llvmpipe: Don't waste time interpolating unused input channels.
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - triangle edge in/out testing
35 * - scissor test
36 * - stipple (TBI)
37 * - early depth test
38 * - fragment shader
39 * - alpha test
40 * - depth/stencil test
41 * - blending
42 *
43 * This file has only the glue to assemble the fragment pipeline. The actual
44 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
45 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
46 * muster the LLVM JIT execution engine to create a function that follows an
47 * established binary interface and that can be called from C directly.
48 *
49 * A big source of complexity here is that we often want to run different
50 * stages with different precisions and data types and precisions. For example,
51 * the fragment shader needs typically to be done in floats, but the
52 * depth/stencil test and blending is better done in the type that most closely
53 * matches the depth/stencil and color buffer respectively.
54 *
55 * Since the width of a SIMD vector register stays the same regardless of the
56 * element type, different types imply different number of elements, so we must
57 * code generate more instances of the stages with larger types to be able to
58 * feed/consume the stages with smaller types.
59 *
60 * @author Jose Fonseca <jfonseca@vmware.com>
61 */
62
63 #include <limits.h>
64 #include "pipe/p_defines.h"
65 #include "util/u_inlines.h"
66 #include "util/u_memory.h"
67 #include "util/u_pointer.h"
68 #include "util/u_format.h"
69 #include "util/u_dump.h"
70 #include "os/os_time.h"
71 #include "pipe/p_shader_tokens.h"
72 #include "draw/draw_context.h"
73 #include "tgsi/tgsi_dump.h"
74 #include "tgsi/tgsi_scan.h"
75 #include "tgsi/tgsi_parse.h"
76 #include "gallivm/lp_bld_type.h"
77 #include "gallivm/lp_bld_const.h"
78 #include "gallivm/lp_bld_conv.h"
79 #include "gallivm/lp_bld_intr.h"
80 #include "gallivm/lp_bld_logic.h"
81 #include "gallivm/lp_bld_tgsi.h"
82 #include "gallivm/lp_bld_swizzle.h"
83 #include "gallivm/lp_bld_flow.h"
84 #include "gallivm/lp_bld_debug.h"
85
86 #include "lp_bld_alpha.h"
87 #include "lp_bld_blend.h"
88 #include "lp_bld_depth.h"
89 #include "lp_bld_interp.h"
90 #include "lp_context.h"
91 #include "lp_debug.h"
92 #include "lp_perf.h"
93 #include "lp_screen.h"
94 #include "lp_setup.h"
95 #include "lp_state.h"
96 #include "lp_tex_sample.h"
97
98
99 #include <llvm-c/Analysis.h>
100
101
102 static const unsigned char quad_offset_x[4] = {0, 1, 0, 1};
103 static const unsigned char quad_offset_y[4] = {0, 0, 1, 1};
104
105
106 /*
107 * Derive from the quad's upper left scalar coordinates the coordinates for
108 * all other quad pixels
109 */
110 static void
111 generate_pos0(LLVMBuilderRef builder,
112 LLVMValueRef x,
113 LLVMValueRef y,
114 LLVMValueRef *x0,
115 LLVMValueRef *y0)
116 {
117 LLVMTypeRef int_elem_type = LLVMInt32Type();
118 LLVMTypeRef int_vec_type = LLVMVectorType(int_elem_type, QUAD_SIZE);
119 LLVMTypeRef elem_type = LLVMFloatType();
120 LLVMTypeRef vec_type = LLVMVectorType(elem_type, QUAD_SIZE);
121 LLVMValueRef x_offsets[QUAD_SIZE];
122 LLVMValueRef y_offsets[QUAD_SIZE];
123 unsigned i;
124
125 x = lp_build_broadcast(builder, int_vec_type, x);
126 y = lp_build_broadcast(builder, int_vec_type, y);
127
128 for(i = 0; i < QUAD_SIZE; ++i) {
129 x_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_x[i], 0);
130 y_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_y[i], 0);
131 }
132
133 x = LLVMBuildAdd(builder, x, LLVMConstVector(x_offsets, QUAD_SIZE), "");
134 y = LLVMBuildAdd(builder, y, LLVMConstVector(y_offsets, QUAD_SIZE), "");
135
136 *x0 = LLVMBuildSIToFP(builder, x, vec_type, "");
137 *y0 = LLVMBuildSIToFP(builder, y, vec_type, "");
138 }
139
140
141 /**
142 * Generate the depth /stencil test code.
143 */
144 static void
145 generate_depth_stencil(LLVMBuilderRef builder,
146 const struct lp_fragment_shader_variant_key *key,
147 struct lp_type src_type,
148 struct lp_build_mask_context *mask,
149 LLVMValueRef stencil_refs[2],
150 LLVMValueRef src,
151 LLVMValueRef dst_ptr,
152 LLVMValueRef facing,
153 LLVMValueRef counter)
154 {
155 const struct util_format_description *format_desc;
156 struct lp_type dst_type;
157
158 if (!key->depth.enabled && !key->stencil[0].enabled && !key->stencil[1].enabled)
159 return;
160
161 format_desc = util_format_description(key->zsbuf_format);
162 assert(format_desc);
163
164 /*
165 * Depths are expected to be between 0 and 1, even if they are stored in
166 * floats. Setting these bits here will ensure that the lp_build_conv() call
167 * below won't try to unnecessarily clamp the incoming values.
168 */
169 if(src_type.floating) {
170 src_type.sign = FALSE;
171 src_type.norm = TRUE;
172 }
173 else {
174 assert(!src_type.sign);
175 assert(src_type.norm);
176 }
177
178 /* Pick the depth type. */
179 dst_type = lp_depth_type(format_desc, src_type.width*src_type.length);
180
181 /* FIXME: Cope with a depth test type with a different bit width. */
182 assert(dst_type.width == src_type.width);
183 assert(dst_type.length == src_type.length);
184
185 /* Convert fragment Z from float to integer */
186 lp_build_conv(builder, src_type, dst_type, &src, 1, &src, 1);
187
188 dst_ptr = LLVMBuildBitCast(builder,
189 dst_ptr,
190 LLVMPointerType(lp_build_vec_type(dst_type), 0), "");
191 lp_build_depth_stencil_test(builder,
192 &key->depth,
193 key->stencil,
194 dst_type,
195 format_desc,
196 mask,
197 stencil_refs,
198 src,
199 dst_ptr,
200 facing,
201 counter);
202 }
203
204
205 /**
206 * Generate the code to do inside/outside triangle testing for the
207 * four pixels in a 2x2 quad. This will set the four elements of the
208 * quad mask vector to 0 or ~0.
209 * \param i which quad of the quad group to test, in [0,3]
210 */
211 static void
212 generate_tri_edge_mask(LLVMBuilderRef builder,
213 unsigned i,
214 LLVMValueRef *mask, /* ivec4, out */
215 LLVMValueRef c0, /* int32 */
216 LLVMValueRef c1, /* int32 */
217 LLVMValueRef c2, /* int32 */
218 LLVMValueRef step0_ptr, /* ivec4 */
219 LLVMValueRef step1_ptr, /* ivec4 */
220 LLVMValueRef step2_ptr) /* ivec4 */
221 {
222 #define OPTIMIZE_IN_OUT_TEST 0
223 #if OPTIMIZE_IN_OUT_TEST
224 struct lp_build_if_state ifctx;
225 LLVMValueRef not_draw_all;
226 #endif
227 struct lp_build_flow_context *flow;
228 struct lp_type i32_type;
229 LLVMTypeRef i32vec4_type;
230 LLVMValueRef c0_vec, c1_vec, c2_vec;
231 LLVMValueRef in_out_mask;
232
233 assert(i < 4);
234
235 /* int32 vector type */
236 memset(&i32_type, 0, sizeof i32_type);
237 i32_type.floating = FALSE; /* values are integers */
238 i32_type.sign = TRUE; /* values are signed */
239 i32_type.norm = FALSE; /* values are not normalized */
240 i32_type.width = 32; /* 32-bit int values */
241 i32_type.length = 4; /* 4 elements per vector */
242
243 i32vec4_type = lp_build_int32_vec4_type();
244
245 /*
246 * Use a conditional here to do detailed pixel in/out testing.
247 * We only have to do this if c0 != INT_MIN.
248 */
249 flow = lp_build_flow_create(builder);
250 lp_build_flow_scope_begin(flow);
251
252 {
253 #if OPTIMIZE_IN_OUT_TEST
254 /* not_draw_all = (c0 != INT_MIN) */
255 not_draw_all = LLVMBuildICmp(builder,
256 LLVMIntNE,
257 c0,
258 LLVMConstInt(LLVMInt32Type(), INT_MIN, 0),
259 "");
260
261 in_out_mask = lp_build_const_int_vec(i32_type, ~0);
262
263
264 lp_build_flow_scope_declare(flow, &in_out_mask);
265
266 /* if (not_draw_all) {... */
267 lp_build_if(&ifctx, flow, builder, not_draw_all);
268 #endif
269 {
270 LLVMValueRef step0_vec, step1_vec, step2_vec;
271 LLVMValueRef m0_vec, m1_vec, m2_vec;
272 LLVMValueRef index, m;
273
274 /* c0_vec = {c0, c0, c0, c0}
275 * Note that we emit this code four times but LLVM optimizes away
276 * three instances of it.
277 */
278 c0_vec = lp_build_broadcast(builder, i32vec4_type, c0);
279 c1_vec = lp_build_broadcast(builder, i32vec4_type, c1);
280 c2_vec = lp_build_broadcast(builder, i32vec4_type, c2);
281 lp_build_name(c0_vec, "edgeconst0vec");
282 lp_build_name(c1_vec, "edgeconst1vec");
283 lp_build_name(c2_vec, "edgeconst2vec");
284
285 /* load step0vec, step1, step2 vec from memory */
286 index = LLVMConstInt(LLVMInt32Type(), i, 0);
287 step0_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step0_ptr, &index, 1, ""), "");
288 step1_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step1_ptr, &index, 1, ""), "");
289 step2_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step2_ptr, &index, 1, ""), "");
290 lp_build_name(step0_vec, "step0vec");
291 lp_build_name(step1_vec, "step1vec");
292 lp_build_name(step2_vec, "step2vec");
293
294 /* m0_vec = step0_ptr[i] > c0_vec */
295 m0_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step0_vec, c0_vec);
296 m1_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step1_vec, c1_vec);
297 m2_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step2_vec, c2_vec);
298
299 /* in_out_mask = m0_vec & m1_vec & m2_vec */
300 m = LLVMBuildAnd(builder, m0_vec, m1_vec, "");
301 in_out_mask = LLVMBuildAnd(builder, m, m2_vec, "");
302 lp_build_name(in_out_mask, "inoutmaskvec");
303 }
304 #if OPTIMIZE_IN_OUT_TEST
305 lp_build_endif(&ifctx);
306 #endif
307
308 }
309 lp_build_flow_scope_end(flow);
310 lp_build_flow_destroy(flow);
311
312 /* This is the initial alive/dead pixel mask for a quad of four pixels.
313 * It's an int[4] vector with each word set to 0 or ~0.
314 * Words will get cleared when pixels faile the Z test, etc.
315 */
316 *mask = in_out_mask;
317 }
318
319
320 static LLVMValueRef
321 generate_scissor_test(LLVMBuilderRef builder,
322 LLVMValueRef context_ptr,
323 const struct lp_build_interp_soa_context *interp,
324 struct lp_type type)
325 {
326 LLVMTypeRef vec_type = lp_build_vec_type(type);
327 LLVMValueRef xpos = interp->pos[0], ypos = interp->pos[1];
328 LLVMValueRef xmin, ymin, xmax, ymax;
329 LLVMValueRef m0, m1, m2, m3, m;
330
331 /* xpos, ypos contain the window coords for the four pixels in the quad */
332 assert(xpos);
333 assert(ypos);
334
335 /* get the current scissor bounds, convert to vectors */
336 xmin = lp_jit_context_scissor_xmin_value(builder, context_ptr);
337 xmin = lp_build_broadcast(builder, vec_type, xmin);
338
339 ymin = lp_jit_context_scissor_ymin_value(builder, context_ptr);
340 ymin = lp_build_broadcast(builder, vec_type, ymin);
341
342 xmax = lp_jit_context_scissor_xmax_value(builder, context_ptr);
343 xmax = lp_build_broadcast(builder, vec_type, xmax);
344
345 ymax = lp_jit_context_scissor_ymax_value(builder, context_ptr);
346 ymax = lp_build_broadcast(builder, vec_type, ymax);
347
348 /* compare the fragment's position coordinates against the scissor bounds */
349 m0 = lp_build_compare(builder, type, PIPE_FUNC_GEQUAL, xpos, xmin);
350 m1 = lp_build_compare(builder, type, PIPE_FUNC_GEQUAL, ypos, ymin);
351 m2 = lp_build_compare(builder, type, PIPE_FUNC_LESS, xpos, xmax);
352 m3 = lp_build_compare(builder, type, PIPE_FUNC_LESS, ypos, ymax);
353
354 /* AND all the masks together */
355 m = LLVMBuildAnd(builder, m0, m1, "");
356 m = LLVMBuildAnd(builder, m, m2, "");
357 m = LLVMBuildAnd(builder, m, m3, "");
358
359 lp_build_name(m, "scissormask");
360
361 return m;
362 }
363
364
365 static LLVMValueRef
366 build_int32_vec_const(int value)
367 {
368 struct lp_type i32_type;
369
370 memset(&i32_type, 0, sizeof i32_type);
371 i32_type.floating = FALSE; /* values are integers */
372 i32_type.sign = TRUE; /* values are signed */
373 i32_type.norm = FALSE; /* values are not normalized */
374 i32_type.width = 32; /* 32-bit int values */
375 i32_type.length = 4; /* 4 elements per vector */
376 return lp_build_const_int_vec(i32_type, value);
377 }
378
379
380
381 /**
382 * Generate the fragment shader, depth/stencil test, and alpha tests.
383 * \param i which quad in the tile, in range [0,3]
384 * \param do_tri_test if 1, do triangle edge in/out testing
385 */
386 static void
387 generate_fs(struct llvmpipe_context *lp,
388 struct lp_fragment_shader *shader,
389 const struct lp_fragment_shader_variant_key *key,
390 LLVMBuilderRef builder,
391 struct lp_type type,
392 LLVMValueRef context_ptr,
393 unsigned i,
394 const struct lp_build_interp_soa_context *interp,
395 struct lp_build_sampler_soa *sampler,
396 LLVMValueRef *pmask,
397 LLVMValueRef (*color)[4],
398 LLVMValueRef depth_ptr,
399 LLVMValueRef facing,
400 unsigned do_tri_test,
401 LLVMValueRef c0,
402 LLVMValueRef c1,
403 LLVMValueRef c2,
404 LLVMValueRef step0_ptr,
405 LLVMValueRef step1_ptr,
406 LLVMValueRef step2_ptr,
407 LLVMValueRef counter)
408 {
409 const struct tgsi_token *tokens = shader->base.tokens;
410 LLVMTypeRef vec_type;
411 LLVMValueRef consts_ptr;
412 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][NUM_CHANNELS];
413 LLVMValueRef z = interp->pos[2];
414 LLVMValueRef stencil_refs[2];
415 struct lp_build_flow_context *flow;
416 struct lp_build_mask_context mask;
417 boolean early_depth_stencil_test;
418 unsigned attrib;
419 unsigned chan;
420 unsigned cbuf;
421
422 assert(i < 4);
423
424 stencil_refs[0] = lp_jit_context_stencil_ref_front_value(builder, context_ptr);
425 stencil_refs[1] = lp_jit_context_stencil_ref_back_value(builder, context_ptr);
426
427 vec_type = lp_build_vec_type(type);
428
429 consts_ptr = lp_jit_context_constants(builder, context_ptr);
430
431 flow = lp_build_flow_create(builder);
432
433 memset(outputs, 0, sizeof outputs);
434
435 lp_build_flow_scope_begin(flow);
436
437 /* Declare the color and z variables */
438 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
439 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
440 color[cbuf][chan] = LLVMGetUndef(vec_type);
441 lp_build_flow_scope_declare(flow, &color[cbuf][chan]);
442 }
443 }
444 lp_build_flow_scope_declare(flow, &z);
445
446 /* do triangle edge testing */
447 if (do_tri_test) {
448 generate_tri_edge_mask(builder, i, pmask,
449 c0, c1, c2, step0_ptr, step1_ptr, step2_ptr);
450 }
451 else {
452 *pmask = build_int32_vec_const(~0);
453 }
454
455 /* 'mask' will control execution based on quad's pixel alive/killed state */
456 lp_build_mask_begin(&mask, flow, type, *pmask);
457
458 if (key->scissor) {
459 LLVMValueRef smask =
460 generate_scissor_test(builder, context_ptr, interp, type);
461 lp_build_mask_update(&mask, smask);
462 }
463
464 early_depth_stencil_test =
465 (key->depth.enabled || key->stencil[0].enabled) &&
466 !key->alpha.enabled &&
467 !shader->info.uses_kill &&
468 !shader->info.writes_z;
469
470 if (early_depth_stencil_test)
471 generate_depth_stencil(builder, key,
472 type, &mask,
473 stencil_refs, z, depth_ptr, facing, counter);
474
475 lp_build_tgsi_soa(builder, tokens, type, &mask,
476 consts_ptr, interp->pos, interp->inputs,
477 outputs, sampler, &shader->info);
478
479 /* loop over fragment shader outputs/results */
480 for (attrib = 0; attrib < shader->info.num_outputs; ++attrib) {
481 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
482 if(outputs[attrib][chan]) {
483 LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
484 lp_build_name(out, "output%u.%u.%c", i, attrib, "xyzw"[chan]);
485
486 switch (shader->info.output_semantic_name[attrib]) {
487 case TGSI_SEMANTIC_COLOR:
488 {
489 unsigned cbuf = shader->info.output_semantic_index[attrib];
490
491 lp_build_name(out, "color%u.%u.%c", i, attrib, "rgba"[chan]);
492
493 /* Alpha test */
494 /* XXX: should the alpha reference value be passed separately? */
495 /* XXX: should only test the final assignment to alpha */
496 if(cbuf == 0 && chan == 3) {
497 LLVMValueRef alpha = out;
498 LLVMValueRef alpha_ref_value;
499 alpha_ref_value = lp_jit_context_alpha_ref_value(builder, context_ptr);
500 alpha_ref_value = lp_build_broadcast(builder, vec_type, alpha_ref_value);
501 lp_build_alpha_test(builder, &key->alpha, type,
502 &mask, alpha, alpha_ref_value);
503 }
504
505 color[cbuf][chan] = out;
506 break;
507 }
508
509 case TGSI_SEMANTIC_POSITION:
510 if(chan == 2)
511 z = out;
512 break;
513 }
514 }
515 }
516 }
517
518 if (!early_depth_stencil_test)
519 generate_depth_stencil(builder, key,
520 type, &mask,
521 stencil_refs, z, depth_ptr, facing, counter);
522
523 lp_build_mask_end(&mask);
524
525 lp_build_flow_scope_end(flow);
526
527 lp_build_flow_destroy(flow);
528
529 *pmask = mask.value;
530
531 }
532
533
534 /**
535 * Generate color blending and color output.
536 * \param rt the render target index (to index blend, colormask state)
537 * \param type the pixel color type
538 * \param context_ptr pointer to the runtime JIT context
539 * \param mask execution mask (active fragment/pixel mask)
540 * \param src colors from the fragment shader
541 * \param dst_ptr the destination color buffer pointer
542 */
543 static void
544 generate_blend(const struct pipe_blend_state *blend,
545 unsigned rt,
546 LLVMBuilderRef builder,
547 struct lp_type type,
548 LLVMValueRef context_ptr,
549 LLVMValueRef mask,
550 LLVMValueRef *src,
551 LLVMValueRef dst_ptr)
552 {
553 struct lp_build_context bld;
554 struct lp_build_flow_context *flow;
555 struct lp_build_mask_context mask_ctx;
556 LLVMTypeRef vec_type;
557 LLVMValueRef const_ptr;
558 LLVMValueRef con[4];
559 LLVMValueRef dst[4];
560 LLVMValueRef res[4];
561 unsigned chan;
562
563 lp_build_context_init(&bld, builder, type);
564
565 flow = lp_build_flow_create(builder);
566
567 /* we'll use this mask context to skip blending if all pixels are dead */
568 lp_build_mask_begin(&mask_ctx, flow, type, mask);
569
570 vec_type = lp_build_vec_type(type);
571
572 const_ptr = lp_jit_context_blend_color(builder, context_ptr);
573 const_ptr = LLVMBuildBitCast(builder, const_ptr,
574 LLVMPointerType(vec_type, 0), "");
575
576 /* load constant blend color and colors from the dest color buffer */
577 for(chan = 0; chan < 4; ++chan) {
578 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
579 con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), "");
580
581 dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), "");
582
583 lp_build_name(con[chan], "con.%c", "rgba"[chan]);
584 lp_build_name(dst[chan], "dst.%c", "rgba"[chan]);
585 }
586
587 /* do blend */
588 lp_build_blend_soa(builder, blend, type, rt, src, dst, con, res);
589
590 /* store results to color buffer */
591 for(chan = 0; chan < 4; ++chan) {
592 if(blend->rt[rt].colormask & (1 << chan)) {
593 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
594 lp_build_name(res[chan], "res.%c", "rgba"[chan]);
595 res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]);
596 LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, ""));
597 }
598 }
599
600 lp_build_mask_end(&mask_ctx);
601 lp_build_flow_destroy(flow);
602 }
603
604
605 /**
606 * Generate the runtime callable function for the whole fragment pipeline.
607 * Note that the function which we generate operates on a block of 16
608 * pixels at at time. The block contains 2x2 quads. Each quad contains
609 * 2x2 pixels.
610 */
611 static void
612 generate_fragment(struct llvmpipe_context *lp,
613 struct lp_fragment_shader *shader,
614 struct lp_fragment_shader_variant *variant,
615 unsigned do_tri_test)
616 {
617 struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
618 const struct lp_fragment_shader_variant_key *key = &variant->key;
619 struct lp_type fs_type;
620 struct lp_type blend_type;
621 LLVMTypeRef fs_elem_type;
622 LLVMTypeRef fs_int_vec_type;
623 LLVMTypeRef blend_vec_type;
624 LLVMTypeRef arg_types[16];
625 LLVMTypeRef func_type;
626 LLVMTypeRef int32_vec4_type = lp_build_int32_vec4_type();
627 LLVMValueRef context_ptr;
628 LLVMValueRef x;
629 LLVMValueRef y;
630 LLVMValueRef a0_ptr;
631 LLVMValueRef dadx_ptr;
632 LLVMValueRef dady_ptr;
633 LLVMValueRef color_ptr_ptr;
634 LLVMValueRef depth_ptr;
635 LLVMValueRef c0, c1, c2, step0_ptr, step1_ptr, step2_ptr, counter = NULL;
636 LLVMBasicBlockRef block;
637 LLVMBuilderRef builder;
638 LLVMValueRef x0;
639 LLVMValueRef y0;
640 struct lp_build_sampler_soa *sampler;
641 struct lp_build_interp_soa_context interp;
642 LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
643 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
644 LLVMValueRef blend_mask;
645 LLVMValueRef function;
646 LLVMValueRef facing;
647 unsigned num_fs;
648 unsigned i;
649 unsigned chan;
650 unsigned cbuf;
651
652
653 /* TODO: actually pick these based on the fs and color buffer
654 * characteristics. */
655
656 memset(&fs_type, 0, sizeof fs_type);
657 fs_type.floating = TRUE; /* floating point values */
658 fs_type.sign = TRUE; /* values are signed */
659 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
660 fs_type.width = 32; /* 32-bit float */
661 fs_type.length = 4; /* 4 elements per vector */
662 num_fs = 4; /* number of quads per block */
663
664 memset(&blend_type, 0, sizeof blend_type);
665 blend_type.floating = FALSE; /* values are integers */
666 blend_type.sign = FALSE; /* values are unsigned */
667 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
668 blend_type.width = 8; /* 8-bit ubyte values */
669 blend_type.length = 16; /* 16 elements per vector */
670
671 /*
672 * Generate the function prototype. Any change here must be reflected in
673 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
674 */
675
676 fs_elem_type = lp_build_elem_type(fs_type);
677 fs_int_vec_type = lp_build_int_vec_type(fs_type);
678
679 blend_vec_type = lp_build_vec_type(blend_type);
680
681 arg_types[0] = screen->context_ptr_type; /* context */
682 arg_types[1] = LLVMInt32Type(); /* x */
683 arg_types[2] = LLVMInt32Type(); /* y */
684 arg_types[3] = LLVMFloatType(); /* facing */
685 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* a0 */
686 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dadx */
687 arg_types[6] = LLVMPointerType(fs_elem_type, 0); /* dady */
688 arg_types[7] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */
689 arg_types[8] = LLVMPointerType(fs_int_vec_type, 0); /* depth */
690 arg_types[9] = LLVMInt32Type(); /* c0 */
691 arg_types[10] = LLVMInt32Type(); /* c1 */
692 arg_types[11] = LLVMInt32Type(); /* c2 */
693 /* Note: the step arrays are built as int32[16] but we interpret
694 * them here as int32_vec4[4].
695 */
696 arg_types[12] = LLVMPointerType(int32_vec4_type, 0);/* step0 */
697 arg_types[13] = LLVMPointerType(int32_vec4_type, 0);/* step1 */
698 arg_types[14] = LLVMPointerType(int32_vec4_type, 0);/* step2 */
699 arg_types[15] = LLVMPointerType(LLVMInt32Type(), 0);/* counter */
700
701 func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0);
702
703 function = LLVMAddFunction(screen->module, "shader", func_type);
704 LLVMSetFunctionCallConv(function, LLVMCCallConv);
705
706 variant->function[do_tri_test] = function;
707
708
709 /* XXX: need to propagate noalias down into color param now we are
710 * passing a pointer-to-pointer?
711 */
712 for(i = 0; i < Elements(arg_types); ++i)
713 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
714 LLVMAddAttribute(LLVMGetParam(function, i), LLVMNoAliasAttribute);
715
716 context_ptr = LLVMGetParam(function, 0);
717 x = LLVMGetParam(function, 1);
718 y = LLVMGetParam(function, 2);
719 facing = LLVMGetParam(function, 3);
720 a0_ptr = LLVMGetParam(function, 4);
721 dadx_ptr = LLVMGetParam(function, 5);
722 dady_ptr = LLVMGetParam(function, 6);
723 color_ptr_ptr = LLVMGetParam(function, 7);
724 depth_ptr = LLVMGetParam(function, 8);
725 c0 = LLVMGetParam(function, 9);
726 c1 = LLVMGetParam(function, 10);
727 c2 = LLVMGetParam(function, 11);
728 step0_ptr = LLVMGetParam(function, 12);
729 step1_ptr = LLVMGetParam(function, 13);
730 step2_ptr = LLVMGetParam(function, 14);
731
732 lp_build_name(context_ptr, "context");
733 lp_build_name(x, "x");
734 lp_build_name(y, "y");
735 lp_build_name(a0_ptr, "a0");
736 lp_build_name(dadx_ptr, "dadx");
737 lp_build_name(dady_ptr, "dady");
738 lp_build_name(color_ptr_ptr, "color_ptr_ptr");
739 lp_build_name(depth_ptr, "depth");
740 lp_build_name(c0, "c0");
741 lp_build_name(c1, "c1");
742 lp_build_name(c2, "c2");
743 lp_build_name(step0_ptr, "step0");
744 lp_build_name(step1_ptr, "step1");
745 lp_build_name(step2_ptr, "step2");
746
747 if (key->occlusion_count) {
748 counter = LLVMGetParam(function, 15);
749 lp_build_name(counter, "counter");
750 }
751
752 /*
753 * Function body
754 */
755
756 block = LLVMAppendBasicBlock(function, "entry");
757 builder = LLVMCreateBuilder();
758 LLVMPositionBuilderAtEnd(builder, block);
759
760 generate_pos0(builder, x, y, &x0, &y0);
761
762 lp_build_interp_soa_init(&interp,
763 &shader->info,
764 key->flatshade,
765 builder, fs_type,
766 a0_ptr, dadx_ptr, dady_ptr,
767 x0, y0);
768
769 /* code generated texture sampling */
770 sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr);
771
772 /* loop over quads in the block */
773 for(i = 0; i < num_fs; ++i) {
774 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
775 LLVMValueRef out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS];
776 LLVMValueRef depth_ptr_i;
777
778 if(i != 0)
779 lp_build_interp_soa_update(&interp, i);
780
781 depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &index, 1, "");
782
783 generate_fs(lp, shader, key,
784 builder,
785 fs_type,
786 context_ptr,
787 i,
788 &interp,
789 sampler,
790 &fs_mask[i], /* output */
791 out_color,
792 depth_ptr_i,
793 facing,
794 do_tri_test,
795 c0, c1, c2,
796 step0_ptr, step1_ptr, step2_ptr, counter);
797
798 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++)
799 for(chan = 0; chan < NUM_CHANNELS; ++chan)
800 fs_out_color[cbuf][chan][i] = out_color[cbuf][chan];
801 }
802
803 sampler->destroy(sampler);
804
805 /* Loop over color outputs / color buffers to do blending.
806 */
807 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
808 LLVMValueRef color_ptr;
809 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), cbuf, 0);
810 LLVMValueRef blend_in_color[NUM_CHANNELS];
811 unsigned rt;
812
813 /*
814 * Convert the fs's output color and mask to fit to the blending type.
815 */
816 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
817 lp_build_conv(builder, fs_type, blend_type,
818 fs_out_color[cbuf][chan], num_fs,
819 &blend_in_color[chan], 1);
820 lp_build_name(blend_in_color[chan], "color%d.%c", cbuf, "rgba"[chan]);
821 }
822
823 lp_build_conv_mask(builder, fs_type, blend_type,
824 fs_mask, num_fs,
825 &blend_mask, 1);
826
827 color_ptr = LLVMBuildLoad(builder,
828 LLVMBuildGEP(builder, color_ptr_ptr, &index, 1, ""),
829 "");
830 lp_build_name(color_ptr, "color_ptr%d", cbuf);
831
832 /* which blend/colormask state to use */
833 rt = key->blend.independent_blend_enable ? cbuf : 0;
834
835 /*
836 * Blending.
837 */
838 generate_blend(&key->blend,
839 rt,
840 builder,
841 blend_type,
842 context_ptr,
843 blend_mask,
844 blend_in_color,
845 color_ptr);
846 }
847
848 LLVMBuildRetVoid(builder);
849
850 LLVMDisposeBuilder(builder);
851
852
853 /* Verify the LLVM IR. If invalid, dump and abort */
854 #ifdef DEBUG
855 if(LLVMVerifyFunction(function, LLVMPrintMessageAction)) {
856 if (1)
857 lp_debug_dump_value(function);
858 abort();
859 }
860 #endif
861
862 /* Apply optimizations to LLVM IR */
863 if (1)
864 LLVMRunFunctionPassManager(screen->pass, function);
865
866 if (gallivm_debug & GALLIVM_DEBUG_IR) {
867 /* Print the LLVM IR to stderr */
868 lp_debug_dump_value(function);
869 debug_printf("\n");
870 }
871
872 /*
873 * Translate the LLVM IR into machine code.
874 */
875 {
876 void *f = LLVMGetPointerToGlobal(screen->engine, function);
877
878 variant->jit_function[do_tri_test] = (lp_jit_frag_func)pointer_to_func(f);
879
880 if (gallivm_debug & GALLIVM_DEBUG_ASM) {
881 lp_disassemble(f);
882 }
883 }
884 }
885
886
887 static void
888 dump_fs_variant_key(const struct lp_fragment_shader_variant_key *key)
889 {
890 unsigned i;
891
892 debug_printf("fs variant %p:\n", (void *) key);
893
894 if (key->depth.enabled) {
895 debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
896 debug_printf("depth.func = %s\n", util_dump_func(key->depth.func, TRUE));
897 debug_printf("depth.writemask = %u\n", key->depth.writemask);
898 }
899
900 for (i = 0; i < 2; ++i) {
901 if (key->stencil[i].enabled) {
902 debug_printf("stencil[%u].func = %s\n", i, util_dump_func(key->stencil[i].func, TRUE));
903 debug_printf("stencil[%u].fail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].fail_op, TRUE));
904 debug_printf("stencil[%u].zpass_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zpass_op, TRUE));
905 debug_printf("stencil[%u].zfail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zfail_op, TRUE));
906 debug_printf("stencil[%u].valuemask = 0x%x\n", i, key->stencil[i].valuemask);
907 debug_printf("stencil[%u].writemask = 0x%x\n", i, key->stencil[i].writemask);
908 }
909 }
910
911 if (key->alpha.enabled) {
912 debug_printf("alpha.func = %s\n", util_dump_func(key->alpha.func, TRUE));
913 debug_printf("alpha.ref_value = %f\n", key->alpha.ref_value);
914 }
915
916 if (key->blend.logicop_enable) {
917 debug_printf("blend.logicop_func = %s\n", util_dump_logicop(key->blend.logicop_func, TRUE));
918 }
919 else if (key->blend.rt[0].blend_enable) {
920 debug_printf("blend.rgb_func = %s\n", util_dump_blend_func (key->blend.rt[0].rgb_func, TRUE));
921 debug_printf("blend.rgb_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
922 debug_printf("blend.rgb_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
923 debug_printf("blend.alpha_func = %s\n", util_dump_blend_func (key->blend.rt[0].alpha_func, TRUE));
924 debug_printf("blend.alpha_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
925 debug_printf("blend.alpha_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
926 }
927 debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
928 for (i = 0; i < PIPE_MAX_SAMPLERS; ++i) {
929 if (key->sampler[i].format) {
930 debug_printf("sampler[%u] = \n", i);
931 debug_printf(" .format = %s\n",
932 util_format_name(key->sampler[i].format));
933 debug_printf(" .target = %s\n",
934 util_dump_tex_target(key->sampler[i].target, TRUE));
935 debug_printf(" .pot = %u %u %u\n",
936 key->sampler[i].pot_width,
937 key->sampler[i].pot_height,
938 key->sampler[i].pot_depth);
939 debug_printf(" .wrap = %s %s %s\n",
940 util_dump_tex_wrap(key->sampler[i].wrap_s, TRUE),
941 util_dump_tex_wrap(key->sampler[i].wrap_t, TRUE),
942 util_dump_tex_wrap(key->sampler[i].wrap_r, TRUE));
943 debug_printf(" .min_img_filter = %s\n",
944 util_dump_tex_filter(key->sampler[i].min_img_filter, TRUE));
945 debug_printf(" .min_mip_filter = %s\n",
946 util_dump_tex_mipfilter(key->sampler[i].min_mip_filter, TRUE));
947 debug_printf(" .mag_img_filter = %s\n",
948 util_dump_tex_filter(key->sampler[i].mag_img_filter, TRUE));
949 if (key->sampler[i].compare_mode != PIPE_TEX_COMPARE_NONE)
950 debug_printf(" .compare_func = %s\n", util_dump_func(key->sampler[i].compare_func, TRUE));
951 debug_printf(" .normalized_coords = %u\n", key->sampler[i].normalized_coords);
952 }
953 }
954 }
955
956
957
958 static struct lp_fragment_shader_variant *
959 generate_variant(struct llvmpipe_context *lp,
960 struct lp_fragment_shader *shader,
961 const struct lp_fragment_shader_variant_key *key)
962 {
963 struct lp_fragment_shader_variant *variant;
964
965 if (gallivm_debug & GALLIVM_DEBUG_IR) {
966 tgsi_dump(shader->base.tokens, 0);
967 dump_fs_variant_key(key);
968 }
969
970 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
971 if(!variant)
972 return NULL;
973
974 memcpy(&variant->key, key, sizeof *key);
975
976 generate_fragment(lp, shader, variant, RAST_WHOLE);
977 generate_fragment(lp, shader, variant, RAST_EDGE_TEST);
978
979 /* TODO: most of these can be relaxed, in particular the colormask */
980 variant->opaque =
981 !key->blend.logicop_enable &&
982 !key->blend.rt[0].blend_enable &&
983 key->blend.rt[0].colormask == 0xf &&
984 !key->stencil[0].enabled &&
985 !key->alpha.enabled &&
986 !key->depth.enabled &&
987 !key->scissor &&
988 !shader->info.uses_kill
989 ? TRUE : FALSE;
990
991 /* insert new variant into linked list */
992 variant->next = shader->variants;
993 shader->variants = variant;
994
995 return variant;
996 }
997
998
999 static void *
1000 llvmpipe_create_fs_state(struct pipe_context *pipe,
1001 const struct pipe_shader_state *templ)
1002 {
1003 struct lp_fragment_shader *shader;
1004
1005 shader = CALLOC_STRUCT(lp_fragment_shader);
1006 if (!shader)
1007 return NULL;
1008
1009 /* get/save the summary info for this shader */
1010 tgsi_scan_shader(templ->tokens, &shader->info);
1011
1012 /* we need to keep a local copy of the tokens */
1013 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
1014
1015 if (LP_DEBUG & DEBUG_TGSI) {
1016 unsigned attrib;
1017 debug_printf("llvmpipe: Create fragment shader %p:\n", (void *) shader);
1018 tgsi_dump(templ->tokens, 0);
1019 debug_printf("usage masks:\n");
1020 for (attrib = 0; attrib < shader->info.num_inputs; ++attrib) {
1021 unsigned usage_mask = shader->info.input_usage_mask[attrib];
1022 debug_printf(" IN[%u].%s%s%s%s\n",
1023 attrib,
1024 usage_mask & TGSI_WRITEMASK_X ? "x" : "",
1025 usage_mask & TGSI_WRITEMASK_Y ? "y" : "",
1026 usage_mask & TGSI_WRITEMASK_Z ? "z" : "",
1027 usage_mask & TGSI_WRITEMASK_W ? "w" : "");
1028 }
1029 debug_printf("\n");
1030 }
1031
1032 return shader;
1033 }
1034
1035
1036 static void
1037 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
1038 {
1039 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1040
1041 if (llvmpipe->fs == fs)
1042 return;
1043
1044 draw_flush(llvmpipe->draw);
1045
1046 llvmpipe->fs = fs;
1047
1048 llvmpipe->dirty |= LP_NEW_FS;
1049 }
1050
1051
1052 static void
1053 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
1054 {
1055 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1056 struct llvmpipe_screen *screen = llvmpipe_screen(pipe->screen);
1057 struct lp_fragment_shader *shader = fs;
1058 struct lp_fragment_shader_variant *variant;
1059
1060 assert(fs != llvmpipe->fs);
1061 (void) llvmpipe;
1062
1063 /*
1064 * XXX: we need to flush the context until we have some sort of reference
1065 * counting in fragment shaders as they may still be binned
1066 */
1067 draw_flush(llvmpipe->draw);
1068 lp_setup_flush(llvmpipe->setup, 0);
1069
1070 variant = shader->variants;
1071 while(variant) {
1072 struct lp_fragment_shader_variant *next = variant->next;
1073 unsigned i;
1074
1075 for (i = 0; i < Elements(variant->function); i++) {
1076 if (variant->function[i]) {
1077 if (variant->jit_function[i])
1078 LLVMFreeMachineCodeForFunction(screen->engine,
1079 variant->function[i]);
1080 LLVMDeleteFunction(variant->function[i]);
1081 }
1082 }
1083
1084 FREE(variant);
1085
1086 variant = next;
1087 }
1088
1089 FREE((void *) shader->base.tokens);
1090 FREE(shader);
1091 }
1092
1093
1094
1095 static void
1096 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
1097 uint shader, uint index,
1098 struct pipe_resource *constants)
1099 {
1100 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1101 unsigned size = constants ? constants->width0 : 0;
1102 const void *data = constants ? llvmpipe_resource_data(constants) : NULL;
1103
1104 assert(shader < PIPE_SHADER_TYPES);
1105 assert(index == 0);
1106
1107 if(llvmpipe->constants[shader] == constants)
1108 return;
1109
1110 draw_flush(llvmpipe->draw);
1111
1112 /* note: reference counting */
1113 pipe_resource_reference(&llvmpipe->constants[shader], constants);
1114
1115 if(shader == PIPE_SHADER_VERTEX) {
1116 draw_set_mapped_constant_buffer(llvmpipe->draw, PIPE_SHADER_VERTEX, 0,
1117 data, size);
1118 }
1119
1120 llvmpipe->dirty |= LP_NEW_CONSTANTS;
1121 }
1122
1123
1124 /**
1125 * Return the blend factor equivalent to a destination alpha of one.
1126 */
1127 static INLINE unsigned
1128 force_dst_alpha_one(unsigned factor, boolean alpha)
1129 {
1130 switch(factor) {
1131 case PIPE_BLENDFACTOR_DST_ALPHA:
1132 return PIPE_BLENDFACTOR_ONE;
1133 case PIPE_BLENDFACTOR_INV_DST_ALPHA:
1134 return PIPE_BLENDFACTOR_ZERO;
1135 case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
1136 return PIPE_BLENDFACTOR_ZERO;
1137 }
1138
1139 if (alpha) {
1140 switch(factor) {
1141 case PIPE_BLENDFACTOR_DST_COLOR:
1142 return PIPE_BLENDFACTOR_ONE;
1143 case PIPE_BLENDFACTOR_INV_DST_COLOR:
1144 return PIPE_BLENDFACTOR_ZERO;
1145 }
1146 }
1147
1148 return factor;
1149 }
1150
1151
1152 /**
1153 * We need to generate several variants of the fragment pipeline to match
1154 * all the combinations of the contributing state atoms.
1155 *
1156 * TODO: there is actually no reason to tie this to context state -- the
1157 * generated code could be cached globally in the screen.
1158 */
1159 static void
1160 make_variant_key(struct llvmpipe_context *lp,
1161 struct lp_fragment_shader *shader,
1162 struct lp_fragment_shader_variant_key *key)
1163 {
1164 unsigned i;
1165
1166 memset(key, 0, sizeof *key);
1167
1168 if (lp->framebuffer.zsbuf) {
1169 if (lp->depth_stencil->depth.enabled) {
1170 key->zsbuf_format = lp->framebuffer.zsbuf->format;
1171 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
1172 }
1173 if (lp->depth_stencil->stencil[0].enabled) {
1174 key->zsbuf_format = lp->framebuffer.zsbuf->format;
1175 memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil);
1176 }
1177 }
1178
1179 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
1180 if(key->alpha.enabled)
1181 key->alpha.func = lp->depth_stencil->alpha.func;
1182 /* alpha.ref_value is passed in jit_context */
1183
1184 key->flatshade = lp->rasterizer->flatshade;
1185 key->scissor = lp->rasterizer->scissor;
1186 if (lp->active_query_count) {
1187 key->occlusion_count = TRUE;
1188 }
1189
1190 if (lp->framebuffer.nr_cbufs) {
1191 memcpy(&key->blend, lp->blend, sizeof key->blend);
1192 }
1193
1194 key->nr_cbufs = lp->framebuffer.nr_cbufs;
1195 for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
1196 struct pipe_rt_blend_state *blend_rt = &key->blend.rt[i];
1197 const struct util_format_description *format_desc;
1198 unsigned chan;
1199
1200 format_desc = util_format_description(lp->framebuffer.cbufs[i]->format);
1201 assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||
1202 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB);
1203
1204 blend_rt->colormask = lp->blend->rt[i].colormask;
1205
1206 /* mask out color channels not present in the color buffer.
1207 * Should be simple to incorporate per-cbuf writemasks:
1208 */
1209 for(chan = 0; chan < 4; ++chan) {
1210 enum util_format_swizzle swizzle = format_desc->swizzle[chan];
1211
1212 if(swizzle > UTIL_FORMAT_SWIZZLE_W)
1213 blend_rt->colormask &= ~(1 << chan);
1214 }
1215
1216 /*
1217 * Our swizzled render tiles always have an alpha channel, but the linear
1218 * render target format often does not, so force here the dst alpha to be
1219 * one.
1220 *
1221 * This is not a mere optimization. Wrong results will be produced if the
1222 * dst alpha is used, the dst format does not have alpha, and the previous
1223 * rendering was not flushed from the swizzled to linear buffer. For
1224 * example, NonPowTwo DCT.
1225 *
1226 * TODO: This should be generalized to all channels for better
1227 * performance, but only alpha causes correctness issues.
1228 */
1229 if (format_desc->swizzle[3] > UTIL_FORMAT_SWIZZLE_W) {
1230 blend_rt->rgb_src_factor = force_dst_alpha_one(blend_rt->rgb_src_factor, FALSE);
1231 blend_rt->rgb_dst_factor = force_dst_alpha_one(blend_rt->rgb_dst_factor, FALSE);
1232 blend_rt->alpha_src_factor = force_dst_alpha_one(blend_rt->alpha_src_factor, TRUE);
1233 blend_rt->alpha_dst_factor = force_dst_alpha_one(blend_rt->alpha_dst_factor, TRUE);
1234 }
1235 }
1236
1237 for(i = 0; i < PIPE_MAX_SAMPLERS; ++i)
1238 if(shader->info.file_mask[TGSI_FILE_SAMPLER] & (1 << i))
1239 lp_sampler_static_state(&key->sampler[i], lp->fragment_sampler_views[i], lp->sampler[i]);
1240 }
1241
1242
1243 /**
1244 * Update fragment state. This is called just prior to drawing
1245 * something when some fragment-related state has changed.
1246 */
1247 void
1248 llvmpipe_update_fs(struct llvmpipe_context *lp)
1249 {
1250 struct lp_fragment_shader *shader = lp->fs;
1251 struct lp_fragment_shader_variant_key key;
1252 struct lp_fragment_shader_variant *variant;
1253
1254 make_variant_key(lp, shader, &key);
1255
1256 variant = shader->variants;
1257 while(variant) {
1258 if(memcmp(&variant->key, &key, sizeof key) == 0)
1259 break;
1260
1261 variant = variant->next;
1262 }
1263
1264 if (!variant) {
1265 int64_t t0, t1;
1266 int64_t dt;
1267 t0 = os_time_get();
1268
1269 variant = generate_variant(lp, shader, &key);
1270
1271 t1 = os_time_get();
1272 dt = t1 - t0;
1273 LP_COUNT_ADD(llvm_compile_time, dt);
1274 LP_COUNT_ADD(nr_llvm_compiles, 2); /* emit vs. omit in/out test */
1275 }
1276
1277 lp_setup_set_fs_variant(lp->setup, variant);
1278 }
1279
1280
1281
1282 void
1283 llvmpipe_init_fs_funcs(struct llvmpipe_context *llvmpipe)
1284 {
1285 llvmpipe->pipe.create_fs_state = llvmpipe_create_fs_state;
1286 llvmpipe->pipe.bind_fs_state = llvmpipe_bind_fs_state;
1287 llvmpipe->pipe.delete_fs_state = llvmpipe_delete_fs_state;
1288
1289 llvmpipe->pipe.set_constant_buffer = llvmpipe_set_constant_buffer;
1290 }