 * element type, different types imply different number of elements, so we must
55 * code generate more instances of the stages with larger types to be able to
56 * feed/consume the stages with smaller types.
57 *
58 * @author Jose Fonseca <jfonseca@vmware.com>
59 */
60
61 #include "pipe/p_defines.h"
62 #include "util/u_memory.h"
63 #include "util/u_format.h"
64 #include "util/u_debug_dump.h"
65 #include "pipe/internal/p_winsys_screen.h"
66 #include "pipe/p_shader_tokens.h"
67 #include "draw/draw_context.h"
68 #include "tgsi/tgsi_dump.h"
69 #include "tgsi/tgsi_scan.h"
70 #include "tgsi/tgsi_parse.h"
71 #include "lp_bld_type.h"
72 #include "lp_bld_const.h"
73 #include "lp_bld_conv.h"
74 #include "lp_bld_intr.h"
75 #include "lp_bld_logic.h"
76 #include "lp_bld_depth.h"
77 #include "lp_bld_interp.h"
78 #include "lp_bld_tgsi.h"
79 #include "lp_bld_alpha.h"
80 #include "lp_bld_blend.h"
81 #include "lp_bld_swizzle.h"
82 #include "lp_bld_flow.h"
83 #include "lp_bld_debug.h"
84 #include "lp_screen.h"
85 #include "lp_context.h"
86 #include "lp_state.h"
87 #include "lp_quad.h"
88
89
90 static const unsigned char quad_offset_x[4] = {0, 1, 0, 1};
91 static const unsigned char quad_offset_y[4] = {0, 0, 1, 1};
92
93
94 /*
95 * Derive from the quad's upper left scalar coordinates the coordinates for
96 * all other quad pixels
97 */
98 static void
99 generate_pos0(LLVMBuilderRef builder,
100 LLVMValueRef x,
101 LLVMValueRef y,
102 LLVMValueRef *x0,
103 LLVMValueRef *y0)
104 {
105 LLVMTypeRef int_elem_type = LLVMInt32Type();
106 LLVMTypeRef int_vec_type = LLVMVectorType(int_elem_type, QUAD_SIZE);
107 LLVMTypeRef elem_type = LLVMFloatType();
108 LLVMTypeRef vec_type = LLVMVectorType(elem_type, QUAD_SIZE);
109 LLVMValueRef x_offsets[QUAD_SIZE];
110 LLVMValueRef y_offsets[QUAD_SIZE];
111 unsigned i;
112
113 x = lp_build_broadcast(builder, int_vec_type, x);
114 y = lp_build_broadcast(builder, int_vec_type, y);
115
116 for(i = 0; i < QUAD_SIZE; ++i) {
117 x_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_x[i], 0);
118 y_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_y[i], 0);
119 }
120
121 x = LLVMBuildAdd(builder, x, LLVMConstVector(x_offsets, QUAD_SIZE), "");
122 y = LLVMBuildAdd(builder, y, LLVMConstVector(y_offsets, QUAD_SIZE), "");
123
124 *x0 = LLVMBuildSIToFP(builder, x, vec_type, "");
125 *y0 = LLVMBuildSIToFP(builder, y, vec_type, "");
126 }
127
128
129 /**
130 * Generate the depth test.
131 */
132 static void
133 generate_depth(struct llvmpipe_context *lp,
134 LLVMBuilderRef builder,
135 const struct pipe_depth_state *state,
136 union lp_type src_type,
137 struct lp_build_mask_context *mask,
138 LLVMValueRef src,
139 LLVMValueRef dst_ptr)
140 {
141 const struct util_format_description *format_desc;
142 union lp_type dst_type;
143
144 if(!lp->framebuffer.zsbuf)
145 return;
146
147 format_desc = util_format_description(lp->framebuffer.zsbuf->format);
148 assert(format_desc);
149
150 /* Pick the depth type. */
151 dst_type = lp_depth_type(format_desc, src_type.width*src_type.length);
152
153 /* FIXME: Cope with a depth test type with a different bit width. */
154 assert(dst_type.width == src_type.width);
155 assert(dst_type.length == src_type.length);
156
157 #if 1
158 src = lp_build_clamped_float_to_unsigned_norm(builder,
159 src_type,
160 dst_type.width,
161 src);
162 #else
163 lp_build_conv(builder, src_type, dst_type, &src, 1, &src, 1);
164 #endif
165
166 lp_build_depth_test(builder,
167 state,
168 dst_type,
169 format_desc,
170 mask,
171 src,
172 dst_ptr);
173 }
174
175
176 struct build_fetch_texel_context
177 {
178 LLVMValueRef context_ptr;
179
180 LLVMValueRef samplers_ptr;
181
182 /** Coords/texels store */
183 LLVMValueRef store_ptr;
184 };
185
186
187 void PIPE_CDECL
188 lp_fetch_texel_soa( struct tgsi_sampler **samplers,
189 uint32_t unit,
190 float *store )
191 {
192 struct tgsi_sampler *sampler = samplers[unit];
193
194 #if 0
195 uint j;
196
197 debug_printf("%s sampler: %p (%p) store: %p\n",
198 __FUNCTION__,
199 sampler, *sampler,
200 store );
201
202 debug_printf("lodbias %f\n", store[12]);
203
204 for (j = 0; j < 4; j++)
205 debug_printf("sample %d texcoord %f %f\n",
206 j,
207 store[0+j],
208 store[4+j]);
209 #endif
210
211 {
212 float rgba[NUM_CHANNELS][QUAD_SIZE];
213 sampler->get_samples(sampler,
214 &store[0],
215 &store[4],
216 &store[8],
217 0.0f, /*store[12], lodbias */
218 rgba);
219 memcpy(store, rgba, sizeof rgba);
220 }
221
222 #if 0
223 for (j = 0; j < 4; j++)
224 debug_printf("sample %d result %f %f %f %f\n",
225 j,
226 store[0+j],
227 store[4+j],
228 store[8+j],
229 store[12+j]);
230 #endif
231 }
232
233
234 static void
235 emit_fetch_texel( LLVMBuilderRef builder,
236 void *context,
237 unsigned unit,
238 unsigned num_coords,
239 const LLVMValueRef *coords,
240 LLVMValueRef lodbias,
241 LLVMValueRef *texel)
242 {
243 struct build_fetch_texel_context *bld = context;
244 LLVMTypeRef vec_type = LLVMTypeOf(coords[0]);
245 LLVMValueRef args[3];
246 unsigned i;
247
248 if(!bld->samplers_ptr)
249 bld->samplers_ptr = lp_jit_context_samplers(builder, bld->context_ptr);
250
251 if(!bld->store_ptr)
252 bld->store_ptr = LLVMBuildArrayAlloca(builder,
253 vec_type,
254 LLVMConstInt(LLVMInt32Type(), 4, 0),
255 "texel_store");
256
257 for (i = 0; i < num_coords; i++) {
258 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
259 LLVMValueRef coord_ptr = LLVMBuildGEP(builder, bld->store_ptr, &index, 1, "");
260 LLVMBuildStore(builder, coords[i], coord_ptr);
261 }
262
263 args[0] = bld->samplers_ptr;
264 args[1] = LLVMConstInt(LLVMInt32Type(), unit, 0);
265 args[2] = bld->store_ptr;
266
267 lp_build_intrinsic(builder, "fetch_texel", LLVMVoidType(), args, 3);
268
269 for (i = 0; i < NUM_CHANNELS; ++i) {
270 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
271 LLVMValueRef texel_ptr = LLVMBuildGEP(builder, bld->store_ptr, &index, 1, "");
272 texel[i] = LLVMBuildLoad(builder, texel_ptr, "");
273 }
274 }
275
276
277 /**
278 * Generate the fragment shader, depth/stencil test, and alpha tests.
279 */
280 static void
281 generate_fs(struct llvmpipe_context *lp,
282 struct lp_fragment_shader *shader,
283 const struct lp_fragment_shader_variant_key *key,
284 LLVMBuilderRef builder,
285 union lp_type type,
286 LLVMValueRef context_ptr,
287 unsigned i,
288 const struct lp_build_interp_soa_context *interp,
289 struct build_fetch_texel_context *sampler,
290 LLVMValueRef *pmask,
291 LLVMValueRef *color,
292 LLVMValueRef depth_ptr)
293 {
294 const struct tgsi_token *tokens = shader->base.tokens;
295 LLVMTypeRef elem_type;
296 LLVMTypeRef vec_type;
297 LLVMTypeRef int_vec_type;
298 LLVMValueRef consts_ptr;
299 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][NUM_CHANNELS];
300 LLVMValueRef z = interp->pos[2];
301 struct lp_build_mask_context mask;
302 boolean early_depth_test;
303 unsigned attrib;
304 unsigned chan;
305
306 elem_type = lp_build_elem_type(type);
307 vec_type = lp_build_vec_type(type);
308 int_vec_type = lp_build_int_vec_type(type);
309
310 consts_ptr = lp_jit_context_constants(builder, context_ptr);
311
312 lp_build_mask_begin(&mask, builder, type, *pmask);
313
314 early_depth_test =
315 lp->depth_stencil->depth.enabled &&
316 lp->framebuffer.zsbuf &&
317 !lp->depth_stencil->alpha.enabled &&
318 !lp->fs->info.uses_kill &&
319 !lp->fs->info.writes_z;
320
321 if(early_depth_test)
322 generate_depth(lp, builder, &key->depth,
323 type, &mask,
324 z, depth_ptr);
325
326 memset(outputs, 0, sizeof outputs);
327
328 lp_build_tgsi_soa(builder, tokens, type, &mask,
329 consts_ptr, interp->pos, interp->inputs,
330 outputs, emit_fetch_texel, sampler);
331
332 for (attrib = 0; attrib < shader->info.num_outputs; ++attrib) {
333 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
334 if(outputs[attrib][chan]) {
335 lp_build_name(outputs[attrib][chan], "output%u.%u.%c", i, attrib, "xyzw"[chan]);
336
337 switch (shader->info.output_semantic_name[attrib]) {
338 case TGSI_SEMANTIC_COLOR:
339 {
340 unsigned cbuf = shader->info.output_semantic_index[attrib];
341
342 lp_build_name(outputs[attrib][chan], "color%u.%u.%c", i, attrib, "rgba"[chan]);
343
344 /* Alpha test */
345 /* XXX: should the alpha reference value be passed separately? */
346 if(cbuf == 0 && chan == 3) {
347 LLVMValueRef alpha = outputs[attrib][chan];
348 LLVMValueRef alpha_ref_value;
349 alpha_ref_value = lp_jit_context_alpha_ref_value(builder, context_ptr);
350 alpha_ref_value = lp_build_broadcast(builder, vec_type, alpha_ref_value);
351 lp_build_alpha_test(builder, &key->alpha, type,
352 &mask, alpha, alpha_ref_value);
353 }
354
355 if(cbuf == 0)
356 color[chan] = outputs[attrib][chan];
357
358 break;
359 }
360
361 case TGSI_SEMANTIC_POSITION:
362 if(chan == 2)
363 z = outputs[attrib][chan];
364 break;
365 }
366 }
367 }
368 }
369
370 if(!early_depth_test)
371 generate_depth(lp, builder, &key->depth,
372 type, &mask,
373 z, depth_ptr);
374
375 lp_build_mask_end(&mask);
376
377 *pmask = mask.value;
378
379 }
380
381
382 /**
383 * Generate color blending and color output.
384 */
385 static void
386 generate_blend(const struct pipe_blend_state *blend,
387 LLVMBuilderRef builder,
388 union lp_type type,
389 LLVMValueRef context_ptr,
390 LLVMValueRef mask,
391 LLVMValueRef *src,
392 LLVMValueRef dst_ptr)
393 {
394 struct lp_build_context bld;
395 LLVMTypeRef vec_type;
396 LLVMTypeRef int_vec_type;
397 LLVMValueRef const_ptr;
398 LLVMValueRef con[4];
399 LLVMValueRef dst[4];
400 LLVMValueRef res[4];
401 unsigned chan;
402
403 vec_type = lp_build_vec_type(type);
404 int_vec_type = lp_build_int_vec_type(type);
405
406 lp_build_context_init(&bld, builder, type);
407
408 const_ptr = lp_jit_context_blend_color(builder, context_ptr);
409 const_ptr = LLVMBuildBitCast(builder, const_ptr,
410 LLVMPointerType(vec_type, 0), "");
411
412 for(chan = 0; chan < 4; ++chan) {
413 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
414 con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), "");
415
416 dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), "");
417
418 lp_build_name(con[chan], "con.%c", "rgba"[chan]);
419 lp_build_name(dst[chan], "dst.%c", "rgba"[chan]);
420 }
421
422 lp_build_blend_soa(builder, blend, type, src, dst, con, res);
423
424 for(chan = 0; chan < 4; ++chan) {
425 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
426 lp_build_name(res[chan], "res.%c", "rgba"[chan]);
427 res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]);
428 LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, ""));
429 }
430 }
431
432
433 /**
434 * Generate the runtime callable function for the whole fragment pipeline.
435 */
436 static struct lp_fragment_shader_variant *
437 generate_fragment(struct llvmpipe_context *lp,
438 struct lp_fragment_shader *shader,
439 const struct lp_fragment_shader_variant_key *key)
440 {
441 struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
442 struct lp_fragment_shader_variant *variant;
443 union lp_type fs_type;
444 union lp_type blend_type;
445 LLVMTypeRef fs_elem_type;
446 LLVMTypeRef fs_vec_type;
447 LLVMTypeRef fs_int_vec_type;
448 LLVMTypeRef blend_vec_type;
449 LLVMTypeRef blend_int_vec_type;
450 LLVMTypeRef arg_types[9];
451 LLVMTypeRef func_type;
452 LLVMValueRef context_ptr;
453 LLVMValueRef x;
454 LLVMValueRef y;
455 LLVMValueRef a0_ptr;
456 LLVMValueRef dadx_ptr;
457 LLVMValueRef dady_ptr;
458 LLVMValueRef mask_ptr;
459 LLVMValueRef color_ptr;
460 LLVMValueRef depth_ptr;
461 LLVMBasicBlockRef block;
462 LLVMBuilderRef builder;
463 LLVMValueRef x0;
464 LLVMValueRef y0;
465 struct build_fetch_texel_context sampler;
466 struct lp_build_interp_soa_context interp;
467 LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
468 LLVMValueRef fs_out_color[NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
469 LLVMValueRef blend_mask;
470 LLVMValueRef blend_in_color[NUM_CHANNELS];
471 unsigned num_fs;
472 unsigned i;
473 unsigned chan;
474
475 #ifdef DEBUG
476 tgsi_dump(shader->base.tokens, 0);
477 if(key->depth.enabled) {
478 debug_printf("depth.func = %s\n", debug_dump_func(key->depth.func, TRUE));
479 debug_printf("depth.writemask = %u\n", key->depth.writemask);
480 debug_printf("depth.occlusion_count = %u\n", key->depth.occlusion_count);
481 }
482 if(key->alpha.enabled) {
483 debug_printf("alpha.func = %s\n", debug_dump_func(key->alpha.func, TRUE));
484 debug_printf("alpha.ref_value = %f\n", key->alpha.ref_value);
485 }
486 if(key->blend.logicop_enable) {
487 debug_printf("blend.logicop_func = %u\n", key->blend.logicop_func);
488 }
489 else if(key->blend.blend_enable) {
490 debug_printf("blend.rgb_func = %s\n", debug_dump_blend_func (key->blend.rgb_func, TRUE));
491 debug_printf("rgb_src_factor = %s\n", debug_dump_blend_factor(key->blend.rgb_src_factor, TRUE));
492 debug_printf("rgb_dst_factor = %s\n", debug_dump_blend_factor(key->blend.rgb_dst_factor, TRUE));
493 debug_printf("alpha_func = %s\n", debug_dump_blend_func (key->blend.alpha_func, TRUE));
494 debug_printf("alpha_src_factor = %s\n", debug_dump_blend_factor(key->blend.alpha_src_factor, TRUE));
495 debug_printf("alpha_dst_factor = %s\n", debug_dump_blend_factor(key->blend.alpha_dst_factor, TRUE));
496 }
497 debug_printf("blend.colormask = 0x%x\n", key->blend.colormask);
498 #endif
499
500 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
501 if(!variant)
502 return NULL;
503
504 variant->shader = shader;
505 memcpy(&variant->key, key, sizeof *key);
506
507 /* TODO: actually pick these based on the fs and color buffer
508 * characteristics. */
509
510 fs_type.value = 0;
511 fs_type.floating = TRUE; /* floating point values */
512 fs_type.sign = TRUE; /* values are signed */
513 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
514 fs_type.width = 32; /* 32-bit float */
515 fs_type.length = 4; /* 4 element per vector */
516 num_fs = 4;
517
518 blend_type.value = 0;
519 blend_type.floating = FALSE; /* values are integers */
520 blend_type.sign = FALSE; /* values are unsigned */
521 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
522 blend_type.width = 8; /* 8-bit ubyte values */
523 blend_type.length = 16; /* 16 elements per vector */
524
525 /*
526 * Generate the function prototype. Any change here must be reflected in
527 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
528 */
529
530 fs_elem_type = lp_build_elem_type(fs_type);
531 fs_vec_type = lp_build_vec_type(fs_type);
532 fs_int_vec_type = lp_build_int_vec_type(fs_type);
533
534 blend_vec_type = lp_build_vec_type(blend_type);
535 blend_int_vec_type = lp_build_int_vec_type(blend_type);
536
537 arg_types[0] = screen->context_ptr_type; /* context */
538 arg_types[1] = LLVMInt32Type(); /* x */
539 arg_types[2] = LLVMInt32Type(); /* y */
540 arg_types[3] = LLVMPointerType(fs_elem_type, 0); /* a0 */
541 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* dadx */
542 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dady */
543 arg_types[6] = LLVMPointerType(fs_int_vec_type, 0); /* mask */
544 arg_types[7] = LLVMPointerType(blend_vec_type, 0); /* color */
545 arg_types[8] = LLVMPointerType(fs_int_vec_type, 0); /* depth */
546
547 func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0);
548
549 variant->function = LLVMAddFunction(screen->module, "shader", func_type);
550 LLVMSetFunctionCallConv(variant->function, LLVMCCallConv);
551 for(i = 0; i < Elements(arg_types); ++i)
552 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
553 LLVMAddAttribute(LLVMGetParam(variant->function, i), LLVMNoAliasAttribute);
554
555 context_ptr = LLVMGetParam(variant->function, 0);
556 x = LLVMGetParam(variant->function, 1);
557 y = LLVMGetParam(variant->function, 2);
558 a0_ptr = LLVMGetParam(variant->function, 3);
559 dadx_ptr = LLVMGetParam(variant->function, 4);
560 dady_ptr = LLVMGetParam(variant->function, 5);
561 mask_ptr = LLVMGetParam(variant->function, 6);
562 color_ptr = LLVMGetParam(variant->function, 7);
563 depth_ptr = LLVMGetParam(variant->function, 8);
564
565 lp_build_name(context_ptr, "context");
566 lp_build_name(x, "x");
567 lp_build_name(y, "y");
568 lp_build_name(a0_ptr, "a0");
569 lp_build_name(dadx_ptr, "dadx");
570 lp_build_name(dady_ptr, "dady");
571 lp_build_name(mask_ptr, "mask");
572 lp_build_name(color_ptr, "color");
573 lp_build_name(depth_ptr, "depth");
574
575 /*
576 * Function body
577 */
578
579 block = LLVMAppendBasicBlock(variant->function, "entry");
580 builder = LLVMCreateBuilder();
581 LLVMPositionBuilderAtEnd(builder, block);
582
583 generate_pos0(builder, x, y, &x0, &y0);
584
585 lp_build_interp_soa_init(&interp, shader->base.tokens, builder, fs_type,
586 a0_ptr, dadx_ptr, dady_ptr,
587 x0, y0, 2, 0);
588
589 memset(&sampler, 0, sizeof sampler);
590 sampler.context_ptr = context_ptr;
591
592 for(i = 0; i < num_fs; ++i) {
593 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
594 LLVMValueRef out_color[NUM_CHANNELS];
595 LLVMValueRef depth_ptr_i;
596
597 if(i != 0)
598 lp_build_interp_soa_update(&interp);
599
600 fs_mask[i] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, mask_ptr, &index, 1, ""), "");
601 depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &index, 1, "");
602
603 generate_fs(lp, shader, key,
604 builder,
605 fs_type,
606 context_ptr,
607 i,
608 &interp,
609 &sampler,
610 &fs_mask[i],
611 out_color,
612 depth_ptr_i);
613
614 for(chan = 0; chan < NUM_CHANNELS; ++chan)
615 fs_out_color[chan][i] = out_color[chan];
616 }
617
618 /*
619 * Convert the fs's output color and mask to fit to the blending type.
620 */
621
622 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
623 lp_build_conv(builder, fs_type, blend_type,
624 fs_out_color[chan], num_fs,
625 &blend_in_color[chan], 1);
626 lp_build_name(blend_in_color[chan], "color.%c", "rgba"[chan]);
627
628 }
629
630 lp_build_conv_mask(builder, fs_type, blend_type,
631 fs_mask, num_fs,
632 &blend_mask, 1);
633
634 /*
635 * Blending.
636 */
637
638 generate_blend(&key->blend,
639 builder,
640 blend_type,
641 context_ptr,
642 blend_mask,
643 blend_in_color,
644 color_ptr);
645
646 LLVMBuildRetVoid(builder);
647
648 LLVMDisposeBuilder(builder);
649
650 /*
651 * Translate the LLVM IR into machine code.
652 */
653
654 LLVMRunFunctionPassManager(screen->pass, variant->function);
655
656 #ifdef DEBUG
657 LLVMDumpValue(variant->function);
658 debug_printf("\n");
659 #endif
660
661 if(LLVMVerifyFunction(variant->function, LLVMPrintMessageAction)) {
662 LLVMDumpValue(variant->function);
663 abort();
664 }
665
666 variant->jit_function = (lp_jit_frag_func)LLVMGetPointerToGlobal(screen->engine, variant->function);
667
668 #ifdef DEBUG
669 lp_disassemble(variant->jit_function);
670 #endif
671
672 variant->next = shader->variants;
673 shader->variants = variant;
674
675 return variant;
676 }
677
678
679 void *
680 llvmpipe_create_fs_state(struct pipe_context *pipe,
681 const struct pipe_shader_state *templ)
682 {
683 struct lp_fragment_shader *shader;
684
685 shader = CALLOC_STRUCT(lp_fragment_shader);
686 if (!shader)
687 return NULL;
688
689 /* get/save the summary info for this shader */
690 tgsi_scan_shader(templ->tokens, &shader->info);
691
692 /* we need to keep a local copy of the tokens */
693 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
694
695 return shader;
696 }
697
698
699 void
700 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
701 {
702 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
703
704 llvmpipe->fs = (struct lp_fragment_shader *) fs;
705
706 llvmpipe->dirty |= LP_NEW_FS;
707 }
708
709
710 void
711 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
712 {
713 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
714 struct llvmpipe_screen *screen = llvmpipe_screen(pipe->screen);
715 struct lp_fragment_shader *shader = fs;
716 struct lp_fragment_shader_variant *variant;
717
718 assert(fs != llvmpipe->fs);
719
720 variant = shader->variants;
721 while(variant) {
722 struct lp_fragment_shader_variant *next = variant->next;
723
724 if(variant->function) {
725 if(variant->jit_function)
726 LLVMFreeMachineCodeForFunction(screen->engine, variant->function);
727 LLVMDeleteFunction(variant->function);
728 }
729
730 FREE(variant);
731
732 variant = next;
733 }
734
735 FREE((void *) shader->base.tokens);
736 FREE(shader);
737 }
738
739
740
741 void
742 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
743 uint shader, uint index,
744 const struct pipe_constant_buffer *buf)
745 {
746 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
747
748 assert(shader < PIPE_SHADER_TYPES);
749 assert(index == 0);
750
751 /* note: reference counting */
752 pipe_buffer_reference(&llvmpipe->constants[shader].buffer,
753 buf ? buf->buffer : NULL);
754
755 llvmpipe->dirty |= LP_NEW_CONSTANTS;
756 }
757
758
759 /**
760 * We need to generate several variants of the fragment pipeline to match
761 * all the combinations of the contributing state atoms.
762 *
763 * TODO: there is actually no reason to tie this to context state -- the
764 * generated code could be cached globally in the screen.
765 */
766 static void
767 make_variant_key(struct llvmpipe_context *lp,
768 struct lp_fragment_shader_variant_key *key)
769 {
770 memset(key, 0, sizeof *key);
771
772 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
773
774 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
775 if(key->alpha.enabled)
776 key->alpha.func = lp->depth_stencil->alpha.func;
777 /* alpha.ref_value is passed in jit_context */
778
779 memcpy(&key->blend, lp->blend, sizeof key->blend);
780 }
781
782
783 void
784 llvmpipe_update_fs(struct llvmpipe_context *lp)
785 {
786 struct lp_fragment_shader *shader = lp->fs;
787 struct lp_fragment_shader_variant_key key;
788 struct lp_fragment_shader_variant *variant;
789
790 make_variant_key(lp, &key);
791
792 variant = shader->variants;
793 while(variant) {
794 if(memcmp(&variant->key, &key, sizeof key) == 0)
795 break;
796
797 variant = variant->next;
798 }
799
800 if(!variant)
801 variant = generate_fragment(lp, shader, &key);
802
803 shader->current = variant;
804 }