llvmpipe: implement scissor testing
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - stipple (TBI)
35 * - early depth test
36 * - fragment shader
37 * - alpha test
38 * - depth/stencil test (stencil TBI)
39 * - blending
40 *
41 * This file has only the glue to assembly the fragment pipeline. The actual
42 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
43 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
44 * muster the LLVM JIT execution engine to create a function that follows an
45 * established binary interface and that can be called from C directly.
46 *
47 * A big source of complexity here is that we often want to run different
48 * stages with different precisions and data types and precisions. For example,
49 * the fragment shader needs typically to be done in floats, but the
50 * depth/stencil test and blending is better done in the type that most closely
51 * matches the depth/stencil and color buffer respectively.
52 *
53 * Since the width of a SIMD vector register stays the same regardless of the
54 * element type, different types imply different number of elements, so we must
55 * code generate more instances of the stages with larger types to be able to
56 * feed/consume the stages with smaller types.
57 *
58 * @author Jose Fonseca <jfonseca@vmware.com>
59 */
60
61 #include <limits.h>
62 #include "pipe/p_defines.h"
63 #include "util/u_memory.h"
64 #include "util/u_format.h"
65 #include "util/u_debug_dump.h"
66 #include "pipe/internal/p_winsys_screen.h"
67 #include "pipe/p_shader_tokens.h"
68 #include "draw/draw_context.h"
69 #include "tgsi/tgsi_dump.h"
70 #include "tgsi/tgsi_scan.h"
71 #include "tgsi/tgsi_parse.h"
72 #include "lp_bld_type.h"
73 #include "lp_bld_const.h"
74 #include "lp_bld_conv.h"
75 #include "lp_bld_intr.h"
76 #include "lp_bld_logic.h"
77 #include "lp_bld_depth.h"
78 #include "lp_bld_interp.h"
79 #include "lp_bld_tgsi.h"
80 #include "lp_bld_alpha.h"
81 #include "lp_bld_blend.h"
82 #include "lp_bld_swizzle.h"
83 #include "lp_bld_flow.h"
84 #include "lp_bld_debug.h"
85 #include "lp_screen.h"
86 #include "lp_context.h"
87 #include "lp_buffer.h"
88 #include "lp_setup.h"
89 #include "lp_state.h"
90 #include "lp_tex_sample.h"
91 #include "lp_debug.h"
92
93
94 static const unsigned char quad_offset_x[4] = {0, 1, 0, 1};
95 static const unsigned char quad_offset_y[4] = {0, 0, 1, 1};
96
97
98 /*
99 * Derive from the quad's upper left scalar coordinates the coordinates for
100 * all other quad pixels
101 */
102 static void
103 generate_pos0(LLVMBuilderRef builder,
104 LLVMValueRef x,
105 LLVMValueRef y,
106 LLVMValueRef *x0,
107 LLVMValueRef *y0)
108 {
109 LLVMTypeRef int_elem_type = LLVMInt32Type();
110 LLVMTypeRef int_vec_type = LLVMVectorType(int_elem_type, QUAD_SIZE);
111 LLVMTypeRef elem_type = LLVMFloatType();
112 LLVMTypeRef vec_type = LLVMVectorType(elem_type, QUAD_SIZE);
113 LLVMValueRef x_offsets[QUAD_SIZE];
114 LLVMValueRef y_offsets[QUAD_SIZE];
115 unsigned i;
116
117 x = lp_build_broadcast(builder, int_vec_type, x);
118 y = lp_build_broadcast(builder, int_vec_type, y);
119
120 for(i = 0; i < QUAD_SIZE; ++i) {
121 x_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_x[i], 0);
122 y_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_y[i], 0);
123 }
124
125 x = LLVMBuildAdd(builder, x, LLVMConstVector(x_offsets, QUAD_SIZE), "");
126 y = LLVMBuildAdd(builder, y, LLVMConstVector(y_offsets, QUAD_SIZE), "");
127
128 *x0 = LLVMBuildSIToFP(builder, x, vec_type, "");
129 *y0 = LLVMBuildSIToFP(builder, y, vec_type, "");
130 }
131
132
133 /**
134 * Generate the depth test.
135 */
136 static void
137 generate_depth(LLVMBuilderRef builder,
138 const struct lp_fragment_shader_variant_key *key,
139 struct lp_type src_type,
140 struct lp_build_mask_context *mask,
141 LLVMValueRef src,
142 LLVMValueRef dst_ptr)
143 {
144 const struct util_format_description *format_desc;
145 struct lp_type dst_type;
146
147 if(!key->depth.enabled)
148 return;
149
150 format_desc = util_format_description(key->zsbuf_format);
151 assert(format_desc);
152
153 /*
154 * Depths are expected to be between 0 and 1, even if they are stored in
155 * floats. Setting these bits here will ensure that the lp_build_conv() call
156 * below won't try to unnecessarily clamp the incoming values.
157 */
158 if(src_type.floating) {
159 src_type.sign = FALSE;
160 src_type.norm = TRUE;
161 }
162 else {
163 assert(!src_type.sign);
164 assert(src_type.norm);
165 }
166
167 /* Pick the depth type. */
168 dst_type = lp_depth_type(format_desc, src_type.width*src_type.length);
169
170 /* FIXME: Cope with a depth test type with a different bit width. */
171 assert(dst_type.width == src_type.width);
172 assert(dst_type.length == src_type.length);
173
174 lp_build_conv(builder, src_type, dst_type, &src, 1, &src, 1);
175
176 dst_ptr = LLVMBuildBitCast(builder,
177 dst_ptr,
178 LLVMPointerType(lp_build_vec_type(dst_type), 0), "");
179
180 lp_build_depth_test(builder,
181 &key->depth,
182 dst_type,
183 format_desc,
184 mask,
185 src,
186 dst_ptr);
187 }
188
189
190 /**
191 * Generate the code to do inside/outside triangle testing for the
192 * four pixels in a 2x2 quad. This will set the four elements of the
193 * quad mask vector to 0 or ~0.
194 * \param i which quad of the quad group to test, in [0,3]
195 */
196 static void
197 generate_tri_edge_mask(LLVMBuilderRef builder,
198 unsigned i,
199 LLVMValueRef *mask, /* ivec4, out */
200 LLVMValueRef c0, /* int32 */
201 LLVMValueRef c1, /* int32 */
202 LLVMValueRef c2, /* int32 */
203 LLVMValueRef step0_ptr, /* ivec4 */
204 LLVMValueRef step1_ptr, /* ivec4 */
205 LLVMValueRef step2_ptr) /* ivec4 */
206 {
207 #define OPTIMIZE_IN_OUT_TEST 0
208 #if OPTIMIZE_IN_OUT_TEST
209 struct lp_build_if_state ifctx;
210 LLVMValueRef not_draw_all;
211 #endif
212 struct lp_build_flow_context *flow;
213 struct lp_type i32_type;
214 LLVMTypeRef i32vec4_type, mask_type;
215 LLVMValueRef c0_vec, c1_vec, c2_vec;
216 LLVMValueRef in_out_mask;
217
218 assert(i < 4);
219
220 /* int32 vector type */
221 memset(&i32_type, 0, sizeof i32_type);
222 i32_type.floating = FALSE; /* values are integers */
223 i32_type.sign = TRUE; /* values are signed */
224 i32_type.norm = FALSE; /* values are not normalized */
225 i32_type.width = 32; /* 32-bit int values */
226 i32_type.length = 4; /* 4 elements per vector */
227
228 i32vec4_type = lp_build_int32_vec4_type();
229
230 mask_type = LLVMIntType(32 * 4);
231
232 /*
233 * Use a conditional here to do detailed pixel in/out testing.
234 * We only have to do this if c0 != INT_MIN.
235 */
236 flow = lp_build_flow_create(builder);
237 lp_build_flow_scope_begin(flow);
238
239 {
240 #if OPTIMIZE_IN_OUT_TEST
241 /* not_draw_all = (c0 != INT_MIN) */
242 not_draw_all = LLVMBuildICmp(builder,
243 LLVMIntNE,
244 c0,
245 LLVMConstInt(LLVMInt32Type(), INT_MIN, 0),
246 "");
247
248 in_out_mask = lp_build_int_const_scalar(i32_type, ~0);
249
250
251 lp_build_flow_scope_declare(flow, &in_out_mask);
252
253 /* if (not_draw_all) {... */
254 lp_build_if(&ifctx, flow, builder, not_draw_all);
255 #endif
256 {
257 LLVMValueRef step0_vec, step1_vec, step2_vec;
258 LLVMValueRef m0_vec, m1_vec, m2_vec;
259 LLVMValueRef index, m;
260
261 /* c0_vec = {c0, c0, c0, c0}
262 * Note that we emit this code four times but LLVM optimizes away
263 * three instances of it.
264 */
265 c0_vec = lp_build_broadcast(builder, i32vec4_type, c0);
266 c1_vec = lp_build_broadcast(builder, i32vec4_type, c1);
267 c2_vec = lp_build_broadcast(builder, i32vec4_type, c2);
268 lp_build_name(c0_vec, "edgeconst0vec");
269 lp_build_name(c1_vec, "edgeconst1vec");
270 lp_build_name(c2_vec, "edgeconst2vec");
271
272 /* load step0vec, step1, step2 vec from memory */
273 index = LLVMConstInt(LLVMInt32Type(), i, 0);
274 step0_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step0_ptr, &index, 1, ""), "");
275 step1_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step1_ptr, &index, 1, ""), "");
276 step2_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step2_ptr, &index, 1, ""), "");
277 lp_build_name(step0_vec, "step0vec");
278 lp_build_name(step1_vec, "step1vec");
279 lp_build_name(step2_vec, "step2vec");
280
281 /* m0_vec = step0_ptr[i] > c0_vec */
282 m0_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step0_vec, c0_vec);
283 m1_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step1_vec, c1_vec);
284 m2_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step2_vec, c2_vec);
285
286 /* in_out_mask = m0_vec & m1_vec & m2_vec */
287 m = LLVMBuildAnd(builder, m0_vec, m1_vec, "");
288 in_out_mask = LLVMBuildAnd(builder, m, m2_vec, "");
289 lp_build_name(in_out_mask, "inoutmaskvec");
290 }
291 #if OPTIMIZE_IN_OUT_TEST
292 lp_build_endif(&ifctx);
293 #endif
294
295 }
296 lp_build_flow_scope_end(flow);
297 lp_build_flow_destroy(flow);
298
299 /* This is the initial alive/dead pixel mask for a quad of four pixels.
300 * It's an int[4] vector with each word set to 0 or ~0.
301 * Words will get cleared when pixels faile the Z test, etc.
302 */
303 *mask = in_out_mask;
304 }
305
306
307 static LLVMValueRef
308 generate_scissor_test(LLVMBuilderRef builder,
309 LLVMValueRef context_ptr,
310 const struct lp_build_interp_soa_context *interp,
311 struct lp_type type)
312 {
313 LLVMTypeRef vec_type = lp_build_vec_type(type);
314 LLVMValueRef xpos = interp->pos[0], ypos = interp->pos[1];
315 LLVMValueRef xmin, ymin, xmax, ymax;
316 LLVMValueRef m0, m1, m2, m3, m;
317
318 /* xpos, ypos contain the window coords for the four pixels in the quad */
319 assert(xpos);
320 assert(ypos);
321
322 /* get the current scissor bounds, convert to vectors */
323 xmin = lp_jit_context_scissor_xmin_value(builder, context_ptr);
324 xmin = lp_build_broadcast(builder, vec_type, xmin);
325
326 ymin = lp_jit_context_scissor_ymin_value(builder, context_ptr);
327 ymin = lp_build_broadcast(builder, vec_type, ymin);
328
329 xmax = lp_jit_context_scissor_xmax_value(builder, context_ptr);
330 xmax = lp_build_broadcast(builder, vec_type, xmax);
331
332 ymax = lp_jit_context_scissor_ymax_value(builder, context_ptr);
333 ymax = lp_build_broadcast(builder, vec_type, ymax);
334
335 /* compare the fragment's position coordinates against the scissor bounds */
336 m0 = lp_build_compare(builder, type, PIPE_FUNC_GEQUAL, xpos, xmin);
337 m1 = lp_build_compare(builder, type, PIPE_FUNC_GEQUAL, ypos, ymin);
338 m2 = lp_build_compare(builder, type, PIPE_FUNC_LESS, xpos, xmax);
339 m3 = lp_build_compare(builder, type, PIPE_FUNC_LESS, ypos, ymax);
340
341 /* AND all the masks together */
342 m = LLVMBuildAnd(builder, m0, m1, "");
343 m = LLVMBuildAnd(builder, m, m2, "");
344 m = LLVMBuildAnd(builder, m, m3, "");
345
346 lp_build_name(m, "scissormask");
347
348 return m;
349 }
350
351
352 /**
353 * Generate the fragment shader, depth/stencil test, and alpha tests.
354 * \param i which quad in the tile, in range [0,3]
355 */
356 static void
357 generate_fs(struct llvmpipe_context *lp,
358 struct lp_fragment_shader *shader,
359 const struct lp_fragment_shader_variant_key *key,
360 LLVMBuilderRef builder,
361 struct lp_type type,
362 LLVMValueRef context_ptr,
363 unsigned i,
364 const struct lp_build_interp_soa_context *interp,
365 struct lp_build_sampler_soa *sampler,
366 LLVMValueRef *pmask,
367 LLVMValueRef (*color)[4],
368 LLVMValueRef depth_ptr,
369 LLVMValueRef c0,
370 LLVMValueRef c1,
371 LLVMValueRef c2,
372 LLVMValueRef step0_ptr,
373 LLVMValueRef step1_ptr,
374 LLVMValueRef step2_ptr)
375 {
376 const struct tgsi_token *tokens = shader->base.tokens;
377 LLVMTypeRef elem_type;
378 LLVMTypeRef vec_type;
379 LLVMTypeRef int_vec_type;
380 LLVMValueRef consts_ptr;
381 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][NUM_CHANNELS];
382 LLVMValueRef z = interp->pos[2];
383 struct lp_build_flow_context *flow;
384 struct lp_build_mask_context mask;
385 boolean early_depth_test;
386 unsigned attrib;
387 unsigned chan;
388 unsigned cbuf;
389
390 assert(i < 4);
391
392 elem_type = lp_build_elem_type(type);
393 vec_type = lp_build_vec_type(type);
394 int_vec_type = lp_build_int_vec_type(type);
395
396 consts_ptr = lp_jit_context_constants(builder, context_ptr);
397
398 flow = lp_build_flow_create(builder);
399
400 memset(outputs, 0, sizeof outputs);
401
402 lp_build_flow_scope_begin(flow);
403
404 /* Declare the color and z variables */
405 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
406 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
407 color[cbuf][chan] = LLVMGetUndef(vec_type);
408 lp_build_flow_scope_declare(flow, &color[cbuf][chan]);
409 }
410 }
411 lp_build_flow_scope_declare(flow, &z);
412
413 /* do triangle edge testing */
414 generate_tri_edge_mask(builder, i, pmask,
415 c0, c1, c2, step0_ptr, step1_ptr, step2_ptr);
416
417 /* 'mask' will control execution based on quad's pixel alive/killed state */
418 lp_build_mask_begin(&mask, flow, type, *pmask);
419
420 if (key->scissor) {
421 LLVMValueRef smask =
422 generate_scissor_test(builder, context_ptr, interp, type);
423 lp_build_mask_update(&mask, smask);
424 }
425
426 early_depth_test =
427 key->depth.enabled &&
428 !key->alpha.enabled &&
429 !shader->info.uses_kill &&
430 !shader->info.writes_z;
431
432 if(early_depth_test)
433 generate_depth(builder, key,
434 type, &mask,
435 z, depth_ptr);
436
437 lp_build_tgsi_soa(builder, tokens, type, &mask,
438 consts_ptr, interp->pos, interp->inputs,
439 outputs, sampler);
440
441 for (attrib = 0; attrib < shader->info.num_outputs; ++attrib) {
442 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
443 if(outputs[attrib][chan]) {
444 lp_build_name(outputs[attrib][chan], "output%u.%u.%c", i, attrib, "xyzw"[chan]);
445
446 switch (shader->info.output_semantic_name[attrib]) {
447 case TGSI_SEMANTIC_COLOR:
448 {
449 unsigned cbuf = shader->info.output_semantic_index[attrib];
450
451 lp_build_name(outputs[attrib][chan], "color%u.%u.%c", i, attrib, "rgba"[chan]);
452
453 /* Alpha test */
454 /* XXX: should the alpha reference value be passed separately? */
455 /* XXX: should only test the final assignment to alpha */
456 if(cbuf == 0 && chan == 3) {
457 LLVMValueRef alpha = outputs[attrib][chan];
458 LLVMValueRef alpha_ref_value;
459 alpha_ref_value = lp_jit_context_alpha_ref_value(builder, context_ptr);
460 alpha_ref_value = lp_build_broadcast(builder, vec_type, alpha_ref_value);
461 lp_build_alpha_test(builder, &key->alpha, type,
462 &mask, alpha, alpha_ref_value);
463 }
464
465 color[cbuf][chan] = outputs[attrib][chan];
466 break;
467 }
468
469 case TGSI_SEMANTIC_POSITION:
470 if(chan == 2)
471 z = outputs[attrib][chan];
472 break;
473 }
474 }
475 }
476 }
477
478 if(!early_depth_test)
479 generate_depth(builder, key,
480 type, &mask,
481 z, depth_ptr);
482
483 lp_build_mask_end(&mask);
484
485 lp_build_flow_scope_end(flow);
486
487 lp_build_flow_destroy(flow);
488
489 *pmask = mask.value;
490
491 }
492
493
494 /**
495 * Generate color blending and color output.
496 */
497 static void
498 generate_blend(const struct pipe_blend_state *blend,
499 LLVMBuilderRef builder,
500 struct lp_type type,
501 LLVMValueRef context_ptr,
502 LLVMValueRef mask,
503 LLVMValueRef *src,
504 LLVMValueRef dst_ptr)
505 {
506 struct lp_build_context bld;
507 struct lp_build_flow_context *flow;
508 struct lp_build_mask_context mask_ctx;
509 LLVMTypeRef vec_type;
510 LLVMTypeRef int_vec_type;
511 LLVMValueRef const_ptr;
512 LLVMValueRef con[4];
513 LLVMValueRef dst[4];
514 LLVMValueRef res[4];
515 unsigned chan;
516
517 lp_build_context_init(&bld, builder, type);
518
519 flow = lp_build_flow_create(builder);
520
521 /* we'll use this mask context to skip blending if all pixels are dead */
522 lp_build_mask_begin(&mask_ctx, flow, type, mask);
523
524 vec_type = lp_build_vec_type(type);
525 int_vec_type = lp_build_int_vec_type(type);
526
527 const_ptr = lp_jit_context_blend_color(builder, context_ptr);
528 const_ptr = LLVMBuildBitCast(builder, const_ptr,
529 LLVMPointerType(vec_type, 0), "");
530
531 for(chan = 0; chan < 4; ++chan) {
532 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
533 con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), "");
534
535 dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), "");
536
537 lp_build_name(con[chan], "con.%c", "rgba"[chan]);
538 lp_build_name(dst[chan], "dst.%c", "rgba"[chan]);
539 }
540
541 lp_build_blend_soa(builder, blend, type, src, dst, con, res);
542
543 for(chan = 0; chan < 4; ++chan) {
544 if(blend->colormask & (1 << chan)) {
545 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
546 lp_build_name(res[chan], "res.%c", "rgba"[chan]);
547 res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]);
548 LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, ""));
549 }
550 }
551
552 lp_build_mask_end(&mask_ctx);
553 lp_build_flow_destroy(flow);
554 }
555
556
557 /**
558 * Generate the runtime callable function for the whole fragment pipeline.
559 * Note that the function which we generate operates on a block of 16
560 * pixels at at time. The block contains 2x2 quads. Each quad contains
561 * 2x2 pixels.
562 */
563 static void
564 generate_fragment(struct llvmpipe_context *lp,
565 struct lp_fragment_shader *shader,
566 struct lp_fragment_shader_variant *variant)
567 {
568 struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
569 const struct lp_fragment_shader_variant_key *key = &variant->key;
570 struct lp_type fs_type;
571 struct lp_type blend_type;
572 LLVMTypeRef fs_elem_type;
573 LLVMTypeRef fs_vec_type;
574 LLVMTypeRef fs_int_vec_type;
575 LLVMTypeRef blend_vec_type;
576 LLVMTypeRef blend_int_vec_type;
577 LLVMTypeRef arg_types[14];
578 LLVMTypeRef func_type;
579 LLVMTypeRef int32_vec4_type = lp_build_int32_vec4_type();
580 LLVMValueRef context_ptr;
581 LLVMValueRef x;
582 LLVMValueRef y;
583 LLVMValueRef a0_ptr;
584 LLVMValueRef dadx_ptr;
585 LLVMValueRef dady_ptr;
586 LLVMValueRef color_ptr_ptr;
587 LLVMValueRef depth_ptr;
588 LLVMValueRef c0, c1, c2, step0_ptr, step1_ptr, step2_ptr;
589 LLVMBasicBlockRef block;
590 LLVMBuilderRef builder;
591 LLVMValueRef x0;
592 LLVMValueRef y0;
593 struct lp_build_sampler_soa *sampler;
594 struct lp_build_interp_soa_context interp;
595 LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
596 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
597 LLVMValueRef blend_mask;
598 LLVMValueRef blend_in_color[NUM_CHANNELS];
599 unsigned num_fs;
600 unsigned i;
601 unsigned chan;
602 unsigned cbuf;
603
604
605 /* TODO: actually pick these based on the fs and color buffer
606 * characteristics. */
607
608 memset(&fs_type, 0, sizeof fs_type);
609 fs_type.floating = TRUE; /* floating point values */
610 fs_type.sign = TRUE; /* values are signed */
611 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
612 fs_type.width = 32; /* 32-bit float */
613 fs_type.length = 4; /* 4 elements per vector */
614 num_fs = 4; /* number of quads per block */
615
616 memset(&blend_type, 0, sizeof blend_type);
617 blend_type.floating = FALSE; /* values are integers */
618 blend_type.sign = FALSE; /* values are unsigned */
619 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
620 blend_type.width = 8; /* 8-bit ubyte values */
621 blend_type.length = 16; /* 16 elements per vector */
622
623 /*
624 * Generate the function prototype. Any change here must be reflected in
625 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
626 */
627
628 fs_elem_type = lp_build_elem_type(fs_type);
629 fs_vec_type = lp_build_vec_type(fs_type);
630 fs_int_vec_type = lp_build_int_vec_type(fs_type);
631
632 blend_vec_type = lp_build_vec_type(blend_type);
633 blend_int_vec_type = lp_build_int_vec_type(blend_type);
634
635 arg_types[0] = screen->context_ptr_type; /* context */
636 arg_types[1] = LLVMInt32Type(); /* x */
637 arg_types[2] = LLVMInt32Type(); /* y */
638 arg_types[3] = LLVMPointerType(fs_elem_type, 0); /* a0 */
639 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* dadx */
640 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dady */
641 arg_types[6] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */
642 arg_types[7] = LLVMPointerType(fs_int_vec_type, 0); /* depth */
643 arg_types[8] = LLVMInt32Type(); /* c0 */
644 arg_types[9] = LLVMInt32Type(); /* c1 */
645 arg_types[10] = LLVMInt32Type(); /* c2 */
646 /* Note: the step arrays are built as int32[16] but we interpret
647 * them here as int32_vec4[4].
648 */
649 arg_types[11] = LLVMPointerType(int32_vec4_type, 0);/* step0 */
650 arg_types[12] = LLVMPointerType(int32_vec4_type, 0);/* step1 */
651 arg_types[13] = LLVMPointerType(int32_vec4_type, 0);/* step2 */
652
653 func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0);
654
655 variant->function = LLVMAddFunction(screen->module, "shader", func_type);
656 LLVMSetFunctionCallConv(variant->function, LLVMCCallConv);
657
658 /* XXX: need to propagate noalias down into color param now we are
659 * passing a pointer-to-pointer?
660 */
661 for(i = 0; i < Elements(arg_types); ++i)
662 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
663 LLVMAddAttribute(LLVMGetParam(variant->function, i), LLVMNoAliasAttribute);
664
665 context_ptr = LLVMGetParam(variant->function, 0);
666 x = LLVMGetParam(variant->function, 1);
667 y = LLVMGetParam(variant->function, 2);
668 a0_ptr = LLVMGetParam(variant->function, 3);
669 dadx_ptr = LLVMGetParam(variant->function, 4);
670 dady_ptr = LLVMGetParam(variant->function, 5);
671 color_ptr_ptr = LLVMGetParam(variant->function, 6);
672 depth_ptr = LLVMGetParam(variant->function, 7);
673 c0 = LLVMGetParam(variant->function, 8);
674 c1 = LLVMGetParam(variant->function, 9);
675 c2 = LLVMGetParam(variant->function, 10);
676 step0_ptr = LLVMGetParam(variant->function, 11);
677 step1_ptr = LLVMGetParam(variant->function, 12);
678 step2_ptr = LLVMGetParam(variant->function, 13);
679
680 lp_build_name(context_ptr, "context");
681 lp_build_name(x, "x");
682 lp_build_name(y, "y");
683 lp_build_name(a0_ptr, "a0");
684 lp_build_name(dadx_ptr, "dadx");
685 lp_build_name(dady_ptr, "dady");
686 lp_build_name(color_ptr_ptr, "color_ptr");
687 lp_build_name(depth_ptr, "depth");
688 lp_build_name(c0, "c0");
689 lp_build_name(c1, "c1");
690 lp_build_name(c2, "c2");
691 lp_build_name(step0_ptr, "step0");
692 lp_build_name(step1_ptr, "step1");
693 lp_build_name(step2_ptr, "step2");
694
695 /*
696 * Function body
697 */
698
699 block = LLVMAppendBasicBlock(variant->function, "entry");
700 builder = LLVMCreateBuilder();
701 LLVMPositionBuilderAtEnd(builder, block);
702
703 generate_pos0(builder, x, y, &x0, &y0);
704
705 lp_build_interp_soa_init(&interp,
706 shader->base.tokens,
707 key->flatshade,
708 builder, fs_type,
709 a0_ptr, dadx_ptr, dady_ptr,
710 x0, y0);
711
712 /* code generated texture sampling */
713 sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr);
714
715 /* loop over quads in the block */
716 for(i = 0; i < num_fs; ++i) {
717 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
718 LLVMValueRef out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS];
719 LLVMValueRef depth_ptr_i;
720 int cbuf;
721
722 if(i != 0)
723 lp_build_interp_soa_update(&interp, i);
724
725 depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &index, 1, "");
726
727 generate_fs(lp, shader, key,
728 builder,
729 fs_type,
730 context_ptr,
731 i,
732 &interp,
733 sampler,
734 &fs_mask[i], /* output */
735 out_color,
736 depth_ptr_i,
737 c0, c1, c2,
738 step0_ptr, step1_ptr, step2_ptr);
739
740 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++)
741 for(chan = 0; chan < NUM_CHANNELS; ++chan)
742 fs_out_color[cbuf][chan][i] = out_color[cbuf][chan];
743 }
744
745 sampler->destroy(sampler);
746
747 /* Loop over color outputs / color buffers to do blending.
748 */
749 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
750 LLVMValueRef color_ptr;
751 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), cbuf, 0);
752
753 /*
754 * Convert the fs's output color and mask to fit to the blending type.
755 */
756 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
757 lp_build_conv(builder, fs_type, blend_type,
758 fs_out_color[cbuf][chan], num_fs,
759 &blend_in_color[chan], 1);
760 lp_build_name(blend_in_color[chan], "color%d.%c", cbuf, "rgba"[chan]);
761 }
762
763 lp_build_conv_mask(builder, fs_type, blend_type,
764 fs_mask, num_fs,
765 &blend_mask, 1);
766
767 color_ptr = LLVMBuildLoad(builder,
768 LLVMBuildGEP(builder, color_ptr_ptr, &index, 1, ""),
769 "");
770 lp_build_name(color_ptr, "color_ptr%d", cbuf);
771
772 /*
773 * Blending.
774 */
775 generate_blend(&key->blend,
776 builder,
777 blend_type,
778 context_ptr,
779 blend_mask,
780 blend_in_color,
781 color_ptr);
782 }
783
784 LLVMBuildRetVoid(builder);
785
786 LLVMDisposeBuilder(builder);
787
788
789 /* Verify the LLVM IR. If invalid, dump and abort */
790 #ifdef DEBUG
791 if(LLVMVerifyFunction(variant->function, LLVMPrintMessageAction)) {
792 if (1)
793 LLVMDumpValue(variant->function);
794 abort();
795 }
796 #endif
797
798 /* Apply optimizations to LLVM IR */
799 if (1)
800 LLVMRunFunctionPassManager(screen->pass, variant->function);
801
802 if (LP_DEBUG & DEBUG_JIT) {
803 /* Print the LLVM IR to stderr */
804 LLVMDumpValue(variant->function);
805 debug_printf("\n");
806 }
807
808 /*
809 * Translate the LLVM IR into machine code.
810 */
811 variant->jit_function = (lp_jit_frag_func)LLVMGetPointerToGlobal(screen->engine, variant->function);
812
813 if (LP_DEBUG & DEBUG_ASM)
814 lp_disassemble(variant->jit_function);
815
816 variant->next = shader->variants;
817 shader->variants = variant;
818 }
819
820
821 static struct lp_fragment_shader_variant *
822 generate_variant(struct llvmpipe_context *lp,
823 struct lp_fragment_shader *shader,
824 const struct lp_fragment_shader_variant_key *key)
825 {
826 struct lp_fragment_shader_variant *variant;
827
828 if (LP_DEBUG & DEBUG_JIT) {
829 unsigned i;
830
831 tgsi_dump(shader->base.tokens, 0);
832 if(key->depth.enabled) {
833 debug_printf("depth.format = %s\n", pf_name(key->zsbuf_format));
834 debug_printf("depth.func = %s\n", debug_dump_func(key->depth.func, TRUE));
835 debug_printf("depth.writemask = %u\n", key->depth.writemask);
836 }
837 if(key->alpha.enabled) {
838 debug_printf("alpha.func = %s\n", debug_dump_func(key->alpha.func, TRUE));
839 debug_printf("alpha.ref_value = %f\n", key->alpha.ref_value);
840 }
841 if(key->blend.logicop_enable) {
842 debug_printf("blend.logicop_func = %u\n", key->blend.logicop_func);
843 }
844 else if(key->blend.blend_enable) {
845 debug_printf("blend.rgb_func = %s\n", debug_dump_blend_func (key->blend.rgb_func, TRUE));
846 debug_printf("rgb_src_factor = %s\n", debug_dump_blend_factor(key->blend.rgb_src_factor, TRUE));
847 debug_printf("rgb_dst_factor = %s\n", debug_dump_blend_factor(key->blend.rgb_dst_factor, TRUE));
848 debug_printf("alpha_func = %s\n", debug_dump_blend_func (key->blend.alpha_func, TRUE));
849 debug_printf("alpha_src_factor = %s\n", debug_dump_blend_factor(key->blend.alpha_src_factor, TRUE));
850 debug_printf("alpha_dst_factor = %s\n", debug_dump_blend_factor(key->blend.alpha_dst_factor, TRUE));
851 }
852 debug_printf("blend.colormask = 0x%x\n", key->blend.colormask);
853 for(i = 0; i < PIPE_MAX_SAMPLERS; ++i) {
854 if(key->sampler[i].format) {
855 debug_printf("sampler[%u] = \n", i);
856 debug_printf(" .format = %s\n",
857 pf_name(key->sampler[i].format));
858 debug_printf(" .target = %s\n",
859 debug_dump_tex_target(key->sampler[i].target, TRUE));
860 debug_printf(" .pot = %u %u %u\n",
861 key->sampler[i].pot_width,
862 key->sampler[i].pot_height,
863 key->sampler[i].pot_depth);
864 debug_printf(" .wrap = %s %s %s\n",
865 debug_dump_tex_wrap(key->sampler[i].wrap_s, TRUE),
866 debug_dump_tex_wrap(key->sampler[i].wrap_t, TRUE),
867 debug_dump_tex_wrap(key->sampler[i].wrap_r, TRUE));
868 debug_printf(" .min_img_filter = %s\n",
869 debug_dump_tex_filter(key->sampler[i].min_img_filter, TRUE));
870 debug_printf(" .min_mip_filter = %s\n",
871 debug_dump_tex_mipfilter(key->sampler[i].min_mip_filter, TRUE));
872 debug_printf(" .mag_img_filter = %s\n",
873 debug_dump_tex_filter(key->sampler[i].mag_img_filter, TRUE));
874 if(key->sampler[i].compare_mode != PIPE_TEX_COMPARE_NONE)
875 debug_printf(" .compare_func = %s\n", debug_dump_func(key->sampler[i].compare_func, TRUE));
876 debug_printf(" .normalized_coords = %u\n", key->sampler[i].normalized_coords);
877 debug_printf(" .prefilter = %u\n", key->sampler[i].prefilter);
878 }
879 }
880 }
881
882 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
883 if(!variant)
884 return NULL;
885
886 variant->shader = shader;
887 memcpy(&variant->key, key, sizeof *key);
888
889 generate_fragment(lp, shader, variant);
890
891 return variant;
892 }
893
894
895 void *
896 llvmpipe_create_fs_state(struct pipe_context *pipe,
897 const struct pipe_shader_state *templ)
898 {
899 struct lp_fragment_shader *shader;
900
901 shader = CALLOC_STRUCT(lp_fragment_shader);
902 if (!shader)
903 return NULL;
904
905 /* get/save the summary info for this shader */
906 tgsi_scan_shader(templ->tokens, &shader->info);
907
908 /* we need to keep a local copy of the tokens */
909 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
910
911 return shader;
912 }
913
914
915 void
916 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
917 {
918 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
919
920 if (llvmpipe->fs == fs)
921 return;
922
923 draw_flush(llvmpipe->draw);
924
925 llvmpipe->fs = fs;
926
927 llvmpipe->dirty |= LP_NEW_FS;
928 }
929
930
931 void
932 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
933 {
934 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
935 struct llvmpipe_screen *screen = llvmpipe_screen(pipe->screen);
936 struct lp_fragment_shader *shader = fs;
937 struct lp_fragment_shader_variant *variant;
938
939 assert(fs != llvmpipe->fs);
940 (void) llvmpipe;
941
942 variant = shader->variants;
943 while(variant) {
944 struct lp_fragment_shader_variant *next = variant->next;
945
946 if(variant->function) {
947 if(variant->jit_function)
948 LLVMFreeMachineCodeForFunction(screen->engine, variant->function);
949 LLVMDeleteFunction(variant->function);
950 }
951
952 FREE(variant);
953
954 variant = next;
955 }
956
957 FREE((void *) shader->base.tokens);
958 FREE(shader);
959 }
960
961
962
963 void
964 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
965 uint shader, uint index,
966 const struct pipe_constant_buffer *constants)
967 {
968 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
969 struct pipe_buffer *buffer = constants ? constants->buffer : NULL;
970 unsigned size = buffer ? buffer->size : 0;
971 const void *data = buffer ? llvmpipe_buffer(buffer)->data : NULL;
972
973 assert(shader < PIPE_SHADER_TYPES);
974 assert(index == 0);
975
976 if(llvmpipe->constants[shader].buffer == buffer)
977 return;
978
979 draw_flush(llvmpipe->draw);
980
981 /* note: reference counting */
982 pipe_buffer_reference(&llvmpipe->constants[shader].buffer, buffer);
983
984 if(shader == PIPE_SHADER_VERTEX) {
985 draw_set_mapped_constant_buffer(llvmpipe->draw, PIPE_SHADER_VERTEX,
986 data, size);
987 }
988
989 llvmpipe->dirty |= LP_NEW_CONSTANTS;
990 }
991
992
993 /**
994 * We need to generate several variants of the fragment pipeline to match
995 * all the combinations of the contributing state atoms.
996 *
997 * TODO: there is actually no reason to tie this to context state -- the
998 * generated code could be cached globally in the screen.
999 */
1000 static void
1001 make_variant_key(struct llvmpipe_context *lp,
1002 struct lp_fragment_shader *shader,
1003 struct lp_fragment_shader_variant_key *key)
1004 {
1005 unsigned i;
1006
1007 memset(key, 0, sizeof *key);
1008
1009 if(lp->framebuffer.zsbuf &&
1010 lp->depth_stencil->depth.enabled) {
1011 key->zsbuf_format = lp->framebuffer.zsbuf->format;
1012 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
1013 }
1014
1015 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
1016 if(key->alpha.enabled)
1017 key->alpha.func = lp->depth_stencil->alpha.func;
1018 /* alpha.ref_value is passed in jit_context */
1019
1020 key->flatshade = lp->rasterizer->flatshade;
1021 key->scissor = lp->rasterizer->scissor;
1022
1023 if (lp->framebuffer.nr_cbufs) {
1024 memcpy(&key->blend, lp->blend, sizeof key->blend);
1025 }
1026
1027 key->nr_cbufs = lp->framebuffer.nr_cbufs;
1028 for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
1029 const struct util_format_description *format_desc;
1030 unsigned chan;
1031
1032 format_desc = util_format_description(lp->framebuffer.cbufs[i]->format);
1033 assert(format_desc->layout == UTIL_FORMAT_COLORSPACE_RGB ||
1034 format_desc->layout == UTIL_FORMAT_COLORSPACE_SRGB);
1035
1036 /* mask out color channels not present in the color buffer.
1037 * Should be simple to incorporate per-cbuf writemasks:
1038 */
1039 for(chan = 0; chan < 4; ++chan) {
1040 enum util_format_swizzle swizzle = format_desc->swizzle[chan];
1041
1042 if(swizzle <= UTIL_FORMAT_SWIZZLE_W)
1043 key->cbuf_blend[i].colormask |= (1 << chan);
1044 }
1045 }
1046
1047 for(i = 0; i < PIPE_MAX_SAMPLERS; ++i)
1048 if(shader->info.file_mask[TGSI_FILE_SAMPLER] & (1 << i))
1049 lp_sampler_static_state(&key->sampler[i], lp->texture[i], lp->sampler[i]);
1050 }
1051
1052
1053 /**
1054 * Update fragment state. This is called just prior to drawing
1055 * something when some fragment-related state has changed.
1056 */
1057 void
1058 llvmpipe_update_fs(struct llvmpipe_context *lp)
1059 {
1060 struct lp_fragment_shader *shader = lp->fs;
1061 struct lp_fragment_shader_variant_key key;
1062 struct lp_fragment_shader_variant *variant;
1063 boolean opaque;
1064
1065 make_variant_key(lp, shader, &key);
1066
1067 variant = shader->variants;
1068 while(variant) {
1069 if(memcmp(&variant->key, &key, sizeof key) == 0)
1070 break;
1071
1072 variant = variant->next;
1073 }
1074
1075 if(!variant)
1076 variant = generate_variant(lp, shader, &key);
1077
1078 shader->current = variant;
1079
1080 /* TODO: put this in the variant */
1081 /* TODO: most of these can be relaxed, in particular the colormask */
1082 opaque = !key.blend.logicop_enable &&
1083 !key.blend.blend_enable &&
1084 key.blend.colormask == 0xf &&
1085 !key.alpha.enabled &&
1086 !key.depth.enabled &&
1087 !key.scissor &&
1088 !shader->info.uses_kill
1089 ? TRUE : FALSE;
1090
1091 lp_setup_set_fs_function(lp->setup,
1092 shader->current->jit_function,
1093 opaque);
1094 }