e639f9c20fc06ea19d99542614fb44ca756f322c
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - stipple (TBI)
35 * - early depth test
36 * - fragment shader
37 * - alpha test
38 * - depth/stencil test (stencil TBI)
39 * - blending
40 *
41 * This file has only the glue to assembly the fragment pipeline. The actual
42 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
43 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
44 * muster the LLVM JIT execution engine to create a function that follows an
45 * established binary interface and that can be called from C directly.
46 *
47 * A big source of complexity here is that we often want to run different
48 * stages with different precisions and data types and precisions. For example,
49 * the fragment shader needs typically to be done in floats, but the
50 * depth/stencil test and blending is better done in the type that most closely
51 * matches the depth/stencil and color buffer respectively.
52 *
53 * Since the width of a SIMD vector register stays the same regardless of the
54 * element type, different types imply different number of elements, so we must
55 * code generate more instances of the stages with larger types to be able to
56 * feed/consume the stages with smaller types.
57 *
58 * @author Jose Fonseca <jfonseca@vmware.com>
59 */
60
61 #include "pipe/p_defines.h"
62 #include "util/u_memory.h"
63 #include "util/u_format.h"
64 #include "util/u_debug_dump.h"
65 #include "pipe/internal/p_winsys_screen.h"
66 #include "pipe/p_shader_tokens.h"
67 #include "draw/draw_context.h"
68 #include "tgsi/tgsi_dump.h"
69 #include "tgsi/tgsi_scan.h"
70 #include "tgsi/tgsi_parse.h"
71 #include "lp_bld_type.h"
72 #include "lp_bld_conv.h"
73 #include "lp_bld_logic.h"
74 #include "lp_bld_depth.h"
75 #include "lp_bld_tgsi.h"
76 #include "lp_bld_alpha.h"
77 #include "lp_bld_blend.h"
78 #include "lp_bld_swizzle.h"
79 #include "lp_bld_flow.h"
80 #include "lp_bld_debug.h"
81 #include "lp_screen.h"
82 #include "lp_context.h"
83 #include "lp_state.h"
84 #include "lp_quad.h"
85
86
87 static const unsigned char quad_offset_x[4] = {0, 1, 0, 1};
88 static const unsigned char quad_offset_y[4] = {0, 0, 1, 1};
89
90
91 /**
92 * Generate the position vectors.
93 *
94 * TODO: This should be called only once per fragment pipeline, for the first
95 * quad, and the neighboring quad positions obtained by additions.
96 *
97 * Parameter x, y are the integer values with the quad upper left coordinates.
98 */
99 static void
100 generate_pos(LLVMBuilderRef builder,
101 LLVMValueRef x,
102 LLVMValueRef y,
103 LLVMValueRef a0_ptr,
104 LLVMValueRef dadx_ptr,
105 LLVMValueRef dady_ptr,
106 LLVMValueRef *pos)
107 {
108 LLVMTypeRef int_elem_type = LLVMInt32Type();
109 LLVMTypeRef int_vec_type = LLVMVectorType(int_elem_type, QUAD_SIZE);
110 LLVMTypeRef elem_type = LLVMFloatType();
111 LLVMTypeRef vec_type = LLVMVectorType(elem_type, QUAD_SIZE);
112 LLVMValueRef x_offsets[QUAD_SIZE];
113 LLVMValueRef y_offsets[QUAD_SIZE];
114 unsigned chan;
115 unsigned i;
116
117 /*
118 * Derive from the quad's upper left scalar coordinates the coordinates for
119 * all other quad pixels
120 */
121
122 x = lp_build_broadcast(builder, int_vec_type, x);
123 y = lp_build_broadcast(builder, int_vec_type, y);
124
125 for(i = 0; i < QUAD_SIZE; ++i) {
126 x_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_x[i], 0);
127 y_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_y[i], 0);
128 }
129
130 x = LLVMBuildAdd(builder, x, LLVMConstVector(x_offsets, QUAD_SIZE), "");
131 y = LLVMBuildAdd(builder, y, LLVMConstVector(y_offsets, QUAD_SIZE), "");
132
133 x = LLVMBuildSIToFP(builder, x, vec_type, "");
134 y = LLVMBuildSIToFP(builder, y, vec_type, "");
135
136 pos[0] = x;
137 pos[1] = y;
138
139 /*
140 * Calculate z and w from the interpolation factors.
141 */
142
143 for(chan = 2; chan < NUM_CHANNELS; ++chan) {
144 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
145 LLVMValueRef a0 = LLVMBuildLoad(builder, LLVMBuildGEP(builder, a0_ptr, &index, 1, ""), "");
146 LLVMValueRef dadx = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dadx_ptr, &index, 1, ""), "");
147 LLVMValueRef dady = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dady_ptr, &index, 1, ""), "");
148 LLVMValueRef res;
149 a0 = lp_build_broadcast(builder, vec_type, a0);
150 dadx = lp_build_broadcast(builder, vec_type, dadx);
151 dady = lp_build_broadcast(builder, vec_type, dady);
152 res = a0;
153 res = LLVMBuildAdd(builder, res, LLVMBuildMul(builder, dadx, x, ""), "");
154 res = LLVMBuildAdd(builder, res, LLVMBuildMul(builder, dady, y, ""), "");
155 pos[chan] = res;
156 }
157
158 for(chan = 0; chan < NUM_CHANNELS; ++chan)
159 lp_build_name(pos[chan], "pos.%c", "xyzw"[chan]);
160 }
161
162
163 /**
164 * Generate the depth test.
165 */
166 static void
167 generate_depth(struct llvmpipe_context *lp,
168 LLVMBuilderRef builder,
169 const struct pipe_depth_state *state,
170 union lp_type src_type,
171 struct lp_build_mask_context *mask,
172 LLVMValueRef src,
173 LLVMValueRef dst_ptr)
174 {
175 const struct util_format_description *format_desc;
176 union lp_type dst_type;
177
178 if(!lp->framebuffer.zsbuf)
179 return;
180
181 format_desc = util_format_description(lp->framebuffer.zsbuf->format);
182 assert(format_desc);
183
184 /* Pick the depth type. */
185 dst_type = lp_depth_type(format_desc, src_type.width*src_type.length);
186
187 /* FIXME: Cope with a depth test type with a different bit width. */
188 assert(dst_type.width == src_type.width);
189 assert(dst_type.length == src_type.length);
190
191 #if 1
192 src = lp_build_clamped_float_to_unsigned_norm(builder,
193 src_type,
194 dst_type.width,
195 src);
196 #else
197 lp_build_conv(builder, src_type, dst_type, &src, 1, &src, 1);
198 #endif
199
200 lp_build_depth_test(builder,
201 state,
202 dst_type,
203 format_desc,
204 mask,
205 src,
206 dst_ptr);
207 }
208
209
210 /**
211 * Generate the fragment shader, depth/stencil test, and alpha tests.
212 */
213 static void
214 generate_fs(struct llvmpipe_context *lp,
215 struct lp_fragment_shader *shader,
216 const struct lp_fragment_shader_variant_key *key,
217 LLVMBuilderRef builder,
218 union lp_type type,
219 LLVMValueRef context_ptr,
220 unsigned i,
221 LLVMValueRef x,
222 LLVMValueRef y,
223 LLVMValueRef a0_ptr,
224 LLVMValueRef dadx_ptr,
225 LLVMValueRef dady_ptr,
226 LLVMValueRef *pmask,
227 LLVMValueRef *color,
228 LLVMValueRef depth_ptr)
229 {
230 const struct tgsi_token *tokens = shader->base.tokens;
231 LLVMTypeRef elem_type;
232 LLVMTypeRef vec_type;
233 LLVMTypeRef int_vec_type;
234 LLVMValueRef consts_ptr;
235 LLVMValueRef samplers_ptr;
236 LLVMValueRef pos[NUM_CHANNELS];
237 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][NUM_CHANNELS];
238 struct lp_build_mask_context mask;
239 boolean early_depth_test;
240 unsigned attrib;
241 unsigned chan;
242
243 elem_type = lp_build_elem_type(type);
244 vec_type = lp_build_vec_type(type);
245 int_vec_type = lp_build_int_vec_type(type);
246
247 consts_ptr = lp_jit_context_constants(builder, context_ptr);
248 samplers_ptr = lp_jit_context_samplers(builder, context_ptr);
249
250 generate_pos(builder, x, y, a0_ptr, dadx_ptr, dady_ptr, pos);
251
252 lp_build_mask_begin(&mask, builder, type, *pmask);
253
254 early_depth_test =
255 lp->depth_stencil->depth.enabled &&
256 lp->framebuffer.zsbuf &&
257 !lp->depth_stencil->alpha.enabled &&
258 !lp->fs->info.uses_kill &&
259 !lp->fs->info.writes_z;
260
261 if(early_depth_test)
262 generate_depth(lp, builder, &key->depth,
263 type, &mask,
264 pos[2], depth_ptr);
265
266 memset(outputs, 0, sizeof outputs);
267
268 lp_build_tgsi_soa(builder, tokens, type, &mask,
269 pos, a0_ptr, dadx_ptr, dady_ptr,
270 consts_ptr, outputs, samplers_ptr);
271
272 for (attrib = 0; attrib < shader->info.num_outputs; ++attrib) {
273 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
274 if(outputs[attrib][chan]) {
275 lp_build_name(outputs[attrib][chan], "output%u.%u.%c", i, attrib, "xyzw"[chan]);
276
277 switch (shader->info.output_semantic_name[attrib]) {
278 case TGSI_SEMANTIC_COLOR:
279 {
280 unsigned cbuf = shader->info.output_semantic_index[attrib];
281
282 lp_build_name(outputs[attrib][chan], "color%u.%u.%c", i, attrib, "rgba"[chan]);
283
284 /* Alpha test */
285 /* XXX: should the alpha reference value be passed separately? */
286 if(cbuf == 0 && chan == 3) {
287 LLVMValueRef alpha = outputs[attrib][chan];
288 LLVMValueRef alpha_ref_value;
289 alpha_ref_value = lp_jit_context_alpha_ref_value(builder, context_ptr);
290 alpha_ref_value = lp_build_broadcast(builder, vec_type, alpha_ref_value);
291 lp_build_alpha_test(builder, &key->alpha, type,
292 &mask, alpha, alpha_ref_value);
293 }
294
295 if(cbuf == 0)
296 color[chan] = outputs[attrib][chan];
297
298 break;
299 }
300
301 case TGSI_SEMANTIC_POSITION:
302 if(chan == 2)
303 pos[2] = outputs[attrib][chan];
304 break;
305 }
306 }
307 }
308 }
309
310 if(!early_depth_test)
311 generate_depth(lp, builder, &key->depth,
312 type, &mask,
313 pos[2], depth_ptr);
314
315 lp_build_mask_end(&mask);
316
317 *pmask = mask.value;
318
319 }
320
321
322 /**
323 * Generate color blending and color output.
324 */
325 static void
326 generate_blend(const struct pipe_blend_state *blend,
327 LLVMBuilderRef builder,
328 union lp_type type,
329 LLVMValueRef context_ptr,
330 LLVMValueRef mask,
331 LLVMValueRef *src,
332 LLVMValueRef dst_ptr)
333 {
334 struct lp_build_context bld;
335 LLVMTypeRef vec_type;
336 LLVMTypeRef int_vec_type;
337 LLVMValueRef const_ptr;
338 LLVMValueRef con[4];
339 LLVMValueRef dst[4];
340 LLVMValueRef res[4];
341 unsigned chan;
342
343 vec_type = lp_build_vec_type(type);
344 int_vec_type = lp_build_int_vec_type(type);
345
346 lp_build_context_init(&bld, builder, type);
347
348 const_ptr = lp_jit_context_blend_color(builder, context_ptr);
349 const_ptr = LLVMBuildBitCast(builder, const_ptr,
350 LLVMPointerType(vec_type, 0), "");
351
352 for(chan = 0; chan < 4; ++chan) {
353 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
354 con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), "");
355
356 dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), "");
357
358 lp_build_name(con[chan], "con.%c", "rgba"[chan]);
359 lp_build_name(dst[chan], "dst.%c", "rgba"[chan]);
360 }
361
362 lp_build_blend_soa(builder, blend, type, src, dst, con, res);
363
364 for(chan = 0; chan < 4; ++chan) {
365 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
366 lp_build_name(res[chan], "res.%c", "rgba"[chan]);
367 res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]);
368 LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, ""));
369 }
370 }
371
372
373 /**
374 * Generate the runtime callable function for the whole fragment pipeline.
375 */
376 static struct lp_fragment_shader_variant *
377 generate_fragment(struct llvmpipe_context *lp,
378 struct lp_fragment_shader *shader,
379 const struct lp_fragment_shader_variant_key *key)
380 {
381 struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
382 struct lp_fragment_shader_variant *variant;
383 union lp_type fs_type;
384 union lp_type blend_type;
385 LLVMTypeRef fs_elem_type;
386 LLVMTypeRef fs_vec_type;
387 LLVMTypeRef fs_int_vec_type;
388 LLVMTypeRef blend_vec_type;
389 LLVMTypeRef blend_int_vec_type;
390 LLVMTypeRef arg_types[9];
391 LLVMTypeRef func_type;
392 LLVMValueRef context_ptr;
393 LLVMValueRef x;
394 LLVMValueRef y;
395 LLVMValueRef a0_ptr;
396 LLVMValueRef dadx_ptr;
397 LLVMValueRef dady_ptr;
398 LLVMValueRef mask_ptr;
399 LLVMValueRef color_ptr;
400 LLVMValueRef depth_ptr;
401 LLVMBasicBlockRef block;
402 LLVMBuilderRef builder;
403 LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
404 LLVMValueRef fs_out_color[NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
405 LLVMValueRef blend_mask;
406 LLVMValueRef blend_in_color[NUM_CHANNELS];
407 unsigned num_fs;
408 unsigned i;
409 unsigned chan;
410
411 #ifdef DEBUG
412 tgsi_dump(shader->base.tokens, 0);
413 if(key->depth.enabled) {
414 debug_printf("depth.func = %s\n", debug_dump_func(key->depth.func, TRUE));
415 debug_printf("depth.writemask = %u\n", key->depth.writemask);
416 debug_printf("depth.occlusion_count = %u\n", key->depth.occlusion_count);
417 }
418 if(key->alpha.enabled) {
419 debug_printf("alpha.func = %s\n", debug_dump_func(key->alpha.func, TRUE));
420 debug_printf("alpha.ref_value = %f\n", key->alpha.ref_value);
421 }
422 if(key->blend.logicop_enable) {
423 debug_printf("blend.logicop_func = %u\n", key->blend.logicop_func);
424 }
425 else if(key->blend.blend_enable) {
426 debug_printf("blend.rgb_func = %s\n", debug_dump_blend_func (key->blend.rgb_func, TRUE));
427 debug_printf("rgb_src_factor = %s\n", debug_dump_blend_factor(key->blend.rgb_src_factor, TRUE));
428 debug_printf("rgb_dst_factor = %s\n", debug_dump_blend_factor(key->blend.rgb_dst_factor, TRUE));
429 debug_printf("alpha_func = %s\n", debug_dump_blend_func (key->blend.alpha_func, TRUE));
430 debug_printf("alpha_src_factor = %s\n", debug_dump_blend_factor(key->blend.alpha_src_factor, TRUE));
431 debug_printf("alpha_dst_factor = %s\n", debug_dump_blend_factor(key->blend.alpha_dst_factor, TRUE));
432 }
433 debug_printf("blend.colormask = 0x%x\n", key->blend.colormask);
434 #endif
435
436 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
437 if(!variant)
438 return NULL;
439
440 variant->shader = shader;
441 memcpy(&variant->key, key, sizeof *key);
442
443 /* TODO: actually pick these based on the fs and color buffer
444 * characteristics. */
445
446 fs_type.value = 0;
447 fs_type.floating = TRUE; /* floating point values */
448 fs_type.sign = TRUE; /* values are signed */
449 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
450 fs_type.width = 32; /* 32-bit float */
451 fs_type.length = 4; /* 4 element per vector */
452 num_fs = 4;
453
454 blend_type.value = 0;
455 blend_type.floating = FALSE; /* values are integers */
456 blend_type.sign = FALSE; /* values are unsigned */
457 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
458 blend_type.width = 8; /* 8-bit ubyte values */
459 blend_type.length = 16; /* 16 elements per vector */
460
461 /*
462 * Generate the function prototype. Any change here must be reflected in
463 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
464 */
465
466 fs_elem_type = lp_build_elem_type(fs_type);
467 fs_vec_type = lp_build_vec_type(fs_type);
468 fs_int_vec_type = lp_build_int_vec_type(fs_type);
469
470 blend_vec_type = lp_build_vec_type(blend_type);
471 blend_int_vec_type = lp_build_int_vec_type(blend_type);
472
473 arg_types[0] = screen->context_ptr_type; /* context */
474 arg_types[1] = LLVMInt32Type(); /* x */
475 arg_types[2] = LLVMInt32Type(); /* y */
476 arg_types[3] = LLVMPointerType(fs_elem_type, 0); /* a0 */
477 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* dadx */
478 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dady */
479 arg_types[6] = LLVMPointerType(fs_int_vec_type, 0); /* mask */
480 arg_types[7] = LLVMPointerType(blend_vec_type, 0); /* color */
481 arg_types[8] = LLVMPointerType(fs_int_vec_type, 0); /* depth */
482
483 func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0);
484
485 variant->function = LLVMAddFunction(screen->module, "shader", func_type);
486 LLVMSetFunctionCallConv(variant->function, LLVMCCallConv);
487 for(i = 0; i < Elements(arg_types); ++i)
488 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
489 LLVMAddAttribute(LLVMGetParam(variant->function, i), LLVMNoAliasAttribute);
490
491 context_ptr = LLVMGetParam(variant->function, 0);
492 x = LLVMGetParam(variant->function, 1);
493 y = LLVMGetParam(variant->function, 2);
494 a0_ptr = LLVMGetParam(variant->function, 3);
495 dadx_ptr = LLVMGetParam(variant->function, 4);
496 dady_ptr = LLVMGetParam(variant->function, 5);
497 mask_ptr = LLVMGetParam(variant->function, 6);
498 color_ptr = LLVMGetParam(variant->function, 7);
499 depth_ptr = LLVMGetParam(variant->function, 8);
500
501 lp_build_name(context_ptr, "context");
502 lp_build_name(x, "x");
503 lp_build_name(y, "y");
504 lp_build_name(a0_ptr, "a0");
505 lp_build_name(dadx_ptr, "dadx");
506 lp_build_name(dady_ptr, "dady");
507 lp_build_name(mask_ptr, "mask");
508 lp_build_name(color_ptr, "color");
509 lp_build_name(depth_ptr, "depth");
510
511 /*
512 * Function body
513 */
514
515 block = LLVMAppendBasicBlock(variant->function, "entry");
516 builder = LLVMCreateBuilder();
517 LLVMPositionBuilderAtEnd(builder, block);
518
519 for(i = 0; i < num_fs; ++i) {
520 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
521 LLVMValueRef out_color[NUM_CHANNELS];
522 LLVMValueRef x_i;
523 LLVMValueRef depth_ptr_i;
524
525 /* TODO: Reuse position interpolation */
526 x_i = LLVMBuildAdd(builder, x, LLVMConstInt(LLVMInt32Type(), 2*i, 0), "");
527
528 fs_mask[i] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, mask_ptr, &index, 1, ""), "");
529 depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &index, 1, "");
530
531 generate_fs(lp, shader, key,
532 builder,
533 fs_type,
534 context_ptr,
535 i,
536 x_i, y,
537 a0_ptr, dadx_ptr, dady_ptr,
538 &fs_mask[i],
539 out_color,
540 depth_ptr_i);
541
542 for(chan = 0; chan < NUM_CHANNELS; ++chan)
543 fs_out_color[chan][i] = out_color[chan];
544 }
545
546 /*
547 * Convert the fs's output color and mask to fit to the blending type.
548 */
549
550 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
551 lp_build_conv(builder, fs_type, blend_type,
552 fs_out_color[chan], num_fs,
553 &blend_in_color[chan], 1);
554 lp_build_name(blend_in_color[chan], "color.%c", "rgba"[chan]);
555
556 }
557
558 lp_build_conv_mask(builder, fs_type, blend_type,
559 fs_mask, num_fs,
560 &blend_mask, 1);
561
562 /*
563 * Blending.
564 */
565
566 generate_blend(&key->blend,
567 builder,
568 blend_type,
569 context_ptr,
570 blend_mask,
571 blend_in_color,
572 color_ptr);
573
574 LLVMBuildRetVoid(builder);
575
576 LLVMDisposeBuilder(builder);
577
578 /*
579 * Translate the LLVM IR into machine code.
580 */
581
582 LLVMRunFunctionPassManager(screen->pass, variant->function);
583
584 #ifdef DEBUG
585 LLVMDumpValue(variant->function);
586 debug_printf("\n");
587 #endif
588
589 if(LLVMVerifyFunction(variant->function, LLVMPrintMessageAction)) {
590 LLVMDumpValue(variant->function);
591 abort();
592 }
593
594 variant->jit_function = (lp_jit_frag_func)LLVMGetPointerToGlobal(screen->engine, variant->function);
595
596 #ifdef DEBUG
597 lp_disassemble(variant->jit_function);
598 #endif
599
600 variant->next = shader->variants;
601 shader->variants = variant;
602
603 return variant;
604 }
605
606
607 void *
608 llvmpipe_create_fs_state(struct pipe_context *pipe,
609 const struct pipe_shader_state *templ)
610 {
611 struct lp_fragment_shader *shader;
612
613 shader = CALLOC_STRUCT(lp_fragment_shader);
614 if (!shader)
615 return NULL;
616
617 /* get/save the summary info for this shader */
618 tgsi_scan_shader(templ->tokens, &shader->info);
619
620 /* we need to keep a local copy of the tokens */
621 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
622
623 return shader;
624 }
625
626
627 void
628 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
629 {
630 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
631
632 llvmpipe->fs = (struct lp_fragment_shader *) fs;
633
634 llvmpipe->dirty |= LP_NEW_FS;
635 }
636
637
638 void
639 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
640 {
641 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
642 struct llvmpipe_screen *screen = llvmpipe_screen(pipe->screen);
643 struct lp_fragment_shader *shader = fs;
644 struct lp_fragment_shader_variant *variant;
645
646 assert(fs != llvmpipe->fs);
647
648 variant = shader->variants;
649 while(variant) {
650 struct lp_fragment_shader_variant *next = variant->next;
651
652 if(variant->function) {
653 if(variant->jit_function)
654 LLVMFreeMachineCodeForFunction(screen->engine, variant->function);
655 LLVMDeleteFunction(variant->function);
656 }
657
658 FREE(variant);
659
660 variant = next;
661 }
662
663 FREE((void *) shader->base.tokens);
664 FREE(shader);
665 }
666
667
668
669 void
670 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
671 uint shader, uint index,
672 const struct pipe_constant_buffer *buf)
673 {
674 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
675
676 assert(shader < PIPE_SHADER_TYPES);
677 assert(index == 0);
678
679 /* note: reference counting */
680 pipe_buffer_reference(&llvmpipe->constants[shader].buffer,
681 buf ? buf->buffer : NULL);
682
683 llvmpipe->dirty |= LP_NEW_CONSTANTS;
684 }
685
686
687 /**
688 * We need to generate several variants of the fragment pipeline to match
689 * all the combinations of the contributing state atoms.
690 *
691 * TODO: there is actually no reason to tie this to context state -- the
692 * generated code could be cached globally in the screen.
693 */
694 static void
695 make_variant_key(struct llvmpipe_context *lp,
696 struct lp_fragment_shader_variant_key *key)
697 {
698 memset(key, 0, sizeof *key);
699
700 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof &key->depth);
701
702 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
703 if(key->alpha.enabled)
704 key->alpha.func = lp->depth_stencil->alpha.func;
705 /* alpha.ref_value is passed in jit_context */
706
707 memcpy(&key->blend, lp->blend, sizeof &key->blend);
708 }
709
710
711 void
712 llvmpipe_update_fs(struct llvmpipe_context *lp)
713 {
714 struct lp_fragment_shader *shader = lp->fs;
715 struct lp_fragment_shader_variant_key key;
716 struct lp_fragment_shader_variant *variant;
717
718 make_variant_key(lp, &key);
719
720 variant = shader->variants;
721 while(variant) {
722 if(memcmp(&variant->key, &key, sizeof key) == 0)
723 break;
724
725 variant = variant->next;
726 }
727
728 if(!variant)
729 variant = generate_fragment(lp, shader, &key);
730
731 shader->current = variant;
732 }