llvmpipe: add per-sample depth/stencil test
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 VMware, Inc.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - early depth test
35 * - fragment shader
36 * - alpha test
37 * - depth/stencil test
38 * - blending
39 *
40 * This file has only the glue to assemble the fragment pipeline. The actual
41 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
42 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
43 * muster the LLVM JIT execution engine to create a function that follows an
44 * established binary interface and that can be called from C directly.
45 *
46 * A big source of complexity here is that we often want to run different
47 * stages with different precisions and data types and precisions. For example,
48 * the fragment shader needs typically to be done in floats, but the
49 * depth/stencil test and blending is better done in the type that most closely
50 * matches the depth/stencil and color buffer respectively.
51 *
52 * Since the width of a SIMD vector register stays the same regardless of the
53 * element type, different types imply different number of elements, so we must
54 * code generate more instances of the stages with larger types to be able to
55 * feed/consume the stages with smaller types.
56 *
57 * @author Jose Fonseca <jfonseca@vmware.com>
58 */
59
60 #include <limits.h>
61 #include "pipe/p_defines.h"
62 #include "util/u_inlines.h"
63 #include "util/u_memory.h"
64 #include "util/u_pointer.h"
65 #include "util/format/u_format.h"
66 #include "util/u_dump.h"
67 #include "util/u_string.h"
68 #include "util/simple_list.h"
69 #include "util/u_dual_blend.h"
70 #include "util/os_time.h"
71 #include "pipe/p_shader_tokens.h"
72 #include "draw/draw_context.h"
73 #include "tgsi/tgsi_dump.h"
74 #include "tgsi/tgsi_scan.h"
75 #include "tgsi/tgsi_parse.h"
76 #include "gallivm/lp_bld_type.h"
77 #include "gallivm/lp_bld_const.h"
78 #include "gallivm/lp_bld_conv.h"
79 #include "gallivm/lp_bld_init.h"
80 #include "gallivm/lp_bld_intr.h"
81 #include "gallivm/lp_bld_logic.h"
82 #include "gallivm/lp_bld_tgsi.h"
83 #include "gallivm/lp_bld_nir.h"
84 #include "gallivm/lp_bld_swizzle.h"
85 #include "gallivm/lp_bld_flow.h"
86 #include "gallivm/lp_bld_debug.h"
87 #include "gallivm/lp_bld_arit.h"
88 #include "gallivm/lp_bld_bitarit.h"
89 #include "gallivm/lp_bld_pack.h"
90 #include "gallivm/lp_bld_format.h"
91 #include "gallivm/lp_bld_quad.h"
92
93 #include "lp_bld_alpha.h"
94 #include "lp_bld_blend.h"
95 #include "lp_bld_depth.h"
96 #include "lp_bld_interp.h"
97 #include "lp_context.h"
98 #include "lp_debug.h"
99 #include "lp_perf.h"
100 #include "lp_setup.h"
101 #include "lp_state.h"
102 #include "lp_tex_sample.h"
103 #include "lp_flush.h"
104 #include "lp_state_fs.h"
105 #include "lp_rast.h"
106 #include "nir/nir_to_tgsi_info.h"
107
108 /** Fragment shader number (for debugging) */
109 static unsigned fs_no = 0;
110
111
112 /**
113 * Expand the relevant bits of mask_input to a n*4-dword mask for the
114 * n*four pixels in n 2x2 quads. This will set the n*four elements of the
115 * quad mask vector to 0 or ~0.
116 * Grouping is 01, 23 for 2 quad mode hence only 0 and 2 are valid
117 * quad arguments with fs length 8.
118 *
119 * \param first_quad which quad(s) of the quad group to test, in [0,3]
120 * \param mask_input bitwise mask for the whole 4x4 stamp
121 */
122 static LLVMValueRef
123 generate_quad_mask(struct gallivm_state *gallivm,
124 struct lp_type fs_type,
125 unsigned first_quad,
126 unsigned sample,
127 LLVMValueRef mask_input) /* int64 */
128 {
129 LLVMBuilderRef builder = gallivm->builder;
130 struct lp_type mask_type;
131 LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
132 LLVMValueRef bits[16];
133 LLVMValueRef mask, bits_vec;
134 int shift, i;
135
136 /*
137 * XXX: We'll need a different path for 16 x u8
138 */
139 assert(fs_type.width == 32);
140 assert(fs_type.length <= ARRAY_SIZE(bits));
141 mask_type = lp_int_type(fs_type);
142
143 /*
144 * mask_input >>= (quad * 4)
145 */
146 switch (first_quad) {
147 case 0:
148 shift = 0;
149 break;
150 case 1:
151 assert(fs_type.length == 4);
152 shift = 2;
153 break;
154 case 2:
155 shift = 8;
156 break;
157 case 3:
158 assert(fs_type.length == 4);
159 shift = 10;
160 break;
161 default:
162 assert(0);
163 shift = 0;
164 }
165
166 mask_input = LLVMBuildLShr(builder, mask_input, lp_build_const_int64(gallivm, 16 * sample), "");
167 mask_input = LLVMBuildTrunc(builder, mask_input,
168 i32t, "");
169 mask_input = LLVMBuildAnd(builder, mask_input, lp_build_const_int32(gallivm, 0xffff), "");
170
171 mask_input = LLVMBuildLShr(builder,
172 mask_input,
173 LLVMConstInt(i32t, shift, 0),
174 "");
175
176 /*
177 * mask = { mask_input & (1 << i), for i in [0,3] }
178 */
179 mask = lp_build_broadcast(gallivm,
180 lp_build_vec_type(gallivm, mask_type),
181 mask_input);
182
183 for (i = 0; i < fs_type.length / 4; i++) {
184 unsigned j = 2 * (i % 2) + (i / 2) * 8;
185 bits[4*i + 0] = LLVMConstInt(i32t, 1ULL << (j + 0), 0);
186 bits[4*i + 1] = LLVMConstInt(i32t, 1ULL << (j + 1), 0);
187 bits[4*i + 2] = LLVMConstInt(i32t, 1ULL << (j + 4), 0);
188 bits[4*i + 3] = LLVMConstInt(i32t, 1ULL << (j + 5), 0);
189 }
190 bits_vec = LLVMConstVector(bits, fs_type.length);
191 mask = LLVMBuildAnd(builder, mask, bits_vec, "");
192
193 /*
194 * mask = mask == bits ? ~0 : 0
195 */
196 mask = lp_build_compare(gallivm,
197 mask_type, PIPE_FUNC_EQUAL,
198 mask, bits_vec);
199
200 return mask;
201 }
202
203
204 #define EARLY_DEPTH_TEST 0x1
205 #define LATE_DEPTH_TEST 0x2
206 #define EARLY_DEPTH_WRITE 0x4
207 #define LATE_DEPTH_WRITE 0x8
208
209 static int
210 find_output_by_semantic( const struct tgsi_shader_info *info,
211 unsigned semantic,
212 unsigned index )
213 {
214 int i;
215
216 for (i = 0; i < info->num_outputs; i++)
217 if (info->output_semantic_name[i] == semantic &&
218 info->output_semantic_index[i] == index)
219 return i;
220
221 return -1;
222 }
223
224
225 /**
226 * Fetch the specified lp_jit_viewport structure for a given viewport_index.
227 */
228 static LLVMValueRef
229 lp_llvm_viewport(LLVMValueRef context_ptr,
230 struct gallivm_state *gallivm,
231 LLVMValueRef viewport_index)
232 {
233 LLVMBuilderRef builder = gallivm->builder;
234 LLVMValueRef ptr;
235 LLVMValueRef res;
236 struct lp_type viewport_type =
237 lp_type_float_vec(32, 32 * LP_JIT_VIEWPORT_NUM_FIELDS);
238
239 ptr = lp_jit_context_viewports(gallivm, context_ptr);
240 ptr = LLVMBuildPointerCast(builder, ptr,
241 LLVMPointerType(lp_build_vec_type(gallivm, viewport_type), 0), "");
242
243 res = lp_build_pointer_get(builder, ptr, viewport_index);
244
245 return res;
246 }
247
248
249 static LLVMValueRef
250 lp_build_depth_clamp(struct gallivm_state *gallivm,
251 LLVMBuilderRef builder,
252 struct lp_type type,
253 LLVMValueRef context_ptr,
254 LLVMValueRef thread_data_ptr,
255 LLVMValueRef z)
256 {
257 LLVMValueRef viewport, min_depth, max_depth;
258 LLVMValueRef viewport_index;
259 struct lp_build_context f32_bld;
260
261 assert(type.floating);
262 lp_build_context_init(&f32_bld, gallivm, type);
263
264 /*
265 * Assumes clamping of the viewport index will occur in setup/gs. Value
266 * is passed through the rasterization stage via lp_rast_shader_inputs.
267 *
268 * See: draw_clamp_viewport_idx and lp_clamp_viewport_idx for clamping
269 * semantics.
270 */
271 viewport_index = lp_jit_thread_data_raster_state_viewport_index(gallivm,
272 thread_data_ptr);
273
274 /*
275 * Load the min and max depth from the lp_jit_context.viewports
276 * array of lp_jit_viewport structures.
277 */
278 viewport = lp_llvm_viewport(context_ptr, gallivm, viewport_index);
279
280 /* viewports[viewport_index].min_depth */
281 min_depth = LLVMBuildExtractElement(builder, viewport,
282 lp_build_const_int32(gallivm, LP_JIT_VIEWPORT_MIN_DEPTH), "");
283 min_depth = lp_build_broadcast_scalar(&f32_bld, min_depth);
284
285 /* viewports[viewport_index].max_depth */
286 max_depth = LLVMBuildExtractElement(builder, viewport,
287 lp_build_const_int32(gallivm, LP_JIT_VIEWPORT_MAX_DEPTH), "");
288 max_depth = lp_build_broadcast_scalar(&f32_bld, max_depth);
289
290 /*
291 * Clamp to the min and max depth values for the given viewport.
292 */
293 return lp_build_clamp(&f32_bld, z, min_depth, max_depth);
294 }
295
296
297 /**
298 * Generate the fragment shader, depth/stencil test, and alpha tests.
299 */
300 static void
301 generate_fs_loop(struct gallivm_state *gallivm,
302 struct lp_fragment_shader *shader,
303 const struct lp_fragment_shader_variant_key *key,
304 LLVMBuilderRef builder,
305 struct lp_type type,
306 LLVMValueRef context_ptr,
307 LLVMValueRef num_loop,
308 struct lp_build_interp_soa_context *interp,
309 const struct lp_build_sampler_soa *sampler,
310 const struct lp_build_image_soa *image,
311 LLVMValueRef mask_store,
312 LLVMValueRef (*out_color)[4],
313 LLVMValueRef depth_ptr,
314 LLVMValueRef depth_stride,
315 LLVMValueRef facing,
316 LLVMValueRef thread_data_ptr)
317 {
318 const struct util_format_description *zs_format_desc = NULL;
319 const struct tgsi_token *tokens = shader->base.tokens;
320 struct lp_type int_type = lp_int_type(type);
321 LLVMTypeRef vec_type, int_vec_type;
322 LLVMValueRef mask_ptr, mask_val;
323 LLVMValueRef consts_ptr, num_consts_ptr;
324 LLVMValueRef ssbo_ptr, num_ssbo_ptr;
325 LLVMValueRef z;
326 LLVMValueRef z_value, s_value;
327 LLVMValueRef z_fb, s_fb;
328 LLVMValueRef stencil_refs[2];
329 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
330 struct lp_build_for_loop_state loop_state;
331 struct lp_build_mask_context mask;
332 /*
333 * TODO: figure out if simple_shader optimization is really worthwile to
334 * keep. Disabled because it may hide some real bugs in the (depth/stencil)
335 * code since tests tend to take another codepath than real shaders.
336 */
337 boolean simple_shader = (shader->info.base.file_count[TGSI_FILE_SAMPLER] == 0 &&
338 shader->info.base.num_inputs < 3 &&
339 shader->info.base.num_instructions < 8) && 0;
340 const boolean dual_source_blend = key->blend.rt[0].blend_enable &&
341 util_blend_state_is_dual(&key->blend, 0);
342 unsigned attrib;
343 unsigned chan;
344 unsigned cbuf;
345 unsigned depth_mode;
346
347 struct lp_bld_tgsi_system_values system_values;
348
349 memset(&system_values, 0, sizeof(system_values));
350
351 /* truncate then sign extend. */
352 system_values.front_facing = LLVMBuildTrunc(gallivm->builder, facing, LLVMInt1TypeInContext(gallivm->context), "");
353 system_values.front_facing = LLVMBuildSExt(gallivm->builder, system_values.front_facing, LLVMInt32TypeInContext(gallivm->context), "");
354
355 if (key->depth.enabled ||
356 key->stencil[0].enabled) {
357
358 zs_format_desc = util_format_description(key->zsbuf_format);
359 assert(zs_format_desc);
360
361 if (shader->info.base.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL])
362 depth_mode = EARLY_DEPTH_TEST | EARLY_DEPTH_WRITE;
363 else if (!shader->info.base.writes_z && !shader->info.base.writes_stencil) {
364 if (shader->info.base.writes_memory)
365 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
366 else if (key->alpha.enabled ||
367 key->blend.alpha_to_coverage ||
368 shader->info.base.uses_kill ||
369 shader->info.base.writes_samplemask) {
370 /* With alpha test and kill, can do the depth test early
371 * and hopefully eliminate some quads. But need to do a
372 * special deferred depth write once the final mask value
373 * is known. This only works though if there's either no
374 * stencil test or the stencil value isn't written.
375 */
376 if (key->stencil[0].enabled && (key->stencil[0].writemask ||
377 (key->stencil[1].enabled &&
378 key->stencil[1].writemask)))
379 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
380 else
381 depth_mode = EARLY_DEPTH_TEST | LATE_DEPTH_WRITE;
382 }
383 else
384 depth_mode = EARLY_DEPTH_TEST | EARLY_DEPTH_WRITE;
385 }
386 else {
387 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
388 }
389
390 if (!(key->depth.enabled && key->depth.writemask) &&
391 !(key->stencil[0].enabled && (key->stencil[0].writemask ||
392 (key->stencil[1].enabled &&
393 key->stencil[1].writemask))))
394 depth_mode &= ~(LATE_DEPTH_WRITE | EARLY_DEPTH_WRITE);
395 }
396 else {
397 depth_mode = 0;
398 }
399
400 vec_type = lp_build_vec_type(gallivm, type);
401 int_vec_type = lp_build_vec_type(gallivm, int_type);
402
403 stencil_refs[0] = lp_jit_context_stencil_ref_front_value(gallivm, context_ptr);
404 stencil_refs[1] = lp_jit_context_stencil_ref_back_value(gallivm, context_ptr);
405 /* convert scalar stencil refs into vectors */
406 stencil_refs[0] = lp_build_broadcast(gallivm, int_vec_type, stencil_refs[0]);
407 stencil_refs[1] = lp_build_broadcast(gallivm, int_vec_type, stencil_refs[1]);
408
409 consts_ptr = lp_jit_context_constants(gallivm, context_ptr);
410 num_consts_ptr = lp_jit_context_num_constants(gallivm, context_ptr);
411
412 ssbo_ptr = lp_jit_context_ssbos(gallivm, context_ptr);
413 num_ssbo_ptr = lp_jit_context_num_ssbos(gallivm, context_ptr);
414
415 lp_build_for_loop_begin(&loop_state, gallivm,
416 lp_build_const_int32(gallivm, 0),
417 LLVMIntULT,
418 num_loop,
419 lp_build_const_int32(gallivm, 1));
420
421 mask_ptr = LLVMBuildGEP(builder, mask_store,
422 &loop_state.counter, 1, "mask_ptr");
423 mask_val = LLVMBuildLoad(builder, mask_ptr, "");
424
425 memset(outputs, 0, sizeof outputs);
426
427 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
428 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
429 out_color[cbuf][chan] = lp_build_array_alloca(gallivm,
430 lp_build_vec_type(gallivm,
431 type),
432 num_loop, "color");
433 }
434 }
435 if (dual_source_blend) {
436 assert(key->nr_cbufs <= 1);
437 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
438 out_color[1][chan] = lp_build_array_alloca(gallivm,
439 lp_build_vec_type(gallivm,
440 type),
441 num_loop, "color1");
442 }
443 }
444
445
446 /* 'mask' will control execution based on quad's pixel alive/killed state */
447 lp_build_mask_begin(&mask, gallivm, type, mask_val);
448
449 if (!(depth_mode & EARLY_DEPTH_TEST) && !simple_shader)
450 lp_build_mask_check(&mask);
451
452 lp_build_interp_soa_update_pos_dyn(interp, gallivm, loop_state.counter);
453 z = interp->pos[2];
454
455 if (depth_mode & EARLY_DEPTH_TEST) {
456 /*
457 * Clamp according to ARB_depth_clamp semantics.
458 */
459 if (key->depth_clamp) {
460 z = lp_build_depth_clamp(gallivm, builder, type, context_ptr,
461 thread_data_ptr, z);
462 }
463 lp_build_depth_stencil_load_swizzled(gallivm, type,
464 zs_format_desc, key->resource_1d,
465 depth_ptr, depth_stride,
466 &z_fb, &s_fb, loop_state.counter);
467 lp_build_depth_stencil_test(gallivm,
468 &key->depth,
469 key->stencil,
470 type,
471 zs_format_desc,
472 &mask,
473 NULL,
474 stencil_refs,
475 z, z_fb, s_fb,
476 facing,
477 &z_value, &s_value,
478 !simple_shader);
479
480 if (depth_mode & EARLY_DEPTH_WRITE) {
481 lp_build_depth_stencil_write_swizzled(gallivm, type,
482 zs_format_desc, key->resource_1d,
483 NULL, NULL, NULL, loop_state.counter,
484 depth_ptr, depth_stride,
485 z_value, s_value);
486 }
487 /*
488 * Note mask check if stencil is enabled must be after ds write not after
489 * stencil test otherwise new stencil values may not get written if all
490 * fragments got killed by depth/stencil test.
491 */
492 if (!simple_shader && key->stencil[0].enabled)
493 lp_build_mask_check(&mask);
494 }
495
496 lp_build_interp_soa_update_inputs_dyn(interp, gallivm, loop_state.counter, NULL, NULL);
497
498 struct lp_build_tgsi_params params;
499 memset(&params, 0, sizeof(params));
500
501 params.type = type;
502 params.mask = &mask;
503 params.consts_ptr = consts_ptr;
504 params.const_sizes_ptr = num_consts_ptr;
505 params.system_values = &system_values;
506 params.inputs = interp->inputs;
507 params.context_ptr = context_ptr;
508 params.thread_data_ptr = thread_data_ptr;
509 params.sampler = sampler;
510 params.info = &shader->info.base;
511 params.ssbo_ptr = ssbo_ptr;
512 params.ssbo_sizes_ptr = num_ssbo_ptr;
513 params.image = image;
514
515 /* Build the actual shader */
516 if (shader->base.type == PIPE_SHADER_IR_TGSI)
517 lp_build_tgsi_soa(gallivm, tokens, &params,
518 outputs);
519 else
520 lp_build_nir_soa(gallivm, shader->base.ir.nir, &params,
521 outputs);
522
523 /* Alpha test */
524 if (key->alpha.enabled) {
525 int color0 = find_output_by_semantic(&shader->info.base,
526 TGSI_SEMANTIC_COLOR,
527 0);
528
529 if (color0 != -1 && outputs[color0][3]) {
530 const struct util_format_description *cbuf_format_desc;
531 LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
532 LLVMValueRef alpha_ref_value;
533
534 alpha_ref_value = lp_jit_context_alpha_ref_value(gallivm, context_ptr);
535 alpha_ref_value = lp_build_broadcast(gallivm, vec_type, alpha_ref_value);
536
537 cbuf_format_desc = util_format_description(key->cbuf_format[0]);
538
539 lp_build_alpha_test(gallivm, key->alpha.func, type, cbuf_format_desc,
540 &mask, alpha, alpha_ref_value,
541 (depth_mode & LATE_DEPTH_TEST) != 0);
542 }
543 }
544
545 /* Emulate Alpha to Coverage with Alpha test */
546 if (key->blend.alpha_to_coverage) {
547 int color0 = find_output_by_semantic(&shader->info.base,
548 TGSI_SEMANTIC_COLOR,
549 0);
550
551 if (color0 != -1 && outputs[color0][3]) {
552 LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
553
554 lp_build_alpha_to_coverage(gallivm, type,
555 &mask, alpha,
556 (depth_mode & LATE_DEPTH_TEST) != 0);
557 }
558 }
559
560 if (shader->info.base.writes_samplemask) {
561 int smaski = find_output_by_semantic(&shader->info.base,
562 TGSI_SEMANTIC_SAMPLEMASK,
563 0);
564 LLVMValueRef smask;
565 struct lp_build_context smask_bld;
566 lp_build_context_init(&smask_bld, gallivm, int_type);
567
568 assert(smaski >= 0);
569 smask = LLVMBuildLoad(builder, outputs[smaski][0], "smask");
570 /*
571 * Pixel is alive according to the first sample in the mask.
572 */
573 smask = LLVMBuildBitCast(builder, smask, smask_bld.vec_type, "");
574 smask = lp_build_and(&smask_bld, smask, smask_bld.one);
575 smask = lp_build_cmp(&smask_bld, PIPE_FUNC_NOTEQUAL, smask, smask_bld.zero);
576 lp_build_mask_update(&mask, smask);
577 }
578
579 /* Late Z test */
580 if (depth_mode & LATE_DEPTH_TEST) {
581 int pos0 = find_output_by_semantic(&shader->info.base,
582 TGSI_SEMANTIC_POSITION,
583 0);
584 int s_out = find_output_by_semantic(&shader->info.base,
585 TGSI_SEMANTIC_STENCIL,
586 0);
587 if (pos0 != -1 && outputs[pos0][2]) {
588 z = LLVMBuildLoad(builder, outputs[pos0][2], "output.z");
589 }
590 /*
591 * Clamp according to ARB_depth_clamp semantics.
592 */
593 if (key->depth_clamp) {
594 z = lp_build_depth_clamp(gallivm, builder, type, context_ptr,
595 thread_data_ptr, z);
596 }
597
598 if (s_out != -1 && outputs[s_out][1]) {
599 /* there's only one value, and spec says to discard additional bits */
600 LLVMValueRef s_max_mask = lp_build_const_int_vec(gallivm, int_type, 255);
601 stencil_refs[0] = LLVMBuildLoad(builder, outputs[s_out][1], "output.s");
602 stencil_refs[0] = LLVMBuildBitCast(builder, stencil_refs[0], int_vec_type, "");
603 stencil_refs[0] = LLVMBuildAnd(builder, stencil_refs[0], s_max_mask, "");
604 stencil_refs[1] = stencil_refs[0];
605 }
606
607 lp_build_depth_stencil_load_swizzled(gallivm, type,
608 zs_format_desc, key->resource_1d,
609 depth_ptr, depth_stride,
610 &z_fb, &s_fb, loop_state.counter);
611
612 lp_build_depth_stencil_test(gallivm,
613 &key->depth,
614 key->stencil,
615 type,
616 zs_format_desc,
617 &mask,
618 NULL,
619 stencil_refs,
620 z, z_fb, s_fb,
621 facing,
622 &z_value, &s_value,
623 !simple_shader);
624 /* Late Z write */
625 if (depth_mode & LATE_DEPTH_WRITE) {
626 lp_build_depth_stencil_write_swizzled(gallivm, type,
627 zs_format_desc, key->resource_1d,
628 NULL, NULL, NULL, loop_state.counter,
629 depth_ptr, depth_stride,
630 z_value, s_value);
631 }
632 }
633 else if ((depth_mode & EARLY_DEPTH_TEST) &&
634 (depth_mode & LATE_DEPTH_WRITE))
635 {
636 /* Need to apply a reduced mask to the depth write. Reload the
637 * depth value, update from zs_value with the new mask value and
638 * write that out.
639 */
640 lp_build_depth_stencil_write_swizzled(gallivm, type,
641 zs_format_desc, key->resource_1d,
642 lp_build_mask_value(&mask), z_fb, s_fb, loop_state.counter,
643 depth_ptr, depth_stride,
644 z_value, s_value);
645 }
646
647
648 /* Color write */
649 for (attrib = 0; attrib < shader->info.base.num_outputs; ++attrib)
650 {
651 unsigned cbuf = shader->info.base.output_semantic_index[attrib];
652 if ((shader->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_COLOR) &&
653 ((cbuf < key->nr_cbufs) || (cbuf == 1 && dual_source_blend)))
654 {
655 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
656 if(outputs[attrib][chan]) {
657 /* XXX: just initialize outputs to point at colors[] and
658 * skip this.
659 */
660 LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
661 LLVMValueRef color_ptr;
662 color_ptr = LLVMBuildGEP(builder, out_color[cbuf][chan],
663 &loop_state.counter, 1, "");
664 lp_build_name(out, "color%u.%c", attrib, "rgba"[chan]);
665 LLVMBuildStore(builder, out, color_ptr);
666 }
667 }
668 }
669 }
670
671 if (key->occlusion_count) {
672 LLVMValueRef counter = lp_jit_thread_data_counter(gallivm, thread_data_ptr);
673 lp_build_name(counter, "counter");
674 lp_build_occlusion_count(gallivm, type,
675 lp_build_mask_value(&mask), counter);
676 }
677
678 mask_val = lp_build_mask_end(&mask);
679 LLVMBuildStore(builder, mask_val, mask_ptr);
680 lp_build_for_loop_end(&loop_state);
681 }
682
683
684 /**
685 * This function will reorder pixels from the fragment shader SoA to memory layout AoS
686 *
687 * Fragment Shader outputs pixels in small 2x2 blocks
688 * e.g. (0, 0), (1, 0), (0, 1), (1, 1) ; (2, 0) ...
689 *
690 * However in memory pixels are stored in rows
691 * e.g. (0, 0), (1, 0), (2, 0), (3, 0) ; (0, 1) ...
692 *
693 * @param type fragment shader type (4x or 8x float)
694 * @param num_fs number of fs_src
695 * @param is_1d whether we're outputting to a 1d resource
696 * @param dst_channels number of output channels
697 * @param fs_src output from fragment shader
698 * @param dst pointer to store result
699 * @param pad_inline is channel padding inline or at end of row
700 * @return the number of dsts
701 */
702 static int
703 generate_fs_twiddle(struct gallivm_state *gallivm,
704 struct lp_type type,
705 unsigned num_fs,
706 unsigned dst_channels,
707 LLVMValueRef fs_src[][4],
708 LLVMValueRef* dst,
709 bool pad_inline)
710 {
711 LLVMValueRef src[16];
712
713 bool swizzle_pad;
714 bool twiddle;
715 bool split;
716
717 unsigned pixels = type.length / 4;
718 unsigned reorder_group;
719 unsigned src_channels;
720 unsigned src_count;
721 unsigned i;
722
723 src_channels = dst_channels < 3 ? dst_channels : 4;
724 src_count = num_fs * src_channels;
725
726 assert(pixels == 2 || pixels == 1);
727 assert(num_fs * src_channels <= ARRAY_SIZE(src));
728
729 /*
730 * Transpose from SoA -> AoS
731 */
732 for (i = 0; i < num_fs; ++i) {
733 lp_build_transpose_aos_n(gallivm, type, &fs_src[i][0], src_channels, &src[i * src_channels]);
734 }
735
736 /*
737 * Pick transformation options
738 */
739 swizzle_pad = false;
740 twiddle = false;
741 split = false;
742 reorder_group = 0;
743
744 if (dst_channels == 1) {
745 twiddle = true;
746
747 if (pixels == 2) {
748 split = true;
749 }
750 } else if (dst_channels == 2) {
751 if (pixels == 1) {
752 reorder_group = 1;
753 }
754 } else if (dst_channels > 2) {
755 if (pixels == 1) {
756 reorder_group = 2;
757 } else {
758 twiddle = true;
759 }
760
761 if (!pad_inline && dst_channels == 3 && pixels > 1) {
762 swizzle_pad = true;
763 }
764 }
765
766 /*
767 * Split the src in half
768 */
769 if (split) {
770 for (i = num_fs; i > 0; --i) {
771 src[(i - 1)*2 + 1] = lp_build_extract_range(gallivm, src[i - 1], 4, 4);
772 src[(i - 1)*2 + 0] = lp_build_extract_range(gallivm, src[i - 1], 0, 4);
773 }
774
775 src_count *= 2;
776 type.length = 4;
777 }
778
779 /*
780 * Ensure pixels are in memory order
781 */
782 if (reorder_group) {
783 /* Twiddle pixels by reordering the array, e.g.:
784 *
785 * src_count = 8 -> 0 2 1 3 4 6 5 7
786 * src_count = 16 -> 0 1 4 5 2 3 6 7 8 9 12 13 10 11 14 15
787 */
788 const unsigned reorder_sw[] = { 0, 2, 1, 3 };
789
790 for (i = 0; i < src_count; ++i) {
791 unsigned group = i / reorder_group;
792 unsigned block = (group / 4) * 4 * reorder_group;
793 unsigned j = block + (reorder_sw[group % 4] * reorder_group) + (i % reorder_group);
794 dst[i] = src[j];
795 }
796 } else if (twiddle) {
797 /* Twiddle pixels across elements of array */
798 /*
799 * XXX: we should avoid this in some cases, but would need to tell
800 * lp_build_conv to reorder (or deal with it ourselves).
801 */
802 lp_bld_quad_twiddle(gallivm, type, src, src_count, dst);
803 } else {
804 /* Do nothing */
805 memcpy(dst, src, sizeof(LLVMValueRef) * src_count);
806 }
807
808 /*
809 * Moves any padding between pixels to the end
810 * e.g. RGBXRGBX -> RGBRGBXX
811 */
812 if (swizzle_pad) {
813 unsigned char swizzles[16];
814 unsigned elems = pixels * dst_channels;
815
816 for (i = 0; i < type.length; ++i) {
817 if (i < elems)
818 swizzles[i] = i % dst_channels + (i / dst_channels) * 4;
819 else
820 swizzles[i] = LP_BLD_SWIZZLE_DONTCARE;
821 }
822
823 for (i = 0; i < src_count; ++i) {
824 dst[i] = lp_build_swizzle_aos_n(gallivm, dst[i], swizzles, type.length, type.length);
825 }
826 }
827
828 return src_count;
829 }
830
831
832 /*
833 * Untwiddle and transpose, much like the above.
834 * However, this is after conversion, so we get packed vectors.
835 * At this time only handle 4x16i8 rgba / 2x16i8 rg / 1x16i8 r data,
836 * the vectors will look like:
837 * r0r1r4r5r2r3r6r7r8r9r12... (albeit color channels may
838 * be swizzled here). Extending to 16bit should be trivial.
839 * Should also be extended to handle twice wide vectors with AVX2...
840 */
841 static void
842 fs_twiddle_transpose(struct gallivm_state *gallivm,
843 struct lp_type type,
844 LLVMValueRef *src,
845 unsigned src_count,
846 LLVMValueRef *dst)
847 {
848 unsigned i, j;
849 struct lp_type type64, type16, type32;
850 LLVMTypeRef type64_t, type8_t, type16_t, type32_t;
851 LLVMBuilderRef builder = gallivm->builder;
852 LLVMValueRef tmp[4], shuf[8];
853 for (j = 0; j < 2; j++) {
854 shuf[j*4 + 0] = lp_build_const_int32(gallivm, j*4 + 0);
855 shuf[j*4 + 1] = lp_build_const_int32(gallivm, j*4 + 2);
856 shuf[j*4 + 2] = lp_build_const_int32(gallivm, j*4 + 1);
857 shuf[j*4 + 3] = lp_build_const_int32(gallivm, j*4 + 3);
858 }
859
860 assert(src_count == 4 || src_count == 2 || src_count == 1);
861 assert(type.width == 8);
862 assert(type.length == 16);
863
864 type8_t = lp_build_vec_type(gallivm, type);
865
866 type64 = type;
867 type64.length /= 8;
868 type64.width *= 8;
869 type64_t = lp_build_vec_type(gallivm, type64);
870
871 type16 = type;
872 type16.length /= 2;
873 type16.width *= 2;
874 type16_t = lp_build_vec_type(gallivm, type16);
875
876 type32 = type;
877 type32.length /= 4;
878 type32.width *= 4;
879 type32_t = lp_build_vec_type(gallivm, type32);
880
881 lp_build_transpose_aos_n(gallivm, type, src, src_count, tmp);
882
883 if (src_count == 1) {
884 /* transpose was no-op, just untwiddle */
885 LLVMValueRef shuf_vec;
886 shuf_vec = LLVMConstVector(shuf, 8);
887 tmp[0] = LLVMBuildBitCast(builder, src[0], type16_t, "");
888 tmp[0] = LLVMBuildShuffleVector(builder, tmp[0], tmp[0], shuf_vec, "");
889 dst[0] = LLVMBuildBitCast(builder, tmp[0], type8_t, "");
890 } else if (src_count == 2) {
891 LLVMValueRef shuf_vec;
892 shuf_vec = LLVMConstVector(shuf, 4);
893
894 for (i = 0; i < 2; i++) {
895 tmp[i] = LLVMBuildBitCast(builder, tmp[i], type32_t, "");
896 tmp[i] = LLVMBuildShuffleVector(builder, tmp[i], tmp[i], shuf_vec, "");
897 dst[i] = LLVMBuildBitCast(builder, tmp[i], type8_t, "");
898 }
899 } else {
900 for (j = 0; j < 2; j++) {
901 LLVMValueRef lo, hi, lo2, hi2;
902 /*
903 * Note that if we only really have 3 valid channels (rgb)
904 * and we don't need alpha we could substitute a undef here
905 * for the respective channel (causing llvm to drop conversion
906 * for alpha).
907 */
908 /* we now have rgba0rgba1rgba4rgba5 etc, untwiddle */
909 lo2 = LLVMBuildBitCast(builder, tmp[j*2], type64_t, "");
910 hi2 = LLVMBuildBitCast(builder, tmp[j*2 + 1], type64_t, "");
911 lo = lp_build_interleave2(gallivm, type64, lo2, hi2, 0);
912 hi = lp_build_interleave2(gallivm, type64, lo2, hi2, 1);
913 dst[j*2] = LLVMBuildBitCast(builder, lo, type8_t, "");
914 dst[j*2 + 1] = LLVMBuildBitCast(builder, hi, type8_t, "");
915 }
916 }
917 }
918
919
920 /**
921 * Load an unswizzled block of pixels from memory
922 */
923 static void
924 load_unswizzled_block(struct gallivm_state *gallivm,
925 LLVMValueRef base_ptr,
926 LLVMValueRef stride,
927 unsigned block_width,
928 unsigned block_height,
929 LLVMValueRef* dst,
930 struct lp_type dst_type,
931 unsigned dst_count,
932 unsigned dst_alignment)
933 {
934 LLVMBuilderRef builder = gallivm->builder;
935 unsigned row_size = dst_count / block_height;
936 unsigned i;
937
938 /* Ensure block exactly fits into dst */
939 assert((block_width * block_height) % dst_count == 0);
940
941 for (i = 0; i < dst_count; ++i) {
942 unsigned x = i % row_size;
943 unsigned y = i / row_size;
944
945 LLVMValueRef bx = lp_build_const_int32(gallivm, x * (dst_type.width / 8) * dst_type.length);
946 LLVMValueRef by = LLVMBuildMul(builder, lp_build_const_int32(gallivm, y), stride, "");
947
948 LLVMValueRef gep[2];
949 LLVMValueRef dst_ptr;
950
951 gep[0] = lp_build_const_int32(gallivm, 0);
952 gep[1] = LLVMBuildAdd(builder, bx, by, "");
953
954 dst_ptr = LLVMBuildGEP(builder, base_ptr, gep, 2, "");
955 dst_ptr = LLVMBuildBitCast(builder, dst_ptr,
956 LLVMPointerType(lp_build_vec_type(gallivm, dst_type), 0), "");
957
958 dst[i] = LLVMBuildLoad(builder, dst_ptr, "");
959
960 LLVMSetAlignment(dst[i], dst_alignment);
961 }
962 }
963
964
965 /**
966 * Store an unswizzled block of pixels to memory
967 */
968 static void
969 store_unswizzled_block(struct gallivm_state *gallivm,
970 LLVMValueRef base_ptr,
971 LLVMValueRef stride,
972 unsigned block_width,
973 unsigned block_height,
974 LLVMValueRef* src,
975 struct lp_type src_type,
976 unsigned src_count,
977 unsigned src_alignment)
978 {
979 LLVMBuilderRef builder = gallivm->builder;
980 unsigned row_size = src_count / block_height;
981 unsigned i;
982
983 /* Ensure src exactly fits into block */
984 assert((block_width * block_height) % src_count == 0);
985
986 for (i = 0; i < src_count; ++i) {
987 unsigned x = i % row_size;
988 unsigned y = i / row_size;
989
990 LLVMValueRef bx = lp_build_const_int32(gallivm, x * (src_type.width / 8) * src_type.length);
991 LLVMValueRef by = LLVMBuildMul(builder, lp_build_const_int32(gallivm, y), stride, "");
992
993 LLVMValueRef gep[2];
994 LLVMValueRef src_ptr;
995
996 gep[0] = lp_build_const_int32(gallivm, 0);
997 gep[1] = LLVMBuildAdd(builder, bx, by, "");
998
999 src_ptr = LLVMBuildGEP(builder, base_ptr, gep, 2, "");
1000 src_ptr = LLVMBuildBitCast(builder, src_ptr,
1001 LLVMPointerType(lp_build_vec_type(gallivm, src_type), 0), "");
1002
1003 src_ptr = LLVMBuildStore(builder, src[i], src_ptr);
1004
1005 LLVMSetAlignment(src_ptr, src_alignment);
1006 }
1007 }
1008
1009
1010 /**
1011 * Checks if a format description is an arithmetic format
1012 *
1013 * A format which has irregular channel sizes such as R3_G3_B2 or R5_G6_B5.
1014 */
1015 static inline boolean
1016 is_arithmetic_format(const struct util_format_description *format_desc)
1017 {
1018 boolean arith = false;
1019 unsigned i;
1020
1021 for (i = 0; i < format_desc->nr_channels; ++i) {
1022 arith |= format_desc->channel[i].size != format_desc->channel[0].size;
1023 arith |= (format_desc->channel[i].size % 8) != 0;
1024 }
1025
1026 return arith;
1027 }
1028
1029
1030 /**
1031 * Checks if this format requires special handling due to required expansion
1032 * to floats for blending, and furthermore has "natural" packed AoS -> unpacked
1033 * SoA conversion.
1034 */
1035 static inline boolean
1036 format_expands_to_float_soa(const struct util_format_description *format_desc)
1037 {
1038 if (format_desc->format == PIPE_FORMAT_R11G11B10_FLOAT ||
1039 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) {
1040 return true;
1041 }
1042 return false;
1043 }
1044
1045
1046 /**
1047 * Retrieves the type representing the memory layout for a format
1048 *
1049 * e.g. RGBA16F = 4x half-float and R3G3B2 = 1x byte
1050 */
1051 static inline void
1052 lp_mem_type_from_format_desc(const struct util_format_description *format_desc,
1053 struct lp_type* type)
1054 {
1055 unsigned i;
1056 unsigned chan;
1057
1058 if (format_expands_to_float_soa(format_desc)) {
1059 /* just make this a uint with width of block */
1060 type->floating = false;
1061 type->fixed = false;
1062 type->sign = false;
1063 type->norm = false;
1064 type->width = format_desc->block.bits;
1065 type->length = 1;
1066 return;
1067 }
1068
1069 for (i = 0; i < 4; i++)
1070 if (format_desc->channel[i].type != UTIL_FORMAT_TYPE_VOID)
1071 break;
1072 chan = i;
1073
1074 memset(type, 0, sizeof(struct lp_type));
1075 type->floating = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FLOAT;
1076 type->fixed = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FIXED;
1077 type->sign = format_desc->channel[chan].type != UTIL_FORMAT_TYPE_UNSIGNED;
1078 type->norm = format_desc->channel[chan].normalized;
1079
1080 if (is_arithmetic_format(format_desc)) {
1081 type->width = 0;
1082 type->length = 1;
1083
1084 for (i = 0; i < format_desc->nr_channels; ++i) {
1085 type->width += format_desc->channel[i].size;
1086 }
1087 } else {
1088 type->width = format_desc->channel[chan].size;
1089 type->length = format_desc->nr_channels;
1090 }
1091 }
1092
1093
1094 /**
1095 * Retrieves the type for a format which is usable in the blending code.
1096 *
1097 * e.g. RGBA16F = 4x float, R3G3B2 = 3x byte
1098 */
1099 static inline void
1100 lp_blend_type_from_format_desc(const struct util_format_description *format_desc,
1101 struct lp_type* type)
1102 {
1103 unsigned i;
1104 unsigned chan;
1105
1106 if (format_expands_to_float_soa(format_desc)) {
1107 /* always use ordinary floats for blending */
1108 type->floating = true;
1109 type->fixed = false;
1110 type->sign = true;
1111 type->norm = false;
1112 type->width = 32;
1113 type->length = 4;
1114 return;
1115 }
1116
1117 for (i = 0; i < 4; i++)
1118 if (format_desc->channel[i].type != UTIL_FORMAT_TYPE_VOID)
1119 break;
1120 chan = i;
1121
1122 memset(type, 0, sizeof(struct lp_type));
1123 type->floating = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FLOAT;
1124 type->fixed = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FIXED;
1125 type->sign = format_desc->channel[chan].type != UTIL_FORMAT_TYPE_UNSIGNED;
1126 type->norm = format_desc->channel[chan].normalized;
1127 type->width = format_desc->channel[chan].size;
1128 type->length = format_desc->nr_channels;
1129
1130 for (i = 1; i < format_desc->nr_channels; ++i) {
1131 if (format_desc->channel[i].size > type->width)
1132 type->width = format_desc->channel[i].size;
1133 }
1134
1135 if (type->floating) {
1136 type->width = 32;
1137 } else {
1138 if (type->width <= 8) {
1139 type->width = 8;
1140 } else if (type->width <= 16) {
1141 type->width = 16;
1142 } else {
1143 type->width = 32;
1144 }
1145 }
1146
1147 if (is_arithmetic_format(format_desc) && type->length == 3) {
1148 type->length = 4;
1149 }
1150 }
1151
1152
1153 /**
1154 * Scale a normalized value from src_bits to dst_bits.
1155 *
1156 * The exact calculation is
1157 *
1158 * dst = iround(src * dst_mask / src_mask)
1159 *
1160 * or with integer rounding
1161 *
1162 * dst = src * (2*dst_mask + sign(src)*src_mask) / (2*src_mask)
1163 *
1164 * where
1165 *
1166 * src_mask = (1 << src_bits) - 1
1167 * dst_mask = (1 << dst_bits) - 1
1168 *
1169 * but we try to avoid division and multiplication through shifts.
1170 */
1171 static inline LLVMValueRef
1172 scale_bits(struct gallivm_state *gallivm,
1173 int src_bits,
1174 int dst_bits,
1175 LLVMValueRef src,
1176 struct lp_type src_type)
1177 {
1178 LLVMBuilderRef builder = gallivm->builder;
1179 LLVMValueRef result = src;
1180
1181 if (dst_bits < src_bits) {
1182 int delta_bits = src_bits - dst_bits;
1183
1184 if (delta_bits <= dst_bits) {
1185 /*
1186 * Approximate the rescaling with a single shift.
1187 *
1188 * This gives the wrong rounding.
1189 */
1190
1191 result = LLVMBuildLShr(builder,
1192 src,
1193 lp_build_const_int_vec(gallivm, src_type, delta_bits),
1194 "");
1195
1196 } else {
1197 /*
1198 * Try more accurate rescaling.
1199 */
1200
1201 /*
1202 * Drop the least significant bits to make space for the multiplication.
1203 *
1204 * XXX: A better approach would be to use a wider integer type as intermediate. But
1205 * this is enough to convert alpha from 16bits -> 2 when rendering to
1206 * PIPE_FORMAT_R10G10B10A2_UNORM.
1207 */
1208 result = LLVMBuildLShr(builder,
1209 src,
1210 lp_build_const_int_vec(gallivm, src_type, dst_bits),
1211 "");
1212
1213
1214 result = LLVMBuildMul(builder,
1215 result,
1216 lp_build_const_int_vec(gallivm, src_type, (1LL << dst_bits) - 1),
1217 "");
1218
1219 /*
1220 * Add a rounding term before the division.
1221 *
1222 * TODO: Handle signed integers too.
1223 */
1224 if (!src_type.sign) {
1225 result = LLVMBuildAdd(builder,
1226 result,
1227 lp_build_const_int_vec(gallivm, src_type, (1LL << (delta_bits - 1))),
1228 "");
1229 }
1230
1231 /*
1232 * Approximate the division by src_mask with a src_bits shift.
1233 *
1234 * Given the src has already been shifted by dst_bits, all we need
1235 * to do is to shift by the difference.
1236 */
1237
1238 result = LLVMBuildLShr(builder,
1239 result,
1240 lp_build_const_int_vec(gallivm, src_type, delta_bits),
1241 "");
1242 }
1243
1244 } else if (dst_bits > src_bits) {
1245 /* Scale up bits */
1246 int db = dst_bits - src_bits;
1247
1248 /* Shift left by difference in bits */
1249 result = LLVMBuildShl(builder,
1250 src,
1251 lp_build_const_int_vec(gallivm, src_type, db),
1252 "");
1253
1254 if (db <= src_bits) {
1255 /* Enough bits in src to fill the remainder */
1256 LLVMValueRef lower = LLVMBuildLShr(builder,
1257 src,
1258 lp_build_const_int_vec(gallivm, src_type, src_bits - db),
1259 "");
1260
1261 result = LLVMBuildOr(builder, result, lower, "");
1262 } else if (db > src_bits) {
1263 /* Need to repeatedly copy src bits to fill remainder in dst */
1264 unsigned n;
1265
1266 for (n = src_bits; n < dst_bits; n *= 2) {
1267 LLVMValueRef shuv = lp_build_const_int_vec(gallivm, src_type, n);
1268
1269 result = LLVMBuildOr(builder,
1270 result,
1271 LLVMBuildLShr(builder, result, shuv, ""),
1272 "");
1273 }
1274 }
1275 }
1276
1277 return result;
1278 }
1279
1280 /**
1281 * If RT is a smallfloat (needing denorms) format
1282 */
1283 static inline int
1284 have_smallfloat_format(struct lp_type dst_type,
1285 enum pipe_format format)
1286 {
1287 return ((dst_type.floating && dst_type.width != 32) ||
1288 /* due to format handling hacks this format doesn't have floating set
1289 * here (and actually has width set to 32 too) so special case this. */
1290 (format == PIPE_FORMAT_R11G11B10_FLOAT));
1291 }
1292
1293
1294 /**
1295 * Convert from memory format to blending format
1296 *
1297 * e.g. GL_R3G3B2 is 1 byte in memory but 3 bytes for blending
1298 */
1299 static void
1300 convert_to_blend_type(struct gallivm_state *gallivm,
1301 unsigned block_size,
1302 const struct util_format_description *src_fmt,
1303 struct lp_type src_type,
1304 struct lp_type dst_type,
1305 LLVMValueRef* src, // and dst
1306 unsigned num_srcs)
1307 {
1308 LLVMValueRef *dst = src;
1309 LLVMBuilderRef builder = gallivm->builder;
1310 struct lp_type blend_type;
1311 struct lp_type mem_type;
1312 unsigned i, j;
1313 unsigned pixels = block_size / num_srcs;
1314 bool is_arith;
1315
1316 /*
1317 * full custom path for packed floats and srgb formats - none of the later
1318 * functions would do anything useful, and given the lp_type representation they
1319 * can't be fixed. Should really have some SoA blend path for these kind of
1320 * formats rather than hacking them in here.
1321 */
1322 if (format_expands_to_float_soa(src_fmt)) {
1323 LLVMValueRef tmpsrc[4];
1324 /*
1325 * This is pretty suboptimal for this case blending in SoA would be much
1326 * better, since conversion gets us SoA values so need to convert back.
1327 */
1328 assert(src_type.width == 32 || src_type.width == 16);
1329 assert(dst_type.floating);
1330 assert(dst_type.width == 32);
1331 assert(dst_type.length % 4 == 0);
1332 assert(num_srcs % 4 == 0);
1333
1334 if (src_type.width == 16) {
1335 /* expand 4x16bit values to 4x32bit */
1336 struct lp_type type32x4 = src_type;
1337 LLVMTypeRef ltype32x4;
1338 unsigned num_fetch = dst_type.length == 8 ? num_srcs / 2 : num_srcs / 4;
1339 type32x4.width = 32;
1340 ltype32x4 = lp_build_vec_type(gallivm, type32x4);
1341 for (i = 0; i < num_fetch; i++) {
1342 src[i] = LLVMBuildZExt(builder, src[i], ltype32x4, "");
1343 }
1344 src_type.width = 32;
1345 }
1346 for (i = 0; i < 4; i++) {
1347 tmpsrc[i] = src[i];
1348 }
1349 for (i = 0; i < num_srcs / 4; i++) {
1350 LLVMValueRef tmpsoa[4];
1351 LLVMValueRef tmps = tmpsrc[i];
1352 if (dst_type.length == 8) {
1353 LLVMValueRef shuffles[8];
1354 unsigned j;
1355 /* fetch was 4 values but need 8-wide output values */
1356 tmps = lp_build_concat(gallivm, &tmpsrc[i * 2], src_type, 2);
1357 /*
1358 * for 8-wide aos transpose would give us wrong order not matching
1359 * incoming converted fs values and mask. ARGH.
1360 */
1361 for (j = 0; j < 4; j++) {
1362 shuffles[j] = lp_build_const_int32(gallivm, j * 2);
1363 shuffles[j + 4] = lp_build_const_int32(gallivm, j * 2 + 1);
1364 }
1365 tmps = LLVMBuildShuffleVector(builder, tmps, tmps,
1366 LLVMConstVector(shuffles, 8), "");
1367 }
1368 if (src_fmt->format == PIPE_FORMAT_R11G11B10_FLOAT) {
1369 lp_build_r11g11b10_to_float(gallivm, tmps, tmpsoa);
1370 }
1371 else {
1372 lp_build_unpack_rgba_soa(gallivm, src_fmt, dst_type, tmps, tmpsoa);
1373 }
1374 lp_build_transpose_aos(gallivm, dst_type, tmpsoa, &src[i * 4]);
1375 }
1376 return;
1377 }
1378
1379 lp_mem_type_from_format_desc(src_fmt, &mem_type);
1380 lp_blend_type_from_format_desc(src_fmt, &blend_type);
1381
1382 /* Is the format arithmetic */
1383 is_arith = blend_type.length * blend_type.width != mem_type.width * mem_type.length;
1384 is_arith &= !(mem_type.width == 16 && mem_type.floating);
1385
1386 /* Pad if necessary */
1387 if (!is_arith && src_type.length < dst_type.length) {
1388 for (i = 0; i < num_srcs; ++i) {
1389 dst[i] = lp_build_pad_vector(gallivm, src[i], dst_type.length);
1390 }
1391
1392 src_type.length = dst_type.length;
1393 }
1394
1395 /* Special case for half-floats */
1396 if (mem_type.width == 16 && mem_type.floating) {
1397 assert(blend_type.width == 32 && blend_type.floating);
1398 lp_build_conv_auto(gallivm, src_type, &dst_type, dst, num_srcs, dst);
1399 is_arith = false;
1400 }
1401
1402 if (!is_arith) {
1403 return;
1404 }
1405
1406 src_type.width = blend_type.width * blend_type.length;
1407 blend_type.length *= pixels;
1408 src_type.length *= pixels / (src_type.length / mem_type.length);
1409
1410 for (i = 0; i < num_srcs; ++i) {
1411 LLVMValueRef chans[4];
1412 LLVMValueRef res = NULL;
1413
1414 dst[i] = LLVMBuildZExt(builder, src[i], lp_build_vec_type(gallivm, src_type), "");
1415
1416 for (j = 0; j < src_fmt->nr_channels; ++j) {
1417 unsigned mask = 0;
1418 unsigned sa = src_fmt->channel[j].shift;
1419 #if UTIL_ARCH_LITTLE_ENDIAN
1420 unsigned from_lsb = j;
1421 #else
1422 unsigned from_lsb = src_fmt->nr_channels - j - 1;
1423 #endif
1424
1425 mask = (1 << src_fmt->channel[j].size) - 1;
1426
1427 /* Extract bits from source */
1428 chans[j] = LLVMBuildLShr(builder,
1429 dst[i],
1430 lp_build_const_int_vec(gallivm, src_type, sa),
1431 "");
1432
1433 chans[j] = LLVMBuildAnd(builder,
1434 chans[j],
1435 lp_build_const_int_vec(gallivm, src_type, mask),
1436 "");
1437
1438 /* Scale bits */
1439 if (src_type.norm) {
1440 chans[j] = scale_bits(gallivm, src_fmt->channel[j].size,
1441 blend_type.width, chans[j], src_type);
1442 }
1443
1444 /* Insert bits into correct position */
1445 chans[j] = LLVMBuildShl(builder,
1446 chans[j],
1447 lp_build_const_int_vec(gallivm, src_type, from_lsb * blend_type.width),
1448 "");
1449
1450 if (j == 0) {
1451 res = chans[j];
1452 } else {
1453 res = LLVMBuildOr(builder, res, chans[j], "");
1454 }
1455 }
1456
1457 dst[i] = LLVMBuildBitCast(builder, res, lp_build_vec_type(gallivm, blend_type), "");
1458 }
1459 }
1460
1461
1462 /**
1463 * Convert from blending format to memory format
1464 *
1465 * e.g. GL_R3G3B2 is 3 bytes for blending but 1 byte in memory
1466 */
1467 static void
1468 convert_from_blend_type(struct gallivm_state *gallivm,
1469 unsigned block_size,
1470 const struct util_format_description *src_fmt,
1471 struct lp_type src_type,
1472 struct lp_type dst_type,
1473 LLVMValueRef* src, // and dst
1474 unsigned num_srcs)
1475 {
1476 LLVMValueRef* dst = src;
1477 unsigned i, j, k;
1478 struct lp_type mem_type;
1479 struct lp_type blend_type;
1480 LLVMBuilderRef builder = gallivm->builder;
1481 unsigned pixels = block_size / num_srcs;
1482 bool is_arith;
1483
1484 /*
1485 * full custom path for packed floats and srgb formats - none of the later
1486 * functions would do anything useful, and given the lp_type representation they
1487 * can't be fixed. Should really have some SoA blend path for these kind of
1488 * formats rather than hacking them in here.
1489 */
1490 if (format_expands_to_float_soa(src_fmt)) {
1491 /*
1492 * This is pretty suboptimal for this case blending in SoA would be much
1493 * better - we need to transpose the AoS values back to SoA values for
1494 * conversion/packing.
1495 */
1496 assert(src_type.floating);
1497 assert(src_type.width == 32);
1498 assert(src_type.length % 4 == 0);
1499 assert(dst_type.width == 32 || dst_type.width == 16);
1500
1501 for (i = 0; i < num_srcs / 4; i++) {
1502 LLVMValueRef tmpsoa[4], tmpdst;
1503 lp_build_transpose_aos(gallivm, src_type, &src[i * 4], tmpsoa);
1504 /* really really need SoA here */
1505
1506 if (src_fmt->format == PIPE_FORMAT_R11G11B10_FLOAT) {
1507 tmpdst = lp_build_float_to_r11g11b10(gallivm, tmpsoa);
1508 }
1509 else {
1510 tmpdst = lp_build_float_to_srgb_packed(gallivm, src_fmt,
1511 src_type, tmpsoa);
1512 }
1513
1514 if (src_type.length == 8) {
1515 LLVMValueRef tmpaos, shuffles[8];
1516 unsigned j;
1517 /*
1518 * for 8-wide aos transpose has given us wrong order not matching
1519 * output order. HMPF. Also need to split the output values manually.
1520 */
1521 for (j = 0; j < 4; j++) {
1522 shuffles[j * 2] = lp_build_const_int32(gallivm, j);
1523 shuffles[j * 2 + 1] = lp_build_const_int32(gallivm, j + 4);
1524 }
1525 tmpaos = LLVMBuildShuffleVector(builder, tmpdst, tmpdst,
1526 LLVMConstVector(shuffles, 8), "");
1527 src[i * 2] = lp_build_extract_range(gallivm, tmpaos, 0, 4);
1528 src[i * 2 + 1] = lp_build_extract_range(gallivm, tmpaos, 4, 4);
1529 }
1530 else {
1531 src[i] = tmpdst;
1532 }
1533 }
1534 if (dst_type.width == 16) {
1535 struct lp_type type16x8 = dst_type;
1536 struct lp_type type32x4 = dst_type;
1537 LLVMTypeRef ltype16x4, ltypei64, ltypei128;
1538 unsigned num_fetch = src_type.length == 8 ? num_srcs / 2 : num_srcs / 4;
1539 type16x8.length = 8;
1540 type32x4.width = 32;
1541 ltypei128 = LLVMIntTypeInContext(gallivm->context, 128);
1542 ltypei64 = LLVMIntTypeInContext(gallivm->context, 64);
1543 ltype16x4 = lp_build_vec_type(gallivm, dst_type);
1544 /* We could do vector truncation but it doesn't generate very good code */
1545 for (i = 0; i < num_fetch; i++) {
1546 src[i] = lp_build_pack2(gallivm, type32x4, type16x8,
1547 src[i], lp_build_zero(gallivm, type32x4));
1548 src[i] = LLVMBuildBitCast(builder, src[i], ltypei128, "");
1549 src[i] = LLVMBuildTrunc(builder, src[i], ltypei64, "");
1550 src[i] = LLVMBuildBitCast(builder, src[i], ltype16x4, "");
1551 }
1552 }
1553 return;
1554 }
1555
1556 lp_mem_type_from_format_desc(src_fmt, &mem_type);
1557 lp_blend_type_from_format_desc(src_fmt, &blend_type);
1558
1559 is_arith = (blend_type.length * blend_type.width != mem_type.width * mem_type.length);
1560
1561 /* Special case for half-floats */
1562 if (mem_type.width == 16 && mem_type.floating) {
1563 int length = dst_type.length;
1564 assert(blend_type.width == 32 && blend_type.floating);
1565
1566 dst_type.length = src_type.length;
1567
1568 lp_build_conv_auto(gallivm, src_type, &dst_type, dst, num_srcs, dst);
1569
1570 dst_type.length = length;
1571 is_arith = false;
1572 }
1573
1574 /* Remove any padding */
1575 if (!is_arith && (src_type.length % mem_type.length)) {
1576 src_type.length -= (src_type.length % mem_type.length);
1577
1578 for (i = 0; i < num_srcs; ++i) {
1579 dst[i] = lp_build_extract_range(gallivm, dst[i], 0, src_type.length);
1580 }
1581 }
1582
1583 /* No bit arithmetic to do */
1584 if (!is_arith) {
1585 return;
1586 }
1587
1588 src_type.length = pixels;
1589 src_type.width = blend_type.length * blend_type.width;
1590 dst_type.length = pixels;
1591
1592 for (i = 0; i < num_srcs; ++i) {
1593 LLVMValueRef chans[4];
1594 LLVMValueRef res = NULL;
1595
1596 dst[i] = LLVMBuildBitCast(builder, src[i], lp_build_vec_type(gallivm, src_type), "");
1597
1598 for (j = 0; j < src_fmt->nr_channels; ++j) {
1599 unsigned mask = 0;
1600 unsigned sa = src_fmt->channel[j].shift;
1601 unsigned sz_a = src_fmt->channel[j].size;
1602 #if UTIL_ARCH_LITTLE_ENDIAN
1603 unsigned from_lsb = j;
1604 #else
1605 unsigned from_lsb = src_fmt->nr_channels - j - 1;
1606 #endif
1607
1608 assert(blend_type.width > src_fmt->channel[j].size);
1609
1610 for (k = 0; k < blend_type.width; ++k) {
1611 mask |= 1 << k;
1612 }
1613
1614 /* Extract bits */
1615 chans[j] = LLVMBuildLShr(builder,
1616 dst[i],
1617 lp_build_const_int_vec(gallivm, src_type,
1618 from_lsb * blend_type.width),
1619 "");
1620
1621 chans[j] = LLVMBuildAnd(builder,
1622 chans[j],
1623 lp_build_const_int_vec(gallivm, src_type, mask),
1624 "");
1625
1626 /* Scale down bits */
1627 if (src_type.norm) {
1628 chans[j] = scale_bits(gallivm, blend_type.width,
1629 src_fmt->channel[j].size, chans[j], src_type);
1630 } else if (!src_type.floating && sz_a < blend_type.width) {
1631 LLVMValueRef mask_val = lp_build_const_int_vec(gallivm, src_type, (1UL << sz_a) - 1);
1632 LLVMValueRef mask = LLVMBuildICmp(builder, LLVMIntUGT, chans[j], mask_val, "");
1633 chans[j] = LLVMBuildSelect(builder, mask, mask_val, chans[j], "");
1634 }
1635
1636 /* Insert bits */
1637 chans[j] = LLVMBuildShl(builder,
1638 chans[j],
1639 lp_build_const_int_vec(gallivm, src_type, sa),
1640 "");
1641
1642 sa += src_fmt->channel[j].size;
1643
1644 if (j == 0) {
1645 res = chans[j];
1646 } else {
1647 res = LLVMBuildOr(builder, res, chans[j], "");
1648 }
1649 }
1650
1651 assert (dst_type.width != 24);
1652
1653 dst[i] = LLVMBuildTrunc(builder, res, lp_build_vec_type(gallivm, dst_type), "");
1654 }
1655 }
1656
1657
1658 /**
1659 * Convert alpha to same blend type as src
1660 */
1661 static void
1662 convert_alpha(struct gallivm_state *gallivm,
1663 struct lp_type row_type,
1664 struct lp_type alpha_type,
1665 const unsigned block_size,
1666 const unsigned block_height,
1667 const unsigned src_count,
1668 const unsigned dst_channels,
1669 const bool pad_inline,
1670 LLVMValueRef* src_alpha)
1671 {
1672 LLVMBuilderRef builder = gallivm->builder;
1673 unsigned i, j;
1674 unsigned length = row_type.length;
1675 row_type.length = alpha_type.length;
1676
1677 /* Twiddle the alpha to match pixels */
1678 lp_bld_quad_twiddle(gallivm, alpha_type, src_alpha, block_height, src_alpha);
1679
1680 /*
1681 * TODO this should use single lp_build_conv call for
1682 * src_count == 1 && dst_channels == 1 case (dropping the concat below)
1683 */
1684 for (i = 0; i < block_height; ++i) {
1685 lp_build_conv(gallivm, alpha_type, row_type, &src_alpha[i], 1, &src_alpha[i], 1);
1686 }
1687
1688 alpha_type = row_type;
1689 row_type.length = length;
1690
1691 /* If only one channel we can only need the single alpha value per pixel */
1692 if (src_count == 1 && dst_channels == 1) {
1693
1694 lp_build_concat_n(gallivm, alpha_type, src_alpha, block_height, src_alpha, src_count);
1695 } else {
1696 /* If there are more srcs than rows then we need to split alpha up */
1697 if (src_count > block_height) {
1698 for (i = src_count; i > 0; --i) {
1699 unsigned pixels = block_size / src_count;
1700 unsigned idx = i - 1;
1701
1702 src_alpha[idx] = lp_build_extract_range(gallivm, src_alpha[(idx * pixels) / 4],
1703 (idx * pixels) % 4, pixels);
1704 }
1705 }
1706
1707 /* If there is a src for each pixel broadcast the alpha across whole row */
1708 if (src_count == block_size) {
1709 for (i = 0; i < src_count; ++i) {
1710 src_alpha[i] = lp_build_broadcast(gallivm,
1711 lp_build_vec_type(gallivm, row_type), src_alpha[i]);
1712 }
1713 } else {
1714 unsigned pixels = block_size / src_count;
1715 unsigned channels = pad_inline ? TGSI_NUM_CHANNELS : dst_channels;
1716 unsigned alpha_span = 1;
1717 LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH];
1718
1719 /* Check if we need 2 src_alphas for our shuffles */
1720 if (pixels > alpha_type.length) {
1721 alpha_span = 2;
1722 }
1723
1724 /* Broadcast alpha across all channels, e.g. a1a2 to a1a1a1a1a2a2a2a2 */
1725 for (j = 0; j < row_type.length; ++j) {
1726 if (j < pixels * channels) {
1727 shuffles[j] = lp_build_const_int32(gallivm, j / channels);
1728 } else {
1729 shuffles[j] = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context));
1730 }
1731 }
1732
1733 for (i = 0; i < src_count; ++i) {
1734 unsigned idx1 = i, idx2 = i;
1735
1736 if (alpha_span > 1){
1737 idx1 *= alpha_span;
1738 idx2 = idx1 + 1;
1739 }
1740
1741 src_alpha[i] = LLVMBuildShuffleVector(builder,
1742 src_alpha[idx1],
1743 src_alpha[idx2],
1744 LLVMConstVector(shuffles, row_type.length),
1745 "");
1746 }
1747 }
1748 }
1749 }
1750
1751
1752 /**
1753 * Generates the blend function for unswizzled colour buffers
1754 * Also generates the read & write from colour buffer
1755 */
1756 static void
1757 generate_unswizzled_blend(struct gallivm_state *gallivm,
1758 unsigned rt,
1759 struct lp_fragment_shader_variant *variant,
1760 enum pipe_format out_format,
1761 unsigned int num_fs,
1762 struct lp_type fs_type,
1763 LLVMValueRef* fs_mask,
1764 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][4],
1765 LLVMValueRef context_ptr,
1766 LLVMValueRef color_ptr,
1767 LLVMValueRef stride,
1768 unsigned partial_mask,
1769 boolean do_branch)
1770 {
1771 const unsigned alpha_channel = 3;
1772 const unsigned block_width = LP_RASTER_BLOCK_SIZE;
1773 const unsigned block_height = LP_RASTER_BLOCK_SIZE;
1774 const unsigned block_size = block_width * block_height;
1775 const unsigned lp_integer_vector_width = 128;
1776
1777 LLVMBuilderRef builder = gallivm->builder;
1778 LLVMValueRef fs_src[4][TGSI_NUM_CHANNELS];
1779 LLVMValueRef fs_src1[4][TGSI_NUM_CHANNELS];
1780 LLVMValueRef src_alpha[4 * 4];
1781 LLVMValueRef src1_alpha[4 * 4] = { NULL };
1782 LLVMValueRef src_mask[4 * 4];
1783 LLVMValueRef src[4 * 4];
1784 LLVMValueRef src1[4 * 4];
1785 LLVMValueRef dst[4 * 4];
1786 LLVMValueRef blend_color;
1787 LLVMValueRef blend_alpha;
1788 LLVMValueRef i32_zero;
1789 LLVMValueRef check_mask;
1790 LLVMValueRef undef_src_val;
1791
1792 struct lp_build_mask_context mask_ctx;
1793 struct lp_type mask_type;
1794 struct lp_type blend_type;
1795 struct lp_type row_type;
1796 struct lp_type dst_type;
1797 struct lp_type ls_type;
1798
1799 unsigned char swizzle[TGSI_NUM_CHANNELS];
1800 unsigned vector_width;
1801 unsigned src_channels = TGSI_NUM_CHANNELS;
1802 unsigned dst_channels;
1803 unsigned dst_count;
1804 unsigned src_count;
1805 unsigned i, j;
1806
1807 const struct util_format_description* out_format_desc = util_format_description(out_format);
1808
1809 unsigned dst_alignment;
1810
1811 bool pad_inline = is_arithmetic_format(out_format_desc);
1812 bool has_alpha = false;
1813 const boolean dual_source_blend = variant->key.blend.rt[0].blend_enable &&
1814 util_blend_state_is_dual(&variant->key.blend, 0);
1815
1816 const boolean is_1d = variant->key.resource_1d;
1817 boolean twiddle_after_convert = FALSE;
1818 unsigned num_fullblock_fs = is_1d ? 2 * num_fs : num_fs;
1819 LLVMValueRef fpstate = 0;
1820
1821 /* Get type from output format */
1822 lp_blend_type_from_format_desc(out_format_desc, &row_type);
1823 lp_mem_type_from_format_desc(out_format_desc, &dst_type);
1824
1825 /*
1826 * Technically this code should go into lp_build_smallfloat_to_float
1827 * and lp_build_float_to_smallfloat but due to the
1828 * http://llvm.org/bugs/show_bug.cgi?id=6393
1829 * llvm reorders the mxcsr intrinsics in a way that breaks the code.
1830 * So the ordering is important here and there shouldn't be any
1831 * llvm ir instrunctions in this function before
1832 * this, otherwise half-float format conversions won't work
1833 * (again due to llvm bug #6393).
1834 */
1835 if (have_smallfloat_format(dst_type, out_format)) {
1836 /* We need to make sure that denorms are ok for half float
1837 conversions */
1838 fpstate = lp_build_fpstate_get(gallivm);
1839 lp_build_fpstate_set_denorms_zero(gallivm, FALSE);
1840 }
1841
1842 mask_type = lp_int32_vec4_type();
1843 mask_type.length = fs_type.length;
1844
1845 for (i = num_fs; i < num_fullblock_fs; i++) {
1846 fs_mask[i] = lp_build_zero(gallivm, mask_type);
1847 }
1848
1849 /* Do not bother executing code when mask is empty.. */
1850 if (do_branch) {
1851 check_mask = LLVMConstNull(lp_build_int_vec_type(gallivm, mask_type));
1852
1853 for (i = 0; i < num_fullblock_fs; ++i) {
1854 check_mask = LLVMBuildOr(builder, check_mask, fs_mask[i], "");
1855 }
1856
1857 lp_build_mask_begin(&mask_ctx, gallivm, mask_type, check_mask);
1858 lp_build_mask_check(&mask_ctx);
1859 }
1860
1861 partial_mask |= !variant->opaque;
1862 i32_zero = lp_build_const_int32(gallivm, 0);
1863
1864 undef_src_val = lp_build_undef(gallivm, fs_type);
1865
1866 row_type.length = fs_type.length;
1867 vector_width = dst_type.floating ? lp_native_vector_width : lp_integer_vector_width;
1868
1869 /* Compute correct swizzle and count channels */
1870 memset(swizzle, LP_BLD_SWIZZLE_DONTCARE, TGSI_NUM_CHANNELS);
1871 dst_channels = 0;
1872
1873 for (i = 0; i < TGSI_NUM_CHANNELS; ++i) {
1874 /* Ensure channel is used */
1875 if (out_format_desc->swizzle[i] >= TGSI_NUM_CHANNELS) {
1876 continue;
1877 }
1878
1879 /* Ensure not already written to (happens in case with GL_ALPHA) */
1880 if (swizzle[out_format_desc->swizzle[i]] < TGSI_NUM_CHANNELS) {
1881 continue;
1882 }
1883
1884 /* Ensure we havn't already found all channels */
1885 if (dst_channels >= out_format_desc->nr_channels) {
1886 continue;
1887 }
1888
1889 swizzle[out_format_desc->swizzle[i]] = i;
1890 ++dst_channels;
1891
1892 if (i == alpha_channel) {
1893 has_alpha = true;
1894 }
1895 }
1896
1897 if (format_expands_to_float_soa(out_format_desc)) {
1898 /*
1899 * the code above can't work for layout_other
1900 * for srgb it would sort of work but we short-circuit swizzles, etc.
1901 * as that is done as part of unpack / pack.
1902 */
1903 dst_channels = 4; /* HACK: this is fake 4 really but need it due to transpose stuff later */
1904 has_alpha = true;
1905 swizzle[0] = 0;
1906 swizzle[1] = 1;
1907 swizzle[2] = 2;
1908 swizzle[3] = 3;
1909 pad_inline = true; /* HACK: prevent rgbxrgbx->rgbrgbxx conversion later */
1910 }
1911
1912 /* If 3 channels then pad to include alpha for 4 element transpose */
1913 if (dst_channels == 3) {
1914 assert (!has_alpha);
1915 for (i = 0; i < TGSI_NUM_CHANNELS; i++) {
1916 if (swizzle[i] > TGSI_NUM_CHANNELS)
1917 swizzle[i] = 3;
1918 }
1919 if (out_format_desc->nr_channels == 4) {
1920 dst_channels = 4;
1921 /*
1922 * We use alpha from the color conversion, not separate one.
1923 * We had to include it for transpose, hence it will get converted
1924 * too (albeit when doing transpose after conversion, that would
1925 * no longer be the case necessarily).
1926 * (It works only with 4 channel dsts, e.g. rgbx formats, because
1927 * otherwise we really have padding, not alpha, included.)
1928 */
1929 has_alpha = true;
1930 }
1931 }
1932
1933 /*
1934 * Load shader output
1935 */
1936 for (i = 0; i < num_fullblock_fs; ++i) {
1937 /* Always load alpha for use in blending */
1938 LLVMValueRef alpha;
1939 if (i < num_fs) {
1940 alpha = LLVMBuildLoad(builder, fs_out_color[rt][alpha_channel][i], "");
1941 }
1942 else {
1943 alpha = undef_src_val;
1944 }
1945
1946 /* Load each channel */
1947 for (j = 0; j < dst_channels; ++j) {
1948 assert(swizzle[j] < 4);
1949 if (i < num_fs) {
1950 fs_src[i][j] = LLVMBuildLoad(builder, fs_out_color[rt][swizzle[j]][i], "");
1951 }
1952 else {
1953 fs_src[i][j] = undef_src_val;
1954 }
1955 }
1956
1957 /* If 3 channels then pad to include alpha for 4 element transpose */
1958 /*
1959 * XXX If we include that here maybe could actually use it instead of
1960 * separate alpha for blending?
1961 * (Difficult though we actually convert pad channels, not alpha.)
1962 */
1963 if (dst_channels == 3 && !has_alpha) {
1964 fs_src[i][3] = alpha;
1965 }
1966
1967 /* We split the row_mask and row_alpha as we want 128bit interleave */
1968 if (fs_type.length == 8) {
1969 src_mask[i*2 + 0] = lp_build_extract_range(gallivm, fs_mask[i],
1970 0, src_channels);
1971 src_mask[i*2 + 1] = lp_build_extract_range(gallivm, fs_mask[i],
1972 src_channels, src_channels);
1973
1974 src_alpha[i*2 + 0] = lp_build_extract_range(gallivm, alpha, 0, src_channels);
1975 src_alpha[i*2 + 1] = lp_build_extract_range(gallivm, alpha,
1976 src_channels, src_channels);
1977 } else {
1978 src_mask[i] = fs_mask[i];
1979 src_alpha[i] = alpha;
1980 }
1981 }
1982 if (dual_source_blend) {
1983 /* same as above except different src/dst, skip masks and comments... */
1984 for (i = 0; i < num_fullblock_fs; ++i) {
1985 LLVMValueRef alpha;
1986 if (i < num_fs) {
1987 alpha = LLVMBuildLoad(builder, fs_out_color[1][alpha_channel][i], "");
1988 }
1989 else {
1990 alpha = undef_src_val;
1991 }
1992
1993 for (j = 0; j < dst_channels; ++j) {
1994 assert(swizzle[j] < 4);
1995 if (i < num_fs) {
1996 fs_src1[i][j] = LLVMBuildLoad(builder, fs_out_color[1][swizzle[j]][i], "");
1997 }
1998 else {
1999 fs_src1[i][j] = undef_src_val;
2000 }
2001 }
2002 if (dst_channels == 3 && !has_alpha) {
2003 fs_src1[i][3] = alpha;
2004 }
2005 if (fs_type.length == 8) {
2006 src1_alpha[i*2 + 0] = lp_build_extract_range(gallivm, alpha, 0, src_channels);
2007 src1_alpha[i*2 + 1] = lp_build_extract_range(gallivm, alpha,
2008 src_channels, src_channels);
2009 } else {
2010 src1_alpha[i] = alpha;
2011 }
2012 }
2013 }
2014
2015 if (util_format_is_pure_integer(out_format)) {
2016 /*
2017 * In this case fs_type was really ints or uints disguised as floats,
2018 * fix that up now.
2019 */
2020 fs_type.floating = 0;
2021 fs_type.sign = dst_type.sign;
2022 for (i = 0; i < num_fullblock_fs; ++i) {
2023 for (j = 0; j < dst_channels; ++j) {
2024 fs_src[i][j] = LLVMBuildBitCast(builder, fs_src[i][j],
2025 lp_build_vec_type(gallivm, fs_type), "");
2026 }
2027 if (dst_channels == 3 && !has_alpha) {
2028 fs_src[i][3] = LLVMBuildBitCast(builder, fs_src[i][3],
2029 lp_build_vec_type(gallivm, fs_type), "");
2030 }
2031 }
2032 }
2033
2034 /*
2035 * We actually should generally do conversion first (for non-1d cases)
2036 * when the blend format is 8 or 16 bits. The reason is obvious,
2037 * there's 2 or 4 times less vectors to deal with for the interleave...
2038 * Albeit for the AVX (not AVX2) case there's no benefit with 16 bit
2039 * vectors (as it can do 32bit unpack with 256bit vectors, but 8/16bit
2040 * unpack only with 128bit vectors).
2041 * Note: for 16bit sizes really need matching pack conversion code
2042 */
2043 if (!is_1d && dst_channels != 3 && dst_type.width == 8) {
2044 twiddle_after_convert = TRUE;
2045 }
2046
2047 /*
2048 * Pixel twiddle from fragment shader order to memory order
2049 */
2050 if (!twiddle_after_convert) {
2051 src_count = generate_fs_twiddle(gallivm, fs_type, num_fullblock_fs,
2052 dst_channels, fs_src, src, pad_inline);
2053 if (dual_source_blend) {
2054 generate_fs_twiddle(gallivm, fs_type, num_fullblock_fs, dst_channels,
2055 fs_src1, src1, pad_inline);
2056 }
2057 } else {
2058 src_count = num_fullblock_fs * dst_channels;
2059 /*
2060 * We reorder things a bit here, so the cases for 4-wide and 8-wide
2061 * (AVX) turn out the same later when untwiddling/transpose (albeit
2062 * for true AVX2 path untwiddle needs to be different).
2063 * For now just order by colors first (so we can use unpack later).
2064 */
2065 for (j = 0; j < num_fullblock_fs; j++) {
2066 for (i = 0; i < dst_channels; i++) {
2067 src[i*num_fullblock_fs + j] = fs_src[j][i];
2068 if (dual_source_blend) {
2069 src1[i*num_fullblock_fs + j] = fs_src1[j][i];
2070 }
2071 }
2072 }
2073 }
2074
2075 src_channels = dst_channels < 3 ? dst_channels : 4;
2076 if (src_count != num_fullblock_fs * src_channels) {
2077 unsigned ds = src_count / (num_fullblock_fs * src_channels);
2078 row_type.length /= ds;
2079 fs_type.length = row_type.length;
2080 }
2081
2082 blend_type = row_type;
2083 mask_type.length = 4;
2084
2085 /* Convert src to row_type */
2086 if (dual_source_blend) {
2087 struct lp_type old_row_type = row_type;
2088 lp_build_conv_auto(gallivm, fs_type, &row_type, src, src_count, src);
2089 src_count = lp_build_conv_auto(gallivm, fs_type, &old_row_type, src1, src_count, src1);
2090 }
2091 else {
2092 src_count = lp_build_conv_auto(gallivm, fs_type, &row_type, src, src_count, src);
2093 }
2094
2095 /* If the rows are not an SSE vector, combine them to become SSE size! */
2096 if ((row_type.width * row_type.length) % 128) {
2097 unsigned bits = row_type.width * row_type.length;
2098 unsigned combined;
2099
2100 assert(src_count >= (vector_width / bits));
2101
2102 dst_count = src_count / (vector_width / bits);
2103
2104 combined = lp_build_concat_n(gallivm, row_type, src, src_count, src, dst_count);
2105 if (dual_source_blend) {
2106 lp_build_concat_n(gallivm, row_type, src1, src_count, src1, dst_count);
2107 }
2108
2109 row_type.length *= combined;
2110 src_count /= combined;
2111
2112 bits = row_type.width * row_type.length;
2113 assert(bits == 128 || bits == 256);
2114 }
2115
2116 if (twiddle_after_convert) {
2117 fs_twiddle_transpose(gallivm, row_type, src, src_count, src);
2118 if (dual_source_blend) {
2119 fs_twiddle_transpose(gallivm, row_type, src1, src_count, src1);
2120 }
2121 }
2122
2123 /*
2124 * Blend Colour conversion
2125 */
2126 blend_color = lp_jit_context_f_blend_color(gallivm, context_ptr);
2127 blend_color = LLVMBuildPointerCast(builder, blend_color,
2128 LLVMPointerType(lp_build_vec_type(gallivm, fs_type), 0), "");
2129 blend_color = LLVMBuildLoad(builder, LLVMBuildGEP(builder, blend_color,
2130 &i32_zero, 1, ""), "");
2131
2132 /* Convert */
2133 lp_build_conv(gallivm, fs_type, blend_type, &blend_color, 1, &blend_color, 1);
2134
2135 if (out_format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) {
2136 /*
2137 * since blending is done with floats, there was no conversion.
2138 * However, the rules according to fixed point renderbuffers still
2139 * apply, that is we must clamp inputs to 0.0/1.0.
2140 * (This would apply to separate alpha conversion too but we currently
2141 * force has_alpha to be true.)
2142 * TODO: should skip this with "fake" blend, since post-blend conversion
2143 * will clamp anyway.
2144 * TODO: could also skip this if fragment color clamping is enabled. We
2145 * don't support it natively so it gets baked into the shader however, so
2146 * can't really tell here.
2147 */
2148 struct lp_build_context f32_bld;
2149 assert(row_type.floating);
2150 lp_build_context_init(&f32_bld, gallivm, row_type);
2151 for (i = 0; i < src_count; i++) {
2152 src[i] = lp_build_clamp_zero_one_nanzero(&f32_bld, src[i]);
2153 }
2154 if (dual_source_blend) {
2155 for (i = 0; i < src_count; i++) {
2156 src1[i] = lp_build_clamp_zero_one_nanzero(&f32_bld, src1[i]);
2157 }
2158 }
2159 /* probably can't be different than row_type but better safe than sorry... */
2160 lp_build_context_init(&f32_bld, gallivm, blend_type);
2161 blend_color = lp_build_clamp(&f32_bld, blend_color, f32_bld.zero, f32_bld.one);
2162 }
2163
2164 /* Extract alpha */
2165 blend_alpha = lp_build_extract_broadcast(gallivm, blend_type, row_type, blend_color, lp_build_const_int32(gallivm, 3));
2166
2167 /* Swizzle to appropriate channels, e.g. from RGBA to BGRA BGRA */
2168 pad_inline &= (dst_channels * (block_size / src_count) * row_type.width) != vector_width;
2169 if (pad_inline) {
2170 /* Use all 4 channels e.g. from RGBA RGBA to RGxx RGxx */
2171 blend_color = lp_build_swizzle_aos_n(gallivm, blend_color, swizzle, TGSI_NUM_CHANNELS, row_type.length);
2172 } else {
2173 /* Only use dst_channels e.g. RGBA RGBA to RG RG xxxx */
2174 blend_color = lp_build_swizzle_aos_n(gallivm, blend_color, swizzle, dst_channels, row_type.length);
2175 }
2176
2177 /*
2178 * Mask conversion
2179 */
2180 lp_bld_quad_twiddle(gallivm, mask_type, &src_mask[0], block_height, &src_mask[0]);
2181
2182 if (src_count < block_height) {
2183 lp_build_concat_n(gallivm, mask_type, src_mask, 4, src_mask, src_count);
2184 } else if (src_count > block_height) {
2185 for (i = src_count; i > 0; --i) {
2186 unsigned pixels = block_size / src_count;
2187 unsigned idx = i - 1;
2188
2189 src_mask[idx] = lp_build_extract_range(gallivm, src_mask[(idx * pixels) / 4],
2190 (idx * pixels) % 4, pixels);
2191 }
2192 }
2193
2194 assert(mask_type.width == 32);
2195
2196 for (i = 0; i < src_count; ++i) {
2197 unsigned pixels = block_size / src_count;
2198 unsigned pixel_width = row_type.width * dst_channels;
2199
2200 if (pixel_width == 24) {
2201 mask_type.width = 8;
2202 mask_type.length = vector_width / mask_type.width;
2203 } else {
2204 mask_type.length = pixels;
2205 mask_type.width = row_type.width * dst_channels;
2206
2207 /*
2208 * If mask_type width is smaller than 32bit, this doesn't quite
2209 * generate the most efficient code (could use some pack).
2210 */
2211 src_mask[i] = LLVMBuildIntCast(builder, src_mask[i],
2212 lp_build_int_vec_type(gallivm, mask_type), "");
2213
2214 mask_type.length *= dst_channels;
2215 mask_type.width /= dst_channels;
2216 }
2217
2218 src_mask[i] = LLVMBuildBitCast(builder, src_mask[i],
2219 lp_build_int_vec_type(gallivm, mask_type), "");
2220 src_mask[i] = lp_build_pad_vector(gallivm, src_mask[i], row_type.length);
2221 }
2222
2223 /*
2224 * Alpha conversion
2225 */
2226 if (!has_alpha) {
2227 struct lp_type alpha_type = fs_type;
2228 alpha_type.length = 4;
2229 convert_alpha(gallivm, row_type, alpha_type,
2230 block_size, block_height,
2231 src_count, dst_channels,
2232 pad_inline, src_alpha);
2233 if (dual_source_blend) {
2234 convert_alpha(gallivm, row_type, alpha_type,
2235 block_size, block_height,
2236 src_count, dst_channels,
2237 pad_inline, src1_alpha);
2238 }
2239 }
2240
2241
2242 /*
2243 * Load dst from memory
2244 */
2245 if (src_count < block_height) {
2246 dst_count = block_height;
2247 } else {
2248 dst_count = src_count;
2249 }
2250
2251 dst_type.length *= block_size / dst_count;
2252
2253 if (format_expands_to_float_soa(out_format_desc)) {
2254 /*
2255 * we need multiple values at once for the conversion, so can as well
2256 * load them vectorized here too instead of concatenating later.
2257 * (Still need concatenation later for 8-wide vectors).
2258 */
2259 dst_count = block_height;
2260 dst_type.length = block_width;
2261 }
2262
2263 /*
2264 * Compute the alignment of the destination pointer in bytes
2265 * We fetch 1-4 pixels, if the format has pot alignment then those fetches
2266 * are always aligned by MIN2(16, fetch_width) except for buffers (not
2267 * 1d tex but can't distinguish here) so need to stick with per-pixel
2268 * alignment in this case.
2269 */
2270 if (is_1d) {
2271 dst_alignment = (out_format_desc->block.bits + 7)/(out_format_desc->block.width * 8);
2272 }
2273 else {
2274 dst_alignment = dst_type.length * dst_type.width / 8;
2275 }
2276 /* Force power-of-two alignment by extracting only the least-significant-bit */
2277 dst_alignment = 1 << (ffs(dst_alignment) - 1);
2278 /*
2279 * Resource base and stride pointers are aligned to 16 bytes, so that's
2280 * the maximum alignment we can guarantee
2281 */
2282 dst_alignment = MIN2(16, dst_alignment);
2283
2284 ls_type = dst_type;
2285
2286 if (dst_count > src_count) {
2287 if ((dst_type.width == 8 || dst_type.width == 16) &&
2288 util_is_power_of_two_or_zero(dst_type.length) &&
2289 dst_type.length * dst_type.width < 128) {
2290 /*
2291 * Never try to load values as 4xi8 which we will then
2292 * concatenate to larger vectors. This gives llvm a real
2293 * headache (the problem is the type legalizer (?) will
2294 * try to load that as 4xi8 zext to 4xi32 to fill the vector,
2295 * then the shuffles to concatenate are more or less impossible
2296 * - llvm is easily capable of generating a sequence of 32
2297 * pextrb/pinsrb instructions for that. Albeit it appears to
2298 * be fixed in llvm 4.0. So, load and concatenate with 32bit
2299 * width to avoid the trouble (16bit seems not as bad, llvm
2300 * probably recognizes the load+shuffle as only one shuffle
2301 * is necessary, but we can do just the same anyway).
2302 */
2303 ls_type.length = dst_type.length * dst_type.width / 32;
2304 ls_type.width = 32;
2305 }
2306 }
2307
2308 if (is_1d) {
2309 load_unswizzled_block(gallivm, color_ptr, stride, block_width, 1,
2310 dst, ls_type, dst_count / 4, dst_alignment);
2311 for (i = dst_count / 4; i < dst_count; i++) {
2312 dst[i] = lp_build_undef(gallivm, ls_type);
2313 }
2314
2315 }
2316 else {
2317 load_unswizzled_block(gallivm, color_ptr, stride, block_width, block_height,
2318 dst, ls_type, dst_count, dst_alignment);
2319 }
2320
2321
2322 /*
2323 * Convert from dst/output format to src/blending format.
2324 *
2325 * This is necessary as we can only read 1 row from memory at a time,
2326 * so the minimum dst_count will ever be at this point is 4.
2327 *
2328 * With, for example, R8 format you can have all 16 pixels in a 128 bit vector,
2329 * this will take the 4 dsts and combine them into 1 src so we can perform blending
2330 * on all 16 pixels in that single vector at once.
2331 */
2332 if (dst_count > src_count) {
2333 if (ls_type.length != dst_type.length && ls_type.length == 1) {
2334 LLVMTypeRef elem_type = lp_build_elem_type(gallivm, ls_type);
2335 LLVMTypeRef ls_vec_type = LLVMVectorType(elem_type, 1);
2336 for (i = 0; i < dst_count; i++) {
2337 dst[i] = LLVMBuildBitCast(builder, dst[i], ls_vec_type, "");
2338 }
2339 }
2340
2341 lp_build_concat_n(gallivm, ls_type, dst, 4, dst, src_count);
2342
2343 if (ls_type.length != dst_type.length) {
2344 struct lp_type tmp_type = dst_type;
2345 tmp_type.length = dst_type.length * 4 / src_count;
2346 for (i = 0; i < src_count; i++) {
2347 dst[i] = LLVMBuildBitCast(builder, dst[i],
2348 lp_build_vec_type(gallivm, tmp_type), "");
2349 }
2350 }
2351 }
2352
2353 /*
2354 * Blending
2355 */
2356 /* XXX this is broken for RGB8 formats -
2357 * they get expanded from 12 to 16 elements (to include alpha)
2358 * by convert_to_blend_type then reduced to 15 instead of 12
2359 * by convert_from_blend_type (a simple fix though breaks A8...).
2360 * R16G16B16 also crashes differently however something going wrong
2361 * inside llvm handling npot vector sizes seemingly.
2362 * It seems some cleanup could be done here (like skipping conversion/blend
2363 * when not needed).
2364 */
2365 convert_to_blend_type(gallivm, block_size, out_format_desc, dst_type,
2366 row_type, dst, src_count);
2367
2368 /*
2369 * FIXME: Really should get logic ops / masks out of generic blend / row
2370 * format. Logic ops will definitely not work on the blend float format
2371 * used for SRGB here and I think OpenGL expects this to work as expected
2372 * (that is incoming values converted to srgb then logic op applied).
2373 */
2374 for (i = 0; i < src_count; ++i) {
2375 dst[i] = lp_build_blend_aos(gallivm,
2376 &variant->key.blend,
2377 out_format,
2378 row_type,
2379 rt,
2380 src[i],
2381 has_alpha ? NULL : src_alpha[i],
2382 src1[i],
2383 has_alpha ? NULL : src1_alpha[i],
2384 dst[i],
2385 partial_mask ? src_mask[i] : NULL,
2386 blend_color,
2387 has_alpha ? NULL : blend_alpha,
2388 swizzle,
2389 pad_inline ? 4 : dst_channels);
2390 }
2391
2392 convert_from_blend_type(gallivm, block_size, out_format_desc,
2393 row_type, dst_type, dst, src_count);
2394
2395 /* Split the blend rows back to memory rows */
2396 if (dst_count > src_count) {
2397 row_type.length = dst_type.length * (dst_count / src_count);
2398
2399 if (src_count == 1) {
2400 dst[1] = lp_build_extract_range(gallivm, dst[0], row_type.length / 2, row_type.length / 2);
2401 dst[0] = lp_build_extract_range(gallivm, dst[0], 0, row_type.length / 2);
2402
2403 row_type.length /= 2;
2404 src_count *= 2;
2405 }
2406
2407 dst[3] = lp_build_extract_range(gallivm, dst[1], row_type.length / 2, row_type.length / 2);
2408 dst[2] = lp_build_extract_range(gallivm, dst[1], 0, row_type.length / 2);
2409 dst[1] = lp_build_extract_range(gallivm, dst[0], row_type.length / 2, row_type.length / 2);
2410 dst[0] = lp_build_extract_range(gallivm, dst[0], 0, row_type.length / 2);
2411
2412 row_type.length /= 2;
2413 src_count *= 2;
2414 }
2415
2416 /*
2417 * Store blend result to memory
2418 */
2419 if (is_1d) {
2420 store_unswizzled_block(gallivm, color_ptr, stride, block_width, 1,
2421 dst, dst_type, dst_count / 4, dst_alignment);
2422 }
2423 else {
2424 store_unswizzled_block(gallivm, color_ptr, stride, block_width, block_height,
2425 dst, dst_type, dst_count, dst_alignment);
2426 }
2427
2428 if (have_smallfloat_format(dst_type, out_format)) {
2429 lp_build_fpstate_set(gallivm, fpstate);
2430 }
2431
2432 if (do_branch) {
2433 lp_build_mask_end(&mask_ctx);
2434 }
2435 }
2436
2437
2438 /**
2439 * Generate the runtime callable function for the whole fragment pipeline.
2440 * Note that the function which we generate operates on a block of 16
2441 * pixels at at time. The block contains 2x2 quads. Each quad contains
2442 * 2x2 pixels.
2443 */
2444 static void
2445 generate_fragment(struct llvmpipe_context *lp,
2446 struct lp_fragment_shader *shader,
2447 struct lp_fragment_shader_variant *variant,
2448 unsigned partial_mask)
2449 {
2450 struct gallivm_state *gallivm = variant->gallivm;
2451 struct lp_fragment_shader_variant_key *key = &variant->key;
2452 struct lp_shader_input inputs[PIPE_MAX_SHADER_INPUTS];
2453 char func_name[64];
2454 struct lp_type fs_type;
2455 struct lp_type blend_type;
2456 LLVMTypeRef fs_elem_type;
2457 LLVMTypeRef blend_vec_type;
2458 LLVMTypeRef arg_types[15];
2459 LLVMTypeRef func_type;
2460 LLVMTypeRef int32_type = LLVMInt32TypeInContext(gallivm->context);
2461 LLVMTypeRef int8_type = LLVMInt8TypeInContext(gallivm->context);
2462 LLVMValueRef context_ptr;
2463 LLVMValueRef x;
2464 LLVMValueRef y;
2465 LLVMValueRef a0_ptr;
2466 LLVMValueRef dadx_ptr;
2467 LLVMValueRef dady_ptr;
2468 LLVMValueRef color_ptr_ptr;
2469 LLVMValueRef stride_ptr;
2470 LLVMValueRef color_sample_stride_ptr;
2471 LLVMValueRef depth_ptr;
2472 LLVMValueRef depth_stride;
2473 LLVMValueRef depth_sample_stride;
2474 LLVMValueRef mask_input;
2475 LLVMValueRef thread_data_ptr;
2476 LLVMBasicBlockRef block;
2477 LLVMBuilderRef builder;
2478 struct lp_build_sampler_soa *sampler;
2479 struct lp_build_image_soa *image;
2480 struct lp_build_interp_soa_context interp;
2481 LLVMValueRef fs_mask[16 / 4];
2482 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][16 / 4];
2483 LLVMValueRef function;
2484 LLVMValueRef facing;
2485 unsigned num_fs;
2486 unsigned i;
2487 unsigned chan;
2488 unsigned cbuf;
2489 boolean cbuf0_write_all;
2490 const boolean dual_source_blend = key->blend.rt[0].blend_enable &&
2491 util_blend_state_is_dual(&key->blend, 0);
2492
2493 assert(lp_native_vector_width / 32 >= 4);
2494
2495 /* Adjust color input interpolation according to flatshade state:
2496 */
2497 memcpy(inputs, shader->inputs, shader->info.base.num_inputs * sizeof inputs[0]);
2498 for (i = 0; i < shader->info.base.num_inputs; i++) {
2499 if (inputs[i].interp == LP_INTERP_COLOR) {
2500 if (key->flatshade)
2501 inputs[i].interp = LP_INTERP_CONSTANT;
2502 else
2503 inputs[i].interp = LP_INTERP_PERSPECTIVE;
2504 }
2505 }
2506
2507 /* check if writes to cbuf[0] are to be copied to all cbufs */
2508 cbuf0_write_all =
2509 shader->info.base.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS];
2510
2511 /* TODO: actually pick these based on the fs and color buffer
2512 * characteristics. */
2513
2514 memset(&fs_type, 0, sizeof fs_type);
2515 fs_type.floating = TRUE; /* floating point values */
2516 fs_type.sign = TRUE; /* values are signed */
2517 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
2518 fs_type.width = 32; /* 32-bit float */
2519 fs_type.length = MIN2(lp_native_vector_width / 32, 16); /* n*4 elements per vector */
2520
2521 memset(&blend_type, 0, sizeof blend_type);
2522 blend_type.floating = FALSE; /* values are integers */
2523 blend_type.sign = FALSE; /* values are unsigned */
2524 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
2525 blend_type.width = 8; /* 8-bit ubyte values */
2526 blend_type.length = 16; /* 16 elements per vector */
2527
2528 /*
2529 * Generate the function prototype. Any change here must be reflected in
2530 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
2531 */
2532
2533 fs_elem_type = lp_build_elem_type(gallivm, fs_type);
2534
2535 blend_vec_type = lp_build_vec_type(gallivm, blend_type);
2536
2537 snprintf(func_name, sizeof(func_name), "fs%u_variant%u_%s",
2538 shader->no, variant->no, partial_mask ? "partial" : "whole");
2539
2540 arg_types[0] = variant->jit_context_ptr_type; /* context */
2541 arg_types[1] = int32_type; /* x */
2542 arg_types[2] = int32_type; /* y */
2543 arg_types[3] = int32_type; /* facing */
2544 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* a0 */
2545 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dadx */
2546 arg_types[6] = LLVMPointerType(fs_elem_type, 0); /* dady */
2547 arg_types[7] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */
2548 arg_types[8] = LLVMPointerType(int8_type, 0); /* depth */
2549 arg_types[9] = LLVMInt64TypeInContext(gallivm->context); /* mask_input */
2550 arg_types[10] = variant->jit_thread_data_ptr_type; /* per thread data */
2551 arg_types[11] = LLVMPointerType(int32_type, 0); /* stride */
2552 arg_types[12] = int32_type; /* depth_stride */
2553 arg_types[13] = LLVMPointerType(int32_type, 0); /* color sample strides */
2554 arg_types[14] = int32_type; /* depth sample stride */
2555
2556 func_type = LLVMFunctionType(LLVMVoidTypeInContext(gallivm->context),
2557 arg_types, ARRAY_SIZE(arg_types), 0);
2558
2559 function = LLVMAddFunction(gallivm->module, func_name, func_type);
2560 LLVMSetFunctionCallConv(function, LLVMCCallConv);
2561
2562 variant->function[partial_mask] = function;
2563
2564 /* XXX: need to propagate noalias down into color param now we are
2565 * passing a pointer-to-pointer?
2566 */
2567 for(i = 0; i < ARRAY_SIZE(arg_types); ++i)
2568 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
2569 lp_add_function_attr(function, i + 1, LP_FUNC_ATTR_NOALIAS);
2570
2571 context_ptr = LLVMGetParam(function, 0);
2572 x = LLVMGetParam(function, 1);
2573 y = LLVMGetParam(function, 2);
2574 facing = LLVMGetParam(function, 3);
2575 a0_ptr = LLVMGetParam(function, 4);
2576 dadx_ptr = LLVMGetParam(function, 5);
2577 dady_ptr = LLVMGetParam(function, 6);
2578 color_ptr_ptr = LLVMGetParam(function, 7);
2579 depth_ptr = LLVMGetParam(function, 8);
2580 mask_input = LLVMGetParam(function, 9);
2581 thread_data_ptr = LLVMGetParam(function, 10);
2582 stride_ptr = LLVMGetParam(function, 11);
2583 depth_stride = LLVMGetParam(function, 12);
2584 color_sample_stride_ptr = LLVMGetParam(function, 13);
2585 depth_sample_stride = LLVMGetParam(function, 14);
2586
2587 lp_build_name(context_ptr, "context");
2588 lp_build_name(x, "x");
2589 lp_build_name(y, "y");
2590 lp_build_name(a0_ptr, "a0");
2591 lp_build_name(dadx_ptr, "dadx");
2592 lp_build_name(dady_ptr, "dady");
2593 lp_build_name(color_ptr_ptr, "color_ptr_ptr");
2594 lp_build_name(depth_ptr, "depth");
2595 lp_build_name(mask_input, "mask_input");
2596 lp_build_name(thread_data_ptr, "thread_data");
2597 lp_build_name(stride_ptr, "stride_ptr");
2598 lp_build_name(depth_stride, "depth_stride");
2599 lp_build_name(color_sample_stride_ptr, "color_sample_stride_ptr");
2600 lp_build_name(depth_sample_stride, "depth_sample_stride");
2601
2602 /*
2603 * Function body
2604 */
2605
2606 block = LLVMAppendBasicBlockInContext(gallivm->context, function, "entry");
2607 builder = gallivm->builder;
2608 assert(builder);
2609 LLVMPositionBuilderAtEnd(builder, block);
2610
2611 /*
2612 * Must not count ps invocations if there's a null shader.
2613 * (It would be ok to count with null shader if there's d/s tests,
2614 * but only if there's d/s buffers too, which is different
2615 * to implicit rasterization disable which must not depend
2616 * on the d/s buffers.)
2617 * Could use popcount on mask, but pixel accuracy is not required.
2618 * Could disable if there's no stats query, but maybe not worth it.
2619 */
2620 if (shader->info.base.num_instructions > 1) {
2621 LLVMValueRef invocs, val;
2622 invocs = lp_jit_thread_data_invocations(gallivm, thread_data_ptr);
2623 val = LLVMBuildLoad(builder, invocs, "");
2624 val = LLVMBuildAdd(builder, val,
2625 LLVMConstInt(LLVMInt64TypeInContext(gallivm->context), 1, 0),
2626 "invoc_count");
2627 LLVMBuildStore(builder, val, invocs);
2628 }
2629
2630 /* code generated texture sampling */
2631 sampler = lp_llvm_sampler_soa_create(key->samplers);
2632 image = lp_llvm_image_soa_create(lp_fs_variant_key_images(key));
2633
2634 num_fs = 16 / fs_type.length; /* number of loops per 4x4 stamp */
2635 /* for 1d resources only run "upper half" of stamp */
2636 if (key->resource_1d)
2637 num_fs /= 2;
2638
2639 {
2640 LLVMValueRef num_loop = lp_build_const_int32(gallivm, num_fs);
2641 LLVMTypeRef mask_type = lp_build_int_vec_type(gallivm, fs_type);
2642 LLVMValueRef mask_store = lp_build_array_alloca(gallivm, mask_type,
2643 num_loop, "mask_store");
2644 LLVMValueRef color_store[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS];
2645 boolean pixel_center_integer =
2646 shader->info.base.properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER];
2647
2648 /*
2649 * The shader input interpolation info is not explicitely baked in the
2650 * shader key, but everything it derives from (TGSI, and flatshade) is
2651 * already included in the shader key.
2652 */
2653 lp_build_interp_soa_init(&interp,
2654 gallivm,
2655 shader->info.base.num_inputs,
2656 inputs,
2657 pixel_center_integer,
2658 1, NULL, num_loop,
2659 key->depth_clamp,
2660 builder, fs_type,
2661 a0_ptr, dadx_ptr, dady_ptr,
2662 x, y);
2663
2664 for (i = 0; i < num_fs; i++) {
2665 LLVMValueRef mask;
2666 LLVMValueRef indexi = lp_build_const_int32(gallivm, i);
2667 LLVMValueRef mask_ptr = LLVMBuildGEP(builder, mask_store,
2668 &indexi, 1, "mask_ptr");
2669
2670 if (partial_mask) {
2671 mask = generate_quad_mask(gallivm, fs_type,
2672 i*fs_type.length/4, 0, mask_input);
2673 }
2674 else {
2675 mask = lp_build_const_int_vec(gallivm, fs_type, ~0);
2676 }
2677 LLVMBuildStore(builder, mask, mask_ptr);
2678 }
2679
2680 generate_fs_loop(gallivm,
2681 shader, key,
2682 builder,
2683 fs_type,
2684 context_ptr,
2685 num_loop,
2686 &interp,
2687 sampler,
2688 image,
2689 mask_store, /* output */
2690 color_store,
2691 depth_ptr,
2692 depth_stride,
2693 facing,
2694 thread_data_ptr);
2695
2696 for (i = 0; i < num_fs; i++) {
2697 LLVMValueRef indexi = lp_build_const_int32(gallivm, i);
2698 LLVMValueRef ptr = LLVMBuildGEP(builder, mask_store,
2699 &indexi, 1, "");
2700 fs_mask[i] = LLVMBuildLoad(builder, ptr, "mask");
2701 /* This is fucked up need to reorganize things */
2702 for (cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
2703 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
2704 ptr = LLVMBuildGEP(builder,
2705 color_store[cbuf * !cbuf0_write_all][chan],
2706 &indexi, 1, "");
2707 fs_out_color[cbuf][chan][i] = ptr;
2708 }
2709 }
2710 if (dual_source_blend) {
2711 /* only support one dual source blend target hence always use output 1 */
2712 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
2713 ptr = LLVMBuildGEP(builder,
2714 color_store[1][chan],
2715 &indexi, 1, "");
2716 fs_out_color[1][chan][i] = ptr;
2717 }
2718 }
2719 }
2720 }
2721
2722 sampler->destroy(sampler);
2723 image->destroy(image);
2724 /* Loop over color outputs / color buffers to do blending.
2725 */
2726 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
2727 if (key->cbuf_format[cbuf] != PIPE_FORMAT_NONE) {
2728 LLVMValueRef color_ptr;
2729 LLVMValueRef stride;
2730 LLVMValueRef index = lp_build_const_int32(gallivm, cbuf);
2731
2732 boolean do_branch = ((key->depth.enabled
2733 || key->stencil[0].enabled
2734 || key->alpha.enabled)
2735 && !shader->info.base.uses_kill);
2736
2737 color_ptr = LLVMBuildLoad(builder,
2738 LLVMBuildGEP(builder, color_ptr_ptr,
2739 &index, 1, ""),
2740 "");
2741
2742 lp_build_name(color_ptr, "color_ptr%d", cbuf);
2743
2744 stride = LLVMBuildLoad(builder,
2745 LLVMBuildGEP(builder, stride_ptr, &index, 1, ""),
2746 "");
2747
2748 generate_unswizzled_blend(gallivm, cbuf, variant,
2749 key->cbuf_format[cbuf],
2750 num_fs, fs_type, fs_mask, fs_out_color,
2751 context_ptr, color_ptr, stride,
2752 partial_mask, do_branch);
2753 }
2754 }
2755
2756 LLVMBuildRetVoid(builder);
2757
2758 gallivm_verify_function(gallivm, function);
2759 }
2760
2761
2762 static void
2763 dump_fs_variant_key(struct lp_fragment_shader_variant_key *key)
2764 {
2765 unsigned i;
2766
2767 debug_printf("fs variant %p:\n", (void *) key);
2768
2769 if (key->flatshade) {
2770 debug_printf("flatshade = 1\n");
2771 }
2772 if (key->multisample) {
2773 debug_printf("multisample = 1\n");
2774 debug_printf("coverage samples = %d\n", key->coverage_samples);
2775 }
2776 for (i = 0; i < key->nr_cbufs; ++i) {
2777 debug_printf("cbuf_format[%u] = %s\n", i, util_format_name(key->cbuf_format[i]));
2778 debug_printf("cbuf nr_samples[%u] = %d\n", i, key->cbuf_nr_samples[i]);
2779 }
2780 if (key->depth.enabled || key->stencil[0].enabled) {
2781 debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
2782 debug_printf("depth nr_samples = %d\n", key->zsbuf_nr_samples);
2783 }
2784 if (key->depth.enabled) {
2785 debug_printf("depth.func = %s\n", util_str_func(key->depth.func, TRUE));
2786 debug_printf("depth.writemask = %u\n", key->depth.writemask);
2787 }
2788
2789 for (i = 0; i < 2; ++i) {
2790 if (key->stencil[i].enabled) {
2791 debug_printf("stencil[%u].func = %s\n", i, util_str_func(key->stencil[i].func, TRUE));
2792 debug_printf("stencil[%u].fail_op = %s\n", i, util_str_stencil_op(key->stencil[i].fail_op, TRUE));
2793 debug_printf("stencil[%u].zpass_op = %s\n", i, util_str_stencil_op(key->stencil[i].zpass_op, TRUE));
2794 debug_printf("stencil[%u].zfail_op = %s\n", i, util_str_stencil_op(key->stencil[i].zfail_op, TRUE));
2795 debug_printf("stencil[%u].valuemask = 0x%x\n", i, key->stencil[i].valuemask);
2796 debug_printf("stencil[%u].writemask = 0x%x\n", i, key->stencil[i].writemask);
2797 }
2798 }
2799
2800 if (key->alpha.enabled) {
2801 debug_printf("alpha.func = %s\n", util_str_func(key->alpha.func, TRUE));
2802 }
2803
2804 if (key->occlusion_count) {
2805 debug_printf("occlusion_count = 1\n");
2806 }
2807
2808 if (key->blend.logicop_enable) {
2809 debug_printf("blend.logicop_func = %s\n", util_str_logicop(key->blend.logicop_func, TRUE));
2810 }
2811 else if (key->blend.rt[0].blend_enable) {
2812 debug_printf("blend.rgb_func = %s\n", util_str_blend_func (key->blend.rt[0].rgb_func, TRUE));
2813 debug_printf("blend.rgb_src_factor = %s\n", util_str_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
2814 debug_printf("blend.rgb_dst_factor = %s\n", util_str_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
2815 debug_printf("blend.alpha_func = %s\n", util_str_blend_func (key->blend.rt[0].alpha_func, TRUE));
2816 debug_printf("blend.alpha_src_factor = %s\n", util_str_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
2817 debug_printf("blend.alpha_dst_factor = %s\n", util_str_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
2818 }
2819 debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
2820 if (key->blend.alpha_to_coverage) {
2821 debug_printf("blend.alpha_to_coverage is enabled\n");
2822 }
2823 for (i = 0; i < key->nr_samplers; ++i) {
2824 const struct lp_static_sampler_state *sampler = &key->samplers[i].sampler_state;
2825 debug_printf("sampler[%u] = \n", i);
2826 debug_printf(" .wrap = %s %s %s\n",
2827 util_str_tex_wrap(sampler->wrap_s, TRUE),
2828 util_str_tex_wrap(sampler->wrap_t, TRUE),
2829 util_str_tex_wrap(sampler->wrap_r, TRUE));
2830 debug_printf(" .min_img_filter = %s\n",
2831 util_str_tex_filter(sampler->min_img_filter, TRUE));
2832 debug_printf(" .min_mip_filter = %s\n",
2833 util_str_tex_mipfilter(sampler->min_mip_filter, TRUE));
2834 debug_printf(" .mag_img_filter = %s\n",
2835 util_str_tex_filter(sampler->mag_img_filter, TRUE));
2836 if (sampler->compare_mode != PIPE_TEX_COMPARE_NONE)
2837 debug_printf(" .compare_func = %s\n", util_str_func(sampler->compare_func, TRUE));
2838 debug_printf(" .normalized_coords = %u\n", sampler->normalized_coords);
2839 debug_printf(" .min_max_lod_equal = %u\n", sampler->min_max_lod_equal);
2840 debug_printf(" .lod_bias_non_zero = %u\n", sampler->lod_bias_non_zero);
2841 debug_printf(" .apply_min_lod = %u\n", sampler->apply_min_lod);
2842 debug_printf(" .apply_max_lod = %u\n", sampler->apply_max_lod);
2843 }
2844 for (i = 0; i < key->nr_sampler_views; ++i) {
2845 const struct lp_static_texture_state *texture = &key->samplers[i].texture_state;
2846 debug_printf("texture[%u] = \n", i);
2847 debug_printf(" .format = %s\n",
2848 util_format_name(texture->format));
2849 debug_printf(" .target = %s\n",
2850 util_str_tex_target(texture->target, TRUE));
2851 debug_printf(" .level_zero_only = %u\n",
2852 texture->level_zero_only);
2853 debug_printf(" .pot = %u %u %u\n",
2854 texture->pot_width,
2855 texture->pot_height,
2856 texture->pot_depth);
2857 }
2858 struct lp_image_static_state *images = lp_fs_variant_key_images(key);
2859 for (i = 0; i < key->nr_images; ++i) {
2860 const struct lp_static_texture_state *image = &images[i].image_state;
2861 debug_printf("image[%u] = \n", i);
2862 debug_printf(" .format = %s\n",
2863 util_format_name(image->format));
2864 debug_printf(" .target = %s\n",
2865 util_str_tex_target(image->target, TRUE));
2866 debug_printf(" .level_zero_only = %u\n",
2867 image->level_zero_only);
2868 debug_printf(" .pot = %u %u %u\n",
2869 image->pot_width,
2870 image->pot_height,
2871 image->pot_depth);
2872 }
2873 }
2874
2875
2876 void
2877 lp_debug_fs_variant(struct lp_fragment_shader_variant *variant)
2878 {
2879 debug_printf("llvmpipe: Fragment shader #%u variant #%u:\n",
2880 variant->shader->no, variant->no);
2881 if (variant->shader->base.type == PIPE_SHADER_IR_TGSI)
2882 tgsi_dump(variant->shader->base.tokens, 0);
2883 else
2884 nir_print_shader(variant->shader->base.ir.nir, stderr);
2885 dump_fs_variant_key(&variant->key);
2886 debug_printf("variant->opaque = %u\n", variant->opaque);
2887 debug_printf("\n");
2888 }
2889
2890
2891 /**
2892 * Generate a new fragment shader variant from the shader code and
2893 * other state indicated by the key.
2894 */
2895 static struct lp_fragment_shader_variant *
2896 generate_variant(struct llvmpipe_context *lp,
2897 struct lp_fragment_shader *shader,
2898 const struct lp_fragment_shader_variant_key *key)
2899 {
2900 struct lp_fragment_shader_variant *variant;
2901 const struct util_format_description *cbuf0_format_desc = NULL;
2902 boolean fullcolormask;
2903 char module_name[64];
2904
2905 variant = MALLOC(sizeof *variant + shader->variant_key_size - sizeof variant->key);
2906 if (!variant)
2907 return NULL;
2908
2909 memset(variant, 0, sizeof(*variant));
2910 snprintf(module_name, sizeof(module_name), "fs%u_variant%u",
2911 shader->no, shader->variants_created);
2912
2913 variant->gallivm = gallivm_create(module_name, lp->context);
2914 if (!variant->gallivm) {
2915 FREE(variant);
2916 return NULL;
2917 }
2918
2919 variant->shader = shader;
2920 variant->list_item_global.base = variant;
2921 variant->list_item_local.base = variant;
2922 variant->no = shader->variants_created++;
2923
2924 memcpy(&variant->key, key, shader->variant_key_size);
2925
2926 /*
2927 * Determine whether we are touching all channels in the color buffer.
2928 */
2929 fullcolormask = FALSE;
2930 if (key->nr_cbufs == 1) {
2931 cbuf0_format_desc = util_format_description(key->cbuf_format[0]);
2932 fullcolormask = util_format_colormask_full(cbuf0_format_desc, key->blend.rt[0].colormask);
2933 }
2934
2935 variant->opaque =
2936 !key->blend.logicop_enable &&
2937 !key->blend.rt[0].blend_enable &&
2938 fullcolormask &&
2939 !key->stencil[0].enabled &&
2940 !key->alpha.enabled &&
2941 !key->blend.alpha_to_coverage &&
2942 !key->depth.enabled &&
2943 !shader->info.base.uses_kill &&
2944 !shader->info.base.writes_samplemask
2945 ? TRUE : FALSE;
2946
2947 if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
2948 lp_debug_fs_variant(variant);
2949 }
2950
2951 lp_jit_init_types(variant);
2952
2953 if (variant->jit_function[RAST_EDGE_TEST] == NULL)
2954 generate_fragment(lp, shader, variant, RAST_EDGE_TEST);
2955
2956 if (variant->jit_function[RAST_WHOLE] == NULL) {
2957 if (variant->opaque) {
2958 /* Specialized shader, which doesn't need to read the color buffer. */
2959 generate_fragment(lp, shader, variant, RAST_WHOLE);
2960 }
2961 }
2962
2963 /*
2964 * Compile everything
2965 */
2966
2967 gallivm_compile_module(variant->gallivm);
2968
2969 variant->nr_instrs += lp_build_count_ir_module(variant->gallivm->module);
2970
2971 if (variant->function[RAST_EDGE_TEST]) {
2972 variant->jit_function[RAST_EDGE_TEST] = (lp_jit_frag_func)
2973 gallivm_jit_function(variant->gallivm,
2974 variant->function[RAST_EDGE_TEST]);
2975 }
2976
2977 if (variant->function[RAST_WHOLE]) {
2978 variant->jit_function[RAST_WHOLE] = (lp_jit_frag_func)
2979 gallivm_jit_function(variant->gallivm,
2980 variant->function[RAST_WHOLE]);
2981 } else if (!variant->jit_function[RAST_WHOLE]) {
2982 variant->jit_function[RAST_WHOLE] = variant->jit_function[RAST_EDGE_TEST];
2983 }
2984
2985 gallivm_free_ir(variant->gallivm);
2986
2987 return variant;
2988 }
2989
2990
2991 static void *
2992 llvmpipe_create_fs_state(struct pipe_context *pipe,
2993 const struct pipe_shader_state *templ)
2994 {
2995 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
2996 struct lp_fragment_shader *shader;
2997 int nr_samplers;
2998 int nr_sampler_views;
2999 int nr_images;
3000 int i;
3001
3002 shader = CALLOC_STRUCT(lp_fragment_shader);
3003 if (!shader)
3004 return NULL;
3005
3006 shader->no = fs_no++;
3007 make_empty_list(&shader->variants);
3008
3009 shader->base.type = templ->type;
3010 if (templ->type == PIPE_SHADER_IR_TGSI) {
3011 /* get/save the summary info for this shader */
3012 lp_build_tgsi_info(templ->tokens, &shader->info);
3013
3014 /* we need to keep a local copy of the tokens */
3015 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
3016 } else {
3017 shader->base.ir.nir = templ->ir.nir;
3018 nir_tgsi_scan_shader(templ->ir.nir, &shader->info.base, true);
3019 }
3020
3021 shader->draw_data = draw_create_fragment_shader(llvmpipe->draw, templ);
3022 if (shader->draw_data == NULL) {
3023 FREE((void *) shader->base.tokens);
3024 FREE(shader);
3025 return NULL;
3026 }
3027
3028 nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
3029 nr_sampler_views = shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
3030 nr_images = shader->info.base.file_max[TGSI_FILE_IMAGE] + 1;
3031 shader->variant_key_size = lp_fs_variant_key_size(MAX2(nr_samplers, nr_sampler_views), nr_images);
3032
3033 for (i = 0; i < shader->info.base.num_inputs; i++) {
3034 shader->inputs[i].usage_mask = shader->info.base.input_usage_mask[i];
3035 shader->inputs[i].cyl_wrap = shader->info.base.input_cylindrical_wrap[i];
3036 shader->inputs[i].location = shader->info.base.input_interpolate_loc[i];
3037
3038 switch (shader->info.base.input_interpolate[i]) {
3039 case TGSI_INTERPOLATE_CONSTANT:
3040 shader->inputs[i].interp = LP_INTERP_CONSTANT;
3041 break;
3042 case TGSI_INTERPOLATE_LINEAR:
3043 shader->inputs[i].interp = LP_INTERP_LINEAR;
3044 break;
3045 case TGSI_INTERPOLATE_PERSPECTIVE:
3046 shader->inputs[i].interp = LP_INTERP_PERSPECTIVE;
3047 break;
3048 case TGSI_INTERPOLATE_COLOR:
3049 shader->inputs[i].interp = LP_INTERP_COLOR;
3050 break;
3051 default:
3052 assert(0);
3053 break;
3054 }
3055
3056 switch (shader->info.base.input_semantic_name[i]) {
3057 case TGSI_SEMANTIC_FACE:
3058 shader->inputs[i].interp = LP_INTERP_FACING;
3059 break;
3060 case TGSI_SEMANTIC_POSITION:
3061 /* Position was already emitted above
3062 */
3063 shader->inputs[i].interp = LP_INTERP_POSITION;
3064 shader->inputs[i].src_index = 0;
3065 continue;
3066 }
3067
3068 /* XXX this is a completely pointless index map... */
3069 shader->inputs[i].src_index = i+1;
3070 }
3071
3072 if (LP_DEBUG & DEBUG_TGSI) {
3073 unsigned attrib;
3074 debug_printf("llvmpipe: Create fragment shader #%u %p:\n",
3075 shader->no, (void *) shader);
3076 tgsi_dump(templ->tokens, 0);
3077 debug_printf("usage masks:\n");
3078 for (attrib = 0; attrib < shader->info.base.num_inputs; ++attrib) {
3079 unsigned usage_mask = shader->info.base.input_usage_mask[attrib];
3080 debug_printf(" IN[%u].%s%s%s%s\n",
3081 attrib,
3082 usage_mask & TGSI_WRITEMASK_X ? "x" : "",
3083 usage_mask & TGSI_WRITEMASK_Y ? "y" : "",
3084 usage_mask & TGSI_WRITEMASK_Z ? "z" : "",
3085 usage_mask & TGSI_WRITEMASK_W ? "w" : "");
3086 }
3087 debug_printf("\n");
3088 }
3089
3090 return shader;
3091 }
3092
3093
3094 static void
3095 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
3096 {
3097 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3098 struct lp_fragment_shader *lp_fs = (struct lp_fragment_shader *)fs;
3099 if (llvmpipe->fs == lp_fs)
3100 return;
3101
3102 draw_bind_fragment_shader(llvmpipe->draw,
3103 (lp_fs ? lp_fs->draw_data : NULL));
3104
3105 llvmpipe->fs = lp_fs;
3106
3107 llvmpipe->dirty |= LP_NEW_FS;
3108 }
3109
3110
3111 /**
3112 * Remove shader variant from two lists: the shader's variant list
3113 * and the context's variant list.
3114 */
3115 static void
3116 llvmpipe_remove_shader_variant(struct llvmpipe_context *lp,
3117 struct lp_fragment_shader_variant *variant)
3118 {
3119 if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
3120 debug_printf("llvmpipe: del fs #%u var %u v created %u v cached %u "
3121 "v total cached %u inst %u total inst %u\n",
3122 variant->shader->no, variant->no,
3123 variant->shader->variants_created,
3124 variant->shader->variants_cached,
3125 lp->nr_fs_variants, variant->nr_instrs, lp->nr_fs_instrs);
3126 }
3127
3128 gallivm_destroy(variant->gallivm);
3129
3130 /* remove from shader's list */
3131 remove_from_list(&variant->list_item_local);
3132 variant->shader->variants_cached--;
3133
3134 /* remove from context's list */
3135 remove_from_list(&variant->list_item_global);
3136 lp->nr_fs_variants--;
3137 lp->nr_fs_instrs -= variant->nr_instrs;
3138
3139 FREE(variant);
3140 }
3141
3142
3143 static void
3144 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
3145 {
3146 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3147 struct lp_fragment_shader *shader = fs;
3148 struct lp_fs_variant_list_item *li;
3149
3150 assert(fs != llvmpipe->fs);
3151
3152 /*
3153 * XXX: we need to flush the context until we have some sort of reference
3154 * counting in fragment shaders as they may still be binned
3155 * Flushing alone might not sufficient we need to wait on it too.
3156 */
3157 llvmpipe_finish(pipe, __FUNCTION__);
3158
3159 /* Delete all the variants */
3160 li = first_elem(&shader->variants);
3161 while(!at_end(&shader->variants, li)) {
3162 struct lp_fs_variant_list_item *next = next_elem(li);
3163 llvmpipe_remove_shader_variant(llvmpipe, li->base);
3164 li = next;
3165 }
3166
3167 /* Delete draw module's data */
3168 draw_delete_fragment_shader(llvmpipe->draw, shader->draw_data);
3169
3170 if (shader->base.ir.nir)
3171 ralloc_free(shader->base.ir.nir);
3172 assert(shader->variants_cached == 0);
3173 FREE((void *) shader->base.tokens);
3174 FREE(shader);
3175 }
3176
3177
3178
3179 static void
3180 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
3181 enum pipe_shader_type shader, uint index,
3182 const struct pipe_constant_buffer *cb)
3183 {
3184 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3185 struct pipe_resource *constants = cb ? cb->buffer : NULL;
3186
3187 assert(shader < PIPE_SHADER_TYPES);
3188 assert(index < ARRAY_SIZE(llvmpipe->constants[shader]));
3189
3190 /* note: reference counting */
3191 util_copy_constant_buffer(&llvmpipe->constants[shader][index], cb);
3192
3193 if (constants) {
3194 if (!(constants->bind & PIPE_BIND_CONSTANT_BUFFER)) {
3195 debug_printf("Illegal set constant without bind flag\n");
3196 constants->bind |= PIPE_BIND_CONSTANT_BUFFER;
3197 }
3198 }
3199
3200 if (shader == PIPE_SHADER_VERTEX ||
3201 shader == PIPE_SHADER_GEOMETRY ||
3202 shader == PIPE_SHADER_TESS_CTRL ||
3203 shader == PIPE_SHADER_TESS_EVAL) {
3204 /* Pass the constants to the 'draw' module */
3205 const unsigned size = cb ? cb->buffer_size : 0;
3206 const ubyte *data;
3207
3208 if (constants) {
3209 data = (ubyte *) llvmpipe_resource_data(constants);
3210 }
3211 else if (cb && cb->user_buffer) {
3212 data = (ubyte *) cb->user_buffer;
3213 }
3214 else {
3215 data = NULL;
3216 }
3217
3218 if (data)
3219 data += cb->buffer_offset;
3220
3221 draw_set_mapped_constant_buffer(llvmpipe->draw, shader,
3222 index, data, size);
3223 }
3224 else if (shader == PIPE_SHADER_COMPUTE)
3225 llvmpipe->cs_dirty |= LP_CSNEW_CONSTANTS;
3226 else
3227 llvmpipe->dirty |= LP_NEW_FS_CONSTANTS;
3228
3229 if (cb && cb->user_buffer) {
3230 pipe_resource_reference(&constants, NULL);
3231 }
3232 }
3233
3234 static void
3235 llvmpipe_set_shader_buffers(struct pipe_context *pipe,
3236 enum pipe_shader_type shader, unsigned start_slot,
3237 unsigned count, const struct pipe_shader_buffer *buffers,
3238 unsigned writable_bitmask)
3239 {
3240 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3241 unsigned i, idx;
3242 for (i = start_slot, idx = 0; i < start_slot + count; i++, idx++) {
3243 const struct pipe_shader_buffer *buffer = buffers ? &buffers[idx] : NULL;
3244
3245 util_copy_shader_buffer(&llvmpipe->ssbos[shader][i], buffer);
3246
3247 if (shader == PIPE_SHADER_VERTEX ||
3248 shader == PIPE_SHADER_GEOMETRY ||
3249 shader == PIPE_SHADER_TESS_CTRL ||
3250 shader == PIPE_SHADER_TESS_EVAL) {
3251 const unsigned size = buffer ? buffer->buffer_size : 0;
3252 const ubyte *data = NULL;
3253 if (buffer && buffer->buffer)
3254 data = (ubyte *) llvmpipe_resource_data(buffer->buffer);
3255 if (data)
3256 data += buffer->buffer_offset;
3257 draw_set_mapped_shader_buffer(llvmpipe->draw, shader,
3258 i, data, size);
3259 } else if (shader == PIPE_SHADER_COMPUTE) {
3260 llvmpipe->cs_dirty |= LP_CSNEW_SSBOS;
3261 } else if (shader == PIPE_SHADER_FRAGMENT) {
3262 llvmpipe->dirty |= LP_NEW_FS_SSBOS;
3263 }
3264 }
3265 }
3266
3267 static void
3268 llvmpipe_set_shader_images(struct pipe_context *pipe,
3269 enum pipe_shader_type shader, unsigned start_slot,
3270 unsigned count, const struct pipe_image_view *images)
3271 {
3272 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3273 unsigned i, idx;
3274
3275 draw_flush(llvmpipe->draw);
3276 for (i = start_slot, idx = 0; i < start_slot + count; i++, idx++) {
3277 const struct pipe_image_view *image = images ? &images[idx] : NULL;
3278
3279 util_copy_image_view(&llvmpipe->images[shader][i], image);
3280 }
3281
3282 llvmpipe->num_images[shader] = start_slot + count;
3283 if (shader == PIPE_SHADER_VERTEX ||
3284 shader == PIPE_SHADER_GEOMETRY ||
3285 shader == PIPE_SHADER_TESS_CTRL ||
3286 shader == PIPE_SHADER_TESS_EVAL) {
3287 draw_set_images(llvmpipe->draw,
3288 shader,
3289 llvmpipe->images[shader],
3290 start_slot + count);
3291 } else if (shader == PIPE_SHADER_COMPUTE)
3292 llvmpipe->cs_dirty |= LP_CSNEW_IMAGES;
3293 else
3294 llvmpipe->dirty |= LP_NEW_FS_IMAGES;
3295 }
3296
3297 /**
3298 * Return the blend factor equivalent to a destination alpha of one.
3299 */
3300 static inline unsigned
3301 force_dst_alpha_one(unsigned factor, boolean clamped_zero)
3302 {
3303 switch(factor) {
3304 case PIPE_BLENDFACTOR_DST_ALPHA:
3305 return PIPE_BLENDFACTOR_ONE;
3306 case PIPE_BLENDFACTOR_INV_DST_ALPHA:
3307 return PIPE_BLENDFACTOR_ZERO;
3308 case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
3309 if (clamped_zero)
3310 return PIPE_BLENDFACTOR_ZERO;
3311 else
3312 return PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE;
3313 }
3314
3315 return factor;
3316 }
3317
3318
3319 /**
3320 * We need to generate several variants of the fragment pipeline to match
3321 * all the combinations of the contributing state atoms.
3322 *
3323 * TODO: there is actually no reason to tie this to context state -- the
3324 * generated code could be cached globally in the screen.
3325 */
3326 static struct lp_fragment_shader_variant_key *
3327 make_variant_key(struct llvmpipe_context *lp,
3328 struct lp_fragment_shader *shader,
3329 char *store)
3330 {
3331 unsigned i;
3332 struct lp_fragment_shader_variant_key *key;
3333
3334 key = (struct lp_fragment_shader_variant_key *)store;
3335
3336 memset(key, 0, offsetof(struct lp_fragment_shader_variant_key, samplers[1]));
3337
3338 if (lp->framebuffer.zsbuf) {
3339 enum pipe_format zsbuf_format = lp->framebuffer.zsbuf->format;
3340 const struct util_format_description *zsbuf_desc =
3341 util_format_description(zsbuf_format);
3342
3343 if (lp->depth_stencil->depth.enabled &&
3344 util_format_has_depth(zsbuf_desc)) {
3345 key->zsbuf_format = zsbuf_format;
3346 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
3347 }
3348 if (lp->depth_stencil->stencil[0].enabled &&
3349 util_format_has_stencil(zsbuf_desc)) {
3350 key->zsbuf_format = zsbuf_format;
3351 memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil);
3352 }
3353 if (llvmpipe_resource_is_1d(lp->framebuffer.zsbuf->texture)) {
3354 key->resource_1d = TRUE;
3355 }
3356 key->zsbuf_nr_samples = util_res_sample_count(lp->framebuffer.zsbuf->texture);
3357 }
3358
3359 /*
3360 * Propagate the depth clamp setting from the rasterizer state.
3361 * depth_clip == 0 implies depth clamping is enabled.
3362 *
3363 * When clip_halfz is enabled, then always clamp the depth values.
3364 *
3365 * XXX: This is incorrect for GL, but correct for d3d10 (depth
3366 * clamp is always active in d3d10, regardless if depth clip is
3367 * enabled or not).
3368 * (GL has an always-on [0,1] clamp on fs depth output instead
3369 * to ensure the depth values stay in range. Doesn't look like
3370 * we do that, though...)
3371 */
3372 if (lp->rasterizer->clip_halfz) {
3373 key->depth_clamp = 1;
3374 } else {
3375 key->depth_clamp = (lp->rasterizer->depth_clip_near == 0) ? 1 : 0;
3376 }
3377
3378 /* alpha test only applies if render buffer 0 is non-integer (or does not exist) */
3379 if (!lp->framebuffer.nr_cbufs ||
3380 !lp->framebuffer.cbufs[0] ||
3381 !util_format_is_pure_integer(lp->framebuffer.cbufs[0]->format)) {
3382 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
3383 }
3384 if(key->alpha.enabled)
3385 key->alpha.func = lp->depth_stencil->alpha.func;
3386 /* alpha.ref_value is passed in jit_context */
3387
3388 key->flatshade = lp->rasterizer->flatshade;
3389 key->multisample = lp->rasterizer->multisample;
3390 if (lp->active_occlusion_queries && !lp->queries_disabled) {
3391 key->occlusion_count = TRUE;
3392 }
3393
3394 if (lp->framebuffer.nr_cbufs) {
3395 memcpy(&key->blend, lp->blend, sizeof key->blend);
3396 }
3397
3398 key->coverage_samples = 1;
3399 if (key->multisample)
3400 key->coverage_samples = util_framebuffer_get_num_samples(&lp->framebuffer);
3401 key->nr_cbufs = lp->framebuffer.nr_cbufs;
3402
3403 if (!key->blend.independent_blend_enable) {
3404 /* we always need independent blend otherwise the fixups below won't work */
3405 for (i = 1; i < key->nr_cbufs; i++) {
3406 memcpy(&key->blend.rt[i], &key->blend.rt[0], sizeof(key->blend.rt[0]));
3407 }
3408 key->blend.independent_blend_enable = 1;
3409 }
3410
3411 for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
3412 struct pipe_rt_blend_state *blend_rt = &key->blend.rt[i];
3413
3414 if (lp->framebuffer.cbufs[i]) {
3415 enum pipe_format format = lp->framebuffer.cbufs[i]->format;
3416 const struct util_format_description *format_desc;
3417
3418 key->cbuf_format[i] = format;
3419 key->cbuf_nr_samples[i] = util_res_sample_count(lp->framebuffer.cbufs[i]->texture);
3420
3421 /*
3422 * Figure out if this is a 1d resource. Note that OpenGL allows crazy
3423 * mixing of 2d textures with height 1 and 1d textures, so make sure
3424 * we pick 1d if any cbuf or zsbuf is 1d.
3425 */
3426 if (llvmpipe_resource_is_1d(lp->framebuffer.cbufs[i]->texture)) {
3427 key->resource_1d = TRUE;
3428 }
3429
3430 format_desc = util_format_description(format);
3431 assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||
3432 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB);
3433
3434 /*
3435 * Mask out color channels not present in the color buffer.
3436 */
3437 blend_rt->colormask &= util_format_colormask(format_desc);
3438
3439 /*
3440 * Disable blend for integer formats.
3441 */
3442 if (util_format_is_pure_integer(format)) {
3443 blend_rt->blend_enable = 0;
3444 }
3445
3446 /*
3447 * Our swizzled render tiles always have an alpha channel, but the
3448 * linear render target format often does not, so force here the dst
3449 * alpha to be one.
3450 *
3451 * This is not a mere optimization. Wrong results will be produced if
3452 * the dst alpha is used, the dst format does not have alpha, and the
3453 * previous rendering was not flushed from the swizzled to linear
3454 * buffer. For example, NonPowTwo DCT.
3455 *
3456 * TODO: This should be generalized to all channels for better
3457 * performance, but only alpha causes correctness issues.
3458 *
3459 * Also, force rgb/alpha func/factors match, to make AoS blending
3460 * easier.
3461 */
3462 if (format_desc->swizzle[3] > PIPE_SWIZZLE_W ||
3463 format_desc->swizzle[3] == format_desc->swizzle[0]) {
3464 /* Doesn't cover mixed snorm/unorm but can't render to them anyway */
3465 boolean clamped_zero = !util_format_is_float(format) &&
3466 !util_format_is_snorm(format);
3467 blend_rt->rgb_src_factor =
3468 force_dst_alpha_one(blend_rt->rgb_src_factor, clamped_zero);
3469 blend_rt->rgb_dst_factor =
3470 force_dst_alpha_one(blend_rt->rgb_dst_factor, clamped_zero);
3471 blend_rt->alpha_func = blend_rt->rgb_func;
3472 blend_rt->alpha_src_factor = blend_rt->rgb_src_factor;
3473 blend_rt->alpha_dst_factor = blend_rt->rgb_dst_factor;
3474 }
3475 }
3476 else {
3477 /* no color buffer for this fragment output */
3478 key->cbuf_format[i] = PIPE_FORMAT_NONE;
3479 key->cbuf_nr_samples[i] = 0;
3480 blend_rt->colormask = 0x0;
3481 blend_rt->blend_enable = 0;
3482 }
3483 }
3484
3485 /* This value will be the same for all the variants of a given shader:
3486 */
3487 key->nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
3488
3489 struct lp_sampler_static_state *fs_sampler;
3490
3491 fs_sampler = key->samplers;
3492
3493 memset(fs_sampler, 0, MAX2(key->nr_samplers, key->nr_sampler_views) * sizeof *fs_sampler);
3494
3495 for(i = 0; i < key->nr_samplers; ++i) {
3496 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
3497 lp_sampler_static_sampler_state(&fs_sampler[i].sampler_state,
3498 lp->samplers[PIPE_SHADER_FRAGMENT][i]);
3499 }
3500 }
3501
3502 /*
3503 * XXX If TGSI_FILE_SAMPLER_VIEW exists assume all texture opcodes
3504 * are dx10-style? Can't really have mixed opcodes, at least not
3505 * if we want to skip the holes here (without rescanning tgsi).
3506 */
3507 if (shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] != -1) {
3508 key->nr_sampler_views = shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
3509 for(i = 0; i < key->nr_sampler_views; ++i) {
3510 /*
3511 * Note sview may exceed what's representable by file_mask.
3512 * This will still work, the only downside is that not actually
3513 * used views may be included in the shader key.
3514 */
3515 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER_VIEW] & (1u << (i & 31))) {
3516 lp_sampler_static_texture_state(&fs_sampler[i].texture_state,
3517 lp->sampler_views[PIPE_SHADER_FRAGMENT][i]);
3518 }
3519 }
3520 }
3521 else {
3522 key->nr_sampler_views = key->nr_samplers;
3523 for(i = 0; i < key->nr_sampler_views; ++i) {
3524 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
3525 lp_sampler_static_texture_state(&fs_sampler[i].texture_state,
3526 lp->sampler_views[PIPE_SHADER_FRAGMENT][i]);
3527 }
3528 }
3529 }
3530
3531 struct lp_image_static_state *lp_image;
3532 lp_image = lp_fs_variant_key_images(key);
3533 key->nr_images = shader->info.base.file_max[TGSI_FILE_IMAGE] + 1;
3534 for (i = 0; i < key->nr_images; ++i) {
3535 if (shader->info.base.file_mask[TGSI_FILE_IMAGE] & (1 << i)) {
3536 lp_sampler_static_texture_state_image(&lp_image[i].image_state,
3537 &lp->images[PIPE_SHADER_FRAGMENT][i]);
3538 }
3539 }
3540 return key;
3541 }
3542
3543
3544
3545 /**
3546 * Update fragment shader state. This is called just prior to drawing
3547 * something when some fragment-related state has changed.
3548 */
3549 void
3550 llvmpipe_update_fs(struct llvmpipe_context *lp)
3551 {
3552 struct lp_fragment_shader *shader = lp->fs;
3553 struct lp_fragment_shader_variant_key *key;
3554 struct lp_fragment_shader_variant *variant = NULL;
3555 struct lp_fs_variant_list_item *li;
3556 char store[LP_FS_MAX_VARIANT_KEY_SIZE];
3557
3558 key = make_variant_key(lp, shader, store);
3559
3560 /* Search the variants for one which matches the key */
3561 li = first_elem(&shader->variants);
3562 while(!at_end(&shader->variants, li)) {
3563 if(memcmp(&li->base->key, key, shader->variant_key_size) == 0) {
3564 variant = li->base;
3565 break;
3566 }
3567 li = next_elem(li);
3568 }
3569
3570 if (variant) {
3571 /* Move this variant to the head of the list to implement LRU
3572 * deletion of shader's when we have too many.
3573 */
3574 move_to_head(&lp->fs_variants_list, &variant->list_item_global);
3575 }
3576 else {
3577 /* variant not found, create it now */
3578 int64_t t0, t1, dt;
3579 unsigned i;
3580 unsigned variants_to_cull;
3581
3582 if (LP_DEBUG & DEBUG_FS) {
3583 debug_printf("%u variants,\t%u instrs,\t%u instrs/variant\n",
3584 lp->nr_fs_variants,
3585 lp->nr_fs_instrs,
3586 lp->nr_fs_variants ? lp->nr_fs_instrs / lp->nr_fs_variants : 0);
3587 }
3588
3589 /* First, check if we've exceeded the max number of shader variants.
3590 * If so, free 6.25% of them (the least recently used ones).
3591 */
3592 variants_to_cull = lp->nr_fs_variants >= LP_MAX_SHADER_VARIANTS ? LP_MAX_SHADER_VARIANTS / 16 : 0;
3593
3594 if (variants_to_cull ||
3595 lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS) {
3596 struct pipe_context *pipe = &lp->pipe;
3597
3598 if (gallivm_debug & GALLIVM_DEBUG_PERF) {
3599 debug_printf("Evicting FS: %u fs variants,\t%u total variants,"
3600 "\t%u instrs,\t%u instrs/variant\n",
3601 shader->variants_cached,
3602 lp->nr_fs_variants, lp->nr_fs_instrs,
3603 lp->nr_fs_instrs / lp->nr_fs_variants);
3604 }
3605
3606 /*
3607 * XXX: we need to flush the context until we have some sort of
3608 * reference counting in fragment shaders as they may still be binned
3609 * Flushing alone might not be sufficient we need to wait on it too.
3610 */
3611 llvmpipe_finish(pipe, __FUNCTION__);
3612
3613 /*
3614 * We need to re-check lp->nr_fs_variants because an arbitrarliy large
3615 * number of shader variants (potentially all of them) could be
3616 * pending for destruction on flush.
3617 */
3618
3619 for (i = 0; i < variants_to_cull || lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS; i++) {
3620 struct lp_fs_variant_list_item *item;
3621 if (is_empty_list(&lp->fs_variants_list)) {
3622 break;
3623 }
3624 item = last_elem(&lp->fs_variants_list);
3625 assert(item);
3626 assert(item->base);
3627 llvmpipe_remove_shader_variant(lp, item->base);
3628 }
3629 }
3630
3631 /*
3632 * Generate the new variant.
3633 */
3634 t0 = os_time_get();
3635 variant = generate_variant(lp, shader, key);
3636 t1 = os_time_get();
3637 dt = t1 - t0;
3638 LP_COUNT_ADD(llvm_compile_time, dt);
3639 LP_COUNT_ADD(nr_llvm_compiles, 2); /* emit vs. omit in/out test */
3640
3641 /* Put the new variant into the list */
3642 if (variant) {
3643 insert_at_head(&shader->variants, &variant->list_item_local);
3644 insert_at_head(&lp->fs_variants_list, &variant->list_item_global);
3645 lp->nr_fs_variants++;
3646 lp->nr_fs_instrs += variant->nr_instrs;
3647 shader->variants_cached++;
3648 }
3649 }
3650
3651 /* Bind this variant */
3652 lp_setup_set_fs_variant(lp->setup, variant);
3653 }
3654
3655
3656
3657
3658
3659 void
3660 llvmpipe_init_fs_funcs(struct llvmpipe_context *llvmpipe)
3661 {
3662 llvmpipe->pipe.create_fs_state = llvmpipe_create_fs_state;
3663 llvmpipe->pipe.bind_fs_state = llvmpipe_bind_fs_state;
3664 llvmpipe->pipe.delete_fs_state = llvmpipe_delete_fs_state;
3665
3666 llvmpipe->pipe.set_constant_buffer = llvmpipe_set_constant_buffer;
3667
3668 llvmpipe->pipe.set_shader_buffers = llvmpipe_set_shader_buffers;
3669 llvmpipe->pipe.set_shader_images = llvmpipe_set_shader_images;
3670 }
3671
3672